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ABSTRACT

The Interactive Fractal Analysis System (IFAS) allows the user to measure fractal
dimensions of curves and surfaces. This is accomplished interactively through the use of
virtual maps, character commands and responses, a graphic cursor, and an audible bell,
With either a curve or surface, the user selects the most appropriate fractal dimension by
entering a sampling interval and examinipg the generated scatterplot, correlation
coefficient, and table. On a real-time basis, the user also has the capability of
determining the fractal dimension for a portion of a curve or surface, editing features,
windowing, and creating a perspective view of a surface. Several eyvamples demonstrate
that IFAS is able to closely approximate the fracticality of curves and surfaces.

INTRODUCTION

The problem of describing the forms of curves and surfaces has vexed researchers over
the years. For example, a coastline is neither straight, nor circular, nor ellintic and
therefore Euclidean lines cannot adequately describe most real world features. Imagine
attempting to describe the boundaries of clouds or outlines of complicated coastlines in
terms of classical geometry. An intriguing concept proposed by Mandelbrot (1967, 1977,
1982) is to use fractals to fill the void caused by the absence of suitable geometric
representations, A fractal characterizes curves and surfaces in terms of their complexity
by treating dimension as a continuum. Normally, dimension is an integer number (I for
curves, 2 for areas, and 3 for volumes); however, fractal dimensions may vary anywhere
between | and 2 for a curve and 2 and 3 for a surface depending upon the irregularity of
the form. Although individual fractals have been around since the !900's, Mandelbrot was
the first to recognize their applications outside of mathematics.

This paper discusses the Interactive Fractal Analysis System (IFAS) designed to measure
the fracticality of a curve or surface. Several examples show tr%- 0&&3“ %%Qabilities of
the system, The software was developed and implemented on the o State
University computer system.

BACKGROUND

Definition of Fractals and Seif-Similarity

In Euclidean geometry every curve has a dimension of | and every plane has a dimension
of 2. This is generally referred to as the topological dimension (Dt). These dimensions
remain constant no matter how complex or irregular a curve or plane may be, For
example, the west coast of Great Britain contains many irregularities, but the topological

dimension remains . -
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In the fractal domain a curve's dimension may be between 1 and 2 according to its
complexity. The more contorted a straight line becomes, the higher its fractal dimension.
Similarly, a plane's dimension may be a non-integer value between 2 and 3. The fractal
dimension for any curve or surface is denoted by (D) and within this framework: D > Dt.
Mandeibrot (1977) proposes the following definition. for a fractal: "A fractal will be
defined as a set for which the Hausdorff-Besicovitch dimension strictly exceeds the
topological dimension."

Central to the concept of fractals is the notion of self-similarity. Self-similarity means
that for any curve or surface a portion of the curve or surface can be considered a
reduced image of the whole, However, seldom in nature (crystals are one exception) does
self-similarity occur and therefore a statistical form of self-similarity is often encoun-
tered. In other words, if a curve or surface is examined at any scale it will resemble the
whole in a statistical sense; therefore, D will remain constant. Brownian motion is an
excellent example of statistical self-similarity. Because of this principle, a curve can be
decomposed into N=r nonoverlapping parts and eafh subsegment has a length of 1/r=1/N.
Similarly, a unit square can be divided into N=r~ squares, where the similarity ratio is
r(N) = 1/r = 1/N", In either case the following equation applies:

D=log N/log (1/r) (n
and could be called the shape's similarity dimension. D can also be expressed as:
D=log (N/N )/log (\/ ) 2

where ), and A are two sampling intervals and N and N are the number of such intervals
contained. If a curve resembles a straight line tRen when the sampling interval is halved,
N doubles and the proportion equals 1. The majority of cartographic curves are not
straight lines and therefore N will more than double causing D to be greater than I. The
principle of self-similarity is dismissed by Goodchild (1980), Hakanson (1978), and
Scheidegger (1970). Hakanson, for example, points out the absurdity of postulating the
validity of self-similarity down to the size of the pebbles on the coastline and at the
molecular interstices of those pebbles. Goodchild demonstrates that although Richardson
(1961) found the west coast of Britain to have a constant D of 1.25 over sampling intervals
between 10 and 1000km., he found the east coast to vary between 1.15 and 1,31 for a
similar sampling interval. This suggests that whatever created the irregularities on the
coastline acted at specific scales, Goodchild states that since self-similarity is only one
aspect of the fractal approach, it would be unwise to reject the entire concept.

Interactive Cartography

The virtues of interactive cartography have been extensively noted by Moellering (1977,
1980) and several others. Moellering's general theme is that the real power behind
interactive cartography lies in the virtual map and its manipulability by the user. Because
the virtual map, displayed on the CRT, is in a transient and flexible state, the user can
easily manipulate and edit it. With the realization that interactive programming and
computer graphics not only allows real-time control over the mapping process, but is also
very useful in solving problems, IFAS was placed in an interactive setting. The resuits
demonstrate that interactive cartography enhanced the development of appropriate
analytical and numerical techniques.

DESCRIPTION OF THE INTERACTIVE FRACTAL ANALYSIS SYSTEM

The goal of IFAS is to allow the user to determine the fractal dimension for an entire
curve or surface or a portion of the curve or surface. By entering the proper sampling
interval, which is suggested by ancillary information, the result is a number which
approximates the complexity of a feature.

The theory on which this system operates is based upon the empirical work performed by
Richardson (1961) and later extended by Mandelbrot (1967).

Richardson measured the lengths of several frontiers by manually walking a pair of
dividers along the outline so as to count the number of steps. The opening of the dividers
(n) was fixed in advance and . fractional side was estimated at the end of the walk. The
main purpcse in this section of Richardson's research was to study the broad variation of
In with n,

Richardson produced a scatterplot in which he plotted log total length against log step
size for five land frontiers and a circle. Mandelbrot (1967) discovered a relationship
between the slope (B) of the lines and fractal dimension (D). To Richardson the slope had
no theoretical meaning, but to Mandelbrot it could be used as an estimate of 1-[), which
leads to:

2 D=1-8 &)
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In computing the fractal dimension of a curve, an algorithm was designed by Shelberg
(1982) which simulates walking a pair of dividers along a curve and counts the number of
steps. The algorithm ultimately uses Equation 3 to calculate D. Shelberg, Moellering and
Lam (1982) detail the development of this algorithm and present several examples.

The fractal dimension of a surface is computed by an algorithm that is modeled after the
research performed by Goodchild (1980). Since all the surfaces he examined were
self-similar, he was able to use the length of the mean isarithm line to calculate D.
Shelberg (1982) modified Goodchild's algorithm so that it could be used for nonself-similar
surfaces and be used in an interactive setting., By inputing the proper isarithm interval, a
number of isarithm lines are used to capture the overall complexity of a surface.

For the fractal dimension to be properly calculated, the user must be supplied with
additional information. In the case of a curve, the user is informed of the average
segment length. This information suggests at what length the initial chord length should
be set. It would be meaningless to choose a chord length many times shorter than the
shortest line segment. If an extremely short chord length is selected, an attempt to
examine the fractal character of a curve would extend beyond the primitive subelements
used to represent the geometry of the resulting form. In other words, beyond this lower
limit of primitive subelements, the curve's fractal dimension behaves as if it is a straight
line. In orger to verify the selection of the proper initial chord length, the user may
check the r” value or view the scatterplot or table summary.

In the case of a surface, the user is given no prior indication of what sampling interval to
select, The strategy is to choose the lowest isarithm interval with no isarithm lines being
eliminated. For example, after an isarithm interval is selected and D is calculated, the
user is informed of the number of isarithm lines included ang excluded in the calculations.
The user can then use this information and that of the r“ value, scatterplot and table
summary to best approximate the fractal dimension of a surface.

IFAS is implemented on a large computer system at the Ohio State University. At Ohio
State, the central processing unit is an Amdahl 470 V6, while the time sharing system used
is IBM TSO (Time Sharing Option), IFAS utilizes the Tektronix 4012 and 4014 storage
CRT terminals for interactive graphics and the Tektronix 4631 Hardcopy Unit for real
map output. [FAS is written in FORTRAN IV and the Tektronix Interactive Graphics
Library is used to perform all graphics work.

IFAS SYSTEM®PERATION

The command structure in Table 1 allows the user a flexible approach in calculating D and
performing other functions for either a curve or a surface,

Curve

With a system prompt of IFAS>, the user may enter CIFAS indicating a curve session is
desired along with the name of the curve. For example, if the West Coast of Great
Britain is to be examined, then the previously established filename of GBRIT is entered.
With the issuing of the CURVE command, the outline of the curve is drawn on the CRT.
Also printed on the screen, in the map area and above the curve, is the title, scale, date,
time, and the number of digitized points. Figure | depicts a typical session. First, the
user enters in FR, which is an abbreviated form of the command FRACTL, indicating D is
to be computed. The program responds with FRACTL> signifying the level at which the
user is in the system. It is important to note that all NAME> prompts are designed to aid
the user in knowing what level in the command hierarchy he is currently operating. The
system also responds with the average segment length and with the suggested initial chord
length. This suggested initial chord length is based on the sampling theorem and is
one-half the average segment length. The program then asks if the chords are to be
drawn and the user responds with a NO answer. Next, the user is asked to input the initial
chord length and the number of maximum solution steps. After these numbers are input,
D is calculated and is printed in the map area below the outline. Also printedzin this
section is the length of the initial chord, the actual number of solution steps, the r° value,
and the original length of the feature. Directly above this bottom legend, in the lower
left corner, is a graphic display of the initial chord length,

After D is calculated, the program returns to the CURVE> level, and the user is able to
verify the initial chord length selection by issuing SCPLT for a scatterplot (Figure 2) or a
SUMRY command for a printed summary. Also, within the CURVE> level, the user is able
to find the area (AREA) of a closed curve using the trapezoidal method. The user may
edit (EDIT) and save (SAVE) the edited curve for subsequent processing. .The fractal
dimension for a portion of the curve can be computed with the FWINDOW command. The
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System Prompt

SIFAS
CIFAS

Commands

CURVE (C)
SURFACE (5)

Subcommands
CURVE SURFACE
AREA (A) DISGRID (D)
EDIT (E) EDIT (E)
FRACTL (FR) FRACTL (FR)
FWINDOW (F) FWINDOW (F)
REDISP (RE) PERSURF (P)
RESETW (R) REDISP (RE)
SAVE (SA) RESETW (R)
SCPLT (S) RSINT (RS)
SUMRY (SU) SAVE (SA)
WINDOW (W) SCPLT (S)
END SUMRY (SU)

WINDOW (W)
g END
Subcommands
Edit
CHANGE (C)
END (E)

Table [. Command Structure
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current image may be redisplayed (REDISP) or have the screen image set and all internal
values back to the original curve using the RESETW command. Finally, a portion of the
curve can be zoomed in with the WINDOW command.

Surface

If a surface session is desired, the user enters SIFAS, after the system prompt of IFAS>,
and then enters the filename for a specific surface. With the issuing of the SURFACE
command the legend above the map display area is printed. This legend contains the title,
scale, date, time, and minimum and maximum Z-heights. In Figure 3, the user enters a
PERSURF command which indicates a perspective surface is to be drawn. The program
asks for the mode, which is an option which allows for the printing of a legend, straight
line or histogram connections. The input of -3 indicates that the legend is not to be
printed and the surface will be shown as straight line connections with hidden points and
lines drawn to them deleted. The user is then asked to input the angle between the
observer's line of sight and the Z-axis measured in degrees. The next input is the angle
between the projection of the observer's line of sight to the x-y plane and the X-axis
measured in degrees. After the surface is drawn, control is then returned to the
SURFACE> level. Next, the user issues a FRACTL command in which the program
responds with FRACTL>, indicating the level, and asks if rows or columns are desired. By
entering either rows or columns, this provides the ability to capture the maximum trend in
the surface in the x or y directions. In the example, rows are selected after which the
program asks for the isarithm interval. Upon entering the maximum cell size, the fractal
dimension is computed aryi printed out in the legend below the map display area. The
legend also contains the r“ value, isarithm interval, maximum cell size and the rows and
columns displayed. In the user communication area, the program also responds with the
number of isarithm lines included and excluded from the calculations. Control is then
returned to the SURFACE> level.

In the SURFACE> level, the user may also display the surface with the actual Z heights or
as dots with every tenth position being a plus mark (DISGRID). This type of display is
designed to accomplish editing (EDIT) by being able to pick each location with the
available crosshairs. The fractal dimension may be determined for a portion of the
surface with the FWINDOW command. The REDISP command redisplays the current
screen image and the RESETW command resets the screen image and all internal values
back to the original surface. A scatterplot, similar to that in Figure 2, can be generated
(SCPLT) for each isarithm line, along with a summary (SUMRY) in table form also for
each isarithm line. And like for a curve, the user has the capability to zoom in on a
portion of the surface with the WINDOW commrand.

SUMMARY AND CONCLUSIONS

The interactive computer cartographic program IFAS allows the cartographer to measure
the fractal dimensions of complicated curves and surfaces. This fractal dimension
provides a method in which to quantify the irregularity of a curve or the roughness of a
surface. In computing the fractal dimension for a feature, a samplinJ‘ interval must be
chosen. The recommended choice of this sampling interval is based on the average
segment length for a curve and the number of isarithm lines included versus the number of
lines excluded from the calculations for a surface. The user is able to verify the sampling
interval selection with the issuing of various commands to view the scatterplot and
summary report,

Results from the research indicate the accuracy of the fractal dimension is dependent
upon the amount of self-similarity a feature possesses and the sampling interval selection,
The variations in the fractal dimension, over a number of sampling intervals, reflect a
need to examine the effects of self-similarity, or lack of it on a feature's fracticality. A
possible enhancement to IFAS would be to automatically determine the proper sampiing
interval to closely approximate D. Finally, this research exemplifies the power and
application of interactive computer graphics in the cartographic field.
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