-A123 384 LARGE SCALE SOFTWARE SYSTEM DESiGN OF THE AN/TYC-39 -
STORE AND FORWARD MES. . (U> GENERAL DYNAMICS FORT WORTH
TX DATA SYSTEMS DIV 89 NOV 82 DRRKBB—Si—C—G%gg

UNCLASSIFIED 1772

Fueo
N

o

L VIa gl Sy

L

TR T

da3

B EEFFELITE

|||| 1.6

14

I

125
——

I

MICROCOPY RESOLUTION TEST CHARTY

NATIONAL BUREAU Of STANDARDS-1963-A

LT

v e - h .”

- ,bl,..l.r‘.\.....r‘.f

PSP Y P EEYY)

E

-~

atmlmtaatatalal -

el e e

o« v _ta

oo o_mm e i e

PSP

-

Lt Qv SEATRUCICL L

OTIC FILE COPY

ADA123304

r‘.

= Al g “agh - mb S - S Sl e B by T S S 8 A e S SR

-y e e e e e Ly
-_“q,"..,.,'.'. e ey

CASE STUDY I.

FINAL REPORT DEVELOPED FOR
LARGE SCALE SOFTWARE SYSTEM DESIGN
OF THE
AN/TYC-39 STORE AND FORWARD v
MESSAGE SWITCH
USING
THE ADA PROGRAMMING LANGUAGE :

~- .r‘q-.- e
KPP SRS SN cely Tl DY

[Oeds
2» 8 A

U. S. ARMY CECOM
CONTRACT NO, DAAK80-81-C-0108

VOLUME I OF IV v
B '(c‘ . & J
<

3{3
U
ﬁ
. 4
.‘;j
o
él

GENERAL DYNAMICS
DATA SYSTEMS DIVISION
CENTRAL CENTER
P. 0. BOX 748
FORT WORTH, TX 76101

—BERBRMON AR £

ad ‘o paliic release; - o
""";;.'m_,-,; Unthed Y s U1 12 08Q

, .
3
sl

o e MG RTTNT w

TPace | . . __AD AlE33OY

[4. Ttte sna Subtitie 5. Reoort Date
=& November_ 1982

Ada Capability Study: Design of the Message Switching System .
AN/TYC-39 Using the Ada Programming Lanquage _
7. Author(s) ’ 7 4. Performung Organzation Aept. No.
‘ General Dynamics
9. Porforming Orgonizotion Name dad Address T 10, Proiect/Tesh/Work Unit Ne.
General Dynamics o
Data Systems Division | 11. Comtract(C) or Grant(G) No.

Central Center j«© DAAK80-81-C-0108
P. 0. Box 748 :

Fort Worth, TX 76101

()]

12. Seensering Organization Name snd Adéress 13. Type of Repert & Peried Covered
USA CECOM Final
Center for Tactical Computer Systems (CENTACS)
ATIN: DRSEL-TCS-ADA-1 14,
Fort Monmouth, NJ 07703

‘1 15 Supplomentary Netes

* (Limit: 200 werde))

Jn Ada oriented framework for the design and documentation of the U. S. Army TYC-39 store ,
and forward message switch (military software) system is presented. This document package
contains a Requirements, Design, Ada Integrated Methodology, and Final Report section. A
methodology to use Ada in specifying requirements, design, and the implementation of a
system was developed. This methodology was used to redesign the TYC-39 message switch
system. A selected software module was programmed after the redesign.

/y\

17. Oscument Ansiysis o. Dessrigters
Ada Programming Language
Software Design with Ada
Designing with Ada

& dentifters /Open-Ended Torme

Message Switch
Military Software
Program Design Language

¢. COSAT Fieid/Grove

16 Avellodiny . 19. Segurty Class (This feoert) 21. Ne. ot Prges
MW Avail- UNGLASSIFIED 521 _

able from Nutional Technical Information Service, 20. Security Cisss (This Pags 22. Prce
Sprinqfield, VA 22161. B N UNZLASSIFIED

- o . e -~ .

T

Saety,

»

R
IORONG)

AT
'.-‘ e

W

T T TR TR g < TS

TABLE OF CONTENTS

1. Introduction

2. Applicable Documents

3. Project Staffing Review

4. Training

EEEEE
NEWwN =

Preface

Description of Activities
Training Issues

Novel Developaents
Conclusion

Se Design Issues

v vt n
e W =

Overview

Design Process

Issues Raised as a Result of
Bessage Switch Design

Lessons Learned

Observations

Values and Drawbacks of Ada

6. Conclusion

P Y L

Rags

LOIRWN (V)] w ~N

Jeatifleatton .

Y
Distridutien/

| & o o

" Availability Gedes
B Avail amd/er
Dist ' Special

|

B

| J

T Y

TR T X YT WL T e L WL 4T, € Y Y LT et e

N P §

,
.
.
.
t
+
13
1
SURRLURIT R P,
-‘~". - ‘l'l’" .
o) et T e et
o
g e e DN |

?3.¥2;

S
!

Lt ST P
o ey . [y v

t AR SR TR RS
. N LA
.« PP
Lefea TV
PR A 2

wrad 8t Aadad ad

LR UL

i

Ty R
'.._,"‘.., i q A

ISR

ORI
-‘. . "y

AR bttt

._ .
. $ i
“s aa

1.

AT (R L i e i e ™ o oM AR il i RN s - SR R R S A PR AP R T R R S

Introduction

The Ada Capability Study was performed by the Data Systeas
Division (DSD), of General Dynamics Corporation, under
contract vwith the Department of the Army Communications -
Blectronics Comasand (CBCOM). The purpose of this contract
was to provide a documented case study and analysis of the
use of Ada in the design, development, and implementation of
a large scale digital systea.

As stated in the Ada Carpability Study Work Plan, this task
involved the performance of four subtasks: (1) develop a
methodology for the use of Ada in the specificaticn of
requirements, the design, and the implementation of a digital
system; (2) train personnel in the use of the Ada language
and the methodology; (3) use the developed amethodclogy to
design a system for the AN/TIC-39 message switch; and (4)
program one selected module of the designed systea.

These tasks have been performed. The Ada Integrated
Methodology (AIM) was developed and is provided as one of the
docusents produced during this study. AIB includes a
requirements methodology, a design methodology, and
programaing standards. AIN has proved to be an effective
sethodology for the performance of this Ada Capability Study.
The scope and arplicability of AIM has limitations which are
detailed in the AINM document. It is not presented as a
general purpose methodology.

The training of personnel uwas accosplished and a computer
assisted instruction sequence was developed. Section 4 of
this report provides details.

Using the Requirements Methodology of AIN, an Ada Capability
Study Requirements Document was produced which states the
AN/TYIC-39 message switch requirements in an Ada-compatible
format. The Design Methcdology of AIM vas used to provide a
system level design for the entire message switch. A detail
design, including hardvare-softvware partitioning, vas
accomplished for the output message module. Since the
purpose of this contract was to study the use of Ada, the
design effort was limited in scope, and issues such as
hardware producibility, reliatility, packaging, BENMI, ENC, and
survivability were not addressed.

The ocutput message module was coded in Ada. This code was
processed through the Ada/Pd interpreter-compiler and is
included in the Ada Capability Study Program Listing
Document.

s

C]

o
SAriNLad b atoadoi

»

. T R R R

- B ves T

. Ly adetoed ol

. A
. [R R

. W, [)

< P 2

. B 30 AR Aebn -mate 22 0 ot IOt e i s Sttt st Rha She a2 - St Yt I AP IR SPSL PR o SR SETIE A L P S T L R A Y _1
o e adtul el She g arts 4 s Aci B Ay " T e e e

G 2. Applicable Documents

The following documents have Leen produced during the Ada :;
-3 Capability Study contract effort, and are included as a part K 3
i! of the Pinal Report. ~

Ada Integrated Methodclogy, dated 28 June 1982

§ voey
Vet o
PRl

Ada Capability Study Requiresments Document,]
dated 9 February 1982, revised 7 June 1982
Ada Capability Study Design Document, dated 29 June 1982 ""‘

Ada Capability Study Program Listing Docuament, P
dated 21 June 1982 .

-
et

SR,

"‘.‘“‘
S

.”
LAY
[RTEER

& d

» . M T e T e

''''''''''''' -7 - - B - - c . Cr et aliaAatala A
---- - T AT . e Ce T e T T T W B [.« . - o Cam - -
T N e st Tt a TR T et e L a A vatata ta Al el r IR U WSIPEPE TR S8

o o e o o Saoairesea s mdi yaE pl are s RE=R Eeal g S e I I A el A vl M N NCRNEE A A i R
. »

o 7
[y
e i
s
o 3. Project Staffipg Reviev

:

Ada Capability Study Work Plan was published in August, 1981.
The design team lead personnel had been chosen, but the

design team staffing was incomplete. It vas understocod that O
the success of the contract effort depended to a great extent y']
on the background and qualifications of the persons selected o
as design team members. The project management therefore "
sought people with arpropriate qualifications and assigned L

R

Prr———
VD

them to the design teas as they became available froam other ;ﬁiJ
. projects within the corporation. Righly qualified
pl consultants vere also used tc support the design team effort. o

A total of seven eamployees were assigned to the design tean T
during the contract effort, with a maxisum staff of six at ce d
any one time. TIvwo of the people have Master's degrees in D
computer science; five have Eachelor's degrees, three in —
mathematics and tvwo in electrical engineering. The leader of v
the design team was chosen ltecause he had specific experience P
in communications and telethone switching systems. Other ifma
team members had varied backgrounds which included real time SN
systeas programasing, coampiler development, and business data
processing. Pour of the people had experience in asseably
language and Portran; three had used structured higher order
languages including Pascal.

Fam aaad
Ve,
G

The two consultants vho supported this design team effort
have PhD degrees and are on the faculty at North Texas State
University. They vorked in the methodology developaent phase
of the Ada Capability Study and vere therefore able to advise
the design team members in the application of the
sethodology.

Because of the varied backgrounds of the design team aembers,
different levels of training were required to ensure the
qualification of each person. The training curriculum is
described in Section 4 of this report.

Taken as a group, the design teas members performed with
excellence and did an outstanding job in applying the

developed sethodology to establish requiresents, create a
design, and program a selected sodule using the Ada language

in its various foras. Of the seven team members chosen, only . ..
one experienced undue difficulty in applying the developed
methodology. This person, who had msany years of experience S
vith real tise assembly language systeas, found the sethods S
used to be incompatible with his experience in systea "
development and asked to ke assigned to another project.

A villingpness to accept new concepts and a positive attitude . .—
tovard Adda seen to be qualities vhich vwere necessary for sl
successful participation in the design team effort. An

attitude vhich reflects these qualities seeas to be far more S
iaportant than the particular educational tackgrcund or A
experience of an individual. i;;;

[DU P AL, PR T SO W ST U A ST S S WA N Uy TN W SN S G W Sy = 3 - L

£

"
s

,,_
7
3

W Y e T aM G Y,
L e o i 3 C mx g 2w gt -d w i il B fedn e A Gy VY - Ve At ~aul wadit s 1 Mt Sl Al Wl Ity - - - -

It should be noted that the design team was coaprised of
vell-qualified people who vere selected for special
assignment to the Ada Capakility Study and vho vere highly
motivated and intensely interested in the success of the
project. This should be considered in estimating
productivity for any large-scale Ada systea developaent,
because the performance level of a randonly selected group of
computer professionals will not be as high.

e e e e PR
et N . .
CRICIN ot R

APV TS Sdnamhmmdns

e

HPLPEE PP |

- P e :

¥
B

xr e

L

'.—'-

oo

s —

- 2
o
s

LY
AT

o Pra——
R AT
o N

ol
.

N

S

4.

4.1

Ca shas bacss sras s A JERE i A I Rk SNSRI PRt TN T TR e T T ol Te T TS LT TR R T T e Tl e

Iraiping
Breface

The training of personnel and the development of a
coordinated and documented training progras have been
integral parts of the Ada Capability Study. BEarly in the
program the project management sought effective Ada training
in the form of books, video tapes, short courses, and
tutorials. It became evident that the availability of
training materials at the level required for the Ada
Capability Study vas limited, and that it vas necessary to
develop a training curriculus tc meet the training
requirements of the project. The experience with project in-
house training was capitalized upon to produce a formal Ada
course in self-instruction format.

wn

R
e acaad

x4
. Lty .
. 3 el .
il ;._Ll PR Y

O Y SN

..‘

-

T S ST S S U P S U DUNIE MO AN SO SR SPNE 1PN DU TOUI R ROUE MR SO SOUPUIPSE Souy gy BEpy SRRy TPART DR EPRRF NS SUNA

4.2 Description of Activities

In-house training of Ada project personnel was conducted in
-, tvo phases. The first phase consisted of tem 2- to 3-hour

' presentations given to the original members of the Ada
project team by Professor Charles Hammons, a project

presentations were given in sesinar fashion, in the form of
lectures with accompanying viewgraphs and handouts, and with
free class discussion. All features of the Ada language vere
covered in this phase. Because of time constraints, most

F topics were covered rather quickly.

Fﬂ consultant from North Texas State University (NTSU). These
{

The second phase consisted of a reprise of the first phase
Fq given primarily for new team members, but open to anyone on
o the Ada project. These sessions, also conducted by Professor
’ Hamaons, covered fundamentals of the language in more detail
(in seven 2-hour meetings). Attendees in this phase had, on
average, less broad experience in higher order languages than
those in the first phase. Special emphasis was given to
overall program structure, data types, packaging, and e
tasking. Phase I experience was useful in identifying and RSy
anticipating student difficulties. L]

)

',
2

s
All materials used in the training activity will be delivered oo
at the end of the contract period in a separate document. oot
Ap important activity in the training section was the o
formulation and analysis of training issues and training B
requirements. A related activity was the evaluation of 3 L

available training materials. o

e

A major effort in the training section was the development of SR
a formal Ada course in computer-assisted-instructicn (CAI) 33~A
format and its implementation on an Agple II personal) L
cosputer. This self-instructional course can be used by oo
engineering or prograanming department personnel on-site or on -
personal equipment. It uses a coursevwriting tool written by L
our NTSU consultants independently of this contract. el

R
i i

A hardcopy version of the CAI material will lre delivered at
the end of the contract period.

AR -)

T3

pog——

4.3 Training_jssues

A major issue in curriculums development is the gquestion of
subsetting the language for training purposes. <The
experience of the Phase I course showed that thorough
coverage of the language in a short time was predictably
confusing to students less experienced in higher-order
languages.

There are several approaches to subsetting into a core
course. Often, such approaches assume an academic context
vwithin which not only Ada, but basic programming concepts are
taught. This project has assumed that in-house training will
be to professionals, and that even entry-level personnel will
have the fundamentals of programming and data structures.
Approaches to a core course include the following:

- Omit certain torics entirely in the core; for exaaple,
separate out system prograaming concepts such as tasking
and reserve for advanced or specialized courses.
Problem: in training for embedded systems programmers,
it will be difficult to justify omitting "systes"
programming features.

- Siaplify the language ky ignoring certain features and
options. Problem: it is desirable to cover all
features designed to support maintainability and
portability.

- Introduce features within a nested segquence of
sublanguages. Problem: while this approach is suited
to the academic environment, for in-house short courses
it loses its designed effect, since the most complex
version of language definition is given shortly after
the simplest.

P T S N e g e oy e & oA am—am om i i e ® el B A A

RV SN

3 4.4 §ovel Developments e

The implementation of a formal Ada course for individual [ﬁlﬁ
- self-instruction on a personal coaputer is an original —®
I contribution to the availaktle body of Ada training materials. LTy

Several features of the development tool contribute to the
~ flexibility and modifiability of the course sequence.

- It vas realized early in the project that effective course
saterials aust reflect a "systeas arproach" to the language.
This means that presentation of language features must be

F' inteqrated with a viev ocf the system life cycle, and
accordingly must be related to program design methodologies,

language support issues, and project management tools. The -

< formal course atteapts to achieve this integration to at e

% least the minimum extent necessary to make the material L

appropriate to a variety of potential users. . a

R

LY . B .~ o~
P PP

i
‘£

PRl
(AR
g
il

ANAS LA

- Project experience in develcpment and application of an Ada
iw methcdology provided a unique practical perspective from
which to formulate a systems viewpoint. Further, groject P
experience in coding a complex system function provided T
insight into the training regquirements to support such a o
viewpoint, and into design, progras management and coding
problems that could be addressed in formal training.

. . W
dent o M

¢
Aden

“4 4

b B2

oe g
{

A}
PR
."'z

—~e——— e

.- L - PR S [P . PR S A IR S W W W W)
P P P Sy Y TP AL P W G S W TP UL, WP el iy e

4.5 conclusions

Ty is difficult to establish a single Ada course to satisfy
the needs of industry perscnnel requiring varying levels of
knouledge of the language. Short courses in seminar form
plus a self-instructicnal or programmed learning sequence is
suggested as an effective comtination.

The most experienced programsers and analysts can profit fronm
an intensive course covering the entire language. Our Phase

I experience suggests that it is desirable to have a separate
class for this type of student in which potential advantages

and risks of the language can be exrlored in some depth.

Language training will appropriately take place in the
context of modern requirements, design, and development
sethodologies and of the role of program management.
Grasping the design of the language requires a perception of
how it supports development and maintenance, and of how
complexity, portability, and msaintainability are managed by
production standards. These issues are especially pertinent
to the training needs of program managers and systenm
designers.

On the state of language defipition: Ada instruction must,
in the short term, take account of open implementation and
languaye support questions. These involve significant
performance issues such as real time requirements and run
time support provided by the ada system. Students wvant a
clear distinction between what is under programmer control
and what is the responsibility of the systesn.

Class response as well as ccding experience on the pr-ject
has provided insight into some special training issues. BReal
time, embedded systess prcgrasmers need to be shown that Ada
will support familiar concepts such as interrupt processing,
priority scheduling, critical timing, background/foreground
processing, common data pools, and programmer ccntrol of
execution sequence. Negative transfer from other languages
is likely. Some types of lexical errors tended to persist in
the coding, for example, failing tc¢ specify a discrete range
in constrained array declarations.

. .
f e g

.

B

Aaaaana o

- o e aran p g M -l s SEEE G e vl Asd eugt Vet Gaag, t & A Nl tai S ter RN e MM AR

A

€7

S. Desigp_Issues T

——
e
Ty

5.1 gcyvegvies

K The discussion in this section is the result of the process -
of designing the TYC-39 message switch. Included are various :
findings, problems, deficiencies, high points, history, and

- personal feelings relating to this contract. In addition,

i~ the information gained from the various action requests
during the project have been incorrorated into this material.

;g

The actual message switch design is contained in docuaments (]

l! accompanying this report, referenced in paragraph 2 o
(Arplicable Documents). Y

l' - ';
o

; S
! DR
a ~w
- Co
N

-

R |

b airig
S

10

osie,

5.2

5.2.1

Design _Rrocess
Begujrements_Phase

The message switch regquirements study began in late July 1981
with a team of requirements analysts cosposed of the chief
engineer, chief programmer, and one assistant who soon becanme
a menber of the methodology team. A lar,: part of the early
effort vas spent perusing the "A level® and "BS5 level®
specifications and some related documents, namely the Autodin
network, JANAP-128, ACP-127, and data adapter specifications.
In addition, time was spent researching manual methcds of
representing and restructuring the data gleaned from these
specifications.

On August 4, 1981, the kickoff meeting was held for the
representatives of the aray at Fort Worth, and the initial
plans vere revealed. During this meeting, a basic
understanding of the message switch was demonstrated by the
chief engineer. As is often the case, plans for various
personnel vere changed and several reassignments occurred. 2
new chief methodology engineer was appointed, one of the
requirements analysts wvas switched to the methodology teanm,
and three talented consultants fron North Texas State
University wvere added.

The chief engineer and chief programmer remained cn the
regquirements team and one new requirements analyst was added.
After review of various methods of representing reguirements,
the SofTech SADT apgroach sas selected because of its ability
to separate data and control, two important compcnents of
real time systesms.

A trip to Fort Monmouth, NJ, was made in early Cctober by the
chief engineer, at which time the initial SALT diagraas were
presented to the aray. After a day-long discussion, some
simplification of the overall task vas agreed upon, and a
better understanding of the message switch battlefield
applications was obtained. There were scme minor changes
made to the SADT diagrams, but the initial understanding vas
on the right track. Ordinarily, there would te frequent
meetings with the customer tc rescglve misunderstandings and
incongruities in the specifications; however, the message .
switch application is a standard part of the army equipment
inventory and the requirements are essentially static. For
the purposes of this contract, any conflicts between wording
of specifications was evaluated in the requirements group and
the most practical approach was taken. This undoubtedly
expedited the requirements fhase.

By late October the firxrst draft of the Ada Regquirements
Methodology (ARM) was released from the methodology groug.
Portunately, the data flow diagrams vere still based on SADT,
but additional enhancements vwere supplied bty structured
analysis technigues. Scme redrawing of the diagrams was

1

P S S T Y S

— -

e -

-
LR

-' ;
'

r

B

e emva

g |

o

e,

w-

T,
ARG
'

L

o
.. N

Y

y
N

oY
TT

“. e

LI e S S S

................

required as a result of the methodoloqgy arrival angd
additional levels of deccmposition occurred. Another
requiresents analyst was then assigned to the prcject. The
chief engineer assigned the analyst to the output message
section. The chief programmer was continuing with message
routing and the previcusly-assigned analyst continued on the
input message section. 1Initial assignments were made by the
chief engineer Lased on individual interest, vhich was
somevhat related to their tackgrounds. Hardvare types worked
in areas of I/0 and softvare types in transform analysis.

The chief engineer was coordinating the regquiresments
developrent, assisting in message input, and spending part of
his time completing another project unrelated to the message
switch (real world problea).

It became evident that the regquirements analyst assigned to
the message input section was having some difficulty in
interpreting the specifications. This could be partly due to
the fact that the A level specification contained two pieces
of army equipment, only cne of which vas applicable to the
message swvitch contract. Also, a great amount of
implementation detail was specified, which the aray had
verbally indicated we should ignore. It was desired that the
implementation details be driven by the design process (Ada
oriented), not the mapping of Ada into the existing design.
These considerations added a degree of latitude to the
process, but increased the difficulty of getting to the real
requirements. Alsc there was some relunctance on the part of
this analyst to conform to ARM (old way is better).

The decomposition process continued into December with the
development of a data dictionary of all the data flows on the
DPDs, and the lowvest level Llocks on the DFDs were expressed
in an Ada subset as much as possible. Disciplined English
vas used whenever it was not appropriate to use Ada
constructs to express the functional requirements.

The first technical interchange meeting was held at Port
Worth in mid-December. At this meeting, the SofTech group
(adjunct contractor) was introduced and a message switch
detailed requirements discussion ensued. Initially, it was
expected that the design document would be completed by
Christmas, btut this was not acccmplished. The message input
requirements were consideratly behind, and the regquirements
analyst assigned at that time asked to be removed from the
project. The chief engineer and chief programmer cchpleted
the section by late January while the other analyst finished
the message output. Also, in January, non-functicnal
requirements were cospleted, concurrency (high level) was
studied, and a concurrency chart was produced.

The efforts of the design team during the requirements phase

resulted in a 174-page Ada requirements document. This
document restated the "A level" specifications in a more

12

el

4

DN P

b structured, organized format with many more graphic
) illustrations of functions.

in The application of ARM produced a very good understanding of . 2

the problea during the requirements thase. The success in T
| this area can be mainly attrikuted to the functional Y
-y decomposition, DPFD aprroach used. e

el 5.2.2 Desigp_Rhase

p A transition from the requirements phase to the design phase _':
took place in late January. The four reguirements analysts

centinued on the project and two new personnel were brought s

in from engineering. The engineers vere given the Ada ;‘}

(requirements specification as their primary source of T
{, inforsation akout the message switch, as well as a briefing

on the methodology. The design team met as a group for o A

several veeks, scmetimes in full day sessions. Various 2

F’ issues arose during the sessions and the need for individual R

thought dictated half day breaks or many occasions. P

The first two veeks were spent on object-oriented design. fin
Since none of the designers had ever participated in an _:.Ji

tl"r‘ e
BN '

object-oriented design session, the methodology group vas
frequently invited. It vas suggested by the chief
methocdology engineer that the search for objects should tegin
with the top level DD (node A0). This turned out to be a
good idea since four out of seven objects appeared at that
= level. The process of identifying operations to be performed e
.i on the objects gave the design team the opportunity to more ~ W
closely observe the relationships between data structure MG
.. components. Thus, information hiding techmigques could be
o applied that allaved operations to be hardware independent. T
[This vas especially evident vhen designing the “reference S

-

storage® object, where the "construct® operation vas defined .

- tc sake a sequential operation work acceptably fcr randoa ..-w*i
'n access or sequential hardvare devices. 1In addition, the ;1q
"pessage" data structure and its components provided the o

basic structure for the system software design as evidenced -,1%

?? by the "message schema" presented in the design document. AN
L Y
]

fTuring the design sessions, ope designer was in charge of s
- updating the chalkboard as the design :evolved. The chief : o
[‘ engineer refereed the discussions, especially vhen it was T
“ felt that enough time had teen spent on a topic. The

chalkboard was copied to paper Ly the participants at the end

of each design sessicn or vhen a new topic vwas to be

ccnsidered.

] The object-oriented design sessions could have ccntinued —
¢ longer, but opinions varied as to what additional usefulness
{ - would be gained from this relatively new approach. The next
step in the methodology lasted about four weeks and began by
utilizing traditional structured design techniques to
generate a structure chart of the message switch. .Although

13

N S T T D P U T S A S U S P~ N N SN Ry

— N Bty Deai Ehan and- Aue e

1

pf N consideration vas given to startup/restart, operator 1
< interface, maintenance prograss, and runtime support, the .
prisary design emphasis was related to message processing. o

F This was because the aessage processing is the most isportant “»
.n real time aspect of the systes and all other softwvare in the —

svitch is present for its support. The support functions
. vere somewhat lisited because of the time and scope of the
- project. The eamphasis on support functions was at the
o interface to the message processing function.

. o .
-‘Ci.'y.\,h
ey SO -

SofTech in Boston. At this meeting the chief engineer and
the designer who had been transferred froa the asethcdology
group presented the results ¢f the requirements phase,
£, object-oriented design sessions, and part of the structured
b design sessions.

FI In mid-Pebruary a technical interchange meeting was held at

d . . -

The structured design continued after the interchange o
F’ meeting. Each porticn of the message processing function wvas o
. being discussed and successively refined. The two N
engineering personnel made gcod contributions to the : S
sessions. Between the requiresents document and group -
discussion, they obtained an excellent understanding of the
message switch.

. .
L
FOUANT %

. ¥

it After several rounds of refinements, the chief engineer aade
lﬂ assignments tc team personnel. PFor those who participated in
the requirements phase, the assignments vere in a different
-y functional area. This was not only to provide each person N
:&i with some variety, but also to see if a designer could -
| interpret the requirements written by anocther requirements “a
analyst. PFrom the time the assignments vere made, the person
. responsible for a particular area of the message switch would
1?? be the resident "expert® during a design session involving i
- that area. This helped to ensure that a specific designer S
vas responsible for issues arising during the sessions i

IR S

e A

"’ pertaining to his area of expertise, and part of his tinme

i = outside the sessions was to ke utilized solving these
problenms,

i

‘t; Throughout Pebruary and March, the structure charts vere

refined, concurrency requirenents were identified and
coupling and cohesion {"gocodness" of design) vere evaluated. - -
‘F; In mid-March, an in-house preliminary design review was held.

All design and methodology team meambers vere present as vell
as an army representative and ccnsultants. An overview of
the message switch was presented for the kenefit of the
consultants. Then the okject-oriented design, structure e
T charts, and concurrency vere discussed. Some mipor errors P
vere detected during the rrocess and it was generally agreed e
that the review was worthvwvhile.

(R ariar
feete

PR
: '

In late March three areas of the message switch were
Do identified as potential candidates for coding as required ty
ﬁ; the contract. Message cutput vas suggested as the number one

14

- PP . P D WU IR TP PP WL AL S VI WD VP G N [T S %

facoma

o

B e

——

,

~ oo =
BADAD n
RN Ve

3

o

PR
. oL .

Ty

i -
IR

N
. l_y .

choice and the aray subsequently agreed at the mid-April
technical interchange meeting. Also in late March three
design team members made a presentation regarding the nature
of this contract and the rrogress sade to that time at an
AdaTEC meeting in Salt Lake City, Utah.

In early April interconnectivity charts were made by each
designer for his area of responsibility. The two primary
data structures, linetable and routing indicators, were
formally organized and recorded. One designer with much
hardvare experience wrote a description of the ®run switch"®
module in narrative form. This was done to show that an
effort had been made to do a ccaplete system design. The
area of user interface, startup/restart, fault detection, and
naintenance diagnostics are just as important to the systena
as the application. Due to the size of the message switch
and the scope of the project, the level of detail in these
areas was necessarily lismited. The first seven steps of the
design methodology vere complete and a one hundred page
docuaent was compiled for the critical design review held in
mid-April.

111 steps in the methodology vwere useful for design purposes Dl
except the interconnectivity charts, which vere intended for ~
documentation of interfaces. The information in these charts e
vas derived directly from the structure charts. The CLR was
then held at the SofTech office in New Jersey.

™

After the CDR, the Ada unit specifications for each Ada
design unit of the structure¢ chart were created (step nine of
the design methodology). The designers acconplished this
mostly as an individual effort, with reviews by the chief
prograsmer.

-'4.:~;v. .
PP
oo Tty

,‘.'- . -.'. "_I"'.‘l
ARIAOIRIPS §

The hardvare/software partitioning was donre concurrently with
the unit specifications. The designer who wrote the "run

svitch® description wcrked on partitioning full time. The e
chief engineer assisted with this process on a part-time v
tasis. In addition to task cocordination, time was spent e
assisting with the data structure unit specs. It vas RN

discovered that the distributed prccessing approach decided
ugon by the hardware designer could have significant impact N
on the structure that had been defined up.to.this point. _The . N
level of impact depended on where the partition was-drawn. A —
group meeting was called to discuss the matter, which N
resulted in a partitioning that had a minimal design impact, Y
yet provided good interprocessor load sharing and cost e
effectiveness. The conclusicn drawn from the experience vwas
that the hardware/softvare partitioning should be considered
earlier, particularly in a distributed environment.

Because of the scope of the project, the detailed design was 3ff
done only on the selected ncdule and its interfaces. This S
included the message cutput section, part of gueueing D
{because of the pre-eapt reguirement), logging history, T
e

15 e

-

e . « -t - D e e e e lelela e et “ e e .s aCia _m'ml &P etk aafataiatak o m A e aa- - . A - - - PO

.
s
o

2
L8

e

P
Fhe) T
v LO¥:

]
vl

T
“t S L

,—— —,
St ,
Y B .

.

L
AL

=Ty

operator malfunction notification, bottom level support for
message manipulation and validation, and the user interface
relating to system dryup, startup, and shutdown. As the
detailed design phase began in mid-April, the first nine
steps of the Ada design methocdology vere complete and the
tenth (H/S partitioning) was in process.

The detailed design phase was carried out differently than
recommended by the Ada design methcdoclagy, partly because the
expression of the system design in Ada PDL would not be very
different from the requirements RSL that already existed,
except in the area of message processing support routines. A
tvo day group meeting was held to establish the exact
routines and functions needed for this support, including the
memory allocation/deallocation scheme for message buffering.
After establishment of this structure, each
designer/programsaer was to use these support routines as
necessary and report to the chief prograsmer any new support
needed but not yet defined. All routines in the MESSAGE_OPS,
SEGMENT_OPS, and MANAGE_INTRANSIT packages resulted from
these sessions, as vell as the sessage schema, a diagraam
shoving the basic internal message structure. Having these
packages at the start of the detail design provided a certain
amount of consistency to the resulting design tecause each
designer worked with the same building blocks, nct creating
individual special purpose routines that partially duplicate
functions. This approach worked extremely well, Two
designers vwere paired to design the output message validation
routines, another defined the queueing to output port
interface, another designed the ocutput port task calls/accept
structure and support routines, and another continued on
hardvare/softvare partitioning.

The final design reviev called for in the methodology vas
held at the technical interchange meeting of May 25 and 26
near Pt. Monmouth, N.J. BEssentially, there was a complete
design walk through (informally held at General Dynamics the
week before), a design philcsophy reviev and explanation of
the hardvare/software partitioning. The requirements-to-
design traceakility had been ccampleted at the prior design
revievw meeting. Although there was no formal preprogramming
Ada evaluation, a set of standards wvas developed as
prograsaing progressed, and groups consulted with each other
on a regular basis to ensure that the development stayed on:
the right track. Since nc cne had any Ada programaming
experience, the AdaEd compiler was used frequently toc £ind
syntax and compiler errors. This was a valuable tcol, even
though it vas somewhat difficult to use (Lecause of the VAX
resources regquired).

Most of the message switch sugport routines, gqueueing
interface and validation routines had Leen written by the
late-NMay technical interchange meeting. The "send message"
routines, which required a such closer orientaticn to the
hardware, were written in June. It was guickly determined

16

oo L oL . - - s A lm A & i

- SN . "

e et Sl 2 b - 3 D T T T T —— e W
L el oll L inas e s e gt b grapts - gem i umarad i i et e e WS WANSTEEVENA KIMRREN

= 2
o
g; that Ada has some deficiencies when interfacing at the R
T hardwvare level. These are described in other paragraphs of -
this report. Also in June, time was spent formalizing S
ii various docusentation, including this report. *‘A
The conclusion up to this point is that most of the R
- constructs needed to do a real time systes development are.
s available in Ada, but require very careful study to use
v correctly. The teas members who did Ada programming becaame
very proficient in its use, partly with help from other e
programmers and partly thrcugh use of AdaBd. The resaining '"-d
’! question at this time is vhether or not the final compiled ;'j

code can run fast enocugh to actually control a message e
switch. Hopefully, this will be deterained in the.near L
future.

L | -

-
°

&

e
PR

SO A

Ta—v=y
(RERN pPre |

17

N T T S R . N Y P T T T T T T 1 ~ & a . -~

e a el ol o L ane ———~ . aavpaad ania asin aee i B S vt A A
o e Al At A e A e At

P PN

e |

i —— (W\ »

]

&

=y

~
v

T ™

...,_. "

 re——
L

5.3 Issues_Baised as a3 _fResul:t of Pessage_sSwitch Design
5.3.1 Systes Design |
5.3.1.1 pMajptaipability vs._ Beliakility

During the design phase, a potential conflict arose several
times between reliability and maintainability. An example is
in the output message section where there is a regquirement to
validate certain header information that was previously
validated during message input. Since certain code would te
identical, there is good reason to create a package
containing this shared code that would ke called froms both
sections of message processing. Cne member of the group was
concerned that this approach viclated the reliability
requirements tecause any validation error not detected by the
routine in input would likely not detect the same error in
the output. Bis suggesticn was to have two separately
designed (and maintained) sets of code, one each embodied in
the input and output secticns. This creates not only a
maintainability problem, tut in all 1liklihood dces not
enhance reliability, because of the increase in complexity.
This designer was overruled and the common code was inserted
in a single package.

5.3.1.2 3Brror Hapdling jp_Ada

One issue which was raised during the project was the
question of how a procedure or function should pass
information back to the invoking routine when a grobleam is
encountered. The classic method prior to Ada has been to
return a status. This usually takes the fora of a boolean or
an enumecation variable. The status is then tested and the
required action tased on the status variaktle's value is
performed. The alternative provided by Ada is to have the
called routine raise a prograsmer defined exception. The
invoking routine does not have to explicitly test the
exception, but must provide exception handlers at the
appropriate place. If the invoking routine wishes to
continue with some sort of processing after an error, then a
local block will have to Le inserted in the invoking
procedure to hold the exception handlers. 1If this is done,
the amount of code for the alternative solutions (using or
not using exceptions) is very nearly the same. In this case,
the only advantage to using exceptions is that a function may
be used in some places where a procedure would be needed if
explicit status was being returned. For further discussicn
of this problem, see 5.5.4.3.

S.3.1.3 Bore Ada Implemeptation Letajl_Needed

In several areas, the designers felt that knowledge of the
operation of a specific ada implementation wculd be
necessary. One of these areas concerned dynamic allocation
of variables. The Ada reference manual does not specify

18

———

7

R |

el

remm—

e

[imd
'_.' L

Ty

Ty

’

s~y

wvhether all dynamic variakles will be allocated from a common
pool, or from separate pools for each type or each access
type. The akility to specify STCRAGEB'SIZE for a collection
implies the latter. This knowledge is needed if the designer
is to control memory utilization and overflow (as is required
in the message suitch).

S.3.2 PRByp_lTine Support
5.3.2.1 Ada_lasking_for _Real lime _Systems

As expressed at several technical interchange meetings, there
is considerable concern over the nuaber of tasks created in a
coaplex real time Ada environment. It is conceivable that
hundreds of tasks will be required in the message switch as
designed. Although processor units exist that optimize
context switching, there is scme doubt that the overhead can
be miniaized to the point that message processing (the
application program) will not Le adversely affected.

5.3.2.2 Distzibuted Progessing_Support

A1l Ada support provided so far is for a uniprocessor
environment., At the time of hardware/softwvare partitioning
it vas determined that a distributed processing approach vas
needed to handle the traffic as stated in the A level
specification. Unfortunately, no Ada documentaticn exists
that explains how tasking, procedure calls, and access types
operate in a distributed processing arplication. The
approach taken on this project vas that an intergrccessor
comsunications handler would act as an interpreter in each
processor, changing intraprocessor commands to a forns
suitable to interprocessor exchange and then re-interpreted
in the next processor in the scope of its internal structure
(aemory layout, resident tasks, etc.). There are potential
probleass with this approach mainly ltecause this structure is
not very transportable and not as maintainable because aore
special purpose code exists than there would be if this
structure vere supported by the Ada run time environment. It
is recoamended that, as socon as possible, standard
interprocessor interface packages be developed to work in the
Ada environment. Por example, one serial bus interface
standard is the MIL-STD-1553E bus. A tramnsparent Ada-run- --
time support package for this bus should be developed on a
priority basis if real time distributed emkedded systems are
to Lke successfully develcred in a maintainable manner.

5.3.2.3 Cystom Bun_Time Support

There is a concern that additional run time support will not
be identified until late in the systeam design proccess, thus
causing iaplementaticn delays while waiting for the run time
SUpport changes to be implemented and tested by the vendor.

S.3.3 Ada_lLangyage

19

L . 2 P PP T

'td;;u.:;¢“A‘L_;;;;;

'
{
sk

LA t_m e et i e -

o

»—r

[a am e e s an o an Jente e ey SR g Mediievi b A M JdaL N N .

S.3.3.1 gshazed Yariable_yrdate ;

The generic procedure SHARED_VARIABLE_UPLCATE is not
sufficient to provide the functions required for magped _
input/output. The probleam is that the parameter in the '!«
preccedure is of mode "im out®%, In this mode, there is no way
for the compiler to determine whether the prograamer intended
: a call to SHARED_VARIABLE_UELATE as a store or as a load.

v The designers of this project feel that Lo
' SHARBD_VARBRIABLE_UPCATE should be replaced by two generics,]
possibly called SHARED_VARIARLE_STCRE and . ¥
SHARED_VARIABLE_LOAD. ;

¢ vy

.
."“

LR
,

‘l

i\

S.3.3.2 g§tripgs

Type string is defined as being indexed by the type natural,)
vhich does not allow a null string, while null arrays may te 4
defined. If a record is constructed which contains a string

e

= and character count, the count must be of a type other than
51 natural if no characters are contained in the string (null).

Thus a conversion must be used in order to index by the
. count. -]
[}
t _. . . -" o
C 5.3.3.3 context Dependencies of Separate_Sutupits i

Context dependencies can lteccsme rather involved for separate
o subunits. In many instances subunits vill nct require the
" context of the parent, ner is it desirable to make the
subunit available on a glotal basis by including it in a
library. Systess prcgrassers and maintainers would benefit
if a subunit could be specified as "isolated”. The ters -
®jsolated" in this instance is the same as "is separate®, Lut _]
1

.y

'V".
M

without inheriting the context of the parent.

© s

5.3.4 stapdapds. TraidDing._and_Eaperience
5.3.4.1 Nasibg_Conyeptionms .

Conventions and standards need to be set for naming. all
names, vith the possible exception of loop indices used in
very small loops, need to be meaningful. FPor conveniencse,
atbreviation for long terms may ke used, but if they are -
alloved, they should be standardized. (For a amore complete ‘@
discussion on naming, see SIGPLAN Notices Vol. 17, No. 5, BMay
1982 for an article by Breck Carter entitled "Cn Chcosing
Identifiers".)

=

e

=

A special naming problem is rocsed by tasks, since the name of
the task should be meaningful by itself, as well as when S
conbined with the name of its entries. A perfect example of v
how not to name a task and an entry is provided in the task o
PREE_VER, whose single entry is FRER_VERSICN. When a call is -
made to this entry, the call reads PFREE_VER.FREE_VERSION. An
example of better naming is provided by the task DECOUOPLEZ,

t; vhose entry is LOG for a call of DECCUPLE.LCG.

e T

.
PEE.

20

——
et

Y

el

|-

—r ——yr e e w o~ w WS R R S - e .
Paaac o o g S et s Seatt Jaee St fiuse i et e D i e e e a N L R RSN o Fe T T e e

Coamon sense naaing may cause problems. For example, in a
package with a set of orerations on a message where each
routine needs a message as a parameter, then it makes sense
to use the same paraseter name for the message in each
routine. Thus given the following procedures:

procedure READ_PROM_PART
(MESSAGE : MSGID 5 ...)

and
procedure FIND_BRI
(MESSAGE : MSGID : ...)

If READ_PROM_PART is called froms
PIND_RI the following would result:

READ_FPROM_PART (MESSAGE =>
MESSAGE , ...)

This may not be a problem; haowever, it may lcok strange and
potentially confusing to the novice Ada programmer.

5.3.4.2° Use of USE

A standard needs to be set for the use of the USE clause (See
the cosments under paragraph 5.6) and for qualifying names.
Because of his knowledge of the system design, the original
programmer is likely to use names without qualification. But
the maintainer, vho must deterszine the crigin of a name in
order to derive its meaning, may have a different
perspective. More exprerience with Ada may be required before
a reasonable compromise can re reached.

S.3.4.3 Separate_Compilation of_Subupits

There is need for a standard relating to the use of separate
compilation of subunits. It is a ccnvenience to the
programmer during development to te able to work on a suktunit
in a smaller file which i=s not being accessed by other
programmers. Separate compilation may also Le useful during
debug to limit the size of recompilations. Howvever, separate
compilation poses a problem during saintenance, since a
subunit then appears "out of context". One solution to this
problea might be to use separate cospilation during
development, but merge the separate files during the final
stages of system integration.

5.3.4.4 pExit conditiops

It is possible to conditionally exit a lcop in Ada with twe
different constructs. The first is the "exit when condition"®
and the other is by placing an unconditional "exit" statement
in an if statement. To saintain uniformity, it may be useful
tc establish a standard favoring one or the other of these
forams. Some of the programasers on this project felt that the
"exit when™ statement was insufficiently proaminent in order

21

B

*

"'A
Y

T

5.3.

5.3'

S5.3.

L Z0ne. Saan ns Bt e =it Wi SO S AU ArAN LAC Ee Ys St e B

to visually denote its importance as an element of control.
These programmers felt that using am if statement, with the
subsequent change in indentation, made the exit more visiltle.
0f course, the same effect could ke obtained by setting a
special standard for the indentaticn of the exit statement.

4.5 Qverloading

Standards must be set for overlcading. The overloading of
enumeration literals can ke very confusing and should be
avoided. Overloading of functions and procedures should be
allowed only when the same operatiom or acticn is being
performed by the overloaded rcutines. A. even more strict
approach might be to restrict overloading of routines to
those produced by instantiation of the same generic. The
cases of overloading in this project were produced in this
way. Some apparent cverloading of names which are in
different scopes should te expected in a large project, and
may be tolerated if the scopes are sufficiently separated to
remove all possibility of misunderstanding by a maintainer.
Also, the hiding of names in an outer scope bty names declared
in ap inner scope is to be strictly avoided. The potential
for maintainer confusion in such cases is toc high.

4.6 Geperal_sStapdards

A set of standards was developed for the coding phase of the
project. Some Pascal standards vwere modified for Ada use at
the start of coding and further sodified as the project
progressed., See the AIM document Chapter 4 entitled "Ada
Development Standards". Some of the items listed in the
standards were added as a result of experience in the coding
phase, thus the output message module furnished with this
report does not reflect all the standards.

4.7 Allocatiop_ of Hardware Resources

Opon interfacing to a hardware inteqrated circuit (the Intel
8254), a paradox was encountered. The 8254 circuit has three
independent identical counter/timer chanpels. Two possitle
choices are:

a. Define the utilization and mode of each of the three
channels in a single package, or

b. Define the above in those packages in which a channel
(or channels) is used.

The former is advantageous since the hardware utilizatijion is
specified in one place. If the latter method is used, one
cannot easjily detersine vhat porticn of the hardware is
already allocated, or where it is defined. Cn the other
hand, defining such in a single package does not hide those
channels from those compilation units that use only a portion
of the resources.

22

P - oy

r"'

(o

S.4

lessons_learned

Summaries of the lessons learned from the Ada Capability
Study are provided in the following paragraphs.

5.4.1 Importance of Using_a_Methodology

Bethodologies provide a -plan or road map for system
development. Without a plan, the system development of any
major system is more susceptikle tc failure. A methodology,
even though it may only be a framework such as AIM, forces
the project team perscnnel to think about the problea and
sclution in an organized manner. 1In the words cf cne of our
consultants, "Any methodology is ninety percent gcod".

5.4.2 Importance of Understanding_the Problea

It is extremely important tc develop an understanding of the
problem in the requirements phase of system development.

This is true regardless of the type of system being developed
(i.e., business, real time, scientific, etc.). Once a good
understanding of the problem is developed, the design process
is ready to begin.

The design team used much more time and effort than
originally anticipated to complete the requirements phase.
Hovever, the feeling is that the extra time was well spent.
The requirements analysts developed an understanding of the
problem that reduced the effcrt required during the design
phase. '

S.4.3 Use_ of Ada_as_an_RSL_Reduces Design_and_Programming

Bfforts

The Ada Requirements Specifications produced during the
requirements phase eliminated the need for an Ada PDL
expression of the system during the design process., The
design team felt that the Ada Regquirements Specifications
were sufficient specifications to begin program development
once architectural design was completed. The prcgramming
effort vas also reduced because the frameworks of many of the
Ada procedures vwere estalblished during the requirements
phase.

S.4.4 Lack of Integration Between sStructured_Analysis

and_sStructured Lesign

Structured Apalysis and Structured Design methodologies do
not integrate as smocthly frcm reguirements to design for
real time coamunications systems as they do in a business
applications environment.

5.4.5 Ada_Cap Be Used Throughout the system_Develorment

Life_Cycle

23

.

e
PIVILY W LIPY

G e 2 e et e S A M A A S)

Ada has the constructs for forming the base of a structured
English for expressing system requirements and programming
specificaticns., Therefore, Ada may be used as an BSL and ELL
prior to its use as an implementation language. The use of
Ada throughout the system develcrment life cycle reduces the
conversion efforts normally required to map requirements intc
design and design into ccde.

24

> A S Al o Nea e -an aran. B+ ay e Sh DU 2k Jius S et A

A
.

.. S.4.6 Ada_is Most Compatible vith_the Cbject-Orjented I

i Design_Methodology

- Ada will support virtually any methodclogy. However, it —~'-3
appears that Ada is more compatible with the object-oriented Y

design methodology than cther methcdologies such as
Structured Design, Jackson, and Warnier-Orr.

S.4.7 Backgrounds_of Persoppel Develoring Ada_sSystems
is_Isportant

0f course, it is alwvays important to match people with
appropriate backgrounds to development projects. The best
programmer is not always the Lest requirements analyst or
designer. Therefore, the personnel assigned to the
requirements and design phases need not be expert Ada
prograsmers. However, the requirements analysts and
designers need to have sose knovledge of Ada.

The requirements analysts should te familiar with the ltasic
Ada constructs if Ada is used as an RSL during the w]
requirements phase. Designers should kncv enough about Ada S

to use it as a PDL. Additicnally, designers should have a _‘4
gccd understanding of Ada program straucture (i.e.,

subprograms and packages) and tasking.) _ifé

5.4.8 Need for More Customer-Oriented Regujrements T

Specifjcations RN

ARM is heavily oriented tcward Structured Analysis. The Ada ‘Liﬂ

language is also key to ARM since it is used to express the R

system requirements. Therefore, the Ada Requirenments
Document is largely CFDs and Ada Requirements Specifications. :
This format is great for the requirements analysts and RO
designers. However, from a customer's point of view the Ada R
Requirements Document is not a gcod, clear expression of the Zu‘i
systea., The Structured Analysis and Ada expressices of the L
system need to be augmented with more customer-oriented IR
system requirements.

5.4.9 Value of Graphic Illustrations

DPDs and structure charts are gcod tools that facilitate . o
developing an understanding of the problem and solution =
during the requirements and design phases respectively. o
Hovwever, the use of such tcols puts Ada in a more supportive

role than originally anticipated. The graphic illustrations

seem to be easier to understand initially than a pure Ada L
expression of the problem and solution. e

5.4.10 gStructure Charts are pot fesigned to Support Recursjon
Structure charts have been used prolificly during the design

of systems to be implemented in CCBCL or FORTRAN. Since
neither of these languages is recursive, there is no need for

25

amis b Jars

»

Y

" TLoe . C L.
Fgh arm e ool LN guE gl “SEN s ——TT YT Y . e . PRI

representing recursicn on the structure chart. The lack of a

structure chart recursion mechanisa may ke a proktlem when
trying to model an Ada sclution that is recursive.

5.4.11 SBEN-%type Copcurrency Charts_aie not Approrriate_gor
Bepresenting the Concuyrrepcy of the_Message Switch _systes

The design team was unable to use the SREM-type concurrency
charts to represent the concurrency of the message svwitch
system. One of our ccnsultants tried extensively to drav a
concurrency chart for the message swvitch system but vas
unsuccessful. A second consultant indicated that it was
impossible to illustrate the concurrency of the wmessage
switch using SREM-type concurrency charts.

S.4.12 Aytomated Design_3ids_Could_ Improve the_ System

Development Process

Automated design aids could ke used to improve project
management, increase productivity, and iaprove the accuracy
of requirements 2nd design specifications. Specifically,
automated design aids could ke used to do the following:

- Drav DFDs and structure charts initially cr from
analyzing Ada code

Develop traceability matrices

Structure requirements and design specificaticns for
clarity

Develop a data dictionary

- Verify requirements and design specifications

A cross-reference tool to list the location of
packages, type definitions, variable declarations,
subprogran and task specifications, etc.

- Additional crcss reference tcols.

26

R

-

)

5.5 Qbservations

5.5.1

Consultants'! _cCoaments

The use of Jackson structure diagrams to depict
obtjects, attributes of objects and operations on
objects provided a common communicational tool for
the project perscmnel. The personnel quickly
became fluent with this notation and communicated
with other project personnel successfully in this
environaent.

As one might expect, differences arose as to which
components of the system vere indeed okjects and tc
what level of detail these objects should be
modeled. These differences vere generally resolved
as the proronents presented arguments for their
view of the system and were required tc support
those arguasents.

The initial atteapt at object development was Lased
on the requiremsents dccuments. This initial
attempt was "reasonably close"™ to the final version
of objects. Thus, the iterative process of
refining those initial obtjects was not protracted.
That initial mcdel vas an excellent foundation to
work from.

Clearly, scme design decisions which promoted
information hiding evolved from the object oriented
approach. The cperations on objects became more
clearly defined within the design sessicns leading
to some general operations, thereby increasing the
simplicity of some otjects.

The time spent bty the requirements team during the
requirements phase definitely facilitated the
design process at all steps within the methodology.
However, this was very evident during the object
development as the reguirements team members
contributed heavily to the object-oriented model.

While the knowledge gained during the regquirements
phase was fundamental to understanding and
constructing the oktject-oriented design, it was
felt that there was little formal comnecticn
between the twec (e.g., traceability).

Within object-oriented design, concern vas
expressed over specifying how the cbjects
interacted with cne another (this was referred to
as the "glue" which tied the okjects tcgether).
Specifically object-oriented design does not
specify flow of control, this is accowmplished using
the Ada PDL.

27

CHIUT ST U SUr S W Y S W

PN !;AA_A- .

-
b

SV
PR
e

- Because flov of control is not specified in the
okjects, concurrency was not indicated (except
through the replicaticn of objects).

- Special difficulty existed in representing a
message object, mostly because it "migrated®
through the other okjects, changing internal
representation.

- The fact that the design team vas bighly trained
and had experience uwith real time processing,
seemaed to facilitate the use of all sethcdclogies.

£.5.2 pProject Neabers' Compents

Very few general-purpcse packages were developed in the
course of this project. These are packages that are
suitable for use in a litrary of such packages; i.e.,
they are "off the shelf"™ iteas. The availakility of
such packages will greatly reduce coding time over the
course of several projects. Bovever, the writing of
these packages say take additional time in order to
vrite the necessary extra documentation for future users
of such packages.

28

PO IR P

4

‘e

Laaah Al afaa kit

Yo
9

? .

Y

Lo
@ Y
: » . Y e A

V- — mee fe dm ?nla oA A

1y

.

.-

Y

S.6 Yalues apd Drawbacks of_3da
S.6.1 Geperal Virtues of ap_HOL

The use of any high level language (versus the use of
assemnbly language) automatically generates benefits in two
areas: an increase in the sreed of prograa development, and
an increase in programs readatility and understandability.
Studies have shown that the rate of prograa developaent
(about ten lines per prograsmer per day) is largely
independent of the language teing used. Since a high level
language generates the equivalent of many lines cf assenmtly
language for each line of HCL, a particular prograa function
can be developed in consideratly less tisme with the HOL than
with assesbly language. In addition, the use of an HOL frees
the programser froam the tedious details which are assocciated
with the use of assembly language, and the many possible
errors for which its use creates a potential, such as losing
a value through failure to stcre it, or failing to save the
proper registers during calls or interrupts. The readability
of a program in an HCL is enhanced by such things as
meaningful names, decision constructs, and the very absence
of the tedious details mentioned above.

5.6.2 Geperal Virtues of a_structyred lapgyage

Structured languages have two major benefits for prograam
development which nonstructured languages (including
nonstructured HOLs) lack. The first benefit, an increase in
the ease of program design and an increase in readability, is
generally recognized, and will not be discussed further. The
second benefit is the fact that a structured language can lte
used as a program design and documentation language (PDL).
Using the same language fcr PDL and for coding siaplifies
training by making the required training in the PDL simply a
part of the training in the ccding language. In addition,
vhen the design is descrited in the same language as the
program to te coded, the rrocess of turning a design into
code is greatly simplified and will proceed auch acre
quickly.

5.6.3 gJpecific Virtues of 2da

5.6.3.1 §tropga Typing

The fact that variables of two different types may not be
mixed in an expression or assigned to each other without an
explicit conversion helps prevent errors in coding, although
it does occasionally add apparent complexity to an
expression. (No real cosplexity is added by an explicit
expression. The complexity already exists - the conversion
just asakes it visible.)

5.6.3.2 Tasking

29

'’y

e o e A aees Snes s dban ¢ e RACtaar i e aranat o oy arus scnataCI I s iyt et ARAdEAGARRE RN R EE O E

Ada's tasking capabilities provide an excellent way to
express any requirements for concurrency which the design may
possess. The abilities to have task types and to dynamically
allocate new tasks as required can add flexitility to a
design.

5.6.3.3 Packaging

The designers of this project found four criteria for
building packages, each of which seeas to have its place:
packaging around a data base, packaging by major prograa
functional area, packaging around a type (or an cbject), and
packaging for general purpose hardware sugport.

Packaging around a data base is illustrated in this project
by such packages as RI_OPS and LINE_TBL_OPS. By placing
information used by many mcdules in a package and restricting
access to the data in such a way that the only way the data
can be read or written is through the functions which are
also contained in the package, the integrity of the data may
be more easily ensured. Maintenance is also nmade easier Lty
the fact that the only access to the data is through the
routines in the package.

Packaging by major program functional area is illustrated in
this project by such packages as PHYSICAL_PCBT and
PROCESS_MESSAGE. In this technique, the package is used as a
container for the routines and tasks of some major functional
area of the progras, along with the types and variables
required for their interfaces. The technique would seea to
ke test suited to prcjects in which the major areas of the
progras function independently, and do not have a "driver"®
controlling their operationms.

Packaging around a type is scmewvhat similar in motivation to
packaging around a data base, in that access to objects of
the type may be constrained to the routines provided in the
package by the use of private and liamited private types, but
the objects reside outside the package. SEGMENT_OPS and
MBESSAGEB_OPS are examples cf this tyre of package.

Curing the technical sessicns the Aray representatives have
elaborated on the need for "off the shelf" packages that can
te inserted as a particular functicn is needed. Cne such
package, "Interface to 8254", is a general purpose timer
package developed to support an 8254 LSI interval tinmer.
Three Ada language difficiencies make the package less
universal than desired. Cne restriction is more cosmetic in
nature and is discussed in paragraph S.6.S5.5. Another
relating to hardware interfacing probleas is discussed in
paragraph 5.6.5.71 and the third problem relating tc shared
variable update is discussed in paragraph 5.3.3.1. It is
fully expected that these protlems will recur as other
hardware interface packages are develoged.

3¢

“ "i

- v

| ‘

-

o B o gEAL A AR e o e NAE hnesm anAsn Bn e gnddn S The e AdbaBaielhan o Jibgh . gEEER . Mandh E A il etk B e NEad
o e Lacian e e ey W e A TR A IROt It At St Jndh il M Mg i i e A oA MR e "R e A .

o —p

]

B
L
.-

[an on 0]

5.6.3.4 gSlice Assignments

Slice assignments are a minor but highly appreciated
convenience, since they allovw the programmer to accomplish in
one statement what vould require a loop in most languages.

'5.6.3.5 Separatiop_of Srecification and_Body

The Ada capability for separation of the specification and
the body of a procedure provided twec benefits for the
project. The first benefit vas that it allowed the
interfaces betveen modules to be written independently of the
becdies of the modules, in an early stage of the development
of the design. This was especially useful in the case of
modules vhich were used in aore than one case, since the
specification of such a module could be distributed to all
the prograsmers who vere writing modules that called it, so
that they would knov what syntax to use in the call. 12
second use of this separation capability wvas that it
prevented circular dependencies from developing retween
modules. :

S.6.3.6 QDynamic_sStorage_Allocation

The dynamic storage allocation capatilities of Ada alloved
the designers to make gcod use of storage without having to
divide memory into fixed portions at the start. In crder to
make full use of this capability, howvever, the designers
vould need to know hov the specific Ada implementatica which
they are using accoaplishes those functians.

5.6.3.7 Qyerloading

Project personnel found the cverloading capabilities of Ada
useful wvhen used for naming subprograas which accomplished
the same function on different types. The specific routines
with which this was done were FREE and GET. There are three
routines by each of these names.

5.6.3.8 Geperics

The program designers used generics to develop subprograss
such as the above mentioned FREF and GET, the individual
versions of which are logically the sanme.

5.6.3.9 Enuymeration Iypes

The Ada enumeration type is very useful, and more enumeration
types vere declared in this project than any other user
defined type. It proved to ke extremely useful to be akle to
raefer to the parts of a message, for exasple, as HEADER,
MSG_BODY, and TRAILER, rather than by number. Cther
enumeration types were used to represent conditicns and error
codes.

an

PR 1Y

I

‘.; - . ‘ . i
. L e Py

[.
AA{ C i
PRERY R

PUEPTINN Y %

e |

r'-\
S

.
i

X}

e
KR

oY

-

Dt

5.6.3.10 E3ceptions

The designers found it quite useful to ke able toc specitfy
actions to ke taken vhen unanticipated error conditionms
arose. Predefined Ada exceptions vere used in a nusber of
places to handle probless which could have been explicitly
checked for by the prograsmer, and in at least one place an
exception vas raised by an explicit check. Frograamer
defined exceptions were not utilized, kut they cculd have
teen used to pass error conditions up the calling tree.

5.6.3.11 gegords

The Ada record type rroved toc be the second most comaonly
defined type in this project. Records proved to be valuatle
in linked lists and cther linked data structures, as vell as
in input/cutput operations and as parameters,

$.6.3.12 Japed_lssociation

All the personnel employed in design and coding cn this
project felt that the use of named association in procedure
and function calls and in record aggregates made the ccde
such more easily understandable.

5.6.4 Dapngerous_leatures of_ 243
S.6.4.1 Qverloading

The iaproper use of overlocading can create probleas in both
design and maintenance, since it may be difficult for
programsers (both the original coders and the maintainers) to
deteramine what is being referred to, even when the compiler
is atle to resolve the overloading with no difficulty. The
designers on this project feel that overloading shauld be
strictly controlled, and in the case of subprogranm
overloading, te applied only to thcse subprograms which
acconplish the same action on differing types.

5.6.4.2 ZTasking

The Ada tasking feature should only be used by designers who
are fully conversant with the dangers of concurrent- :-
processing. One very distinct rossibility raised by the use
of tasking is that of deadlock, also known as deadly eakrace.
In this condition, two tasks interact in such a way that
neither task can proceed without scome action on the part of
the other. This situation cculd be difficult to detect in
some systems, since all the other tasks in the systea might
continue to operate normally.

5.6.4.3 [Exceptions
The unrestrained use of exceptions to handle problems should
be avoided. It is possible for a rcutine to be aborted

32

-
T
N

s

S

s

through no fault of its own, and without a chance to "clean
up"™ any of its actions. Por example, if routine A calls
routine B which calls routine C, and an exception is raised
in C which is not handled there, it is possible (especially
if the person who wrote B did not know that C could raise
this particular exception) that control could revert to A
without B having any chance to undo any of its actions. The
use of "vhen others"™ in the exception portion of a routine
also has its problems, the main ome being that an exception
of an altogether unexpected type may occur, perhaps being
raised by some routine which the current routine does not
directly call.

5.6.5 Problem Areas ip_Ada
5.6.5.1 Machipne-Specific Prograsmjing

. ew

~

Although the Ada facilities for machine-dependent rrcgramaing
look adequate at first glance, actual use reveals severe
deficiencies. This is especially problematical in embedded
systeas, where much machine-dependent programming is usually
done. PFor example, the code statement provided Ly Ada seens
to be extresely inflexible. There seemas to be no way to use
the code statement with a particular Ada variable, sc code
stateaments cannot be used for msemory-mapped I/C0. (Although a
sequence of code statements to ocutput any register could Le
written, there seems to be no way to ensure that what is to
be output is in the register.)

The use of address specifications in interrupt handling
inposes a proktlem, due tc the requirement that the expression
in an address specification te static. This limitation
precludes dynamically changing the assignment of tasks to’
interrupts, which is a requirement of some systess. This
problem is discussed at length elsewhere in this report.

Another probleam is caused by the requirement for static
expressions in addresses. 1 package that exemplifies this
restriction is called "Interface to 8254", which is a
general-purpose interface package developed to support an
8254 LSI interval tiser. This package is a driver for the
given integrated circuit. 411 communicatioa to this
peripheral device is handled by the package, since the :
address of the chip is known only inside this package. This
works acceptably for systess with cne such chip. EHowever, in
systeas with multiple interface chips of the same tyrpe, there
are two conflicting scluticns to the address specificatioms.
Cne solution is to create multiple copies of the package.
Bxcept for the package names and hardware addresses, these
packages would be identical. This textual duplicaticn will
create maintenance problems. A second possitle solution is
to create a package that will handle one or more of a given
chip. This would probably complicate the single-chip package
considerably, since it seems the amount of code would ke
proportional to the nuaber of chips. For example, the

33

1 e e ey -
P ‘., e ,"‘. |
— PSPPSR | 2 o

. L ¢
e, S

{

Coa SR
‘..‘ .,.v.

Ao . .ladaac e Sarseasaaia’ alea

PO B

i atceme e e
. L e '
PRSP S 1 e A A D a4 s A Ala

S @
. oo, .

)

-

(e’

reading of the three channels of the 8254 were implemented in
a case statement, with each selection's code differing only
by the names of the varialles defined at the resgpective
addresses.

5.6.5.2 geparate Coapilation

This problea and the ones that follow it differ froam the
previous probleam in that they are not protleas with language
capabilities, but with the proper agplication of these
capabilities. W®While separate compilation may be a sclution
to one Ada problem (see the next section), its use adds
coaplications to the testing and saintenance porticns of the
softvare life cycle. One of these complications is the issue
of compilation dependency. Cn a large project, it may be
impossible to keep track of the compilation dependencies.

The separation of specification and body into separate
conpilation units may reduce the amount of compilaticn
dependency. If an environnment provides a tool to
automatically keep track of dependencies, the prcblem of
deciding whether a particular module needs tc be recompiled
vill remain, even vhen the tcol calls for it, since not all
changes to sodules on which the current module is dependent
will actually cause changes to the context that the dependent
module can "see", Another rrcblem stems from the fact that a
module which is "separate" inherits the context at the point
of its stub. This means that when a maintainer looks at a
module, he does not have the full context of that module in
front of him. It may actually be in a different file from
the one he is editing. 1In fact, since the containing routine
can itself ke "separate"™, the context could ke contained in
an arbitrarily large number of files. This certainly could
make maintenance auch more difficult.

5.6.5.3 Nestipg of Routines

Ada inherited a problea froam Pascal which makes the reading
of programs much more difficult. If a subprograa contains
pested subprograms, the text of the nested routines agrears
between the subprogram specification and the body of the
subprogram, separating the specification (and the type and
otject declarations of the program) from the body, sometimes
by several pages in large systems. This textual separation
can make it very difficult tc read and understand the
program. Cne way to solve this prokles is to use stubs and
separately compile the nested subprograms, but this smay
create other problems. (See the previous section for a
discussion of this problen.)

5.6.5.4 “Dse™ Clause

The "use™ clause is very useful to the programmer during
program development. It can save him a great deal of troukle
in specifying names in his code. However, the original
programser has an extreme advantage over any maintainer when

34

abactius

- e e, e v . v - - e T e R . .
At 4 e i e At et e ~uae s Mat S PRREE Sl el et Bl AN ik - - N w0 T e T e T e T e T L e . . T .-yo= . e - .1’

it comes to reading and understanding his code, since he 5
knows vhere his names came froa. The paintenance frograsaer 1
N has no such knowledge, and may exferience very real probleas ‘
- in resolving the origin of a name in the code. He has only L B
‘! the context and the meaning (if he knows it) of the name to T 3

]
\ =
{ go by in finding out its genesis. Because of this problen,]
. the use of the "use™ clause should be restricted toc names]
- vhich come up often in the code. Also, it would be nice if a 3
% “ tool could be developed which would add full gualification to L
all names in a ccoapilation unit. An alternate tcol might a'a
|l : provide a list of referenced items for a compilation unit,

with their origins.]

5.6.5.5 pBepresentation specifications

The organization of the Ada declarative part with respect to .
representation specifications (rep specs) presents a proltlem w-
- in readability. All of the designers on this project felt .
h that the required separaticn of rep specs from their type
declarations was difficult to read and would present a
maintenance problem. Declaration of a type to be used in

. .
. .

= communication with a hardvare device should appear T
Lo ismediately as needed, not in an apparently unrelated area of |
" the text as is required ky the language. One prcpcsed ey
solution would be to declare the types again as a comment in
o the rep spec area of the declarative part. Althcugh easier
v to read, a documepntation protlem will arise in keeping the
conment declarations up to date when the real declarations
change.

5.6.5.6 Task_Hepdezyous Uechaniss]

This mechaniss is very versatile; hovever, when the cbjective
of inter-task communicaticn is to pass data without actually S
halting either task to wait for the other, there very quickly e
arises a proliferation of tasks to act as ruffers and handle e
ll the passing of the data. This condition will vary with the .o
particular application involved Ltut seems very likely to]
occur in real time embedded applicationms. e

5.6.5.7 Package_size

The packages of the project have tended to tecose guite - - L
large. Sonme are too large; for example, PHYSICAL_PCRT is T
nearly forty pages long (in sixty-six lines per rage format). .

This size has several drawbacks.

T)

One hindrance is the difficulty of editing a file. The
amount of editing of a package is proportional tc its size;
hovever, only one person can te working with a given file at
once., This causes problems if the package is being ccded by
several peocple. Alsc, one must ensure, before accessing a
£ile, that a person on another terminal is not currently
sodifying that same file. PFurthermore, files with hundreds,

P 35 - oo

or even thousands, of lines are difficult to edit since the
desired section is mcre difficult to locate.

row

. i .
'l“ A nda - Ao g ad g &

|
PP ¥ S TPE

=
e
.

3 R
.
.'I
. o
. o

36

U . .

r

oy
N .

d - v e
FB A ne e pee g Jen e A T et S et e N R ; N

Conclusion

The Ada Capability Study has keen a success and has
demonstrated that Ada can te used effectively in the
definition, design, and programming of a large scale digital
system. In a span of tvwelve months, a methodolcgy was
developed, personnel were trained, system requirements wvere
defined, a design was acccaplished, and a module of the
system was coded. Since an Ada cospiler and run time support
package are not yet available, it vas not possible to execute
any of the implemented code. It is recognized that certain
embedded real time agrplications may present ada
implementation problems heretofore not realized, particularly
in the area of hardware interfaciag.

A case study such as this is a good beginning, thcugh it is
only the teginning. Continuing research in methodology
development and in the use cf Ada is required with the
development of compilers and an Ada enviroament.

37

