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The density variations of stratified fluids play a subtle but crucial role in flow characteristics. In

stratified shear flows under gravitational influences, for example, the density variations enter the prob-

lem through their interaction with the vertical displacements in the flows. The density variation, usu- "J

44
ally very small in atmospheric and oceanographic studies, is the basis for stability conditions like the 5::3
Richardson criterion. Such a density variation. no matter how small, cannot be ignored because of its A

subtle interaction with the perturbation in the vertical direction.

In the case of vortex motions, a centrifugal force field which depends on the radial position will
be induced by the rotation of fluids. Because of the complication of the geometry and the dependence
of the centrifugal force field on both rotation and density, the "buoyancy" effect and the inertia effect .
are sometimes difficult to distinguish. The rotation of fluid particles plays a dual role in flow charac- @
teristics. While the rotation, interacting with the density, generates a force field to supply radial "buoy- '1
ancy" effects which can either stabilize or destabilize the flow, the velocity gradient creates shear effects :

which always destabilize the flow. [n other words, two types of instability mechanisms, the centrifugal

one and the shear one, are conveyed by the rotation, and they are not as distinct as in the case of two-
dimensional parallel flows.

In an early paper on interfacial conditions of a cylindrical vortex sheet, Fung (1980) showed that
perturbations to the flow disturb both the pressure field and the centrifugal force field which is created

by the fluid rotation and the azimuthal magnetic field. The latter stabilizes or destabilizes the flow

depending on whether the force field generated is centrifugally stable or unstable. The perturbation to
the centrifugal force field is therefore essential to the flow characteristics especially when rapid changes

of flow quantities exist within a thin layer of fluid. Such a perturbation from the centrifugal force field

seems to be straightforward but is sometimes easily overlooked. Sufficient care should be taken when o
anaiyses involving discontinuous quantities are performed. '.g X
e i
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In their analysis of inviscid instability of two-dimensional vortex type flows, Michalke & Timme

P
(RN oy

(1967) failed to consider the effect of perturbations to the centrifugal force field generated by the vor-
tex motion and came to a conclusion all modes were unstable. In a later paper by Leibovich (1969) on
stability of inviscid rotating coaxial jets in stratified fluids, the same perturbation to the centrifugal force
field was again omitted. The author found that the stabilities uncovered by the analysis were
anomalous and therefore concluded that errors might result if a thin but stable fluid layer was replaced

by a vortex sheet.

. .
S Rt s aaiele s
-, i in d kg adad

When discontinuities of flow quantities exist in a cylindrical interface, instabilities are likely to

occur because of any unbalanced centrifugal forces, and the sharp velocity gradient present at the inter-

face. As mentioned earlier, though the velocity gradient always stabilizes the flow, the centrifugal force ";
induced by vortex motions can either stabilize or destabilized the flows. As for the cases considered by 1
Michalke & Timme (1967) and by Leibovich (1969), the centrifugal force field did have stabilizing 1
effects and should have stabilized modes with smaller wave numbers. This phenomenon will be ~J
demonstrated by examining a general class of vortex sheet type flows. The stabilizing or destabilizing .

effect of the centrifugal force field will be revealed by the perturbation of the field at the interface. A
centrifugally stable force field created by the rotation and the azimuthal magnetic field may not always
offset the shear instability of the vortex sheet, but certainly will stabilize disturbances corresponding to w
longer wave lengths. T ]

GOVERNING EQUATIONS AND INTERFACIAL CONDITIONS

The governing stability equations for a general class of incompressible vortex flows with radius-

dependent density, velocity and magnetic fields in a cylindrical coordinate system are given as:

[
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Here N = kW + mQ — w is the Doppler-shifted frequency, Ny = kW, + m , the Alfven frequency,
@ the complex eigenfrequency, p,(7) the density of the fluid, Q the angular velocity, W the axial velo-
city, O, the angular Alfven velocity, W, the axial Alfven velocity, 4 the perturbation velocity in the
radial direction, ¢ the perturbation of the total pressure (including the magnetic pressure), k the axial

wave number, m the azimuthal wave number, T the surface tension at the interface located at a radial

L . The Rayleigh-Synge discrim-

position r = R, § the Dirac Delta function, D = % and D*= D + <

inant is defined as

D 2Q)?
o = Dloo’0)7
Po’

and the Alfven discriminant as

¥, = ——D(p,0?.
Po

The corresponding boundary conditions are the perturbations vanish at the inner and outer boundaries.

The interfacial conditions for possible discontinuities at the vortex sheet or cylindrical fluid layer,
obtained by integrating Eqs. (1) and (2) across the interface or by considering the total force balance at
the interface, are as follows:

u
<N> 0 3)

u
P

l<p,r(ﬂz— > +R—T,(x2+m2- D]=0 4
R

where x = kR and <¢> = ¢(R,,) — #(R_,) denotes a possible jump condition at the interface.
Readers are referred to Fung (1980) for the detailed derivation and assumption for Eqgs. (1) and (2),
and the discussion on the two interfacial conditions in Eqs. (3) and (4).

For the convenience of mathematical operations and discussion, we define
Fom <p,r(Q1— QD> + L2+ m?=1) (5
¢ Po 4 R? K m

to denote the centrifugal force and surface tension effects at the interface. The interfacial condition (4)

now written as

..,{
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can then be viewed as the dynamical balance condition between the perturbation of the total pressure
(including the magnetic pressure) and the perturbation of the unbalanced centrifugal forces and surface
tension at the interface.

A GENERAL TYPE OF VORTEX SHEET

The centrifugal force enters the dynamic interfacial condition through its interaction with the
Lagrangian displacement in the r-direction. The interaction represents the influence on flow stability
due to the perturbation to the centrifugal force field. To understand such an influence, we will analyze
a general class of vortex sheet type flows subject to different types of perturbations. Analytical solu-
tions for some particular flow profiles will be obtained to verify the conclusion of the analysis. Stability
domains will also be discussed. The errors that result from omitting the perturbation to the centrifugal

force field in earlier analyses [Michalke & Timme (1967); Leibovich (1969)] will be discussed and
corrected.

The general type of vortex sheet profile to be considered has two flow regions with their steady

state interface located at r = R. The flow properties in the inner region are all constant, i.e.,
po(r) = p,
Q(r) = Q,
Wir) = W, for 0 < r <R
Q.r)=0Q4

WA(’) o WAI

where the quantities with numerical indices are constant. The flow properties in the outer region are
arbitrary functions of the radius. The solutions for the perturbation velocity &, and the perturbation

pressure ¢, in the inner region can be obtained from Egs. (1) and (2), and the boundary condition at
the axis as

2m(N\ Q- NaQ,) . kgl (ki)

uy=AN
' N1 r(NE = N2 T, (kg,r)

1, (kgr) M

gy = —iA(N{ = N} glpIntkgr) ®)
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where

N Q) - NMQulz 9)

2 a4
si=l [ NI - N

N‘-kW‘+mQ\—¢u

Ny= kWy + mQ 4

and I,(kg,r) is the modified Bessel function of the first kind. The priine denotes the total derivative
with respect to the argument of the Bessel function. Taking the derivative of Eq. (7) with respect to r,
one obtains
u, 2M(N|ﬂ|—NA|ﬂ,41) ' mz 1
DY|—|= 4 L, (kg\r) + | = + k’gi|1,(ke,r)}. §11))
1Nl] ' r(le _ N}l) kgl m( 414 I'2 141 m( £ ...
The solutions in the inner region given by Egs. (7), (8) and (10) will be used to analyze the influence 'Q‘
of the centrifugal force field on flow stability subject to three kinds of disturbances at the interface: an N 1
axisymmetric perturbation, an aximuthal perturbation, and an arbitrary perturbation. - 1
Case 1: The axisymmetric mode (m = 0) N

The solutions in the inner region as described by Eqgs. (7) and (10) for the axisymmetric case

reduce o
uy = A Nikg,I,(kg,r) (11
D, = A lezglzlo(kglr) (12)
where
Nl = kW[ - w .
and
N .5
Ny~ kW00 4 )] T
gir={l—4 > 5 . SO
N - k W“ . -
For the convenience of mathematical operations, we will express the dynamical interfacial condi- v:.‘-

tion only in terms of the perturbation velocity. To do this, we substitute (1) into (4) for m = 0 and
obtain

b —
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<p,rH(N? - k? W})D‘ll—':; > + k?

u
-ﬁ]F, = 0. (13)

The governing stability equation obtained by combining Eqs. (1) and (2) for the axisymmetric
mode reduces to the form

D[p.,(Nz -k W})D'{%” — p KN — KXWDg* + 402 - & + w,]l%l =0 (14)
where
, NQ - kw0,
g=1-4 N = W] for R < r < oo,

Multiplying Eq. (14) by r[-%] where the quantities with a bar are the complex conjugates, and integrat-

ing the resultant equation over the outer region, we obtain, after applying the boundary condition at
infinity, the following integral equation

i 2 _ 22 u = 2 _ 2y 4 202/ 8
HNIPO(N k WA)D'[N] k. +fR po(N“ =k WA)“D'{N r+ kg Nﬂrdr
=7 k2@ - 402 - w )L rdr =
fR Poki(® — 402 - W) N[zrdr 0. (15)

Combining Eqs. (11), (12), (13), and (15), we obtain, by using the complex conjugate of Eq. (3),

kcl, (kg ) (01811, (kg ) (NE — K2W},) — kI, (xg)) F)

+ j::',;,,(Jv2 — KEEWHID* ¢, 1 + kg2 — f:p,,kz(GD ~- 402 =¥ )¢ lrdr = 0 (16)
where the transformation

1 u
b Az N

has been applied for R € r < oo,
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It is very difficult to observe the general characteristics of Eq. (16) because the arguments of the
Modified Bessel functions involve the complex eigenfrequency w. To observe the effects of the centri-
fugal force field and other flow quantities on the stability of the flow and especially of the interface, the

following special profiles are considered to simplify the integral equation (16). Let
W,=0 for0 £ r < o

and
Q,=0

which correspond to a vortex flow field with no axial magnetic flux anywhere and a core which is not
rotating. Equation (16) reduces to a quadratic form

2
akl%l - Zbk +¢4=0 a7,

L
k

where
a, = ag + f:der
b= agWy+ [ WOdr
o = a, Wi = [kl ())*F. + fWZder - fp,,(fb - ¥ ), |2rdr
@, = kpiel, () 1, (k) > 0
and

Qk - Pn(ID.¢k|2 + k2'¢kl2)f 2 0.

Solving for w. one finds that stability (corresponding to real values of w) is guaranteed when

= fay f:(W— W\)2Q,dr +5kl

+ [ax+ S 0uat] [ L7p0@ = W) Il rdr + el GIES > 0 (18)
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b

8 = kadrf WiQ.dr — U. Wderlz.
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Certain characteristics of the flow can be observed from Eq. (18). The first pair of curly brackets con-

Lok san. s 2 8

tain information on the axial velocities while the second pair of curly brackets contain information on
the centrifugal forces at the interface and in the outer region. Since both «, and Q, are positive

definite, the first term in the first pair of curly brackets represent the axial velocity difference at the

s WO

o

interface between the inner and the outer regions, always destabilizing the flow. The second term in

the first pair of curly brackets contains information on the axial velocity in the outer region. It can be

-

easily seen from the Schwarz inequality that y
8 20 U

-4

for all values of W. Therefore we can conclude that the presence of the axial velocity in the outer o
o

region always destabilizes the flow except for constant values of axial flows where 8, = 0. The tangen- . ":
tial shears at the interface and in the outer region are suppressed since the perturbations are aliowed 3
only in the axial direction. The first term in the second curly bracket is the integral of the Rayleigh- »
Synge and the Alfven discriminants. For vortex flows subject to axisymmetric disturbances and in the »

absence of the axial velocity and the axial magnetic field, the two discriminants constitute the general

Michael condition saying that the necessary and sufficient condition for stability is

d-¥, >0 (19) .

=Y

Equation (19) represents a state of centrifugal stability [Fung (1980)] and the corresponding integral in ',.‘ '

the second curly bracket conveys information on centrifugal stability in the outer region. The last term s

; ‘ in the curly bracket carries the information on the centrifugal forces acting on both sides of the inter- .

X face, parailel to the first term in the same brackets. As pointed out by Fung (1980) in his derivation of ‘1‘

i the dynamic interfacial condition, the jump condition arising from the perturbation of the centrifugal K 1'

force field is the outcome of integrating the Raleigh-Synge and the Alfvén discriminan:s across the

;. interface. The last term in the second pair of the curly brackets in Eq. (18) can then be viewed as the 'I.*

| - integral representation of the generalized Michael condition at the interface. The sign of F., indicating s

L— whether or not the resultant force at the interface is centrifugally stable, determines the stabilizing or

o destabilizing effect on the flow. For the present case f

. .'j
t
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Fo=Rlp203 = (2003 = p1@2 0] + 270 ~ D). (20)

The surface tension always stabilizes the flow except for very long axial wave lengths where x < 1. It
can be shown (Fung 1980) that the centrifugal force balance condition in Eq. (4) can be obtained by
integrating Eq. (19) across the interface. Equation (4) can therefore be viewed as the integral represen-
tation of the generalized Michael condition, representing a centrifugally stable condition at the inter-
face. As predicted by the generalized Michael condition, the presence of the magnetic field in the inner
region stabilizes the flow while that in the outer region destabilizes the flow. The rotational velocity
immediately outside the sheet, always stabilizes the flow.

It should be pointed out that the flow profile being considered in this axisymmetric case can be
reduced to the one examined by Leibovich (1969) in his study on hydrodynamic stability of inviscid
rotating jets, if the axial flow in the outer region and all the magnetic forces in the flow field are
deleted. Eq. (18) with W = ¥, = 0 should have been recovered had the correct interfacial condition
described by Eq. (4) been used in his baper. Failure to consider the centrifugal force jump, which con-
tributed considerable stabilizing effects to the flow, led the author to conclude that the flow must be
unstable at least to short waves and possibly to all wavelengths. While the vortex sheet type of flows is
susceptable to short wave perturbations because of the strong shear effect present at the interface, the
centrifugal force jump as in the case investigated by Leibovich (1969) will certainly stabilize those per-
turbations with longer wavelengths. This characteristic is clearly shown in Eq. (18) and will be sup-

ported by an exact solution to be given in the following.

Because of the presence of the centrifugal term involving F, in Eq. (18), instabilities for large
axial wave number can not immediately be concluded. Therefore, it is necessary to obtain solutions for
some specific flow profiles in the outer region before the detailed stability phenomena predicted by Eq.
(18) can be observed. We will examine the following flow profile "

po(r) = py
W) =w,
Q(r) = Q,(R/r)? for R<r <o
N, r)=Q,
where p;, W, Q,, and 4, are constants. The perturbation velocity u; in the outer region obtained
by solving Eq. (14) is

uy = B(kW, — w)VkK, (kr).
. :

o+
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The stability boundary described by Eq. (18) in this case is

R IACY 1 &K, (x)
PR A P >
ol 160 o Ko | 20 QD

- kHW, - W)+

where F. is given in Eq. (20). Since the sum of the terms within. .i.e square brackets is positive, the
stabilizing effect, if any, will come from the centrifugal force term F.. Even though Eq. (21) is likely
to be violated for very large axial wave numbers, perturbations corresponding to smaller axial wave
numbers may certainly be stabilized by the centrifugally stable forces at the interface. As demonstrated
by Eq. (21), an erroneous conclusion that no axisymmetric modes are stable can easily be reached if

the perturbation of the centrifugal force at the interface is omitted as was done by Leibovich (1969).

Figure 1 shows the stability domains for the ratio between the centrifugal force and the axial velocity
difference as a function of the axial wave number. Even though the flow is unstable for very large axial
wave numbers, perturbations corresponding to longer wavelengths will certainly be stabilized by the

centrifugal force jump at the interface.
Case 2: The azimuthal mode (k = ()

The solutions in the inner region governed by Egs. (7) and (10) for azimuthal modes have the

forms ,,"

uy= ANy @ o

D, = A Ny mr"~? (23) f-'.‘_i

o

where ;1
N=mQ, - w. 3
: We will again express the dynamic interfacial condition only in terms of the perturbation velocity. j
:‘.{:’L Combining Eqgs. (1) and (4) for k = 0 yields 5
o
Fe <p,rHNt = miQ })D'[% > (24) dl
+ % —<2mrpg(NQ — mQ2)> + m*F.{ = 0.

R N

'. .

10




- S — e e Fev v mwm e .
e ant —~ Ty v Ladad et A v " v h L shuten pu b aessnas AN AENMCRISE AR M TATMCHCIRELIAS) R oL T T e e [ = ;
T T T T I T AOMSATY TRV S apaasMNL A RSO S Aol O S SUOIIEER S ) RSt N R I “

suoneqinusad NNSWWASIXE 0] 135(QNS SMOY X3110A 10f SUTRWOP Aujigmg | “fig

I HY=
8 2l 9 1>} 4 ¢ e ]
| | | | | |

\\
\

4

4

NOI93Y 3J1GVLSNN 4
— \\ —i !

11

*
]
| €

N\

—v
\ NOI93¥ 318ViS

o andiBe B B RAn Mb-e aea S S Bt St i St e Bt o -]
T
.




m e " . ML T LT @ et e e e
- . - At it IR S T @ @ .
- - £ e R Y T T TR T e T e T8 T e e e e LT - -

—
Al

- T L Y iy
'.,. ; Ty "T'."""‘".. .‘I [ R L
Vil . e AR Ly et et bt .
RS e Tt e en sete Fertiaf Tt . .
s
'
)
. .

!

Ty

As for the outer region, the governing equation obtained from Eqs. (1) and (2) for azimuthal
modes is

1){,,.,r2(1v2 - m2Q })D'l%”

- {2mrD[p.,(Nﬂ -mQ)l +p,m(N -0 +402-m?*Q} + ‘FA)H%I =0 (25)

for R € r < oo,

Multiplying Eq. (25) by rl%]. integrating the resuitant equation over the outer region, and applying

the boundary condition at infinity, we obtain

i L.
+ [ poli? - mzﬂi)[r”o'lf,- r + m? %“rdr

+ f:[ZmrND(p,Q) - m(rQ%Dp,) + rD(p,ﬂ})]}

por’(N? —- mzﬂf)D‘[l—‘:,-

u
Nrrdr - 0. (26)

Using the complex conjugate of Eq. (3) and substituting Eqs. (22), (23), and (25) into (26), we obtain

2
a,,,[-‘!‘-l - 20| =] +cn=0 @n
m

o
m

where
ay = mp, + f:Q,,,dr
bu= (m = Do\ + 920 + [ QQudr + [ D(po )0l dr
n=(m=2p,(Q}- Q) +20,(0}-0Q}) - F/R
+ @@= 0D 0udr + [ Do, (a2 = Qe rdr

On = po(FID*¢p|> + m2lom|Dr 20 (28)

12

.« o= ow . P - e P N

".-4

IR
R
o
L
sy




and the transformation

1 _u ]

Om = 4R™ W ;!:‘

o

has been applied in the region R € r < o. The flow will be stable if Ty

. b2 = ayc, > 0. (29) &
B

Since Q,, and therefore a,, are positive definite, we can immediately conclude that again the sign of F.,

representing the balanced or unbalanced force condition at the interface, determines the stabilizing or

destabilizing effect on the flow. The stabilility mechanism conveyed by Eq. (29) can not be observed

-

directly in this case. To further investigate this mechanism, we utilize the transform :A-" i 3
.']

P, = p,ir}iD¢,1* + (m* - Dip,|13r 2 0 (30 -

i 'J

and from Eq. (28) 0
,-._:..1

L0

On—Pp= PoD(’2|¢m'2)- -:":

.t i "

The coefficients in Eq. (27) can therefore be rewritten as e
L

an = mpy + [ Ondr

b= (m = VpiQ2, + [ QPyar GB1) ~w
S
f-_? em=(m—=1Dp(QF-0Q2) - (m- l)T/R’+f(02-0})P,,dr. ]
. Substituting the coefficients in Eq. (31) into Eq. (29), we find, after some mathematical manipulations, .5
E! that stability of the flow is guaranteed if T
o J
¥
- X1+ x,+x;20 (32) :
-
= where @
e -—
X, - ((m - l)Plf(ﬂ - Q)P dr + 8,,,] s
o Xy [,,,_,,, + f(Dp,,)rzlulzdr"(m - 1)p, 0} +f(12l’,,,dr] '
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Xy = [mp, +der”(mz— DT/R}+ (m — Dp 03, +fﬂ}Q,,,dr] =0

and

b= [ Pade Q2P - ({00’

The roles played by the flow quantities on the stability mechanism can be observed by examining Eq.

(32). From the Schwarz inequality that

3, 2 0 (33)

for all values of 1, the terms in x; in Eq. (32) always destabilize the flow. Furthermore, by comparing
the terms in x; with those in the first pair of curly brackets in Eq. (18), we can draw an analogy
between the two and conclude that they both convey the shear effect which destabilizes the flow. The
first term in x, is the shear effect generated by the velocity difference at the interface. The second
term in x, represents the shear effect carried by the tangential velocity in the outer region and is similar
to the corresponding term in Eq. (18) except that the latter is induced by the axial velocity instead.
The term x; in Eq. (32) is the contribution to stability by the density variation in the centrifugal force
field. Obviously the stabilizing or destabilizing effect depends on the density difference at the interface
and on the density distribution in the outer region. Densities that increase with radius always stabilize
the flow and vice versa as one wouid intuitively expect. The above discussion reveals that the angular
velocity in rotating flows plays a dual role in flow stabilities: producing a shear effect and inducing a
centrifugal force field. The term x; in (32) contains the information on the surface tension and on the
magnetic field. The surface tension always stabilizes nonaxisymmetric perturbations as is well-known.
The azimuthal magnetic fields in both the inner and outer region always stabilize the flow in spite of the

details of the magnetic profile. This characteristic is also true for arbitrary flows if only the perturba-
tions in the azimuthal direction are permitted.

To further illustrate the stability characteristics described by Eq. (32), we consider a special flow
profile

Po(’)-PZ
Q@) =0, for R € r < oo, (34)

ﬂ,.(r) - 042
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All the quantities with numerical indices are constants. The solution, obtained by solving Eq. (25) for
the flow profile given in Eq. (34), is

- N -
g u, = BmN, 2(N2Q; = Nqaf2 1) -
Lo N} - N}

1| (35)
o Equation (29) for this flow profile has the form

(py + pPo? = 2{(m — Vp, 0, + (m + Dp,Q5le + ml(m - Dp (O - 03)

+ (m+2p,(QF - 03) — F/RI=0. (36)

! As previously predicted, the sign of F. determines whether or not the force condition at the interface

B stabilizes the flow. For stability (w; = 0) the characteristic equation from (36) requires that

- (mz - l)p|p2(0| - 02)2 + (02 - pl)[(m - l)p‘ﬂf + (m + 1)p2022]

+ mip, +p)l(m—=Dp 23 +(m+1) P20} + (m?— T/RHN 2 0. 37

[n

As previously discussed, the first term in the above equation represents the shear effect at the interface,

- yevrr
SirkdtdiirtSaaidrt 4
AR

always destablizing the flow. Because of the uniform rotation for r 2> R, Eq. (33) is identically equal to

zero, meaning that no shear effect exists in the outer region. The second term in Eq. (37) is the effect

of the density difference experienced in the centrifugal forces generated at the interface. Stabilizing

effects correspond to larger density in the outer region. The last term in Eq. (37) contains the informa- .133;}

tion on the surface tension and on the azimuthal magnetic fields in the inner and outer region, ail u."
always stabilizing azimuthal perturbations. Figures (2a,b,c) show the stability domains for m = 2, § -
and 30 modes in the absence of surface tension. Both the destabilizing effect produced by the shear at -~ B
'::3 the interface and the stabilizing effect induced by the azimuthal magnetic fields increase as the wave K
:f number becomes larger. For very large m, Eq. (37) for zero surface tension reduces to o .E
[ )
t—: - p[pz(ﬂl - 92)2 + (pl + p;) (p|ﬂ}‘ + p;ﬂjz) 2 0. (38) '
[" In the absence of the magnetic force, the flow is always unstable except for uniform rotation where
b, T
A n’l - 02' " gy
r~ Case 3: The arbitrary mode
For simplicity consider Q, = @ ,, = 0 in the inner region, and the solution for the perturbation _
L' velocity reduced from Eq. (7) is )
ii u, = AN ki, (kr) (39
=
X 15
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The dynamic interfacial condition expressed in terms of the perturbation velocities is

<p,r’(N* = N} D'[—I% >+

X
Njg
For the outer region, when we consider {2 , = W, = 0, the governing equation for stability is

° 4
‘;_._kzz " ” {2mrD 1+k21] p,,[Nz z':_‘,:zzl[ l

Multiply Eq. (42) by r{‘%l and integrate the resultant equation over the outer region to obtain

u Po’ P AN
HTv' e+ ki [ ” f {2mrD ml + Kir z]
1_ gy 4ma? | lu _2or'N 1w
+p, |IN} -0+ T )Tv- rdr — T N rdr=0.

Substitute Eqs. (39), (40), and (41) into (43) and utilize the transforms

Q=p, —2—_'_7—; ID*¢12 + (@1*] r
P = — oy [PIDGI + G + mi = 1) lallr > 0
where
.

has been applied in the region R € r < . From Egs. (44) and (45), it follows that

poD(rtlel?)
m? + kir?

Q-P=

19

{<=2mrp,(NQ — N,Q)> + (x* + m)F,) = 0.

(40)

41)

(42)

(43)

(44)

(45)

(46)

o
- -1
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The characteristic equation obtained by using the transformation from Eq. (44) to (46) is

aw’—=2bo+c=0 47)
where
a-a+f:er
b=akW, + [ (kWQ+mQPdr
- akWE = W) - el ol |5 = P20 L 07 o 4 yeWmap + mia P
c=a f = Wi - Ixl,(k R i R o+ m +m r
- 2m20? k2r? .
# _f“ l¢+ m2+kzr2] m? + kir? |1 rar
and

a = pl,(x)l, (k) > 0.

Ak I" AR

The role played by the unbalanced forces arising from the discontinuities at the interface can be
observed immediately. Since both a and Q are positive definite, the sign of F, therefore determines

the stability effect carried by the forces acting at the interface. In the present case

T T,
AL L .
W e Ced e e

F.=p,RQ} + T(k? + m> - 1)/R2

The surface tension always stabilizes nonaxisymmetric perturbations as is well-known. The centrifugal
force term arising from the difference in the angular velocity at the interface always stabilizes the flow.

This is also the term omitted by Michalke & Timme (1968) in their stability analysis of two-

Sk vv!‘r“

dimensional vortex type flows. Such an omission led them to an erroneous conclusion that all azimu-
thal modes were unstable.

‘hd

Y
E'. g Solving the quadratic equation (Eq. (47)) for w, we conclude that the flow will be stable if
- MAyr+y 20 (48)
;‘"-' where
o
= n=—a [ KW - W) Qdr -8, -8
e
:' yy=2a f: k(W ~ W) mQpar+2{f " kwodr J, mQPdr - [ o f, kaﬂPdrI
p
20
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. k1, (x) w0 Po ) =
y;-lxl,,,(x) [pzm—pllm(x)]+fk D — r’le|dr fn m?Q *Pdr
2miQ? k2r? 2

+[a+der]f d + m2+k2rzl — | |%rdr
= lo + fou) far?Wh + ipo? i | T oy mio
Vi= | Qdr| ja i xl,(x m2+x2+RK2 K+ m° -

and
8. = [ 0dar [ k*w2Qdr - [kaer]2
S = f Pdr f m2Q2Pdr — [fmﬂ Pdr]z.

From the Schwarz inequality, it follows that

and

8g >0

for ail values of Wand Q. Several stability characteristics can be observed from Eq. (48) as follows.

The quantity y; carries the shear effects in both axial and azimuthal directions, aiways destabiliz-
ing the flow. The first term in y; is the axial shear generated by the velocity difference between the
inner and the outer regions. The second term §,, and the third term 8 in y, are respectively the shear
effects produced by the axial and azimuthal velocity difference within the outer region. The

corresponding terms can be found in ihe case for the axisymmetric mode and for the azimuthal mode.

The quantity y, is the shear effect interaction between the axial and azimuthal directions. The
first term in y, is the interaction between the inner and outer regions, while the second term is the
interaction within the outer region. All the terms in y, can be positive or negative, depending on the
signs of the velocities and wave numbers, and therefore can stabilize or destabilize the flow. Such
dependence implies whether or not the axial or azimuthal shear reinforces each other and whether or

not the direction of perturbations strengthens the resultant shear effect.

The first term in y; is the effect of density variation at the interface and in the outer region in the

centrifugal force field created by the rotation of the fluid. Densities increasing radially outwards
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stabilize tke flow. The second term in y; involves the integration of the Rayleigh-Synge discriminant
over the outer region. The condition for ceatrifugally stable profile, i.e., ® 2 0 is the precondition for
the sufficiency condition of stability for flows subject to perturbations in both the axial and azimuthal

directions (Fung & Kurzweg 1975). Positive values of @ stabilize the flow.”

The quantity y, carries the information on the forces acting at the interface. The presence of the
surface tension and of the axial magnetic field in the inner region always stabilize the flow. The term
involving p,Q 7 in y4 is the centrifugal force created by the rotation of the outer region at the interface
and is always positive. Because of the nonrotating core considered in the inner region, any rotation

immediately outside the interface will have stabilizing effects.

To further illustrate the stability characteristics described by Eq. (48), we consider the following
profile

po(’) =P
w(r) = W, for R < r < oo.
Q(r) = Q,(R/r)?

Here p,. W, and 1, are constant. The solution for the perturbation velocity obtained from Eq. (42)

for the present flow profile is
uy = BkWy+ mQ; — @) k Kp(kr). (49)

Equation (48) then has the form

—pipk (W, — Wy) — mQ,1? +

kL () xK;(x)Hm 22 _Am®) (50)

PTG PR, (e AVl (k)

+p,n§+R—T,<x2+m2—1) > 0.

The first term in Eq. (50) is the shear effect created by the velocity difference at the interface. The
axial velocity difference always destabilizes the flow. However, such destabilization interacts with the
radial shear effect generated by the rotation of the outer region. Whether or not the interaction rein-
forces the destabilization depends on the direction of the axial and azimuthal velocities and of the axial
and azimuthal perturbations. Since x/,,(x)//,(x) > 0 and kK, (x)/ K, (x) < 0, the second term in Eq.
(50) is aiways positive and is contributed by the axial magnetic field in the inner region, the rotation of

fluid in the outer region, and the surface tension at the interface. All these contributions stabilize the
flow.
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It is the contribution from the unbalanced centrifugal force p,Q # resulting from the discontinui-
ties of the velocity and density at the interface neglected by Michalke & Timme (1967) and by Leibo-
vich (1969) in their analyses of two types of vortex sheet flows. Such negligence led them to conclude
that some of the perturbations which should have been stabilized by the unbalanced centrifugal forces

at the vortex sheet were unstable.

CONCLUSION

The present analysis has demonstrated several characteristics of vortex flows with variable densi-
ties. Unlike the velocity in the two-dimensional shear flows, the rotation of vortex motions plays a dual
role in flow stability: producing shear effects which always destabilize the flow and generating a centri-
fugal force field which can stabilize or destabilize the flow. The stabilization or destabilization depends
on whether or not the force field is centrifugally stable. For flows of the vortex sheet type, the centri-
fugal force arising from the discontinuities in the rotating velocity and the azimuthal magnetic field at
the vortex sheet has significant influence on flow stability. The resultant direction of the centrifugal
force at the interface, dictated by the sign of F, in Eq. (5), determines whether such force stabilizes or
destabilizes the flow. As shown in Eq. (6), the forces acting at the vortex sheet interact with the per-
turbation displacement of the deformed interface. Smaller displacements correspond to larger wave
numbers. For a given centrifugally stable flow profile on both sides of a fluid layer a smaller thickness
produces less centrifugal stabilizing effects and at the same time generates sharper velocity gradients,
both destabilizing the flow. This argument explains why a flow of the vortex sheet type is most suscep-
tible to instability corresponding to disturbances with large wave numbers. For perturbations with
smaller wave numbers. the magnitude of the displacement is greater and the resultant interaction will
have more significant effects on flow characteristics. Such effects will stabilize perturbations

corresponding to smaller wave numbers as shown in the examples in the present analysis.

The deformation of the vortex sheet affects the flow in two ways: disturbing the total pressure

field and perturbing the centrifugal force field created by the azimuthal components of the velocity and
the magnetic flux. The latter, even though it seems to be straightforward, is easily overlooked as in the

studies performed by Michalke & Timme (1967) and by Leibovich (1969). Failure to consider such a
perturbation to a stable centrifugal force at the vortex sheet can lead to the erroneous destabilization of

certain modes corresponding to smaller axial and azimuthal wave numbers.
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