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,[CT1( I Theory of turbulent flow: the second year

During the past two years, my associates and I have focused on the newly

discovered "elastic buckling" property of inviscid flow, as a way of providing

the necessary building block in our quest to reconstruct theoretically the main

features of turbulent fluid behavior. As summarized in the First Annual Report

[1, the buckling property of inviscid flow is the concise result of account-

ing for the static equilibrium of a finite-size portion of an inviscid flow

field. Any inviscid flow "fiber", like a jet, a wake or a shear layer, possesses

a previously unknown length scale - the buckling wavelength - which is a certain

multiple of the transversal dimension of the fiber. Buckling is a global

property of the flow. As such, the buckling property accounts for the extremely

common "meander" phenomenon and, as shown in the present report, for the "large

scale structure" of turbulent flow. The new length and time scales revealed

by the buckling property, the buckling wavelength and the buckling time or

time of eddy formation, allows the turbulence thinker to reconstruct not only

the geometry of turbulent flow but also the history.

The second year progress summarized in the present report stems from

research conducted on two distinct fronts. The first front was touched on

already during the first year, and represents the systematic application of the

4 length and time scales of buckling to the task of predicting theoretically

some of the best known features of turbulent behavior. In section 5 of the

present report, the buckling property is used to account for century-old

observations concerning the meandering of rivers and other streams. In section

6, the same theoretical framework serves as basis for explaining the large

scale intermittent structure of turbulent shear flow, with special emphasis on

T.--ejan, Analytical Prediction of Turbulent Heat Transfer Parameters,
The First Annual Report, CUMER 81-3, Mechanical Engineering Department,
University of Colorado, Boulder, December 1981.

! •
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the friction and heat transfer characteristics of turbulent boundary layer flow.

The-second research front considered during the second year consists of

experiments designed to visualize the buckling property of inviscid flow.

Sections 3 and 4 of the present report outline two experiments that reveal

the buckling property with amazing clarity. The basic rule in the design of

the buckling visualization experiments is the prevention of the post-buckling

evolution of the buckled inviscid stream, in other words, the prevention of

the eddy-formation phase of the buckling process. More visualization experi-

ments are currently underway and will be reviewed in the Final Report next

year.

I (TIr ON 2 L ist of second-year peer-refereed publications

1. A. Bejan, The Meandering Fall of Paper Ribbons, Physics of Fluids, Vol. 25,

May 1982, pp. 741,742.

2. M.G. Stockman and A. Bejan, The Nonaxisymmetric (Buckling) Flow Regime

of Fast Capillary Jets, Physics of Fluids, Vol. 25, September 1982,

pp. 1506-1511.

3. A. Bejan, Theoretical Explanation for the Incipient Formation of Meanders

in Straight Rivers, Geophysical Research Letters, Vol. 9, August 1982,

pp. 831-834.

4. A. Bejan, Entropy Generation 'NHeat and Fluid Flow, John Wiley & Sons,

New York, 1982.

5. A. Bejan, Second Law Analysis in Heat Transfer and Thermal Design,

Advances in Heat Transfer, Vol. 15, 1982.

6. D. Poulikakos and A. Bejan, Fin Geometry for Minimum Entropy Generation

in Forced Convection, Journal of Heat Transfer, Vol. 104, November 1982,

7. A. Bejan, Theory of Instantaneous Sinuous Structure in Turbulent Buoyant

Plumes, Warme-und Stoffubertragung, Vol. 16, 1982, pp. 237-242.
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SECTION 3

The Meandering Fall of Paper Ribbons *

by

Adrian Bejan
Department of Mechanical Engineering

University of Colorado
Boulder, Colorado 80309

Abstract

This note discusses experimental observations of the meandering fall of

light-weight tissue paper ribbons. The photographs show that the ribbons

assume a sinusoidal shape with a unique wavelength which scales with the

thickness of the airstream entrained by the ribbon.

*published in Physics of Fluids, Vol.25(5), May 1982, pp.741,742.
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The objective of this note is to present a series of interesting experi-

mental observations concerning the meandering motion executed by highly

flexible ribbons falling through the air. The experiment consisted of drop-

ping a length of light-weight toilet tissue paper through the air and photo-

grpahng its shape as it falls to the ground. The reader may take note of the

fact that this falling-ribbon phenomenon occurs naturally when excited sports

fans launch rolls of tissue paper from the stands onto the playing field.

Another natural phenomenon related to the falling-ribbon experiments described

in this note is the "waving of flags"1 and the "vibration" of tape drives used

in the computer technology. The classical prespective in the study of flag

waving falls in the realm of Hydrohynamic Stability Theory, where one questions

the stability of the flexible solid surface. The starting point in the stabil-

ity study is the assumption of an initial deformation of arbitrary wavelength.

In the present experiments, ribbons of various lengths were dropped from

heights in the range 3-7m, through the quiescent air of the laboratory. The

time of free fall was measured with a digital stopwatch; it was found that the

ribbon reached its terminal velocity very quickly, therefore, the free-fall

velocity U could be determined by dividing the total travel by the measured

time of free-fall. In order to force the ribbon to fall "head first", one

end was loaded with a lead refill for a mechanical pencil.

This simple experiment was repeated many times and, in all cases, the

photographs showed that the falling ribbon acquires a sinuous shape: the
S

wavelength of this shape was the same for all the cases involving a ribbon of

fixed length. Figures l(a) and l(b) show very clearly the characteristic

sinuous shape observed in these experiments. A longer ribbon (Fig. ib) ex-

hibits a relatively longer wavelength.

!.
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Another important observation is the fact that the sinuous shape travels

as a solid body downward, at a speed of order U/2, where U is the speed of the

tissue paper itself. The wave speed was measured photographically, as shown

in Fig. 2. This photograph was obtained with the shutter open in complete

darkness, while lighting the falling ribbon with a strobe light three times,

at precise time intervals (t = 0.025 s). The fact that the sinuous shape

travels at half speed is strong evidence that the sinuous shape is produced not

by tie tissue paper, but by the airstream whose centerline moves at top speed

U through an ambient at rest.

The key measurement facilitated by the falling-ribbon experiment is that

of the meander wavelength. Measuring the distance between the elbows of the

sinuous shape of Figs. l(a) and l(b), and averaging these measurements over the

sinuous portions of each ribbon, yields the wavelengths listed under A in
B

Table 1. The relatively small standard deviations of these measurements in-

dicate that the elbow-to-elbow distance does not vary appreciably along the

wavy portion of the ribbon.

The effective thickness D of the air stream entrained by the ribbon cane

he calculated based on the following energy-conservation argument. During its

steady fall at terminal velocity U, the ribbon weight W performs the mechanical

work WAL on its ambient; AL is the linear increment in downward travel, equal

to UAt, where At is the time increment. The work done by the weight is first

converted into the kinetic energy imparted to the airpacket pierced by the tip

of the ribbon during the time At (at the same time, the ribbon-air train sheds

a moving air packet of the same size: the kinetic energy of this air packet

is eventually dissipated in the wake). Equating the two energy increments, we

write
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U2  W

WAL (pD ALb) - or D =2.. 1
e 2 e pUb

where h is the ribbon width and p is the air density. The results of this

calculation are listed in Table 1. Clearly, the meander wavelength scales

with the air stream thickness.

A possible explanation for the above observations may be offered based
3,4

on the buckling theory of inviscid streams. One key result of this theory

is the universal proportionality which must exist between stream thickness

(D) and "buckling" wavelength (XB). For a two-dimensional stream one finds

I) = ([u/u) A ,B which agrees in an order of magnitude sense with the measure-

ments listed in Table 1. Additional evidence supporting this explanation is

the fact that, from Fig. l(a) to Fig. l(b), both XB and D increase.
B e
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SECTION 4

THE NONAXISYMMETRIC (BUCKLING) FLOW REGIME OF FAST CAPILLARY JETS

by

Michael G. Stockman and Adrian Bejan

Department of Mechanical Engineering
Univerrity of Colorado

Boulder, Colorado 80309

Abstract

This paper reports an experimental study of the nonaxisymmetric flow of

a fast liquid jet discharging into the atmosphere. The nonaxisymmetric shape

of the jet was photographed and subjected to a wavelength analysis. The re- 2
stuilts of the wavelength analysis demonstrate that the jet shape is governed

by a narrow band of wavelengths associated with a characteristic value X
max

which scales with the jet diameter D. It is shown that the experimental

observations are in agreement with predictions based on hydrodynamic stability

theory and buckling theory.

published in Physics of Fluids, Vol.25(9), September 1982, pp.1509-1511.
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I. Introduction

*rhe problem of capillary jet flow and break-up has a long history beginning
1 

2

with the qualitative studies of Bidone and Savart , which were extended

3 "

by Savart, Plateau, and Rayleigh, and summarized later by Rayleigh . These

studies focused on the low speed regime where the jet forms radially symmetric,

regularly shaped, drops of measurable frequency. Rayleigh studied the

svmmetric (varicose) break-up theoretically, by imposing hypothetical in-

finitesimal disturbances on the jet and examining the stability (or instability)

of each disturbance in time. Rayleigh's theory was summarized and extended in

several directions by Chandrasekhar
4

Much of the post-Rayleigh work focused almost exclusively on the axi-

symmetric (varicose) regime, although there have been a number of instances

In which a nonaxisymmetric break-up mode was observed. Crane, Birch, and

McCormick 5 employed an electronically driven vibrator to study the dispersion

curve of low speed jets (the dispersion curve is the graphical representation

of the response of the capillary jet to a continuous set of imposed disturbance

frequencies). Their results agreed only qualitatively with Rayleigh's. A

similar experiment was described by Donnelly and Glaberson 6 , who studied

the response of a capillary jet to external disturbances generated by a loud-

speaker and audio oscillator. Donnelly and Glaberson, like Crane et al.,

noted parcels of liquid between the large drops predicted by Rayleigh's theory.

They termed these parcels as "ligaments" and accounted for their appearance

by arguing that the ligaments were due to higher order harmonics present in

the disturbing frequency. Donnelly and Glaberson found excellent agreement

between Rayleigh's linearized theory and their experimental results, despite



L. 12

the fact that Rayleigh's theory does not predict the existence of ligaments.

D)uring the past fifteen years we have witnessed a large volume of research

aimed at explaining and predicting the formation of ligaments in the process

of varicose break-up; examples of this research effort are the theoretical

789work of Yuen , Nayfeh 8 , and Lafrance 9 Experimentally, the ligament

and satellite drop formation mechanism was investigated by Goedde and Yuen 10

Rutland and Jameson 11 and, in a comprehensive three-paper study, by

(haudhary and Redekopp 12 and Chaudhary and Maxworthy 13,14

Relative to the wealth of information on the varicose regime, the non-

;ixisvmmetric break-up is practically unknown. Photographs of the meandering

path of fast capillary jets appeared as early as 1931 in the writings of Weber 15

16
and Haenlein 1 these photographs were reproduced later in a famous

textbook by Prandtl 17 who referred to the crests of the nonaxisymmetric

shape as "wavy bulges". The subject of nonaxisymmetric break-up resurfaced

only recently in the literature, triggered by the need for improved fire

fighting equipment. Hoyt, Taylor, and Runge 18 reported an experimental

s tudy of the break-up of fast water jets and on the effect of adding drag

reducing polymer to the water solution. The authors refer to the meandering

s ction of the jet as an "unstable wave region". Greater photographic re-

. o)IuLion of the meandering break-up regime was achieved in a subsequent

descriptive study by Hoyt aad Taylor 19

In summary, much of the existing work on the break-up of capillary jets

has dealt with the axisymmetric (varicose) regime. The work on the non-

axisymmetric regime is sketchy and, in all cases, qualitative. The object

of this paper is to report a quantitative study of the nonaxisymmetric flow

regime of fast capillary jets. For the first time, the photographed shape of

such jets is subjected to a rigorous wavelength analysis which shows conclusively

that the nonaxisymmetric shape is governed by a characteristic, meander-type,

wavelength which scales with the jet diameter.
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I1. Experiment

The break-up modes of a capillary jet issuing into the surrounding

atmosphere were studied in the laboratory using the apparatus shown in

Fig. 1. The fluid reservoir consisted of a 1.83 m tall Plexiglas cylinder

with an internal diameter of 14 cm. The reservoir had a number of fluid

drainage ports distributed equidistantly over its height. The nozzle

adaptor included a "rounded" internal duct design, and was located 15 cm

from the bottom of the cylinder in order to avoid the flow distortion caused

by the bottom. The reservoir was safely pressurized to 2 atm (30 psig)

whiLe the cylinder was full, yielding a jet velocity range of 0-25 m/s.

rhtc range of low jet velocities was produced without pressurization, by

controlling the height of the reservoir column via an appropriate drainage

port. Figure I shows also the two nozzles employed in this study. The 3 mm nozzle

was made from a plastic compound which was cast in a precision-made mold and

later machined to final dimensions. The 1.1 mm nozzle was machined directly

from a Plexiglas rod.

The jet flow was recorded photographically using the set up shown

schematically in Fig . 2. The photographic equipment consisted of a Hasselblad

500EL/M view camera fitted with extension tube no. 21 for detailed close-up

shots, a Sunpak Model 320 photoflash and a 45 cm x 75 cm section of trans-

lucent glass for diffusing the light from the flash. As shown in Fig. 2,.

the jet was positioned between light source and camera. The proper combina-

tions of f-stop and shutter speed (in total darkness at "full" flash power),

determined after a number of trials, are reported here in Table I.

To provide a reasonable range of fluid properties, this study was

based on three different fluids:

I. distilled water

II. glycerol in water solution, 30% by volume

III. glycerol in water solution, 70% by volume
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The physical properties of the three fluids are reported in Table II. For

each of the three fluids and the two nozzles, four different jet velocities

ranging from 2 m/s to 20 m/s were observed. Thus, a total of 24 jets were

observed and recorded.

TII.The Characteristic Wavelength

The domain covered by the present study is shown on the Weber number-

Reynolds number chart of Fig. 3. The following definitions apply,

We = pV 2 D Re = pVD (1,2)
a

where p, V, I), a, and p are, respectively, the jet density, velocity, diameter,

surf ac, tension (in contact with air), and viscosity.

As illustrated in Fig. 2, a and b denote the extremities of the photographed

portion of the jet. The complete photographic record

is available in a thesis written by Stockman 20 Due to space limitations,

in the present paper we analyze only a representative sample ot this record.

Three photographs of the fast capillary jet flow are shown in Figs.

4(a), 5(a), and 6(a). Each photograph corresponds to one of the three dif-

ferent liquids used in this study. It is useful to take a close look at the

shape (contour) of the photographed jets and in this way to recognize the

large-scale meandering path followed by the jet. As the jet fluid viscosity

Increases from Fig . 4(a) to Fig . 6(a), the sharpness of the meandering

path is enhanced to the point where, in Fig. 6(a), the sinusoidal contour

of the jet is illustrated with amazing clarity.

The central objective of our study was to document in quantitative

terms the meandering shape of fast capillary jets. To meet this objective,

the jet contours were subjected to a wavelength analysis. In each case, the

jet contour was projected (enlarged) on a screen and traced by hand on paper.
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This operation produced two waveforms, one for the upper edge of the jet

column and another for the lower edge. The waveforms were then digitized

and fed into a computer program which calculated their Fourier transforms

and determined the respective power spectra and cross correlation functions.

In order to learn how the characteristic wavelength varies with position

along the jet, each photographed contour was divided into a number of seg-

ments [for example, 3 segments for the jet column shown in Fig . 4(a)].

Each segment was analyzed, and the results are presented in Figs. 4-6 as

power spectra with X/D on the abscissa and P* on the ordinate. P* is defined

by

T
D T-Ko 0

r
X(f) = f x(t) e -jt dt (4)

where x(t) is the contour waveform, w = 27tf, f=V/X, and T is the sample length.

Figures 4(b)-4(d) demonstrate that, regardless of longitudinal posi-

tion along the jet axis, the upper and lower waveforms have a single (narrow)

band of wavelengths which dominate the power spectrum. In this study we

refer to the predominant wavelength (X corresponding to maximum P ) as the

meander wavelength x . Figures 4(b)-4(d) show also that the upper and lowermax

waveforms have the same meander wavelengh and, in all cases, the meander

wavelength scales with the jet diameter. Furthermore, the upper and lower

waveforms are in phase: this conclusion follows from the cross correlation

function

6 •
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IT

r* _lrm f x(t) y(t+ ) dt (5)D2 T 0
D T4- 0

where x(t) and y(t) are the two waveforms, and T is the predetermined phase

shift (lag) between the two waveforms. As shown in Figure 4(e) the cross

correlation function r* reaches its peak value at zero lag, which indicates that

the upper and lower waves are in phase. In conclusion, the flow regime

documented in this study is not axisymmetric (varicose), but one which is

characterized by a large-scale sinuous shape of wavelength X
max

Similar conclusions regarding the existence of a characteristic

meander wavelength emerge from the analysis of Figs. 5(a) and 6(a). Due to

space limitations, only two samples are reported here as Figs. 5(b) and 6(b)

while the complete record of the wavelength analysis may be found in Ref. 20.

Figure 7 shows a summary of the Xmax measurements yielded by the present

study. The plotted 'max represents the average over the given x-segment,

however, in reality the meander wavelength is continuous in x.

* P,
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IV. Discussion of experimental results

A theoretical interpretation of the present results is possible based

on both the theory of hydrodynamic stability and the buckling theory of fluid

columns. Batchelor and Gill 21 considered the linear stability problem

associated with an inviscid round jet discharging into a quiscent fluid.

They showed that sufficiently far downstream from the nozzle the jet is

least stable to a temporal nonaxisymmetric ("sinuous" 21 ) disturbance whose

axial wavelength is larger than several times the jet diameter. Similar con-

22clusions were reached by Mattingly and Chang who treated the linear

stability of spatial disturbances imposed on the same jet configuration. In
22

addition, Mattingly and Chang studied the natural instability of the jet

in the laboratory, and reported excellent agreement between experimental

measurements and theoretical stability predictions. The same problem and

concluiions were discussed in a most recent study by Lopez and Kurzweg 23

The connection between the nonaxisymmetric shape and fast capillary jets

and the least stable disturbance predicted in Refs. 21-23 was

24
recognized by Hoyt and Taylor Based on photographs similar to the ones

obtained in the present study, Hoyt and Taylor 24 were able to identify a

visible axial wavelength of what is clearly a nonaxisymmetric jet shape. In

24i
* . Fig. 10 of their study, Hoyt and Taylor 24 report that the visible axial

wavelength increases exponentially in the downstream direction, much in the

same manner as Amax of fluids I and II considered in the present study (Fig. 7).

Inspired by the existing theoretical work of Batchelor and Gill 21 and

Mattingly and Chang 22 ,Hoyt and Taylor 24 interpreted their two-dimensional

photographic record as a helical (three-dimensional) instability with long

axial wavelength, as predicted by stability theory.
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K In a more recent experimental report, Freeman and Tavlarides 25 showed

that when a liquid jet is suspended in a cofluent stream, the jet develops a

nonaxisymmetric shape when the relative velocity between jet and stream reaches
25

a high enough vaiue. Figures 2 and 3(a) published by Freeman and Tavlarides

show a sinuous contour whose ratio (axial wavelength)/(diameter) appear

to be nearly identical to the ratio visible in Fig. 6(a) of the present study.

Specifically, averaging over three complete wavelengths visible in Fig. 2 of

Ref. 25 'e obtain max /D = 1.67. Also, averaging over four complete wave-

lengths visible in Fig. 3(a) of Ref. 25 we estimate a /D 1.47. Note
max

that these two values of max /D, 1.67 and 1.47, fall right in the middle of

the narrow band of characteristic wavelengths revealed by the power spectra

of Figs. 6(b) - 6(e) in the present study.

To summarize, classical hydrodynamic stability arguments predict correctly

the instability of the jet column to nonaxisymmetric disturbances, as well as r

the scale of the axial wavelength of such disturbances. However, there is

one additional result which now has been documented by three independent

experiments (Refs. 24,25 and the present study) which is not predicted by

existing hydrodynamic stability analyses. This additional result is the

tendency of the nonaxisymmetric wave to show a max /D value which approaches

1.5 in a region close enough to the nozzle where, as discussed by Hoyt and

24
Taylor , the nonaxisymmetric disturbance has not had time to be amplified

due to the form drag interaction between the liquid jet and the ambient air.

Insight into the origins of this additional feature is offered by the

buckling of fluid columns 26-31. It is worth noting that as a theoretical

viewpoint in fluid mechanics, the buckling theory is much newer than hydro-

dynamic stability theory. The novelty of the concept of fluid column buckling
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may indeed be responsible for the early interpretation of nonaxisymmetric

disturbances in fast capillary jets as helical. In fact, the experimental

record available for this interpretation is exclusively two-dimensional and,

as such, the same record can be interpreted as evidence of local buckling in

a plane determined randomly by the presence of random disturbances at the air

interface.

This alternative interpretation is recommended strongly by the first

15
observations of fast capillary jet flow, in particular by Weber' s Figs.

1(b), l(d) and l(e). In these early photographs the lateral deformation of

the liquid column has a local (nonperiodic) character, however, the wavelength

of this deformation is always a characteristic multiple of the jet thickness. "

The same effect is visible in Fig. 6(a) of the present study, where entire

sections of the jet appear to be undisturbed while other segments show the

characteristic wave A.

Theoretically, it has been shown that a column of viscous fluid can

buckle in a way similar to rods in axial compression 26,27 , however, the

wavelength of the buckled shape depends solely on the wavelength of the initial

lateral disturbance. On the other hand, for a column of inviscid fluid it

is found that the buckling wavelength always scales with the column diameter 30,31

I/D - n/2 - 1.57. This prediction can then serve as explanation for

the observed axial wavelength of incipient nonaxisymmetric deformations in fast

capillary columns.

Figure 8 compares graphically the theoretical buckling shape of a

round jet30,31 with a close-up view of the jet photographed in Fig. 6(a).

The similarity of the two waveforms is striking.
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A strong indication that the buckling theory of inviscid jets accounts

correctly for the meandering wavelength documented in this study is that

the wave of Fig. 6(a) agrees very well with the wave photographed by Freeman

25
and Tavlarides . Note that for fluid III the Reynolds number is in the range

3 _ 4
10 - 100 and the Weber number in the range 10 - 10 ; these ranges are quite

different from Ref. 25 where Re - 103 and We - 14. The fact that despite such

discrepancies the photographed wavelengths agree with each other and with

the buckling wavelength ffD/2 supports the buckling theory very strongly. The

key result of the buckling theory is that the buckling wavelength must depend

only on D, in other words, it must be independent of V and physical properties.

For the same reason, the fact that for fluids I and II X increases with xmax

is a reflection of the thickenning of the air stream entrained by the liquid jet.

Thus, sufficiently far downstream the liquid jet meanders according to the

buckled shape of the surrounding (thicker) air stream.

/ The connection between the nonaxisymmetric flow of fast jets

and fluid buckling requires further study. Some have already expressed the

view that fluid buckling may serve as origin for the turbulent motion of

fluids 31-33 . Along the same lines, it is interesting to note Lopez and

Kurzweg's 23  early statement that the nonaxisymmetric instability of jet

flow may actually account for "the breakdown phenomenon in boundary layer

flow", hence, for the well-documented bursting process
3 4.

Acknowledgment. This research was conducted under the auspices of the Office

of Naval Research. The experimental apparatus was constructed by Mr. Karl

Rupp.

_



21

References

1. C. Bidone, Imprimerie Royal, Turin, 1-136 (1829).

2. E. Savart, Ann. Chem., 53, 337 (1833).

3. Lord Rayleigh, The Theory of Sound, (Dover, New York, 1945), ch. XX.

4. S. Chandrasekhar, Hydromechanic and Hydromagnetic Stability, F

(Clarendon, Oxford 1961).

5. L. Crane, S. Birch,and P. McCormack, Brit. J. Appl. Phys., 15,

743 (1964).

6. R. Donnelly and W. Glaberson, Proc. Royal Soc., A290, 547 (1966).

7. M.C. Yuen, J. Fluid Mech., 33, 151 (1968).

8. A.H. Nayfeh, Phys. Fluids, 13, 841 (1970).

9. P. Lafrance, Phys. Fluids, 18, 428 (1975).

10. E.F. Goedde and M.C. Yuen, J. Fluid Mech., 40, 495 (1970).

11. D.F. Rutland and G.J. Jameson, J. Fluid Mech., 46, 267 (1971).

12. K.C. Chaudhary and L.G. Redekopp, J. Fluid Mech., 96, 257 (1980).

13. K.C. Chaudhary and T. Maxworthy, J. Fluid Mech., 96, 275 (1980).

14. K.C. Chaudhary and T. Maxworthy, J. Fluid Mech., 96, 287 (1980).

15. C. Weber, Z.A.M.M., 11, 136 (1931).

16. A. Haenlein, Forschung, 2, 139 (1931).

17. L. Prandtl, Essentials of Fluid Dynamics,(Blackie and Son, London,

1969), 325.

18. J.W. Hoyt, J.J. Taylor and C. Runge, J. Fluid Mech., 63, 635 (1974).

19. J.W. Hoyt and J.J. Taylor, Phys. Fluids, 20, S253 (1977).

20. M.G. Stockman, M.S. Thesis, University of Colorado, Boulder 1981.



22 -

21. G.K. Batchelor and A.E. Gill, J. Fluid Mech., 14, 529 (1962).

22. G.E. Mattingly and C.C. Chang , 3. Fluid Mech., 65, 541 (1974).

23. J.L. Lopez and U.H. Kurzweg, Phys. Fluids, 20, 860 (1977).

24. J.W. Hoyt and 3.3. Taylor, 3. Fluid Mech., 83, 119 (1977).

25. R.W. Freeman and L.L. Tavlarides, Phys. Fluids, 22, 782 (1979).

26. J.D. Buckmaster, A. Nachmanand L. Ting, J. Fluid Mech., 69, 1 (1975).

27. *J.D. Buckmaster and A. Nachman, 0.J. Mech. Appl. Math., 31, 157 (1978).

28. S.M. Suleiman and B.R. Munson, Phys. Fluids, 24, 1 (1981).

29. B.R. Munson, Phys. Fluids, 24, 1780 (1981).

30. A. Bejan, Lett. Heat Mass Transfer, 8, 187 (1981).

31. A. Bejan, Phys. Fluids, 24, 1764 (1981).

32. B.R. Munson, Phys. Fluids, 24, 1766 (1981).

33. J.0. Cruickshank, Ph.D. Thesis, Iowa State University, Ames 1980.

34. H.T. Kim, S.J. Klineand W.C. Reynolds, 3. Fluid Mech., 50, 133 (1971).

4

4.



23

Table I

Proper exposure settings for photography

in total darkness at "full" flash power

Film Type f-stop Shutter Speed

Kodak EPR 120 4 1/30 sec

Kodak PXP 120 5.6 1/30 sec

Table I

Physical properties of the working fluids

Surface
Fluid Dvzisity Viscosity Tension

Eg/cm 33 EcSI Eg/13

I. Distilled Water
(18"C) 1 1 73

II. Glycerol-Water,
30% by volume (200C) 1.18 17 68

I.I. Glycerol-Water,
70% by volume (200C) 1.24 333.6 64.5
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List of Captions

Fig. 1 Schematic of experimental apparatus and nozzle design.

Fig. 2 Photographic arrangement, and the coordinates of the photographed

jet segment.

Fig. 3 Weber number - Reynolds number domain covered by the present

experiments.

Fig. 4 Meandering jet of fluid I, D - 1.1 mm, V = 17 m/s, a - 0 mm, b - 165 mm.

a) photograph

b) spectral density of segment 51mm-71mm downstream from nozzle

c) spectral density of segment 71mm-91mm downstream from nozzle

d) spectral density of segment 91mm-lllmm downstream from nozzle

e) cross correlation function of segment 51mm-71mm downstream from nozzle.

in Figs. 4(b) - 4(e) the upper and lower waveforms are labeled A and 0
respectively.

Fig. 5 Meandering jet of fluid II, D = 3 mm, V = 11.2 m/s, a = 146 mm, b - 324 mm.

a) photograph

b) spectral density of segment 168 mm - 183 mm downstream from nozzle; the

upper and lower waveforms are labeled A and 0 , respectively.

Fig. 6 Meandering jet of fluid III, D = 3 mm, V = 15.2 m/s, a - 140 mm, b - 305 mm.

a) photograph

b) spectral density of segment 267 mm - 278 mm downstream from nozzle; the

upper and lower waveforms are labeled A and 0, respectively.

Fig. 7 The measured meandering or buckling wavelength vs. longitudinal position

along the jet.

Fig. 8 The theoretical 30,31 shape of a buckled inviscid jet

vis-1-vis a close-up of Fig. 6(a).



25

*E

EO E
EE

CMj

0)0
0 0)

.-.

4) N
C ..CN

In )Ir
~ U, .2a

04)0

IL



26

Transluscent
Nozzle Glass

Camera Photo Flash

40-- 50 6
cm cm cm

Portion of Jet
Photographed

- NozzleJe

a owl

Fig. 2



2?

_________________________ vo

~O~1 0

0
0

0 0

q fr~rJO 0

~1
E E

~E E C

~ I'-)2 ci
ci

ci
(1

£14r*)4

S

'1 Ak

4 <1 S

0

0

0
U,

*

r I I 0 N C U

I

S
I



44

IA

LnI

fl1



29

(0
KI, 0



30

raI

<1 0

<10

E~ I
0 I

C

O f -. I

• @_0

*



'11

7!-

0 <o( 00

i* 0 <4

00

r~I



32

0

0
0 (~

0

or
0

~0

0 I

00

00

0



33 r

r

K I
I

q *~ -

Lrj

y .I.

K ..

-. f ,. I

.1 I j

I

U w



34

<11 0

10

Icr

CK



4 ~35

W-1

Jp



36

'I

-10

LOC10 0

g ,

0



37 p

6- Fluid I

5

max 7 F '- luid ]I

3-

2-

4 r Fluuid

Buckling Theory FluidI

I I I I . .. I

50 60 70 80 90 100 110

Fi. 7



38

.4 -

D
U *1

*

0

1
*

Fig. 8 1
S



39

SECTION

Theoretical Explanation for the Incipient
Formation of Meanders in Straight Rivers*

by

Adrian Bejan
Department of Mechanical Engineering
University of Colorado, Campus Box 427

Boulder, Colorado 80309 USA

Abstract

This paper advances a theoretical explanation for the lateral

periodicity and geometric similarity of meanders observed in rivers

4 of many sizes. Invoking the static equilibrium of a straight river

bed, it is shown analytically that the equilibrium shape of the bed

is a unique sinusoid. The theoretical wavelength of the sinusoidal

4 shape is proportional to the width of the river, in aL .ement with

visual observations of rivers of all sizes.

*published in Geophysical Research Letters, Vol. 9, August 1982, pp.831-834.
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1. The Geometric Similarity of River Meanders

The sinuous course of rivers is one of the most visible and widespread

phenomena in nature. We see meanders not only in rivers of all sizes, but

also in rivulets (tricklings on a solid surface; Tanner 1960, 1962, Gorycki

1973a, b), in ocean currents such as the Gulf Stream (Von Arx 1952, Stommel

1954), in melt water streams carved in glacier ice (Leopold and Wolman 1960),

and, practically, in all inviscid jet flows (e.g. the meandering of turbulent

lets, Crow and Champagne 1971, or the instantaneous sinuous shape of turbulent

buoyant plumes, Turner 1979).

The most basic feature of the meander phenomenon is the proportionality

between meander wavelength A and stream width W (Leopold and Wolman 1960). As

concluded in a recent review article (Callander 1978), significant theoretical

progress has been made in the direction of explaining the occurrence of

meanders and accounting for measured meander parameters. The theories developed

over the past thirty years have in common the thinking framework offered by the

Theory of Hydrodynamic Stability: according to this approach, one analyzes

the stability or instability of sinusoidal waves (disturbances) superimposed on

the straight river flow. As summarized by Parker (1976), consideration of

gravity waves led Werner (1951) to the conclusion that X/W~ 2F, where F is

the flow Froude number. Hansen (1967) posed the linearized stability problem

associated with a meandering (sinusoidal) disturbance and found X/H = 7 F2/S,

where 11 is the river depth and S is the dip angle of the river bed.

Anderson (1967) analyzed transverse oscillations and obtained X/W = constant

x (F 1/W)
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A number of improved models of hydrodynamic stability have been reported

more recently, for example, Callander (1969), Sukegawa (1970), Hayashi (1974),

Engelund and Skovgaard (1973) and Parker (1976). Callander (1969) considered

a two-dimensional model and assumed that the pressure and shear stress vary

linearly in the vertical direction. He assumed also that the bed shear stress

and the rate of transport of bed load do not depend on river depth and are

functions of the water velocity only. The results of the stability analysis

showed that the initial growth rate of the assumed disturbances should have

a maximum and that the wavelength corresponding to this maximum agrees roughly

with observations. Parker's (1976) analysis was similar but more general.

1/2 1/2
For the maximum initial growth rate Parker obtained A/(WH) /  2 (/F/C 0

where C is the drag coefficient and i a coefficient associated with the

particular constitutive equations used. Sukegawa (1970) assumed constant drag

coefficients and a rate of transport of bed load as a function of the bed

shear stress. As criterion for instability, Sukegawa used a critical value

of the ratio of the amplitude of the disturbance to the bed divided by the

amplitude of the surface disturbance.

The stability problem in a three-dimensional flow model was considered by

Engelund and Skovgaard (1973). They found that instability occurs for a range

of horizontal wavelengths, however, they did not compare their results with

experimental observations. Hayashi's (1974) analysis relied on the assumption

4 of irrotational flow and that the bed load transport rate depends on the velocity

at x - 6, where 6 is a short distance by which the local transport lags behind

the local force on the bed. One of Hayashi's findings is that for subcritical

flow (F < 1) the maximum disturbance amplification rate corresponds to

1/2 1/2
L/(WH) 1 - 72 F2; this result is similar to the conclusions of Anderson (1967)

and Parker (1976), as summarized in Table I.

p
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The chief contribution of the theoretical research reviewed above and,

in greater detail, in Callander (1978) is to have shown that the bed of a channel

with straight banks is unstable: since the bed is composed of moving sediment,

the amplitude of a certain class of disturbances is likely to grow the fastest.

In addition, this research predicted correctly the direction of migration and

the downstream wave speed of meanders. These conclusions are important and

will be adopted without debate in the theory developed in this paper. However,

the chief limitation of the existing theories is also important: note should

be made of the fact that the ratio X/W predicted by hydrodynamic stability

considerations (Table 1) does not have a characteristic (unique) range of values,

contrary to the statistical evidence compiled over natural streams of widely

varying sizes (Leopold and Wolman 1960). This limitation is accepted from the

start by every stability analyst who recognizes the existence of disturbances

of every wavelength and then tries to identify which of these disturbances will

develop the most rapidly.

Inasmuch as the constancy of the ratio X/W appears to be an intrinsic

property of all streams, the stability theories explain the evolution (behavior)

of existing meanders but not their origin.

The theory constructed in this paper addresses the question which has not

yet been addressed, namely, why does a straight (undisturbed ) river choose a

sinuous shape of precise wavelength? Before presenting the theoretical answer

to this fundamental question, the author finds it necessary to review a class

of very useful experiments which shed light on the natural properties of the

(rlver)-(flexible bed) system.
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2. The Stream Plate mXpcriments

The original stream plate experiment was proposed by Tanner (1960) as a

means of visualizing the natural tendency of streams to meander. The same

technique was used in a comprehensive study by Gorycki (1973a). The experi-

,ent consists of a smooth plane surface which supports a water jet flow

issuing from a nozzle tangent to the surface. Thus, the stream plate ex-

periment is the laboratory version of water tricklings commonly observed on

shower walls and car windshields. The water columns generated in this fashion

meander much in the same way as rivers do. However, there is one important

advantage to this experiment, namely, the opportunity to observe the incipient

phase of the meandering process in a straight jet.

Of interest here are Tanner's and Gorycki's observations, and the clever

mechanical analog visualized by Gorycki to simulate river meandering. First,

the stream plate visualization of the meander formation process is strong

evidence that the meander is a property of the stream; this property is inde-

pendent of the effects of sediment. In comparing various stream plate experi-

ments, Gorycki (1973b) argues further that plate roughness is not necessary

for meander formation.

The experiments also showed (Tanner 1962) that meandering is independent

of the secondary flow or disturbances which may be present in the nozzle. This

conclusion is strengthened by the statement made by Schumm and Khan (1972) who

observed meanders made In the laboratory under straight entrance conditions:

a perturbation or disturbance of the flow may not be an essential cause

of meandering" (Gorycki 1973a, p. 178). The fact that initial disturbances

are not essential to meandering should be kept in mind: this fact is partly

responsible for the drastic departure the present theory will make relative

to the classical path of Hydrodynamic Stability.
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Gorycki presented also a mechanical analog of the river meandering

mechanism: lie held a slender piece of elastic (a slender cylindrical column

of rubber) between two parallel pieces of glass. He then moved the glass

pieces relative to one another, in the direction parallel to the cylinder

axis. As a result, the piece of elastic assumed a shape which resembles

very closely that of a meandering river or that of a meandering stream in

a stream plate experiment. At the end of his desLription of this mechanical

analog, Gorycki expressed his hope "that a mathematical model .... could be

designed to quantify this mechanism".

It is shown in the next section that the mechanism responsible for

elastic meandering is also responsible for river meandering. In Mechanical

Engineering, which is the present author's education, the sinusoidal shape

of the elastic column has been explained as the buckling property of slender

spaces in longitudinal compression. The buckling of slender columns represents

an important and voluminous chapter in the centuries-old discipline of

Strength of Materials (Den Hartog, 1961). The theoretical basis for this

chapter was established by Euler, who pointed out that in order for a slender

space to buckle into an equilibrium sinusoidal shape it must satisfy only two

conditions (Love 1927):

(i) the slender space must be in a state of axial (longitudinal)

compression.

(ii) the material which fills the space must be such that if the

space is subjected to a separate bending test of prescribed

curvature, then the space develops in its cross-section a

resistive bunding moment (couple) which is proportional to

* the local curvature.

The piece of elastic described by Gorycki satisfies the above conditions.

But It is Important to keep in mind that conditions (i) and (ii) do not refer

* to a specific material such as an elastic solid: they refer to a space

(column) of finite size. The objective of the following analysis is to prove

that the river and its bed, as a slender space, also satisfy conditions (i)

and (ii) necessary for sinusoidal buckling.
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3. The Static Equilibrium of a Straight River

Consider a straight, inviscid, river flow of uniform velocity V
0

density p, width W and depth H. The bed of the river is horizontal. In

the stationary frame of reference of the bed, the river cross-section exhibits

a uniform compressive stress pV 0 + P (z), where P is the excess pressure

P (z) = pg (H - z) (1)0 /

and g is the gravitational acceleration. The resultant of this compres-

sive stress, integrated over the river cross-section, is

C = pV 2 WH (I + H (2)
0 2

0

'herefore, in the frame of reference of the bed, the straight river is a

slender column in longitudinal compression. This means that condition (i)

is satisfied. In order to see that the bed, as a duct, is in a state of lon-

gitudinal compression, the reader should think of a piece of garden hose through

which the flowrate is high (turbulent). The hose is pushed axially by the reactive

compressive force associated with the stream leaving through the open end. The

same hose is pushed axially in the opposite direction by Zhe impactive force

associated with the stream entering it from the faucet.

As shown in Fig. 1, the static cptilibrium of the bed requires two4

statements, one for translational equilibrium (obvious, C C) and the other

for rotational equilibrium. The rotational equilibrium condition is made

necessary by the fact that no straight river is ever "mathematically"

straight, in other words, all straight rivers are subjected to an infinite-

simally small couple CY due to the imperfect colinearity of the axial forces

C. The rotational equilbirum condition is (Den Hartog 1961).
I

CY - M+M =0 (3)

where M is the couple acting over the river cross-section.
IP
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It is easy to show that the river column also satisfies condition (ii),

or that a net couple M is present whenever the column Y(X) is locally

curved. Consider a separate bending test in which the river radius of

curvature R is infinitely greater than the river width W (Fig. 2).

The new velocity V and pressure distribution P in the cross-section

can be determined immediately from Bernoulli's equation (Prandtl 1969)

1 
2 + p-- v2 + p (4)

2 2 o 0

combined with a local force balance in the radial direction y (Prandtl

1969),

- a(5)

In the limit of vanishingly small curvature, W/R. + 0 , we obtain

V =V (1- Y_ ) (6)o R

P = RV2 _i__ + pg (H- z) (7)

A related result is that the free surface zf(y) acquires a slight tilt

V 2

zf(y) = H + (8)
gR

Due to the slight tilt, the center of mass of the cross-section shifts

from y = 0 to Y. V 2 2/(12gHR ) where y << W.

According to the standard methods of mechanical engineering, the

net bending momenL M about the vertical line passing through the center

of mass of the cross-section is

y-W/2f zzf (y) pV 2 H.W3

M = (pV2 + P) (y-yo) dzdy 8R (9)

y =-W/2 zfii 

2
this is the same as the limit of zero meander amplitude; however, in this

limit the meander wavelength can still be finite, as found in equation (13).



47

This result demonstrates that the river cross-section experiences a

bending moment as soon as the river trajectory has curvature. Equation

(9) proves that rivers also obey condition (ii) for sinusoidal buckling.

4. The Natural Sinusoidal Shape of Rivers

In the limit of infinitesimally small deviations from the rectilinear

shape, the river curvature l/R O is equal to -d2Y/dXk. Based on this

approximation and equation (9), the static equilibrium condition (3)

becomes

CY + pV 2 HWY" + M = 0 (10)
8 00

The general equilibrium shape of the river bed follows from equation (10),

M
Y(X) = -s [cos(2TT) -1], (11)

C

where the wavelength A has a precise value given by

W= [2 + gH/V 2] (12)

For shallow rivers and for stream plate simulations (gH/V 2 << )

we find

= - = 2.22, universal constant (13)

In conclusion, the natural (equilibrium) shape of the river bed is

a sinusoid whose wavelength is a precise multiple of the river width.

The amplitude of this shape is unknown (infinitely small), because the

analysis leading to equation (12) invoked the static equilibrium of a

straight river. It is well known, however, that the equilibrium of a

nearly straight river bed is unstable (cf. Hydrodynamic Stability Theory,

Section 1) and that the highly regular, sinuous, shape determined here is

destined to grow in amplitude.
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5. Conclusion

The fundamental contribution of this theoretical argument is the

prediction of a universal proportionality between meander wavelength and

river width, equations (12, 13). This prediction is supported strongly

by observations of meander formation in straight rivers and in stream

plate experiments. Attention is drawn first to the stream plate experi-

ments (Gorycki 1973a, p. 179, Figs. 3,8,9,10,13) which conclusively show

"that the spacing between the sinuous curves or point bars in straight

streams is approximately two to three times the stream width", as in

equation (13). Similar values of X/W in straight rivers were reported

by numerous field studies , for example, in Leopold, Wolman and Miller

U r
(1964), Leopold and Wolman (1970, Fig. 7.8) and Dury (1964, Figs. 26,28).

A ratio X/W between 2 and 3 appears to be a universal feature of all

straight streams. Keller (1972, p. 1534) showed that only in the late

stages of meander development A/W reaches values in the range 5-7,

whereas during development the ratio X/W is in the range 3 - 5.

Table 2 shows a summary of experimental observations next to the constant

ratio A/W predicted by the present theory of river buckling. The present

theory agrees with observations made in straight or nearly straight rivers,

which conform to the type of system selected here for ajalysis in section 2.

Table 2 shows also that, as time passes, the ratio AJW increases from the

initial theoretical value (2.22) to the natural (long-history) value of

approximately 10. Thus, the present theory offers a concise explanation for

the origin of meanders in straight rivers, however, it does not account for

the geometry of meanders in their late stages of development.

Acknowledgement. This research was supported by the U.S. Office of

Naval Research, under Contract No. N00014-79-C-0006.

This literature is reviewed in greater detail in Gorycki (1973a).
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Reference A/W

Werner (1951) % 2F

2
Hansen (1967) 7F H/(SW)

Anderson (1q67) constant x (FH/W)l/2

Hayashi (1974) 72(FH/W)l/2, F<1

ff Parker (1976) 21 )(7FH/CoW) 112

Table 1

Examples of hydrodynamic stability theoretical

predictions for the ratio meander wavelength : width
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I

Reference X/W Remarks

present theory 2.22 incipient buckling
(absolutely straight stream)

Gorycki (1973a) 2-3 stream plate simulations

Leopold, Wolman and
Miller (1964), 2-3 field studies in

0W Leopold and Wolman(1970) straight rivers
o Dury (1964)

0 V

4J 4J

Schumm and Khan (1972) 3.24 + 0.64 laboratory channel
Table 3 during development

0

Keller (1972) 3-5 channel experiments
Sduring development

5-7 during late stages
of development

Leopold and Wolman(1960) 6.5 - 11 natural (long history)
Table 1

4

Table 2

C
Comparison of the present theory with meander wavelength observations

4p
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SECTION 6

Buckling Theory of Momentum and Heat Transfer

in Turbulent Boundary Layer Flow *

by

Adrian Bejan

Department of Mechanical Engineering
University of Colorado

Boulder, Colorado 80309

Abstract

This paper reconstructs theoretically the instantaneous structure of
turbulent boundary layer flow. At the very base of this structure rests
the newly-discovered buckling property of inviscid fluid layers. The in-
stantaneous structure of the boundary layer reveals the spatial distribution
of contact spots (points of direct contact between wall and free stream).
The contact spot distribution is used to calculate the skin friction co-
efficient and the Stanton number. These theoretical predictions apree with
experiments, and provide a theoretical explanation for the analopy between
fluid friction and heat transfer in turbulent boundary layer flow.

appears in abbreviated form in: A. Bejan, Entropy Generation through Heat

and Fluid Flow, Wiley, New York, 1982, chapter 4.
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Nomenclature

A cross-sectional area of fluid layer

C impulse, eq. (1)

Cf,n  skin friction coefficient averaged over n buckling and

rolling events, eq. (30)

C average skin friction coefficient, eq. (33)

C f,6  local skin friction coefficient, eq. (35)

c specific heat at constant pressure
p

D thickness of fluid layer

1) size of the smallest eddy, eq. (15)
0

E modulus of elasticity, eq. (3)

f natural frequency of shear flow fluctuation, eq. (11)

h local heat transfer coefficient, under each contact spot, eq. (36)

h heat tranfer coefficient averaged over the contact spot, eq. (38)

h heat transfer coefficient averaged over n buckling and rollingn

events, eq. (41)

I area moment of inertia [2]

k thermal conductivity

R length of contact spot, eq. (38)

L laminar tip length of free shear flow, eq. (30)

L contac t  sum of wall length covered by contact spots

Ltotal total wall length

M bending moment

n number of buckling and rolling events

I
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NB buckling number, eq. (14)

Pr Prandtl number

R radius of curvature

Re6  Reynolds number based on boundary layer thickness, eq. (32)

Re0  Reynolds number based on momentum thickness (Table 2)

St Strouhal number, only in eq. (12); otherwise Stanton number

St Stanton number averaged over n buckling and rolling events, eq. (42)n

St6  local Stanton number

t ti,.a scale of the first buckling and rolling event, eq. (7)
0

t time of transversal viscous diffusion, eq. (13)
v

T period of bursting, eq. (21)

u, friction velocity, eq. (26)

U free stream velocity

V relative velocity, (Fig. 1)
+

y extent of the dimensionless viscous sublayer, eq. (25)

6 boundary layer thickness

6 displacement thickness, eq. (39)

6viz visual growth rate

dissipation rate per unit mass

* Kolmogorov microscale, eq. (Ib)

0 momentum thickness

0 function of Pr, eq. (37)0

AB  buckling wavelength

viscosity

v kinematic viscosity

4 coordinate along the contact spot

P density

I wall shear
Uo



57 F

Introduction

The object of this article is to outline a theory which explains the

observed features of turbulent shear flow, and also predicts the heat and

momentum transfer rates in turbulent boundary layer flow. The theory is

based on the recent discovery of the basic property of inviscid fluids

which is responsible for turbulent (non-laminar) fluid motion (1]. This

property, previously unknown, is the buckling wavelength of inviscid fluid

fibers, which, as a property, is analogous to the buckling wavelength (or

critical load) of elastic rods in axial compression. It has been demonstrated

in Ref. [1] that, like elastic rods, any inviscid layer of fluid satisfies

the two conditions necessary for infinitesimal buckling in axial compression:

(i) If the fluid fiber moves at speed V through (relative to) the

ambient fluid, then the control surface surrounding the straight fiber is in

a state of axial compression. The axial compressive load is the impulse

C = PV2  (1)

where p is the fluid density and A is the cross-sectional area of the

inviscid fluid fiber.

(ii) If the fluid fiber (p, A, V) is bent (curved) in a separate bending

apparatus, then the fiber cross-section develops a net bending moment oriented

in the direction of bending the fiber. In the limit of vanishingly small

curvature, D/R., + 0, the cross-sectional bending moment is proportional to

the curvature,

1S

M, PV 2 I R (2)

Roo
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in this expression, I is the area moment of inertia [2], and R OD is the

radius of curvature. Equation (2) is analogous to the proportionality between

bending moment and curvature encountered in elastic beam theory [31,

M = El-. (3)

Therefore, comparing equations (3) and (2), we can regard (pV2 ) as the

"elasticity modulus" of the inviscid fluid fiber (for this reason garden

hoses become stiffer, i.e. harder to bend, when the flowrate increases).

Conditions (1) and (2) guarantee the existence of a characteristic

buckling wavelength [4]. As shown in Ref. [1], the buckling wavelength

(AB) scales only with the transversal dimension of the fiber (D),

2B = 21 . (4)

If the fluid fiber is two-dimensional (thickness D, width W) we have

A = DW and I = D 3W/12, hence

B-. = 1.81 (5)

D /3

The constancy of the ratio A /D is a property of the fluid fiber.

* This property exists whether or not the fiber moves relative to its

ambient (note that A B/D is independent of V). If the fiber does not

move relative to its ambient then the static equilibrium of the straight

0 fiber is indifferent and, as a result, the fiber does not buckle. This

is the case of fluid layers of all thicknesses in a stationary pool.

S
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If the fiber moves with velocity V relative to its ambient, then the

static equilibrium of the straight (infinitesimally buckled) fiber is

unstable (see "Rayleigh's Theorem" [5]). In fact, it is the post-

buckling evolution of the inviscid fiber which forms the subject of

"Hydrodynamic Stability" studies. The buckling property (4) identified

in Ref. [1] supplies the part which has been missing from Hydrodynamic

Stability studies, namely, the initial condition. It is worth recalling

that any stability study begins with postulating the existence of an arbi-

trary "disturbance"; the buckling property of inviscid fibers explains the

origin (source) of the"disturbance" assumed empirically by the stability r

analyst. In addition, the buckling property states that the "disturbance"

is unique, i.e., its wavelength is fixed when the thickness of the fiber

Is fixed.

The buckling property of inviscid fluid provides for the first time a

theoretical basis for predicting the documented features of turbulent fluid

behavior. For example, in Ref. [1] the buckling property was shown to be

responsible for: 1. the transition to turbulence in free jet (and wake)

flow, 2. the natural frequency of turbulent jet flows, and 3. the ex-

istence of a Reynolds number considerably greater than unity, as landmark

for the transition to turbulent flow. In this paper we focus on the free

shear flow and on the boundary layer flow, and demonstrate that the buckling

property is responsible for many of the classical characteristics of these

flows. We shall rely on the buckling property to reconstruct the instantaneous

structure of buckling shear flows: on this basis we can predict theoretically

the rates of momentum and heat transfer from a solid wall in turbulent

boundary layer flow.
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The rolling of buckled shear layers

We begin with the observation that for a two-dimensional fluid layer to

become unstable and buckle, its two interfaces with the ambient do not neces-

sarily have to experience relative movement in the same direction (as in the

case of a jet or a wake, Ref. [1]). A free shear layer may be modeled as a

layer of stationary fluid sandwiched between semi-infinite fluid reservoirs

moving in opposite directions. This model is presented in Fig. 1 where a

layer of thickness D is swept on both faces by streams of velocity V. Each

interface is unstable [6], hence, the amplitude of the buckled layer grows to

the point where the crests of the wave get caught in the adjacent streams and

roll up.

In a frame of reference which is attached to the shear layer, the layer

buckles and rolls up repeatedly. The net result of this sequence of events

is that the thickness D grows stepwise in time. A shear layer of initial

thickness D will first buckle over a length
0

A = 1.81 D (6)
B,O o

Next, it takes a time of order

to X B,o /V (7)

for this first wave to roll up into a number of eddies of diameter

D1 - 2D (8)
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As shown in Fig. 2, the new eddies constitute a thicker shear layer of thickness

D which buckles immediately over a longer length,

AB, = 1.81 D1  (9)

The buckling and rolling up process repeats itself, producing as observable

result a conglomerate of eddies, small eddies rolled up inside larger eddies

(hence, the phenomenon of "vortex pairing"). In time, the birth of the small

eddy preceeds the birth of the next size, larger, eddy.

In another frame of reference which is stationary with respect to one

of the uniform streams, the shear layer flares out linearly in the direction

of the moving stream (U = 2V). The structure of the shear layer is shown

schematically in Fig. 3. Each eddy travels a distance AB during one roll up

time interval t - XB /V; during the same time interval, the thickness of the

shear layer grows by a factor of order 2, eq. (7). Therefore, the visual

growth rate 6viz defined by Brown and Roshko [7] is a constant,

D
viz - 0.37 , constant (10)

AB

This order-of-magnitude estimate agrees very well with experimental observa-

tions [7].

The repeated buckling of the shear layer provides an explanation for

the observed phenomenon of "resonance" in shear layers subjected to external

forcing. Freymuth [8] showed experimentally that the response of the shear

layer is such that the diameter of the most regular roll increases as the
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as the frequency of external excitation decreases. At the same time, the

longitudinal location of the most regular roll moves downstream.

Relative to the observer at rest in one of the semi-infinite fluids,

the shear layer fluctuates (waves) with a frequency

U

f = -- =0.276-- (11)D
BD

Therefore, the Strouhal number based on U. and local shear layer thickness

1) is a universal constant

f D

St - = 0.276. (12)U

Now, we are entitled to expect the natural frequency of the shear layer to

decrease in the downstream direction because the thickness D increases

linearly. Measurements reported recently by Hussain and Thompson [9j con-

firm the theoretical conclusion that the size and axial location of the

resonating roll must vary inversely with the frequency of external excita-

tion, eq. (11).

In this section we reviewed a series of classical observations, all of P

which support the view that the turbulence and growth of free shear layers

is due to the repeated buckling and rolling phenomenon illustrated in Fig. 2.

Unfortunately, the "rolling" part of the phenomenon wipes out the "buckling"

part which serves as origin for the entire process. There are special cases

in which the amplitude of the buckled layer cannot grow to approximately D/2,

as in Fig. 2; consequently, the "rolling" phase is avoided, and the wavy

shape of the buckled layer is visible to the-eye. Such is the case of shear



layers in stably stratified fluids. Thus, attention is drawn to Fig. 8

published in Thorpe's study of the instability of stably stratified shear

flows (101: the wavelength of the buckled shear layers is of order 3 cm

which, compared with the layer thickness D = 1.5 cm, proves the existence

of the natural buckled shape shown in Fig. 1.

Transition to turbulence in shear flow: the smallest eddy

Consider the shear flow sketch in Fig. 4, where the initial velocity profile

(a) shows a shear layer of zero thickness. It is well established that if the

fluid is modeled as inviscid throughout, the (a) profile is unstable [5]. How-

ever, it is wrong to regard the zero-thickness shear region of the (a) profile

as inviscid, because the viscous communication time across this region is infi-

nitely short (see the definition of the Buckling Number, Ref [1]). Therefore,

In the very beginning of the shearing phenomenon, the growth of the shear zone

is governed by the viscous transfer of momentum. Laminar, Couette-type, flow

prevails until the layer is thick enough so that the viscous communication time

across the layer exceeds the duration of the first buckling and rolling event.

Only beyond this point is the layer able to behave inviscidly and roll up.

The viscous communication time t from the interface to the middle of the
V

layer (distance D/2) can be evaluated from Stokes' first problem [11],

D/2 1, hence t D2 (13)

2/ vt v 16v

The time of the first buckling and rolling event is given by eq. (6),

where V = U /2. At transition, the Buckling Number is of order one,

t
NB = (14)

0 P

hence

U 0 D
0 ~ 58 (14')

V
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A first consequence of this result is that the turbulent shear layer

will contain rolls with diameters larger than

D - 58-- (15)
0 U

This conclusion is verified qualitatively by the size of the "loops" visible

in the shadowgraph networks reported by Brown and Roshko [71. According to

eq. (13), the "fineness" of the ensuing turbulent flow is enhanced (the loops

get smaller) when the original velocity discontinuity U increases.

Interestingly enough, the size of the smallest eddy, eq. (15), is a re-

fined statement of the Kolmogorov microscale [12],

( "4 (16)

where c is the local dissipation rate per unit mass. In the present dis-

cussion, the local dissipation rate in profile (b) (Fig. 4), just before the

first buckling and the first roll, is

2

*E (17)

Substituting this estimate into the Kolmogorov microscale (16) we obtain

D D0 0 (18)
158 7.6

We conclude that, although n is proportional to D , the eddy of size n
0
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s too small to be able to exist: this is due to the fact that the Reynolds

number based on the Kolmogorov length scale is of order one [12] and the

Buckling Number is considerably smaller than one [1]. As shown in Ref. [1]

and in the remainder of this paper, classical observations of turbulence

support the theoretical conclusion (]4, 14') that turbulent flow is possible

only above a Buckling Number of order one (i.e., above a Reynolds number

considerably greater than one).

Another consequence of the transition criterion (14) is that the leading

section of the shear layer, region (a) - (b) on Fig. 4, remains laminar over

a characteristic length L . This length is equal to the distance traveled0

by the free stream U during a time interval equal to the critical viscous

diffusion time t ( = t )
v 0

L -U t. (19)
0 V

Combining equations (19), (14') and (13) we obtain

U L
O - 210 (20)

Therefore, the laminar length decreases when the velocity discontinuity U

increases. This conclusion is in agreement with the sequence of photographs

reported as Fig. 20 in Ref. [71. We make the final observation that the laminar

tip length L and the smallest eddy diameter D are proportional,0 o

L
D 3.64. (20')
D
0

J
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In other words, regardless of Reynolds number, the shapes of all shear flow

regions are geometrically similar: the geometric similarity rules both regions,

the laminar tip region (Fig. 4) and the buckling and rolling wedge region

(Fig. 3).

The periodic bursting of boundary layers

We now turn our attention to tho instantaneous structure of turbulent

wall layers. Over the past two decades, considerable experimental work on

wall turbulence has shown that this process is composed of a sequence of

events having a definable overall period T [131. In one phase of the process,

free-stream fluid rushes in close to the wall, and in the next phase the

laminar sublayer "bursts" and gives birth to large scale eddies. It was found

that the period of this "bursting" process scales with the outer flow parameters

(U , ,)

5, (21)

where 6 is the boundary layer thickness and U the free-strcam velocity.

As commented by Laufer and Narayanan [14], it may seem intriguing that a process

which "occurs in the viscous sublayer" should scale with the outer flow para-

meters. As shown next, the explanation lies in the fact that the bursting process

does not occur in the viscous sublayer, but in the outer layer (the viscous sub-

layer is merely the time-averaged footprint of the bursting process).

The buckling of shear layers accounts for the periodicity of the "bursts"

phenomenon. The instantaneous structure of a wall layer can be reconstructed

geometrically, step-by-step, in the same manner as the structure of a free shear

layer (Figs. 3,4). The geometric construction is shown in Fig. 5. Close to the

leading edge of the solid wall, the buckling and rolling sequence generates a

shear layer which is similar to what we have seen already in Figs. 3 and 4.

Further downstream, however, each subsequent roll triggers a new shear layer

based on a fixed laboratory length, such as nozzle diameter [9]
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nestled inside the original one. We shall return to this instantaneous structure

in the next section khere we estimate the wall friction characteristics.

To predict the bursting period T , we make the observation that at a fixed

location x along the wall, the original (thickest) shear layer buckles over a

length

A B - 1.81 6 (22)

where 6 Is the physical extremity of the boundary layer. From symmetry, the

local buckled wave (22) travels to the right at a speed of order U /2. Therefore,

the free stream U makes contact with a fixed spot on the wall periodically, at

intervals of order

(23)
U /2

in other words, when

3.8 (24)

This theoretical, order-of-magnitude, result is in very good agreement with the

growing body of experimental data on the period of bursting [15].

It is easy to show that the thickest stable laminar layer, Do , eq. (15),

represents the thickness of what is experimentaly identified as "viscous sublayer".

The dimensionless wall coordinate corresponding to D is
0
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+ D u
YO 0 (25)

where the friction velocity* is of order

u, = ToO p -Vv UD °  (26)

Combining expressions (25) and (26), we predict

+ 5 -58 = 7.62 (27)

y 0 U./

which is, of course, the extent of the laminar sublayer in the measured

universal velocity profile.

We conclude that the "viscous sublayer" is another manifestation of the

stable laminar length which precedes the first buckling event in the development

of any shear layer (Fig. 4). The viscous sublayer is also a manifestation of

the smallest eddy size determined in the preceding section, eq. (15).

0

instantaneous (not time-averaged) estimate, on the spot where the free stream
"hits" the wall
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The skin friction coefficient

The instantaneous boundary layer structure constructed in Fig. 5 is a

tool for predicting the rate of momentum transfer from the stream to the

wall. Figure 5 was constructed based on the following shear flow properties F

(identified in the earlier sections of this paper):

a) the shear layer of thickness 6 buckles and rolls over a percise

length, 1.816, eq. (8).

b) the "in rush" phase of the "roll" process brings free stream fluid

in contact with the wall: a secondary shear layer is triggered anytime this

contact is made.

c) the "burst" phase of the "roll" process takes stationary fluid out

into the free stream: when this happens, the secondary shear layer is

terminated.

The resulting structure of the boundary layer has a characteristic step-

wise, linear growth: the primary and secondary shear layers are bounded

from above by a "characteristic upstream interface" [15]. The angle between

the upstream interface (dashed line on Fig. 5) and the solid wall is a uni-

versal constant for all turbulent boundary layers,

4D

arctan = aretan (0.368) = 20.18' (28)

It is worth noting that this angle is precisely the one photographed and

measured recently by Bandyopadhyay [15]. Note further that Bandyopadhyay's

photographs, especially Figs. 1(c), (d), show wall structures which grow

P
Istepwise in the downstream direction, as in Fig. 5. 41
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The calculation of the instantaneous wall shear stress distribution

consists of summing-up the wall length covered by laminar shear zones

(these zones are shown cross-hatched on Fig. 5). As demonstrated in the

preceeding section, the thickness of the laminar shear zone (the viscous

sublayer) is fixed as soon as U is specified (eq. 27). However, the

free stream does not make contact with the wall over its entire length;

the contact is discrete and less frequent as the boundary layer thickness

increases. This wall friction mechanism differs fundamentally from the

mechanism known in laminar flow and, indeed, from the laminar-like mechan-

ism suggested by the concept of time-averaged (universal) velocity profile

in turbulent flow. The laminar mechanism is one where the velocity gradient

evaluated at the wall decreases continuously in the downstream direction.

In Fig. 5, the velocity gradient is always of order U /Do, regardless of

x , but only in those special spots where the free steam "rushes" into

the wall. The real contribution of the buckling theory employed in this

paper is that it identifies the spatial sequence of the "inrush" events.

There are a number of ways in which one could extract skin friction

Information from Fig. 5. Since, as engineers, we are primarily interested

in the friction effect averaged over thr length of the wall, we will first

sum up the contact length, Lcontact' over a specified wall length,

L tota In view of the stepwise-growing structure of the primary layer,

it makes sense to focus on a discrete sequence of wall lengths: each

length (L tota) corresponds to an integral number of buckling and rolling

events (n). The results of this calculation are reported in Table 1 (note

that the structure of Fig. 5 is drawn to scale, where the length unit in

both directions is D ). The table extends well beyond the n = 4 wall
o



71

length illustrated in Fig. 5: this extension is made possible by the
rI

observation that successive values of L contact/L tota are related

through the following recurrence relationship:

Lcontact contactIn 1 + contact~n2  (9
-) = -(29)

Ltotal n totaln_1

The average skin friction coefficient for the wall length Ltotal9n  is

avg U/D 0 Lcontact

f,n 1 2 1 2 Ltotal )n (30)

which, using the smallest eddy criterion (15), becomes

Cf 2 Lcontact

(L8 ) (31)
58 s5

The numerical values of C are listed also in Table I. The corres-f,n p

ponding Reynolds number, based on the end-thickness of the primary

boundary layer (6) , is

0 __ O _ L total nRe6  - tta) U D (32)

n
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This number is readily calculated, noting again that D U /v Z 58 and

0/1total)n  z 0.37.

Figure 6 shows the relationship between the length-averaged skin

friction coefficient, Cf, and the Reynolds number corresponding to the

end thickness, Re Owing to the recurrence relation (29), the points

line up according to a power law,

-0.304

Cf = 0.122 Re 6  (33)

Finally, we can use eq. (33) to deduce the local skin friction coefficient

Cf, ., defined via

6

Cf f C d6 (34)Cf = f,8

0

We obtain

C = 0.0849 Re-0.304 (35)
f,6 R 6

Expression (35) is shown plotted on Fig. 6 next to experimental

data obtained at low Reynolds numbers [16]. Before discussing the agree-

ment between the present theory and the experimental evidence, it is

important to note that the experimental results are not available in the
U

Cf, 6 - Re6  language employed in Fig. 6. In Ref. [161, for example,

the boundary layer thickness 6 is not reported at all: instead, the

experimental measurements are catalogued in terms of the momentum thickness
S

U

it

40
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0 and the Reynolds number based on the momentum thickness Re The author

of the present paper was able to calculate 6 (hence Re6) from the actual,

time-averaged, velocity profiles measured but not reported by Purtell

et al [16] (the author received copies of these measurements privately

[17]). The boundary layer thickness 6 was calculated by extrapolating

Linearly beyond the last three (outer) points of the time-averaged velocity

profile (all these points fall in the range 0.95 < u/U < 1.00). This

calculation ?rocedure is justified, because, unlike in laminar boundary

layer flow where the definition of 6 is based on convention, in turbulent

flow the instantaneous frontier between wall fluid and free stream is always

a distinct, sharply defined, line (see Bandyopadhyay's photographs [15], and

the concept of "intermittency" [18, 19]). The resulting Re6  corresponding to

the eleven experiments described by Purtell et al [161 is reported

here in Table 2.

Turning our attention back to Fig. 6, we find good agreement between

equation (35) and experiment. Although encouraging, the small (20%) dis-

crepancy between the theoretical and experimental values of Cf, 6 is not the

true measure of the "good" agreement (this is due to the fact that, numerically,

expression (35) represents only an order-of-magnitude estimate). The important

measure of the agreement is in the slope of the Cf, 6 - Re6 line (note that in

constructing Fig. 5 and eq. (35) we applied consistently the universal geo-

metric properties of buckling shear flows, as discussed in the beginning of

this section). The reliance on this universal structure of buckling shear flow

is responsible for Fig. 5 and, via the recurrence formula (29), for the -0.304

exponent in the Cf,6 expression (35). The theoretical line (35) is parallel

to the experimental data in the range Re6 - 17140; this suggests that the two-

dimensional boundary layer model envisioned in this paper becomes less adequate

as the wall layer grows beyond the 7th or 8th buckling and rolling event.
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The heat transfer coefficient

The heat transfer rate in turbulent boundary layer flow can be calculated

by reading Fig. 5, i.e., by counting the actual. spots of direct thermal contact

between wall and free stream. Under each contact spot, the local heat transfer

coefficient is given by Pohlhausen's solution [201

h k 0 - (36)

where 0 is a Pr - function which, for fluids other than liquid metals, is
0

approximated by [211

1/3
0 0 0.332 Pr , Pr > 0.5 (37)

Averaging the local heat transfer coefficient (36) over the entire length of

the contact spot, 0 < C < Z, we obtain

h = 2k O (u-1/ (38)0

We note also that at C = . the displacement thickness of the laminar

contact spot is [22]

In view of the simple (uniform flow) shear layer model employed in the

present theory (Fig. 1), we identify 6 as equal to I) ; combining this
0

result with equations (38) and (15) we obtain
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U
h - -- k 0 (40) p

87 0 v

As in the calculation of skin friction coefficient, eq. (30), the

heat transfer coefficient averaged over n buckling and rolling events is

h = k 0 - ( (41)n 87 0 V L total ) n

The ratio (Lcontact/Lt ) follows from equations (31) and (33):
ctotal n

substituting this ratio into equation (41) we obtain the average Stanton

number

h 0
St n 0.203 o Re -0.304n pc U Pr 6

p 0

Finally, based on a definition of type (34), we conclude that the local

Stanton number is
I

0 0.304
St6  0.142 P Re (43)

Pr

In the range Pr > 0.5, expression (43) reduces to

St6 Pr
2 / 3 - 0.047 Re 6-0.304 (44)

Equation (44) represents the heat transfer coefficient predicted by

the theory constructed in this paper. To test this result, we divide

equations (44) and (35) side-by-side, and write
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St6 Pr
2 /3

1.ii1 (45)
1

Cf, 6

We find that the theoretical result (44) satisfies the Colburn analogy

between turbulent heat transfer and fluid friction [23]. Considering the

wealth of experimental evidence supporting the Colburn analogy, and recalling

the good agreement between theoretical and experimental skin friction co-

efficient (Fig. 6), we draw the conclusiong that the theoretical result

(44) Is correct.

An equally important conclusion follows from expression (43), which states

that in turbulent boundary layer flow the St - Pr relationship is governed by

the proportionality

St Pr0  (43)

It is important to note that this is the same St - Pr relationship encountered

in laminar flow. In other words, the present theory states that the Stanton

number for laminar and turbulent flow must have the same Prandtl number

dependence: this prediction is confirmcd by experimental correlations for

turbulent heat transfer [24].

S
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Conclusions

This paper outlined a theory which explains the instantaneous structure

of turbulent shear flow and boundary layer flow. The theory is built around

the newly-discovered buckling property of inviscid fluid layers [1]. Starting

from this new property of inviscid flow, we were able to reconstruct many

classical examples of "turbulent" behavior in shear flow. Reviewing these

examples in order, this paper explained theoretically the origin of: r

a) the phenomenon of vortex pairing (Fig. 2)

h) the linear growth of free shear layers (Fig. 3 and eq. 10)

c) The phenomenon of resonance in shear layers subjected to external

forcing (eq. 12)

d) the transition to turbulence in free shear flow (eq. 14)

e) the size of the smallest eddy (eq. 15)

f) the stable laminar length at the tip of a shear layer (eq. 20)

g) the geometrically similar shape of all shear flows (Fig. 4)

h) the periodic bursting of boundary layers (eq. 24)

L) the viscous sublayer in turbulent boundary layers (eq. 27)

.) the 200 slope of the upstream interface in turbulent boundary

4 layers (eq. 28)

Relying on these features and on the buckling length and time scales, X

and to, we were able to reconstruct on paper the instantaneous structure of a

turbulent boundary layer (Fig. 5). This structure allowed us to calculate the

spatial density of the footprints direct contact spots) made by the free

stream on the wall. Using the footprint density, we were able to predict the

skin friction and heat transfer coefficients. These predictions are in agree-

ment with experimental results.

P
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The instantaneous boundary layer structure envisioned in the present

theory explains also the o igin of "an analogy between heat and momentum

transfer", in the correlation of turbulent heat transfer and fluid friction

measurements (eq. 45). The "analogy" stems from the fact that the density of

contact spots is the same for both skin friction and heat transfer; consequently,

the skin friction coefficient and the Stanton number exhibit the same dependence

on the Reynolds number (see equations 35 and 43).

Overall, this paper advances a new theory of boundary layer flow and heat

transfer. It should be recognized that this new theory departs drastically

from accepted methodology, because it focuses on the instantaneous structure

of turbulent flow rather than on the time-averaged flow. Indeed, it is the

focus on the instantaneous structure which is responsible for the success of

this new theory: once the instantaneous fabric of the flow is discovered, it

is not difficult to evaluate the average quantities one might measure in an

actual experiment.
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Table 1

nI L Cf Re 6

contact total ,n

S1 5.45
1.6 - 0.751 0.0259 155

2 9.07 0.626 0.0216 310
14.5

-3 14.52_

14.52 = 0.50 0.0172 62129.06

23.6 = 0.406 0.0140 1241
58.1

39.12

1 0.328 0.0113 2482

6 61.72 = 0.266 0.00917 4965
232.4

7 464.8479.84 - 0.215 0.00741 9930464.8

161.56 - 0.174 0.00600 19860
929.6

261.4
-859_ 0.141 I 0.00486 39720

-1859 .
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Table 2

R R C
0 6 f

465 4020 0.00544

498 4230 0.00540

700 6560 0.00483

1000 9230 0.00442

1340 11590 0.00394

1370 12340 0.00402

1840 17140 0.00363

2840 31770 0.00336

3480 32500 0.00320

4090 37240 0. 00316

5100 50460 0.00304

List of Captions

Fig. 1 Incipient buckling of a two-dimensional shear layer.

Fig. 2 Successive buckling events, as origin of shear layer growth

(vortex pairing).

Fig. 3 Linear growth of a buckling and rolling shear leayer.

Fig. 4 Laminar- region at the tip of a two-dimensional shear layer

Fig. 5 Universal geometric structure of a two-dimensional boundary

layer (the structure is drawn to scale, D M length unit).

Fig. 6 Local skin friction coefficient predicted by the present theory,

vis-a-vis experimental data (Table 2).
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SECTION 7

COMPACT EXPRESSION FOR THE LOCAL DISSIPATION

RATE IN TURBULENT PIPE FLOW

by

Adrian Bejan
Department of Mechanical Engineering

University of Colorado
Boulder, Colorado 80309

P

Abstract

This note shows that the local dissipation rate in turbulent pipe

flow can be expressed as the mean velocity gradient squared times the

stun of molecular and eddy viscosities. This compact expressio.i is sug-

clested by the symmetry between the momentum equation for laminar flow

and the time-averaged momentum equation for turbulent flow. It is shown

that the integral of this qompact expression over the pipe cross-section

agrees within 0.5% with overall pumping power loss measurements in a

wide Reynolds number range.

* appears in abbreviated form in: A.Bejan, Entropy Generation through

Heat and Fluid Flow, Wiley, New York, 1982, chapter 3.
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Introduction

Dissipation is one of the central topics in turbulent heat transfer

research today. The prominence of this topic is due to a large extent

to the wide interest in computational modeling of turbulent flows. The

dissipation mechanism is also becoming an important topic in the energy-

applications of heat transfer engineering: in such applications, the

dissipation mechanism is seen as responsible for the one-way destruction

of exerqy (available work) in engineering components [i].

The objective of this short technical note is to report a compact

expression for the local rate of viscous dissipation in turbulent pipe

flow, c. As summarized by Hinze [2], the current approach to determining

C consists of the direct measurement of local velocity gradients (see,

for example, Laufer's experiments [31). In view of the generally accepted

need for special experiments to measure c directly, it would be advan-

taqeous if one could calculate E based on readily available (universal)

measurements, rather than on special measurement of the type pioneered by

Iaufer [3]. The ollowing analysis recommends a simple formula for calcu-

lating the local dissipation rate C using the universal velocity profile.

Analysis

The compact expression for E is suggested by the well-known symmetry

• which exists between the longitudinal momentum equation in laminar pipe

flow,

0 - dP vu (d

p d-x rdr r (i

and the corresponding equation for turbulent flow

S l l'ii
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1dP + 1 dd__ r dil (2)

S dx rdr ( M dr

These equations are written in the usual notation, where EM is the eddy

diffusivity for momentum. The remaining symbols are defined in the

Nomenclature.

We now make the important observation that, according to variational

calculus [4], the momentum equation for laminar flow (1) is the Euler

e(Iqtation associated with minimizing the integral

r
0

2!'n Ji dr + 2u d rdr (3)
*laminar f I [d () 2udx

0

subject to fixed dP/dx. Likewise, equation (2) follows from minimizing

another inteqral,

I-2Tr p(V + C + 2i3 - rdr (4)
turbulent 2I [ M du 2 + dP]

0

where dP/dx is also imposed. Next, we note that the first term in the

* inteqrand of t laminar is exactly the local dissipation rate in laminar

flow [1]. Comparing the integrand of Iturbulen t with the integrand of

Ilaminar , we must suspect that the expression

- 2
Cmol = (v + CM) (d) (5)

occupies the place of the dissipation rate u in turbulent flow.

We can determine the accuracy of model (5) by comparing its predictions

with experimental evidence. First, expression (5) is known to be exact

- • N • •
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in the viscous sublayer because, in that region, V >> CM . Second, thetI
accuracy of model (5) can be tested in an integral manner, by integrating

the local dissipation rate (5) over the pipe cross-section and comparing

the result with overall measurements based on pressure drop data. The

pumping power dissipated per unit of pipe length is

d P = 1 V 'C Re, (6)q0

where Re is the Reynolds number based or average velocity and pipe dia-

meter. We obtain a second estimate ,,r W' by integrating the compact

expression (5) over the pipe cross-section, introducing y = r - r as
0

the coordinate measured away from the pipe wall,

+
r o +

=(21T V T ) r +Io( -~ ' I+d, dy+ (7)
model o 0 r + dy +

o o

* in writing equation (7) we took into account the fact that in turbulent

pipe flow the app=irent shear stress varies linearly with radial position

[5',

Td(V + ) - ( 1 - _L) -(8)
M dy p r

0

*The integral appearinq on the right side of equation (7) can be evaluated

by invoking one of the correlations for the universal velocity profile

u ,(y + for example, the von Karman three-segment correlation [5],

Al+ =y+ 0<y+ <5

u U <y<
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+ + y+
u =-3.05 + 5 in y ; 5<y < 30

S+ + +
u =5.5 + 2.5 in y ; 30 < y

Dividing equation (7) by equation (6) we obtain an integral measure

of the deviation of model (5) from experimental findings,

+ 15/+

5 £n r + 3.142 + 1958/r
model 5 on (9)

+
4.919 in r + 3.983

0

Visual inspection of this result leads to the conclusion that the test

ratio d' I/' is of order one, regardless of the value of the Reynolds
model

number (r+ or Re). This conclusion is emphasized by the following table
0

of principal values:

+%
Re r We /W0 model

10 310.2 0.9973

105 2367.4 1.0014

10 19046.9 1.0043

The agreement between model (5) and experiment is exceptional: better

than 0.5% in the range 104 < Re < 106.

Conclusion

This note presented strong evidence that the expression

e= (V +c) dr (10)
M \dr~

accounts for the local dissipation rate in turbulent pipe flow. This

compact expression is recommended by the symmetry between the momentum

* F,
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equations for laminar flow and time-averaged turbulent flow. Based on

what is known at this time, expression (10) can be regarded as "exact"

in the viscous sublayer and "approximate" everywhere else in the turbulent

core. However, in view of the success of the integral test (9), and in

view of the fact that the viscous sublayer accounts for roughly half of

the total dissipation rate W' [6], the error associated with using ex-

pression (10) in the turbulent core may be quite small.

The engineering importance of the present result stems from its

compact form and from the fact that it is based on universal, readily

available, turbulent flow measurements.
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Nomenclature

D pipe diameter

I integral

m mass flowrate o

P pressure

r radial position

r pipe radius0

r+ Reynolds number based on radius and friction velocity,
0

.0 0 7/

Re Reynolds number based on diameter and average velocity P

11 longitudinal velocity

dimensionless velocity u//F7 .

pumping power dissipated per unit of pipe length P

x longitudinal position

y distance away from the wall, y = r - r.0

y dimensionless wall distance, yrT /p/V
0

(-) time-averaged quantity

local rate of viscous dissipation per unit mass

jCM  eddy diffusivity for momentum

j viscosity

V kinematic viscosity

p density W

T wall shear stress
0

4P
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