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PREFACE

This report is a description of environmental simulation techniques developed for
USAFETAC Project 1960, 2082, 2339, and 2357. The report provides a basic
description of current USAFETAC modeling capabilities and serves as a tutorial

for practitioners and users of environmental simulation modeling.
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Chapter 1

INTRODUCTION

1.1 General

On 26 February 1979 the United States Air Force Technical Applications Center
(USAFETAC) was designated as the focal point for providing Air Weather Service's
(AWS) environmental simulation support. This new mission for USAFETAC resulted
from growing environmental simulation requirements within AWS. It was felt that
if simulation support were handled through a centralized facility, the techniques
developed for one customer could be applied to others. Centralized support would
make the simulation expertise available to all AWS personnel and not tie it to
the life cycle of individual projects.

This technical note describes some of USAFETAC's initial modeling capabili-
ties and should provide the reader with some fundamental statistical background

that will be needed for more advanced modeling problems.

1.2 Environmental Models

For the purpose of this technical note the term environmental refers only to
meteorological applications of modeling. Other disciplines such as geophysics,
hydrology, and engineering have done quite a bit of work in modeling their own
spheres of interest and by rights should be included under a term dealin~ w.th
man's environment. Such, however, is not the scope of this report.

There are two types of environmental models. One type of model is based on a
mathematical representation of the dynamics of a real life system. These models
are dynamical initial-boundary value problems. Once the initial conditions of
the system have been determined, the state of the system at any future point is
given by the analytical or numerical solution of a set of differential equations.
These equations are based on physical laws of nature such as the laws of motion.
Examples of these types of models are the NOAA National Weather Service's ULimited
Area Fine Mesh (LFM) Model and the Air Force Global Weather Central's Boundary
Layer Model (BLM). For some problems, finding analytical or numerical solutiong
to dynamical models is too arduous, and one must consider a second type of model-
ing, namely simulation.

Environmental simulations apply the theory of mathematical statistics to
mirror the processes and interrelationships of a real life system  Whiie these
models may do very well in producing certain desired statistics such as means,
standard deviations, and correlations, they might violate physical laws.
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Environmental simulations range from deterministic models (i.e., ones in
which, given the current state of the system, the future state is uniquely
defined) to purely stochastic models (i.e., ones in which the system behavio: is
inherently uncertain or random). Most environmental simulation models, however,
are a mixture of the two. While the current state of the system might weigh
heavily on the results, because of the uncertainty of weather events, the out~
comes are not always the same given the same input data.

1.3 Environmental Simulation

Weapons systems effectiveness studies, design trade-off analyses, combat tac-
tics, strategy and doctrine development simulations, war games, and other similar
activities often need some type of weather input. This weather input is to test
whether the resulting weapons systems or war plan will work correctly :n real
combat weather. At least two approaches can be used to provide the weath - input
to these weapons and warfare design studies: (1) the historical weathe cecord
(climatology) could be used directly to provide sequences, means, standa: ‘levia-
tions, joint probabilities, and the like for stations and areas of inte -t; or
(2) the relevant weather variables could be mathematically modeled in ¢ = and
time and then this model used to infer the needed quantities. The mo. ; .uld
even be used to generate desired time series of the critical weather variaples at
selected stations or over specified grid systems.

The latter approach is variously referred to as modeled climatology, synthet-
ic meteorology, or environmental simulation. Whatever the term applied, the
technique involves using mathematical and probabilistic models to achieve a
selectively realistic synthesis of the environment in order to describe or ana-
lyze the environment or the effects of the environment on a system or operation.

How is this done? Typically, a stochastic (i.e., random process) model is
found that can produce synthetic weather "data" realistic enough to meet the
user's needs. Such "data" might, for example, be required to have the same
means, variability, and cross-correlations as are found in the "real" data. Then
the model is coded as a computer program or subprogram. Next, the model is
"fitted" to the weather by consulting the historical weather record to find
regression coefficients, correlations, probability distributions, and other model
parameters. Then the model is tested for validity against an independent sample
of historical weather data. Finally, the model is used to generate a long series
of synthetic data, and the data are analyzed to answer the planning or design
questions at hand. Wherever possible, the environmental simulation model is
coded as a subroutine or subprogram within the user's larger model. The weather
routine then generates and delivers synthetic weather information -~ either
observations or forecasts -- whenever "called" by the larger model.
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Mathematical /statistical wmcdels such as the one hinted at above ale stochas-
tic rather than deterministic because they treat the weather as a partly random

(stochastic) process. The approach described above is numerical rather than
analytical because it makes use of approximative o1 1terative methods to converge
toward a solution. Moreover, within the class of numerical mathematical modzls,
this approach would be re’erred to as a Monte Carlo technique becausc it involves
the use of statistical sampling methods {(especially drawing random numbersi to
obtain a statistical parameter or other proobabilistic soluticon to a physical/
mathematical problem. One need not always resort to Monte Carlo techniques in
simulation modeling. Although the Monte (ario approach 1is attractively simple
and flexible, it is on the other hand computationally expensive and produces only
approxlmate solutions. some problems are amenable to analytical solution. I
this approach, needed equations are derived from the theorems ¢f mathemetical
statistics. These equations ais then simply evaluated to produce the statistical
parameters required to answer the planning or design questions at hand. There is
no need to generate a long series of synthetic weathear ohseivations or forecasts
if one ig using an analytical environmental simulation model. In practice, both
numerical /Monte Carlo method:i and the analytical method are used in enviro..rental
simulation, as they are in simulations of all kinds.

The question may arise, why use simulation® USAFETAC has over 80,000 mag-
netic tapes of worldwide wcather data. Why use valuable rescurces developing
simulation models if raw data are so abundantly available? The reasons are
manifold.

1.4 Environmental Simulotion vs. Direct Use of Historical Weather Data

The main reason for using simulation modeils rather than using historical data
directly is thal most users of weather informa.ion are designing new weapons
systems or planning for future wars, not conducting post-mortem analyses of old

ones! From the point of view of statistical sampling theory, the historical
weather record 1¢ almost aiways very short. It probably does not contain all the
patterns of weather likely to occur in the future. The worst weather on recerd
is not the worst possibis weather. Any historvical record is bubt one realiza!ion
AT a4 stochastic tine cevics, and futare realizations will resembie that nuetor:-
cal record only in & stabiscical sense, aven 1 f the 'mderlying «iobability Jdis-

tributions and circss correlations doe not change.

In using an acteol hwtsricsl weather sequendcc in planning orv design, e

runs th+ rigk tro the e sencos chenor mav be too rrld, too severe. teo bland,
too erratic, of v 50 L way unrepresentatave ot the furure lovrecver, 11 a
particular year or month ¢ choceon as “typical weather," 1t 15 often the only
weather that 1s :run ‘. appoct. ol che analysis heing cenducted.  The "typincal

weather" fi1le <an be vued and reused repeatedly in planning or design, ond the

plan or design can be tuned so closely 1o thar porticular weather seqquence that
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the plan or design becomes virtually inapplicable except to that particular year
or month in history. The danger in using historical weather data directly is
particularly great when the data will be used in a war game. 1f the weather
always turns up bad on 15 December and always improves on 20 December, the war
gamers will soon begin to notice this and take advantage of the unnatural lack of
"weather surprises" in their combat development planning. Using canned weather
in war games can lead to the development of "optimum" tactics and force mixes
that will not withstand the test of actual employment in real, future weather.

Using an environmental simulation model rather than the historical weather
record directly helps circumvent problems such as these. The model will produce
synthetic weather "“data" (observations, forecasts, or both) on call. The user
controls the length of the time series generated. The synthetic weather possess
a variability not unlike that of real weather data, in the sense that the weather
for one 15 December will not be the same as that for all other 15 Decembers.
This gquasi-natural variability permits running the model repeatedly to acquire
risk statistics needed by the designer or planner.

Still another reason for using simulated or synthetic weather instead of
historical weather data, is that environmental support requests are becoming
increasingly complex. For many applied climatological problems, such as proba-
bilities over an area or probabilities along the line, direct use of the data
base may not produce needed answers. USAFETAC is often asked for data or answers
at arbatrary locations or at grid points for which no weather data exists at all.

At other times, the customer's request is for a mission-dependent or systea-
dependent weather effects parameter such as DCFLOS, the probability of a cloud-
free line-of-sight between two moving points A and B for a specified duration of
time. The dynamic cloud-free line-of-sight (DCFLOS) probability depends just as
much on the movement of A and B and on the lock-on duration as it depends on the
cloud cover. Evaluating these system-dependent weather effects without using
some sort of simulation is usually impossible.

Other impelling reasons for using an environmental simulation model rather
than the "real" data are the inaccuracies and inadequacies in the historical
weather data base and the simple convenience of having the weather generated by a
small, fast computer subroutine rather than by reading and rereading an extensive
tape- or disk-based data set.

1.5 Environmental Models Developed from Real Data

It should be emphasized that environmental simulation modeling is not done 1n
the dark, without regard to the historical weather record. USAFETAC makes hLeavy

use of the historical weather record to produce parameters such as probability
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distributions and correlations needed by the mathematical model. Actual weather
data is used extensively to test and verify the simulation model once it is
built. In this sense, the historical weather record is used indirectly for the
studies and games because the model is developed and tested using climatology.

Now that the reasons USAFETAC is ..volved in environmental simulation have
been discussed, let us define some basic terminology.

1.6 Glossary of Terms in Environmental Simulation and Related Areas

Environmental Simulation: A selectively realistic synthesis of aerospace behav-
ior consistent in space and time, achieved by the use of techniques -- often
involving mathematical and probabilistic models -~ with which to describe or ana-
lyze the environment or the effects of the environment on a system.

Gaming: A gaming exercise employs human beings acting as themselves or playing
simulated roles in an environment that is either actual or simulated. The play-
ers may be experimental subjects or participants in an exercise being run for
teaching, operational training, planning, or other purposes.

Model: A model is a representation, description, or imitation of a system or
process (e.g., the atmosphere) in another medium (e.g., a computer). A model is
a generalization of a more complex reality usually involving simplifying assump-
tions in order to produce understandable solutions. A good model is constructed
so as to produce realistic behavior critical to the problem at hand while pre-
serving the essential properties of the system being simulated.

Simulation: A simulation is an analytical or numerical technique involving the
use of mathematical and logical models to represent and study the character and
behavior of real-world or hypothetical events, processes, or systems, over
extended periods of time. Simulation enables a real system or process to be
studied, analyzed, and understood by means of a model. All simulations involve
models, but not all models are simulators. Simulation is usually done for such
purposes as training, experimentation, evaluation, and finally, to draw conclu-
sions about the system or process being simulated. Simulation provides the means
for gaining experience and for making and correcting errors without incurring the
costs or risks of actual application. It offers opportunities to test theor.es
and proposed modifications in systems or processes; to study organizations and
structures; to probe past, present and future events; and hypothetically to util-
ize forces that are difficult or impracticable to mobilize. Simulation, there-
fore, is of value both as an educational device and as a means of discovering
improved methods. The distinction between games and simulations 1s sometimes
confusing. Games use a simulated environment or simulated roles for the players,

or both. In general, all games are simulations, but not all simulations are
games, Computer simulations that model conflict or cooperation (such as
5
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completely computerized battle models) are usefully considered as games. Possi-
bly, so are some logistic or resource allocation models where the single (auto-
mated or live player) team may be regarded as struggling against a statistical or
strategic oppounent called "Nature," although here one enters the territory of
decision theory. The borderline is not hard and fast; however, 1it. is probably
not useful to treat a straight industrial production scheduling machine simula-
tion as a game.

War Gaming: A war game is a simulation of a military operation involving two or
more opposing forces and using rules, data, and procedures designed to depict an
actual or assumed real-life situation. It is primarily a technique used to study
problems of military planning, organization, tactics, and strategy. A war game
can be accomplished manually, can be computer-assisted, or be wholly computer-
ized. Manual games are played using symbols, pins, or pieces to represent
forces, weapons, and targets on maps, mapboards, and terrain models. A computer-
assisted game is a manual game using computerized models that free the control
group from many repetitive, time-consuming bookkeeping computations. Computer-
ized war games are based on predetermined procedures and rules, and all simula-
tion of conflict is done by the computer in accordance with the detailed instruc-
tions contained in the computer program. The primary advantage of computer
gaming is that the same situation can be simulated many times under differing
conditions, in order to observe the variability of results.

1.7 A Note to Users of Environmental Simulation Models

1.7.1 Project Success--A Shared Responsibility. Users share with model develop-
ers very real responsibilities for the success or failure of simulatiorn projects

o ail kinds, including envirommental simulation efforts. The potential simula-
ticn user's concept of how weather should “play" in a particular study, the
user's views as to what environmental simulation modeling can and cannot do, and
his opinions on how best to use weather simulation dominate the scene during the
critical early stages of problem definition. Often these early conceptions
regarding what needs to be done and how to do it persist--for better or for
worse--throughout the entire lifetime of the project. These "preliminary ideas"
gquickly set up like concrete. If the ideas are well thought out, they can serve
as a substantial foundation for the project as well as a true template for the
proiect's future growth. If, on the other hand, the user's ideas are incorrect,
unrealistic, or out-of-date, they can imprison a project, stunt its growth, and
serinusly impair its chances of succe:s.

Because the user's role is of such dominating importance during the earvly
staqges of a project, some attention is given here to developing a common under-
standing among the community of actual and potential users regarding =such
guestions as:
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¢ what can environmental simulation modeling do and what can't it do?

¢ Under what circumstances would the user be better advised to use the his-
torical weather record directly?

e In writing a requirement for an environmental simulation model, what can
and cannot be asked for? In what terms does one specify the requirements?

e How do requirements for model design, performance, format, interfacing,
and documentation affect the cost of the project in time and money?

1.7.2 what Can and Cannot Be Done in Environmental Simulation Modeling? Stating
what can and cannot be done in any scientific or technical field is a hazardous
undertaking; for the state of science, mathematics, and technology is subject to
change. All that can be done with any confidence of being right is to summarize
the state of the science today.

Projects whose requirements extend beyond the limits of today's scientific,
mathematical, or statistical techniques are said to require at least technique
development and quite possibly applied or even basic research before they can be
satisfied. While projects requiring such advancements in the state of the sci-
ence can be done (basic or applied research must, of course, be accomplished by

the Air Force Systems Command). Such projects will normally incur a much greater
risk of failure and, even if successful, will ordinarily be much more costly and
time-consuming to complete than projects that require little if any advancement
in knowledge. Today's state of the science in environmental simulation mo ! ling
is described below.

It is today possible to generate by mathematical/statistical models time
series of synthetic weather observations and forecasts at a single point, over an
irregularly spaced network of points, or over a regqularly spaced, two-dimensional
grid of points, provided that sufficient historical weather information exists
with which to estimate the statistical character of observed and forecast weather
at the locations involved. The models can generate univariate or multivariate
synthetic data. A long run of synthetic weather observations produced from such
an environmental simulation model will, in terms of certain statistical measures,
be indistinguishable from a comparable run extracted from the historical weather
record. The statistical measures '"preserved"! by the environmental simulation
models described in this technical note include:

! An environmental simulation model is said to "preserve" a statistic such as a
probability distribution or a correlation if that statistic, computed from syn-
thetic data generated by a sufficiently long run of the model, is not signifi-
cantly different from the same statistic computed from a sufficiently long period
of the historical weather record.
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¢ Unconditional cumulative distribution functions of the variables being
simulated

e Serial correlation of each variable over the index parameter t (usually
representing time) of the simulation

e Cross correlation between variables when the simulation model is of multi-
variate design

e Spatial correlation in two dimensions only
e Skill of weather forecasts
1.7.3 Requirements Drive the Solution: Models or Data? Under some circum-

stances-~for example, weather information used in exercises and training simula-
tions--weather observations and forecasts are required to have exceptional

synoptic "realism." Often under these circumstances a complete meteorological
"scene" is required, involving organized, moving, evolving cyclone and frontal
systems with horizontally and vertically consistent dynamical and thermodynamical
fields and supporting three-dimensional cloudiness patterns. Such requirements
are stated because in a training exercise, actual meteorological displays are
prepared, much like those in weather stations. Weather briefings are given and
simulated forecasts made from these displays. The whole package has to look
"realistic" from the user's point of view; otherwise, the realism or even the
credibility of the exercise or training simulation is to some extent compromised.

No statistical simulation model has yet been developed capable of generating
multivariate, multicorrelated time series of three-dimensional weather "scenes."
A user vhose legitimate requirements call for meteorolegical realism of this
degree must employ the historical weather record directly. In doing so, the user
is subject to all the difficulties and limitations discussed above, associated
with direct use of the historical weather record.

Far more often than not, however, the study, analysis, simulation, or game
being conducted has no need for meteorological “"realism" of this degree. Consid-
er, for example, a simple Monte Carlo air reconnaissance simulation that gener-
ates and scores individual reconnaissance sorties involving takeoff from location
A(t,), air photography at locations B(t;), C(t;), and D(t;) and return for land-
ing at 1location A(t4), with alternate at E(t;), where t is the time parameter.
In this model, weather is used simply to "score" the mission's success; it is not
used for mission planning. Weather impacts are shown in Table 1.
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Table 1. Weather Impacts in a Hypothetical
Air Reconnaissance Simulation.

Locgtion Criteria for Success or
(Time) Probability of Success
A(ty) Takeoff Requirement:

Ceiling/Visibility 2 200 ft/% mile

B(t;) Reconnaisgance Photography Requirement:
c(tz) Pr{SuccesBIHc} = (0.95/3500)(Hc-1500) where
D(ts3) 0.0 < Pr 5 0,795 and Hc=cei1ing height (ft)
A(ty) Landing Requirement:

Ceiling/Visibility 2 200 ft/% mile

E(ts) Alternate Requirement:
Ceiling/Visibility 2 200 ft/% mile

The mission will launch if the takeoff requirement is satisfied, will attempt to
film all three targets regardless of weather but with a probability of success
that rises linearly from zero with ceilings of 1500 ft or less to 0.95 with ceil-
ings of 5000 ft or more, and will land at airfield A, provided the landing
requirement is satisfied there at time t,. Otherwise, the aircraft will proceed
to alternate airfield E at time tg and will land there if the weather is good or
experience a 65-percent chance of abort with loss of film if the weather is bad.

To support this simple reconnaissance simulation, it is necessary only to
supply ceiling "observations" (historical or synthetic) at these five locations
at the times indicated, as well as visibility observations at A(t,), A(ty), and
E(ts). The correlation between the weather at one location and that at another
decreases with increasing distance between the points. Therefore, the weat’cr at
points such as A and E, and such as points B, C, and D cannot be treated as
independent in space. Some sort of distance-dependent spatial correlation must
be built into the weather information, synthetic or historical, that is supplied
to the reconnaissance simulation. Since the mission extends over a duration of
time, either (ty - to) or (ts - to), consideration must be given to the time=-
continuity of weather supplied to the reconnaissance simulation. A statistical
measure of this continuity in time is the so-called serial correlation. The
serial correlation of the weather information delivered to the recounaissance
simulation must be patterned after that observed in nature. At certain loca-
tions, namely A and E, the visibility as well as the ceiling must be supplied.
Data studies show that the ceiling and visibility are positively correlated.
Hence, ceiling, and visibility pairs supplied to the reconnaissance simulation
must, in the long run, demonstrate this so-called cross correlation between
variables. Finally, the ceiling and visibility information delivered to the
reconnaissance simulation should not in the long run violate the probabiiity
distributions of the ceiling and the visibility for the time and place of the
simulation. In other words, the sample ceiling and visibility information sup-
plied to the reconnaissance simulator must be drawn from the same pcpulations
that the longer-term historical weather record was drawn from.
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In summary, the weather information supplied to this hypothesized air recon-

MM L

nalssance simulator must exhibit appropriate probability distributions, spatial
correlation, serial correlation, and cross correlation. These are sufficient
requirements to be imposed on the weather used for this application. Nothing in

the planned use of weather by this hypothetical reconnaissance model suggests a
need for cyclones, fronts, spiral band cloud patterns, and the like. As long as

g H —y
i

the weather information supplied to the reconnaissance simulation has "realistic"
probability distributions, spatial correlation, serial correlation, and cross
correlation, it should be sufficient to meet the need.

ahms ax

t!! In this case, an environmental simulation model could be used to generate
synthetic ceiling and visibility data with appropriate probability distributions
and correlations. If additional, and in this case superfluous, requirements for

DRIV S

synoptic realism were to be imposed, models could not be used, and historical
1 weather data--with all their limitations--would then have to be resorted to. The i
‘ effect of adding superfluous requirements would in this case be to force a sub-

optimal solution. In general, potential users of environmental simulation models
should study in detail how their applications model uses (or proposes to use)
weather information and then state their requirement as conservatively as possi-
ble, expressing the requirement in terms of the statistical measures that an
environmental simulation model must "preserve" (see footnote 1 above).

’ 1.7.4 Model Decisions and the Need for Weather Observations and Forecasts. Ap-
! plications models such as weapons systems effectiveness simulations and combat
evaluation models use weather information to make decisions that emulate those
made in real time by human decision makers (such as battle staffs and individual
aircraft commanders) and the "forces of chance and nature" (such as whether a
particular reconnaissance target is photographed, given the weather). Such
models, even if they "play" only one side of the combat, generally have to assess

the consequences of decisions made by the side whose actions are being "played."
This is referred to as mission assessment or "scoring" and represents the most
common use of weather in military studies and analyses. In scoring, the model
makes a decision, based on weather and other factors, as to whether, for example,
a given reconnaissance target is successfully "shot" by aerial photography. For
scoring decisions impacted by weather, applications models need the value of

DO P G T e

mission-critical weather variables at the time the mission is executed.

—d

The concept of "scoring"” missions based on weather can be extended to include
other :mpacts of weather on mission execution, such as enroute winds affecting a
simulated airlift mission's flight time or protracted rainfall slowing the rate
of advance of an armored column. Scoring decisions made by military applications
models tend to emulate the impersonal aspects involved in the course of military

—ad

events, such as assessing the success of missions, governing the timing of an
advance, or determining other partly probabilistic outcomes. In real life, there
is no need for scoring decisions. They are made for us by the '"forces of chance
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and nature" or by action of opposing forces. But in a simulator, these chance
outcomes, natural impacts and effects of enemy action must be included in the
simulator, or they simply will not occur.

In the simplest combat simulations or weapons system effectiveness studies,
"scoring" decisions are the only ones made using the weather. 1In other models,
an attempt is made to emulate selected aspects of the human decision-making proc-
ess as applied in combat. From a meteorological perspective, human decisions can
be classified as either (1) short-range execution decisions based on the observed
present weather, or (2) longer range planning decisions based on future weather.
{ To model the influence of weather on the spectrum of human decisions from plan- .
ning to execution requires that the applications model consider not only weather
observations but also weather forecasts. Decision points have to be built into
the applications model so as to call for and use weather observations and fore-
;‘ casts much as they are used in the actual or proposed system being modeled.
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In practice, few of today's weapons systems effectiveness models, combat de-

velopment simulations, and other applications models consider even the observed 1

weather, and almost none of them (except those built by meteorologists them-

selves?) use forecast weather. This situation is changing, however. The U.S. s

Air Force Air War College operates a combat model which, in the 1970s, was modi-

fied to accept statistically generated weather forecasts for input to decision

making. In the late 1970s, a statistical model that generates synthetic weather

: observations and forecasts was added by USAFETAC to the Military Airlift Com- )
AL mand’s M-14 airlift system simulation. 1In 1981, USAFETAC designed a statistical, e
two-dimensional field simulation model to generate cloud forecast fields for ]

input to system planning and optimization models. Environmental simulation
modeling efforts such as these have received increasing attention since 1979 in
such media as the Air Weather Service Operations Digest (see January-February
1981 issue) and the 2nd Weather Squadron Technical Activities Summary (see July )
1980 issue), as well as in the Military Operations Research Symposia (B-4 Working
Group presentation at 46th MORS, December 1980, and general session presentation
at 48th MORS, December 1981), and in American Meteorological Society conferences
(6th AMsS Conference on Probability and Statistics in Atmospheric Sciences, Octo~-
ber 1979). These efforts at communicating what has been done in environmental pi
simulation modeling should have the effect of showing the military modeler what -1
is possible and increasing his interest in factoring weather effects into his
models. 1

I S W YeUR)

2 One of the earliest applications models to include forecasts was in fact built
by meteorologists to support the Weather-85 Mission Analysis of the Air Weather
Service. See Huschke, R. E., and R. R. Rapp (1970): Weather-Service Contribu-
tion to STRICOM Operations--A Survey, A Model and Results: Final Report on
Phase I of the Rand Corporation Contribution to the Air Weather Service Mission
Analysis, R~-542-PR, The Rand Corporation, 58 pp.
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1.7.5 Stating Requirements for Environmental Simulation Models. Given that a
need exists for the sort of weather information that could perhaps be provided by
an environmental simulation model, one of the first things that must be done is
to express that need in the form of a regquirement.

In some cases, the user of weather information will not care whether that
information comes from a model or directly from the historical weather record,
just as long as the information is "good enough" to meet his needs. In other
cases, an environmental simulation model will be explicitly called for. Under
both circumstances, the user's job is to state his requirements in terms of the
variables to be provided, whether forecasts, observations, or both are required,
the time and space dimensionality® of the information needed, the statistics* to
be preserved, and the accuracy required, expressed in terms of some standard

relevant to the user's problem.

1.7.6 Technique Development vs. Software Development. After a requirement for
weather information has been stated and it is determined that an environmental
simulation model is the most effective way to proceed, the user should specify
whether he needs simply a tested proven technique or finished software. In the
former case, the product delivered is generally a complete description of the
technique and an analysis of its performance, accompanied by a courtesy copy of
the exploratory software developed to test the model, for the latter case, a
software development phase is added to the project. In that phase, technique
development software is converted to fully qualified, fully maintainable, fully
docuvnented software in strict accord with the Air Force 300-series software man-
agement directives. The user should be aware that although the final product is
much more polished in the latter case, congiderable time is added to the project
completion estimate in order to comply with the software management requirements.

1.7.7 oOperational Environment, Interfaces, and Constraints. In stating require-
ments for environmental simulation models, it is useful to specify (1) the opera-
tional environment of the model, e.g., whether the model is to stand alone or is
to serve as a module within a user's larger model and the computer and operating
system on which the model is to run; (2) the interface between the environmental
simulation model and the user models, applications or studies the model is to
serve, i.e., inputs and outputs required and whether the environmental simulation
model will reside within and be called by the larger user applications model; and
(3) constraints within which the environmental simulation model must exist, i.e.,

3 For example, single-station, two or three spatial dimensions, irregularly
spaced network, regular grid, time continuity, required or not, etc.

4 Unconditional probability distributions, conditional or joint probabilities,

correlations in time and space, cross correlations between variables, means,
standard deviations, etc.
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computer programming language requirements, computer program data structure re-
quirements, computer program size, and speed constraints, etc.

1.7.8 Effectiveness Evaluation, Value Analysis, and Feedback. Effective feed-
back provided by those who state requirements for and use models to those who
develop them is almost surely the best means of improving the whole model devel-
opment process. Users receiving environmental simulation models should test them

to determine whether they meet requirements. Usually the developer facilitates
such testing by leaving in the delivered model certain test modules that measure
key aspects of the model's performance. As a first step, the user can repeat and
verify those tests in a stand-alone environment, in which the environmental simu-
lation model is not yet interfaced or integrated with the larger user model it is
to serve. More important from the user's perspective, however, is his unique
ability to test the environmental simulation model in an integrated environment
within the larger user application. The developer usually cannot perform these
invaluable integrated tests because he does not have access to or familiarity
with the larger model.

Results from stand-alone and integrated testing performed by the user should
be communicated quickly to the developer, especially when those tests indicate
changes must be made to the model. The time to make these changes is right away,
not 6 months after delivery. By then the developer has gone on to other work and
has lost his familiarity with *the model. Ordinarily, the developer will provide
a 90-day warranty on models and software. During that 90-day period, the devel-
oper is liable for all necessary changes in the model or its supporting computer
software. After the 90-day warranty expires, the user, not the developr:i, is
responsible for all changes. The user should therefore finish all stand-alone
and integrated testing before expiration of the 90-day warranty.

Developing a simulation model of any sort is an expensive undertaking, re-
quiring a great many manhours and computer hours for development and testing.
Under these circumstances, it is helpful to receive from the user information
describing the benefits derived from use of the environmental simulation model.
In some cases, adding simulated weather to a study, analysis, or plan improves
decisions quantifiably -- for example, by causing abandonment of a weapons sys-
tems design which, if carried through, would have been an expensive failure, or
showing how by intelligent use of weather information an airlift activity can
increase the tonnage hauled. Information of this sort is useful in establishing
the cost effectiveness of environmental simulation modeling and in justifying its
continued use.

1.8 Basic Environmental Simulation Concepts, Techniques, and Procedures

The remainder of this technical note consists of a description of key con-
cepts in statistics and simulation, followed by a description of USAFETAC's moust
basic and most generally useful environmental simulation models:
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* Single-station, Single-variable Ornstein-Uhlenbeck Model (V1S1)
(Chapter 3, Basic Single-station Models)

¢ single-station, Two-variable Ornstein-Uhlenbeck Model (V2S1)
(Chapter 3, Basic Single-station Models)

e Multivariate Triangular Matrix Model (MULTRI)
(Chapter 4, Multi-parameter/Multi-station Models)
(Chapter 5, Modeling Joint Sky Cover Distributions)

¢ Two-dimensional Field Simulation Model (2DFLD)
(Chapter 6, A Model for the Simulation of Gridded Fields)

14

N WS

I D

e

s




Vel T A

'
L
[
r

4

n

1

Ko
9

|

Chapter 2

BASIC CONCEPTS IN ENVIRONMENTAL SIMULATION MODELING

2.1 Uncertainty in Science

Although many scientific problems are solved deterministically, as if the
scientist could predict the outcomes of his experiments with certainty, neverthe-
less the "real world" of science is based on and has come to terms with uncer-
tainty or indeterminancy.

For many real-world problems in science, solutions cannot be stated determin-
istically, or, what is more often the case, the deterministic solution is only an
approximation to the complete solution. In many cases, deterministic solutions
represent the expected value of the true solution or even worse, just one of a
spectrum of possible values constituting the true solution.

Circumstances such as these prevail widely in studies of distinctly random
processes, i.e., processes whose outcomes are uncertain, or processes having a
number of possible outcomes, each with its own probability. Examples arise from
the study of molecular motion, atomic decay, and other physical processes whose
character is inherently statistical or random.

Uncertainty or indeterminacy in science is not restricted to the small world
of atoms and molecules but rather extends itself to much larger phenomena s.cu as
atmospheric turbulence, which must be treated probabilistically, and even onward
to the bulk parameters of the earth's atmosphere at large, such as temperature,
density, and pressure. In the final analysis, the definitions of these bulk var-
iables are inherently statistical, being based on the fleeting presence and mo-
tion of molecules in the sampling volume.

I1f one could station oneself inconspicuously as an ever-so-small floor walker
in such a sampling volume, then one would see at one time a few molecules in the
volume and at other times many; some moving slowly, others moving fast; at times
colliding, and at other times not. Lucretius said it best more than 50 years
before the birth of Christ

... Nor did they bargain sooth to say what motions each should
assume but because many in number and shifting about in many ways
throughout the universe, they are driven and tormented by blows
during infinite past. After trying motions and unions of every
kind, at length they fall into arrangements such as those out of
which this our sum of things has been formed....

De Rerum Naturae
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Lucretius' final point is his most important one. When individually unpie-
dictable events such as molecular collisions, turbulent eddy motions, cr "fair"
coin tosses are repeated at length, there usually emerges some form of rcgularity
or appears some aggregate result, such as temperature, a cascade of eneigy, or a
probability of 1/2.

The i1dea of probability is at the heart of the concept of a random process,
because there is uncertainty in the outcome of such a process, and each outcome
has an associated probability.

There 1is a physical/mathematical 1link between deterministic problems and
random processes. In many cases, it is possible to write down deterministic
problems in terms of partial differential equations that yield a distribution
function for the probabilities associated with the process. As it turns out, the
partial differential equation for the distribution function is the same as the
partial differential equation that would be given in a deterministic statement of
the phenomenon (Lin and Segel, 1974).

In fact, physical processes that differ from each other greatly in detail
-- such as Brownian motion, heat conduction and diffusion of one gas through
another -- are all described in the limit or in bulk by the same partiai differ-
ential equation.

It is frequently the case in science that a given problem can be stated
either deterministically or probabilistically, depending on the phenomena being
studied or the sort of analysis being conducted. If the element of uncertainty
or incompleteness of information is high, with many other partially known factors
contributing to the outcome, then the process might better be considered random
rather than deterministic. Similarly, if a slight change in these contributing
factors or initial conditions could potentially lead to a large change in the
final outcome, then this sensitivity of the problem also argues for 2 random
process treatment.

2.2 Uncertainty in Meteorology

2.2.1 Nonlinear Interactions Make the Atmosphere a Continuum. The atmocaphere is
a continuum in which every scale of motion affects every other scale thiough the
nonlinearity of the governing equations of motion. Every flap of a gu!l's wing
anvvhere on the planet must affect, however weakly, the motion of every molecule
of air 1in our atmosphere. Small eddies and turbulent flows provide an important

v
kinetic energy dissipation mechanism to the large-scale flow, and without this
sitk of energy, the larger scale would necessarily behave differently than it
does. Similarly, the latent heat released by mesoscale convective processes acte
A< an waportant enerqgy source for the larger scale flow and -- at leest in the

L ] )Jgregate -- affects that larger flow. The spectra of time and space <coles for

16
L J
H ks T T T e TR W TN N SRRy SR R ey, ey S N TR o o o

s

PO P R Y S S

el il




-

.w- L e 2 L £ An e o e ies 1 o ey o) ,y.vr-ﬁw‘——r.r m—v b SIS b i Gun SN b g D asht St shin AN S SRR GNE AN 4
3 YT " " "
A a S . | -

YT vy

Lauh an una 4

2

4

Ay 4

atmospheric phenomena are continuous: motions and phenomena exist at all scales,
and each scale interacts with the others in complicated ways not fully
understood.

2.2.2 The Predictability of the Atmosphere is Bounded. Modern studies of the
predictability of atmospheric motion have shown a sensitivity problem with the
governing equations of motion. Flows starting from only slightly different ini-
tial conditions can quickly evolve to radically different final states. The
studies of Lorentz have shown a limit to atmospheric predictability of about
2 weeks because of this sensitivity of the governing equations to minor initiali-
zation differences. The field of dynamic meteorology is thus confronted with the
need to know how predictions of the atmospheric flow will be affected by slight
changes in initial values, boundary values, and simplifications used in formulat-
ing the prediction systems themselves. 1In a practical sense, the predictability
argument is related to the way in which the initial state of the atmosphere is
observed and reported. For the most part, weather observations are taken at the

synoptic scale. Phenomena whose characteristic size is smaller or whose lifetime
is shorter than this scale are imperfectly described. These imperfections in the

description of the initial state may take a long time to affect the flow, but
eventually they will become important. As a result, weather predictions based on
imperfect initial observations or simplified physical equations will eventually
fail.

2.2.3 Atmosphere Not in Thermodynamic Equilibrium. If the atmosphere were in
thermodynamic equilibrium, the air over the whole planet from its surface to the
top of the atmosphere would be as still as on the sultriest day of summer. nor
would a single drop of life-giving rain fall anywhere on earth.

It is the nonequilibrium conditions in meteorology that cause the weather,
namely the thermodynamically unbalanced system, the ageostrophic wind, the non-
hydrostatically balanced, vertically accelerated motion field. Yet the meteorol-
ogist's weather forecasting models bring out these nonequilibrium states poorly,
1f at all. Even the analysis models, which purport to describe the observed or
initial state of the atmosphere, work hard to smooth out the nonequilibrium fea-
tures, as these features destablize the forecasting models.

All of this contributes to an underlying uncertainty about not only the
future state of the atmosphere but also its present state. This uncertainty 13
most apparent in the weather variables of critical operational interest, such as
sky cover, ceiling, and visibility.

2.2.4 Variables of Most Interest in Applied Military Climatology Are subject to
Imprrtant Meso- and Microscale Influences. The variables of great-st intercst in
applied military climatology -- such as ceiling, visibility, sky —over, boundary
layer winds, and precipitation -- are subject to important, nonegailibrium meso-
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and microscale influences that are beneath the resolution of today's weather
cbserving, analysis, and forecasting systems.

2.2.5 The Climate May Be Changing. Paleoclimatological records show that the
earth's climate has been subject to significantly large changes in the past.
There is no reason to believe that the climate will not change in the future, if

indeed it is not already changing. Nevertheless, the usual assumption in meteor-
ological and climatological modeling is that the climate does not change. The
science of climate change and climate prediction remains in its infancy among
meteorologists. There is very little understanding of how and why the climate
has changed in the past and almost no ability to predict when such changes will
occur in the future and how great a change is to be expected.

2.2.6 Consequences. The consequence of these circumstances is that, for many
purposes, weather is better described as a random process than as a deterministic
one. Norbert Wiener, the noted American mathematician, stated the case well

In meteorology, the number of particles concerned is so enormous
that an accurate record of their initial positions and velocities is
utterly impossible; and if this record were actually made, and their
future positions and velocities computed, we should have nothing but an
impenetrable mass of figures which would need a radical reinterpretation
before it could be of any service to us. The terms “cloud," "tempera-
ture," “turbulence," etc., are all terms referring not to one single
physical situation but to a distribution of possible situations of which
only one actual case is realized. 1If all the readings of all the meteor-
ological stations on earth were simultaneously taken, they would not give
a billionth part of the data necessary to characterize the actual state
of the atmosphere from a Newtonian point of view. They would give only
certain constants consistent with an inflnlty of different atmospheres,
and at most, together with certain a priori assumptions, capable of giv-
ing us a probability distribution, a measure, over the set of possible
atmospheres. Using the Newtonian laws, or any other system of causal
laws whatever, all we can predict at any future time is a probability
distribution of the constants of the system, and even this predictability
fades out with the increase of time.

-- Cybernetics, 1948

In this report, the weather is treated as a random process, and certain
weather variables such as cloud cover, ceiling, and visibility are treated as
randoin_variables.

2.3 Random Variable

2.3.1 General. Let the set $ represent the sample space of some experiment.
The outcomes of the experiment constitute the sample points of S. Examples might
be the number of heads in a series of coin tosses, the lifetime in hcurs of an
electronic component, or the meteorological visibility in statute miles. These
are all examples of random variables, i.e., functions whose value depends on the

outcome of one or more chance events., The key point being made is that a random
var:able is not really a variable at all; it is a function.
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Definition: A random variable X on a sample space S is a function or
mapping from S into the set R of real numbers such that the preimage
of every interval of R is an event of S.

The notions of image and preimage come from the underlying definition of a
function. Let S and T be arbitrary sets with elements s and t

s &S (1)

teT (2)
In addition, suppose that for each s ¢ S there corresponds a unique element t ¢ T
s(l) s(2)

s(3) s(n)

I | |
M | |
[ ] |
I | |

t(1) t(2) t(3) t(n)

The collection f of such mappings from S into T is called a function, written f:
S ~ T. 1In functional notation, when we write

f(s) = t (3)
we are representing the element of T that the function f assigns to s &« S. That
element is called the image of s under f or the value of the f at s. Let A be a
subset of set S; then the image £(A) is defined by

f(A) = {f(s): s ¢ A} (4)

where the elements of the set f(A) are defined by the expression in braces {-}.
Correspondingly, if B is a subset of T, then the preimage f !(B) is defined by

f-1(B) = {s: f(s) ¢ B} (5)
In other words, f(A) consists of the images of points in A, and f !(B) consists

of those points whose images are in B. It is useful to note that the set f(S) of
all the image points of S is called the image set or range of the function f.

A random variable X is the function X having the following properties

(1) The range of X is the set R of real numbers.5

5 The range of a function is the set of values that the function takes on.
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(2) The domain of X is contained in a set T ceritain of whose subsets corre-
spond to events for which there is associated a probability function or
distribution function.®

(3) For each real number X, the set of all t ¢ T for which X(t) < x is an
event, i.e., has a probability, namely the probability that X < x.

The shorthand notation Pr(X = a) can be used to represent the "probability
that X maps into a" or Pr(a < X < b) for the "probability that X maps into the
closed interval [a,b]"

Pr(X = a) = Pr({s € S: X(s) = a}) (6)

Pr(a

1A

X < b) = Pr({s € §: a < X(s) < b}) (7)

A random variable can be either discrete or continuous. If discrete, the
function X(S) can take on only a finite number of values Xyo Xy, Xgp o -ee, X with
each of which there is an associated non-negative probability Pr(X = X;), the sum
of all of which is unity. An example of a discrete random variable is the number
of spots thrown with one die, which can take on the values 1, 2, 3, 4, 5, or 6,
each of which has a probability of 1/6. 1If continuous, the function X(S) can
take on any value in the set of real numbers R whereupon it becomes impossible to
conceive of the probability of any particular value of X, and one must consider
the probability of an interval of X. An example of a continuous random variable
is the daily total rainfall.

In the discussion below, X will be a random variable, and x will be a par-
ticular value or possible value of X.

2.3.2 Probability Function of a Discrete Random Variable. Let X be a random
variable on a sample space S with a finite or discrete image set, say

X(S) = {X1, X2, ..., Xy,

.t xn_ll xn} (8)

In other words, X is a real-valued, discrete random variable that takes on one of
a finite number n of possible values X;. X(S) can be mapped into probability
space by defining the probability function (also called the distribution) Pr(X =

xl) = Px(xi) as the probability that X will take on the particular value X, -

6 The domain of a function is the set of values that the independent varizble
takes on.
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In the case of X representing the number of spots thrown from a single die,
the probability function is as follows

X I
1 Nl
%

Px(xi)

1

]
|
1
I

1/6 1/6

The cumulative distribution function Fx(x) for a discrete random variable is
the sum of the probabilities of all x4 that are less than or equal to the
threshold value x, i.e.,

Fy(x) = Pr(x; < X) = I Py(x,) (9)

.<
X <x

Since discrete random variables are not used in the simulation models repre-
sented in this report, no further discussion of the discrete random variables and
its probability functions is given here,.

2.3.3 Probability Density Function of a Continuous Random Variable. Now iet
X(S) be a random variable on a sample space S with a continuous image set,
i.e., the image set X(S) is a continuum of numbers such as the interval set {a <
X < b}. Since the set {a ¢ X < b} is an event in X, it is possible to speak of
the probability Pr(a < X < b). This can be done through the mechanism of the
integral calculus by introducing the concept of a probability density function,
f

X"

Assume that a piecewise continuous function fx exists such that the ,1ulba-
bility Pr(a < X < b) is equal to the area under the graph of fy between x = a
and x = b, i.e.,

Pr(a< X< b) = [P £ (x) ax (10)

where X is the random variable and x is a dummy variable. The function fx is
called a probability density function of X and has "units" of "probability per
unit X." The probability density function f satisfies the conditions that (1) £
is non-negative and (2) the total area under its graph is unity, i.e.,

J fx(x) dx = 1 (11)
R

The cumulative distribution function Fx of the continuous random variable X
is defined as the probability that X will take on some value less than or equal
to a threshold value x, i.e.,

Fy(x) = Pr(X < x) = * £(t) dt ()

-
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where t is a dummy variable. The cumulative distribution function satisfies the
conditions that (1) Fy is monotonically increasing, i.e.,

Fx(a) < Fx(b) for a < b (13)

and (2) the lower limit of Fy is zero, i.e.,

[
(=]

lim Fx(x) =

X+ =®

(14)

and (3) the upper limit of Fy is unity, i.e.,

)|
[

lim Fx(x) = (15)

X> -

It is apparent that the probability density function fx of a continuous
random variable X is the derivation of the cumulative distribution function Fx,

i.e.,
fx(x) = de/dx >0 (16)

Note the relationship between probability and cumulative probability

Pr(a < X < b) = Pr(X < b) - Pr(X < a) (17)
= P g(t) at - 2 £(t) 4t (18)
= Fy(b) ~ Fy(a) (19)

The probability that a continuous random variable X takes on a single speci-
fied value 4 is zero, as can be seen from this analysis

Pr(X=d) = gd f(t) dt = Fx(d) - Fx(d) =0 (20)

Since the probability that a continuous random variable takes on a particular
value is zero,

Pr(a < X < b) = Pr(a < X < b) = Pr(a < X <Db) =Pr(a <X <b) {(21)

and

Pr(X < x) Pr(x < x) (22)

2.3.4 Functions of a Random Variable. Every function of a random variable is
also a random variable. If X is a random variable, then
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Z = g(X) ' (23)
is a random variable as well.

2.3.5 Joint Probabilities of Continuous Random Variables. Let X and Y be con-
tinuous random variables whose joint probability density function is fxy(x,y).
For these variables, the cumulative probability distribution is Fyy(x.¥). The
two are related by

2
fyy(X.¥) = 5252 Fyy(x.¥) (24)

and the joint cumulative distribution function is

Fyy(X,¥) = Pr(X < x and Y < y) =_£‘_£Y fuy(s.t) ds at (25)

2.3.6 Marginal Distributions of Continuous Random Variables. A marginal proba-
bility distribution is the probability distribution of one variable regardless of
the value of the other variable(s).

If X and Y are continuous random variables whose joint probability density
function is fxy(x,y), and if one is interested only in the behavior of one of the
variables, say X, then one can obtain fx(x), the marginal probability density
function of X, by integrating the joint density function over all possible values
of Y

o o
fx(x) —_£ fXY(x,s) ds (26)
Marginal Y-integrated Joint
Probability = Probability Density
Density of X of X and Y

The cumulative marginal distribution is given by

Fx(x) = ny(x,w) =Pr(X <xand Y ¢ =) (27)
= Pr(X < x) (28)
- (X (@
—_i _£ fxy(s,t) ds dt (29)
= X £.(s) ds (30)

2.3.7 Conditional Probabilities of Continuous Random Variables. A conditional
probability distribution is the distribution of one variable with restrictions or
conditions placed on the second variable. For example, Pr(B|A) is the conditicn-
al probability of event B occurring given that event A has occurred or is occur-
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ring. Conditional probabilities can be expressed in terms of joint probabilities
as 1ollows

Pr(B|A) = Pr(A n B) / Pr(A) (31)

where n represents the intersection of events A and B, and therefore, Pr(A n B)
is the joint probability of A and B.

Consider two continuous random variables X and Y whose joint probhability
density is fXY(x'Y)‘ It might be of interest to know the conditional distri-
bution of X given that Y is in some region R, e.g., R: ¥; < Y < ¥2.

Following Equation (31) above, but using probability densities instead of
probabilities, one can write

Probability Density(x|Y in R) =

Y-integrated Joint Probability Density (X n Y in R) (32)
Marginal Probability Density(Y in R)

Notation for the probability density of x given Y in R is
fle(le in R)

The marginal probability density of Y in R is obtained by integrating the joint
density IXY(x,y) over all X, i.e.,

-]

I f fxy(s't) ds 4t = | fY(t) dat (33)
-00 R R

The Y-integrated joint probability density of X is

J f.(x,t) dt
R XY

The equation for the conditional probability density of X given Y in R is thus

Y(x!‘l in R) = (34)

(35)

sometimes it is desired to find the conditional probability density of X
given that Y is equal to some particular value Yo« In other words, the region R

E. ] fr Exy(X/t) at
X =
7 ] fu(s,t) ds dt
e s
L = J-R fo(x’t) dt
® J'R fY(t) dt
I
:
.‘
E reduces to the point Yo and an argqument in the limit leads to the result,
i.’
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fx p(X1¥=Yy) = fyy(x,¥4) / £4(yg) (36)

The conditional cumulative probability distribution function of X given that Y
has taken on the particular value Yo is therefore

Fy ¢(X/¥) = PE(X < xI¥ = yg) = I fxy(81Y = ¥g) ds (37)

= J% £,(8,74) / fyly,) ds (38)

2.3.8 Independence. In general, the conditional probability density function of
X given Y is a function of the value y taken on by Y. If the random variables X
and Y are independent, then the probability of X does not depend on Y, and the
conditional probability density of X given Y reduces to the marginal density of X
alone, i.e.,

£x )y (X1¥) = £x(x) (39)

Furthermore, in the case of independent X and Y, the joint probability densi-
ty of X and Y is equal to the product of the marginal densities

fxy (%) = £3(x) £u(y) (ac)

2.3.9 Expectation. Let X be a continuous random variable whose probability den-
sity function is fx(x). Let g be a real valued function of X. Then the expecta-
tion or expected value of the function g is defined as

E{g(x)] = { g(x) fy(x) dx (41)

= 17 g(x)fy(x) ax (42)

where E{-] is called the expectation operator, and R is the set of real numbers.

In the case where
g(x) = X (43)

the expectation of X is defined

E[X] = [® x £(x) dx (44)

One important property of the expectation operator is that the expectation of
a linear function of X is a linear function of the expectation of X. 7This can be
seen by considering

g(X) = a + bX (45)
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where a and b are constants. Taking the expectation of g(X) yields

E[g(X)] = J¥ {a + bX] fy(x) dx (46)
= a % £,(x) dx + b 5 x £,(x) dx (47)

-t -0
= a + b E[X] (48)

because fw fx(x) dx = 1. Thus,

-0

E[a + bX] = a + bE[X] (49)
leading to the result
Efa] = a (50)
or the expectation of a constant is a constant.

Let X and Y be continuous random variables whose joint probability density
function is fxy(x,y). Let g(X,Y) be a function of the two random variables.
Then the expectation of the function g is

Elg(x,¥)] = 7 7 g(x,¥) fyy(x,y) dx dy (51)

-0 =00

2.3.10 cCorrelation. Correlation is a measure of association, not of causation.
Loosely, we can say that correlation, and in particular the various correlation
"coefficients," are measures of relatedness among variables. But statistical
relatedness does not necessarily imply physical causation.

In meteorology, correlations can sometimes arise from causal relationships
and sometimes from other sources such as covariation, biased data, and artificiel
correlation introduced by using derived or functionally related variables in the
analysis at hand. As an example of covariation in meteorology, one can cite the
high positive correlation between the low-level moisture in Georgia and the oc-
currence of afternoon thunderstorms. There is also a high positive correlation
between low-level moisture and morning fog. These two correlations, for which
physical causation could be strongly argued, give rise to another correlation:
between the occurrence of fog and the occurrence of thunderstorms. But does that
correiation, however strong it may be, imply that morning fog causes afternoon
thunderstorms, or that afternoon thunderstorms cause the previous morning's fogv
Probably not. The relation between fog and thunderstorms is through a third var-
rable (often called the Ycovariate") common to both. In this case, the covariate
is lcw-level moisture, and the "true" relationship between morning fog and after-
noon thunderstorms can only be estimated by isolating the role played by the co-
variate, low-level moisture.
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Correlation, then, is a way of expressing the association between variables,
an association that need not be causal in nature.

So far, our ideas about correlation have been expressed qualitatively. In
statistics, however, the '"correlation coefficient" or sometimes just the “corre-
lation" is a quantitative concept, capable of being expressed in numbers that
describe the degree of relatedness or association between variables. In earlier
sections of this chapter, there is scale for measuring probability; similarly, a
scale for measuring correlation is desirable. Wwhen there is no relationship be-
tween variables, this statistical measure ought to approach zero. The measure of
correlation should approach unity when the relationship between variables is very
high. Wwhile there is no such thing as negative probability, it is easy to have a
negative correlation. For example, there may be two variables, A and B, that
increase together (positive correlation), or two variables, C and D, one of which
increases as the other decreases (negative correlation).

A general definition of correlation can be set down: two measurable charac-
teristics, A and B, are said to be correlated when, with different values x of A,
the same value y of B is not equally likely to be associated. In other words,
certain values of B are more likely to occur with the value x than others. If
they were not, correlation would be absent. Correlation would be perfect if for
every value of A the same value of B occurred.

The correlation coefficient measures the relative importance of the relation-
ship between two variables in a nondimensional sense, i.e., it does not depend
upon any arbitrary choice of units by which the original variables were mea-urcd.
The concept of a theoretical population correlation coefficient can be developed
along the following lines.

Let X and Y be two random variables on a sample space S such that

X(s)

{xll le sy xn} (52)

Y(S)

{Y1, Y2/ <« Yn} (53)

with joint probability density function fxy(x,y). Then the covariance of X and
Y, denoted by Cov(X,Y), is defined by

Cov(X,Y) = E[(X = puy)(Y = uy)] (54)
= E(XY) - E(X)E(Y) (-5)
= E(XY) - HyVy (5¢)
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where Px is the mean of X and Hy is the mean of Y. Assuming a linealr relation-
ship between the random variables X and Y results in the following express:on for
the theoretical linear correlation coefficient between X and Y

Pyy = 9§XL§LXI {Linear) (57)
XY
where Oy is the standard deviation of X and Oy the standard deviation of Y.

Equation (57) is an expression for the theoretical linear correlation coeffi-
cient. For problems requiring sampling of actual data, it is not the theoietical
correlation coefficient p but rather the sample correlation coefficient r that is
of interest.

An expression for the sample correlation coefficient r can be developed by

XY
considering a set of (X,Y) data pairs, where Y is considered a function of X

; = f£(X) (General) (58)

Here Y are actual values of the dependent variable, and Y are the Y-values pre-
dicted by the function f. If £ is a linear function, then Equation (58) particu-
larizes to

Y = ap + a;X (Linear) (59)

The linear function f in one independent variable may not perfectly desciibe
the behavior of the Y-data. There may, for example, be independent variables
cther than X that are important in piedicting Y, or there may be a nonlinpar de-
pendence involved. The scatter of actual Y-values about the prediction Y given
by Equation (59) can be described in terms of the standard error of the estimate

of Y on X, given by

Syx = JZ[(Y - Q)Z] / N (General)} (60)

which applies to both linear and nonlinear associations of the form shown 1n
Equation (58). If the linear association of Equation (59) is used, then Equa-
tion (6() becomes

w2 -
iY gniY a;zXxy (Linear) (61}

a measure of the standard error of the linear estimate of Y on X.
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The total variation of Y is defined as (Y -~ Y)2, the sum of the squares of
the deviations of Y from its mean Y. That total variation of Y can be parti-
tioned into an unexplained variance (Y - Y)2 and an explained variance ¥(Y - ¥)?

(Y - ¥)2 = (Y - Y)? + (Y - ¥)2 (Ceneral) (62)
Total Unexplained Explained
Variation Variation Variation

-~

where Y is an estimated value of Y based on the value of X and the functional
relationship expressed by Equations (58) and (59). The first term on the right
of Equation (62) is called the "unexplained" variation because the deviations
behave in an apparently random or unpredictable manner. The second term on the
right of Equation (62) is called the "explained" variation because the deviations
involved have a definite pattern.

The sample correlation coefficient vy between the variables X and Y is given
by

. . _ o2
Ty = ¢ Explained Variation _ , [Z(Y - Y) (General) (63)
Total Variation (Y - ¥)2

which varies between -1 (perfect negative correlation) and +1 (perfect positive
correlation) and is nondimensional and independent of the origin. The * sign is
used to introduce the sign of the correlation. Equation (63) is a perfectly
general expression for the correlation coefficient and can be used for linear or
nonlinear correlation. Using Equation (60) in (62), and making use of t'e fact
that the standard deviation of Y is

s, = J[E(Y - 1)2] / N (64)

permits Equation (63) to be written as

Tyy = J(SY2 - Ssz) / SY2 (General) (65)

Like Equation (63), Equation (65) is perfectly general and can he used for uon-
linear as well as linear correlation. If Y is computed from a nonlinear function
{Equation 58), and the t signs are omitted, then Equations (63) and (65) desmiibe
nonlinear correlation.

I(X - X3(Y - ¥Y)

r (Lineay) (66)

Xy =

J3(X-R)? J3(Y-Y)2

where the covariance of X and Y is
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o 2(X-X)(¥-¥)
= N (67)

XY

and the standard deviations are given by Equation (64) for Sy and by its analoque
for Sy-

I1f Equations (67), (64), and the analogue mentioned immediately above are
used in Equation (66), the result is

r = = (Linear) (68)

which parallels Equation (57) for the linear population correlation Pxy*

The interpretation attached to the sample correlation coefficient Ty depends
on the functional form introduced in Equation (58) for the association between
the two variables X and Y. If a linear association is assumed, then Iy is cal-
culated from Equation (66) and measures the extent to which a linear dependence
of Y on X explains the variation of Y data, and rXY2 becomes the fraction of the
total variation of Y explained by a linear dependence on X. If a nonlinear asso-
ciation is used for Equation (58), then rXY2 -- which can then no longer be cal-
culated from Equation (66) -- is the fraction of the total variation of Y ex-
plained by a particular nonlinear association with X. Just because there is no
linear correlation between the variables X and Y does not mean there is no corre-
lation at all. There may in fact be a high nonlinear correlation between the

variables.

The stochastic process models developed in this report and applied to the
task c¢f environmental simulation modeling employ linear correlation methods ex-
clusively. Therefore, throughout the remainder of this report, all references to
correlation will refer to linear correlation.

USAFETAC uses two methods most frequently when calculating linear correlation
coefficients: (1) the Pearson product moment (PPM) formula (Equation 66 above),
and (2) the tetrachoric method.

The Pearson product-moment (PPM) formula for calculating linear correlation
1s basically Equation (66). That form of the equation is computationally ineffi-
cient because it requires the means to be known in advance (from an ea:lier pass
through the data). Algebraic manipulation of Equation (66) produces a computa-
tionally efficient PPM formula

NIXY - (3X)(3Y) (69)

Txy

J[Nzxz-(ZX)2] J{Nzyz-(zY)Z]
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The correlation coefficient Tyy is symmetrical in X and Y. This symmetry
indicates that the coefficient of correlation does not distinguish between the
dependent and the independent variable. It permits conclusions about the exist-
ence of a linear relationship between two variables but not about which "depends"
on the other. Although it is relatively easy to implement on a computer,
Pearsons' method has the inherent disadvantage of requiring the raw data to be
available for the computations. The tetrachoric method offers the advantage of
being able to use data that has already been categorized.

Any two variables can be reduced to a two-by-two table )
X
Above Below
X
4
A | | T ’
B | A | B |
R ! |
Y Y T
B C | I
L | Cc | D ! .
W I I L )
.-i
where A, B, C, and D are the number of cases above or below the critical, or -
threshold wvalues, (Xt and Yt) of the respective variables. An approximation to ]
the tetrachoric correlation coefficient (rt) can be obtained by Equation (70)
wr (A
n JAD - JBC 1
r, = sin [ - ——— ] {70)
2 JAD + {BC
This equation is accurate where (A + B)/N and (A + C)/N are close to 0.5 p ]
{(where N is the total number of cases), but may contain sizable error for values y
near one or zero. Since there is no simple exact formula for calculating Iy, an
algorithm based on the false position method (Acton, 1970) is used by "“AFETAC.
The coefficient is evaluated at two initial guess values, and linear interpola-
tion is used to find a better estimate. The quantity r, behaves iu a manner sim- .
ilar to an ordinary linear correlation coefficient, but the exact numerical value )
1s not completely comparable. The value of r, varies from -1 to +l, giving zero
for no relation, but the sign depends in a rather arbitrary manner on the ar-
rangement of the contingency table.
. »
2.4 Stochastic Processes 4
¢ . N . . .
Parzen (1962) points out that the term stochastic is of Greek origin, that in
17th century English the word meant '"to conjecture" or “to aim at & wmark," and
! that. today the word has come to mean "pertaining to chance." In modern practice,
. | J
F' the words stochastic, random, and chance are used as synonyms. )
1
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A stochastic process or random process is a succession of values taken on by

a random variable X(t) as a function of the parameter t ¢ T. Tue set T is called
the index set of the process. Random processes are controlled by probabilistic
laws. In many applications, the index parameter t of the stochastic process rep-
resents time but also can be used as some sort of event sequence number.

From the point of view of mathematical statistics, a stochastic process is
best defined as the collection

{X(t), t e T}

of random variables X(t) all defined on the same sample (probability) space. No
restriction is placed on the nature of the index set T, but two important cases
arise from the nature of T

e Discrete Parameter Process: T 1is a countable set T = {0, 1, 12, ...}
or T=4{0,1, 2, ...}.

e Continuous Parameter Process: T 1is an uncountable subset of the set R
of real numbers, so T = {t: -» < t < ®} or T = {t: > 0}.

A time series is a finite realization of a stochastic process where the index
parameter t represents time. A time series can be produced either in the form of
output from a model or in the form of experimental data. A time series, in other
words, 1is a sequence of values of a random variable collected over discrete or
continuous time.

In a stochastic process model, a random variable q, can be formed as the sum
4y = dt +oey (71)

of a deterministic part dt and a random or stochastic part £y Typically, the
deterministic part contains the contribution of preceeding values deoyr Qenze
etc., in the series but may also have terms such as g representing the mean valuve
or q representing a secular or long-term trend in values. The random part Ly of
the solution introduces noise or uncertainty into the process being modeled;
otherwise, the process would not be random at all. As shown in Equation (71),
there is no restriction on the form of Epr but in practice it tends to be either
(1) a number drawn at random from a population distributed uniformly over the
interval [0,1] with mean of 1/2 and variance of 1/12, or (2) a number drawn at
random from a population distributed normally over the interval (-«,») with mean
ot zero and variance of 1, i.e., N(0,1). That is to say, te is either a uniform
random number or a normal random number.
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If the stochastic process shown in Equation (71) above 1is further assumed to
be covariance-stationary, then neither the mean(s) nor the variance(s) of the
quantit(ies) being simulated are dependent on the index parameter t (i.e., they
do not change with time if t represents time), and the covariance between two
successive values

de and 9e+at

i.e., C°v(qt’qt+At) becomes a function only of the separation At between the two,
and does not depend on the absolute values of the index parameter t. Also, the
correlation p between successive values of q becomes dependent only on the sepa-
ration At, i.e.,

B | Cov(gy.Qeepg) | CoV(do,g,y) ,
Pt,t+at © Pat = (72)
2
Yor" Taat 9

2 = o2 = 2
{because oy o Ctent ).

Applying the covariance-stationary assumption to the process of Equation (71)
leads to the linear autoregressive (AR) relation,

Qe = Bo * B1Qy_y * B2Qp o * oo * B Qe t &y (73)

where the Bi are the autoregression coefficients, and the €y is an independent
error term. In this formulation, the deterministic part of the solution deponds
on the lag-one value Qe q’ the lag-two value Qp_p’ etc., and the random part of
the solution is now an independent error term with mean of zero.

The AR process (Equation 73) can be further restricted by applying the first-
order Markovian assumption that the value 9 of the process at t depends on the
previous value Y alone, not on how the process reached 9y _q- Then the model
becomes

qt = Bo *+ qut-l + 5t (74)

an autoregressive (AR), first-order Markov model. For such models, the serial
correlation p (the correlation in the t-dimension) follows an exponential decay
law (see Appendix C)

- At .
pAt-pl (:v)

where p, is the serial correlation for lag At = 1. Eguation (7%) shows that for
a Markov model, realizations spaced At units apart will have correlation p,AL
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In order to estimate the parameters Bo and B, and to specify the form of the
error term €4 it is helpful to assume that q. and g;.; are derived jointly from
a bivariate normal population with means

Hy = ey = (76)

and variances

z = ? =02 (77)

Ot O¢-1

This causes the regression function of g, on q,_; to be linear and homoscedastic
(of constant variance). The conditional expectation of q; given . N is

E(qtht-l) =4t D(qt_l - IJ) (78)
where p is the correlation between q, and P and where
Var(qylg,_;) = o2(1 - p?) (79)
which is independent of Qy_q-
As shown in almost any elementary statistics text, the standard normal vari-

able (equivalent normal deviate) z, corresponding to the normally distributed raw
variable w with mean (expected value) W, and standard deviation o, is

W~y
W
2 = — ¥ (80)
w Ow

Hence, the value of the raw variable w can be calculated from
wo=pot 0%y (81)

Using qtht_l for w in Equation (81), and substituting from Equation (78) for g
and frcm Equation (79) for oy yields

w

g =M+ p(g_y - H) + o/TI-p? Zq (82)

vhere zq is a random normal number.
Comparing Equation (82) with (74) shows that

u(l - p) ¢

fi

8,

B1 = p (cd)

"~
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Equation (82) can be rearranged and transformed into mean-deviation form
using

Vi) T 9y T H (86)

with the result,
Ve = pvt_1 + oy = pZ q (87)

wvhere n, like zg is simply a random normal number.

Equations (71), (73), and (74), (82), and (87) present a spectrum of in-
creasingly more specific and more restrictive stochastic process models. Equa-
tion (71) is a very general form that can describe almost any stochastic process
model. Egquation (73) represents a covariance-stationary, linear autoregressive
(AR) process. Finally, Equations (74), (82), and (87) further require the first-
order Markov assumption be made and normally distributed random variables used.
Equations (82) and (87) require that the variables 9 and Qg1 ©OF V¢ and Ve be
jointly distributed according to the bivariate normal probability distribution.
Equation (87) is the Ornstein-Uhlenbeck stochastic process model that forms the
basis for much of the present work in environmental simulation modeling.

2.5 Markov Processes

2.5.1 Introduction. In classical meteorology, just as in classical pnysics,
deterministic laws are set forth in the form of initial value problems, in which,
given the state of the atmosphere at some initial time t;, it is possible to
deduce its state at a later time t;. In this formulation, remembrance of the
state of the atmosphere at any time prior to ty is irrelevant to the gquestion of
deducing the state at t;. Numerical weather prediction models, which express the
evolution of meteorological mass and motion fields in terms of classical deter-
ministic physical principles, are "memoryless" initial value problems of this
sort.

Just as in physics, where phenomena such as radioactive decay and Brownian
motion have had to be described probabilistically, so also in meteorclogy have
been described such smaller scale phenomena as turbulent motions and hourly
changes in ceiling, visibility, sky cover, and wind speed at a point. For physi-
cal quantities whose behavior 1is best treated in terms of probabilistic laws
rather than deterministic ones, there exists a "memoryless" formulation analoqgous
to the initial value problem of classical mathematical physics. This is the so
called first-order Markov process, in which the probability that a physical sys-
tem will be in state x,; at time t; may be deduced strictly from knowledge of the
system's state x, at time t, and does not depend on the history of the systeuw
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before t,, i.e., the system's state at t; depends only on the state at t;, and not
on the path by which the state at t, was reached.

Markov processes are classified according to (1) the nature of the state
space {X} of the process, and, (2) the nature of the index set T or parameter t
of the process.

2.5.2 Discrete-state vs. Continuous-state Markov Processes. In both the cases
presented above, the state space {X} of the process was taken as discrete valued,
i.e., {X} = {xk, k =1, 2, ... K}. Markov processes whose state space is dis-
crete valued are called Markov chains. It is also possible to describe stochas-
tic processes in general and Markov processes in particular whose state space {X}
is continuous. In such a continuous case, a real number x is said to be a possi-
ble value or state of the stochastic process {X(t)} if there exists a time t such
that the probability,

Pr{x~h < X(t) { x+h}
is positive for every h > 0.

2.5.3 Discrete-parameter vs. Continuous-parameter Markov Processes. Mathemati-
cally, a Markov process can be defined as either a discrete parameter stochastic
process or a continuous parameter stochastic process, depending on whether its
index parameter t is discrete or continuous. A discrete parameter stochastic
process can be expressed as the set of random variables, {X(t), t = t,, t;, t;,

. tn}. A continuous parameter stochastic process can be expressed as the set
{X(t), t 2 0}. 1In a first-order, discrete parameter Markov process, the condi-

tional probability of X(tn) depends only on x(tn_l), the most recent known value,

i.e.,

Per(tn) S xn l X(t,) = Xt X(tz) = X2, o0 X(tn_l) = Xn_l}

= Pr{X(tn) < X, | x(tn—l) = xn_l} (88)
The discrete parameter Markov process {xn} = {X(tn)} for parameter t given by
n2m~>0 and states xj = 3 and X, = k is described by the probability mass
function,
p;(n) = Pr{Xx, = ji (89)

and the conditional probability mass function,

Pj,(m/m) = PriXy =k | Xy = Ji (20)

The function pj k(m,n) is called the transition probability function of the

Markov process.
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In the case where {X(t), t 2 0} is a continuous parameter Markov procecss,
then the process is defined for all index values t 2 s 2 0 and states j and k by
the probability mass function,

pPg(t) = Pr{X(t) = k} (91)
and the conditional probability mass function,
Pj'k(slt) = PriX(t) = k | X(s) = j} (92)

The function pj k(s,t) is again called the transition probability function of the
[
Markov process.

2.5.4 Order of the Markov Process. Strictly speaking, the "memoryless" Markov
process discussed above, in which the conditional probability of the state X(tn)
depends only on the immediately preceding state x(tn-l) is called a first-order
Markov process. It is possible to define a second-order Markov process, in which
the conditional probability of X(tn) would depend not only on X(tn_l) but also on
X(t,_,), and in which the transition probability matrices are three-dimensional.
Even higher order Markov processes can be easily conceived, if not so easily
understood and applied.

When applying Markov models to data, one of the tasks at hand is to estimate
the order of the Markov model that best fits the data.

2.5.5 Relationship to Autoregressive-Moving Average (ARMA) Models. The ¢t cf
Markov models is a subset of the very flexible family of autoregressive-moving
average (ARMA) models, sometimes called Box~-Jenkins models (Box and Jenkins,
1976). In general, an ARMA model takes the form,

P P
z = 3 ¢z, . + v, = 0.V . (93)
tel T L2, %%tein t T y5 it
Autoregres- Current Moving Aver-
sive Terms Ve age Terms
(AR) (MA)

vhere Z is a random variable with mean of zero and where the V values represent
independent, identically distributed random variables having the mnormal, or
N(0,1), distribution. Following convention, z is a particular value of the ran-
dom variable Z, and v is a particular value of V.

The model described in Equation (93) is an ARMA model of orde. (p,g), havinyg
p autoregressive (AR) and q moving average (MA) terms. If only the moving aver-
age terms are retained, the model becomes ARMA(O,q), i.e., an MA(q) model. If
only the autoregressive terms are retained, the model becomes ARMA(p,0), o:
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AR(p). AR(p) models are Markov models of order p. Consider an AR(1) model,
which must be first-order Markov

Zyp T 0z * Vv (94)
Comparing Equation (94) with the Ornstein-Uhlenbeck first-order Markov model
expressed in Eguation (87) shows that such a model is actually an AR(1l) model in
which ¢; = p and in which vy = oyI=p2 n, i.e., a special case of the ARMA(p,q)
model.

Estimating the order of an ARMA model consists in fiﬁding the values of p and
q for which the model best fits the data, which are usually in the form of a time
series. This is done by calculating the autocorrelations ry for lag k and the
partial autocorrelations $kk (see Appendix D) of the observed time series, and
using these values as guidance for how many AR and MA terms might be needed in
the eventual model. Then, based on that guidance, one actually fits recommended
ARMA(p,q) models to the data, obtaining maximum likelihood estimators of the ARMA
parameters ¢, and 6,. Finally, one uses statistical tests to determine whether
the o, and ej are significantly different from zero. In general, one's objective
is to identify the simplest ARMA model that adequately describes the data.

Eiements of the process of fitting ARMA (and especially AR(1l) or first-order
Markov) models to data are shown in the following paragraph.

2.5.6 Fitting a Markov Model to Data: An Example Using the Wind Speed. Con~
sider a physical system that obeys some probabilistic law, such as wind observa-

tions on a mountaintop. The variable X can be used to represent the out-ome of
periodic observations of the system, so x;, Xs, ..., X; represent the first,
second, and ith observations of the system. A possible sample after ten observa-
tions of wind velocity in meters per second, taken an hour apart, might be (x,,
X.. X3, X4, X5, Xg, X7, Xg, Xgo, X10) = (2, 1, 1, 3, 2, 6, 8, 7, 9, 9), as illus~

trated in Figure 1.

The order of the ARMA model that best fits the observed time series in Fig-
ure 1 1s not readily apparent from casual inspection of the information in the
figure. Many subjective arguments could plausibly be advanced, having tc do with
the apr rent variability of the sample, the dependence apparent in physical
prccesses, etc. These arguments could just as well lead to one conciusion or
another regarding the order of the ARMA model of best fit.

Rather than to use informal visual inspection or subjective arguments to
estimate the order of the ARMA model, it is better to use the statistical charac-
“ev of the time series data themselves to provide an estimale of the model that
bezt fits those data. A problem arises immediatelv in that Figure ! has mly
1¢ data points, far too little information for any meanincful statistice! study.
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Figure 1. Results of Observations of Wind Speed
on a Hypothetical Mountaintop.

For purposes of expediting the present discussion, it is convenient for now to
ignore this problem of sampling error, assuming the data are sufficient in number
to proceed with the statistical tests.

Autocorrelations Iy actually calculated from the Figure 1 data are 0.95,
0.93, 0.91 and 0.84 for k = 1, 2, 3, and 4 hours' lag, respectively. This is
roughly an exponential decay of autocorrelation r, as a function of lag k. Such
behavior of r, argues strongly for an ARMA(1,0) model but also suggests an
ARMA(1,1) model. To distinguish between these, it is necessary to look at the
partial autocorrelations Qkk as a function of lag k. Values of @kk for k =1, 2,
and 3 are 0.95, 0.24, and 0.14, respectively. Confidence limits about the par-
tial autocorrelations show that only the first, $,,, is significantly dif{ferent

from zero. This condition argues strongly for an ARMA(1,0) or AK(1l) first-crder
Markov model.

Rather than to fit an explicit Box-Jenkins ARMA model to the wind data of

Figure 1, it is possible to transform the parameter t (representing time in thir
example) and the variable w (representing wind speed in this example) to discrete
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variables (by rounding to the nearest integral value, for example). If thi:z is
done, the wind speed model can be cast into the form of a Markov chain.

The hourly wind speed is represented by a discrete random variabie W(t, in
hour t, which takes on values wi(t) with unconditional probabilities p; where,

pl = 1 (95)

The value of wt+1 is not totally independent of wt, especially at short time
intervals. Such dependence can be modeled by a Markov chain. This requires
specification of the transition probabilities,

Piy = Pr(wt+l=wj'wt=wi) (96)

A transition probability is the conditional probability that the next wind
speed state is wj, given that the current wind speed is w
abilities satisfy

i The transition prob-

p;s = 1 (for all i) (97)

P13 Pi2 P1j
P = Pi2 P32 P2j
Pi; Piz --- Pjj (98)

where P is the transition matrix whose elements are Pi5- For a Markov chain, the
trancition matrix contains all the information necessary to describe the behavior
of the system. Let pi(t) be the probability that the system resides in state i

at time t. Then the probability that W = w., is the sum of the probabilities

t+l b}
pl(t) that wt =W, times the probability pij that wt+1 = wj, given that wt = vy
n
Pj(t+1) _iilpi(t) Pjj (99)

lLetting p(t) be the row vector of state resident probabilities (p,(t),

pa(t), ..., pn(t) ), the relationship may be written,
p(t+l) = p(t) P (100)
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It is then possible to compute the probabilities of each wind velocity tov
successive time intervals t+2, t+3, etc.

In summary, a Markov process is a probabilistic model for a continuous
physical system from which a sample (xi, X2, ..., xn) is available. The Markov
process is characterized by the fact that the state of the system at time ¢t,
depends only on the state observed at time t,. A Markov chain is a discrete
approximation to a continuous process and completely describes the system when
the state at time t,, the initial probability wvector p(t), and the one-step
transition matrix P are given. In practice, USAFETAC uses a continuous form of
the first-order Markov process, namely the Ornstein-Uhlenbeck model, which will
be described in the next chapter.
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Chapter 3

BASIC SINGLE-STATION MODELS

3.1 Single-variable, Single-station Model (V1Sl1)

USAFETAC's basic environmental simulation model is an Ornstein-Uhlenbeck
stochastic process. This single-variable model is an autoregressive (AR), first-
order Markov process in which each value of a random variable X, is taken to be a
particular value of a stationary stochastic process. It is a common and usually
justifiable assumption to treat weather variables as a first-order Markov process
(see Sections 2.4 and 2.5 of this technical note). The Ornstein-Uhlenbeck proc-
ess 1is well based in the statistical literature and can be applied with substan-
tial justification to variables whose time series have a random component and ap-
proximately adhere to the first-order Markov restriction.

The generation of a time series of a single meteorological variable would be
quite simple if each value in the time sequence were independent of all ~thers in
the sequence. In general, this is not the case. Whether successive meteorolog-
ical observations are independent depends on the time separation between them.
The common separation between surface meteorological observations is 1, 3, or 6
hours. At these separations, successive observations of most meteorslogical
variables are not serially independent. A goal of a simulation model should
therefore be to reproduce this serial dependence between successive values ot the
particular meteorological variable being simulated, as well as to reproduce its
probability distribution.

Assume that the variable to be simulated is normally distributed. 1If the
variate is not normally distributed, then it can be transformed to the normal
dis*ribution by expressing the values of the raw variable in terms of its equiva-
lent normal deviate (END). (Transformation of variables to the normal distribu-
ticon 1s covered in detail in Boehm (1976) and is summarized in Section 3.1.1).
The joint normal density function of two weather variables X, and X, , at times t
and t+1 with mean u, variance o2, and serial correlation p between successive

values is

—yy2- - - Y
o 1 exp{xt H)E=2p (R =u) (X =B+ (X )
2no2 (1-p2)t/2 202(1~-p%)

. -1
£y (R Xpyq) | (101)

tRe+1
So the joint normal probability of two random variables with the same m<an and
variance depends only on i, g2, and their correlation p. The generation of a
time series of observations then requires the conditional distributiun of the
weather variable at one time given the value of the variable in previcus hours

If the weather process approximates a first-order Markov process, then the
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dependence of the distribution at time t+l on the distribution of the variable in
previous hours is summarized by the value of the variable at time t. It cuc-
cessive observations of this arbitary weather variable have a multivariate nosrmal
distribution, then the conditional distribution of X1 is normal with mean and
variance equal to

E[Xt+l|xt=xt] =p + p(xt"p) (102)
Var[xt*llxt=xt] = g2(1-p2) (103)

where x, is the value of X, at hour t. This relationship is illustrated in Fig-
ure 2. From Equation (103) it can be seen that the larger the absclute valuc of
the serial correlation p between the values of the variable, the smaller the con-
ditional variance of xt+1’ which does not depend at all on the value of Xy -

A time series of synthetic, normally distributed variables with mean p, vari-
ance o2, and a serial correlation p is produced by the equation,

Keyq =B+ p(Xg = w) + 0 JI-pZ (104)

where Ny is a standard normal random number, i.e., a number drawn at random from
a population with a mean of zero and a variance of unity, abbreviated as N(0,1).
Each Ny is totally independent of past values of n as well as past values of X.
If the variable being simulated is expressed as an END (which itself is distri-
buted N(0,1)), then Equation (104) simplifies to

Xpp1 = PXp + Ji-p2 Ne (105)
(a) {(b)

which is an Ornstein-Uhlenbeck stochastic process in two parts, a deterministic
part (a) and a random or stochastic part (b) expressing the uncertainty in the
random process. xt+1 will have a normal distribution if both Xt and n, are nor-
mally distributed because the central limit theorem states the sums of independ-
ent, normally distributed random variables are normally distributed. In the case
of i1ndependence between suczessive X values, where p = 0, the deterministic part
{a) 1s weighted by J02 = 0. and the stochastic part (b) is weighted by J1? = 1; so
successive values of X are fully random. In the case of complete positive
dependence between successive values of X, where p = 1, the deterministic part !«

fully in control, and each succeeding X is identical to its predecessor £

t+l L

43

PP U SR

PRSP R SEE 3




YT T T e v~ v

h i
-

YT —— v ” - ——

JUERUE TS

VALUE OF X AT TIME t-1

|
|
|
|
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
[
L

v

Xt

VALUE OF X AT TIME t

Figure 2. Conditional Distribution of > S Given X = X

1 L’

Correlatinn in the intermediate case, where 0 < p = 1, can be seen by recali-
1ty the definition of the Pearson product moment correlation coefticient (Equa-
tior 66)
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2[ (u-u)(v-v)]

r = i
JI(u=u)? JI(v-v)Z )
which can be rewritten as “
1
1 3(u-u)(v-v)
r =1 (106)
N Sy Sy
J
- % Zuvs -s uv (107)
u v
where the bars represent means or expected values, and s represents the standard 1
deviation, the square root of the variance. ]
p
In applying Equation (107) to Equation (105) for u = Xt+1 and v = xt, one 4
finds that for standard normally distributed X, }
X, =0 Kepp =0
-4
s _ s —
Xt—l Xt+1—1 4
and
=1 (108) ]
r_NZXt+l Xt )
{
By substitution,
31X, 2 z (ng X)) )
r:p t + ;1_‘,2 ____t_._l-‘_
N ]
r = pE[X.2] + J1-p2 Efn X] (109)
where E represents the expected value or mean. Since xt is perf=ctly correlated
with itself, ’
2] = 4
E[Xt ] 1 ‘
Furthermore, since n, and X, are independent of each other,
y |
E{nyX,] = 0 1

and

r=p (110)
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for the Ornstein-Uhlenbeck model.

The guestion remains, does the time series model defined by Equation (104)
reproducs a population with a specified mean and variance? The conditional mean

of X given that Xt equals x, is

T+l t

= = - -
E[Xy 11X =% ] = Elp + px=p) + o1 p? nyl (111)
Since E[nt] = 0, Equation 111 reduces to

E[Xt+llxt] =p + P(xt'P)

which is the conditional mean specified by Equation (102). The conditional vari-
ance of X, , produced by Equation (104) is?

Var([Xy, 1x,] = E[{Xq = E[Xg 1%, 1121%]

Effp + p(xg = p) + ofI-pZ ng = [u + p(x, -p))}?)

= E[oy1-pZ n]2 (112)
Since expected variance of Nt is equal to 1 (E[Var(nt)] = 1),
Var[xt+1|xt] = g2(1-p?2)

which 1s Equation (103). Thus the model produces distributions with the correct
conditiornal mean and variance. The unconditional mean of Xt+1 equals

E{ =u + p (E[X,] -p) + Eln lo {I=p? (113)

Xpsql t]

Once again noting that the mean of Ny = 0 and that the distribution of the vari-
able 1s independent of time so that for all t, E[Xt+]] = E[Xt] = E[X], it is
clear that
(1-p)E[X] = (1-p)p (114)
or
E{X| = p (115)

The unconditional variance of the variable X is, using Equation {(104),

Hote that the variance of X s given by Var|X] 'Xf xl/N)A(X-uK)' O A

BIXKI7T.

-
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E[(Xpyq = 1)2] = El{p(X-p) + oyI-pZ n}?]

= p2E[(X -p)2] + 2p0VI-p? E[(X -H)ny]
+ 02(1-p2) E[n2] (116)

since each value of Ny is 1independent, then E[(Xt-p)nt] = 0 and E[nt3] = 1.
Therefore, using the fact that E[(Xt+l~u)2] = E[(xt-p)2 = E((X-u)2|, the uncon-
ditional variance of all X satisfies the equation,

(1~-p2) E[(X~p)2]} = (1-p2)02 (117)

The conditiocnal mean of Xi 41 does not depend on the assumption that the ran-
dom variables xt and N, are normally distributed. This relationship applies to
all autoregressive Markov processes in the form of Equation (104), regardless of
the distributions of xt and Ny - However, if the variable xt at time t is normal-
ly distributed with mean p and variance o2 and if the Ny values are independently
normally distributed with a mean of 0 and variance of 1, then the generated X's
for t > 1 will also be normally distributed with mean p and variance o?.

3.1.1 Transformation to the Normal Distribution. In orxder to apply Egquation
(105) to a weather variable that is not normally distributed, one must first
transform the non-normal variable Z to its END ;z' The transformation to the
normal distribution is referred to as transnormalization and is pictured graphi-
cally in Figure 3, which portrays the empirically determined cumulative frequency
distribution of the ceiling at Scott AFB, IL, for February at 1200 LST, obtained
from an historical weather tabulation called the Revised Uniform Summary of Sur-
face Weather Observations (RUSSWO). Figure 3 actually shows an empirical euti-
mate of the cumulative probability Pr(c < cT) of the cloud ceiling at Scott AFB,
IL, 1200 LST, February, where C represents the ceiling in feet and Cr is some
threshold value of the ceiling in feet. 1In the example shown, the probability
that C is less than ¢, = 5,000 ft is 0.365.

T

Pr(C < c = 0.365

7)

In the context of the normal probability distribution, this probability corres-
1
ponds to some END c. In other words, the integral of the standard normal Jdensity

function ¢(u) from u = =» to u = g is Pr(cC < cT), where
¢(u) = A exp(-u2/2) (113)
W 2n
and
"
c
¢(cp) = Pr{C < cq} =-£ ¢ (u) du (119)
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Figure 3. Cumulative Distribution Function of the
Ceiling at Scott AFB IL, for February at 1200 LST.
CDF extracted from the Scott RUSSWO and the model

of Bean and Sommerville are shown.

The probability P{!C < cT) is thus actually the area under the standard normal
curve from -» to ¢, as shown in Figure 4. Tables of integrals of the normal
probability distribution (or rational approximations if one is working with a
somputer or calculator) show that a probability of 0.365 corresponds tc an END,
c = ~-0.345.

Transformation from the raw variable to its END can also be done graphically,
using normal probability paper, as shown in Figure 5. The first step is to plot
the cumulative distribution of the variable of interest, the ceiling in this
case. Then one plots the cumulative normal distribution (a straight line on nor-
mal probability paper). One enters the graph with the raw variable (e.g., Cp =
5000 ft), proceeds vertically to the intersection with the observed distiibution
(e.g., at a probability of 0.365), then proceeds horizontally to the intersection
with the cumulative normal distribution. From that intersection, one proceeds
down and reads the value of the END (e.g., g = ~0.345.)
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Thus, for 1200 LST in February at Scott, using RUSSWO data, a ceiling of 5000
ft corresponds to an END of -0.345. Because the RUSSWO is only an approximation
to reality, it is better to say that 5000 ft corresponds approximately to an END
of -0.345. A table of such approximate transformations is given below

Table 2. Transnormalization from Ceiling to END for Scott AFB, IL,
February, 1200 LST.

Cumulative
Ceiling (ft) Probability END
200 0.000 -

1,000 0.104 -1.259
2,000 0.213 -0.796
3,000 0.305 -0.510
5,000 0.365 ~0.345
10,000 0.440 =0.1%
20,000 0.509 0.023

Using the normal transformation, then, every ceiling corresponds t¢ an END of
that ceiling. Since FNDs are in themselves normally distributed with & mean of
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zero and variance of one, they can be used as random variables in the Ornstein-
Uhlenbeck process, Equation (105). Such a process, applied to the ceiling (not
normally distributed in general) is

n
2 =p c + Jy1~ 2

t+l ~ Fecec 't Pec ¢ (120)

"
where c values are ENDs of the ceiling C.

3.1.2 Simulation of the Cloud Ceiling. To see how such a simulation might work

in practice, consider a case with an initial ceiling at 2000 ft (the coirespoud-
"

ing END c¢ 1is -0.796). Assume a correlation according to Gringorten's model,
o _ At
'l Poc = 0.945 (121)
; where 4t is the time step, unity in this case. We generate a randem normal
- numke:r, for example e = 0.325. Applying the Ornstein-Uhleunbeck process 1n
| Equation (120) yields
R
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Ce+1 = (0.945)(~-0.796) + (J1 - 0.945%) (0.22%)
= (0.945)(~0.796) + (0.327)(0.325)
= -0.752 + 0.106

"

Cy41 = -0.646

which corresponds to a ceiling of about 2200 ft. At the next time step, ét be-
comes -0.646. Another random normal number is drawn, say -0.102. Then

Ces1 = (0.945)(-0.646) + (0.327)(-0.102)
= -0.610 + 0.033

(1]

Ct+1 = -0.643

which again corresponds to a ceiling of about 2200 ft.

I1f convinued, this process will generate a time series of the ceiling whose
probability distribution is the same as the distribution specified initially
(e.g., Figure 3), within the limits imposed by sampling error. The process will
not necessarily produce the same durations as those of the original data. The
distribution of durations of, for example, low ceiling episodes is affected by
the parameter p .. and by the fivrst order Markov assumption. It is possible to
determine a value of Pec that will best "fit" a given distribution of durations.

3.2 Two-variable, Single-station Model (V2Sl)

The simulation model expressed in Equation (105) is severely limited, in the
sense that it can be applied only to a time series of a single variable, such as
ceiling or sky cover. One is frequently interested in simulating more than one
variable (e.g., ceiling and visibility) in such a manner as to preserve the
cross-correlations between them. The V2S1 model handles the two variable case by
including two time series of ENDs, one END for each of the two variables, and
then carrying the cross-correlation information in the stochastic part cof the
solution. For example, there is an END for the ceiling, g, and an END for the
visibility, 3. These advance by separate Ornstein-Utrlenbeck equations

. . 1
As in Equation (120) Ce+1 = Pee St * Jl-pcc2 N
1 "
Veel T Pyy Vet V1thT Ny (122)

But because it is desired to produce time series of ceiling and visikility that
are correlated across variables (i.e., cross-correlated), the stochastic parts of
Equations (120) and (122) must be linked. This is done by generating » randcm
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normal number of visibility 1, that is correlated with that, Ner previously gen-
erated for ceiling. To do this, the procedure is first to generate an independ-
ent Ne and then to set

where n is another independent random normal number, and pév is proportional to
the cross-correlation between ENDs of ceiling and visibility. Equation (123) is
essentially the generation algorithm for producing ENDs having the correlation

t
Pev-

In the case of independence when Péy = Os ng, = N and Equations (120) and
(122) generate unreiated time series of ceiling and visibility. In the case of
perfect positive correlation, when pév =1,

Ny = ¢

the time series for visibility will depend completely on that for the ceiling.
Indeed, if Pee and Pyv = 1 the two time series will be identical except for a
shift due to differing initial values. In the intermediate case, ceiling and
visibility will be partially correlated according to the value of Poy’ which is
proportional to the correlation Pev between ceiling and visibility. The process
is depicted in Figure 6.

1 cc 14
@y = e,
-
2 Cvv 28

Figure 6. The Weather-A Process.
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The serial correlation Pec between ceiling at t and ceiling at t+l is pre-
served, as is the correlation Pyv between visibility at t and visibility at te1.
The correlation Pov between ceiling and visibility at the same time is propor-
tional to pév through a constant of proportionality f.

—r—ry iw
d 1

It is instructive to consider how the cross-correlation Fev between ceiling
and visibility relates to pév’ Using Equations (120), (122), and (123) in Equa-
tion (108) produces the equation,

P

21 ‘. " -
Pov = § 2 {"cc Cp * V1l=p nc]

"
. - ¥
[pvv v, + J1 pcc2 (Pey N * J1 pc'vz n)ii (124)
which expands to

v ou
pCV ct vt

"
! ’ - Z
cc Pev 1 Pvv r]cct
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”
’ - Z ’ -yt Z
Poc V1Pyy” V1 Pev’ N

2= Zie Ze

]

[[]
Pyv V1-Pec Ve
2 Poy V1P V1=p," n? 3

Zl=

+

Zi

z Jl-pcc2 V1=-p % V1=-p. 2 (125)

v N

H " ¥
Because E[ncct] = E[nct] = E[ncJt] = E[ncn] = 0, due to independence, and because
E[nczl = 1 due to dependence, .j

= [SF 4 ' = z - 7
Pev = Poc Pyv ; L+ pey V1P 7 VT Py (126)

But

S0

q Pev = Pec Pyv Poy  * Poy Y1-p” V1o, 7 (127)
p or 1
&

1
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P
cv
1= Pec Pyy
From Equation (128) it can be seen that to obtain a correlation Pev between ceil-
ing and visibility, it is necessary to use a model correlation parameter pév
given by

1= Pec Pyy

V1=poc® V1=pyy

(129)

p(':V pCV = prV

The factor f reduces to 1 when Pec = P but otherwise is greater than 1, so

v
'
Pov 2 Pey

This is illustrated in Figure 7, in which it is desired to obtain Pey = 0-3. The

necessary to obtain that Pov value is 0.3 if Pec = Peve where Pec # oy the

pév needed to obtain Pov = 0.3 is greater than 0.3. For example, if Poc = 0.8
= = = ' = 1 =

and Doy = 0.4 then Py 0.8, (P 0.4, Pev 0.37. The ratio £ pév/pcv can be

quite large for cases where Poc and Pyv differ substantially. Figure 8 gives the

factor f as a function of Pec and Pov’

1
pCV

it can be seen from Equaticn (123) that real solutions can be obtained only if
pév is less or equal to unity. Hence,

fp. <1 (130)

Thus, the mathematics imposes an upper limit on the cross-correlation this model
is capable of producing between ceiling and visibility. For the example given
above, in which Pec = 0.8 and Pov = 0.4, £f = 1.24 and Pev cannot exceed 0.81. In
this case, the model in its present form cannot simulate phenomena "c¢" and “v"
whose ENDs are cross-correlated more strongly than 0.81. This upper limit on 0oy
depends on Pec and Pyv and must be treated on a case-by-case basis. In the spe-
clal case where Pov = pév , cross-correlation values up to 1.0 can be simulated.

The V2S1 model does not explicitly preserve what is known as the cross-lag
correlation, such as pvtct+1 , the correlation between the visibility at time ¢t
and the ceiling at time t+1. This can seen by applying Equation (107) to Equa-
ticns (120) and (122).
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Figure 7. Values of pév for Poy = 0.3.

p S 1
Ca1 Ve TN 2 Cea1 Vi
_ l n — —r L
= § 3PSt * V1P NV
LU 1} "
- I Cevy . T 2 veng
Pec N Pec (131)
1] . . .
Because v, and n. are independent, the final term is zero, and
P = Poe P (132)
Cee1Ve cc Fev

in other words, in the V2S1 model, the cross-lag correlation ireduces to the pro-
duct of autocorrelation of the ceiling and the cross-correlation of the ceil.ng
and visibility. This is equivalent to saying that in this modei the ciro:.- iag

correlation reduces to the automatic correlation between ceiling and visibiiity
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Figure 8. Values of f.

Panofsky and Brier (1968) describe automatic correlation in terms of two var-
iables p and q that are each separately correlated with a third variable s. The
cross-correlations are

P and p

ps sq

The separate correlations between s and p and between s and g guarantee an "auto-
matic" correlation between p and q even if the two are not intrinsically related.
The automatic correlation would be the product Pos Psq
Appllcatlon to the v2S1 model is shown in Figure 9, a correlation influence

"
diaqram c 1s correlated w1th ct +1 by autocorrelation Pec: St 1s correlated

t
with v b, cross- correlatlon c Pov ° This guarantees an automatic corteletion of
(. between vt and ct+1 The model cross-lag correlation given by Kquation

(132) 1s the automatic correlation. Hence, in the V251 model the cross-~lag cor-
relation reduces to the automatic correlation.
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Figure 9. Correlation Influence Diagram for the
Weather-A Process. The cross-lag correlation is
shown as a dotted line because it reduces to auto-
matic correlation in this model.

whether this true in Nature is another question. A model is a simplification
or generalization of Nature. Work conducted to date gives no indication that
reducing the cross-~lag correlation to the automatic correlation has any adversec
affect on the model as a weather simulator. The model's originator believes that
cross-lag correlations between ceiling and visibility are very nearly equal to
automatic correlation. Whether this is true or at least approximately true for
other variables is subject to verification using actual data.

3.3 Modeling Cumulative Distribution Functions

3.3.1 Graphical Approach. The V2S1 model produces correlated time series of
ENDs such as g and 3. These can be translated into raw variables by a graphical
inverse transnormalization procedure such as that described previously for Scott
AFB in February. The graphical approach is limited and cannot be applied in the
computer.

3.3.2 Tabular Approach. The other procedure described previously involved using

the graphical approach such as in Figure 3 to construct tables, such as Table 2,
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relating ceiling heights to their ENDs. This can be accomplished using any cumu-
lative distribution found in RUSSWOs.

There are several important problems with this approach. First, any table 1s
1"

discrete. The model generates continuous END values such as ¢ = -0.441. Table 2
contains no such value. Interpolation, which introduces error, would Le required
to translate such an END into its corresponding ceiling height. Secondly,

RUSSWOs contain errors and biases introduced by the weather observing system.
These often show up as bumps or spikes in the relative frequencies, corresponding
to reportable values, popular values, location of visibility markers, etc.
Finally, from the point of view of simulation, it is inefficient to maintain in
computer storage entire RUSSWOs from which to interpolate probabilities.

3.3.3 Distribution Fitting Approach. An increasingly popular alternative to
storing RUSSWOs is to model the RUSSWO probabilities, using regression technigues
to fit variously shaped probability distributions or curves to RUSSWO data. The
result of this is a continuous function of the form,

P = F(x) (133)

from which continuous probability estimates can be obtained simply by evaluating
the function. Correspondingly, continuous variable estimates can be obtained by

evaluating the function inverse
X = F " (P) (134)

Considerable work of this sort has been done by Somerville and Bean (see ref-
erences) for ceiling, visibility, sky cover, and rainfall. See Appendix A for a
list of the functions that USAFETAC uses to model cumulative frequency distribu-
tions of various meteorological variables.

For example, Bean fitted the three-parameter Burr curve to cumulative distvi-

butions of ceiling,

X
R b
C

Pr(X < x (135)

T

Somerville fitted the two-parameter Weibull distribution to the cumulative

distributions of visibility,

Cve) = 1 - exp(eav. P ’
Pr(v vT) = 1 exp( an ) (Lin)
A comparisull between the Scott AFB RUSSWO and the Burr distributica fal for
the e long ot 1000 18T 1n February can be seen in Figure 3.
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O'Connor of USAFETAC has applied log cubic and inverse linear equations to
the ceiling and visibility (see Friend, 1978). Of these, the log cubic, namely,

Pr(x <« xT) =cq ¢ c21n Xp + c3(ln xT)2 + c4(ln xT)3 (137)

has been applied to both ceiling and visibility. Log cubics have been fitted to
the cumulative distribution functions of both ceiling and visibility by two Jeast
squares linear regression methods

e Inverting the normal equations by Gaussian elimination using the subiou-
tines DECOMP and SOLVE of Forsythe, Malcolm, and Moler (1977).

¢ Singular value decomposition, using the subroutine SVD of Forsythe,
Malcolm, and Moler (1977).

The inverse linear curve of O'Connor, namely,

- 1 (133)

Pr(X > xT) fxT 5

has been fitted to cumulative probability distributions of visib:lity by use of
DECOMP and SOLVE.

Comparisons between the various curve fits for ceiling and visibility in
winter and summer at Scott AFB, IL, and Kitzingen AAF, Germany (EDIN, WMO 106590,
hid 47°45'N, 10°13'E), are shown in Tables 3-14. In these tables it can be seen thal
some of the fits were done over the entire range of the variable whose cumulsiive
distribution was being modeled, and other fits were done over a restricted range.
The curve fits are evaluated in terms of a root mean squared difference (RMS)
between the RUSSWO value and the modeled value (see Appendix B for an explanation
of the RMS equation). Where appropriate, an additional evaluation is provided,
limited to a portion of the total range of the variable whose cumulative distri-
bution function was modeled.

Taken as a whole, the curve fit results for ceiling show the cleuar superior-
1ty of Bean and Somerville's Burr curve. The log cubic as fitted by SVD is at
times competitive, especially if one's concern is only with ceilings of 10,000 ft
or less. In many cases, by extending the curve fit to 20,000 ft, where data are
relatively unreliable, the fit for the portion of the curve below 10,000 fL is
impaired. The curve fits for Kitzingen were noticeably poorer than thouse tor
Scntt, Jdue to the differences in the shapes of the curves for the two statioas,

a5 seen 1n Figure 10.
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Table 3. Curve Fit Information for Ceiling Data at
Scott AFB, IL, January, 0600 LST.

O'Connor

Bean and Bean and Log Cubic O'Connor 0O'Connor

Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to

Celling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft
(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)
20,000 46.8 45.0 45.7 40.2 46.8 42.3
10,000 55.6 53.4 54.1 52.4 55.1 53.0
3,000 67.7 70.0 70.6 70.4 69.8 70.1
2,000 73.9 75.7 76.2 75.7 74.8 75.3
1,000 85.1 84.3 84.7 83.8 82.9 83.6
200 98.3 96.0 96.2 98.7 99.5 99.2
0 100.0 100.0 100.0 100.0 99.6 99.7

RMS:

(Eval to 10,000 ft) 1.8 1.8 1.8 1.4 1.7
(Eval to 20,000 ft) 2.2 2.0 3.7 1.5 2.9

Table 4. Curve Fit Information for Ceiling Data at
Scott AFB, IL, February, 1200 LST.

O'Connor

Bean and Bean and Log Cubic Q'Connor  O'Connor

Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to

Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft
(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)
20,000 49.1 45.2 45.8 35.8 45.3 36.9
10,000 56.0 54.1 54.7 51.6 55.3 52.1
3,000 69.5 72.5 73.3 73.7 73.0 73.5
2,000 78.7 79.0 79.8 79.7 78.3 79.4
1,000 89.6 88.7 89.5 88.3 86.9 88.1
200 100.0 98.6 98.9 101.3 103.0 101.8
0 100.0 100.0 100.0 100.0 99.4 99.6

RMS:

(Eval to 10,000 ft) 1.6 1.8 2.6 2,2 2.5
(Eval to 20,000 ft) 2.1 2.1 5.6 2.5 5.2
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Table 5. Curve Fit Information for Ceiling Data at
Scott AFB, IL, July, 1800 LST.

b O'Connor . i
Bean and Bean and Log Cubic O'Connor  O'Connor
[ Somerville Somerville by DECOMP Log Cubic Log Cubic ]
L(- Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to -
L\ Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft p
f (ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)
s 20,000 74.4 64.6 73.0 77.3 72.9 75.4
[ - 10,000 84.8 83.1 83.9 86.0 84.3 85.5 d
P 3,000 97.7 97.3 97.2 96.0 96.4 96.3 '
- 2,000 99.3 99.8 98.8 98.1 100.8 98.4 1
s 1,000 99.9 100.0 99.7 100.4 101.2 100.4 1
200 100.0 100.0 100.0 100.0 99.7 99.7
0 100.0 100.0 100.0 100.0 100.1 100.1
4
3 RMS: ,'-3
€ (Eval to 10,000 ft) 0.7 0.5 1.0 0.9 0.8
2 (Eval to 20,000 ft) 3.8 0.7 1.4 1.0 0.8
‘ Table 6. Curve Fit Information for Ceiling Data at
F ¢ Kitzingen AAF, Germany, January, 0600 LST. rs
4
& O'Connor ]
Bean and Bean and Log Cubic O'Connor O'Connor 1
- Somerville Somerville by DECOMP Log Cubic Log Cubic
1 Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to
3 Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft 4
__ 3
:( Ne (£t) (BCT) (PCT) (BCT) (PCT) (BCT) (PCT) '
1 20,000 26.9 19.3 20.2 -9.7 15.3 -9.5
:_ 10,000 27.3 28.2 30.5 19.8 31.1 20.1
3,000 53.5 54.2 58.1 59.2 57.6 59.1
2,000 69.0 66.7 68.7 69.3 66.0 69.1 )
1,000 87.0 87.7 84.3 83.2 79.6 82.9 )
y 200 98.1 99.8 98.3 100.9 105.8 101.5 1
0 100.0 100.0 100.0 100.0 98.8 99.5
{
RMS:
(Eval to 10,000 ft) 1.0 2.5 4.3 5.1 4.3
k. (Eval to 20,000 ft) 3.0 3.5 14.4 6.4 14.3 p
3
f
L
q 1
p 1
3 4
“ :
q ’
‘ ]
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Table 7. Curve Fit Information for Ceiling Data at
Kitzingen AAF, Germany, February, 1200 LST.

O'Connor

Bean and Bean and Log Cubic O'Connor O'Connor

Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burxr Curve & SOLVE to by SVD to by SVD to

Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 £t 10,000 ft
(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)
20,000 33.2 28.3 29.9 -2.7 22.3 -4.0
10,000 35.6 37.9 39.5 28.1 40.3 28.0
3,000 61.1 62.9 64.2 67.6 66.9 67.8
2,000 80.9 74.5 75.4 77.3 74.6 77.3
1,000 93.4 94.3 94.3 90.0 86.3 89.6
200 99.6 100.0 100.0 102.5 106.0 102.9
0 100.0 100.0 100.0 35.2 98.8 99.6

RMS :
(Eval to 10,000 ft) 2.9 3.1 26.9 5.6 4.8
(Eval to 20,000 ft) 3.3 3.1 28.3 6.6 14.8
Table 8. Curve Fit Information for Ceiling Data at
Kitzingen AAF, Germany, July, 1800 LST.
O'Connor

Bean and Bean and Log Cubic O'Connor O'Connor

Somerville Somerville by DECOMP Log Cubic Log Cubic

Threshold Burr Curve Burr Curve & SOLVE to by SVD to by SVD to

Ceiling RUSSWO to 10,000 ft to 20,000 ft 10,000 ft 20,000 ft 10,000 ft
(ft) (PCT) (PCT) (PCT) (PCT) (PCT) (PCT)
20,000 57.0 38.4 53.0 42.6 48.0 37.1
10,000 60.5 60.5 65.5 64.4 68.1 62.9
3,000 93.9 94.1 93.1 89.9 90.5 90.8
2,000 98.0 97.7 98.7 95.3 95.0 96.0
1,000 99.5 99.6 100.0 101.1 99.9 101.1
200 100.0 100.0 100.0 99.9 100.9 99.1
0 100.0 100.0 100.0 100.0 99.9 100.3

RMS:
(Eval to 10,000 ft) 0.2 2.1 2.6 3.6 1.9
(Eval to 20,000 ft) 7.0 2.5 6.0 4.8 7.7
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Table 9. Curve Fit Information for Visibility Data at
Scott AFB, IL, January, 0600 LST.
Somerville O'Connor O'Connor
Threshold and Bean Inverse Linear Log Cubic
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD
(SM) (PCT) (PCT) (PCT) (PCT)
6.0 51.6 49.1 54.8 55.0
4.0 68.2 65.4 65.2 66.8
3.0 75.5 74.6 72.0 73.9
2.0 83.7 83.9 80.4 82.1
1.0 91.8 93.0 91.0 91.7
0.5 96.6 97.1 97.5 96.8
0.0 100.0 100.0 104.8 100.1
RMS 1.5 3.1 1.6
Table 10. Curve Fit Information for Visibility Data at
Scott AFB, 1L, February, 1200 LST.
Somerville O'Connor O'Connor
Threshold and Bean Inverse Linear Log Cubic
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD
(SM) (PCT) (PCT) (PCT) (PCT)
6.0 69.5 68.3 73.1 63.9
4.0 83.6 82.6 81.1 76.7
3.0 88.8 89.0 85.8 83.9
. 2.0 92.8 94.4 91.1 91.8
AL 1.0 98.0 98.2 97.0 99.7
0.5 99.8 99.5 100.3 101.7
0.0 100.0 100.0 103.8 12¢0.3
RMS 0.8 2.6 4.0
Table 11. Curve Fit Information for Visibility Data at
Scott AFB, IL, July, 1800 LST.
Somerville 0O'Connor 0O'Connor
Threshold and Bean Inverse Linear Log Cubic
visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD
(SM) (PCT) (PCT) (PCT) (PCT)
6.0 94.9 94.6 96.3 96.6
4.0 98.6 98.8 97.7 388.0
3.0 99.4 99.6 98.5 98.7
2.0 99.8 99.9 99.2 99.5
1.0 100.0 100.0 99.9 100.2
0.5 100.0 100.0 100.3 100.3
0.0 100.0 100.0 100.7 100.0
RMS 0.2 0.8 0.8
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! Table 12. Curve Fit Information for Visibility Data at
Kitzingen AAF, Germany, January, 0600 LST.

hmh,

A Somerville O'Connor O'Connor

s Threshold and Bean Inverse Linear Log Cubic

; ' Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD

- —

(1 (SM) (PCT) (PCT) (PCT) (PCT) »

. R
6.0 27.1 25.8 31.0 26.4 ]
4.0 46.2 48.9 41.9 48.5 '
3.0 63.7 63.6 50.8 61.4 3
2.0 81.0 78.9 64.7 75.9 ;
1.0 92.2 92.4 88.7 92.1
0.5 96.9 97.4 108.9 99.1
0.0 100.0 100.0 141.0 100.2

RMS 1.4 18.2 2.4

Table 13. Curve Fit Information for Visibility Data at
Kitzingen AAF, Germany, February, 1200 LST.

Y

el

LA

Somerville O'!'Connor O'Connor )
‘ Threshold and Bean Inverse Linear Log Cubic k
B Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD R
[ | 1
'ﬂ (SM) (PCT) (PCT) (PCT) (PCT) -
s 1
6.0 54.0 53.2 57.0 55.7
4.0 69.2 70.2 67.7 69.4
3.0 78.3 79.1 74.8 77.4
L 2.0 87.6 87.7 83.5 86.4 J
LE 1.0 97.1 95.2 94.5 96.4 . »
0.5 99.4 98.2 101.1 100.6
g 0.0 100.0 100.0 108.7 100.1 1
]
RMS 1.0 4.2 1.0
= |
Table 14. Curve Fit Information for Visibility Data at
Kitzingen AAF, Germany, July, 1800 LST. 1
Somerville O!Connor O'Connor .
Threshold and Bean Inverse Linear Log Cubic .
Visibility RUSSWO Weibull Curve by DECOMP & SOLVE by SVD 3
o {SM) (PCT) (PCT) (PCT) (PCT) 4
: h
6.0 96.2 96.7 96.9 97.0 ]
4.0 98.3 98.5 98.0 98.1 1
3.0 99.1 99.1 98.6 98.8
2.0 99.8 99.6 99.2 99.4
5 1.0 99.8 99.9 99.9 100.1 ‘
] 0.5 100.0 100.0 100.2 100.2 ’
0.0 100.0 100.0 100.5 100.0 —
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Figure 10. Cumulative Distribution Functions (CDF) of
the Ceiling at Scott AFB IL, and Kitzingen AAF Germany,
for February at 1200 LST, Extracted from the RUSSWOs.

The curve fit results for visibility again demonstrate the superiority of
Somerville and Bean's function. The inverse linear function behaves somewhat
unreliably; it does well sometimes and poorly at other times. The greater reli-
ability of the log cubic makes it second best after Somerville and Bean's Weibull
curve.

3.4 Tests of the V2Sl Model

3.4.1 Correlation. Lengthy runs of the V2S1 model were made to test whether the
correlation behavior predicted by Equations (110) and (129) were in fact shown.
Results for runs of 10,000 and 100,000 simulated hourly observations are shown in
Table 15. Bracketing values in parentheses represent the 95~percent confidence
limits for each correlation coefficient, determined according to the procedures
in the following paragraphs.
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Table 15. Correlation Tests.

PARAMETERS SPECIFIED

TO MODEL PREDICTED VALUE PARAMETERS RECOVERED FROM MODEL
F
r
Pec Pyv Pee Vi€l Tee Tov Yo Vil N

(0.931) (0.931) (0.275) (0.260)
0.945 0.945 0.300 0.284 0.946 0.944 0.300 0.284 10000
(0.956) (0.956) (0.324) (0.308)
(0.931) (0.824) (0.275) (0.260)
0.945 0.845 0.300 0.284 0.946 0.837 0.294 0.278 10000
(0.956) (0.863) (0.324) (0.308)
(0.778) (0.177) (0.275) (0.216)
0.800 0.200 0.300 0.240 0.801 0.184 0.289 0.227 10000
(0.820) (0.223) (0.324) (0.263)
(0.778) (0.177) (0.474) (0.375)
0.800 0.200 0.500 0.400 0.801 0.186 0.494 0.391 10000
(0.820) (0.223) (0.525) (0.424)
(0.793) (0.793) (0.292) (0.233)
0.800 0.800 0.300 0.240 0.797 0.800 0.300 0.240 100000
(0.807) (0.807) (0.308) (0.247)
(0.793) (0.193) (0.292) (0.233)
0.800 0.200 0.300 0.240 0.797 0.198 0.300 0.239 100000
(0.807) (0.207) (0.308) (0.247)

Correlation coefficients r that are calculated from sample data (whether his-
torical data or data generated by a simulation model such as V2S1) are subject to
sampling variability. The distribution of the sample correlation coefficients r
is not normal but approaches normality as the sample size increases. The ap-
proach of the distribution of r to normality depends not only on sample size but
also on the value of the population correlation p. If samples are drawn from a
population for which p = 0, the distribution is approximately normal, approaching
normality rather slowly as the sample size increases. In this case, Student's
t-distribution or the normal distribution is used in testing inferences about p.
If samples are drawn from a population for which p # 0, the distribution of r is
very skewed. When p is greater than zero, the skewness tends toward the left,
with ligh values of r being relatively more probable than lower values. The
skewness 1is reversed for p less than zero. This complicated dependency of the
sampling distribution of r on the value of p makes it impossible to employ the
t-test or normal distribution directly. To permit inferences about p # 0, R. A.
Fisher developed for a bivariate normal population the Z-transformation given by

l +r

Z=0.51n { I —r |

(139)
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For sample correlation coefficients r computed from independent draws from a
bivariate normal population whose correlation is p, the statistic Z is approx-
imately normally distributed, with a mean given by

u, = 0.5 1In [ —i—_—% ] (140)

and a standard deviati-n given by

o, = Jl/(N-3) (141)

where N is the sample size. The goodness of these approximations increases with
smaller absolute values of p and with larger sample sizes N.

If the population correlation is p and one samples from it repeatedly,
95 percent of the sample correlation coefficients drawn from the population will
fall between the 80 called "95-percent confidence limits" of p. Thus, from a
single value of r that happens to lie within those limits, one can infer with
only a 5-percent risk of error that the population correlation is p. More pre-
cisely, it can be said with only a 5-percent risk that r is not significantly
different from the stated p.

ENDs generated by the V2Sl model have the bivariate normal distribution, but
if all the simulated ceiling and visibility observations produced by V2Sl are
included in the sample used for calculating correlations, then the data h:vz not
been sampled independently, and a correction must be made accordingly. If a cor-
rection is made for serial dependency, it is possible to make hypotheses about
the correlations p in the V251 model.

Hypothesize that a population correlation of the V2S1 model is p # 0 and cal-
culate the 95-percent confidence limits about p based on sampling the V2S1 proc-
ess N consecutive times. To correct for serial dependency in the time series of
V251 observations, Equation (60) of the AWS Guide for Applied Climatology (see
references) is used:

p
N'=N[m] (142)

where N' is the effective number of independent observations in a sample of size
N. Then Fisher's 2Z-statistic is calculated using Equation (140) and the standard
deviation from
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o, = J1/(n'-3) (143)

z

The 95-percent confidence limits in Z are given by

2y

Z + 1.960z (144)

2

1 Z - 1.96oz (145)

An inverse Fisher Z-transformation is used to convert the confidence limits in
the Z domain to confidence limits in the p domain

_ exp( 2zu ) -1

Pu = exp( 2§u Yy + 1 (146)
_ exp ( 22l )y -1

P1 = exp( 221 Yy + 1 (147)

Fisher's Z-transform can also be expressed in the form of the hyperbolic tangent.
Multiplying the numerator and denominator of Equation (146) by e 2 gives

oZ . o2

p = ————= £ tanh (Z) (148)
ez + e z

z = tanh™! (p) (149)

Results in Table 15 show that the sample correlation coefficients produced by
the V2S1 model fall within the 95-percent confidence limits of the hypothesized
correlation. Hence, the model appears to preserve the serial correlation Pcc of
the ceiling, the serial correlation Pyy Of the visibility, and the cross-correla-
tion Pev of ceiling and visibility. In addition, the cross-lag correlation
pvtct+l does appear to reduce to the automatic correlation PecPeov:

3.4.2 Marginal Distributions. If a particular model of the cumulative distribu-
tion functions of ceiling and visibility is used in the transnormalization proc-
ess of the V2S1 model, then a long run of that model should return the same dis-
tributions, within the accuracy limits imposed by the sampling error. To test
this, Somerville and Bean's ceiling and visibility models for 1200 LST, February,
at Scott AFB, IL, were used in transnormalization. The V2S1 model was then

exercised over a long run of 100,000 observations, each falling at 1200 LST
(because a 24-hour time step was used). The month was restricted to February.
Results, shown in Table 16, indicate that the V2S1 mode. does preserve the mar-
ginal distributions of ceiling and visibility, within the limits of accuracy
imposed by sampling error.
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Table 16. Marginal Distribution Tests.

N = 100,000 Observations

Cumulative Cumulative
Distribution Function Distribution Function

Ceiling Bean and Visibility Somerville
(ft) Somerville v2sl (SM) and Bean v2S1
20,000 0.458 0.458 6.0 0.683 0.682
10,000 0.547 0.548 4.0 0.826 0.829
3,000 0.733 0.733 3.0 0.890 0.892
2,000 0.798 0.799 2.0 0.944 0.944
1,000 0.895 0.897 1.0 0.982 0.983
200 0.989 0.989 0.5 0.995 0.995
0 1.000 1.000 0 1.000 1.000

3.4.3 Synthetic RUSSWOs. By adjusting the cross-correlation P oy it is possible
to adjust the joint probabilities of ceiling and visibility produced by the V2S1
model and thus to produce -- either analytically or by Monte Carlo simulation --
synthetic RUSSWOs tuned to match actual RUSSWOs. If ENDs of actual weather vari-
ables were distributed exactly according to a multivariate normal distribution,
and if no bias were introduced by the method used to observe and record the
weather, then the V2Sl model could produce synthetic RUSSWOs differing from
natural" RUSSWOs by no more than sampling error.

In practice, weather observations contain biases and inaccuracies that are at
least as bad as assuming the ENDs of these data are multivariate normal. Thus,
three sources of error -- observing/recording bias, non-multinormality and san~-
pling error -- complicate the process of "tuning" V2S1 to reproduce a pa..icular
RUSSWO. Even if a nearly perfect fit were attained between a synthetic and a
"natural" RUSSWO, one would merely be tempted to ask, “"Have you fitted nature or
have you fitted an inadequate perception of nature?"

Putting aside the question of the basic advisability of "fitting" a synthetic
RUSSWO to a natural RUSSWO, it is remarkable how close a fit can be obtained just
by "tuning" the cross-correlation Pov” Table 17 presents an example for Scott
AFB, Illinois, in February at 1200 LST. The largest differences between the syn-
thetic and the natural RUSSWO is 0.038.
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Table 17. Comparison of the Scott AFB, IL RUSSWO and Joint Probability
of Ceiling and Visibility Produced by the V2S1 Model.

CEILING VS VISIBILITY SECTION, RUSSWO, SCOTT AFB, IL, FEB, 12-14L, EXTRACT

Vigibility (statute miles)

Ceiling (ft) 6.0 4.0 3.0 2.0 1.0 0.5 0.0
20,000 0.448 0.483 0.488 0.491 0.491 0.491 0.491
10,000 0.506 0.548 0.556 0.560 0.560 0.560 0.560
3,000 0.601 0.669 0.686 0.692 0.695 0.695 0.695
2,000 0.656 0.749 0.771 0.780 0.780 0.787 0.787
1,000 0.689 0.817 0.857 0.876 0.892 0.896 0.896
200 0.695 0.836 0.888 0.928 0.980 0.998 1.000

0 0.695 0.836 0.888 0.928 0.980 0.998 1.000

Synthetic RUSSWO Produced by V2S1 Model, Scott AFB, IL, 12L
Time Step At = 24 hr Pov = 0.72 No Recording Mask Total Obs = 100,000

Visibility (statute miles)

Ceiling (ft) 6.0 4.0 3.0 2.0 1.0 05 0.0
20,000 0.420 0.448 0.454 0.457 0.458 0.458 0.458
10,000 0.488 0.530 0.541 0.546 0.548 0.548 0.548
3,000 0.603 0.685 0.710 0.725 0.732 0.733 0.733
2,000 0.634 0.734 0.766 0.787 0.797 0.799 0.799
1,000 0.667 0.793 0.841 0.874 0.893 0.896 0.897
200 0.682 0.828 0.890 0.940 0.976 0.986 0.989

0 0.682 0.829 0.892 0.944 0.983 0.995 1.000

3.5 summary and Conclusions

A single-station, two-variable model has been constructed and tested. The
model has been found to preserve the serial correlation Pec of ceiling over time,
the serial correlation Pyv of visibility and the cross-correlation Pov of ceiling

and visibility. The cross-lag correlation Pv in this model reduces to the

tCt+1

automatic correlation p Furthermore, the model appears to preserve the

P, -
cctvv
marginal distributions of ceiling and visibility as well as to give a faithful
representation of the joint probabilities between ceiling and visibility, as

shown in the interior of a RUSSWO.

Models of the cumulative distribution functions of ceiling and visibility,
developed by Somerville and Bean, have been found superior to others tested.
USAFETAC currently has the capability for fitting the Weibull curve to visibility
data from anywhere on the globe and has a limited capability to fit Burr curves.
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Chapter 4

MULTIVARIABLE/MULTISTATION MODELS

4.1 General

Although the V1Sl and V2S1 models have been shown to be excellent for time
series of one or two variables, few simulation support requests are simple enough
to be served by these models. In general, users of environmental simulation
models want simulation techniques that are not limited to two variables. 1In this
chapter, a multivariate triangular matrix model capable of generating a large
number of correlated elements will be discussed. These elements could represent
several variables at a single station or a single variable at multiple locations.
Thus, this type of environmental simulation model allows more flexibility than

the V1Sl and V2S1 models.

4.2 Generation of Random Normal Vectors with Desired Correlation Using the
Multivariate Trianqular Matrix Model (MULTRI)

Let X be a vector stochastic variable consisting of j =1, 2, 3, ..., M
scalar variables xj and k = 1, 2, 3, ..., N observations Ek thus,
j=
xll x12 v le
X X21 X22 “en XZM (150)
K= Ky o=

X1 Xwz oo X
The kth observation of X is thus the row vector,

X = (X Xpp o0 Xpgl (151)
The vector of means 1is
E(lk) = [Xl X2 ce . XM] (152)

which may also be shown as an (N x M) matrix all of whose rows are identical.

The random variable X can be expressed in terms of 1ts deviation from the

mean X by

x= X -X (153)
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: The sum of the squares and cross products (SSCP) in raw-score form is the
' symmetric matrix X'X. Since any particular observation X, is a (1 x M) row
; vector, the raw-score SSCP is a

g

o A (Mx 1) x (1 xM)=(Mx M) - dimensional

matrix given by

2
ZXl lexz .o EXIXM
X, X X, 2 - X
X'x = 2" 2 2%m (154)
Xy XXy ... IXR
Similarly the deviation-score SSCP is
2
le lexz ‘e lexM
IX, X Ix,2 v ix
x'x = 2%1 2 2*m (155)
2
gy ImgKp e Iy
The two are related by (Tatsuoka, 1971)
x'x = X'X - 'R (156)

which gives the computational rule for obtaining x'x.

An unbiased estimate of the dispersion or variance-covariance matrix D is
given by dividing the elements of the deviation~score SSCP by the number of
degrees of freedom, i.e., N - 1.

D = —io ? x!'X (157)
= TNT L, Tkk
or
1 N

where k is a datum index varying from k = 1 for the first vector x to k = N for
the final vector. Note that D is a symmetric (M x M)-dimensional matrix.

The maximum likelihood estimate of D is given by
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N
D = E(x'x) = ,% 2 XpX, (158)
k=1
or
1 N
Dij = " kil xikxjk (158a)

The maximum likelihood estimate is used in this and similar contexts because as
long as N' data are independent out of N total data, the variance-covariance
matrix will be positive definite. Such a matrix is, in theory, invertible. It
should be kept in mind that the maximum likelihood estimate is biased; variance-
covariance estimates will be smaller, on the average, than they should pe. The
bias is not a problem in this application.

The variance of a variable X is

2

]

El (X-hy)? ]
EL (X=hy) (X-hy) ]

N
2 (xk-“x)(xk-ux) (159)

'

Zj=

The covariance between two variables X and Y is

OXY = E[ (X-px)(Y—“Y) ]
1 N
= N kil (xk_px)(Yk-“Y) (160)

Recalling Equation (57), the linear correlation Pxy between X and Y is simply the
covariance between X and Y divided by the product of the standard deviations of X
and Y, i.e.,

P = .84
XY Oy Oy
or
- X-y Y-p
Pyy = E[ ( X) ( Y) ] (161)
ox Oy

Note that the covariance of X with X reduces to the variance of X, i.e.,
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i = E[ (X-v )% |

= g,2 (162)
t X

t(" The covariance between a variable Xl and a variable X2 is -
1 X . :
912 N kil(xl-xl)(xz-XZ) 3
1 ¥ ;

== I X,X (163)

4 N k=1 172

[ and between X, and X, is )
3 1 3 .
S l N '-.
013 = N z X1X3 (164) j

fun
N
(=]
[
=2
T N

011 o
b
® (o) o .o g
D = 21 22 2M (165) ‘
. .. .. ]
,;
o g . a 1
or M1 M2 MM :
"
- 2 . 4
1_ o) 912 cee 1M
o c,2 e o
D = 21 2 2M '156)
2
M1 M2 M
Because
%y = %% %y Pxy (167)
® the variance-covariance matrix can be written as
1
2 |
%1 01%92P12 ce %1%MP 1m |
G, U, p 0,2 e 0,00
D = 271721 2 2°M"2M (168)
® ]
2 p
IM’1PM1 “mM%2PmM2 e M :

The form of the variance-covar.iance matrix D is such that the sample variances

-

a7 are along the main diagonal and the sample covariances Oij’ 1#j are the off-

diagonal elements.
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In the special case of a random variable X distributed normally with a mean
of zero and a variance of one, i.e., N(Q,1),

X=0 (169)
x =X (170)
X'x = X'X (171)
and
D=R (172)
where R is the correlation matrix, given by
1 P12 - Pim
p 1 .o p
R = | 2t 2M (173)
mp Pm2 . 1

which is symmetric.

I1f the vector stochastic variable X has the multivariate normal probability
distribution, then the probability density function of X is

— Ao A Aoa_ A

— 1 l-, - p~1 -
2nD
where | | represents the determinant and Q'l is the inverse of the variance-
covariance matrix D.
N . . ’
Random multivariate normal vectors X with a mean vector p, and variance- %
covariance matrix D can be generated by using a theorem (Anderson, 1958) which ]
states that if n is a standard normal vector containing independent normal vari- i
able components Ny each distributed N(O,1), then there exists a unique lower 1
triangular matrix C such that '{
X=0Cn +py (175) 1‘
where C is an (M x M) matrix and X and py are (M x 1) column vectors. Here, n = 1
[Qi] can be formed by selecting random normal numbers from a population distri- 'j
buted N(O,1). In this case (X - gx) has the (M x M) variance-covariance matrix, p
D =c¢'c (176) :
and the generation matrix C is obtained by a lower triangularization of the .;
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desired variance-covariance matrix D. The important point is that the components
of the vector X generated by this algorithm can have any desired correlation, as
provided in the variance-covariance matrix D, and can have any mean, as provided
in the vector Mg BY this method it is possible to generate correlated random
normal numbers. If the covariances of D are zero, the elements of the generated
X are then uncorrelated, i.e., independent.

One way of triangularizing the (M x M) variance-covariance matrix D to obtain
the (M x M) lower triangular matrix € is the Cholesky or so called "square-root
method" described in Section 4.3 of this report. Consider a case in which it is
desired to generate X in three components,

X = [X; X, Xg] (177)
with mean
By = [”1 Ha u3] (178)
and variances and covariances given by
2
%1 0192P12 019313
- 2
D 92%1P21 o2 92%3P23 (179)
2
93%1P3) 9392P32 O3
In this case,
9 0 0
cC = 0,P5 onl-pZIz 0 (180)
Pas=P3qP - 2 - (P3y=P3,P5,)%
O3P3, o, 32 "31721 o J/ 1 P31 32 "31"21
T<p._ .2 - 2
1-p5y (1-pyq)
The generation algorithm (Equation 175) is
1) SSUEY "
X = X5l = 0aPp1M) * 0y V1=p51° Ny ey (181
Pan=PaqP o 2. (pPa,mpaiP,q)e
x3 O3Pq1M; + 04 32 "31 21q2 + 03J/1 P31 32 "31"21 N3 Ha
\/l'p21 (1'0212)

In the special case where it is desired to generate X with a mean of zero and a

variance of one, 1.e., distributed N(Q,1),
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p=20 g =1 (182)
and the generation algorithm reduces to
4 m '
X =[x =| pyny + VIFp,,7 0, (183)
X, pyny + P327P31P21 o, + j[T " P31® = (P3p7P3Pyy)® o)
VI=p, 2 (1-p5,2)

where Ny, Ny, and ng are numbers drawn independently from a population distri-
buted normally with a mean of zero and variance of one.

In practice, these analytic expressions for the lower triangular matrix C are
not needed. One simply forms the desired variance-covariance matrix D (or the
correlation matrix R if X is to be distributed N(O,1)), lower triangularizes that
matrix by the Cholesky procedure (see Section 4.3), and uses it and the mean vec-
tor py in the generation algorithm (Equation 175). The independent random normal
numbers rn are produced either by using a pseudo-random normal number generator
directly or by using a uniform pseudo-random number generator and any of several
suitable transformations (Naylor, et al., 1966).

The generation algorithm of Equation (175) can be illustrated with a test case.
Suppose it is desired to generate a vector,

X = (X X, X3 X,)

of standard normal variables (distributed N(0,1)) having the correlation matrix,

1.0 0.8 0.7 0.3

0.8 1.0 0.6 0.4
g:[_):

0.7 0.6 1.0 0.5

0.3 0.4 0.5 1.0

The Cholesky reduction procedure is used to find the lower triangular matrix C,

1.0000 0.0000 0.0000 0.0000
0.8000 0.6000 0.0000 0.0000
0.7000 0.0667 0.7110 0.0000
0.3000 0.2667 0.3829 0.8321

The transpose of C is
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!'1.0000 0.8000 0.7000 0.3000
0.0000 0.6000 0.0667 0.2667

10
n

0.0000 0.0000 0.7110 0.3829
0.0000 0.0000 0.0000 0.8321

from which it can be verified that
c'c=D

The matrix C is then used to generate successive values of X by performing the
matrix-vector multiplication of Equation (175) with successive values of n.

4.3 Cholesky or "Square Root" Factorization

A square matrix A whose leading submatrices have nonzero determinants can be
factored (non-uniquely) as

A= gl u (LU Theorem) (184)

1
where L, and U, are lower and upper triangular, respectively. Likewise, A may be
factored (uniquely) as

A=LU (185)

= =2

where L is a lower triangular matrix whose diagonal elements are all unity, and
U, is an upper triangular matrix. The matrix U, can also be factored as

U,=DU (186)

vhere U is an upper triangular matrix whose diagonal elements are all unity, and
D is a diagonal matrix whose elements are the corresponding elements of gz, i.e.,

D = diag [Dl' Dz, ‘e DN] (187)
ﬁsing Equation (186) in Equation (185),
A=LDU (LDU Theorem) (188)

If A is symmetric and positive definite (a matrix A of order n is positive
definite if x' A x > ¢, for every real, nonzero n-vector x),

A=L

(=)

L' (189)

L' and A can be factored as

It

where L' is the transpose of L. Hence, U
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A = (L D% (0% L) (190)
where
D% = diag (D,*® D,* ... D% (191)
It is convenient to define
S = I D% (192)
so that
A=35S' (193)

Therefore, any real, symmetric, positive definite matrix A can be factored
into a lower triangular matrix S and its transpose S'.

The algorithm of choice to perform the factorization of Equation (193) is the
Cholesky or so called square-root method (Acton, 1970; Carnahan, et al., 1969;
Forsythe, et al., 1967; Naylor, et al., 1966; and Scheuer and Stoller, 1962).
The Cholesky method is extremely stable, never requires interchanging to avoid
small pivots, and requires the least computational labor of all decomposition
schemes, largely because of the symmetry of the A matrix. If the symmetric,
positive definite requirements are not adhered to, the Cholesky or square-root
algorithm will break down by calling for division by zero or attempting to take
the square root of a negative number.

The Cholesky or square-root algorithm for factoring the real, symmetric,

positive definite matrix A = [aij] of order n into a lower triangular matrix
S = [sij] and its transpose consists of three rules

8i1 = il . 2 = % (194)
£1ifn
Va3
/f 1-1
S,: = a;. = X 8.2 j>1 (195)
o 11 gz 1K 1<isn
j=-1
a.. = 5 8..8. j > 1 (196)
Sij - 1] k=1 1k 3k 1<j<icn
i3
Finally, sij = 0 for all j > i. These rules are implemented column-wise, start-
ing with the leftmost column (j = 1) and proceeding down each column (toward

increasing i). This becomes apparent when the algorithm is written out
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procedure LUSQRT (n, A, S)
integer i, j, k, n
real array A {i:n, 1:n}, S [1l:n, 1l:n}

begin
iz = 1;
for i: = 1 step 1 until n do
begin
Si,j: = Ai,j / sqrt (Al,l);
end;
for j: = 2 step 1 until n do
begin
i-1 2
S. .: = t A S. ;
3,30 7 8t (Ay 4 = 2S5 %)
for i: = j + 1 step 1 until n do
begin
j-1
..t = oL - . . S, 4
51,3 A4, kil (Si,k S5,6)) 7/ 85,3
end;
end;
end LUSQRT:

4.4 Derivation of Single-station, Two-variable Model Equations from the Multi-
variate Triangular Matrix Model (MULTRI)

The V251 single-station, two-variable model described in Chapter 3 is actual-
ly a special case of the multivariate triangular matrix model (MULTRI), namely,
the case where the number of variables is two. It should therefore be possible
to derive the equations of the single-station, two-variable model, (V2Sl), q.v.,

1"
Cy = PecCo * V1P ¢ (120)
1] L]
Ve T PyyVo t V1Pt Poye t VIme, S 1mpg, S N (197)
from the triangular matrix formulation. Recalling Equation (129),
' = 1-p P
Pev = ce W Pev (129)

VTp o {Tp 2

Using Equation (129) in Equation (197) produces the altered form,

LA (1~p Poy) w2y = (1=P Py )P cy”
Ve = PyVo * ce vVl p Nt (1 Py ) cchvv cvV_n (197a)
Jl-pccz (1-p,.2)

Together, Equations (120) and (197a) constitute the set of simulation equations
used in the single-station, two-variable model V2Sl.
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Figure 11. Correlation Influence Diagram for
Single-station, Multiparameter Model.

The process used in the V2S1 model is shown in the correlation influence dia-
gram depicted in Figure 11. In this diagram, the states of ceiling and visibili-
ty are numbered as well as lettered to show the correspondence between triangular

1 " 1 1"
matrix states Xy, Xy, X3, X, with multiparameter model states Cor Vg+ C¢r and v

t’
respectively, i.e.,

_ 11} i
X, =¢ X3 = ¢y
11" 11

X2 =V X4 = Ve (198)

In order for the triangular matrix model to resemble the two-variable model
V2S1, the following correlation structure is needed

P13 T P31 T Pec
Pag = Py2
P12 = P21 T Pey

P3g = Pg3 = Pey (199)

The cross-lag correlations are modeled as automatic correlation

©
!

= P P
CtV0 [o]o] cv

Pa3 T Pa1 P13 (200)
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v.c.  Pyv Pev
Plg = P12 P2 (201)

Under this correlation structure, it is not in general true, that Po3 is
equal to Py3Pa3 OF that Pla is equal to P13P3g- This would be true only if Pec =

Porve

The triangular matrix model is based on a variance-covariance matrix D such

as
2
o1 01%2P12 9193P13 01%P14
T,04pP 0,2 C,0,p G.,0,p
p = | 72%1P2 2 2%3P23 24P 24 (202)
2
030,P3; 039;P32 93 0304P34
2
0491P43 0492P4., 0493Pg3 04

Since the variables generated are distributed N(0,1), the variance-covariance
matrix D reduces to the correlation matrix R.

1 P12 P13 P14

D = P21 1 P23 P2a (203)
P31 P32 1 P3q
Pa1 Pa2 Pq3 1

D = R

This matrix R can be lower triangularized using the rules stated in Section 4.3
of this report dealing with Cholesky reduction. The result is a lower triangular
matrix C, given by

1 0 0 0
P21 V1-pyq 0 0
- - " - A PS - -3
c = |pq P327P31Pp1 V(1P J(1=pyy%)=(P3p-P31Ppy)° (204)
v1-pp JI-p 1
Par=PgqP
Pa1 42 741721 Cq3 Ca4
v1=pyy
- 2 - - -
Chq = (Pg37Pg1P31) V1-Ppy (Pa7Pg1P21)(P327P31P) )

5
J1mp31 ) (1P %) = (P3p=P39Pp )" (20)
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Con = [1 = p 2 - (Paa=Pg1Pp1)® _ (Pg3=Pya1P3q)° (206)

44 a1 : - 3
\1‘021 ) (1’031 )

Applying automatic correlation,

P32 = ParPay =0
1 0 0 0
P21 I=p21 0 °
c = oy 0 VI-p5,7 0 (207)
Pa1 Pg27Pa1P21  (P437P41P3) Ca4
1-p217 AN
- 4
Caq = /1 - 0gy? - (Pgp=Pg1P21 )% . (Pg3.P41P5;)° (208)
411'9212) (1-0312)

The generation algorithm for the triangular matrix method is
X=Cn
.y
in the case where the components of X are standard normal variables. In that
case,

"

o * X15¢,1Mm

Yo = XKy =¢€3,1M *C2,2M

Gt = X3 = ¢33 M *C3,2 N % C3,30;3

Ve = Xy = Cq,1 M * C4,2M2 % C,3M03%C 4N (209)

1" 1
The first two equations are used to define the lag variables o and Vo and thus
to add time stepping to the model. These equations are

€y = Xl =ny (210)
"
= = -
Vo = X = ey +VI-pp 7 0y
"
= PeyCo * V1Pt N (211)

The next two equations from (209) define the process

83




Cp = X3 = Py Xp *+ VI-p5 % ng
= poeCo + VITPoLZ N (212)
Ve = Ky =0, K+ P427P41P21 0, + Pa37Pa1f3) o,
Ty T
+ j[ 1 - pgy? - (PazParP21)® - (Pa3mPgnP31) (213)
15,77 T5;0)

Equation (213) is not in flnal form. The variables xl and n, must be replaced by
forms containing co and v0 Equation 198 can be used for Xl Equation (211)
solved for n, can be used to materialize v0 in Equation (213)

V, -~ p_C
n, =_0 Tcvo (211a)
VI-pey

After these substitutions, Equation (213) becomes

" " -
v, = X, = v + (37PyuPcc) Pev e

t 4 Pyv 0
i= 3
1 Pece

- A} - - z
+ 1 -p_20_2 = (pvv PyvPev ) (pcv pvvpcvpcc) n (214)
vvoee (T, 7Y (T=p 5 2)

Some algebraic manipulation of Equation (214) produces

. by (L=ppcc)

Wp cC

t =X TPy Vot Pevllc
T2
Vi-p ¢
- 72
/ (1=, 2) = (1-p 0P ) Py n (214a)
(1-p %)

This equation and Equation (212) agree with Equations (120) and (197a) of the
single-station, two-variable model V2S1l. The two models are therefore equivalent
statements of the same stochastic process.

4.5 Summary and Conclusions

In this chapter a multivariate triangular matrix method for generating an
independent vector of N correlated elements has been presented. The multivariate
triangular matrix model MULTRI allows simulation of more than two variables.
Finally, it has been shown that the Ornstein-Uhlenbeck process for two variables
and the multivariate triangular matrix technique for two variables are equivalent
statements of the same stochastic process. In Chapter 5 a case study of a multi-

parameter multi-location model will be presented.
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Chapter 5
MODELING JOINT SKY COVER DISTRIBUTIONS
A CASE STUDY USING THE MULTIVARIATE TRIANGULAR MATRIX MODEL
5.1 General
USAFETAC Project 2357 required producing joint probability tables for eight
selected locations in the Soviet Union (see Table 18). The requested joint prob-

ability tables were for

¢ Sky cover at station pairs at a fixed time

e Sky cover at a single station at some initial time and N lag times

For example, what is the probability that any two stations would have 8/8 sky-
cover at the same time, or what is the probability that Moscow would have 8/8
skycover at both 1200 GMT and 1500 GMT?

Table 18. Stations Modeled in Case Study.

Site Name WMO Station # Latitude Longitude
Chiganak, RS 359970 45.10 N 73.97 E
Moscow, RS 276120 55.75 N 37.57 E
Vladimar, RS 275320 56.13 N 40.38 E
Kingisepp. RS 260590 59.37 N 28.60 E
Kazan, RS 275950 55.47 N 49.18 E
Feddosiya, RS 339760 45.03 N 35.38 E
Vyborg, RS 228920 60.72 N 28.80 E
Voronezh, RS 341220 51.70 N 39.17 E

The probability that a given location will have a certain amount of cloud
cover can be easily estimated from available climatological data. Estimating the
probability that the given location will have a certain sky cover at two or more
times or that two locations will have certain sky covers at the same time is more
difficult and requires processing large amounts of data. The modeling approach
is a convenient alternative because it reduces the need for data processing.
Furthermore, the modeling approach has the advantage of being able to smooth
through certain pathologies in the raw data, a subject discussed in Section 5.2
below.

The multivariate triangular matrix model MULTRI was determined to be well

suited for this type of problem. The joint sky cover probability tables could be
easily produced by generating long series of independent random vectors and tabu-
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lating the results. Each vector would contain M correlated elements distributed
N(0,1). Thus, the vector elements could represent values for the ENDs of the
marginal distributions of sky cover for the various locations and times if a good
normalizing function for sky cover could be found. The tables could then be
formed by converting the ENDs to sky cover categories using the normalizing func-
tion and then tabulating and storing the raw counts for later probability calcu-
lations. The mathematics of the triangular matrix method were discussed in
detail in Chapter 4, so only the application to the joint sky cover probability
modeling will be discussed in this chapter.

Some important assumptions had to be made in using this approach: (1) the
marginal distributions of sky cover for the individual stations could be ade-
quately described by some normalizing function; (2) the spatial, and temporal
correlation functions for the geographic location that was to be modeled could be
adequately described by some correlation model; and (3) the joint occurrences of
sky cover for the various station pairs and lag times were distributed multi-
variate normally.

The model's final results depended on the %“goodness" of these assumptions.
If any one of these assumptions were bad, the final model would fail to generate
joint probability tables that were representative of actual conditions. In this
chapter, each assumption will be discussed as it pertained to this case study and
the results wi'®' be presented and compared with actual data.

5.2 Models for Marginal Distributions of Sky Cover at Individual Stations

As the first step in gener--ing the joint probability tables, the marginal
distributions of sky cover the eight individual stations were fitted to
Johnson S, curves, described pelow. These unconditional probability models were
needed to feed the multivariate joint probabilities model. The data used to
develop these individual models were prepared by OL-A, USAFETAC, Asheville NC,
for the period of record January 1973 through Decenber 1979. Ninety-six separate
distributions were fitted for each station, one for each 3-hour period of the
day, beginning 00-02 Local Standard Time (LST), for each of the 12 months.

The methods of Somerville were adapted to develop the models for the marginal
distributions of sky cover (Somerville, Watkins, and Daley, 1978). Somerville

recommends the Johnson S, family of distributions because of their ease of use

B
and the many shapes which these curves can assume. The Johnson curves are per-
ticularly useful because the modeling coefficients may be obtained by linear
curve fitting or regression technigues as opposed to other functions which may

require more complex nonlinear methods.

The SB family 1s given by
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z2 = Yy +n - In[ —— | (<lo)
l-xT

where y and n are the coefficients determined from ewpirical data., The veriable
Xy ls some threshold value of the sky cover X in fractional coverage, and Z s
the END of the cumulative distribution that the sky cover (%) ;s legs than oy
egual to X Equation (215) may also be solved for sky cover, given the {IND of
the cumulative distribution

1+ exp( (z-y)/n )
X = 3 — (2:6€)
exp( (z-y)/n )

Using Equations (215) and (216) with particular modeling cuetfirienls, .
value for sky cover can be calculated for any value of the cumuiative distribu-
tion, or a value for the cumulative distribution can be calculated for any rky
cover. These equations establish a corresponding one-to-one telationship ton
values of sky cover and the END of the cumulative distribution fc: each stati:n.
This attribute lends itself guite well to stochastic modeling.

The modeling coefficients for sky cover were obtained by using a singular
value decomposition (SVD) scheme to tit the observed sky cover distribut:ons to
the Johnson SB family o¢ curves. Singular value decomposition i described ni
Forsythe, Malcolm, and Moler (1977). Table 19 lists the 9¢ sets of <oefticiernts
for Kingisepp, RS, that were obtained during the curve fitting procedure. 1t 1g
the wvariability of these coefficients that encompass the diurnal ani —cazonal
variations of the sky cover distribution.

Tables 20 and 21 contain root-mean-sguare (RMS) differ-nce :nforme o

vach curve fit for Kingisepp, RS, and Chiganak, Ri. Kingisepp :@epre.cor
lovest and Chiganak the highest overa'l RMS values for the iyt 'ooat,
were modeled. Tables 22 and - list the percentage of time ihat *Fe o w i
tributions for these two stations differed from the observed a: "1

varicus thresholds. The RMS informaticon contained in the:se o).
vatldating the first assumption, that is, whether tic mar.r.
‘hy cover could be adeyguately described by some norpoalicon:
siows Lhat of the 96 curve fits for Kinglsepp, Ko,
EMS values were greater than 3.0 and alli RMO valus
be emphasized that because the observed trequer.
snall cample size and becau-e ot the prob .o
soa, the obzevved distribat.,ons  that e

Greater than b opercent troem the Mree o

Somery .o tie teels that o aome e
foath than the onoersed oA e
Cyae, RME waaiuen o e
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Table 20. RMS of Individual Curve Fits for WMO Station 260590, Kingisepp, RS.
AVG
MON/LST 00 03 06 09 12 15 18 21 RMS
JAN 1.19 0.77 0.68 1.06 1.61 1.65 1.46 0.77 1.15
FEB 1.7 0.75 0.76 1.74 2.22 1.46 1.73 0.96 1.42
MAR 0.92 1.44 1.17 1.33 1.81 2.13 2.80 1.32 1.61
APR 2.31 2.16 1.97 2.72 2.14 2.20 2.47 1.93 2.24
MAY 1.95 2.00 3.42 2.90 2.18 2.06 1.82 2.98 2.41
JUN 3.26 3.33 3.37 1.98 2.73 1.90 2.78 2.79 2.77
JUL 4.39 3.34 3.53 4.21 2.12 2.73 2.73 3.52 3.32
AUG 2.59 2.13 2.73 1.67 3.38 1.10 2.63 2.83 2.38
SEP 2.73 2.17 1.28 2.43 l.82 1.90 1.93 1.70 1.99
oCcT 1.40 1.70 2.21 1.26 1.15 0.73 1.43 2.60 1.56
NOV 0.68 1.26 1.47 0.98 0.93 1.21 0.83 1.33 1.07
DEC 1.64 1.97 1.53 1.63 2.19 1.56 1.01 1.41 1.62
Table 21. RMS of Individual Curve Fits for WMO Station 359970, Chiganak, RS.
AVG
MON/LST 00 03 06 09 12 15 18 21 RMS
JAN 2.10 1.50 1.08 1.37 3.69 4.13 3.39 1.82 2.39
FEB 1.38 1.53 1.86 4.79 4.83 2.63 3.71 1.13 2.73
MAR 1.26 1.54 1.38 2.19 3.71 3.42 3.80 1.63 2.37
APR 2.07 1.72 2.41 3.98 4.51 4.91 4.62 3.45 3.46
MAY 2.53 1.64 2.71 4.90 4.70 4.82 4.76 2.52 3.57
JUN 2.62 2.91 3.56 5.01 3.96 3.45 3.22 3.39 3.52
JUL 1.10 1.34 2.65 3.49 2.76 4.63 4.19 4.13 3.04
AUG 0.93 0.77 0.82 2.32 1.79 2.69 1.76 2.07 1.64
SEP 1.16 0.85 1.85 2.47 2.83 2.55 4.74 1.58 2.25
ocT 1.71 1.50 1.06. 4.11 5.21 3.96 5.40 1.30 3.03
NoOV 1.92 2.52 1.41 5.28 4.24 4.40 3.06 2.62 3.18
DEC 1.49 2.23 1.51 2.50 2.14 2.70 0.79 1.53 1.86
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Table 22. Proportion of Time that the Empirical and Modeled Cumulative
Distributions for Kingisepp, RS, Differ by Various Thresholds.

A
:
1
-
g

WMO STATION: 260590 Kingisepp, RS
MONTH 2% 5% 10%
JAN 0.047 0.000 0.000
FEB 0.203 0.000 0.000
MAR 0.234 0.016 0.000
APR 0.422 0.000 0.000 .
' MAY 0.422 0.031 0.000 _
- JUN 0.484 0.047 0.000
a JUL 0.531 0.141 0.000
. AUG 0.500 0.031 0.000
{ SEP 0.359 0.000 0.000
: oCT 0.250 0.000 0.000
i | NOV 0.078 0.000 0.000 -
» DEC 0.203 0.000 0.000 4
[ TOT 0.304 0.022 0.000 1

L
4
B
) Table 23. Proportion of Time that the Empirical and Modeled Cumulative
Distributions for Chiganak, RS, Differ by Various Thresholds. - - g
WMO STATION: 359970 Chiganak, RS 1
MONTH 2% 5% 10% \
JAN 0.375 0.063 0.000 5
FEB 0.391 0.094 0.000 ]
MAR 0.391 0.063 0.000
APR 0.547 0.188 0.000 T
MAY 0.563 0.188 0.000 1
JUN 0.719 0.109 0.000
JUL 0.531 0.141 0.000
AUG 0.250 0.000 0.000
SEP 0.391 0.031 0.000
oCT 0.453 0.188 0.000 h
NOV 0.453 0.109 0.016 |
DEC 0.297 0.031 0.000 b
TOT 0.436 0.098 0.001
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Figure 12. Relative Frequency Distribution of Cloud Cover

at Chiganak, RS, November at 0900 LST. The observed distri-
bution and the Johnson curve fit to that distribution are
shown. The RMS between the observed distribution and modeled
CDF is 5.3 percent, and the maximum difference is 11.2 percent.

For both stations, the largest RMS values occur in the May to July period, and
the lowest RMS values occur in the December to February period. A user should
have more confidence in the model results from winter then those results from
spring to early summer.

Figures 12 and 13 compare the modeled and observed relative frequency distri-
butions for two individual situations. Figure 12 is for Chiganak, RS, November,
0900 LST, and represents the largest RMS value for all fits (5.3). Note that the
distributions exhibit the same general shape even though the RMS is large. Fig-
ure 13 is for Moscow, RS, November, 0600 LST, and represents the smallest RMS
value (0.5). In this case the modeled curve duplicated the observed distribution
quite well.
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Figure 13. Relative Frequency Distribution of Cloud Cover at
Moscow, RS, November at 0600 LST. The observed distribution

and the Johnson S, curve fit to that distribution are shown.

The RMS between tﬁe observed distribution and modeled CDF is

0.5 percent, and the maximum difference is 0.8 percent.
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5.3 Use of the Single-station Model

Suppose one wishes to find the probability of less than 0.50 sky cover at
Moscow in January at 0600 LST. One would proceed as follows

- 0.77442662
0.12484847

For Moscow in January at 0600 LST, vy
n

Eqguation (215) is used to calculate an END given a threshold sky cover

Yy +n - In[ xp/(1-x5) ]

-0.77442662 + 0.12484847 1n[ 0.5/(1.0-0.5) ]

~0.77442662

Using a table of areas under a standard normal curve produces the required prob-
ability
Pr(z { -0.77442662) = Pr(X { 0.5) = 0.221
In the same manner, Equation (216) may be used to calculate a threshold sky
cover given the value for the probability. One might want to know what threshold
value of sky cover is exceeded 25 percent of the time at Kazan, RS, in June at

1500 LST.

For Kazan in June at 1500 LST, y = - 0.48898128
n= 0.43001788

; corresponding to the probability (that X is less than or equal to xT) of 0.75
is 0.675. Equation (216) is used to calculate the threshold sky cover

1+ exp[(z-y)/n]
expl (z-v)/n]

exp [(0.675 + 0.48898128;%0.43001788!
1 + exp . -+ 0. 1 . 1788

0.937

*r

Using the model one could expect Kazan to have a sky cover greater than 0.937
25 percent of the time in June at 1500 LST (0.937 coverage converts to 8/8 when
dealing with sky cover categories).
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5.4 Modeling Temporal and Spatial Correlation of Sky Cover

«

|
‘
«

5.4.1 Requirement for Correlation Matrices. In Chapter 4 a theorem from
Anderson (1958) was presented for the generation of a random vector (X). The
joint sky cover probability model in this case study was based on the generation
algorithm derived from Anderson's theorem

X=Cn

where n is a vector of random numbers distributed N(0,1) and C is a unique lower
triangular matrix such that the correlation matrix R is equal to the product of C
and the transpose of C (designated C'). That is,

R=cc'

One method for deriving C from R was presented in Chapter 4, namely, the
Cholesky or "“square-root" method. It ig obvious that a good method of construct-
ing the correlation matrix R is needed, since R is ultimately used to generate
the vectors of ENDs of sky cover that produce the joint probability tables.

5.4.2 Spatial Correlation. Gringorten's Model-B (Gringorten, 1979) was used to
model the spatial correlation function for this project. The Gringorten spatial
correlation model is discussed in more detail in Chapter 6. Gringorten's equa-
tion for spatial correlation between two locations is

r= % [ cos'l(a) - aJl-02 ] (217)
where
¢ = (Actual Distance) / (128 * Scale Distance) (218)

The scale distance is determined from observed data in the geographic area of
interest. Gringorten's Model~B conforms to some preconceptions one has about a
spatial correlation function. It is desirable that the function decrease expo-
nentially with distance (not squared), at leagt for short distances, and drop to
zero in a larger but finite distance. Table 24 compares the spatial correlation
coefficients obtained from Gringorten's Model-B (Scale Distance = 7.8 km) with
tetrachoric correlation coefficients calculated from observed data for various
station pairs. It can be seen that although Model-B does not fit all cases, the
fit for the overall data is not bad. Seasonal variations in the spatial correla-
tion function can be accounted for by adjusting the scale distance. Table 25 ) :
lists the correlation coefficients as calculated by Model-B at various distances
for different scale distances. This table should give a potential user a feel
for how much the spatiazl correlation function can be altered by adjusting the
scale distance.
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Table 24.

Spatial Correlation Coefficients

Station Pairs

Spatial Correlation Coefficients Calculated by
Gringorten's Model-B Compared to Tetrachoric Correlation
Coefficients Computed from Observed Data.

, Vladimar Voronezh Kingisepp Feddosiya
4 and and and and
] Moscow Moscow Moscow Moscow
Distance 179 461 852 1199
(km)
Computed
Cor. Coef.
JAN 0.783 0.637 0.309 0.137
APR 0.694 0.120 0.184 0.012
JUL 0.526 0.335 0.160 0.239
OCT 0.717 0.425 0.209 0.039
ALL
MONTHS 0.699 0.394 0.215 0.123
Modeled
Cor. Coef. 0.771 0.430 0.215 0.000
Scale Distance for Gringorten Model = 7.8 km

Table 25. Spatial Correlation Coefficients from Gringorten's Model-B
at Various Distances for Selected Scale Distances (The actual and scale
distance must be in the same units).
ACTUAL DISTANCE
50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0
1.0 0.516 0.119 0.000 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000
] 2.0 0.753 0.516 0.299 0.119 0.00¢ 0.000 0.000 0.000 0.000 0.000
g 3.0 0.835 0.672 0.516 0.368 0.234 0.119 0.031 0.000 0.000 0.000
é 4.0 0.876 0.753 0.632 0.516 0.404 0.299 0.203 0.119 0.050 0.004
D 5.0 0.901 0.802 0.704 0.609 0.516 0.426 0.340 0.260 0.185 0.119
é 6.0 0.917 0.835 0.753 0.672 0.593 0.516 0.441 0.368 0.299 0.234
{ 7.0 0.929 0.858 0.788 0.718 0.649 0.582 0.516 0.451 0.389 0.328
{’ g 8.0 0.938 0.876 0.814 0.753 0.692 0.632 0.573 0.516 0.459 0.404
» : 9.0 0.945 0.890 0.835 0.780 0.726 0.672 0.619 0.567 0.516 0.465
; 10.0 0.950 0.901 0.851 0.802 0.753 0.704 0.656 0.609 0.562 0.516
hy
- .
95‘

L.!.J. 1. .

.

o e

ol

R SR
SRy ¥ I 13-

T e, L

et J.-A‘-

1
i



TN, N T S LI . P ' g P P W S R AP Y

5.4.3 sSerial or Temporal Correlation. For the temporal correlation, Equation
(121) was used

r = 0.9458%

vhere r is the correlation coefficient between observations of sky cover at an
initial time and some time lag (At in hours) and 0.945 is an empirical constant
derived from observed data. Table 26 compares the temporal correlation coeffi-
cients calculated from Equation (115) to the tetrachoric correlation coefficients
derived from observed data at selected stations for all hours, all months. As
seen from Table 26, the correlation coefficients from Equation (121) are fairly
close to those calculated from observed data in the first 18 hours but tend to
approach zero faster than the observed coefficients beyond 18 hours. Once again,
seasonal variations in the temporal correlation function can be accounted for by
adjusting the constant.

- Table 26. Temporal Correlation Coefficients Modeled from Gringorten's
Equation Compared to Tetrachoric Correlation Coefficients Calculated
from Observed Data.

Temporal Correlation Coefficients

From From
Model Obsvd Data
Time Lag Kingisepp Moscow Chiganak
3 0.844 0.856 0.825 0.814
6 0.712 0.682 0.699 0.637
9 0.601 0.594 ’ 0.618 0.513
12 0.507 0.553 0.571 0.419
18 0.361 0.359 0.456 0.405
24 0.257 0.330 0.439 0.476
48 0.066 0.269 0.252 0.320

5.5 Models for the Joint Probability of Sky Cover

5.5.1 Joint Probability Models. In order to satisfy the two separate joint
probability requirements of USAFETAC Project 2357, two operational models were
developed. JSKY1 is the name for the USAFETAC model that produces joint sky
cover distributions for a selected station at some designated time and N lag
times (temporal problem), and JSKY2 is the USAFETAC model that produces joint sky
cover distributions for selected station pairs (spatial problem). Both models
are quite similar in the methods used to generate the joint probability of sky
¢cover tables. The main difference is the technique for constructing the
correlation matrix used to generate the vectors of correlated elements. In JSKY1
temporal correlation is used, while in JSKY2 spatial correlation is used. The
models will now be examined in some detail.
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5.5.2 JSKYl Model. The overall plan of the model JSKY1 is shown in Figure 14.
A precondition of using this model is that the Johnson Sp coefficients for the
stations of interest must be available in a data file for call by the main pro-
gram. The user provides the WMO station number of the particular location of
interest and sets up a queue for the initial times, time lags, and the specific
months for which the joint probability of sky cover tables are to be constructed.
The final input parameter is the number of vectors that will be generated to con-
struct each table. Each vector is independent of each other vector (p = 0). It

is the elements within the vector that are correlated. If 3500 is specified,

then the tables will contain an effective sample size of 3500 observations (see
Equation 142).

JOMNT SKY GOVER PROSABILITY SIMAATION MODEL

JOMNSON
COEFFICIENTS
SET UP CORRELATION l —
- MATRIX § AND GENERATION " 4)/—;”"
PARAMETIRS REDUCE TO — X - s PROBABIITY
LOWER TRIANGULAR ALGORITHM TABLES
MATRIX G

DO UNTR NREP 1S SATISFIED

Figure 14. Macro-design of the Joint Probability
of Sky Cover Models Showing Flow of Information
Through the Models.

Consider the following example. The problem is to compute the joint proba-
bilities of sky cover for Kingisepp, RS, for September at 1200 GMT and lag times
of 3, 6, 12, and 24 hours. Using Equation (121), the following correlation
matrix is set up
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Station: 260590

0
0 1.00
L
a
g 3 0.84
T
i 6 0.71
m
e
12 0.51
24 0.26

For example, the 6- and 12-hour time lag observations are 6 hours apart

are related by the expression,

The correlation matrix R
1.00
0.84
R = 0.71
0.51
0.26

is lower triangularized using USAFETAC subroutine

Cholesky decomposition scheme.

1.00
0.84

e}
i}

0.71
0.51
0.26

from which it can be verified th

Initial Time:

Lag Time

3 6
0.84 0.71
1.00 0.84
0.84 1.00
0.60 0.71
0.30 0.36

r(at) =

0.84
1.00
0.84
0.60
0.30

0.00
0.54
0.45
0.32
0.16

at,

12

0.51

0.60

0.71

1.00

0.51

0.945% = 0.71

0.71
0.84
1.00
0.71
0.36

0.00
0.00
0.54
0.38
0.19
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0.51
0.60
0.71
1.00
0.51

0.00
0.00
0.00
0.70
0.36

0.26
0.30
0.36
0.51
1.00
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0.26

0.30

0.36

0.51

1.00

1200 GMT

' thus

LUSQRT, which implements the
The result is the lower triangular matrix C,

0.00
0.00
0.00
0.00
0.86
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Table 27. Steps in Generating a Random Vector of N Correlated
Elements of Sky Cover.

1. Build a correlation matrix R using an appropriate correlation

model (i.e., Gringorten's Model-B or the exponential decay model).

2. Obtain the lower triangular matrix C from R using USAFETAC
subroutine LUSQRT (the Cholesky reduction scheme).

3. Generate N independent standard normal numbers.

(nll n21 AR AN | rIN)

4. Perform the matrix-vector multiplication using the theorem
from Anderson (1958).

X=C-n

5. Transform each of the elements of X into values of actual sky
cover using an appropriate transnormalizing function (i.e., the

Johnson SB curve).

g Table 27 summarizes the steps that are required to generate tables of joint
sky cover probabilities. The lower triangular matrir C is passed to USAFETAC
subroutine RANDCY. This subroutine generates a vector n of independent random
standard normal numbers (i.e., numbers that are distributed N(0,1)). There are
many random normal number generators that can be used. An example of this vector
of independent numbers might be

ny = -1.1006500
n, = 0.4851688
ng = =0.5071453
ng = =0.1079881

ng = -0.3342136

RANDCV then performs the matrix-vector multiplication specified by Anderson's
theorem,

X=Chn

and the following vector X results
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X = ~1.1006500
x, = -0.6685610
Xy = -0.8362812
X, = ~-0.6713913

Xg = -0.6285658

Since the elements of X are distributed N(0,1), they may represent correlated
ENDs of sky cover. The Johnson sB curve is then used to tranform these ENDs to
sky cover categories by means of Equation (216) and the modeling coefficients for
the time and month of the observation: (Note in the table below that the special
term "oktas" refers to the number of eighths of sky cover.)

Vector Sky Cover Sky Cover Category
Element (Fractional Coverage) {OKTAS)

S (Time t) = 0.2067654¢ = 2

S, (t + 3hr) = 0.3663973 = 3

S3 (t + 6hr) = 0.0784657 = 1

84 (t + 12hr) = 0.0369868 = 0

Sg (t + 24hr) = 0.4866438 = 5

Thus, the accumulator for sky cover (t) = 2, sky cover (At) = 3 is incremented
for the 3-hour lag time table, sky cover (t) = 2, sky cover (At) = 1 for the
6~hour lag time table, etc., for all lag times. This procedure is repeated unti.
the desired number of observations is achieved. An estimate of the joint proba-
bilities is computed from the raw counts, and the simulation advances to the next
hour or month until the hour and month queues are exhausted.

It should be emphasized here that the subroutine RANDCV produces a vector X
of elements that are distributed multivariate normally according to the correla-
tion specified in the correlation matrix R. The questions remain, what type of
degradation is involved in transforming each of the elements of X individually

into sky cover categories by the Johnson S, curve and how close to multivariate

B
normality are the observed data?

Tables 28 and 29 compare the joint probability tables of observed and simu-
lated sky cover data for Kingisepp, RS. The observed probabilities are based on
observations from the 7-year period of record January 1973 through December 1979,
and the simulated probabilites are based on 3500 synthetic observations. Table
28 contains the data for 0000 GMT, January, and a lag time of 12 hours, which
represents a period in which the observed sky cover distributions were fitted to
Johnson SB
contains data for April, 0000 GMT, and a lag time of 6 hours, which represents a

curves with a great deal of success (i.e., low RMS values). Table 29
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Table 28. Observed and Simulated Joint Sky Cover Distributions for
WMO Station 260590, Kingisepp, RS, at 0000 GMT, January and 12 Hour
Lag Time.

OBSERVED
SKY COVER FOR INI. AL TIME (OKTAS)

Sky Cover for
Lag Time of 12 HRS
{OKTAS)

0 1 2 3 4 5 6 7 8 TOT

0.089 0.009 0.005 0.005 0.005 0.061 0.174
0.009 0.019 0.028
0.009 0.005 0.028 0.042
0.014 0.005 0.028 0.047

0.005 0.005
0.005 0.005 0.005 0.005 0.019
0.019 0.009 0.009 0.052 0.089
0.019 0.005 0.078 0.094
0.061 0.005 0.014 0.005 0.009 0.014 0.394 0.502
0.225 0.019 0.023 0.014 0.019 0.038 0.662 11.000

§@\10\U\thHO

SIMULATED

0.064 0.008 0.003 0.003 0.002 0.002
0.024 0.001 0.001 0.000 0.002 0.001
0.007 0.001 0.000 0.001 0.001 0.001 .001
0.010 0.001 0.000 0.001 0.000 0.000 .000
0.009 0.001 0.000 0.001 0.000 0.000 0.001
0.011 0.000 0.000 0.000 0.000 0.000 0.001 .001 0.021 0.035
0.012 0.001 0.001 0.001 0.001 0.000 0.001 .003 0.034 0.054
0.018 0.003 0.003 0.001 0.001 0.002 0.001 0.003 0.059 0.091
0.048 0.006 0.005 0.006 0.005 0.004 0.005 0.009 0.422 0.510
0.203 0.022 0.013 0.014 0.013 0.011 0.013 0.026 0.686 1.000

.002
.001

.005 0.061 0.149
.002 0.035 0.068
.001 0.022 0.034
0.016 0.029
.001 0.018 0.030

OO0
0COO0OO0OC0COO
[=d
(=]

[

§0\I0~U‘HPUJNHO

month in which the observed sky cover distributions were difficult to fit to the
Johnson SB curve (i.e., high RMS values). The largest difference between the
observed and simulated tables for the January case is 2.8 percent. Considering
the fact that the observed table ig based on less than 250 observations, the val-
ues for the simulated table come well within the possible error intervals imposed
from sampling theory alone. The largest difference between the observed and
simulated joint probability tables for the April case occurs in the 8/8-8/8 joint
occurrence category and is 5.2 percent. Even in this worst case month, the dif-
ferences between the observed and simulated data are well within the limits
expected from sampling theory, because of the small sample size.

5.5.3 JSKY2 Model. JSKY2 is the name of the USAFETAC model that produces joint
sky cover distributions for selected station pairs at any desired time. Figure
14 illustrates the overall design of this model also.
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Table 29. Observed and Simulated Joint Sky Cover Distributions for
WMO Station 260590, Kingisepp, RS, at 0000 GMT, April, and 6-Hour
Lag Time.

OBSERVED
SKY COVER FOR INITIAL TIME (OKTAS)

Sky Cover for
Lag Time of 6 HRS
{OKTAS)

0 1 2 3 4 5 6 7 8 TOT

0.129 0.010 0.005 0.005 0.010 0.010 0.170
0.021 0.005 0.010 0.005 0.041
0.046 0.005 0.005 0.005 0.010 0.010 0.082
0.010 0.005 0.015

0.015 0.015
0.010 0.005 0.010 0.005 0.031
0.067 0.005 0.026 0.098
0.052 0.005 0.010 0.010 0.005 0.010 0.067 0.160
0.072 0.010 0.015 0.005 0.036 0.247 0.387
0.407 0.005 0.036 0.021 0.036 0.036 0.072 0.387 1.000

HONOWMBWN KO

Q
=]

SIMULATED

0.127 0.006 0.003 0.001 0.002 0.001 0.002 0.002 0.008 0.152
0.055 0.003 0.004 0.001 0.002 0.000 0.001 0.005 0.010 0.082
0.029 0.005 0.001 0.001 0.002 0.001 0.001 0.002 0.007 0.050
0.020 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.006 0.035
0.021 0.005 0.001 0.001 0.002 0.001 0.002 0.002 0.009 0.044
0.023 0.003 0.002 0.001 0.001 0.003 0.001 0.004 0.014 0.052
0.022 0.003 0.002 0.001 0.002 0.003 0.002 0.005 0.020 0.060
0.037 0.010 0.004 0.005 0.003 0.002 0.004 0.009 0.038 0.110
0.041 0.018 0.007 0.008 0.008 0.006 0.010 0.018 0.299 0.416
OT 0.374 0.056 0.025 0.021 0.023 0.017 0.024 0.049 0.412 1.000

HOYOWUVMBWNEHO

As with model JSKYl1l, the Johnson Sp coefficients for possible stations of
interest must be available in a data file for call by the main program. In addi-
tion to this requirement, a scale distance must be provided in order to tune the
Gringorten spatial correlation function to the geographic area of interest. The
user provides the WMO station numbers of the two locations to be modeled and then
sets up a queue for the times and specific months that the tables of joint proba-
bility of sky cover are to be constructed for. The final input parameter is the
number of vectors that will be generated to construct each table.

Consider the following example. The problem is to construct a table of joint
probabilities of sky cover for Kazan, RS, and Vladimar, RS, in September at 1700
GMT. The distance between these two stations is calculated by the model as 548
km (see Chapter 6 for a detailed explanation of how great circle distance is
calculated), and the Gringorten Model-B scale distance for sky cover is taken to
be 7.8 km for that geographic area. Table 27 summarizes the steps necessary to
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generate the joint probability tables for the spatial problem. Equation (217) is
used to calculate the spatial correlation coefficient for sky cover given the
scale of the geographic area and the actual distance separating the two loca-
tions.

The following correlation matrix is set up

Station #
275950 275320
275950 1.00 0.34
Station
#
275320 0.34 1.00

More stations could be added and the two-by-two matrix would be expanded to an
N-by-N matrix. The correlation matrix R,

1o
"

1.00 0.34
0.34 1.00‘

is lower trangular