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PREFACE

This report is a description of environmental simulation techniques developed for
USAFETAC Project 1960, 2082, 2339, and 2357. The report provides a basic
description of current USAFETAC modeling capabilities and serves as a tutorial
for practitioners and users of environmental simulation modeling.

We gratefully acknowledge the numerous suggestions and contributions of Major
Albert Boehm, USAFETAC/DNP.
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Chapter 1

INTRODUCTION

1.1 General

On 26 February 1979 the United States Air Force Technical Applications Center
(USAFETAC) was designated as the focal point for providing Air Weather Service's
(AWS) environmental simulation support. This new mission for USAFETAC resulted
from growing environmental simulation requirements within AWS. It was felt that
if simulation support were handled through a centralized facility, the techniques
developed for one customer could be applied to others. Centralized support would
make the simulation expertise available to all AWS personnel and not tie it to
the life cycle of individual projects.

This technical note describes some of USAFETAC's initial modeling capabili-
ties and should provide the reader with some fundamental statistical background
that will be needed for more advanced modeling problems.

1.2 Environmental Models

For the purpose of this technical note the term environmental refers only to
meteorological applications of modeling. Other disciplines such as geophysics,

WV hydrology, and engineering have done quite a bit of work in modeling their own
spheres of interest and by rights should be included under a term dealin- with
man's environment. Such, however, is not the scope of this report.

There are two types of environmental models. One type of model is based on a
mathematical representation of the dynamics of a real life system. These models
are dynamical initial-boundary value problems. Once the initial conditions of
the system have been determined, the state of the system at any future point is
given by the analytical or numerical solution of a set of differential equations.

These equations are based on physical laws of nature such as the laws of motion.
Examples of these types of models are the NOAA National Weather Service's Limited
Area Fine Mesh (LFM) Model and the Air Force Global Weather Central's Bounddry
Layer Model (BLM). For some problems, finding analytical or numerical solutions
to dynamical models is too arduous, and one must consider a second type of model-

ing, namely simulation.

Environmental simulations apply the theory of mathematical statis.tics to
mirror the processes and interrelationships of a real life system Wbile these
models may do very well in producing certain desired statistics such as means,
standard deviations, and correlations, they might violate physical laws.
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Environmental simulations range from deterministic models (i.e., ones in
which, given the current state of the system, the future state is uniquely

defined) to purely stochastic models (i.e., ones in which the system behavior is

inherently uncertain or random). Most environmental simulation models, however,
are a mixture of the two. While the current state of the system might weigh
heavily on the results, because of the uncertainty of weather events, the out-
comes are not always the same given the same input data.

1.3 Environmental Simulation

Weapons systems effectiveness studies, design trade-off analyses, combat tac-

tics, strategy and doctrine development simulations, war games, and other similar
activities often need some type of weather input. This weather input is to test

whether the resulting weapons systems or war plan will work correctly ;n real

combat weather. At least two approaches can be used to provide the weath. input
to these weapons and warfare design studies: (1) the historical weathE. cecord
(climatology) could be used directly to provide sequences, means, standa. levia-

tions, joint probabilities, and the like for stations and areas of inte -t; or

(2) the relevant weather variables could be mathematically modeled in f - and
time and then this model used to infer the needed quantities. The mo. j .uld

even be used to generate desired time series of the critical weather varianles at
selected stations or over specified grid systems.

The latter approach is variously referred to as modeled climatology, synthet-

ic meteorology, or environmental simulation. Whatever the term applied, the

technique involves using mathematical and probabilistic models to achieve a
selectively realistic synthesis of the environment in order to describe or ana-

lyze the environment or the effects of the environment on a system or operation.

How is this done? Typically, a stochastic (i.e., random process) model is

found that can produce synthetic weather "data" realistic enough to meet the

user's needs. Such "data" might, for example, be required to have the same

means, variability, and cross-correlations as are found in the "real" data. Then
the model is coded as a computer program or subprogram. Next, the model. is

"fitted" to the weather by consulting the historical weather record to find

regression coefficients, correlations, probability distributions, and other model
parameters. Then the model is tested for validity against an independent sample

of historical weather data. Finally, the model is used to generate a long series
of synthetic data, and the data are analyzed to answer the planning or design

questions at hand. Wherever possible, the environmental simulation model is
coded as a subroutine or subprogram within the user's larger model. The weather

routine then generates and delivers synthetic weather information -- either
observations or forecasts -- whenever "called" by the larger model.

2



Mathematical /statistical inrdeis such as. the one hinted aL abtvu ale sto char;-

tic rather than deterministic because they treat the weather ;As a partly random

(stochastic) process. The approach described above is numeric"I rather than

analytical because it makes use of approxirnative 01i 1teitative nethodr, to con-verge 2
toward a solution. Moreover, within the class ot numerical mathematical mode.ls,
this approach would be re'_erred to as a Monte Carlo technique because it involves

* the use of statistical smpin~g methods jespecially drawing randiom numbersi to

obtain a statistical parameter or other probabilistic solution to a physical/j
mathematical problem. One need not nleays resort to IMonte Carlo techniques in
simulation modeling. Although the Monte carlo approach is attractively simple

and flexible, it is on the other hand computationally expensive arnd produces only

approximate solutions. Scome problems dre amenable to analytical 5o]..tion. TIr:_

this approach, needed equations are de~rived from the theorems of mathaetical

statistics. Those equations a; then Oiply evaluted to produce the statistical

parameters required to answer the plannin,- or design questions at hand. There is

* no need to generate a long series of cynthetic weathar obseivations or forecasts

if one is using an analytical envirorntental simulation model. In practice, both

numerical/Monte Carlo methIo6&_ and the analytical method are used in enviro,.r$=ntal

simulation, as they are in simulations of all kinds.

The question may arise, why use simulation-: USAFETAC has over 80,000 mag-

netic tapes of worldwide weather data. Why use valuable resources developing

simulation models if raw data are so aYbundantly available? The reasons ar(-

mani fold.

1.4 Environmental Simulat ior vs. Direct Usoe of Historical Weather Data

The. main reason for uising simui-0t> an models rather than using histocical iata

dir ectly is that :roost us~ of weather inf ormnion are dcEs i~nga e pn

systems or planing for future wars, not conducting post-mortem analysesS of old

ones! From the point ot view of statistical sampling theory, the historical

weather record is almost always ver~y short. It probably does not contain all the

patterr. of weather likely to _)ccur 3n the future. The worst wt.--ther on eccrd

is not the waist posii ble weather . Any him torical reciord is but )Tie real ti7 iinr

* ~ ~ ~ o a rtoharsl ic tir., cr1c. , and futa.rP reaD rt vrv wi 1 yoem;p "s thi'it r -

col recoid onl in . NO01 i(Oic wenrmo even of the nideyl ii j joailt

tribilt ian3 andi ci co re e, j onc n0 :ut- ch"ange.

[n using an anin hiLi Li il weather sequenn" in p1 annin 24or clo rgrn. on..

runs tho risk Qr Ih f."fl(r chcn~ may he too c' hi, too 1r~ve: e. too tland,

Loo ertatic, (-, 11" ":2 1> . -,-ur oV C fvulrc tior v( . if a

particul ar year or monrhi 1. "yica waher,"' i t is often UP Io'&

weather that in- ion nrp' L of K n alysis bein 2( onducted. TV, "ypical

weather" file can hre vFro and 2 ue, ( reetedly in planning; or duigiqf ii thle

* -plan or design car Ino talca so rbai Lo 'In p cular wpathlei nol.pivu- t lotP



the plan or design becomes virtually inapplicable except to that particular year
or month in history. The danger in using historical weather data directly is

particularly great when the data will be used in a war game. If the weather

always turns up bad on 15 December and always improves on 20 December, the war
gamers will soon begin to notice this and take advantage of the unnatural. lack of
"weather surprises" in their combat development planning. Using canned weather
in war games can lead to the development of "optimum" tactics and force mixes
that will not withstand the test of actual employment in real, future weather.

Using an environmental simulation model rather than the historical weather

record directly helps circumvent problems such as these. The model will produce
synthetic weather "data" (observations, forecasts, or both) on call. The user

controls the length of the time series generated. The synthetic weather possess

a variability not unlike that of real weather data, in the sense that the weather

for one 15 December will not be the same as that for all other 15 Decembers.
This quasi-natural variability permits running the model repeatedly to acquire

risk statistics needed by the designer or planner.

Still another reason for using simulated or synthetic weather instead of

historical weather data, is that environmental support requests are becoming

increasingly complex. For many applied climatological problems, such as proba-
bilities over an area or probabilities along the line, direct use of the data

base may not produce needed answers. USAFETAC is often asked for data or answers

at. arbitrary locations or at grid points for which no weather data exists at all.

At other times, the customer's request is for a mission-dependent or systed-

dependent weather effects parameter such as DCFLOS, the probability of a cloud-
free line-of-sight between two moving points A and B for a specified duration of

time. The dynamic cloud-free line-of-sight (DCFLOS) probability depends just as
much on the movement of A and B and on the lock-on duration as it depends on the

cloud cover. Evaluating these system-dependent weather effects without using

some sort of simulation is usually impossible.

Other impelling reasons for using an environmental simulation model rather
than the "real" data are the inaccuracies and inadequacies in the historical

weather data base and the simple convenience of having the weather generated by a

small, fast computer subroutine rather than by reading and rereading an extensive

tape- or disk-based data set.

1.5 Environmental Models Developed from Real Data

it should be emphasized that environmental simulation modeling Ls not. lone ill

the dark, without regard to the historical weather record. USAFETAC makes 1eayl
u!;e of the historical weather record to produce parameters such as Iobability

4



distributions and correlations needed by the mathematical model. Actual weather
data is used extensively to test and verify the simulation model once it is
built. In this sense, the historical weather record is used indirectly for the
studies and games because the model is developed and tested using climatology.

Now that the reasons USAFETAC is ..Lvolved in environmental simulation have

been discussed, let us define some basic terminology.

1.6 Glossary of Terms in Environmental Simulation and Related Areas

Environmental Simulation: A selectively realistic synthesis of aerospace behav-
ior consistent in space and time, achieved by the use of techniques -- often
involving mathematical and probabilistic models -- with which to describe or ana-
lyze the environment or the effects of the environment on a system.

Gaming: A gaming exercise employs human beings acting as themselves or playing
simulated roles in an environment that is either actual or simulated. The play-
ers may be experimental subjects or participants in an exercise being run for
teaching, operational training, planning, or other purposes.

Model: A model is a representation, description, or imitation of a system or
process (e.g., the atmosphere) in another medium (e.g., a computer). A model is
a generalization of a more complex reality usually involving simplifying assump-

tions in order to produce understandable solutions. A good model is constructed
so as to produce realistic behavior critical to the problem at hand while pre-
serving the essential properties of the system being simulated.

Simulation: A simulation is an analytical or numerical technique involving the
use of mathematical and logical models to represent and study the character and
behavior of real-world or hypothetical events, processes, or systems, over
extended periods of time. Simulation enables a real system or process to be
studied, analyzed, and understood by means of a model. All simulations involve
models, but not all models are simulators. Simulation is usually done for such
purposes as training, experimentation, evaluation, and finally, to draw conclu-
sions about the system or process being simulated. Simulation provides the medns
for gaining experience and for making and correcting errors without incurring the
costs or risks of actual application. It offers opportunities to test theories
and proposed modifications in systems or processes; to study organizations and
structures; to probe past, present and future events; and hypothetically to util-
ize forces that are difficult or impracticable to mobilize. Simulation, there-
fore, is of value both as an educational device and as a means of discoveing
improved methods. The distinction between games and simulations is sometimes
confusing. Games use a simulated environment or simulated roles for the players,
or both. In general, all games are simulations, but not all simulations are
games. computer simulations that model conflict or cooperation (such as

5
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completely computerized battle models) are usefully considered as games. Possi- r
bly, so are some logistic or resource allocation models where the single (auto-

mated or live player) team may be regarded as struggling against a statistical or

strategic opponent called "Nature," although here one enters the territory of

decision theory. The borderline is not hard and fast; however, it. is probably

not useful to treat a straight industrial production scheduling machine simula-

tion as a game.

War Gaming: A war game is a simulation of a military operation involving two or

more opposing forces and using rules, data, and procedures designed to depict an
actual or assumed real-life situation. It is primarily a technique used to study

problems of military planning, organization, tactics, and strategy. A war game

can be accomplished manually, can be computer-assisted, or be wholly computer-

ized. Manual games are played using symbols, pins, or pieces to represent

forces, weapons, and targets on maps, mapboards, and terrain models. A computer-

assisted game is a manual game using computerized models that free the control

group from many repetitive, time-consuming bookkeeping computations. Computer-
ized war games are based on predetermined procedures and rules, and all simula-
tion of conflict is done by the computer in accordance with the detailed instruc-

tions contained in the computer program. The primary advantage of computer

gaming is that the same situation can be simulated many times under differing

conditions, in order to observe the variability of results.

1.7 A Note to Users of Environmental Simulation Models

1.7.1 Project Success--A Shared Responsibility. Users share with model develop-

ers very real responsibilities for the success or failure of simulation projects

oli all kinds, including environmental simulation efforts. The potential simula-

tien user's concept of how weather should "play" in a particular study, the
user's views as to what environmental simulation modeling can and cannot do, and

his opinions on how best to use weather simulation dominate the scene during the

critical early stages of problem definition. Often these early conceptions

regarding what needs to be done and how to do it persist--for better or for
worse--throughout the entire lifetime of the project. These "preliminary ideas"

quickly set up like concrete. If the ideas are well thought out, they can serve

as a substantial foundation for the project as well as a true template for the
project's future growth. If, on the other hand, the user's ideas are incorrect,

unrealistic, or out-of-date, they can imprison a project, stunt its growth, and
seriously impair its chances of succe~s.

Because the user's role is of such dominating importance during 'he eauly
stages of a project, some attention is given here to developing a common under-

standing among the community of actual and potential users regarding !iuch

questions as:

6



-4r
* What can environmental simulation modeling do and what can't it do?

* Under what circumstances would the user be better advised to use the his-

torical weather record directly?

* In writing a requirement for an environmental simulation model, what can
and cannot be asked for? In what terms does one specify the requirements?

9 How do requirements for model design, performance, format, interfacing,
and documentation affect the cost of the project in time and money?

1.7.2 What Can and Cannot Be Done in Environmental Simulation Modeling? Stating
what can and cannot be done in any scientific or technical field is a hazardous

undertaking; for the state of science, mathematics, and technology is subject to

change. All that can be done with any confidence of being right is to summarize
the state of the science today.

Projects whose requirements extend beyond the limits of today's scientific,

mathematical, or statistical techniques are said to require at least techniaue

development and quite possibly applied or even basic research before they can be

satisfied. While projects requiring such advancements in the state of the sci-
ence can be done (basic or applied research must, of course, be accomplished by
the Air Force Systems Command). Such projects will normally incur a much greater

risk of failure and, even if successful, will ordinarily be much more costly and
time-consuming to complete than projects that require little if any advancement-

in knowledge. Today's state of the science in environmental simulation mo irAq

is described below.

It is today possible to generate by mathematical/statistical models time

series of synthetic weather observations and forecasts at a single point, over an

irregularly spaced network of points, or over a regularly spaced, two-dimensional

grid of points, provided that sufficient historical weather information exists
with which to estimate the statistical character of observed and forecast weather

at the locations involved. The models can generate univariate or multivariate
synthetic data. A long run of synthetic weather observations produced from such

an environmental simulation model will, in terms of certain statistical measures,
be indistinguishable from a comparable run extracted from the historical weather

record. The statistical measures "preserved"' by the environmental simulation

models described in this technical note include:

1 An environmental simulation model is said to "preserve" a statistic such as a
probability distribution or a correlation if that statistic, computed from syn-
thetic data generated by a sufficiently long run of the model, is not sigy.ifi-
cantly different from the same statistic computed from a sufficiently long period
of the historical weather record.
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* Unconditional cumulative distribution functions of the variables being

simulated

* Serial correlation of each variable over the index parameter t (usually
representing time) of the simulation

• Cross correlation between variables when the simulation model is of multi-

variate design

* Spatial correlation in two dimensions only

* Skill of weather forecasts

1.7.3 Requirements Drive the Solution: Models or Data? Under some circum-
stances--for example, weather information used in exercises and training simula-

tions--weather observations and forecasts are required to have exceptional

synoptic "realism." Often under these circumstances a complete meteorological
"scene" is required, involving organized, moving, evolving cyclone and frontal

systems with horizontally and vertically consistent dynamical and thermodynamical

fields and supporting three-dimensional cloudiness patterns. Such requirements

are stated because in a training exercise, actual meteorological displays are

prepared, much like those in weather stations. Weather briefings are given and
* simulated forecasts made from these displays. The whole package has to look

"realistic" from the user's point of view; otherwise, the realism or even the

ciedibility of the exercise or training simulation is to some extent compromised.

No statistical simulation model has yet been developed capable of generating

multivariate, multicorrelated time series of three-dimensional weather "scenes."

A user whose legitimate requirements call for meteorological realism of this
degree must employ the historical weather record directly. In doing so, the user

is subject to all the difficulties and limitations discussed above, associated

with direct use of the historical weather record.

Far more often than not, however, the study, analysis, simulation, or game
being conducted has no need for meteorological "realism" of this degree. Consid-

er, for example, a simple Monte Carlo air reconnaissance simulation that gener-

ates and scores individual reconnaissance sorties involving takeoff from location
A(t,,), air photography at locations B(tl), C(t2 ), and D(t4 ) and return for land-

ing at location A(t4 ), with alternate at E(t ), where t is the time parameter.

In this model, weather is used simply to "score" the mission's success; it is not
used for mission planning. Weather impacts are shown in Table 1.
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Table 1. Weather Impacts in a Hypothetical
Air Reconnaissance Simulation.

Location Criteria for Success or
(Time) Probability of Success

A(to) Takeoff Requirement: P
Ceiling/Visibility 200 ft/ mile

B(t1 ) Reconnaissance Photography Requirement:
C(t2 ) Pr{SuccesstHc) = (0.95/3500)(Hc-1500) where
D(ts) 0.0 < Pr S 0.95 and Hc=ceiling height (ft)

A(t4 ) Landing Requirement: j4

Ceiling/Visibility k 200 ftA mile

E(ts) Alternate Requirement:
Ceiling/Visibility 200 ft/ mile

The mission will launch if the takeoff requirement is satisfied, will attempt to

film all three targets regardless of weather but with a probability of success

that rises linearly from zero with ceilings of 1500 ft or less to 0.95 with ceil-

ings of 5000 ft or more, and will land at airfield A, provided the landing

requirement is satisfied there at time t4. Otherwise, the aircraft will proceed

to alternate airfield E at time ts and will land there if the weather is good or

experience a 65-percent chance of abort with loss of film if the weather is bad.

To support this simple reconnaissance simulation, it is necessary only to

supply ceiling "observations" (historical or synthetic) at these five locations

at the times indicated, as well as visibility observations at A(to), A(t 4 ), and

E(ts). The correlation between the weather at one location and that at another

decreases with increasing distance between the points. Therefore, the weat'lcr at

points such as A and E, and such as points B, C, and D cannot be treated as

independent in space. Some sort of distance-dependent spatial correlation must

be built into the weather information, synthetic or historical, that is supplied

to the reconnaissance simulation. Since the mission extends over a duration of

time, either (t 4 - to) or (t 5 - to), consideration must be given to the time-

continuity of weather supplied to the reconnaissance simulation. A statistical

measure of this continuity in time is the so-called serial correlation. The

serial correlation of the weather information delivered to the reconnaissance

simulation must be patterned after that observed in nature. At certain loca-

tions, namely A and E, the visibility as well as the ceiling must be supplied.

Data studies show that the ceiling and visibility are positively correlated.

Hence, ceiling, and visibility pairs supplied to the reconnaissance simulation
must, in the long run, demonstrate this so-called cross correlation between
variables. Finally, the ceiling and visibility information delivered to the

reconnaissance simulation should not in the long run violate the probability

distributions of the ceiling and the visibility for the time and place of the

simulation. In other words, the sample ceiling and visibility information sup-

plied to the reconnaissance simulator must be drawn from the same popuiations

that the longer-term historical weather record was drawn from.
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In summary, the weather information supplied to this hypothesized ai.r recon- r

naissance simulator must exhibit appropriate probability distributions, spatial

correlation, serial correlation, and cross correlation. These are sufficient

requirements to be imposed on the weather used for this application. Nothing in
the planned use of weather by this hypothetical reconnaissance model suggests a

need for cyclones, fronts, spiral band cloud patterns, and the like. As long as

the weather information supplied to the reconnaissance simulation has "realistic"
probability distributions, spatial correlation, serial correlation, and cross

correlation, it should be sufficient to meet the need.

In this case, an environmental simulation model could be used to generate

synthetic ceiling and visibility data with appropriate probability distributions

and correlations. If additional, and in this case superfluous, requirements for
synoptic realism were to be imposed, models could not be used, and historical
weather data--with all their limitations--would then have to be resorted to. The
effect of adding superfluous requirements would in this case be to force a sub-

optimal solution. In general, potential users of environmental simulation models

should study in detail how their applications model uses (or proposes to use)
weather information and then state their requirement as conservatively as possi-

ble, expressing the requirement in terms of the statistical measures that an

environmental simulation model must "preserve" (see footnote 1 above).

1.7.4 Model Decisions and the Need for Weather Observations and Forecasts. Ap-

plications models such as weapons systems effectiveness simulations and combat

evaluation models use weather information to make decisions that emulate those

made in real time by human decision makers (such as battle staffs and individual

aircraft commanders) and the "forces of chance and nature" (such as whether a
particular reconnaissance target is photographed, given the weather). Such

models, even if they "play" only one side of the combat, generally have to assess
the consequences of decisions made by the side whose actions are being "played."

This is referred to as mission assessment or "scoring" and represents the most

common use of weather in military studies and analyses. In scoring, the model

makes a decision, based on weather and other factors, as to whether, for example,

a given reconnaissance target is successfully "shot" by aerial photography. For

scoring decisions impacted by weather, applications models need the value of

mission-critical weather variables at the time the mission is executed.

The concept of "scoring" missions based on weather can be extended to include
other" impacts of weather on mission execution, such as enroute winds affecting a

simulated airlift mission's flight time or protracted rainfall slowinq the rate

of :dvance of an armored column. Scoring decisions made by military 4pplications

models tend to emulate the impersonal aspects involved in the course of mi]it.ary

events, such as assessing the success of missions, governing the timinj of dn

advance, or determining other partly probabilistic outcomes. in real life, there

is no need for scoring decisions. They are made for us by the "forces of chance
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and nature" or by action of opposing forces. But in a simulator, these chance
outcomes, natural impacts and effects of enemy action must be included in the

simulator, or they simply will not occur.

In the simplest combat simulations or weapons system effectiveness studies,

"scoring" decisions are the only ones made using the weather. In other models,

an attempt is made to emulate selected aspects of the human decision-making proc-
ess as applied in combat. From a meteorological perspective, human decisions can

be classified as either (1) short-range execution decisions based on the observed
present weather, or (2) longer range planning decisions based on future weather.

To model the influence of weather on the spectrum of human decisions from plan-
ning to execution requires that the applications model consider not only weather
observations but also weather forecasts. Decision points have to be built into
the applications model so as to call for and use weather observations and fore-

casts much as they are used in the actual or proposed system being modeled.

In practice, few of today's weapons systems effectiveness models, combat de-
velopment simulations, and other applications models consider even the observed

weather, and almost none of them (except those built by meteorologists them-
selves2 ) use forecast weather. This situation is changing, however. The U.S.
Air Force Air War College operates a combat model which, in the 1970s, was modi-

fied to accept statistically generated weather forecasts for input to decision
*. making. In the late 1970s, a statistical model that generates synthetic weather

observations and forecasts was added by USAFETAC to the Military Airlift Com-
mand's M-14 airlift system simulation. In 1981, USAFETAC designed a statistical,

two-dimensional field simulation model to generate cloud forecast fielcls for
input to system planning and optimization models. Environmental simulation
modeling efforts such as these have received increasing attention since 1979 in

such media as the Air Weather Service Operations Digest (see January-February

1981 issue) and the 2nd Weather Squadron Technical Activities Summary (see July

1980 issue), as well as in the Military Operations Research Symposia (B-4 Working
Group presentation at 46th MORS, December 1980, and general session presentation

at 48th MORS, December 1981), and in American Meteorological Society conferences
(6th AMS Conference on Probability and Statistics in Atmospheric Sciences, Octo-

ber 1979). These efforts at communicating what has been done in environmental
simulation modeling should have the effect of showing the military modeler what
is possible and increasing his interest in factoring weather effects into his

models.

2 One of the earliest applications models to include forecasts was in fact built
by meteorologists to support the Weather-85 Mission Analysis of the Air Weather
Service. See Huschke, R. E., and R. R. Rapp (1970): Weather-Service Contribu-
tion to STRICOM Operations--A Survey, A Model and Results: Final Report on
Phase I of the Rand Corporation Contribution to the Air Weather Service Mission
Analysis, R-542-PR, The Rand Corporation, 58 pp.
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1.7.5 Stating Requirements for Environmental Simulation Models. Given that a

need exists for the sort of weather information that could perhaps be provided by

an environmental simulation model, one of the first things that must be done is

to express that need in the form of a requirement.

In some cases, the user of weather information will not care whether that

information comes from a model or directly from the historical weather record,

just as long as the information is "good enough" to meet his needs. In other

cases, an environmental simulation model will be explicitly called for. Under

both circumstances, the user's job is to state his requirements in terms of the

variables to be provided, whether forecasts, observations, or both are required,

the time and space dimensionality3 of the information needed, the statistics4 to

be preserved, and the accuracy required, expressed in terms of some standard

relevant to the user's problem.

1.7.6 Technique Development vs. Software Development. After a requirement for

weather information has been stated and it is determined that an environmental
simulation model is the most effective way to proceed, the user should specify

whether he needs simply a tested proven technique or finished software. In the

former case, the product delivered is generally a complete description of the

technique and an analysis of its performance, accompanied by a courtesy copy of

the exploratory software developed to test the model, for the latter case, a

software development phase is added to the project. In that phase, technique

development software is converted to fully qualified, fully maintainable, fully

docunented software in strict accord with the Air Force 300-series software man-

agement directives. The user should be aware that although the final product is

much more polished in the latter case, considerable time is added to the project

completion estimate in order to comply with the software management requirements.

1.7.7 Operational Environment, Interfaces, and Constraints. In stating require-

ments for environmental simulation models, it is useful to specify (1) the opera-

tional environment of the model, e.g., whether the model is to stand alone or is

to serve as a module within a user's larger model and the computer and operating

system on which the model is to run; (2) the interface between the environmenta]

simuilation model and the user models, applications or studies the model is to

serve, i.e., inputs and outputs required and whether the environmental simulation

model will reside within and be called by the larger user applications model; and

(3) constraints within which the environmental simulation model must exis;t, i.e.,

3 For example, single-station, two or three spatial dimensions, irregullarly
spaced network, regular grid, time continuity, required or not, etc.

4 Unconditional probability distributions, conditional or joint probabilltie:,
correlations in time and space, cross correlations between variable-, mean~s,
standard deviations, etc.
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computer programming language requirements, computer program data structure re-

quirements, computer program size, and speed constraints, etc.

1.7.8 Effectiveness Evaluation, Value Analysis, and Feedback. Effective feed-

back provided by those who state requirements for and use models to those who

develop them is almost surely the best means of improving the whole model devel-

opment process. Users receiving environmental simulation models should test them

to determine whether they meet requirements. Usually the developer facilitates

such testing by leaving in the delivered model certain test modules that measure

key aspects of the model's performance. As a first step, the user can repeat and

verify those tests in a stand-alone environment, in which the environmental simu-

lation model is not yet interfaced or integrated with the larger user model it is

to serve. More important from the user's perspective, however, is his unique

ability to test the environmental simulation model in an integrated environment
within the larger user application. The developer usually cannot perform these

invaluable integrated tests because he does not have access to or familiarity

with the larger model.

Results from stand-alone and integrated testing performed by the user should

be communicated quickly to the developer, especially when those tests indicate

changes must be made to the model. The time to make these changes is right away,

not 6 months after delivery. By then the developer has gone on to other work and

has lost his familiarity with the model. Ordinarily, the developer will provide

a 90-day warranty on models and software. During that 90-day period, the devel-
'I or oper is liable for all necessary changes in the model or its supporting computer

software. After the 90-day warranty expires, the user, not the develop( x, is

responsible for all changes. The user should therefore finish all stand-alone

and integrated testing before expiration of the 90-day warranty.

Developing a simulation model of any sort is an expensive undertaking, re-

quiring a great many manhours and computer hours for development and testing.

Under these circumstances, it is helpful to receive from the user information

describing the benefits derived from use of the environmental simulation model.

In some cases, adding simulated weather to a study, analysis, or plan improves

decisions quantifiably -- for example, by causing abandonment of a weapons sys-

tems design which, if carried through, would have been an expensive failure, or

showing how by intelligent use of weather information an airlift activity can

increase the tonnage hauled. Information of this sort is useful in establishing

the cost effectiveness of environmental simulation modeling and in justifying its

continued use.

1.8 Basic Environmental Simulation Concepts, Techniques, and Procedures

The remainder of this technical note consists of a defcription of key cn-

cepts in statistics and simulation, followed by a description of USAFETAC's mosL

basic and most generally useful environmental simulation models:
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* Single-station, Single-variable Ornstein-Uhlenbeck Model (VISI)
(Chapter 3, Basic Single-station Models)

* Single-station, Two-variable Ornstein-Uhlenbeck Model (V2Sl)
(Chapter 3, Basic Single-station Models)

* Multivariate Triangular Matrix Model (MULTRI)
(Chapter 4, Multi-parameter/Multi-station Models)
(Chapter 5, Modeling Joint Sky Cover Distributions)

* Two-dimensional Field Simulation Model (2DFLD)
(Chapter 6, A Model for the Simulation of Gridded Fields)
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Chapter 2

BASIC CONCEPTS IN ENVIRONMENTAL SIMULATION MODELING

2.1 Uncertainty in Science

Although many scientific problems are solved deterministically, as if the
scientist could predict the outcomes of his experiments with certainty, neverthe-less the "real world" of science is based on and has come to terms with uncer-

tainty or indeterminancy.

For many real-world problems in science, solutions cannot be stated determin-

istically, or, what is more often the case, the deterministic solution is only an

approximation to the complete solution. In many cases, deterministic solutions

represent the expected value of the true solution or even worse, just one of a

spectrum of possible values constituting the true solution.

Circumstances such as these prevail widely in studies of distinctly random

processes, i.e., processes whose outcomes are uncertain, or processes having a

number of possible outcomes, each with its own probability. Examples arise from

the study of molecular motion, atomic decay, and other physical processes whose

character is inherently statistical or random.

Uncertainty or indeterminacy in science is not restricted to the small world

of atoms and molecules but rather extends itself to much larger phenomena s acti as

atmospheric turbulence, which must be treated probabilistically, and even onward

to the bulk parameters of the earth's atmosphere at large, such as temperature,

density, and pressure. In the final analysis, the definitions of these bulk var-

iables are inherently statistical, being based on the fleeting presence and mo-

tion of molecules in the sampling volume.

If one could station oneself inconspicuously as an ever-so-small floor walker

in such a sampling volume, then one would see at one time a few molecules in the

volume and at other times many; some moving slowly, others moving fast; at times

colliding, and at other times not. Lucretius said it best more than 50 years

before the birth of Christ

... Nor did they bargain sooth to say what motions each should
assume but because many in number and shifting about in many ways
throughout the universe, they are driven and tormented by blows
during infinite past. After trying motions and unions of every
kind, at length they fall into arrangements such as those out of
which this our sum of things has been formed....

De Rerum Naturae
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Lucretius' final point is his most important one. When individually unpre-

dic* able events such as molecular collisions, turbulent eddy motions, o "fair"

coin tosses are repeated at length, there usually emerges some form of regularity

or appears some aggregate result, such as temperature, a cascade of energy, Or a

probability of 1/2.

The idea of probability is at the heart of the concept of a random process,

because there is uncertainty in the outcome of such a process, and each outcome

has an associated probability.

There is a physical/mathematical link between deterministic problems and

random processes. In many cases, it is possible to write down deterministic
problems in terms of partial differential equations that yield a distribution
function for the probabilities associated with the process. As it turns out, the

partial differential equation for the distribution function is the same as the

partial differential equation that would be given in a deterministic statement of

the phenomenon (Lin and Segel, 1974).

In fact, physical processes that differ from each other greatly in detail

-- such as Brownian motion, heat conduction and diffusion of one gas through

another -- are all described in the limit or in bulk by the same partial differ-

ential equation.

It is frequently the case in science that a given problem can be st-ated
either deterministically or probabilistically, depending on the phenomena being

studied or the sort of analysis being conducted. If the element of uncertainty

or incompleteness of information is high, with many other partially known factors

contributing to the outcome, then the process might better be considercd random

rather than deterministic. Similarly, if a slight change in these contributing

factors or initial conditions could potentially lead to a large change in the

final outcome, then this sensitivity of the problem also argues for ai random

process treatment.

2.2 Uncertainty in Meteorology
0]

2.2.1 Nonlinear Interactions Make the Atmosphere a Continuum. The atmof1phere is

a r'ontinuum in which every scale of motion affects every other scale thb:ough the

nonlinearity of the governing equations of motion. Every flap of a gi.Jl's wing

anywhere on the planet must affect, however weakly, the motion of every molecule

of air in our atmosphere. Small eddies and turbulent flows provide an important
kinetic energy dissipation mechanism to the large-scale flow, and without this
s±i-k of energy, the larger scale would necessarily behave differentli" than it

does. Similarly, the latent heat released by mesoscale convective processes he:tc:

i. n Ljapcrtait. energy source for the larger scale flow and -- at lei't ill Lhe

.3ujgegate -- affects that larger flow. The spectra of time and space _A-ales for
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atmospheric phenomena are continuous: motions and phenomena exist at all scales,

and each scale interacts with the others in complicated ways not fully

understood.

2.2.2 The Predictability of the Atmosphere is Bounded. Modern studies of the

predictability of atmospheric motion have shown a sensitivity problem with the
governing equations of motion. Flows starting from only slightly different ini-

tial conditions can quickly evolve to radically different final states. The

studies of Lorentz have shown a limit to atmospheric predictability of about
2 weeks because of this sensitivity of the governing equations 

to minor initiali-

zation differences. The field of dynamic meteorology is thus confronted with the

need to know how predictions of the atmospheric flow will be affected by slight
changes in initial values, boundary values, and simplifications used in formulat-

ing the prediction systems themselves. In a practical sense, the predictability

argument is related to the way in which the initial state of the atmosphere is

observed and reported. For the most part, weather observations are taken at the

synoptic scale. Phenomena whose characteristic size is smaller or whose lifetime

is shorter than this scale are imperfectly described. These imperfections in the

description of the initial state may take a long time to affect the flow, but

eventually they will become important. As a result, weather predictions based on

imperfect initial observations or simplified physical equations will eventually

fail.

2.2.3 Atmosphere Not in Thermodynamic Equilibrium. If the atmosphere were in
thermodynamic equilibrium, the air over the whole planet from its surface to the
top of the atmosphere would be as still as on the sultriest day of summer. Nor

would a single drop of life-giving rain fall anywhere on earth.

It is the nonequilibrium conditions in meteorology that cause the weather,

namely the thermodynamically unbalanced system, the ageostrophic wind, the non-

hydrostatically balanced, vertically accelerated motion field. Yet the meteorol-

ogist's weather forecasting models bring out these nonequilibrium states poorly,

if at all. Even the analysis models, which purport to describe the obsErved or

initial state of the atmosphere, work hard to smooth out the nonequilibrium fea-
tures, as these features destablize the forecasting models.

All of this contributes to an underlying uncertainty about. not only the

future state of the atmosphere but also its present state. This uncertainty is
most apparent in the weather variables of critical operational interest, such as
sky cover, ceiling, and visibility.

2.2.4 Variables of Most Interest in Applied Military Climatoloqy Are Subectto

Imprtant Meso- and Microscale Influences. The variables of great-st interc! in

applied military climatology -- such as ceiling, visibility, sky ,-over, bouidar:,,

layer winds, and precipitation -- are subject to important, noneqilibrium mecso--
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and microscale influences that are beneath the resolution of today's weather

observing, analysis, and forecasting systems.

2.2.5 The Climate May Be Changing. Paleoclimatological records show that the
earth's climate has been subject to significantly large changes in the past.

There is no reason to believe that the climate will not change in the tuture, if
indeed it is not already changing. Nevertheless, the usual assumption in meteor-
ological and climatological modeling is that the climate does not change. The
science of climate change and climate prediction remains in its infancy among
meteorologists. There is very little understanding of how and why the climate
has changed in the past and almost no ability to predict when such changes will

occur in the future and how great a change is to be expected.

2.2.6 Consequences. The consequence of these circumstances is that, for many
purposes, weather is better described as a random process than as a deterministic

one. Norbert Wiener, the noted American mathematician, stated the case well

... In meteorology, the number of particles concerned is so enormous
that an accurate record of their initial positions and velocities is
utterly impossible; and if this record were actually made, and their
future positions and velocities computed, we should have nothing but an
impenetrable mass of figures which would need a radical reinterpretation
before it could be of any service to us. The terms "cloud," "tempera-
ture," "turbulence," etc., are all terms referring not to one single
physical situation but to a distribution of possible situations of which
only one actual case is realized. If all the readings of all the meteor-
ological stations on earth were simultaneously taken, they would not give
a billionth part of the data necessary to characterize the actual state
of the atmosphere from a Newtonian point of view. They would give only
certain constants consistent with an infinity of different atmospheres,
and at most, together with certain a priori assumptions, capable of giv-
ing us a probability distribution, a measure, over the set of possible
atmospheres. Using the Newtonian laws, or any other system of causal
laws whatever, all we can predict at any future time is a probability
distribution of the constants of the system, and even this predictability
fades out with the increase of time.

-- Cybernetics, 1948

In this report, the weather is treated as a random process, and certain
weather variables such as cloud cover, ceiling, and visibility are treated as

random variables.

2.3 Random Variable

2.3.1 General. Let the set S represent the sample space of some experiment.

The outcomes of the experiment constitute the sample points of S. Examples might
be the number of heads in a series of coin tosses, the lifetime in hours of an
electronic component, or the meteorological visibility in statute miles. These

are ali examples of random variables, i.e., functions whose value depends on the
outcome of one or more chance events. The key point being made is that .1 random
varable is not really a variable at all; it is a function.
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Definition: A random variable X on a sample space S is a function or

mapping from S into the set R of real numbers such that the preimage

of every interval of R is an event of S.

The notions of image and preimage come from the underlying definition of a

function. Let S and T be arbitrary sets with elements s and t

scS ()

t T (2)

In addition, suppose that for each s S there corresponds a unique element t 6 T

s(l) s(2) I s(3) s(n)
SII .. Isn

t(1) J t(2) t(3) ••• I tln)

The collection f of such mappings from S into T is called a function, written f:

S - T. In functional notation, when we write

f(s) = t

we are representing the element of T that the function f assigns to s t S. That

element is called the image of s under f or the value of the f at s. Let A be a

14 O subset of set S; then the image f(A) is defined by

f(A) = {f(s): s F A) (4)

where the elements of the set f(A) are defined by the expression in braces {-.

Correspondingly, if B is a subset of T, then the preimage f-'(B) is defined by

f-'(B) = Is: f(s) & B) (5)

In other words, f(A) consists of the images of points in A, and f-'(B) consists

of those points whose images are in B. It is useful to note that the set f(S) of

all the image points of S is called the image set or range of the function f.

A random variable X is the function X having the following properties

(1) The range of X is the set R of real numbers.5

* 5 The range of a function is the set of values that the function takes on.
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(2) The domain of X is contained in a set T certain of whose subsets corre-
spond to events for which there is associated a probability function or

distribution function.
6

(3) For each real number x, the set of all t & T for which X(t) 4 x is an
event, i.e., has a probability, namely the probability that X < x.

The shorthand notation Pr(X = a) can be used to represent the "probability
that X maps into a" or Pr(a < X < b) for the "probability that X maps into the
closed interval [a,b]"

Pr(X = a) = Pr({s & S: X(s) = a)) (6)

Pr(a < X < b) = Pr({s e S: a < X(s) < b)) (7)

A random variable can be either discrete or continuous. If discrete, the

function X(S) can take on only a finite number of values xI , x2, x3 . . .. . xn with

each of which there is an associated non-negative probability Pr(X = xi), the sum
of all of which is unity. An example of a discrete random variable is the number

of spots thrown with one die, which can take on the values 1, 2, 3, 4, 5, or 6,

each of which has a probability of 1/6. If continuous, the function X(S) can

take on any value in the set of real numbers R whereupon it becomes impossible to
conceive of the probability of any particular value of X, and one must consider

the probability of an interval of X. An example of a continuous random variable

is the daily total rainfall.

In the discussion below, X will be a random variable, and x will be a par-

ticular value or possible value of X.

2.3.2 Probability Function of a Discrete Random Variable. Let X be a random

variable on a sample space S with a finite or discrete image set, say

X(S) = {x1 , X2 , - Xi  -. xn-l' n (8)

In other words, X is a real-valued, discrete random variable that takes on one of

a finite number n of possible values xi . X(S) can be mapped into probability
space by defining the probability function (also called the distribution) Pr(X =
x1) Px(xi) as the probability that X will take on the particular value xi .

G The domain of a function is the set of values that the independent variacble

takes on.
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In the case of X representing the number of spots thrown from a single die,

the probability function is as follows

x 1112 (3 14 5 (6Xi

SPx (xi)  1 /6 1/6 1/6 1/6 1/6 1/6

The cumulative distribution function Fx(X) for a discrete random variable is

the sum of the probabilities of all xi that are less than or equal to the

threshold value x, i.e.,

Fx(x) = Pr(xi < x) = I Px(xi) (9)
xi<_

x1-

Since discrete random variables are not used in the simulation models repre-

sented in this report, no further discussion of the discrete random variables and

its probability functions is given here.

2.3.3 Probability Density Function of a Continuous Random Variable. Now let

X(S) be a random variable on a sample space S with a continuous image set,

i.e., the image set X(S) is a continuum of numbers such as the interval set 'a <
X < b). Since the set {a < X < b) is an event in X, it is possible to speak of

the probability Pr(a < X < b). This can be done through the mechanism of the

integral calculus by introducing the concept of a probability density function,

fI

Assume that a piecewise continuous function f exists such that the )ubja-fX
bility Pr(a < X < b) is equal to the area under the graph of f. between x = a

and x = b, i.e.,

Pr(a < X < b) = Lb fx(x) dx (10)

where X is the random variable and x is a dummy variable. The function is

called a probability density function of X and has "units" of "probability per
unit X." The probability density function f satisfies the conditions that (I) f
is non-negative and (2) the total area under its graph is unity, i.e.,

f fXx) dx = I 1.R!

* The cumulative distribution function Fx of the continuous random variable X

is defined as the probability that X will take on some value less than or equal-

to a threshold value x, i.e.,

F,(x) = Pr(X < x) = fx f(t) dt (2)
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where t is a dummy variable. The cumulative distribution function satisfies the

conditions that (1) Fx is monotonically increasing, i.e.,

Fx(a) < Fx(b) for a < b (13)

* and (2) the lower limit of Fx is zero, i.e.,

lim Fx(x) = 0 (14)

and (3) the upper limit of Fx is unity, i.e.,

lim Fx(X) = 1 (15)
X+ -

It is apparent that the probability density function fxof a continuousrandom variable X is the derivation of the cumulative distribution function Fx ,

i.e.,

fx(x) = dFx/dX > 0 (16)

* Note the relationship between probability and cumulative probability

Pr(a < X < b) = Pr(X < b) - Pr(X < a) (17)

f(t) dt - a f(t) dt (18)

= Fx(b) - Fx(a) (19)

The probability that a continuous random variable X takes on a single speci-

fied value d is zero, as can be seen from this analysis

Pr(X=d) fd f(t) dt = Fx(d) - Fx(d) = 0 (20)
d

Since the probability that a continuous random variable takes on a particular

value is zero,

Pr(a < X < b) Pr(a < X < b) = Pr(a < X < b) = Pr(a < X < b) (21)

and

Pr(X < x) = Pr(X < x) (22)

2.3.4 Functions of a Random Variable. Every function of a random variable is

also a random variable. If X is a random variable, then
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z = g(x) (23)

is a random variable as well.

2.3.5 Joint Probabilities of Continuous Random Variables. Let X and Y be con-
tinuous random variables whose joint probability density function is fxy(x,y).
For these variables, the cumulative probability distribution is Fxy(x,y). The
two are related by

92

fxy(x,y) = a Fxy(x,y) (24)

and the joint cumulative distribution function is

FXy(x,y) = Pr(X < x and Y < y) =  fx fy f xy(s,t) ds dt (25)

2.3.6 Marginal Distributions of Continuous Random Variables. A marginal proba-
bility distribution is the probability distribution of one variable regardless of
the value of the other variable(s).

If X and Y are continuous random variables whose joint probability density
function is fxy(x,y), and if one is interested only in the behavior of one of the
variables, say X, then one can obtain fx(x), the marginal probability density
function of X, by integrating the joint density function over all possible values

of Y

fx(x) =_ O fxy(x,s) ds (26)

Marginal Y-integrated Joint
Probability Probability Density
Density of X of X and Y

The cumulative marginal distribution is given by

Fx(x) Fxy(x,m) = Pr(X < x and Y < m) (27)

= Pr(X < x) (28)

= fx f fxy(s,t) ds dt (29)

= fX fx(s) ds (30)

2.3.7 Conditional Probabilities of Continuous Random Variables. A conditional
probability distribution is the distribution of one variable with restrictions or
conditions placed on the second variable. For example, Pr(RIA) is the conditicn-
al probability of event B occurring aie that event A has occurred or is occur-
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ring. Conditional probabilities can be expressed in terms of joint probabilities

as iollows

Pr(BIA) = Pr(A n B) / Pr(A) (31)

where i) represents the intersection of events A and B, and therefore, Pr(A 1) B)

is the joint probability of A and B.

Consider two continuous random variables X and Y whose joint probability

density is fxy(x,y). It might be of interest to know the conditional distri-

bution of X given that Y is in some region R, e.g., R: y1 :< Y < Y2.

Following Equation (31) above, but using probability densities instead of

probabilities, one can write

Probability Density(xIY in R)

Y-integrated Joint Probability Density tx n Y in R) (32)
Marginal Probability Density(Y in R)

Notation for the probability density of x given Y in R is

f xy(XIY in R)

The marginal probability density of Y in R is obtained by integrating the joint

density f y(xy) over all X, i.e.,

f f fKy(s,t) ds dt = f fy(t) dt (33)
- R R

The Y-integrated joint probability density of X is

f fxy(x,t) dt
R

The equation for the conditional probability density of X given Y in R is thus

fMY (X' Y in R) R f(xt) dt (34)
X-f f fXY(st) ds dt

-m R

-f fXY(xt) dt
-7R fy~t) t (35)

3,oinetimes it is desired to find the conditional probability density 1,f X

given that Y is equal to some particular value y0. In other words, the region R

reduces to the point y0, and an argument in the limit leads to the resulL,
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fxiy(XlY=yo) = fxy(x,yo) / fy(yo) (36)

The conditional cumulative probability distribution function of X given that. Y
has taken on the particular value yo is therefore

Fxiy(X,y) = Pr(X < xiY = y0 f fXgy(sIY yo) ds (37)
00

X= f* fxy(s,yo) / fy(yo) ds (38)

2.3.8 Independence. In general, the conditional probability density function of
X given Y is a function of the value y taken on by Y. If the random variables X
and Y are independent, then the probability of X does not depend on Y, and the
conditional probability density of X given Y reduces to the marginal density of X

alone, i.e.,

fxiy(xly) = fx(x) (39)

Furthermore, in the case of independent X and Y, the joint probability densi-
ty of X and Y is equal to the product of the marginal densities

fxy(x,y) = fx(X) fy(y) (40)

2.3.9 Expectation. Let X be a continuous random variable whose probability den-

sity function is fx(x). Let g be a real valued function of X. Then the e spect=:
tion or expected value of the function g is defined as

EIg(x)] = f g(x) fX(x) dx (41)
R

= 06 g(x)fx(x) dx (42)

where E.] is called the expectation operator, and R is the set of real numbeis.

In the case where
g(x) = X (43)

the expectation of X is defined

E[X] = x fx(x) dx (44)

One important property of the expectation operator is that the PxpectaLior of
a linear function of X is a linear function of the expectation of X. This can be
seen by considering

g(X) = a + bX (4)
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where a and b are constants. Taking the expectation of g(X) yields

E[g(X)J =_ f$ a + bXJ fx(x) dx (46)

= a fO fX(x) dx + b fo X fx(x) dx (47)

= a + b E[XJ (48)

because Jo fX(x) dx 1. Thus,

E[a + bX] = a + bE[XJ (49)

leading to the result

E[a] = a (50)

or the expectation of a constant is a constant.

Let X and Y be continuous random variables whose joint probability density

function is fXY(x,y). Let g(X,Y) be a function of the two random variables.

Then the expectation of the function g is

Elg(x,y)] = f' fo g(x,y) fxy(x,y) dx dy (51)
-00 -00

2.3.10 Correlation. Correlation is a measure of association, not of causation.

Loosely, we can say that correlation, and in particular the various correlation

"coefficients," are measures of relatedness among variables. But statistical

relatedness does not necessarily imply physical causation.

In meteorology, correlations can sometimes arise from causal relationships

and sometimes from other sources such as covariation, biased data, and drtificiel

correlation introduced by using derived or functionally related variables in the

analysis at hand. As an example of covariation in meteorology, one can cite the

high positive correlation between the low-level moisture in Georgia and the oc-

cuirence of afternoon thunderstorms. There is also a high positive correlation

between low-level moisture and morning fog. These two correlations, for which

physical causation could be strongly argued, give rise to another correlation:

between the occurrence of fog and the occurrence of thunderstorms. But does that

correlation, however strong it may be, imply that morning fog causes afternoon

thunderstorms, or that afternoon thunderstorms cause the previous morning's fog*'

Probably riot. The relation between fog and thunderstorms is through a third vai-

aable (often called the "covariate") common to both. In this case, the covariate

is lcw-level moisture, and the "true" relationship between morning fog and after-

noon thunderstorms can only be estimated by isolating the iole played by the co-

variate, low-level moisture.
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Correlation, then, is a way of expressing the association between variables,
an association that need not be causal in nature.

So far, our ideas about correlation have been expressed qualitatively. In

statistics, however, the "correlation coefficient" or sometimes just the "corre-

lation" is a quantitative concept, capable of being expressed in numbers that

describe the degree of relatedness or association between variables. In earlier

sections of this chapter, there is scale for measuring probability; similarly, a

scale for measuring correlation is desirable. When there is no relationship be-

tween variables, this statistical measure ought to approach zero. The measure of r
correlation should approach unity when the relationship between variables is very

high. While there is no such thing as negative probability, it is easy to have a

negative correlation. For example, there may be two variables, A and B, that

increase together (positive correlation), or two variables, C and D, one of which
increases as the other decreases (negative correlation). F'

A general definition of correlation can be set down: two measurable charac-
teristics, A and B, are said to be correlated when, with different values x of A,
the same value y of B is not equally likely to be associated. In other words,
certain values of B are more likely to occur with the value x than others. If
they were not, correlation would be absent. Correlation would be perfect if for

every value of A the same value of B occurred.

The correlation coefficient measures the relative importance of the relation-
ship between two variables in a nondimensional sense, i.e., it does not depend P
upon any arbitrary choice of units by which the original variables were meau1cd.
The concept of a theoretical population correlation coefficient can be developed

along the following lines.

Let X and Y be two random variables on a sample space S such that

X(S) = {x,, x1 ...., xn) (52)

Y(S) = {Y,, Y2, .... Yn (53)

with joint probability density function fx(x,y). Then the covariance of X and

Y, denoted by Cov(X,Y), is defined by

Cov(X,Y) E[(X -xY - py)] (A)

= E(XY) - E(X)E(Y) (55)

- E(XY) - pXuy (5L)
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where pX is the mean of X and py is the mean of Y. Assuming a Linedi relatLon-
ship between the random variables X and Y results in the following expressuon for
the theoretical linear correlation coefficient between X and Y

Cov(X,Y) (Linear) (57)PXY a oX a y

where ax is the standard deviation of X and ay the standard deviation of Y.

Equation (57) is an expression for the theoretical linear correlation coeffi-
cient. For problems requiring sampling of actual data, it is not the theoietical

correlation coefficient p but rather the sample correlation coefficient r that is

of interest.

An expression for the sample correlation coefficient rXY can be developed by

considering a set of (X,Y) data pairs, where Y is considered a function of X

Y = f(X) (General) (58)

Here Y are actual values of the dependent variable, and Y are the Y-values pre-
dicted by the function f. If f is a linear function, then Equation (58) particu-

larizes to

Y = a0 + aX (Linear) (59)

The lineai function f in one independent variable may not perfectly desciibe
the behavior of the Y-data. There may, for example, be independent variables
other than X that are important in piredicting Y, or there may be a nonlinear de-
pendence involved. The scatter of actual Y-values about the prediction Y given

by Equation (59) can be described in terms of the standard error of the estimate

of Y on X, given by

SyX = lj[(y _) 2] / N (Genera]) (60)

whicIh applies to both linear and nonlinear associations of the form shown in
Equation (58). If the linear association of Equation (59) is used, then Equa-

t±on (6(') becomes

N - aolY aIXY (Linear) (6)

KY N

a measure of the standard error of the linear estimate of Y on X.
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The total variation of Y is defined as 1(Y - y)2, the sum oC the squares of

the deviations of Y from its mean Y. That total variation of Y call be parti-

tioned into an unexplained variance I(Y - y)2 and an explained variance 1(Y - 1)2

1(Y - Y)2 = (y _ y)2 + 1(y - Y)2 (General) (62)

Total Unexplained Explained
Variation Variation Variation

where Y is an estimated value of Y based on the value of X and the functional

relationship expressed by Equations (58) and (59). The first term on the right

of Equation (62) is called the "unexplained" variation because the deviations
behave in an apparently random or unpredictable manner. The second term on the
right of Equation (62) is called the "explained" variation because the deviations

involved have a definite pattern.

The sample correlation coefficient rxy between the variables X and Y is given

by

r.y ± Z Explained Variation 1 + I(iY- 7)2  (General) (63)
Total Variation IY -7)2

which varies between -1 (perfect negative correlation) and +1 (perfect positive

correlation) and is nondimensional and independent of the origin. The ± sigr is
used to introduce the sign of the correlation. Equation (63) is a perfectly

general expression for the correlation coefficient and can be used for linear or

nonlinear correlation. Using Equation (60) in (62), and making use of t'e fact

that the standard deviation of Y is

Sy = [I(Y - Y)2] / N ((4)

permits Equation (63) to be written as

rxy = J(sy2 - Syx2) / Sy2  (General) (65)

Like Equation (63), Equation (65) is perfectly general and can e used fox lion-

linear as well as linear correlation. If Y is computed from a nonlineat function
(Equation 58), and the ± signs are omitted, then Equations (63) and (611) desriibe

nonlinear correlation.

rx y = I(X - R(Yj- Y) (L n0.a) ((&)
Vy(xX)2 1(y_y12

where the covariance of X and Y is P
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* r

= l(X-X) (Y-?) (7
S (67)XY N

and the standard deviations are given by Equation (64) for sy and by its analogue

for s .

If Equations (67), (64), and the analogue mentioned immediately above are

used in Equation (66), the result is

sxy

y = xSy (Linear) (68)

which parallels Equation (57) for the linear population correlation pXY.

The interpretation attached to the sample correlation coefficient rxy dependsj

on the functional form introduced in Equation (58) for the association between

the two variables X and Y. If a linear association is assumed, then x is cal-

culated from Equation (66) and measures the extent to which a linear dependence

of Y on X explains the variation of Y data, and r 2 becomes the fraction of the

total variation of Y explained by a linear dependence on X. If a nonlinear asso-

ciation is used for Equation (58), then rxy2 -- which can then no longer be cal-

culated from Equation (66) -- is the fraction of the total variation of Y ex-

plained by a particular nonlinear association with X. Just because there is no

linear correlation between the variables X and Y does not mean there is no corre-

lation at all. There may in fact be a high nonlinear correlation between the

variables.

The stochastic process models developed in this report and applied to the

task cf environmental simulation modeling employ linear correlation methods ex-

clusively. Therefore, throughout the remainder of this report, all references to

correlation will refer to linear correlation.

USAFETAC uses two methods most frequently when calculating linear correlation

coefficients: (1) the Pearson product moment (PPM) formula (Equation 66 above),

and (2) the tetrachoric method.

The Pearson product-moment (PPM) formula for calculating linear correlation

is basically Equation (66). That form of the equation is computationalLy ineffi-

cient because it requires the means to be known in advance (from an eat ier pass

through the data). Algebraic manipulation of Equation (66) produces a computa-

tionally efficient PPM formula

rX NIXY - (1X)(1Y)

r INYX2-(7X) 2 ] Nly2 -((y)2 )
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The correlation coefficient rxy is symmetrical in X and Y. This symmetry
indicates that the coefficient of correlation does not distinguish between the
dependent and the independent variable. It permits conclusions about the exist-
ence of a linear relationship between two variables but not about which "depends"
on the other. Although it is relatively easy to implement on a computer,
Pearsons' method has the inherent disadvantage of requiring the raw data to be
available for the computations. The tetrachoric method offers the advantage of

being able to use data that has already been categorized.

Any two variables can be reduced to a two-by-two table

X
Above Below

Xt

A _ [ f
B A I B lv I I
y II
B I I
L C I D I
w I

where A, B, C, and D are the number of cases above or below the critical, or
threshold values, (Xt and Yt) of the respective variables. An approximation to
the tetrachoric correlation coefficient (rt) can be obtained by Equation (70)

rt = sin 1 ] (70)

2 4_ +

This equation is accurate where (A + B)/N and (A + C)/N are clope to 0.5
(where N is the total number of cases), but may contain sizable error for values

near one or zero. Since there is no simple exact formula for calculating rt, an
algorithm based on the false position method (Acton, 1970) is used by :' AFETAC.
The coefficient is evaluated at two initial guess values, and linear interpola-
tion is used to find a better estimate. The quantity rt behaves in a manmer sim-
ilar to an ordinary linear correlation coefficient, but the exact numerical value
is not completely comparable. The value of rt varies from -1 to 41, giving zero
for no relation, but the sign depends in a rather arbitrary manner on the ar-
rangement of the contingency table.

2.4 Stochastic Processes

Parzen (1962) points out that the term stochastic is of Greek origin, th.It in
17th century English the word meant "to conjecture" or "to aim at a mark," Ind
that today the word has come to mean "pertaining to chance." In modern ptrct Ir~e,
the words stochastic, random, and chance are used as synonyms.
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A stochastic process or randonprocess is a succession of values taken on by

a random variable X(t) as a function of the parameter t L T. T,,e set T is called

the index set of the process. Random processes are controlled by probabilistic

laws. In many applications, the index parameter t of the stochastic process rep-

resents time but also can be used as some sort of event sequence number.

From the point of view of mathematical statistics, a stochastic process is

best defined as the collection

{X(t), t & T}

of random variables X(t) all defined on the same sample (probability) space. No

restriction is placed on the nature of the index set T, but two important cases

arise from the nature of T

* Discrete Parameter Process: T is a countable set T {, t_1, ±2 ...

or T = {0, 1, 2, ....

o Continuous Parameter Process: T is an uncountable subset of the set R
of real numbers, so T = {t: - < t < w} or T = {t: > 0}.

A time series is a finite realization of a stochastic process where the index

parameter t represents time. A time series can be produced either in the form of
output from a model or in the form of experimental data. A time series, in other

words, is a sequence of values of a random variable collected over discrete or

continuous time.

In a stochastic process model, a random variable qt can be formed as the sum

qt = dt + &t (71)

of a deterministic part dt and a random or stochastic part et" Typically, the
deterministic part contains the contribution of preceeding values qt-l' qt-2'

etc., in the series but may also have terms such as -q representing the mean value

or q representing a secular or long-term trend in values. The random part ct of

the solution introduces noise or uncertainty into the process being modeled;

otherwise, the process would not be random at all. As shown in Equation (71),

there is no restriction on the form of et , but in practice it tends to be either

(1) a number drawn at random from a population distributed uniformly over the

interval [0,1] with mean of 1/2 and variance of 1/12, or (2) a number drawn at

random from a population distributed normally over the interval (--,w) with mean

of zero and variance of 1, i.e., N(0,1). That is to say, vt is either -i unifornr

random number or a normal random number.
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If the stochastic process shown in Equation (71) above is further assumed to

be covariance-stationary, then neither the mean(s) nor the varidnce(s) of the

quantit(ies) being simulated are dependent on the index paranitter t (i.e., they

do not change with time if t represents time), and the covariance between two

successive values

qt and qt+At

i.e., Cov(qt,qt+,t) becomes a function only of the separation At between the two,

and does not depend on the absolute values of the index parameter t. Also, the

correlation p between successive values of q becomes dependent onLy on the sepa-

ration At, i.e.,

ov(qt,t+At) = Cov(go,qAt)

t t+At

(because at2 = 02 = t+At 2)

Applying the covariance-stationary assumption to the process of Equation (71)

leads to the linear autoregressive (AR) relation,

qt = Po + plqt-i + 2qt-2 + "' + Pmqt-m + &t (73)

where the Pi are the autoregression coefficients, and the ct is an independent

error term. In this formulation, the deterministic part of the solution dop'nds

on the lag-one value qt-l' the lag-two value qt-2 etc., and the random part of

the solution is now an independent error term with mean of zero.

The AR process (Equation 73) can be further restricted by applying the first-

order Markovian assumption that the value qt of the process at t depends on the

previous value qt-i alone, not on how the process reached qt-l" Then the model

becomes

qt = P0 + lqt-i +ct (14)

an autoregressive (AR), first-order Markov model. For such models, the serial

correlation p (the correlation in the t-dimension) follows an exponential decay

law (see Appendix C)

PAt
PAt 

= p , At

where p, is the serial correlation for lag At = 1. Equation (7R) shows that for
A t.

a Markov model, realizations spaced At units apart will have correlation p1
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In order to estimate the parameters 0o and p, and to specify the form of the

error term et' it is helpful to assume that qt and qt-i are derived 3ointly from
a bivariate normal population with means

Pt= t-i = (76)

and variances

ot2 at-i2 = a2  (77)

This causes the regression function of qt on qt-I to be linear and homoscedastic

(of constant variance). The conditional expectation of qt given qt-, is

E(qtqt-l) = p + P(qt-i - p) (78)

where p is the correlation between qt and qt-i and where

Var(qtlqt_l) = a2 (l - p2 ) (79)

which is independent of qt-l"

As shown in almost any elementary statistics text, the standard normal vari-

able (equivalent normal deviate) zw corresponding to the normally distributed raw

ww
variable w with mean (expected value) pw and standard deviation aw is

w -

zw w (80)
w

Hence, the value of the raw variable w can be calculated from

W =w + aw w (81)

Using qtIqt_, for w in Equation (81), and substituting from Equation (78) for pw

and frcm Equation (79) for o yields
6w

qt P(q - ) + a41--- - zq (82)

where z is a random normal number.q

Comparing Equation (82) with (74) shows that

- P)

p (c,4)
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t= af - Zq (6)

Equation (82) can be rearranged and transformed into mean-deviation form

using

V(.) q(.) - P(.) (86)

with the result,

vt = Pvt_1 + 041 - P2 n (87)

where n, like zq, is simply a random normal number.

Equations (71), (73), and (74), (82), and (87) present a spectrum of in-

creasingly more specific and more restrictive stochastic process models. Equa-

tion (71) is a very general form that can describe almost any stochastic process

model. Equation (73) represents a covariance-stationary, linear autoregressive

(AR) process. Finally, Equations (74), (82), and (87) further require the first-

order Markov assumption be made and normally distributed random variables used.

Equations (82) and (87) require that the variables qt and qt-i or vt and vt_1 be

jointly distributed according to the bivariate normal probability distribution.

Equation (87) is the Ornstein-Uhlenbeck stochastic process model that forms the

basis for much of the present work in environmental simulation modeling.

2.5 Markov Processes

2.5.1 Introduction. In classical meteorology, just as in classical pnysics,

deterministic laws are set forth in the form of initial value problems, in which,

given the state of the atmosphere at some initial time to, it is possible to

deduce its state at a later time t1 . In this formulation, remembrance of the

state of the atmosphere at any time prior to to is irrelevant to the question of

deducing the state at t1 . Numerical weather prediction models, which express the

evolution of meteorological mass and motion fields in terms of classical deter-

ministic physical principles, are "memoryless" initial value problems of this

sort. I

Just as in physics, where phenomena such as radioactive decay and Browlian

motion have had to be described probabilistically, so also in meteorclogy have

been described such smaller scale phenomena as turbulent motions and hourly

changes in ceiling, visibility, sky cover, and wind speed at a point. For physi-

cal quantities whose behavior is best treated in terms of ptobabilistic laws

rather than deterministic ones, there exists a "memoryless" formulation analogous

to the initial value problem of classical mathematical physics. This is the so

called first-order Markov process, in which the probability that a physical sys-

tem will be in state x, at time t, may be deduced strictly from knowledqe of the

system's state x0 at time to and does not depend on the history of the systeir,
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before to, i.e., the system's state at t, depends only on the state at to and not

on the path by which the state at to was reached.

Markov processes are classified according to (1) the nature of the state

space fX} of the process, and, (2) the nature of the index set T or parameter t

of the process.

2.5.2 Discrete-state vs. Continuous-state Markov Processes. In both the cases

presented above, the state space {X} of the process was taken as discrete valued,

i.e., JX) = Ixk' k = 1, 2, ... K. Markov processes whose state space is dis-

crete valued are called Markov chains. It is also possible to describe stochas-

tic processes in general and Markov processes in particular whose state space {Xj

is continuous. In such a continuous case, a real number x is said to be a possi-

ble value or state of the stochastic process {X(t)} if there exists a time t such

that the probability,

Pr{x-h < X(t) < x+h)

is positive for every h > 0.

2.5.3 Discrete-parameter vs. Continuous-parameter Markov Processes. Mathemati-

cally, a Markov process can be defined as either a discrete parameter stochastic

process or a continuous parameter stochastic process, depending on whether its

index parameter t is discrete or continuous. A discrete parameter stochastic

process can be expressed as the set of random variables, IX(t), t = to, t1 , t2,

t }. A continuous parameter stochastic process can be expressed as the setn
{X(t), t 2 01. In a first-order, discrete parameter Markov process, the condi-

tional probability of X(tn ) depends only on X(tn_l), the most recent known value,

i.e.,

PrfX(t11) 5 xn I X(t1 ) = x1 , X(t2 ) x2, ... X(tnI) = xn Il

Pr{X(tn ) x I X(t X (88)
n n n-1) n-1)

The discrete parameter Markov process lXV} = IX(tn)} for parameter t given by

n m n 0 and states xj = j and xk k is described by the probability ma~is
funct ion,

pj(n) = Pr{X = (89)

j n

and the conditional piobability mass function,

Pj,k(m,n) = Pr{Xn = k I Xm J) (90)

Tie function PJk(mn) is called the transition probabilityiiunction of the

Markov process.
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In the case where {X(t), t 01 is a continuous parameter Markov process,

then the process is defined for all index values t Z s % 0 and states j and k by
the probability mass function,

Pk(t) = Pr{X(t) = k) (91)

and the conditional probability mass function,

Pj,k(s~t) Pr(X(t) = k I X(s) = jj (92)

The function Pj,k(st) is again called the transition probability function of the

Markov process.

2.5.4 Order of the Markov Process. Strictly speaking, the "memoryless" Markov

process discussed above, in which the conditional probability of the state X(tn)

depends only on the immediately preceding state X(tn-l) is called a first-order
Markov process. It is possible to define a second-order Markov process, in which

the conditional probability of X(t ) would depend not only on X(tn I ) but also onn -
X(tn-2 ), and in which the transition probability matrices are three-dimensional.
Even higher order Markov processes can be easily conceived, if not so easily

understood and applied.

When applying Markov models to data, one of the tasks at hand is to estimate

the order of the Markov model that best fits the data.

2.5.5 Relationship to Autoregressive-Moving Average (ARMA) Models. The F .t cf
Markov models is a subset of the very flexible family of autoregressive-moving

average (ARMA) models, sometimes called Box-Jenkins models (Box and Jenkins,

1976). In general, an ARMA model takes the form,
14

p p
t = Oit-~ + vt - llojvt-zt1 i~l i t-i+l vt  j~l j~~j (93)

Autoregres- Current Moving Aver-
sive Terms vt age Terms

(AR) (MA)

where Z is a random variable with mean of zero and where the V values represent.
independent, identically distributed random variables having the normal, or

N(0,1), distribution. Following convention, z is a particular value of the ran-

dom variable Z, and v is a particular value of V.

The model described in Equation (93) is an ARMA model of ordei (p,q), having

p autoregressive (AR) and q moving average (MA) terms. If only the moving aver-

age terms are retained, the model becomes ARMA(O,q), i.e., an MA(q) model. If
g only the autoregressive terms are retained, the model becomes ARMA(p,0), o:

37



AR(p). AR(p) models are Markov models of order p. Consider an AP(1) model,
which must be first-order Markov

zt_1 = Olzt + vt  (94)

Comparing Equation (94) with the Ornstein-Uhlenbeck first-order Markov model

expressed in Eguation (87) shows that such a model is actually an AR(1) model in
which *i p and in which vt = a4T rj, i.e., a special case of the ARMA(p,q)

model.

Estimating the order of an ARMA model consists in finding the values of p and
q for which the model best fits the data, which are usually in the form of a Lime

series. This is done by calculating the autocorrelations rk for lag k and the

partial autocorrelations $kk (see Appendix D) of the observed time series, and
using these values as guidance for how many AR and MA terms might be needed in

the eventual model. Then, based on that guidance, one actually fits recommended
ARMA(p,q) models to the data, obtaining maximum likelihood estimators of the ARMA
parameters 0i and 0. Finally, one uses statistical tests to determine whether

the ti and e. are significantly different from zero. In general, one's objective
is to identify the simplest ARMA model that adequately describes the data.

Elements of the process of fitting ARMA (and especially AR(1) or first-order

Markov) models to data are shown in the following paragraph.

2.5.6 Fitting a Markov Model to Data: An Example Using the Wind Speed. Con-
sider a physical system that obeys some probabilistic law, such as wind observa-

tions on a mountaintop. The variable X can be used to represent the outcome of
periodic observations of the system, so x1 , x2, ... , xi represent the first,
second, and ith observations of the system. A possible sample after ten observa-
tions of wind velocity in meters per second, taken an hour apart, might be (xi,
X', x3, x4, xs, x6 , x7 , xR, x9 , X10 ) = (2, 1, 1, 3, 2, 6, 8, 7, 9, 9), as i]lus-

trated in Figure 1.

The order of the ARMA model that best fits the observed time series in Fig-
ure I is not readily apparent from casual inspection of the information in the

figure. Many subjective arguments could plausibly be advanced, having to do with
the app rent variability of the sample, the dependence apparent in physical
processes, etc. These arguments could just as well lead to one conclusion or
Another regarding the order of the ARMA model of best fit.

Rather than to use informal visual inspection or subjective arg):ments to

estimate the order of the ARMA model, it is better to use the statistical cha:.ic-

.e' of Lhe time series data themselves to provide an estimaLe of the model that.
best- fits those data. A problem arises immediatelv in that F1.gl1e : has )nlv
_ i0 data paints, far too little information for any ,ieanincfl statis stu,:] study.
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Figure 1. Results of Observations of Wind Speed
on a Hypothetical Mountaintop.

For purposes of expediting the present discussion, it is convenient for now to
ignore this problem of sampling error, assuming the data are sufficient in number
to proceed with the statistical tests.

Autocorrelations rk actually calculated from the Figure 1 data are 0.95,
0.93, 0.91 and 0.84 for k = 1, 2, 3, and 4 hours' lag, respectively. This is
roughly an exponential decay of autocorrelation rk as a function of lag k. Such
behavior of rk argues strongly for an ARMA(I,0) model but also suggests an
ARMA(l,1) model. To distinguish between these, it is necessary to look at the
partial autocorrelations kk as a function of lag k. Values of kk for k = 1, 2,
and 3 are 0.95, 0.24, and 0.14, respectively. Confidence limits about the par-
tial autocorrelations show that only the first, 11, is significantly diffelent

from zero. This condition argues strongly for an ARMA(I,0) or AR(1) first-otder
Markov model.

Rather than to fit an explicit Box-Jenkins ARMA model to the wind data if
Figure 1, it is possible to transform the parameter t (representing time in thi"*
example) and the variable w (representing wind speed in this example) to discrete
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variables (by rounding to the nearest integral value, foi example). If thih. 1',

done, the wind speed model can be cast into the form of a Markov chain.

The hourly wind speed is represented by a discrete random variabie W(t, in

hour t, which takes on values wi(t) with unconditional probabilities pi where,

nPi = 1 (95)
i=l1

The value of wt+1 is not totally independent of Wt , especially at short time

intervals. Such dependence can be modeled by a Markov chain. This requires

specification of the transition probabilities,

Pr(Wt+w lWIt--wi) (96)

A transition probability is the conditional probability that the next wind

speed state is wj, given that the current wind speed is wi . The transition prob-

abilities satisfy

n
Y PiJ = 1 (for all i) (97)

The one-step transition probabilities can be arranged in matrix form

P .1 P 1 2 ... P l j

P = P12 P2 2  ... P2j
... . .. .. oo ...

Pil Pi2 ... Pij (98)

where P is the transition matrix whose elements are Pij" For a Markov chain, the

transition matrix contains all the information necessary to describe the behavior

of the system. Let pi(t) be the probability that the system resides in state i

at time t. Then the probability that Wt+1 = wj, is the sum of the probibilities

p1 (t) that Wt = wi, times the probability p.j that Wt+ = wj, given that Wt = wi.

n
pj(t+l) =I p.(t) P (99)

i=l1

tettinq p(t) be the row vector of state resident probabilities (p1(t),

p (t)..... Pn(t) ), the relationship may be written,

P(t-1) = (t) P (100)
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It is then possible to compute the probabilities of each wind velocity tor

successive time intervals t+2, t+3, etc.

In summary, a Markov process is a probabilistic model for a continuous

physical system from which a sample (xi, X2, .... x n) is available. The Markov

process is characterized by the fact that the state of the system at time tj

depends only on the state observed at time to. A Markov chain is a discrete

approximation to a continuous process and completely describes the system when

the state at time to, the initial probability vector p(t), and the one-step

transition matrix P are given. In practice, USAFETAC uses a continuous form of

the first-order Markov process, namely the Ornstein-Uhlenbeck model, which will

be described in the next chapter.

Bj
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Chapter 3

BASIC SINGLE-STATION MODELS

3.1 Single-variable, Single-station Model (VlSI)

USAFETAC's basic environmental simulation model is an Ornstein-Uhlenbeck

stochastic process. This single-variable model is an autoregressive (AR), first-

order Markov process in which each value of a random variable Xt is taken to be a

particular value of a stationary stochastic process. It is a common and usually

justifiable assumption to treat weather variables as a first-order Markov process

(see Sections 2.4 and 2.5 of this technical note). The Ornstein-Uhlenbeck proc-

ess is well based in the statistical literature and can be applied with substan-

tial justification to variables whose time series have a random component and ap-

proximately adhere to the first-order Markov restriction.

The generation of a time series of a single meteorological variable would be

quite simple if each value in the time sequence were independent of all :-,ther in

the sequence. In general, this is not the case. Whether successive meteorolog-

ical observations are independent depends on the time separation between them.

The common separation between surface meteorological observations is 1, 3, or 6

hours. At these separations, successive observations of most meteorological

variables are not serially independent. A goal of a simulation mode] should

therefore be to reproduce this serial dependence between successive values ot the

particular meteorological variable being simulated, as well as to reproduce its

probability distribution.

Assume that the variable to be simulated is normally distributed. If the

variate is not normally distributed, then it can be transformed to the normal

distrlbution by expressing the values of the raw variable in terms of its equiva-

lent normal deviate (END). (Transformation of variables to the normal distribu-
ti<,n is covered in detail in Boehm (1976) and is summarized in Section 3.1.1).

The joint normal density function of two weather variables Xt and Xt+ 1 at times t

and t+1 with mean p, variance 02, and serial correlation p between successive

values is

I (x t-p) 2 -2p(x -P)(xt+l-,)+(Xt ,p
P1

f X x (xtlx t+l) expl (nI0)
t t+1 2noZe(l_p2)1/2 2a2(I_p ,)

So the joint normal probability of two random variables with the same mt.an and
'arlance depends only on p, a2, and their correlation p. The generat ion of a

time series of observations then requires the conditional distributjin of the

weather variable at one tLme given the value of the variable in previcus houirs

If the weather process approximates a first-order Markov process, then the
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dependence of the distribution at time t+l on the distribution of Ithe variabl, in

previous hours is summarized by the value of the variable at time t. It ruc-

cessive observations of this arbitary weather variable have a multivariate normal

distribution, then the conditional distribution of Xt+1 is normal with mean and

variance equal to

E[Xt+liXt=xt] = p + P(xt-P) (102)

Var[Xt+1lXt=xt] = U
2(l-p2 ) (103)

where x t is the value of Xt at hour t. This relationship is illastrated in Fig-

ure 2. From Equation (103) it can be seen that the larger the absolute valu" of

the serial correlation p between the values of the variable, the smaller the con-

ditional variance of Xt+I , which does not depend at all on the value of xt -

A time series of synthetic, normally distributed variables with mean p, vari-

ance u2, and a serial correlation p is produced by the equation,

* Xt+ 1 = p + p(Xt - p) + o0 t (104)

where qt is a standard normal random number, i.e., a number drawn at random from

a population with a mean of zero and a variance of unity, abbreviated as N(0,1).

Each n t is totally independent of past values of n as well as past values of X.

If the variable being simulated is expressed as an END (which itself is distri-

buted N(0,1)), then Equation (104) simplifies to

Xt+ 1 = pXt + 41-P7 t  (105)

(a) (b)

which is an Ornstein-Uhlenbeck stochastic process in two parts, a determini;tic

part (a) and a random or stochastic part (b) expressing the uncertainty in the

random process. Xt+1 will have a normal distribution if both Xt and qt are nor-

mally distributed because the central limit theorem states the sums of independ-

* ent, normally distributed random variables are normally distributed. In the case

of independence between successive X values, where p = 0, the deterministic part
(a) is weighted by 402 = 0. and the stochastic part (b) is weighted by .11 ' 1; so
successive values of X are fully random. In the case of complete: positive

dependence between successive values of X, where p = 1, the deterministic part i-
* fully in control, and each succeeding Xt+ 1 is identical to its predecesol t -
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t ior, (6)
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which can be rewritten as

r ( l u-")(v-;) (106)
N su sv

_ 1 uv - uv (307)
N s u s v

where the bars represent means or expected values, and s represents the standard

deviation, the square root of the variance.

In applying Equation (107) to Equation (105) for u =X and v Xt , (ne

finds that for standard normally distributed X,

It = 0 Xt+l = 0

SXt = 1 Sxt+l = 1

and

xt (108]6-r = X X t+
N t+l t

By substitution,

r Xt2 + P 77 (n t Xt)
r=p +

N N

r = pE[Xt 2] + 1[p2 E[ntXt] (109)

where E represents the expected value or mean. Since Xt is perfectly correlated

with itself, 2

E[Xt2] = 1

Furthermore, since nt and Xt are independent of each other,

E[ntXt] = 0

and

Sr = p (ir=)
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for the Ornstein-Uhlenbeck model.

The question remains, does the time series mode-l defined by Equation (104)

reproduce a population with a specified mean and variance? The conditional mean

of Xt+,, given that X t equals xt is

E[Xt+l lXt=xt = E[p + P(Xt-p) + oj q](ill)

Since E[t] = 0, Equation 111 reduces to

E[Xt+1 Ix t  = P + P(xt-P)

which is the conditional mean specified by Equation (102). The conditional vari-

ance of Xt+1 produced by Equation (104) is
7

Var[Xt+l lxt] E[{Xt+1 - E[Xt+l lxt] }2 1xt]

- E[{f + p(xt - P) + aT t -
[P + p(xt _i)]}?J

* EIo1yi7 nt]2  (112)

Since expected variance of nt is equal to 1 (E[Var(qt)] = 1),

Var[Xt+1 Ixt] = o
2(l-p2 )

which is Equation (103). Thus the model produces distributions with the correct

cond±tional mean and variance. The unconditional mean of Xt+1 equals

E[Xt+I ] = p + p (E[Xt] -p) + E[qtlo 1T (113)

Once again noting that the mean of Ot = 0 and that the distribution of the vari-

able is independent of time so that for all t, E[Xt+11 = E[Xt] = E[X1, it is

clear that

(l-p)E[XI = (1-p)p (114)

or

E(XI = p (115)

Tn unconditional variance of the variable X is, using Equation (104),

I Ajj thit~ thti- ;ur-idce of X LL, (given by VarX) X, 1/4)z-
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E[(Xt+i _ p)2] = E{{P(Xt-P) + all-P7 it}2 ]

= p2E[(Xt-P) 2] + 2pa"-"! E[(Xt-P)nt ]

+ o 2 (l-p 2 ) E[2j] (116)

Since each value of nt is independent, then E[(Xt-p)nt] = 0 and E[nt 2J =.

Therefore, using the fact that E[(Xt+I-p)2 ] = E[(Xt-p) 2 = E[(X-p) 2 ], the uncon-

ditional variance of all X satisfies the equation,

(l-p2) E[(X-p)2] = (i-p2)u2  (117)

The conditional mean of Xt+1 does not depend on the assumption that the ran-

dom variables X t and nt are normally distributed. This relationship applies to

all autoregressive Markov processes in the form of Equation (104), regardless of

the distributions of Xt and nt. However, if the variable Xt at time t is normal-

ly distributed with mean p and variance a2 and if the nt values are independently

normally distributed with a mean of 0 and variance of 1, then the generated X's

for t > 1 will also be normally distributed with mean p and variance a2.

3.1.1 Transformation to the Normal Distribution. In order to apply Equation

(105) to a weather variable that is not normally distributed, one must first'1

transform the non-normal variable Z to its END ez. The transformation to the

normal distribution is referred to as transnormalization and is pictured graphi-

w - cally in Figure 3, which portrays the empirically determined cumulative frequency

distribution of the ceiling at Scott AFB, IL, for February at 1200 LST, obtr'd

from an historical weather tabulation called the Revised Uniform Summary of Sur-

face Weather Observations (RUSSWO). Figure 3 actually shows an empirical e:,ti-

mate of the cumulative probability Pr(C < cT) of the cloud ceiling at Scott AFB,

IL, 1200 LST, February, where C represents the ceiling in feet and cT is some

threshold value of the ceiling in feet. In the example shown, the probability

that C is less than cT = 5,000 ft is 0.365.

Pr(C < CT) = 0.365

*0

In the context of the normal probability distribution, this probability corres-

ponds to some END c. In other words, the integral of the standard normal density
if

function 0(u) from u - to u = c is Pr(C < cT), where

* 0(u) - exp(-u 2/2) (118)

and
'I

c
4(cT) = Pr{C < C T} = f (u) du (l9)
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Figure 3. Cumulative Distribution Function of the
Ceiling at Scott AFB IL, for February at 1200 LST.
CDF extracted from the Scott RUSSWO and the model
of Bean and Sommerville are shown.

The probability Pr(C < CT) is thus actually the area under the standard normal

curve from -c to c, as shown in Figure 4. Tables of integrals of the normal

piobability distribution (or rational approximations if one is working with a
computer or calculator) show that a probability of 0.365 corresponds to an END,

c = -0. 345.

Transfrrmation from the raw variable to its END can also be done graphically,

using normal probability paper, as shown in Figure 5. The first step is to plot

the cumulative distribution of the variable of interest, the ceiling in this

case. Then one plots the cumulative normal distribution (a straight line on nor-

mal probability paper). One enters the graph with the raw variable (e.g., cT

5000 it), proceeds vertically to the intersection with the observed disti.ibution

(e.g., at a probability of 0.365), then proceeds horizontally to the intersection

with the cumulative normal distribution. From that intersection, one proceeds

down and reads the value of the END (e.g., c = -0.345.)
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Figure 4. Normal Probability Distribution, Integrated
from - to d = -0.345, Yields a Cumulative Probability
Pr = 0.365.

Thus, for 1200 LST in February at Scott, using RUSSWO data, a ceiling of 5000

ft corresponds to an END of -0.345. Because the RUSSWO is only an approximation

to reality, it is better to say that 5000 ft corresponds approximately to an END

of -0.345. A table of such approximate transformations is given below "

Table 2. Transnormalization from Ceiling to END for Scott AFB, IL,
February, 1200 LST.

Cumulative
Ceiling (ft) Probability END

200 0.000 -O

1,000 0.104 -1.259
2,000 0.213 -0.796
3,000 0.305 -0.510
5,000 0.365 -0.345 p10,000 0.440 -0. ]151
20,000 0.509 O.(23

Using the normal transformation, then, every ceiling corresponds tc an END Of

that ceiling. Since ENDs are in themselves normally distributed with Ji mearn of
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zero and variance of one, they can be used as random variables in the Ornstein-

Uhenbeck process, Equation (105). Such a process, applied to the ceiling (not

normally distributed in general) is

cc t + 44 cc 
(20)

where c values are ENDs of the ceiling C.

UE

3.1.2 Simulation of the Cloud Ceiling. 
To see how such a simulation might 

work

in practice, consider a case with an initial ceiling at 2000 ft (the corespoid-

ing END c is -0.796). Assume a correlation according to Gringorten''. model,

1 cc 0 9 4 5At 
(121)

where Ft is the time step, unity in this case. We generate a rando nomal

numeo, for example qt o 0.325. Applying the Ornstein-Uhlebeck process n

Equation (120) yields
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c t+1  = (0.945)(-0.796) + (41 - 0.9452) (0.22i)

= (0.945)(-0.796) + (0.327)(0.325)

= -0.752 + 0.106

Ct+l -0.646
'I

which corresponds to a ceiling of about 2200 ft. At the next time step, ct be-

comes -0.646. Another random normal number is drawn, say -0.102. Then

ct+ = (0.945)(-0.646) + (0.327)(-0.102)

- -0.610 + 0.033
'I

ct+1  - -0.643

which again corresponds to a ceiling of about 2200 ft.

If convinued, this process will generate a time series of the ceiling whose

probability distribution is the same as the distribution specified initially

(e.g., Figure 3), within the limits imposed by sampling error. The process will

not necessarily produce the same durations as those of the original data. The

distribution of durations of, for example, low ceiling episodes is affected by

the parameter p cc and by the first order Markov assumption. It is possible to

determine a value of pcc that will best "fit" a given distribution of durations.

3.2 Two-variable, Single-station Model (V2SI)

The simulation model expressed in Equation (105) is severely limited, in the

sense that it can be applied only to a time series of a single variable, such as

ceiling or sky cover. One is frequently interested in simulating more than one

variable (e.g., ceiling and visibility) in such a manner as to preserve the P

cross-correlations between them. The V2Sl model handles the two variable case by

including two time series of ENDs, one END for each of the two variables, and

then carrying the cross-correlation information in the stochastic part of the

solution. For example, there is an END for the ceiling, c, and an END for the

visibility, v. These advance by separate Ornstein-Utlenbeck equations

As in Equation (120) Ct+l = Pcc Ct + 4-p cc 2c

vt+1 =p Pvt + 41pv 1nv (222)

But because it is desired to produce time series of ceiling and visiLility that

are correlated across variables (i.e., cross-correlated), the stochastic p.irt of

Equations (120) and (122) must be linked. This is done by generating ; rniidem
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normal number of visibility q that is correlated with that, n previotisly gen-
erated for ceiling. To do this, the procedure is first to generate an independ-

ent nc and then to set

11V = PCV nC + 41lp-vx q  (123)

where n is another independent random normal number, and pc is proportional to

the cross-correlation between ENDs of ceiling and visibility. Equation (123) is

essentially the generation algorithm for producing ENDs having the correlation

PCV*

In the case of independence when pv= 0, = and Equations (120) and
(122) generate unrelated time series of ceiling and visibility. In the case of

perfect positive correlation, when pv= 1,

nv = nc

the time series for visibility will depend completely on that for the ceiling.
Indeed, if pcc and p. = 1, the two time series will be identical except for a

shift due to differing initial values. In the intermediate case, ceiling and
visibility will be partially correlated according to the value of p' which is

proportional to the correlation pcv between ceiling and visibility. The process

is depicted in Figure 6.

CT cc CT +1
0

I, p IQ' CV fQ C

VT VV VT+1

Figure 6. The Weather-A Process.
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The serial correlation p between ceiling at t and ceiling dt t+1 is pre-
served, as is the correlation p between visibility at t and visibility at t+L.
The correlation pcv between ceiling and visibility at the sdme time is propor-
tional to pl, through a constant of proportionality f.

It is instructive to consider how the cross-correlation pcv between ceiling
and visibility relates to pc. Using Equations (120), (122), and (123) in Equa-
tion (108) produces the equation,

Pcv N i cc ct + c nc]

(pv Vt + lPcc (Pcv nc + 4 )1H (124)

which expands to

Pcv = 1 Pcc Pcv ct vt

1

+ N I P cc PCI 41-p'r

+11
+ I P' c2+1 P 41-p 2 lp 13N vv c iv cv

Because E[qcCt] E[rct= EncVt ] = E[Qclq] = 0, due to independence, and because
E[c2] = 1 due to dependence,

1 c VPCV: PCC P t t + PCv 41CC cc 1-P (126)

But

I ct vt  = cv
N

so

Pcv Pcc Pv Pvcv +1v 7l (127)
or

I
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Pcv Pc 1v (128)
I - Pcc PW

From Equation (128) it can be seen that to obtain a correlation pcv between ceil-

ing and visibility, it is necessary to use a model correlation parameter pcv
given by

- Pcc vvW c fp (129)

The factor f reduces to 1 when pc¢ Pw but otherwise is greater than 1, so

Pcv L- Pcv

This is illustrated in Figure 7, in which it is desired to obtain pcv = 0.3. The

Pcv necessary to obtain that pcv value is 0.3 if pcc = Pcv" Where p cc Y Pvv' the
pIvneeded to obtain p = 0.3 is greater than 0.3. For example, if p cc 0.8
and Pw = 0.4 then p1 = 0.8, P2 = 0.4, pv = 0.37. The ratio f = pcv/pcv can be
quite large for cases where pcc and pwvv differ substantially. Figure 8 gives the
factor f as a function of p cc and p cv"

It can be seen from Equation (123) that real solutions can be obtained only if

Pcv is less or equal to unity. Hence,

f Pcv 1 1 (130)

<1
-v f

Thus, the mathematics imposes an upper limit on the cross-correlation this model

is capable of producing between ceiling and visibility. For the example given

above, in which pcc = 0.8 and pcv = 0.4, f = 1.24 and pcv cannot exceed 0.81. In
Lhis case, the model in its present form cannot simulate phenomena "c" and "v"
whose ENDs are cross-correlated more strongly than 0.81. This upper limit on ()cv
depends on pcc and pw and must be treated on a case-by-case basis. In the spe-
cial case where pcv = pc , cross-correlation values up to 1.0 can be simulated.

cv cv

The V2Sl model does not explicitly preserve what is known as the cross-lag
correlation, such as Pvtc t+l the correlation between the visibility at time t
and the ceiling at time t+1. This can seen by applying Equation (107) to Equa-
tions (120) and (122).
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1.0

VALUES OF eCV FOR 2CV" 0.3
0.8 FORl I- max(Qcc,Qw) AND

FOR e2 - min(Qccevv) _
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0.2- 1t
0.3 0.310 3.321 0.35 0.4 .0.6
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. Values of pcv for Pcv 0.3.

t+l t N Y C t+l vt

-'.( c + 4~~~qtt+ )cVt
N cc(PC C C t

II I II

- + - P
= N N (131)

Because vt and n C are independent, the final term is zero, and

Pct+ vt cc cv

In other words, in the V2SI model, the cross-lag correlation leduces to the pro-

duct of autocorrelation of the ceiling and the cross-correlation of the ceiling

arid visibility. This is equivalent to saying that in this mod+L 'Hie c 11..- ]4

correlation reduces to the automatic correlation between ceiling ind viiiiblitv
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VALUES OF -

FOR of = max(0ccAvv) AND

FOR Q2 - min(QCC',v)

0.6 ... --------------- -- --

0 .4 ... . . . --

0.2 -

0 1.01 .025 1.05 1.1 1.2 1.3 1.41.51.752 3

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8. Values of f.

Panofsky and Brier (1968) describe automatic correlation in terms of two var-

iables p and q that are each separately correlated with a third variable s. The

cross-correlations are

PS and p sq

The separate correlations between s and p and between s and q guarantee an "auto-

matic" correlation oetween p and q even if the two are not intrinsically related.

The automatic correlation would be the product pps Psq"

Application to the V2Sl model is shown in Figure 9, a correlation influence

diagram. cc is correlated with c by autocorrelation pcc c is cotcelatedit t!I ~ C

with v t by cross-correlation c icv This guarantees an automatic corelation of

cc Pcv between vt and ct+1 . The model cross-lag correlation given b" Equation

(132) is the automatic correlation. Hence, in the V2Sl model the cross-lag cor-
relation reduces to the automatic correlation.
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T cc CT+1

Q-

eCV CT+1 VT QCV

I 4 --

VT QVv VT+l

Figure 9. Correlation Influence Diagram for the
Weather-A Process. The cross-lag correlation is
shown as a dotted line because it reduces to auto-
matic correlation in this model.

Whether this true in Nature is another question. A model is a simplification

or generalization of Nature. Work conducted to date gives no indication that
reducing the cross-lag correlation to the automatic correlation has any adverse

affect on the model as a weather simulator. The model's originator believes that

cross-lag correlations between ceiling and visibility are very nearly equal r(,

automatic correlation. Whether this is true or at least approximately true for

other variables is subject to verification using actual data.

3.3 Modeling Cumulative Distribution Functions

3.3.1 Graphical Approach. The V2S1 model produces correlated time series of
ENDs such as c and v. These can be translated into raw variables by a graphical

inverse transnormalization procedure such as that described previously for Scott

AFB in February. The graphical approach is limited and cannot bc applied in tho

computer.

3.3.2 Tabular Approach. The other procedure described previously involved Using

the graphical approach such as in Figure 3 to construct tables, ,ch as Tal'le 2,
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relating ceiling heights to their ENDs. This can be accomplished using any cumu-

lative distribution found in RUSSWOs.

There are several important problems with this approach. First, any table isI,

discrete. The model generates continuous END values such as c f- -0.441. Table 2

contains no such value. Interpolation, which introduces error, would be iequired

to translate such an END into its corresponding ceiling height. Secondly,

RUSSWOs contain errors and biases introduced by the weather observing system.

These often show up as bumps or spikes in the relative frequencies, corresponding

to reportCLble values, popular values, location of visibility markers, etc.

Finally, from the point of view of simulation, it is inefficient to maintain in

computer storage entire RUSSWOs from which to interpolate probabilities.

3.3.3 Distribution Fitting Approach. An increasingly popular alternative to

storing RUSSWOs is to model the RUSSWO probabilities, using regression techniques

to fit variously shaped probability distributions or curves to RUSSWO data. The

result of this is a continuous function of the form,

P = F(x) (133)

from which continuous probability estimates can be obtained simply by evaluating
the function. Correspondingly, continuous variable estimates can be obtained by

evaluating the function inverse

x = F1 (P) (134)

Considerdble work of this sort has been done by Somerville and Bean (see ref-

erences) for ceiling, visibility, sky cover, and rainfall. See Appendix A for a

list of the functions that USAFETAC uses to model cumulative frequency distribu-

tions of various meteorological variables.

For example, Bean fitted the three-parameter Burr curve to cumulative distli-

butions of ceiling,

xt

Pr(X < X) I - [ + xt a1 -b (135)
c

Somerville fitted the two-parameter Weibull distribution to the cumulative

distributions of visibility,

Pr(V VT) 1 exp(-aVT) (o)

A :ompclr sw-, b t weeii ,hv Scott AFB RUSSWO and the Burr distribuiti(e t t. f')

t cel :,nj ot 1.00 i.sTr February can be seen in Figure 3.
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O'Connor of USAFETAC has applied log cubic and inverse 1inein equations to

the ceiling and visibility (see Friend, 1978). Of these, the log cubic, namely,

Pr(X < x = cI + c2ln xT + c3 (ln xT)2 + c4 (ln xT)3 (l" )

has been applied to both ceiling and visibility. Log cubics have been fittcd to

the cumulative distribution functions of both ceiling and visibility by two 3ea.;t

squares linear regression methods

0 Inverting the normal equations by Gaussian elimination using the subio,-

tines DECOMP and SOLVE of Forsythe, Malcolm, and Moler (19T1).

0 Singular value decomposition, using the subroutine SVD of lor! iythe,

Malcolm, and Moler (1977).

The inverse linear curve of O'Connor, namely,

Pr(X > xT) = fx T +1

has been fitted to cumulative probability distributions of visibility by use of

DECOMP and SOLVE.

Comparisons between the various curve fits for ceiling and visibility in

winter and summer at Scott AFB, IL, and Kitzingen AAF, Germany (EDIN, WMO 106590,

47 0 45'N, 100 131E), are shown in Tables 3-14. In these tables it can be seen tlm-.
some of the fits were done over the entire range of the variable whose cumu',,owve

distribution was being modeled, and other fits were done over a restricted range.

The curve fits are evaluated in terms of a root mean squared difference (RMS)
between the RUSSWO value and the modeled value (see Appendix B for an explanation

of the RMS equation). Where appropriate, an additional evaluation is provided,

limited to a portion of the total range of the variable whose cumulative distri-

bution function was modeled.

Taken as a whole, the curve fit results for ceiling show the cleur superior-

ity of Bean and Somerville's Burr curve. The log cubic as fitted by SVD is it

times competitive, especially if one's concern is only with ceilings of 10,000 ft

or less. in many cases, by extending the curve fit to 20,000 ft, where data are
relat'.vely unreliable, the fit for the portion of the curve below 10,000 ft is

1mpdired. The curve fits for Kitzingen were noticeably poorer than those tor
Scott, due to the differences in the shapes of the curves ior the two ktati-is,

3, , ;een in Figure 10.



Table 3. Curve Fit Information for Ceiling Data at
Scott AFB, IL, January, 0600 LST.

O'Connor
Bean and Bean and Log Cubic O'Connor O'Connor
Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to
Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft

(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)

20,000 46.8 45.0 45.7 40.2 46.8 42.3
10,000 55.6 53.4 54.1 52.4 55.1 53.0
3,000 67.7 70.0 70.6 70.4 69.8 70.1
2,000 73.9 75.7 76.2 75.7 74.8 75.3
1,000 85.1 84.3 84.7 83.8 82.9 83.6

200 98.3 96.0 96.2 98.7 99.5 99.2
0 100.0 100.0 100.0 100.0 99.6 99.7

RMS:
(Eval to 10,000 ft) 1.8 1.8 1.8 1.4 1.7
(Eval to 20,000 ft) 2.2 2.0 3.7 1.5 2.9

Table 4. Curve Fit Information for Ceiling Data at
Scott AFB, IL, February, 1200 LST.

O'Connor
Bean and Bean and Log Cubic O'Connor O'Connor
Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to
Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft

(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)

20,000 49.1 45.2 45.8 35.8 45.3 36.9
10,000 56.0 54.1 54.7 51.6 55.3 52.1
3,000 69.5 72.5 73.3 73.7 73.0 73.5
2,000 78.7 79.0 79.8 79.7 78.3 79.4
1,000 89.6 88.7 89.5 88.3 86.9 88.1

200 100.0 98.6 98.9 101.3 103.0 101.8
0 100.0 100.0 100.0 100.0 99.4 99.6

RMS:
(Eval to 10,000 ft) 1.6 1.8 2.6 2.2 2.5
(Eval to 20,000 tt) 2.1 2.1 5.6 2.5 5.2
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Table 5. Curve Fit Information for Ceiling Data at
Scott AFB, IL, July, 1800 LST.

O 'Connor
Bean and Bean and Log Cubic O'Connor O'Connor
Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to
Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft

(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)

20,000 74.4 64.6 73.0 77.3 72.9 75.4
10,000 84.8 83.1 83.9 86.0 84.3 85.5
3,000 97.7 97.3 97.2 96.0 96.4 96.3
2,000 99.3 99.8 98.8 98.1 100.8 98.4
1,000 99.9 100.0 99.7 100.4 101.2 100.4

200 100.0 100.0 100.0 100.0 99.7 99.7
0 100.0 100.0 100.0 100.0 100.1 100.1

RMS:
(Eval to 10,000 ft) 0.7 0.5 1.0 0.9 0.8
(Eval to 20,000 ft) 3.8 0.7 1.4 1.0 0.8

Table 6. Curve Fit Information for Ceiling Data at
* Kitzingen AAF, Germany, January, 0600 LST.

O' Connor
Bean and Bean and Log Cubic O'Connor O'Connor
Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to
Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft

(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)

20,000 26.9 19.3 20.2 -9.7 15.3 -9.5
10,000 27.3 28.2 30.5 19.8 31.1 20.1
3,000 53.5 54.2 58.1 59.2 57.6 59.1
2,000 69.0 66.7 68.7 69.3 66.0 69.1
1,000 87.0 87.7 84.3 83.2 79.6 82.9
200 98.1 99.8 98.3 100.9 105.8 101.5

0 100.0 100.0 100.0 100.0 98.8 99.5

RMS:
(Eval to 10,000 ft) 1.0 2.5 4.3 5.1 4.3
(Eval to 20,000 ft) 3.0 3.5 14.4 6.4 14.3

61

p



0

Table 7. Curve Fit Information for Ceiling Data at
Kitzingen AAF, Germany, February, 1200 LST.

O'Connor
Bean and Bean and Log Cubic O'Connor O'Connor

Somerville Somerville by DECOMP Log Cubic Log Cubic
Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to
Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft

(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)

20,000 33.2 28.3 29.9 -2.7 22.3 -4.0
10,000 35.6 37.9 39.5 28.1 40.3 28.0
3,000 61.1 62.9 64.2 67.6 66.9 67.8
2,000 80.9 74.5 75.4 77.3 74.6 77.3
1,000 93.4 94.3 94.3 90.0 86.3 89.6

200 99.6 100.0 100.0 102.5 106.0 102.9
0 100.0 100.0 100.0 35.2 98.8 99.6

RMS:
(Eval to 10,000 ft) 2.9 3.1 26.9 5.6 4.8
(Eval to 20,000 ft) 3.3 3.1 28.3 6.6 14.8

Table 8. Curve Fit Information for Ceiling Data at
Kitzingen AAF, Germany, July, 1800 LST.

O'Connor

Bean and Bean and Log Cubic O'Connor O'Connor
Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to
Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft

(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)

20,000 57.0 38.4 53.0 42.6 48.0 37.1
10,000 60.5 60.5 65.5 64.4 68.1 62.9
3,000 93.9 94.1 93.1 89.9 90.5 90.8
2,000 98.0 97.7 98.7 95.3 95.0 96.0
1,000 99.5 99.6 100.0 101.1 99.9 101.1

200 100.0 100.0 100.0 99.9 100.9 99.1
0 100.0 100.0 100.0 100.0 99.9 100.3

RMS:
(Eval to 10,000 ft) 0.2 2.1 2.6 3.6 1.9
(Eval to 20,000 ft) 7.0 2.5 6.0 4.8 7.7
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Table 9. Curve Fit Information for Visibility Data at
Scott AFB, IL, January, 0600 LST.

Somerville O'Connor O'Connor
Threshold and Bean Inverse Linear Log Cubic
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD

(SM) (PCT) (PCT) (PCT) (PCT)

6.0 51.6 49.1 54.8 55.0
4.0 68.2 65.4 65.2 66.8
3.0 75.5 74.6 72.0 73.9
2.0 83.7 83.9 80.4 82.1
1.0 91.8 93.0 91.0 91.7
0.5 96.6 97.1 97.5 96.8
0.0 100.0 100.0 104.8 100.1

RMS 1.5 3.1 1.6

Table 10. Curve Fit Information for Visibility Data at
Scott AFB, IL, February, 1200 LST.

Somerville O'Connor O'Connor
Threshold and Bean Inverse Linear Log Cubic
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD

(SM) (PCT) (PCT) (PCT) (PCT)

6.0 69.5 68.3 73.1 63.9
4.0 83.6 82.6 81.1 76.7
3.0 88.8 89.0 85.8 83.9
2.0 92.8 94.4 91.1 91.8
1.0 98.0 98.2 97.0 99.7
0.5 99.8 99.5 100.3 101.7
0.0 100.0 100.0 103.8 ir0.3

RMS 0.8 2.6 4.0

Table 11. Curve Fit Information for Visibility Data at
Scott AFB, IL, July, 1800 LST.

Somerville O'Connor O'Connor
Threshold and Bean Inverse Linear Log Cubic
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD

(SM) (PCT) (PCT) (PCT) (PCT)

6.0 94.9 94.6 96.3 96.6
4.0 98.6 98.8 97.7 98.0
3.0 99.4 99.6 98.5 98.7
2.0 99.8 99.9 99.2 99.5
1.0 100.0 100.0 99.9 100.2
0.5 100.0 100.0 100.3 100.3
0.0 100.0 100.0 100.7 100.0

RMS 0.2 0.8 0.8

63

p.



Table 12. Curve Fit Information for Visibility Data at
Kitzingen AAF, Germany, January, 0600 LST.

Somerville O'Connor O'Connor
Threshold and Bean Inverse Linear Log Cubic
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD

(SM) (PCT) (PCT) (PCT) (PCT)

6.0 27.1 25.8 31.0 26.4
4.0 46.2 48.9 41.9 48.5
3.0 63.7 63.6 50.8 61.4
2.0 81.0 78.9 64.7 75.9
1.0 92.2 92.4 88.7 92.1
0.5 96.9 97.4 108.9 99.1
0.0 100.0 100.0 141.0 100.2

RMS 1.4 18.2 2.4

Table 13. Curve Fit Information for Visibility Data at
Kitzingen AAF, Germany, February, 1200 LST.

Somerville O'Connor O'Connor
Threshold and Bean Inverse Linear Log Cubic
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD

(SM) (PCT) (PCT) (PCT) (PCT)

6.0 54.0 53.2 57.0 55.7
4.0 69.2 70.2 67.7 69.4
3.0 78.3 79.1 74.8 77.4
2.0 87.6 87.7 83.5 86.4
1.0 97.1 95.2 94.5 96.4
0.5 99.4 98.2 101.1 100.6
0.0 100.0 100.0 108.7 100.1

RMS 1.0 4.2 1.0

Table 14. Curve Fit Information for Visibility Data at
Kitzingen AAF, Germany, July, 1800 LST.

Somerville O'Connor O'Connor
Threshold and Bean Inverse Linear Log Cubic
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD

(SM) (PCT) (PCT) (PCT) (PCT)

6.0 96.2 96.7 96.9 97.0
4.0 98.3 98.5 98.0 98.1
3.0 99.1 99.1 98.6 98.8
2.0 99.8 99.6 99.2 99.4
1.0 99.8 99.9 99.9 100.1
0.5 100.0 100.0 100.2 100.2
0.0 100.0 100.0 100.5 100.0

RMS 0.2 0.5 0.4
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Figure 10. Cumulative Distribution Functions (CDF) of
the Ceiling at Scott AFB IL, and Kitzingen AAF Germany,
for February at 1200 LST, Extracted from the RUSSWOs.

The curve fit results for vsibility again demonstrate the superiority of
Somerville and Bean's function. The inverse linear function behaves somewhat
unreliably; it does well sometimes and poorly at other times. The greater reli-
ability of the log cubic makes it second best after Somerville and Bean's Weibull
curve.

3.4 Tests of the V2S1 Model

3.4.1 Correlation. Lengthy runs of the V2Sl model were made to test whether the
correlation behavior predicted by Equations (110) and (129) were in fact shown.
Results for runs of 10,000 and 100,000 simulated hourly observations are shown in
Table 15. Bracketing values in parentheses represent the 95-percent confidence
limits for each correlation coefficient, determined according to the procedures
in the following paragraphs. 

I
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Table 15. Correlation Tests.

PARAMETERS SPECIFIED
TO MODEL PREDICTED VALUE PARAMETERS RECOVERED FROM MODEL

Pcc P _ Pcc __tC t+ r cc vv cv vtct+l N

(0.931) (0.931) (0.275) (0.260)
0.945 0.945 0.300 0.284 0.946 0.944 0.300 0.284 10000
(0.956) (0.956) (0.324) (0.308)

(0.931) (0.824) (0.275) (0.260)
0.945 0.845 0.300 0.284 0.946 0.837 0.294 0.278 10000
(0.956) (0.863) (0.324) (0.308)

(0.778) (0.177) (0.275) (0.216)
0.800 0.200 0.300 0.240 0.801 0.184 0.289 0.227 10000
(0.820) (0.223) (0.324) (0.263)

(0.778) (0.177) (0.474) (0.375)
0.800 0.200 0.500 0.400 0.801 0.186 0.494 0.391 10000
(0.820) (0.223) (0.525) (0.424)

(0.793) (0.793) (0.292) (0.233)
0.800 0.800 0.300 0.240 0.797 0.800 0.300 0.240 100000
(0.807) (0.807) (0.308) (0.247)

(0.793) (0.193) (0.292) (0.233)
0.800 0.200 0.300 0.240 0.797 0.198 0.300 0.239 100000
(0.807) (0.207) (0.308) (0.247)

Correlation coefficients r that are calculated from sample data (whether his-
torical data or data generated by a simulation model such as V2Sl) are subject to U
sampling variability. The distribution of the sample correlation coefficients r
is not normal but approaches normality as the sample size increases. The ap-
proach of the distribution of r to normality depends not only on sample size but
also on the value of the population correlation p. If samples are drawn from a
population for which p = 0, the distribution is approximately normal, approaching 9
normality rather slowly as the sample size increases. In this case, Student's

t-distribution or the normal distribution is used in testing inferences about p.
If samples are drawn from a population for which p 1 0, the distribution of r is
very skewed. When p is greater than zero, the skewness tends toward the left,
with ligh values of r being relatively more probable than lower values. The

skewness is reversed for p less than zero. This complicated dependency of the
sampling distribution of r on the value of p makes it impossible to employ the
t-test or normal distribution directly. To permit inferences about p # 0, R. A.
Fisher developed for a bivariate normal population the Z-transformation given by

Z 0.5 In + r i (139)
r
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For sample correlation coefficients r computed from independent draws from a

bivariate normal population whose correlation is p, the statistic Z is approx-

imately normally distributed, with a mean given by

Pz = 0. 5 ln + 1 ] (140)

and a standard deviati 'n given by

O z =1/(N-3) (141)

where N is the sample size. The goodness of these approximations increases with

smaller absolute values of p and with larger sample sizes N.

If the population correlation is p and one samples from it repeatedly,

95 percent of the sample correlation coefficients drawn from the population will

fall between the so called "95-percent confidence limits" of p. Thus, from a

single value of r that happens to lie within those limits, one can infer with

only a 5-percent risk of error that the population correlation is p. More pre-

cisely, it can be said with only a 5-percent risk that r is not significantly

different from the stated p.

ENDs generated by the V2S1 model have the bivariate normal distribution, but

if all the simulated ceiling and visibility observations produced by V2S1 are

included in the sample used for calculating correlations, then the data h ¢ not

been sampled independently, and a correction must be made accordingly. If a cor-

rection is made for serial dependency, it is possible to make hypotheses about

the correlations p in the V2Sl model.

Hypothesize that a population correlation of the V2Sl model is p i 0 and cal-

culate the 95-percent confidence limits about p based on sampling the V2Sl proc-

ess N consecutive times. To correct for serial dependency in the time series of

V2Sl observations, Equation (60) of the AWS Guide for Applied Climatology (see

references) is used:

N] = + p (142)

where N' is the effective number of independent observations in a sample of size

N. Then Fisher's Z-statistic is calculated using Equation (140) and the standard

deviation from
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r
oz  4 (143)

The 95-percent confidence limits in Z are given by

Zu = Z + 1.96ay (144)

Z = Z - 1.96az  (145)

An inverse Fisher Z-transformation is used to convert the confidence limits in
the Z domain to confidence limits in the p domain

exp( 2Zu ) - 1
PU = exp( 2Zu ) + I (146)

e___(_2Z 1 _) 2
= exp( 2Z1 ) + 1 (147)

Fisher's Z-transform can also be expressed in the form of the hyperbolic tangent.

Multiplying the numerator and denominator of Equation (146) by e-z gives

eZ . e-Z

p eZ + e- tanh(Z) (148)

Z = tah - I (p) (149)
I.

Results in Table 15 show that the sample correlation coefficients produced by
the V2Sl model fall within the 95-percent confidence limits of the hypothesized
correlation. Hence, the model appears to preserve the serial correlation p cc of
the ceiling, the serial correlation Pw of the visibility, and the cross-correla-
tion p cv of ceiling and visibility. In addition, the cross-lag correlation
vtc t+1 does appear to reduce to the automatic correlation Pcv.

3.4.2 Marginal Distributions. If a particular model of the cumulative distribu-

tion functions of ceiling and visibility is used in the transnormalization proc-

ess of the V2Sl model, then a long run of that model should return the same dis-
tributions, within the accuracy limits imposed by the sampling error. To test

this, Somerville and Bean's ceiling and visibility models for 1200 LST, February,
at Scott AFB, IL, were used in transnormalization. The V2S1 model was then
exercised over a long run of 100,000 observations, each falling at 1200 LST
(because a 24-hour time step was used). The month was restricted to February.
Results, shown in Table 16, indicate that the V2Sl modei does preserve the mar-
ginal distributions of ceiling and visibility, within the limits of accuracy
imposed by sampling error.
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Ir
Table 16. Marginal Distribution Tests.

N 100,000 Observations

Cumulative Cumulative
Distribution Function Distribution Function

Ceiling Bean and Visibility Somerville
(ft) Somerville V2S1 (SM) and Bean V2Sl

20,000 0.458 0.458 6.0 0.683 0.682
10,000 0.547 0.548 4.0 0.826 0.829
3,000 0.733 0.733 3.0 0.890 0.892
2,000 0.798 0.799 2.0 0.944 0.944
1,000 0.895 0.897 1.0 0.982 0.983
200 0.989 0.989 0.5 0.995 0.995
0 1.000 1.000 0 1.000 1.000

3.4.3 Synthetic RUSSWOs. By adjusting the cross-correlation pcv, it is possible
to adjust the joint probabilities of ceiling and visibility produced by the V2S1
model and thus to produce -- either analytically or by Monte Carlo simulation --
synthetic RUSSWOs tuned to match actual RUSSWOs. If ENDs of actual weather vari-
ables were distributed exactly according to a multivariate normal distribution,
and if no bias were introduced by the method used to observe and record the
weather, then the V2Sl model could produce synthetic RUSSWOs differing from
"natural" RUSSWOs by no more than sampling error.

In practice, weather observations contain biases and inaccuracies that are at
least as bad as assuming the ENDs of these data are multivariate normal. Thus,
three sources of error -- observing/recording bias, non-multinormality and sa-
pling error -- complicate the process of "tuning" V2S1 to reproduce a pa- icular
RUSSWO. Even if a nearly perfect fit were attained between a synthetic and a
'natural" RUSSWO, one would merely be tempted to ask, "Have you fitted nature or
have you fitted an inadequate perception of nature?"

Putting aside the question of the basic advisability of "fitting" a synthetic
RUSSWO to a natural RUSSWO, it is remarkable how close a fit can be obtained just
by "tuning" the cross-correlation pcv. Table 17 presents an example for Scott
AFB, Illinois, in February at 1200 LST. The largest differences between the syn-
thetic and the natural RUSSWO is 0.038.
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Table 17. Comparison of the Scott AFB, IL RUSSWO and Joint Probability

of Ceiling and Visibility Produced by the V2Sl Model.

CEILING VS VISIBILITY SECTION, RUSSWO, SCOTT AFB, IL, FEB, 12-14L, EXTRACT

Visibility (statute miles)

Ceiling (ft) 6.0 4.0 3.0 2.0 1.0 0.5 0.0

20,000 0.448 0.483 0.488 0.491 0.491 0.491 0.491
10,000 0.506 0.548 0.556 0.560 0.560 0.560 0.560
3,000 0.601 0.669 0.686 0.692 0.695 0.695 0.695
2,000 0.656 0.749 0.771 0.780 0.780 0.787 0.787
1,000 0.689 0.817 0.857 0.876 0.892 0.896 0.896

200 0.695 0.836 0.888 0.928 0.980 0.998 1.000
0 0.695 0.836 0.888 0.928 0.980 0.998 1.000

Synthetic RUSSWO Produced by V2SI Model, Scott AFB, IL, 12L

Time Step At = 24 hr p = 0.72 No Recording Mask Total Obs = 100,000

Visibility (statute miles)

Ceiling (ft) 6.0 4.0 3.0 2.0 1.0 0.5 0.0

20,000 0.420 0.448 0.454 0.457 0.458 0.458 0.458
10,000 0.488 0.530 0.541 0.546 0.548 0.548 0.548
3,000 0.603 0.685 0.710 0.725 0.732 0.733 0.733
2,000 0.634 0.734 0.766 0.787 0.797 0.799 0.799
1,000 0.667 0.793 0.841 0.874 0.893 0.896 0.897

200 0.682 0.828 0.890 0.940 0.976 0.986 0.989
0 0.682 0.829 0.892 0.944 0.983 0.995 1.000

3.5 Summary and Conclusions

A single-station, two-variable model has been constructed and tested. The

model has been found to preserve the serial correlation p cc of ceiling over time,

the serial correlation pvv of visibility and the cross-correlation pcv of ceiling

and visibility. The cross-lag correlation Pvtct+1 in this model reduces to the

automatic correlation pccPvv. Furthermore, the model appears to preserve the

marginal distributions of ceiling and visibility as well as to give a faithful

representation of the joint probabilities between ceiling and visibility, as
shown in the interior of a RUSSWO.

Models of the cumulative distribution functions of ceiling and visibility,
developed by Somerville and Bean, have been found superior to others tested.

USAFETAC currently has the capability for fitting the Weibull curve to visibility

data from anywhere on the globe and has a limited capability to fit Burr curves.
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Chapter 4

MULTIVARIABLE/MULTISTATION MODELS

4.1 General

Although the VlSi and V2S1 models have been shown to be excellent for time
series of one or two variables, few simulation support requests are simple enough
to be served by these models. In general, users of environmental simulation
models want simulation techniques that are not limited to two variables. In this

chapter, a multivariate triangular matrix model capable of generating a large
number of correlated elements will be discussed. These elements could represent

several variables at a single station or a single variable at multiple locations.
Thus, this type of environmental simulation model allows more flexibility than

the VISI and V2Sl models.

4.2 Generation of Random Normal Vectors with Desired Correlation Using the
Multivaiiate Triangular Matrix Model (MULTRI)

Let X be a vector stochastic variable consisting of j = 1, 2, 3, .... M

scalar variables X. avid k = 1, 2, 3, ..., N observations 2k thus,

j4

X11 X .. .
(X1M

k 21 X22 - X
2M (150)

X [Xi ... ... ... ...

XN1N2 "" XM

The kth observation of X is thus the row vector,

k [Xlk X2 k ... XMk (151)

The vector of means is

E(Xk) = il 2 ... (152)

which may also be shown as an (N x M) matrix all of whose rows are identical.

The iandom variable X can be expressed ii, terms of its deviation from the V

mean X by

x -- X - X (153)

p
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The sum of the squares and cross products (SSCP) in raw-score form is the

symmetric matrix XIX. Since any particular observation Xk is a (I x M) row

vector, the raw-score SSCP is a

(M x 1) x (I x M) (M x M) - dimensional

matrix given by

yXI2 XX 2  ... IXA

1X2 X 1  7X 2
2  ... IX 2 XM  (154)

... ... ... . .

Similarly the deviation-score SSCP is

1 2  1xlX2  ... IXlxM

.XX .XX2. ... .x.2 M
o . ,. . yo.o o o o

The two are related by (Tatsuoka, 1971)

xIx =XX- X 'X (156)

which gives the computational rule for obtaining x'x.

An unbiased estimate of the dispersion or variance-covariance matrix D is
given by dividing the elements of the deviation-score SSCP by the number of

degrees of freedom, i.e., N - 1.

N
D -- I k (157)

k=l

or

D - Xik Xjk (157a)Dii N-1 k=1  ]

where k is a datum index varying from k = 1 for the first vector x to k = N for

the final vector. Note that D is a symmetric (M x M)-dimensional matrix.

The maximum likelihood estimate of D is given by
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I (158)
D = E(xx) N k-i -1 k

or

_ N

ij N k=l xikXjk (158a)

The maximum likelihood estimate is used in this and similar contexts because as

long as N' data are independent out of N total data, the variance-covariance
matrix will be positive definite. Such a matrix is, in theory, invertible. It
should be kept in mind that the maximum likelihood estimate is biased; variance-
covariance estimates will be smaller, on the average, than they should oe. The
bias is not a problem in this application.

The variance of a variable X is

a X2 = E[ (X-x) 02
= E[ (X-px)(X-px)

_ 1 N
- N kIl (Xk-Px)(Xk-PX) (159)

The covariance between two variables X and Y is

CrXy =E[ (X-px)(Y-py) ]

1N
S1I (Xkpx)(Yk-pY) (160)

k=l -X(Y-Y

Recalling Equation (57), the linear correlation PXY between X and Y is simply the

covariance between X and Y divided by the product of the standard deviations of X

and Y, i.e.,

aXy

PXY - X a y

or

P" = E[ ( x) (YPY) ] (161)
a X  ay

Note that the covariance of X with X reduces to the variance of X, i.e.,
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0 XX = E[ (X-PX)(X-px)

= E[ (X-t,

= OX2 (162)

The covariance between a variable X1 and a variable X2 is

Nr (XI_ MX_2
12 N k=1

N

4 N X1X2 (163)Nk=l

and between X1 and X3 is

1 N
013 N X XX3 (164)

k=13

Thus, the variance-covariance matrix D can be written as

11 12 .lM

a2 a2 ... O2M

21 22 2M (165)
r. .. ...2 ...

a2 a

MI M2 "'" MM

0 1 012 IM
o21 022 ... G2

D 21 2 M 56)
... . ... ... ...

G Ml °rM2 ... aOM2

Because

0 xy = x 
0 Oy PXY (167)

the variance-covariance matrix can be written as

a12 Olo2P12 ... alaMP1M,

D G2(jlP 2 1  022 " .2aM(2Mi (168)

aM0UPMI 'M2PM2 ... OM2

The form of the vatriance-covarLance matrix D is such that the sample variances

o I 'are along the main diagonal and the sample covariances oij, itj are the off--

diigonal elements.
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In the special case of a random variable X distributed normally with a mean

of zero and a variance of one, i.e., N(Ol),

= 0 (169)

x X (170)

x'x = XIX (171)

and

D = R (172)

where R is the correlation matrix, given by

1 P12 ... PlM

R = P21 1 ... P2M (173)
... ... ... ...

PMI PM2 ... 1

which is symmetric.

If the vector stochastic variable X has the multivariate normal probability

distribution, then the probability density function of X is

f(X) = 1 exp[ -(X~-x)'D'(X-x) (174)

where I I represents the determinant and D_ is the inverse of the variance-

covariance matrix D.

Random multivariate normal vectors X with a mean vector pX and variance-

covariance matrix D can be generated by using a theorem (Anderson, 1958) which

states that if q is a standard normal vector containing independent normal vari-
able components ni each distributed N(O,1), then there exists a unique lower

triangular matrix C such that

= +X(175)

where C is an (M x M) matrix and X and pX are (M x 1) column vectors. Here,

[i] can be formed by selecting random normal numbers from a population distri-
buted N(O,1). In this case (X - jX) has the (M x M) variance-covariance matrix,

D = C'C (176)

and the generation matrix C is obtained by a lower triangularization of the
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desired variance-covariance matrix D. The important point is that the components

of the vector X generated by this algorithm can have any desired correlation, as

provided in the variance-covariance matrix D, and can have any mean, as provided

in the vector pX. By this method it is possible to generate correlated random

normal numbers. If the covariances of D are zero, the elements of the generated

X are then uncorrelated, i.e., independent.

One way of triangularizing the (M x M) variance-covariance matrix D to obtain

the (M x M) lower triangular matrix C is the Cholesky or so called "square-root

method" described in Section 4.3 of this report. Consider a case in which it is

desired to generate X in three components,

X = [X1 X2  X3] (177)

with mean

[p 1  (178)
PX = [PI P2 P31 18

and variances and covariances given by

a12 ala2P12 ala3P13

D a0a2o1P2 1  022 02a3P23 (179)

a3 1P3 1  a 3 0 2 P 3 2  32

In this case,

CoI1  0

C= 2P21 0211P 2 1  0 (180)

a3P31 a2  P32P31P21 03 / 1 - P3 1
2 - (P32P3P21)

21 (1-P2 1 )
2

The generation algorithm (Equation 175) is6I

X1 ' 1 i ' ~

X X2 = 0 2 P 2 1rl + 02 P2 1  n2 + P (181)

X3  G3P3101 + o 3 32-P 31 P21q2 + 03 1-P31 2-(P 32 -P31 02 1 )2 n3  P3

1 -p- 12 (1-P 21
2 )

In the special case where it is desired to generate X with a mean of zero and a

variance of one, i.e., distributed N(O,1),
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=1 (182)

and the generation algorithm reduces to

X X2  P2 191 + 41--21 q2 (183)

X31 P31 + P3 2 "P31P21 q2 +/ - P 3 1 
- (P32-P3lP21) 3

41-P21 (l-P 2 1
2 )

where ql" n2' and n3 are numbers drawn independently from a population distri-

buted normally with a mean of zero and variance of one.

In practice, these analytic expressions for the lower triangular matrix C are r

not needed. One simply forms the desired variance-covariance matrix D (or the

correlation matrix R if X is to be distributed N(O,1)), lower triangularizes that

matrix by the Cholesky procedure (see Section 4.3), and uses it and the mean vec-

tor PX in the generation algorithm (Equation 175). The independent random normal

numbers q are produced either by using a pseudo-random normal number generator
directly or by using a uniform pseudo-random number generator and any of several

suitable transformations (Naylor, et al., 1966).

The generation algorithm of Equation (175) can be illustrated with a test case.

Suppose it is desired to generate a vector,

= [X 1 x2 X3 X 4]

of standard normal variables (distributed N(O,1)) having the correlation matrix,

1.0 0.8 0.7 0.3

0.8 1.0 0.6 0.4
R=D

0.7 0.6 1.0 0.5

0.3 0.4 0.5 1.0

The Cholesky reduction procedure is used to find the lower triangular matrix C,

1.0000 0.0000 0.0000 0.0000

0.8000 0.6000 0.0000 0.0000C=
0.7000 0.0667 0.7110 0.0000

0.3000 0.2667 0.3829 0.8321

The transpose of C is
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1.0000 0.8000 0.7000 0.3000

0.0000 0.6000 0.0667 0.2667
CI =

0.0000 0.0000 0.7110 0.3829

0.0000 0.0000 0.0000 0.8321

from which it can be verified that

C'C = D

The matrix C is then used to generate successive values of X by performing the
matrix-vector multiplication of Equation (175) with successive values of .

4.3 Cholesky or "Square Root" Factorization

A square matrix A whose leading submatrices have nonzero determinants can be
factored (non-uniquely) as

= L M1 (LU Theorem) (184)

where Li and UI are lower and upper triangular, respectively. Likewise, A may be

factored (uniquely) as

A= L 2  (185)

where L is a lower triangular matrix whose diagonal elements are all unity, and

H2 is an upper triangular matrix. The matrix U2 can also be factored as

2 =  (186)

where U is an upper triangular matrix whose diagonal elements are all unity, and

D is a diagonal matrix whose elements are the corresponding elements of U2' i.e.,

D = diag [DI, D2 ... DN] (187)

Using Equation (186) in Equation (185),

A = L D U (LDU Theorem) (188)

If A is symmetric and positive definite (a matrix A of order n is positive
definite if x' A x > 0, for every real, nonzero n-vector x),

A = L D L' (189)

where L' is the transpose of L. Hence, U = L' and A can be factored as
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A= (LD) (D16 t) (190)

where

D= diag [D 1 D2  D N ;5 (191)

It is convenient to define

S = L DI (192)

so that

A = S S' (193)

Therefore, any real, symmetric, positive definite matrix A can be factored

into a lower triangular matrix S and its transpose S'.

The algorithm of choice to perform the factorization of Equation (193) is the

Cholesky or so called square-root method (Acton, 1970; Carnahan, et al., 1969;
Forsythe, et al., 1967; Naylor, et al., 1966; and Scheuer and Stoller, 1962).

The Cholesky method is extremely stable, never requires interchanging to avoid

small pivots, and requires the least computational labor of all decomposition

schemes, largely because of the symmetry of the A matrix. If the symmetric,

positive definite requirements are not adhered to, the Cholesky or square-root

algorithm will break down by calling for division by zero or attempting to take

the square root of a negative number.

The Cholesky or square-root algorithm for factoring the real, symmetric,

positive definite matrix A = [aij) of order n into a lower triangular matrix

S= [s I] and its transpose consists of three rules

Sil ail j = 1 (194)
;al 1 !S i n

i-1

sii= aii - ik2  j > 1 (195)
k=1 1<i n

j-i
ai- SikSjk j > jl (196)

. -= k=l 1 < j < i n
sj

Finally, sij = 0 for all j > i. These rules are implemented column-wise, start-

ing with the leftmost column (j = 1) and proceeding down each column (toward

increasing i). This becomes apparent when the algorithm is written out
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procedure LUSQRT (n, A, S)
integer i, j, k, n
real array A 11:n, 1:n], S 1l:n, l:n]
begin

j: 1 J;
for i: = 1 step 1 until n do
begin

Sij: A i j / sqrt (AII);

end;
for j: = 2 step 1 until n do
begin

j-i
Sj'j: sqrt (Aj,j k Sj,k2);

k=l

for i: = j + 1 step 1 until n do
begin

q j-1
Sij: = (A i. - I [Si,k Sj,k]) / Sjj;

end;

end;

end LUSQRT:

4.4 Derivation of Single-station, Two-variable Model Equations from the Multi-

variate Triangular Matrix Model (MULTRI)

The V2Sl single-station, two-variable model described in Chapter 3 is actual-

ly a special case of the multivariate triangular matrix model (MULTRI), namely,

the case where the number of variables is two. It should therefore be possible

to derive the equations of the single-station, two-variable model, (V2Sl), q.v.,

ct Pc c -P qc (120)

I!II

t + 1 + 7Pn + 1 _ cvn (197)
tvv flv c.Lvv pf

from the triangular matrix formulation. Recalling Equation (129),

, 1-p cpw4

Pcv = cc Pcv (129)
4T___ 1-p 2

Using Equation (129) in Equation (197) produces the altered form,

vt= pwV0 + (IPccw) Pc + (l-Pw 2 ) - (I-PccPvv )pcv r (197a)

(p~2)V cc  ( I-Pcca

Together, Equations (120) and (197a) constitute the set of simulation equations

used in the single-station, two-variable model V2Sl.
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Figure 11. Correlation Influence Diagram for

Single-station, Multiparameter Model.

The process used in the V2SI model is shown in the correlation influence dia-

q " gram depicted in Figure 11. In this diagram, the states of ceiling and visibili-

ty are numbered as well as lettered to show the correspondence between triangular

-I ! 1

matrix states X1 , X 2 , X 3 , X4 with multiparameter model states cO , vO 0 ct , and vt ,

respectively, i.e.,

-I I

X1 = 0 X 3 = Ct

II I

X 2  V 0  X 4 = vt  (198)

in order for the triangular matrix model to resemble the two-variable model

V2S1, the following correlation structure is needed

P13 = P31 = Pcc

P24 = P42 = Pvv

P12 = P21 = Pcv

P34 = P43 = Pcv(19

The cross-lag correlations are modeled as automatic correlation

P P

PC t v0 = cc Pcv

P23 =P21 P13 (200)
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0 Pvtc0  Pvv Pcv

P1 4  = p12 P24  (201)

Under this correlation structure, it is not in general true, that p2 3  is

equal to P2 3P4 3 or that P14 is equal to P13 P34 . This would be true only if Pcc =

Pvv"

The triangular matrix model is based on a variance-covariance matrix D such

as

a12 Olo2P12 ala3 P1 3  a1a4 P14
D o a201P21 a 22 ao20a3P23 a°2°4P24(2)

0 022(202)

030IP 3 1  030 2P3 2  a32 G3G4P34

I4 04a 2P41 0403 P4 3  a4

Since the variables generated are distributed N(0,1), the variance-covariance

matrix D reduces to the correlation matrix R.

1 P1 2  P1 3  P14

P21 1 P2 3  P24  (203)

P31 P32  1 P3 4

P41 P42  P4 3  1

D = R

This matrix R can be lower triangularized using the rules stated in Section 4.3

of this report dealing with Cholesky reduction. The result is a lower triangular

matrix C, given by

1 0 0 0

P2 lP 20 0

= P32-P31P21 (_-P 1(-P212)-(P32-P31P21 )2 0 (204)

11-p2 1
2  J-212

P41 P42-P41P21 c4 3  c44

c 43 =(P43-P41P31) IJ-P2 1  -(P42-P41P21)(P32-P31P21)

2-1 2) ~ p)
2  (205)Sl-P31) P21 (P32-P31P21
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4f

c 4 4  - P4 1 ' -(P 42 -P41 P2 1 )
2 - (P4 3 -PZ 1 P3 1 )

2  (206)

'1-P21 z )  (1-P 3 1
2 )

Applying automatic correlation,

P32- 31 P21 = 0

1 0 0 0

P2 1  0 0

C p31  0 --- 7 0 (207)

3 11-P3 1P41 P42-P41P21 (P43-P41P31) c 44

c 4 4  11 - 241 -(P42-P4P21) - (P43-P4 ) (208)(lP2 12) (lP31-)v  28 '

The generation algorithm for the triangular matrix method is

X Cf

in the case where the components of X are standard normal variables. In that

case,

to
c0 X1 =C3 ,1 nl
'If"V
v0 =X2 c2 ,1 nl + C2 ,2 n2
'I

t = C3 , 1 nl + c3, 2 n2 + c3, 3 93

Vt = C4 , 1 nl + c4, 2 n2 + C4, 3 n3 + C4 ,4 n4  (209)

The first two equations are used to define the lag variables co and v0 and thus

to add time stepping to the model. These equations are

It
c0 = X1 = 91 (210)

V0 = X2 = P21 + 41-P2 1
2 n2

1!

=cCV0 + 41-2v n2 (211)

The next two equations from (209) define the process
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.= = P3 1 X1  3

= Pcc 0 + (212)

vt = X4 
= p4 1 X 1 + P42-P41P21 n2 + P4 3 -P4lP31 q3

121 V_31

+ 1 P 2 
- (P4 2 -P41 P2 1 )

2 
- (P43P41P31)2 (213)1 - - -114 (2 )

(1-p 2 1 2) (I-P31
2 )

Equation (213) is not in final form. The variables X and must be replaced by
II II

forms containing c0 and vO. Equation 198 can be used for X1 . Equation (211)
II

solved for q2 can be used to materialize v0 in Equation (213)

v0 " PcvC0 (211a)
41-Pcv2

After these substitutions, Equation (213) becomes

it It 1-vt  = X 4  =PvvV0 + ( - v p c c i
41-pcc c~

+ 2 (PvvPvvPcv 2)2 -(P cv- PvPcvPcc )2 24+ 1 -- _________-r (214)

1 -vv 
2 cc

2  (1-Pcv
2 )  ( -Pcc2

)

Some algebraic manipulation of Equation (214) produces p

vt = X4 = pW v0 + 
1 vvcc cvc

41cc

+ (1-rw 2 ) - (lPccP )2pcvr n (214a)
(1-P cc2)

This equation and Equation (212) agree with Equations (120) and (197a) of the

single-station, two-variable model V2Sl. The two models are therefore equivalent

statements of the same stochastic process.

4.5 Summary and Conclusions

In this chapter a multivariate triangular matrix method for generating an

independent vector of N correlated elements has been presented. The multivariate

triangular matrix model MULTRI allows simulation of more than two variables.

Finally, it has been shown that the Ornstein-Uhlenbeck process for two variables

and the multivariate triangular matrix technique for two variables are equivalent

statements of the same stochastic process. In Chapter 5 a case study of a multi-

parameter multi-location model will be presented.
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Chapter 5

MODELING JOINT SKY COVER DISTRIBUTIONS

A CASE STUDY USING THE MULTIVARIATE TRIANGULAR MATRIX MODEL

5.1 General

USAFETAC Project 2357 required producing joint probability tables for eight

selected locations in the Soviet Union (see Table 18). The requested joint prob-

ability tables were for

* Sky cover at station pairs at a fixed time

0 Sky cover at a single station at some initial time and N lag times

For example, what is the probability that any two stations would have 8/8 sky-

cover at the same time, or what is the probability that Moscow would have 8/8

skycover at both 1200 GMT and 1500 GMT?

Table 18. Stations Modeled in Case Study.

Site Name WMO Station # Latitude Longitude

Chiganak, RS 359970 45.10 N 73.97 E
Moscow, RS 276120 55.75 N 37.57 E
Vladimar, RS 275320 56.13 N 40.38 E
Kingisepp, RS 260590 59.37 N 28.60 E
Kazan, RS 275950 55.47 N 49.18 E
Feddosiya, RS 339760 45.03 N 35.38 E
Vyborg, RS 228920 60.72 N 28.80 E
Voronezh, RS 341220 51.70 N 39.17 E

The probability that a given location will have a certain amount of cloud

cover can be easily estimated from available climatological data. Estimating the

probability that the given location will have a certain sky cover at two or more

times or that two locations will have certain sky covers at the same time is more

difficult and requires processing large amounts of data. The modeling approach

is a convenient alternative because it reduces the need for data processing.

Furthermore, the modeling approach has the advantage of being able to smooth

through certain pathologies in the raw data, a subject discussed in Section 5.2

below.

The multivariate triangular matrix model MULTRI was determined to be well

suited for this type of problem. The joint sky cover probability tables could be

easily produced by generating long series of independent random vectors and tabu-

95

4



lating the results. Each vector would contain M correlated elements distributed

N(0,1). Thus, the vector elements could represent values for the ENDs of the

marginal distributions of sky cover for the various locations and times if a good

normalizing function for sky cover could be found. The tables could then be

formed by converting the ENDs to sky cover categories using the normalizing func-

tion and then tabulating and storing the raw counts for later probability calcu-

lations. The mathematics of the triangular matrix method were discussed in

detail in Chapter 4, so only the application to the joint sky cover probability

modeling will be discussed in this chapter.

Some important assumptions had to be made in using this approach: (1) the

marginal distributions of sky cover for the individual stations could be ade-

quately described by some normalizing function; (2) the spatial, and temporal

correlation functions for the geographic location that was to be modeled could be

adequately described by some correlation model; and (3) the joint occurrences of

sky cover for the various station pairs and lag times were distributed multi-

variate normally.

The model's final results depended on the "goodness" of these assumptions.
If any one of these assumptions were bad, the final model would fail to generate

joint probability tables that were representative of actual conditions. In this

chapter, each assumption will be discussed as it pertained to this case study and

the results wi.' be presented and compared with actual data.

5.2 Models for Marginal Distributions of Sky Cover at Individual Stations

As the first step in gener-%ing the joint probability tables, the marginal

distributions of sky cover the eight individual stations were fitted to

Johnson SB curves, described oelow. These unconditional probability models were

needed to feed the multivariate joint probabilities model. The data used to

develop these individual models were prepared by OL-A, USAFETAC, Asheville NC,

for the period of record January 1973 through December 1979. Ninety-six separate

distributions were fitted for each station, one for each 3-hour period of the

day, beginning 00-02 Local Standard Time (LST), for each of the 12 months.

The methods of Somerville were adapted to develop the models for the marginal

distributions of sky cover (Somerville, Watkins, and Daley, 1978). Somerville

recommends the Johnson SB family of distributions because of their ease of use

and the many shapes which these curves can assume. The Johnson curves are per-

ticularly useful because the modeling coefficients may be obtained by linear

curve fitting or regression techniques as opposed to other functions which may

require more complex nonlinear methods.

The SB family is given by
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z = + q in[ ( L)

where y and q are the coefficients determined fiom _ ,pir ial dtid. The v/,! jabiui

x is some threshold value of the sky cover X in fractionol covruage, ard z 3

the END of the cumulative distribution that the sky cover tX) I lrn than ni-

equal to xT. Equation (215) may also be solved fol F.ky covwr, given te END of

the cumulative distribution

1 + exp( (z-I )/ )xT =, (21C<)
exp( (z- ')/] )

Using Equations (215) and (216) with particular modeling coetfi: .nrs, 4

value for sky cover can be calculated for any value of the cumuiative distribu-

tion, or a value for the cumulative distribution can be calc"lted fo! any -kv

cover. These equations establish a corresponding one-to-one te.atioi .hlp ,()

values of sky cover and the END of the cumulative distribution f(.i each stati-fl.

This attribute lends itself quite well to stochastic modelinq.

The modeling coefficients for sky cover were obtained by usinrg a singular
value decomposition (SVD) scheme to fit the observed sky cover d;stributions to

the Johnson SB family o. curves. Singular value decomposition L:. denibtd ii

Forsythe, Malcolm, and Moler (1977). Table 19 lists the - sets 3 ,')ftiir.t:

ior Kingisepp, RS, that were obtained during the curve fittinq pic-edule. It lr

V1 the variability of these coefficients that encompass the diurnil v cia

variations of the sky cover distribution.

Tables 20 and 21 contain root-meani-square (IRMS) diffeitce . noI mn.i

vach curve fit for Kingisepp, RS, and Chiganak, IRS. Kingisep :opil. .

orest And Chiganak the highest overall RMS values for the &Aht !5o,

were modeled. Tables 22 and 1 list the percentage of tin- ithat ,

tributions for these two stations differed from the obsteved i: .

va i.u thresholds. The RMS information contained in the, V. i.

vi!idating the first assumption, that is, whether ti! mn,..

. cover could to adequately described by some nOi, i :' :r.

snws that of the 96 C:utve fits for KRi9isOpP, R :"

RMS valies were greater than 3.n and alI RM% iI., '

b" mphasized that. because the obsered e v

< -a I i l.ep_" sine and becau-e '4 the ;oL -T.
h- ofs;-:ved d i t i i r it ():,- a!It

t-' r I Pi r . e1cei t 1i', . * , ''
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Table 20. RMS of Individual Curve Fits for WMO Station 260590, Kingisepp, RS.

AVG
MON/LST 00 03 06 09 12 15 18 21 RMS

JAN 1.19 0.77 0.68 1.06 1.61 1.65 1.46 0.77 1.15

FEB 1.75 0.75 0.76 1.74 2.22 1.46 1.73 0.96 1.42
MAR 0.92 1.44 1.17 1.33 1.81 2.13 2.80 1.32 1.61
APR 2.31 2.16 1.97 2.72 2.14 2.20 2.47 1.93 2.24
MAY 1.95 2.00 3.42 2.90 2.18 2.06 1.82 2.98 2.41
JUN 3.26 3.33 3.37 1.98 2.73 1.90 2.78 2.79 2.77
JUL 4.39 3.34 3.53 4.21 2.12 2.73 2.73 3.52 3.32
AUG 2.59 2.13 2.73 1.67 3.38 1.10 2.63 2.83 2.38
SEP 2.73 2.17 1.28 2.43 1.82 1.90 1.93 1.70 1.99
OCT 1.40 1.70 2.21 1.26 1.15 0.73 1.43 2.60 1.56
NOV 0.68 1.26 1.47 0.98 0.93 1.21 0.83 1.33 1.07
DEC 1.64 1.97 1.53 1.63 2.19 1.56 1.01 1.41 1.62

Table 21. RNS of Individual Curve Fits for WMO Station 359970, Chiganak, RS.

AVG
MON/LST 00 03 06 09 12 15 18 21 RMS

JAN 2.10 1.50 1.08 1.37 3.69 4.13 3.39 1.82 2.39
FEB 1.38 1.53 1.86 4.79 4.83 2.63 3.71 1.13 2.73

MAR 1.26 1.54 1.38 2.19 3.71 3.42 3.80 1.63 2.37
APR 2.07 1.72 2.41 3.98 4.51 4.91 4.62 3.45 3.46
MAY 2.53 1.64 2.71 4.90 4.70 4.82 4.76 2.52 3.57
JUN 2.62 2.91 3.56 5.01 3.96 3.45 3.22 3.39 3.52
JUL 1.10 1.34 2.65 3.49 2.76 4.63 4.19 4.13 3.04
AUG 0.93 0.77 0.82 2.32 1.79 2.69 1.76 2.07 1.64
SEP 1.16 0.85 1.85 2.47 2.83 2.55 4.74 1.58 2.25
OCT 1.71 1.50 1.06 4.11 5.21 3.96 5.40 1.30 3.03
NOV 1.92 2.52 1.41 5.28 4.24 4.40 3.06 2.62 3.18
DEC 1.49 2.23 1.51 2.50 2.14 2.70 0.79 1.53 1.86
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Table 22. Proportion of Time that the Empirical and Modeled Cumulative
Distributions for Kingisepp, RS, Differ by Various Thresholds.

WMO STATION: 260590 Kingisepp, RS

MONTH 2% 5% 10%

JAN 0.047 0.000 0.000
FEB 0.203 0.000 0.000
MAR 0.234 0.016 0.000
APR 0.422 0.000 0.000
MAY 0.422 0.031 0.000
JUN 0.484 0.047 0.000
JUL 0.531 0.141 0.000
AUG 0.500 0.031 0.000
SEP 0.359 0.000 0.000
OCT 0.250 0.000 0.000
NOV 0.078 0.000 0.000
DEC 0.203 0.000 0.000

TOT 0.304 0.022 0.000

Table 23. Proportion of Time that the Empirical and Modeled Cumulative

Distributions for Chiganak, RS, Differ by Various Thresholds.

WMO STATION: 359970 Chiganak, RS

MONTH 2% 5% 10%

JAN 0.375 0.063 0.000
FEB 0.391 0.094 0.000
MAR 0.391 0.063 0.000
APR 0.547 0.188 0.000
MAY 0.563 0.188 0.000
JUN 0.719 0.109 0.000
JUL 0.531 0.141 0.000
AUG 0.250 0.000 0.000
SEP 0.391 0.031 0.000
OCT 0.453 0.188 0.000
NOV 0.453 0.109 0.016
DEC 0.297 0.031 0.000

TOT 0.436 0.098 0.001
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Figure 12. Relative Frequency Distribution of Cloud Cover
at Chiganak, RS, November at 0900 LST. The observed distri-
bution and the Johnson S,_curve fit to that distribution are
shown. The RMS between he observed distribution and modeled
CDF is 5.3 percent, and the maximum difference is 11.2 percent.

For both stations, the largest RMS values occur in the May to July period, and
the lowest RS values occur in the December to February period. A user should

have more confidence in the model results from winter then those results from
spring to early suimer.

Figures 12 and 13 compare the modeled and observed relative frequency distri-
butions for two individual situations. Figure 12 is for Chiganak, RS, November,

0900 LST, and represents the largest RMS value for all fits (5.3). Note that the
distributions exhibit the same general shape even though the RMS is large. Fig-
ure 13 is for Moscow, RS, November, 0600 LST, and represents the smallest RMS
value (0.5). In this case the modeled curve duplicated the observed distribution

quite well. e
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Figure 13. Relative Frequency Distribution of Cloud Cover at
Moscow, RS, November at 0600 LST. The observed distribution
and the Johnson S curve fit to that distribution are shown.
The RNS between tRe observed distribution and modeled CDF is
0.5 percent, and the maximum difference is 0.8 percent.
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5.3 Use of the Single-station Model

Suppose one wishes to find the probability of less than 0.50 sky cover at

Moscow in January at 0600 LST. One would proceed as follows

For Moscow in January at 0600 LST, y = - 0.77442662

q = 0.12484847

Equation (215) is used to calculate an END given a threshold sky cover

z = y + n - ln[ XT/(l-xT) ]

= -0.77442662 + 0.12484847 ln[ 0.5/(1.0-0.5) ]

= -0.77442662

Using a table of areas under a standard normal curve produces the required prob-
ability

Pr(z z -0.77442662) = Pr(X 0.5) = 0.221

In the same manner, Equation (216) may be used to calculate a threshold sky
cover given the value for the probability. One might want to know what threshold

value of sky cover is exceeded 25 percent of the time at Kazan, RS, in June at
1500 LST.

For Kazan in June at 1500 LST, Y = - 0.48898128

S= 0.43001788

z corresponding to the probability (that X is less than or equal to xT) of 0.75
is 0.675. Equation (216) is used to calculate the threshold sky cover

1 + exp[(z-y)/n]
XT-

exp[(z-y)/n]

ex [(0.675 + 0.48898128)40.430017881
=I + eXP [(o.67b + 0.48898128)/0.43001788]

= 0.937

Using the model one could expect Kazan to have a sky cover greater than 0.937
25 percent of the time in June at 1500 LST (0.937 coverage converts to 8/8 when
dealing with sky cover categories).
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5.4 Modeling Temporal and Spatial Correlation of Sky Cover

5.4.1 Requirement for Correlation Matrices. In Chapter 4 a theorem from

Anderson (1958) was presented for the generation of a random vector (X). The

joint sky cover probability model in this case study was based on the generation

algorithm derived from Anderson's theorem

where q is a vector of random numbers distributed N(0,1) and C is a unique lower

triangular matrix such that the correlation matrix R is equal to the product of C

and the transpose of C (designated C'). That is,

R =C C'

One method for deriving C from R was presented in Chapter 4, namely, the

Cholesky or "square-root" method. It is obvious that a good method of construct-

ing the correlation matrix R is needed, since R is ultimately used to generate

the vectors of ENDs of sky cover that produce the joint probability tables.

5.4.2 Spatial Correlation. Gringorten's Model-B (Gringorten, 1979) was used to

model the spatial correlation function for this project. The Gringorten spatial
correlation model is discussed in more detail in Chapter 6. Gringorten's equa-

tion for spatial correlation between two locations is

2a l-a2  (217)

where

a = (Actual Distance) / (128 * Scale Distance) (218)

The scale distance is determined from observed data in the geographic area of

interest. Gringorten's Model-B conforms to some preconceptions one has about a

spatial correlation function. It is desirable that the function decrease expo-

nentially with distance (not squared), at least for short distances, and drop to

*- zero in a larger but finite distance. Table 24 compares the spatial correlation

:- coefficients obtained from Gringorten's Model-B (Scale Distance = 7.8 km) with
tetrachoric correlation coefficients calculated from observed data for various
station pairs. It can be seen that although Model-B does not fit all cases, the

fit for the overall data is not bad. Seasonal variations in the spatial correla-

tion function can be accounted for by adjusting the scale distance. Table 25

lists the correlation coefficients as calculated by Model-B at various distances

for different scale distances. This table should give a potential user a feel

for how much the spatial correlation function can be altered by adjusting the

scale distance.
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Table 24. Spatial Correlation Coefficients Calculated by
Gringorten's Model-B Compared to Tetrachoric Correlation
Coefficients Computed from Observed Data.

Spatial Correlation Coefficients

Station Pairs

Vladimar Voronezh Kingisepp Feddosiya
and and and and

Moscow Moscow Moscow Moscow

Distance 179 461 852 1199
(km)

Computed
Cor. Coef.

JAN 0.783 0.637 0.309 0.137
APR 0.694 0.120 0.184 0.012
JUL 0.526 0.335 0.160 0.239
OCT 0.717 0.425 0.209 0.039
ALL

MONTHS 0.699 0.394 0.215 0.123

Modeled
Cor. Coef. 0.771 0.430 0.215 0.000

Scale Distance for Gringorten Model = 7.8 km

or
Table 25. Spatial Correlation Coefficients from Gringorten's Model-B
at Various Distances for Selected Scale Distances (The actual and scale
distance must be in the same units).

ACTUAL DISTANCE

50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0

1.0 0.516 0.119 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S 2.0 0.753 0.516 0.299 0.119 0.004 0.000 0.000 0.000 0.000 0.000
C
A 3.0 0.835 0.672 0.516 0.368 0.234 0.119 0.031 0.000 0.000 0.000
L
E 4.0 0.876 0.753 0.632 0.516 0.404 0.299 0.203 0.119 0.050 0.004

D 5.0 0.901 0.802 0.704 0.609 0.516 0.426 0.340 0.260 0.185 0.119
I
S 6.0 0.917 0.835 0.753 0.672 0.593 0.516 0.441 0.368 0.299 0.234
T
A 7.0 0.929 0.858 0.788 0.718 0.649 0.582 0.516 0.451 0.389 0.328
N
C 8.0 0.938 0.876 0.814 0.753 0.692 0.632 0.573 0.516 0.459 0.404
E

9.0 0.945 0.890 0.835 0.780 0.726 0.672 0.619 0.567 0.516 0.465

10.0 0.950 0.901 0.851 0.802 0.753 0.704 0.656 0.609 0.562 0.516
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5.4.3 Serial or Temporal Correlation. For the temporal correlation, Equation

(121) was used

r = 0 .94 5At

where r is the correlation coefficient between observations of sky cover at an

initial time and some time lag (At in hours) and 0.945 is an empirical constant
derived from observed data. Table 26 compares the temporal correlation coeffi-
cients calculated from Equation (115) to the tetrachoric correlation coefficients

derived from observed data at selected stations for all hours, all months. As
seen from Table 26, the correlation coefficients from Equation (121) are fairly
close to those calculated from observed data in the first 18 hours but tend to
approach zero faster than the observed coefficients beyond 18 hours. Once again,

seasonal variations in the temporal correlation function can be accounted for by
adjusting the constant.

Table 26. Temporal Correlation Coefficients Modeled from Gringorten's
Equation Compared to Tetrachoric Correlation Coefficients Calculated

from Observed Data.

Temporal Correlation Coefficients

From From
Model Obsvd Data

Time Lag Kingisepp Moscow Chiganak

3 0.844 0.856 0.825 0.814
6 0.712 0.682 0.699 0.637
9 0.601 0.5,94 0.618 0.513

12 0.507 0.553 0.571 0.419
18 0.361 0.359 0.456 0.405
24 0.257 0.330 0.439 0.476
48 0.066 0.269 0.252 0.320

5.5 Models for the Joint Probability of Sky Cover

5.5.1 Joint Probability Models. In order to satisfy the two separate joint

probability requirements of USAFETAC Project 2357, two operational models were
developed. JSKY1 is the name for the USAFETAC model that produces joint sky

cover distributions for a selected station at some designated time and N lag
times (temporal problem), and JSKY2 is the USAFETAC model that produces joint sky
cover distributions for selected station pairs (spatial problem). Both models
are quite similar in the methods used to generate the joint probability of sky
cover t3bles. The main difference is the technique for constructing the
correlation matrix used to generate the vectors of correlated elements. In JSKY]
temporal correlation is used, while in JSKY2 spatial correlation is used. The

models will now be examined in some detail.
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5.5.2 JSKY1 Model. The overall plan of the model JSKY1 is shown in Figure 14.
A precondition of using this model is that the Johnson SB coefficients for the
stations of interest must be available in a data file for call by the main pro-
gram. The user provides the WMO station number of the particular location of
interest and sets up a queue for the initial times, time lags, and the specific
months for which the joint probability of sky cover tables are to be constructed.
The final input parameter is the number of vectors that will be generated to con- -I

struct each table. Each vector is independent of each other vector (p = 0). It
is the elements within the vector that are correlated. If 3500 is specified,
then the tables will contain an effective sample size of 3500 observations (see
Equation 142).

JOINT MY COVER PROBMII8TY SIMULATION MOOE

DO UN EL A OANU .

MARI I NIEEATO ON

Figure 14. Macro-design of the Joint Probability
of Sky Cover Models Showing Flow of Information
Through the Models.

Consider the following example. The problem is to compute the joint proba-
bilities of sky cover for Kingisepp, RS, for September at 1200 GMT and lag times
of 3, 6, 12, and 24 hours. Using Equation (121), the following correlation

matrix is set up
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Station: 260590 Initial Time: 1200 GMT

Lag Time

0 3 6 12 24

0 1.00 0.84 0.71 0.51 0.26
L
a
g 3 0.84 1.00 0.84 0.60 0.30

T
i 6 0.71 0.84 1.00 0.71 0.36
m
e 12 0.51 0.60 1.00 0.51

24 0.26 0.30 0.36 0.51 1.00

For example, the 6- and 12-hour time lag observations are 6 hours apart ' thus

are related by the expression,

r(At) = 0.9456 - 0.71

The correlation matrix R

1.00 0.84 0.71 0.51 0.26

0.84 1.00 0.84 0.60 0.30

R = 0.71 0.84 1.00 0.71 0.36

0.51 0.60 0.71 1.00 0.51

0.26 0.30 0.36 0.51 1.00

is lower triangularized using USAFETAC subroutine LUSQRT, which implements the

Cholesky decomposition scheme. The result is the lower triangular matrix C,

1.00 0.00 0.00 0.00 0.00

0.84 0.54 0.00 0.00 0.00

C = 0.71 0.45 0 54 0.00 0.00

0.51 0.32 0.38 0.70 0.00

0.26 0.16 0.19 0.36 0.86

from which it can be verified that,
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Table 27. Steps in Generating a Random Vector of N Correlated
Elements of Sky Cover.

1. Build a correlation matrix R using an appropriate correlation
model (i.e., Gringorten's Model-B or the exponential decay model).

2. Obtain the lower triangular matrix C from R using USAFETAC
subroutine LUSQRT (the Cholesky reduction scheme).

3. Generate N independent standard normal numbers.

("I' n2 ..... I N )

4. Perform the matrix-vector multiplication using the theorem
from Anderson (1958).

X =C

5. Transform each of the elements of X into values of actual sky
cover using an appropriate transnormalizing function (i.e., the
Johnson SB curve).

Table 27 summarizes the steps that are required to generate tables of joint
sky cover probabilities. The lower triangular matriy C is passed to USAFETAC

subroutine RANDCV. This subroutine generates a vector ! of independent random
standard normal numbers (i.e., numbers that are distributed N(0,1)). There are

many random normal number generators that can be used. An example of this vector
of independent numbers might be

'11 = -1.1006500

'12 = 0.4851688

'13 = -0.5071453

n4 = -0.1079881

= -0.3342136

RANDCV then performs the matrix-vector multiplication specified by Anderson's

theorem,

X

and the following vector X results
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x = -1.1006500

x= -0.6685610

x = -0.8362812

x4 = -0.6713913

x5 = -0.6285658

Since the elements of X are distributed N(0,1), they may represent correlated

ENDs of sky cover. The Johnson SB curve is then used to tranform these ENDs to
sky cover categories by means of Equation (216) and the modeling coefficients for

the time and month of the observation: (Note in the table below that the special

term "oktas" refers to the number of eighths of sky cover.)

Vector Sky Cover Sky Cover Category
Element (Fractional Coverage) (OKTAS)

S1 (Time t) = 0.2067654 = 2

S 2 (t + 3hr) = 0.3663973 = 3

S3 (t + 6hr) = 0.0784657 = 1

, S4 (t + 12hr) = 0.0369868 = 0

S5 (t + 24hr) = 0.4866438 = 5

Thus, the accumulator for sky cover (t) = 2, sky cover (At) = 3 is incremented
for the 3-hour lag time table, sky cover (t) = 2, sky cover (At) = 1 for the
6-hour lag time table, etc., for all lag times. This procedure is repeated unti4
the desired number of observations is achieved. An estimate of the joint proba-

bilities is computed from the raw counts, and the simulation advances to the next

hour or month until the hour and month queues are exhausted.

It should be emphasized here that the subroutine RANDCV produces a vector X

of elements that are distributed multivariate normally according to the correla-
tion specified in the correlation matrix R. The questions remain, what type of

degradation is involved in transforming each of the elements of X individually
into sky cover categories by the Johnson SB curve and how close to multivariate

normality are the observed data?

Tables 28 and 29 compare the joint probability tables of observed and simu-
lated sky cover data for Kingisepp, RS. The observed probabilities are based on

observations from the 7-year period of record January 1973 through December 1979,

and the simulated probabilites are based on 3500 synthetic observations. Table
28 contains the data for 0000 GMT, January, and a lag time of 12 hours, which
represents a period in which the observed sky cover distributions were fitted to

Johnson SB curves with a great deal of success (i.e., low RMS values). Table 29
contains data for April, 0000 GMT, and a lag time of 6 hours, which represents a
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Table 28. Observed and Simulated Joint Sky Cover Distributions for
W O Station 260590, Kingisepp, RS, at 0000 GMT, January and 12 Hour
Lag Time.

OBSERVED

SKY COVER FOR 1N1.. TIME (OKTAS)

Sky Cover for
Lag Time of 12 HRS
(OKTAS)

0 1 2 3 4 5 6 7 8 TOT

0 0.089 0.009 0.005 0.005 0.005 0.061 0.174
1 0.009 0.019 0.028
2 0.009 0.005 0.028 0.042
3 0.014 0.005 0.028 0.047
4 0.005 0.005
5 0.005 0.005 0.005 0.005 0.019
6 0.019 0.009 0.009 0.052 0.089
7 0.019 0.005 0.078 0.094
8 0.061 0.005 0.014 0.005 0.009 0.014 0.394 0.502
TOT 0.225 0.019 0.023 0.014 0.019 0.038 0.662 1.000

SIMULATED

0 0.064 0.008 0.003 0.003 0.002 0.002 0.002 0.005 0.061 0.149
1 0.024 0.001 0.001 0.000 0.002 0.001 0.001 0.002 0.035 0.068
2 0.007 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.022 0.034
3 0.010 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.016 0.029
4 0.009 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.018 0.030
5 0.011 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.021 0.035
6 0.012 0.001 0.001 0.001 0.001 0.000 0.001 0.003 0.034 0.054
7 0.018 0.003 0.003 0.001 0.001 0.002 0.001 0.003 0.059 0.091
8 0.048 0.006 0.005 0.006 0.005 0.004 0.005 0.009 0.422 0.510
TOT 0.203 0.022 0.013 0.014 0.013 0.011 0.013 0.026 0.686 1.000

month in which the observed sky cover distributions were difficult to fit to the

Johnson SB curve (i.e., high RMS values). The largest difference between the
observed and simulated tables for the January case is 2.8 percent. Considering

the fact that the observed table is based on less than 250 observations, the val-

ues for the simulated table come well within the possible error intervals imposed
from sampling theory alone. The largest difference between the observed and

simulated joint probability tables for the April case occurs in the 8/8-8/8 joint
occurrence category and is 5.2 percent. Even in this worst case month, the dif-

ferences between the observed and simulated data are well within the limits
expected from sampling theory, because of the small sample size.

5.5.3 JSKY2 Model. JSKY2 is the name of the USAFETAC model that produces joint

sky cover distributions for selected station pairs at any desired time. Figure

14 illustrates the overall design of this model also.
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Table 29. Observed and Simulated Joint Sky Cover Distributions for
WMO Station 260590, Kingisepp, RS, at 0000 GMT, April, and 6-Hour
Lag Time.

OBSERVED

SKY COVER FOR INITIAL TIME (OKTAS)

Sky Cover for
Lag Time of 6 HRS
(OKTAS)

0 1 2 3 4 5 6 7 8 TOT
0 0.129 0.010 0.005 0.005 0.010 0.010 0.170
1 0.021 0.005 0.010 0.005 0.041
2 0.046 0.005 0.005 0.005 0.010 0.010 0.082
3 0.010 0.005 0.015
4 0.015 0.015
5 0.010 0.005 0.010 0.005 0.031
6 0.067 0.005 0.026 0.098
7 0.052 0.005 0.010 0.010 0.005 0.010 0.067 0.160
8 0.072 0.010 0.015 0.005 0.036 0.247 0.387
TOT 0.407 0.005 0.036 0.021 0.036 0.036 0.072 0.387 1.000

SIMULATED

0 0.127 0.006 0.003 0.001 0.002 0.001 0.002 0.002 0.008 0.152
1 0.055 0.003 0.004 0.001 0.002 0.000 0.001 0.005 0.010 0.082
2 0.029 0.005 0.001 0.001 0.002 0.001 0.001 0.002 0.007 0.050
3 0.020 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.006 0.035
4 0.021 0.005 0.001 0.001 0.002 0.001 0.002 0.002 0.009 0.044
5 0.023 0.003 0.002 0.001 0.001 0.003 0.001 0.004 0.014 0.052
6 0.022 0.003 0.002 0.001 0.002 0.003 0.002 0.005 0.020 0.060
7 0.037 0.010 0.004 0.005 0.003 0.002 0.004 0.009 0.038 0.110
8 0.041 0.018 0.007 0.008 0.008 0.006 0.010 0.018 0.299 0.416
TOT 0.374 0.056 0.025 0.021 0.023 0.017 0.024 0.049 0.412 1.000

As with model JSKY1, the Johnson SB coefficients for possible stations of

interest must be available in a data file for call by the main program. In addi-
tion to this requirement, a scale distance must be provided in order to tune the

Gringorten spatial correlation function to the geographic area of interest. The

user provides the WMO station numbers of the two locations to be modeled and then
sets up a queue for the times and specific months that the tables of joint proba-

bility of sky cover are to be constructed for. The final input parameter is the

number of vectors that will be generated to construct each table.

Consider the following example. The problem is to construct a table of joint
probabilities of sky cover for Kazan, RS, and Vladimar, RS, in September at 1700

GMT. The distance between these two stations is calculated by the model as 548
km (see Chapter 6 for a detailed explanation of how great circle distance is

calculated), and the Gringorten Model-B scale distance for sky cover is taken to

be 7.8 km for that geographic area. Table 27 summarizes the steps necessary to
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generate the joint probability tables for the spatial problem. Equation (217) is
used to calculate the spatial correlation coefficient for sky cover given the

scale of the geographic area and the actual distance separating the two loca-

tions.

The following correlation matrix is set up

Station #

275950 275320

275950 1.00 0.34
Station

#
275320 0.34 1.00

More stations could be added and the two-by-two matrix would be expanded to an

N-by-N matrix. The correlation matrix R,

R1.00 0.341
0.34 1.001

is lower trangularized by USAFETAC subroutine LUSQRT,

C 1.00 0.001

1:0.34 0.94

and then USAFETAC subroutine RANDCV is used to generate the vectors of correlated
elements distributed N(0,1) in the same manner as JSKY1. As indicated before,
the main difference between the two models is in setting up the correlation
matrix. After the matrix is set up, the two models proceed in the same way, by

generating the vectors of ENDs and converting the vector elements to sky cover

categories via the Johnson SB curves.

Tables 30 and 31 compare the joint probability tables of observed and simu-

lated sky cover for Moscow, RS, and Vladimir, RS. Once again the observed dis-

tributions are based on observations from the 7-year period of record January
1973 to December 1979, and the simulated probabilities are based on 3500 synthet-
ic observations. Table 30 contains the data for 0000 GMT, January and represents
a period in which the observed marginal distributions of sky cover were fitted to

Johnson S curves with a great deal of success (i.e., low RMS values). The larg-

est difference between the observed and simulated data in any joint occurrence
category is 3 percent. The observed probabilities are based on a sample of size
only 210 observations, so a difference of 3 percent falls well within the possi-

ble variations that might result from sampling error alone.
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Table 30. Observed and Simulated Joint Sky Cover Distributions
for Moscow and Vladimar, RS, at 0000 GNT, January.

OBSERVED

SKY COVER FOR MOSCOW (OKTAS)

SKY COVER FOR
VLADIMAR
(OKTAS)

0 1 2 3 4 5 6 7 8 TOT

0 0.124 0.024 0.005 0.014 0.038 0.014 0.029 0.248
1
2 0.005 0.005 0.014 0.024
3 0.005 0.005 0.005 0.014
4 0.005 0.005 0.010
5 0.005 0.005 0.005 0.014
6 0.024 0.005 0.010 0.038
7 0.005 0.010 0.005 0.010 0.005 0.019 0.052
8 0.014 0.024 0.019 0.029 0.514 0.600
TOT 0.181 0.048 0.019 0.010 0.019 0.071 0.057 0.595 1.000

SIMULATED

0 0.110 0.020 0.008 0.006 0.007 0.007 0.008 0.014 0.039 0.220
1 0.008 0.001 0.001 0.000 0.002 0.002 0.001 0.003 0.008 0.027
2 0.002 0.002 0.000 0.000 0.001 0.001 0.001 0.002 0.007 0.016
3 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.004 0.009
4 0.003 0.002 0.000 0.000 0.000 0.001 0.002 0.002 0.006 0.015
5 0.002 0.001 0.001 0.001 0.000 0.000 0.001 0.002 0.007 0.015
6 0.004 0.001 0.000 0.002 0.001 0.000 0.001 0.001 0.007 0.017
7 0.004 0.003 0.003 0.001 0.002 0.002 0.004 0.004 0.018 0.040
8 0.019 0.013 0.010 0.006 0.008 0.008 0.014 0.039 0.522 0.640
TOT 0.153 0.045 0.024 0.017 0.021 0.021 0.032 0.068 0.618 1.000

Table 31 compares the joint probability tables of observed and simulated sky

cover for these two stations for October, 1200 cMT. This time period represents

a month in which the observed sky cover distributions were difficult to fit to

the Johnson SB curve (i.e., high RMS values). The largest difference between the

observed and simulated data is only 4.8 percent (still within the size of possi-

ble variations that might be caused by sampling error alone).

5.6 Summary and Conclusions

The multivariate triangular matrix model MULTRI has been successfully used in

operational multivariable, multistation models. The models were found to pre-

serve the marginal distributions of sky cover at various Soviet locations as

described by the Johnson SB curve, which is guaranteed by the mathematics of the

model. In addition, the models give a faithful representation of the joint prob-

abilities of sky cover at station pairs or sky cover at a single location at an

initial time and various time lags, which is not guaranteed by the mathematics of

104



Table 31. Observed and Simulated Joint Sky Cover Distributions
for Moscow and Vladimar, RS, at 1200 GMT, October.

OBSERVED

SKY COVER FOR MOSCOW (OKTAS)

SKY COVER FOR
VLADIMAR
(OKTAS)

0 1 2 3 4 5 6 7 8 TOT

0 0.024 0.019 0.005 0.048
1 0.010 0.005 0.005 0.019
2 0.005 0.005 0.010 0.005 0.010 0.005 0.038
3 0.005 0.005 0.005 0.005 0.029 0.010 0.057
4 0.005 0.005 0.010
5 0.005 0.005 0.005 0.019 0.033
6 0.005 0.019 0.019 0.024 0.029 0.095
7 0.005 0.014 0.005 0.005 0.014 0.029 0.071 0.095 0.238
8 0.005 0.005 0.005 0.010 0.019 0.029 0.390 0.462
TOT 0.038 0.014 0.067 0.024 0.010 0.048 0.090 0.162 0.548 1.000

SIMULATED

0 0.014 0.006 0.002 0.003 0.002 0.003 0.003 0.002 0.000 0.034
1 0.009 0.006 0.004 0.006 0.005 0.004 0.005 0.004 0.003 0.046
2 0.005 0.004 0.003 0.004 0.001 0.005 0.004 0.005 0.002 0.033
3 0.004 0.006 0.003 0.004 0.003 0.003 0.008 0.004 0.005 0.041
4 0.001 0.003 0.004 0.005 0.003 0.002 0.007 0.007 0.009 0.042
5 0.001 0.003 0.002 0.002 0.003 0.007 0.006 0.013 0.014 0.050

6 0.000 0.005 0.004 0.003 0.004 0.007 0.008 0.018 0.029 0.077
7 0.001 0.002 0.003 0.005 0.006 0.009 0.015 0.034 0.078 0.153
8 0.000 0.002 0.003 0.001 0.005 0.006 0.014 0.054 0.438 0.523
TOT 0.036 0.036 0.027 0.032 0.033 0.044 0.071 0.141 0.579 1.000

the model. Furthermore, Gringorten's models for the spatia] and temporal corre-

lation functions of sky cover were tested and were found to give very good

estimates of the actual correlation functions calculated from observed data.
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Chapter 6

A MODEL FOR THE SIMULATION OF GRIDDED FIELDS

6.1 General

The multivariate triangular matrix model NULTRI, discussed in Chapters 4 and

5, represents a very powerful and flexible tool that USAFETAC uses in its envi-

ronmental simulation applications. This technique allows a cross correlated vec-
tor of N weather variables to be produced at the request of the user. At times
it becomes necessary for USAFETAC to simulate two-dimensional gridded fields of

meteorological variables that are correlated in space. It is for these applica-

tions that the MULTRI model is usually inappropiate. The triangular matrix model

becomes cumbersome from a mathematical/computational point of view whenever the
number of variables N exceeds 30. In actual practice, USAFETAC prefers to limit

the number of correlated variables to 15 or less. A small 10 x 10 gridded field

would require 100 cross correlated elements, so even for such a small problem as
that, another approach would have to be used.

One such technique is the two-dimensional field simulation model (2DFLD),

which is based on a sawtooth wave submodel developed by Maj Albert Boehm,

USAFETAC/DNP, for USAFETAC Project 1960, Colossus Weather Simulation. The saw-

tooth wave model is used to generate a two-dimensional, spatially correlated
field of random normal numbers. As in the multivariate triangular matrix model,

these random normal numbers distributed N(0,1) may represent ENDs of some weather

variable and then be individually transformed by some transnormalizing function
to raw values of that variable. In this chapter the basic design of the sawtooth

wave generator will be discussed. The reader should consult USAFETAC/TN-81/004,

Cloud Forecast Simulation Model (Whiton, et al., 1981), for an example of an

application of this technique to an operational problem.

6.2 Spatial Correlation Function of the Random Normal Number Field

The sawtooth wave submodel generates a field of ENDs n having a desired spa-

tial correlation function r. Consider the correlation r between values nj and

located one grid distance Aj apart. This is shown in Figure 15. Repeated
samplings of the value of n at j and at j+Aj would produce a history of N data
pairs from which the spatial correlation could be estimated by the Pearson pro-

duct moment formula,

1N

r N kl 3j,k nj+Aj,k " - j+Aj (219)
a1 ej+Aj
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Vj+ j

J- -

a J+Aj

Figure 15. Correlation Between n at Location
J = and n at Location J = j + Aj Located OneGrid Distance Aj Apart.

or by some other method. In Equation (219), the overbars represent means, and s
represents the standard deviation. Since the q are ENDs, they are distributed
normally with a mean of zero and a variance of unity. Therefore, for normally
distributed n, Equation (219) reduces to

N

r = N k=l nj,k nj+Aj,k (220)

Spatial corrrelation is being dealt with here. The correlation between ri
values will be perfect (unity) at zero separation (Aj = 0) and will be less than
or equal to unity with increasing distance Aj. To model the weather, a correla-
tion function is needed that starts at unity and decreases with increasing dis-
tance d.

One such model that has been used successfully in ceiling, visibility and sky
cover modeling is that of Gringorten (1979). In G~ingorten's Model-B, the corre-
lation function r depends on the geometric distance d and a characteristic scale
distance D, defined as the distance at which the correlation r falls to 0.99.
Gringorten's Model-B was presented in Chapter 5 as Equation (217) and is defined
by , -

r =r(d,D)= [coslo - 4l-Z ] (dimensionless) (217)
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recalling that,

a = d/(128 D) (dimensionless) (218)

Because a k 0, the trigonometric relationship between arc cosine and arc sine can
be used, yielding the form,

rr(d,D)-= (sin'iH - oH) (221)

where

H = rl-= = 41 - dz/(16384 DZ) (222)

In this correlation function model, when the distance d equals the scale dis-
tance D, a = 1/128, H = 0.99997 - 1, sin'l(1) = n/2, H 0.00781, and r = 0.99.

Note that when a = 1, H = 0, and r = 0. Therefore, Gringorten's Model-B correla-
tion drops to zero at a distance d = 128 D. Gringorten has estimated the scale
distance for sky cover in Germany as 4 km. Using this for D in Equations (221)
and (222) gives the correlation function shown in Figure 16. With this scale
distance, the correlation drops to 0.99 in 4 km (2 NN) and to approximately zero
at 512 km (276 NN).

It is desired that the sawtooth wave model produce a field of ENDs having the
spatial correlation function of Gringorten's Model-B, discussed above. During
his earlier work with the sawtooth wave generator, Boehm developed empirical
equations that converted a desired Gringorten Model-B scale distance (SD) into p
maximum and minimum allowable wavelengths (the interval from which the wave-
lengths of each sawtooth wave will be selected at random) for the sawtooth wave
generator. These equations are

W (upper) = C(u) * SD (223)

W (lower) C(l) * SD (224)

The dimensionless constants C(u) and C(l) are selected so the model returns a
spatial correlation function for the random normal number field that has a shape
similar to a Gringorten curve for the particular SD. The wavelengths will be in
the same units as the scale distance. The values of 175 and 450 are currently
used for C(l) and C(u), respectively.

6.3 The Mathematics of the Sawtooth Wave

In the sawtooth wave model, N sawtooth waves are allowed to emanate circular-
ly from N focal points. Each focal point is the source of exactly one wave. The
location of each focal point is picked at random, and the wavelength of each wave
is selected at random from a range of permissible wavelengths. The field of ENDs
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Figure 16. Correlation Function for Gringorten's Model B
with Scale Distance D = 4 km.

g is simply the sum of N sawtooth wave amplitudes at each grid point, corrected

by subtraction of a constant.

Each sawtooth wave is as shown in Figure 17. Amplitude of the wave, shown by
y, varies between zero and one, depending on the observer's position along the

wave. The sawtoth wave used here is a standing wave. Originating with zero

amplitude at a focal point at distance d' = 0, it reaches maximum amplitude
(unity) at distance d' = 1 wavelength, and thereafter falls to zero amplitude
again. within any one cycle of the sawtooth wave, the slope of wave amplitude

versus distance is unity, i.e.,
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dy/dd' = 1 (225)

Hence, within any one cycle of the sawtooth wave, its equation is

y = d' (226)

To allow for multiple cycles of the sawtooth, it is appropriate to write its

equation as

y = d' - INT(d') (227)

where INT(d') represents the largest integer less than or equal to the normalized
distance d'n. The normalized distance d' is the geometric distance d expressed in

unit wavelengths w, i.e., -

17 4

0d / w (228

Hence,

y = d/w - INT(d/w) (229)

An alternative Fourier representation of the sawtooth wave is
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y = n - 2 1 sin( id' (230)i-i

The simple form of the sawtooth wave makes it easy to calculate the amplitude

Yjk of a wave at location j whose origin is the focal point at location k. This

is done by computing the great circle distance between locations j and k, i.e.,

d = GCD(j,k) (231)

and then evaluating Equation (229) with the wavelength w known.

But any single wave amplitude Yjk does not create randomness. The j field

produced by the sawtooth wave model must be random. Its elements rj must have

been selected at random from a normally distributed population with a mean of

zero and a variance of one, i.e., N(0,1). It is apparent that the distribution

of any one sawtooth wave is uniform, with a mean of 1/2 and a variance of 1/12.

But the sum of approximately 12 uniform random numbers, by the central limit

theorem, approaches the normal distribution. Naylor, et al. (1966) give the

equation for calculating a normally distributed pseudorandom number G from the
sum of N uniform pseudorandom numbers U

N N

G= ol2N( = Un- )+Pc (232)
n=l

where o and are the desired standard deviation and mean, respectively, of G.

For the special case where a = 1 and PG = 0, and where the number of uniform

random numbers to be summed is N = 12, Equation (232) simplifies to

12
G = I Un - 6 (233)

n=l

Applied to the question of calculating a normally distributed value rj for loca-

tion j from the sum of N = 12 uniformly distributed sawtooth wave amplitudes Yjk'
Equation (233) becomes

12
G = Yjk (234)

The superposition of sawtooth waves is illustrated in Figure 18. Two saw-

tooth waves are shown emanating from randomly positioned focal points k = 1 and k

= 2. These waves are converging on location j with respective amplitudes yj, and

yj2" The wavelengths wk of the two waves are illustrated as being different to

emphasize that those wavelengths were drawn at random uniformly from a range of

possible wavelengths.

iii
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Figure 18. Sawtooth Waves Emanating from Focal Points
at Locations k Converge on Location j.

6.4 Calculation of Great Circle Distance

The great circle distance d between any two points "a" and "b" on the globe
can be calculated from the latitude and longitude of point "a" ( a a' and that

of point "b" (Ob, Ab). The conventional equation is

d = r cos-l[sine sinb + cos a coseb cos(Na - Ab)] (235)

where r is the radius of the earth, approximately 6371 km. This equation in-
volves calculating five sines and cosines plus one arc cosine.

An alternative expression for the great circle distance d can be obtained by
using the trigonometric function-product relations,

sinea sineb = (1)[cos(e a - Ob ) - cos(e a + 6b)] (236)

cosea cosob = (;)[cos(ea - Obi + cos(Ba + eb)] (237)

or

sinea sineb = (%)(d - s) (238)

Cosea coseb = (%)(d + s) (239)
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where

d = cos(ea - eb )  (240)

s = Cos(0a + eb) (241)

from which it is found that

d = r cos- {(;)[(d - s) + (d + s)cos(Aa - b)]} (242)

This equation calls for evaluating three cosines and one arc cosine and should

therefore be much faster to solve than Equation (235).

A third expression for the great circle distance can be obtained by using the

trigonometric angle-difference relation,

cos (Aa - Ab) = cos~a cosAb + siLka sinAb (243)

in Equation (235), from which it is found that

d = r cos-1 [sine a sineb + cosea coseb(cosAa cosAb + sinAa sinAb)] (244)

Because this equation involves eight sines and cosines plus one arc cosine, it

appears at first glance much less suitable for use than Equations (235) or (242).
Nevertheless, Equation (244) offers some "operational" advantages that make it

useful. In particular, one need not know the actual latitudes and longitudes to
calculate great circle distance from Equation (244); only the sines and cosines

of the latitudes and longitudes are needed. Moreover, since the number of focal

points is small (generally 12 or fewer), the needed siies and cosines can be
calculated initially and then stored for repeated use.

6.5 Selection of Focal Points and Wavelengths for the Sawtooth Wave

6.5.1 Selection of Focal Point. Each sawtooth wave must emanate from a randomly

positioned focal point; otherwise, the amplitude sums will not be random. Focal

points are located in terms of their latitude ek and longitude Xk, where, for

convenience, the longitude ranges from 0 degrees through 360 degrees. The longi-

tude Ak of the kth focal point is selected uniformly from the range 0 degrees to

360 degrees by the equation,

Ak = 360 Uk (245)

where Uk is a pseudorandom number selected from a population uniformly distri-

buted over the range (0,1).
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Figure 19. Geometry for Surface Area of the
Spherical Zone Bounded by Latitudes 81 and 02,
Where 81 > 82.

While the longitude Ak of the focal point can be selected uniformly from the

range 0 degrees to 360 degrees, it is not true that the latitude 8k can be

selected uniformly from the range 0 degrees to 180 degrees (90 degrees to -90

degrees). This is because equiprobable latitude bands are not equal area bands,

and simple selection of latitude would result in an overly dense concentration of
focal points per unit surface area near the poles. Figure 19 shows the geometry

of this problem. Needed is an expression for the surface area of the spherical

zone bounded by latitudes 81 and e2. The essential principle is that the surface

area of the zone is the difference between the surface area of the spherical cap

formed by 82 and that formed by 81.

Consider only the spherical cap formed by elV This has height h in a sphere

of radius r. The surface area of that cap is

S1 = 2nrh (246)

But from the Pythagorean theorem,

X 2 = r2 - r2cos281  r2 (l - cos 281) = r2 sin 281  (247)
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and

x = r sine (248)

Moreover,

h =r -x (249)

h = r(l - sine1 ) (250)

Hence, the surface area of the spherical cap formed by 61 is, from Equations

(246) and (250),

S= 2nr 2 (l - sine1 ) (251)

By analogy, the surface area of the spherical cap formed by 62 is

S2 = 2nr 2(l - sine2) (252)

The surface area S of the zone is the difference,

S z = S2 - S1 (253)

S = 2nr2 (sine1 - sine2 ) (254)

The function difference relations give the result,

sine1 - sine2 = 2 cos %(61 + 62) sin (al - 2) (255)

Consider that the width of the latitude band 61 to 2 will always be constant,

say 5 degrees or 10 degrees. Then the sine of one-half their difference is also

a constant, say D:

sin %(0l - 62) = D (256)

Thus,

sine1 - sine2 = 2 D cos (6l + 62) (257)

Using Equation (257) in Equation (254) produces the result,

Sz = 4nD r2 cos (61 + 62) (258)

But r is constant, so
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C = 4nDr 2 = const (259)

and

6 = S(O1 + 62) (260)

where 6 is the mean latitude of the zone bounded by 81 and 02. Using Equations
(259) and (260) in Equation (258) produces the result,

Sz = C cos e (261)

Equation (261) shows that the surface area of the spherical zone bounded by
latitudes e1 and 62 is proportional to the cosine of the mean latitude of the
zone. If we simply choose the latitude of the focal point uniformly over the
permitted range of latitudes, then the density of selections will not show a
poleward decrease proportional to the poleward decrease of zonal surface area Sz.
This can be compensated for a selecting cos 0k rather than ek itself. Since the
cosine has the range [0,1], the equation is

cos 6k = Uk' (262)

where Uk' is a uniform pseudorandom number drawn from the same range. Selection
of the latitude of the focal point in this way restricts the focal point to the

Northern Hemisphere, but this imposes no limits on the randomness of the result.

6.5.2 Selection of Wavelengths. If the wavelength wk of the sawtooth wave ema-
nating from location k is to be selected from the interval,

w1 < wk S w2  (263)

such that any value is equally likely to be chosen, then the selection can be
made by drawing a random number uniformly from Equation (263). If Uk" is a
pseudorandom number drawn from a uniform distribution having the range 0 to 1,

then

wk = Uk"(w 2 - wl) + wI  (264)

An algorithmic procedure for the sawtooth wave generator is shown in Figure
20.
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procedure SAWTOO (a, ETA);
integer j, k, m, n;
real w, d, y
real array YSUM [1:m], ETA[l:mJ;
equivalence (YSUM, ETA);
for each location or grid point j: = 1 step 1 until m do
begin

initialize YSUMj: = 0.0;
end j;
for each focal point k: = 1 step 1 until n do
comment: ... n + 12

select location of kth focal point at random;
comment: ... Equations (239) and (256) ...;

select wavelength w at random from (w1 ,W2);
comment: ... Equation (258) ... ;

for each location or grid point j: = 1 step 1 until
m do begin

calculate distance d: = GCD(j,k);
comment: ... Equation (238)

calculate wave amplitude y;
comment: ... Equation (223) ...,

accumulate YSUM = YSUM + Y;
end j;

end k;
for each location or grid point j: = 1 step 1 until m do
begin

ETA.: = YSUM. - 6;
]comment: ... Equation (228) ...;

end j;
end SAWTOO;

Figure 20. Algorithm for Sawtooth Wave Submodel.

6.6 Summary and Conclusions

The development of the two-dimensional field simulation model 2DFLD lays much
of the groundwork for the solution of a class problem, the simulation of two-

dimensional fields of a desired variable, fields that are correlated in space.
Given a suitable transnormalizing function for the desired variable, the 2DFLD
model can be used to produce random END fields with spatial correlations similar

to those found in real data, and then the inverse normalizing function can be
used to obtain synthetic fields of the variable.

117



REFERENCES AND BIBLIOGRAPHY

Acton, F.S., 1970: Numerical Methods That Work, (New York: Harper and Row, Pub-

lishers), p 340.

Air Weather Service, 1977: Guide for Applied Climatology, AWS-TR-77-267, p 4-31.

Anderson, T.W., 1958: An Introduction to Multivariate Statistical Analysis, (New
York: John Wiley and Sons), p 19.

Bean, S.J., P.N. Somerville, and M. Heuser, 1979: Some Models for Ceiling, Uni-
versity of central Florida, Scientific Report No. 7, Air Force Geophysics Labora-
tory, AFGL-TR-79-0221, 35pp.

Boehm, A.R., 1976: Transnormalized Regression Probability, Air Weather Service,
AWS-TR-75-259, 52pp.

Box, G.E.P., and G.M. Jenkins, 1976: Time Series Analysis: Forecasting and
Control, (San Francisco: Holden-Day, Inc.), 575pp.

Carnahan, B., H.A. Luther, and J.0. Wilkes, 1969: Applied Numerical Methods,
(New York: John Wiley and Sons, Inc.), p 334.

Elderton, W. P., (1953): Frequency Curves and Correlation, (Washington DC:
Harren Press), pp 141-180.

Forsythe, G.E., M.A. Malcolm, and C.B. Noler, 1977: Computer Methods for Mathe-
matical Computations, (Englewood Cliffs, NJ: Prentice-Hall), 259pp.

Forsythe, G.E. and C.B. Moler (1967): Computer Solution of Linear Algebraic
Systems, (Englewood Cliffs: Prentice-Hall, Inc.), pp 114-115.

Friend, A.L., 1978: An Objective Technique for Spreading Climatology, USAFETAC-
PR-78-007, United States Air Force Environmental Technical Applications Center,
4pp.

Gringorten, 1.1., 1979: Probability models of weather conditions occupying a
line or area, J. App1. Met., 18, pp 957-977.

Haan, C.T., 1977: Statistical Methods in Hydrology, (Ames: The Iowa State Uni-
versity Press), 378pp.

Heuser, M., P.N. Somerville, S.J. Bean, 1980: Least Squares Fitting of Distri-
butions Using Non-Linear Regression, Air Force Geophysics Laboratory, AFGL-TR-
80-0362, 18pp.

Hicks, P., 1982: Project notes. Unpublished USAFETAC manuscript.

Huschke, R.E., and R.R. Rapp, 1970: Weather Service Contribution to STRICOM
Operations--A Survey, A Model and Results: Final Report on Phase I of the Rand
Corporation Contribution to the Air Weather Service Mission Analysis, R-542-PR,
The Rand Corporation, 58pp.

James, R.C., and G. James, 1968: Mathematics Dictionary, 3rd Ed., (New York: Van
Nostrand Reinhold Company), pp 517.

Lin, C.C., and L.A. Segel, 1974: Mathematics Applied to Deterministic Problems
in the Natural Sciences, (New York: MacMillan Publishing Co., Inc.), 604pp.

Loucks, D.P., J.R. Stedinger, and D.A. Haith, 1981: Water Resource Systems Plan-
ning and Analysis, (Englewood Cliffs: Prentice-Hall, Inc.), 559pp.

Lowry, G.G., (1970): Markov Chains and Monte Carlo Calculations in Polymer
Sciences, (New York: Marcel Dekker, Inc.), pp 13-43.

I

11

|



Miller, R.G., and R.C. Whiton, 1979: A Weather Simulation Model Based on REEP,
Preprints, 6th ANS Conference on Probability and Statistics in Atmospheric
Sciences, American Meteorological Society, pp 167-172.

Naylor, T.H., J.L. Balintfy, D.S. Burdick and K. Chu, 1966: Computer Simula-
tion Techniques, (New York: John Wiley and Sons, Inc.), pp 68-121.

Panofsky, H.A., and G.W. Brier, 1965: Some Applications of Statistics to Meteor-
ology, (University Park, PA: The Pennsylvanis State University), 224pp.

Parzen, E., 1962: Stochastic Processes, (San Francisco: Holden-Day, Inc.),
324pp.

Pratte, J.F., and R.W. Lee, 1979: A short method of generating meteorological
fields for simulation studies, J. Appl. Met., 18, pp 1670-1673.

Scheuer, F., and D.S. Stoller, (1962): On the generation of normal random vec-
tors, Techometrics, IV, 278-281.

Somerville, P.N., and S.J. Bean, 1979: A New Model for Sky Cover, Air Force
Geophysics Laboratory, AFGL-TR-79-0219, 33pp.

Somerville, P.N., S.J. Bean, and S. Falls, 1979: Some Models for Visibility.
University of Central Florida, Scientific Report No. 3, Air Force Geophysics
Laboratory, AFGL-TR-79-0144, 40pp.

Somerville, P.N., S. Watkins, and R. Daley, 1978: Some Models for Sky Cover.
Florida Technological University, Scientific Report No. 2, Air Force Geophysics
Laboratory, AFGL-TR-78-0219, 22pp.

Tatsuoka, M.M., 1971: Multivariate Analysis: Techniques for Educational and
Psychological Research, (New York: John Wiley and Sons, Inc.), 310pp.

Whiton, R.C., E.M. Berecek, and J.G. Sladen, 1981: Cloud Forecast Simulation
Model, USAFETACITN-81/004, United States Air Force Environmental Technical

AApplications Center, 134pp (AD-A113140).

It

119

U



Appendix A

SOME FUNCTIONS USED BY USAFETAC

TO MODEL THE CUMULATIVE FREQUENCY DISTRIBUTIONS

OF METEOROLOGICAL VARIABLES

Index of Functions

Meteorological
Variable Function Page

Sky Cover Johnson SB Curve 121

S-Distribution 123

Visibility Weibull Curve 124

Inverse Linear 125

Ceiling Burr Curve 126

Reverse Weibull Curve 126

Log-Cubic 128

Variable to be Modeled. Sky Cover

Function Name. Johnson SB Curve

General. USAFETAC's basic modeling equation for sky cover is the Johnson SB
family of curves. This function was first developed for fitting sky cover dis-
tributions by Somerville, Watkins, and Daley (1978). The Johnson S curve is
given by the equation

z In _ (A-l)

where y and n are modeling coefficients determined from empirical distributions,
'I

XT is some threshold sky cover in fractional coverage, and z is the equivalent
normal deviate (END) of the cumulative frequency that the actual sky cover (X) is
less than xT . That is, this probability is the intergral of the standard normal

'i

distribution from - to z. This can be expressed by the equation

'I

z
Pr(X I xT) = *(XT) = f *(u) du (A-2)
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where *(u) is the standard normal probability density function,

U 2

#(u) = 1 (A-3)

* The normal density function cannot be integrated directly, but there are many

rational approximations or look-up tables available for evaluating this integral.

Inverse Transnormalizing. Values of sky cover can be obtained from given proba-

bilities by solving Equation (A-l) for xT
II

1 + e 1

(A-4)

e n
)

Fitting the Curve. The modeling coefficients y and n can be obtained for any

observed cumulative frequency distribution of sky cover by any good linear re-

gression technique. USAFETAC uses the method of singular value decomposition
'1

described by Forsythe, et al., (1977). The values of z corresponding to the

percentage of time that the sky cover is less than some category is regressed

against the interior boundary value of that category (xT). For example, when the

sky cover is observed in oktas, there are nine categories designated as 0, 1, 2,

3, 4, 5, 6, 7, and 8. The interior boundaries of these categories when expressed

in decimal form are taken to be 0.0625, 0.1875, 0.3125, 0.4375, 0.5625, 0.6875,

0.8125, and 0.9375.

The values of y and q are obtained using the singular value decomposition scheme

to regress values of z on xT. The values of z used are those corresponding to
the END of the tabulated proportion of sky cover less than some category and the

value of xT is the interior boundary of that category. For example, the sky

cover distribution at Vyborg, RS, for March, 2100 LST is

Sky Cover xT  0 1 2 3 4 5 6 7 8

Obsvd Freq 24.6 1.0 7.7 2.9 1.0 1.4 5.3 3.9 52.2

Using these relative frequencies to compute the cumulative frequency that X is

less than xT' the table becomes

Sky Cover xT  0 1 2 3 4 5 6 7 8

Cum Freq
X < xT 0 24.6 25.6 33.3 36.2 37.2 37.2 43.9 47.8

The ENDs of the cumulative distributions are then fitted against the interior
boundaries of the categories.
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Independent Variable Dependent Variable END of P
(XT ) (P) * 100 (1)

0.0625 24.6 -0.6868
0.1875 25.6 -0.6554
0.3125 33.3 -0.4312
0.4375 36.2 -0.3527
0.5625 37.2 -0.3261
0.6875 38.6 -0.2893
0.8125 43.9 -0.1532
0.9375 47.8 -0.0550

Variable to be Modeled. Sky Cover

Function Name. S-Distribution

General. The S-distribution was first developed for fitting sky cover data by

Somerville and Bean (1979). The S-distribution offers one advantage over the

Johnson S, curve in that it has a closed form distribution. The probabilities

can be obtained by direct substitution and no numerical integration or approxima-

tions are required. The S-distribution for sky cover is given by,

P = 1 - (1-XT") (A-5)

where a and p are modeling coefficients determined from empirical distributions,
xT is some threshold sky cover in fractional coverage, and P is the probability

that the actual sky cover (X) is less than or equal to xT .

Inverse Trananormalizing. Values of sky cover can be obtained from given proba-

bilities by solving Equation (A-5) for xT

XT = 1 - (l 1l/a (A-5)

Fitting the Curve. To obtain the modeling coefficients a and 0 for any observed

cumulative frequency distribution of sky cover, nonlinear regression techniques

must be used. USAFETAC uses an iterative search technique developed by Capt

Robert Hughes, USAFETAC/DNB. The probabilities that the sky cover are less than

some category are regressed against the interior boundaries for the category as

described in the section of this appendix on the Johnson SB curve. The curve

fitting technique used for this function is CPU intensive as compared to the

linear methods for the Johnson SB curves and comparative tests show that RMS

values for fits of S-distribtuions are not superior to those of Johnson SB
curves, For these reasons USAFETAC uses the Johnson curve to model sky cover

predominantly.
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Variable to be Modeled. Visibility

Function Name. Weibull Curve

General. USAFETAC's basic modeling equation for visibility is the Weibull curve.
The function was first applied to fitting visibility distributions by Somerville,

Bean, and Falls (1979). The Weibull curve is given by the equation,

P = 1 - exp(-axTO) (A-7)

where a and p are modeling coefficients determined from empirical distributions,

XT is some threshold visibility in statute miles, and P is the probability that
the actual visibility (X) is less than or equal to XT.

Inverse Transnormalizing. Values of visibility can be obtained from given proba-
bilities by solving Equation (A-7) for xT

XT ln(l-P) ]l/P (A-8)

Fitting the Curve. To obtain the modeling coefficients a and p, the values for
an empirical cumulative distribution are regressed on the Weibull cumulative dis-
tribution function. The resulting coefficients are those which minimize the sum
of the squares of the differences between the observed and modeled (Weibull) cum-
ulative distributions. USAFETAC uses a nonlinear regression scheme suggested by
Heuser, Somerville, and Bean (1980). The initial guess portion of their tech-
nique has been improved by a linearization procedure developed by Maj Al Boehm,

USAFETAC/DNP, which is summarized below

Let Q = 1 - P (the probability that X is greater than xT) and substitute this

value into Equation (A-7)

exp(-axTO) (A-9)

Take the natural logarithm of each side of Equation (A-9), which yields

lnQ = -axT P  (A-10)

Equation (A-10) can be rewritten as

-lnQ = ax., (A-11)

Equation (A-11) is in the form of a regular power function, which can be linear-

ized by taking the natural logarithm of each side.

ln[-ln QJ = ln a + f ln xT  (A-12)
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For a power function fit by the method of least squares, the estimates of a and

are obtained by fitting a straight line to the set of ordered pairs in XT,

ln[-ln Q). Substituting these values into the normal equations for a straight

line, the solution for 0 becomes

n(ln xT)(ln[-ln Q]) - (IlnxT)(Iln[-ln Q])
1 -(A-13)

The solution for a becomes

a = exp(lnr-ln Q] - 0 ri;) (A-14)

Note that for the linearization technique to be successful, 0 < Q < 1. All or-
dered pairs where Q is equal to 1 or 0 should not be used in the regression,

because ln[-ln QI will undefined. It has been found, however, that the simple

linear regression minimized the RMS error in ln[ln Q] space and was not necessar-

ily the case when translated to Q space. To approximate minimum errors in Q

space, it was necessary to apply a weighting factor (WF = -Q In Q) to each data
point. This weighting factor was later modified to (Q in Q) 2 by Maj Pershing

Hicks, USAFETAC/DNO. This technique provides excellent initial guesses to

Heuser, Somerville, and Bean's nonlinear curve fitting procedure.

Variable to be Modeled. Visibility 9

Function Name. Inverse Linear

General. A second function used by USAFETAC to model visibility is the inverse

linear function. This function was first suggested for fitting visibility data

by O'Connor of USAFETAC and is described by Friend (1978). The inverse linear

function for visibility is given by the equation,

P =(A-15)Fx T + G

where F and G are modeling coefficients determined from empirical data, xT is

some threshold visibility in meters, and P is the probability that the actual

visibility (X) is greater than or equal to xT.

Inverse Transnormalizing. Values of visibility can be obtained from given prob-

abilities by solving Equation (A-15) for xT

- G P (A-16)
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Fitting the Curve. The modeling coefficients F and G can be obtained for any

observed cumulative distribution of visibility by any good linear regression
technique. USAFETAC has used a method described by Forsythe, et al. (1977) quite

successfully. The method called DECOMP and SOLVE inverts the normal equations by

Gaussian elimination and then solves for the modeling coefficients. The Weibull

function has proved itself superior to the inverse linear and is used for
USAFETAC's simulation applications.

Variable to be Modeled. Ceiling

Function Name. Burr Curve

General. USAFETAC's basic modeling equation for ceiling is the three-parameter

Burr curve. This function was first applied to fitting ceiling data by Bean,
Somerville, and Heuser (1979). The Burr curve is given by the equation,

P = 1 - [+(XT/C)-B (A-17)

where A, B, and C are modeling coefficients determined from empirical data, xT is

some threshold ceiling in feet, and P is the probability that the actual ceiling
(X) is less than or equal to XT

Inverse Transnormalizing. Values of ceiling can be obtained from given probabil-

ities by solving Equation (A-17) for xT

XT = (C)H (l-P)-1 / B - 1 1 /A (A-18)

Fitting the Curve. To obtain the modeling coefficients, A, B, and C, the values

of an empirical cumulative distribution are regressed on the theoretical cumula-

tive distribution (Burr curve). The resulting coefficients are those that mini-
mize the sums of the squares of the differences between the observed and modeled
(Burr) distribution. USAFETAC uses a nonlinear regression scheme suggested by

Heuser, Somerville, and Bean (1980). The initial guess portion of the technique
was developed by Capt Emil Berecek, USAFETAC/DNS.

Variable to be Modeled. Ceiling

Function Name. Reverse Weibull Curve

General. USAFETAC uses a slightly different form of the Weibull curve, called

the "reverse Weibull," to fit ceiling data than it does for visibility data.
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This form was developed by Maj Pershing Hicks, USAFETAC/DNO (Hicks, 1982). The

reverse Weibull curve for ceiling data is given by the equation,

P = exp(-UXTP ) (A-19) F

where a and p are modeling coefficients determined from empirical distributions,

xT is some threshold ceiling in feet, and P is the probability that the actual

ceiling (X) is less than or equal to XT.

Inverse Transnormalizing. Values of ceiling can be obtained from given probabil-

ities by solving Equation (A-19) for xT ,

XT n(P) 11/0 (A-20)

Fitting the Curve. To obtain the modeling coefficients a and p, the weighted

linear regression technique developed by Hicks and Boehm of USAFETAC (mentioned

in the section on the Weibull model for visibility distributions) is used. Val-

ues of a and p are obtained by fitting a straight line to the set of ordered

pairs of data ln xT, ln[-ln P] with the following equations

I WF 1(ln xT)(ln[-iln P])(WF) - (I WF ln xT)(I WF ln[-ln P]) (A-21)

(I WF I WF ln xT2) - (I WF ln XT)2

a exp ( WF ln XT ) (A-22)
IWF

where

WF = (P ln p)2 (A-23)

Closeness of fit between the observed and modeled distributions (as measured by

RMS difference) -or the reverse Weibull curve compares quite favorably to those

values achieved by the Burr curve. For very large modeling efforts, a signifi-

cant amount of computet time can be saved by using the easier and faster linear

regression technique for the reverse Weibull function as opposed to the nonlinear

method that must be used for fitting the ceiling data to the Burr curve. The

computer time saved translates to lower model development costs. In certain ap-

plications, the lower costs are more important than the slightly better accuracy

that can be achieved using the Burr curve.
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Variable to be Modeled. Ceiling

Function Name. Log-Cubic Equation

General. A second function that can be used to model cumulative distributions of

ceiling is the four-parameter log-cubic equation. This function was first

adapted for use in fitting ceiling data by O'Connor of USAFETAC and is described

by Friend (1978). The log-cubic equation for ceiling is given by

P = C1 + C2 (ln xT ) + C3 (ln xT) 2 + C4 (ln XT)3 (A-24)

where C1 - C4 are modeling coefficients determined from empirical data, xT is

some threshold ceiling in feet and P is the probability that the actual ceiling

(X) is greater than or equal to XT .

Inverse Transnormalizing. The log-cubic equation is of limited use for simula-

tion applications for two important reasons. First, Equation (A-19) cannot be

uniquely solved for xT from given values of P. It is entirely possible that

three very realistic solutions of xT could exist for a particular value of P.

Second, the values of P are not bounded between 0 and 1 with this polynomial.

This unboundedness is an undesirable property because it allows the function to

return probabilites that are negative or greater than 1.

Fitting the Curve. To obtain the modeling coefficients C - C4 , linear regres-1 4'
sion techniques must be used. USAFETAC has used two methods successfully

(Forsythe, et al., 1977). One method is a singular value decomposition scheme

called SVD. The second method, called DECOMP and SOLVE, inverts the normal equa-

tions by Gaussian elimination and then solves for the modeling coefficients.
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Appendix B

ROOT-MEAN-SQUARE (RMS) DIFFERENCE AS A MEASURE OF CLOSENESS OF FIT

A major part of USAFETAC's simulation effort involves fitting the observed

probability distributions of meteorological variables to mathematical functions.

This procedure is referred to as distribution fitting, curve fitting or modeling.

The resulting fitted mathematical functions then reside within the main environ-

mental simulation model. Some measure of the accuracy or "closeness" of these

fits is needed in order to be able to make inferences from the results of the
environmental simulation model.

When data are expressed as values on a continuous scale, closeness of fit be-

tween observed distributions and the modeled (mathematical function) distribu-

tions can be expressed as a RMS value. RMS difference is calculated by the
following equation:

RMS 1 - T )2  (B-l)

where 0. and T. are individual elements of the observed and theoretical distribu-J

tions, and N is the total number of data pairs. For example, the following cumu-

lative frequency distribution for visibility at Leipheim, Germany, February, 0000

LST was fitted to the Weibull distribution

Observed Weibull
Threshold Cumulative Cumulative
Visibility Frequency Frequency Residual

Vsby < vT  Vsby < vT  Residual Squared
(SM) (%) (%) (%)

0.0 0.0 0.0 0.0 0.00
0.5 12.4 11.9 0.5 0.25
1.0 24.3 21.8 2.5 6.25
2.0 35.2 37.9 -2.7 7.29
3.0 50.6 50.5 0.1 0.01
4.0 64.2 60.3 3.9 15.21
5.0 66.2 68.1 -1.9 3.61
6.0 76.1 74.3 1.8 3.24

4F

The sum of the residuals squared is 35.86, and the total number of data pairs is

eight. Using these values in Equation (B-l) yields
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RMS = 35.86/8

= 44.4825

RMS = 2.1
T74

One can normally surmise that the lower the RMS value the better the fit, as
illustrated by Figures 12 and 13. These figures were already discussed in Chap-
ter 5. Figure 13 compared the observed and modeled relative frequency distribu-
tions of sky cover for Moscow, RS, November, 0600 LST. The RMS value was very
low (0.5), and the modeled curve duplicated the observed distribution quite well.
Figure 12 compared the observed and modeled relative frequency distributions of
sky cover for Chiganak, RS, November, 0900 LST. The RMS value was 5.3. Although
the fit was able to capture the general shape of the distribution, some very
large errors did result.

1 4
There is a disadvantage in using RMS, however. A modeled distribution might

have a relatively low RMS but not adequately reproduce the shape of the observed
distribution as illustrated by Figure B-1.

Figure B-1 compares the observed and modeled distributions of sky cover at
Feddosiya, RS, 1800 LST, August. The RMS for this fit was 2.8 which is not al-
together bad for this type of distribution, but note that the modeled curve has
not adequately reproduced the relative maxima in the 2/8 and 6/8 coverage cate-
gories. The RMS value can be quite helpful in determining closeness of fit but
it is not as effective as a visual comparison of the two distributions.
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Figure B-1. Relative Frequency Distribution of Cloud Cover
at Feddosiya, RS, August, 1800 LST. The observed distribu-
tion and the Johnson S curve fit to that distribution are
shown. The RMS betweeR the observed distribution and modeled
CDF is 2.8 percent, and the maximum difference is 4.5 percent.
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Appendix C

SERIAL CORRELATION IN FIRST-ORDER MARKOV MODELS

A defining property of the Ornstein-Uhlenbeck process (Parzen, 1962) is that

CovfxT+At,XT] = PaXT+AtaXT = ae-pAt (C-1)

which equals p for x distributed N(0,1). Hence, for N(0,1) x,

p = ae-PAt (C-2)

Applying the boundary condition that p = 1 when At = 0 gives the result
a 1 . So,

p = e "PAt (C-3)

If p1 is defined as the correlation at unit time, where At 1, then

p1 = eP = const (C-4)

Consider p at n time steps, nat

p = e - nAt = (e-P) n a t = PinAt (C-5)

which is the characteristic Markovian correlation decay equation.
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Appendix D

THE PARTIAL AUTOCORRELATION FUNCTION

Let the autocorrelation function of a stochastic process be denoted by Pk for

lag k.

The partial autocorrelation, often called the partial autocorrelation func

tion, is a function of the autocorrelation Pk. Let Okj be the jth coefficient in

an autoregressive (AR) process of order k, so that okk is the last coefficient in

the series. The AR process must satisfy the equation,

Pi= OklPj 1 + *k2Pj2 + .. + kkPj-k j = 1,2, ... k (D-1)

which leads to the Yule-Walker equations,

1 Pl P 2  ... Ok-1 lkl Pl

P1  1 Pl  ... Pk-2 -k2 P2 (D-2)

... ... ... ... ... ... ...

Pk-l Pk-2 Pk-3 ... 1 Ckk Pk

or

Ek k 2k (D-3)

Solving these equations for k = 1, 2, 3..., successively, gives the result,

Oil = Pi (D-4)

1 pl2 2
Pl P2 P2 Pl (-5I2 = ~ p2  = 2l (D-5)

022 = 1 I 1 P12

PP2SP 1  p1 i

P j 1  1 P2P2 Pl  P3  (D-6)

33 1 p1 P 2P 1  1 P1
P2 P1  1
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where I" I represents the determinant. For okk, the determinant in the numerator
has the same elements as the determinant in the denominator, but with the last
column replaced by Ok

The quantity *kk' which is a function of the lag k, is called the partial
autocorrelation function. In an AR(p) process, i.e., an autoregressive process
of order p, the partial autocorrelation function okk will be non-zero for k > p.
This is another way of saying that the partial autocorrelation function *kk of a
pth order AR process will exhibit a cutoff after lag k = p.

The partial autocorrelation functions okk described above are theoretical.
In practice, one must estimate these theoretical autocorrelations from sample
data using the methods of Box and Jenkins (1976). The estimated or sample
partial autocorrelations are denoted by *kk"

0

1W,1
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LIST OF ABBREVIATIONS AND ACRONYMS

AAF Army Air Field
Abv or ABV Above
AFB Air Force Base
ANS American Meteorological Society, a professional society for

meteorologists
AR Autoregressive, a type of stochastic process model
ARMA Autoregressive-moving average, a type of stochastic process model

that includes both autoregressive (AR) and moving average
(MA) terms

Avg or AVG Average
AWS Air Weather Service, a technical service of the Air Force's Mili-

tary Airlift Command

BLM Boundary Layer Model, a numerical weather prediction model
Blw or BLW Below
COLOSSUS An informal name for the Military Airlift Command's M-14 airlift

operations simulation
const Constant
Cor Coef Correlation coefficient
cos Trigonometric cosine function
Coy Covariance
CPU Central processing unit, that part of a computer which accom-

plishes arithmetic and logical operations

DCFLOS Dynamic cloud-free line-of-sight, a simulation model designed
to calculate the probability of having a cloud-free line-of-
sight between two moving points for a duration of time

DECOMP Gaussian decomposition subroutine, used with SOLVE for Gaussian
elimination solutions

e The mathematical e, the base of the system of natural logarithms,
having the approximate value 2.71828

El-] Expectation operator
END Equivalent normal deviate, the slandard normal variable
exp(.) Exponential operator; exp(a) = e

ft Feet, a unit of linear measure

GCD Great circle distance
GMT Greenwich Mean Time

INT(-) Integer operator, indicates the largest integer less than or
equal to the value stated in the argument

JSKY1 Joint sky cover probability model for the lag problem, developed
by USAFETAC and described in this report

JSKY2 Joint sky cover probability model for the spatial problem, devel-
oped by USAFETAC and described in this report

km Kilometers, a unit of linear measure

LFM Limited Area Fine Mesh Model, a numerical weather prediction
model

log Common logarithm, base 10
ln Natural logarithm, base e
LST Local Standard Time
LUSQRT Cholesky reduction or "square root" method for factoring a real,

symmetric, positive definite matrix into a lower triangular
matrix and its transpose

M-14 A simulation of the total military airlift system in peace and
war; also informally called COLOSSUS; developed by the Mili-
tary Airlift Command
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MA Moving average, a type of stochastic process model
MAC Military Airlift Command, a specified command of the US Air Force
MORS Military Operations Research Society; or Military Operations

Research Symposium, the latter conducted by the former
MULTRI Multivariate triangular matrix environmental simulation model

developed by USAFETAC and described in this report

NM Nautical miles, a unit of linear measure
N(0,1) Normal distribution with mean of zero and variance of unity

Obs Observation or observations
OL-A Operating Location-A, a type of Air Force unit

Pct or PCT Percent
PPM Pearson product moment formula for calculation of the correlation

coefficient from sample data
Pr(-) or Pri-} Probability operator, representing the probability of the condi-

tion in parentheses or braces

RANDCV Routine for generation of a correlated vector of random normal
numbers

RMS Root mean square
RS Russia
RUSSWO Revised Uniform Summary of Surface Weather Observations, a sta-

tistical tabulation of historical weather data for a single
location, produced by USAFETAC

S Single bounded, a member of Johnson's family of curves
sn Trigonometric sine function
SD Scale distance, especially in regard to Gringorten's Model-B
SM Statute miles, a unit of linear measure
SOLVE Back substitution routine, used with Gaussian decomposition rou-

tine DECOMP for Gaussian elimination solutions
STRICOM Strike Command, a unified command of the United States
SVD Singular value decomposition, an alternative to linear regression

for determining coefficients of a linear equation

tan Trigonometric tangent function
tanh Trigonometric hyperbolic tangent function

USAFETAC United States Air Force Environmental Technical Applications
Center, the applied climatological arm of the Military Air-
lift Command's Air Weather Service

VISI Single-variable, single-station environmental simulation model
developed by USAFETAC and described in this report

V2Sl Two-variable, single-station environmental simulation model de-
veloped by USAFETAC and described in this report

WMO World Meteorological Organization

2DFLD Two-dimensional field simulation model, an environmental simula-
tion model developed by USAFETAC and described in this report

u Union, as in A u B, interpreted as "A or B"
n Intersection, as in A n B, interpreted as "A and B"

Member of (set notation)
ISummation operator
f Integral operator
< Less than
> Greater than
(A I B) Condition A, given condition B; used in expressing conditional

probabilities
Open interval; does not include the end points
Closed interval; does include the end points

H'I Determinant operator
Estimate indicator; Y is an estimate of the value of Y

n Geometric pi, the ratio of the circumference of a circle to its
diameter

136




