
-!23 364 LARGE SCALE SOFTWARE SYSTEM DESIGN OF THE RN/TYC-39 i/i
STORE AND FORMARD MES..(U) GENERAL DYNAMICS FORT WORTH
TX DATA SYSTEMS DIV 09 NOV 82 DAAK88-8i-C-8168

UNCLRSSIFIED F/G 17/2 NL

EEElIhE~lllEEI
EEIIIIIEEIIEI
EIIIIIII

4~&L 1.52.21 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.sw r•r -. . -.

71 " .

r -

CASE STUDY I.

FINAL REPORT DEVELOPED FOR
LARGE SCALE SOFTWARE SYSTEM DESIGN

OF THE
AN/TYC-39 STORE AND FORWARD

MESSAGE SWITCH
USING<1l ' THE ADA PROGRAMMING LANGUAGE 4

U. S. ARMY CECOM
SCONTRACT NO. DAAK8-81-C-0108

I
I VOLUME I OF IV

GENERAL DYNAMICS
DATA SYSTEMS DIVISION

CENTRAL CENTER

P.o. BOX 748
FORT WORTH, TX 76101

I .-
w o,,d !sot r'-.,..: M 164 o3 Q

- PAGE' P __6
4. T4* &no S o e LROD*" Doa~ te

• November 1982

Ada Capability Study: Design of the Message Switching System ' [
AN/TYC-39 Using the Ada Programming Language

7. AutNeWO A. ,eombng OOSOCOR eOt 140

General Dynamics
9. P Oqftaea Nmien Ad 10. Prneat/eo/Work Unt No.

General Dynamics
Data Systems Division 1,. cau.ueof, o oroG).

Central Center (C) DAAK8-81-C-0108
P. 0. Box 748 (G)
Fort Worth, TX 76101

8L Ssowom Onwaiams "-~ a" dv 13. 'typ of Ropso 4 P.."" Cowsd

USA CECOM Final
Center for Tactical Computer Systems (CENTACS)
ATTN: DRSEL-TCS-ADA-1
Fort Monmouth, NJ 07703

*rbufuasI(Uad

Wn Ada oriented framework for the design and documentation of the U. S. Army TYC-39 store 7
and forward message switch (military software) system is presented. This document package I
contains a Requirements, Design, Ada Integrated Methodology, and Final Report section. A
methodology to use Ada in specifying requirements, design, and the implementation of a
system was developed. This methodology was used to redesign the TYC-39 message switch
system. A selected software module was programmed after the redesign.

_. .me Anoift a. on oWs
Ada Programming Language
Software Design with Ada
Designing with Ada

Message Switch
Military Software

I Program Design Language

aI . COAV 14"llIqe01MO

m No w- It. S"ow'" cIass (me .9i) 21. NO. of poses

A aiI- UNCLASSIFIED 521
able from Nitional Technical Infor;ation Ze,'i.", . S..uty C" a:,,, . 22. P"C,

Springfield, VA 22161. N.LAS S 117 E

TABLR OP CONTENTS

1. Introduction

2. Applicable Documents 2

3. Project Staffing Review 3

'4. Training 5

4.1 Preface 5
4.2 Description of Activities 6
4.3 Training Issues 7L 4.4 Novel Developments8

4 Conclusion9

5. Deig Issues 1

5.1 overview 10
5.2 Design Process 11
5.3 Issues Raised as a Result of 1

Message Switch Design
5.14 Lessons Learned 23
5.5 observations 2725.6 Values and Drawbacks of Ada 29

6. conclusion 37 *

.4j

intlr
WUYE3

Avlseil l

INS Ist speet9

The Ada Capability Study was performed by the Data Systems
Division (DSD), of General Dynamics Corporation, underU contract with the Department of the Army Communications -
Ilectronics Command (CECOM). The purpose of this contract
was to provide a documented case study and analysis of the
use of Ada in the design, development, and implementation of
a large scale digital system.

As stated in the Ida Capability Study Vork Plan, this task
involved the performance of four subtasks: (1) develop a
methodology for the use of Ada in the specification of
requirements, the design, and the implementation of a digital
system; (2) train personnel in the use of the Ada language
and the methodology; (3) use the developed methodology to
design a system for the IA/TIC-39 message switch; and (4)
program one selected module of the designed system.

1:. These tasks have been performed. The Ada Integrated
methodology (AM) was developed and is provided as one of theL .documents produced during this study. AIM includes a
requirements methodology, a design methodology, and
programming standards. AIR has proved to be an effective
methodology for the performance of this Ada Capability Study.
The scope and applicability of AIR has limitations which are
detailed in the AIM document. It is not presented as a
general purpose methodology.

The training of personnel was accomplished and a computer
assisted instruction sequence was developed. Section 4 of
this report provides details.

Using the Requirements methodology of AIN, an Ada Capability
Study Requirements Document was produced which states the
AN/TYC-39 message switch requirements in an Ada-compatible
format. The Design Methodology of AIR was used to provide a
system level design for the entire message switch. A detail
design, including hardvaxe-software partitioning, was
accomplished for the output message module. Since the
purpose of this contract was to study the use of Ada, the
design effort was limited in scope, and issues such ashardware producibility, reliability, packaging, 231, ABC, and :
survivability were not addressed.

The output message module was coded in Ada. This code was
processed through the Ada/2d interpreter-compiler and is
included in the Ada Capability Study Program Listing
Document.

1 1

I.-2.

The following documents have been produced during the Ada
Capability Study contract effort, and are included as a part
of the Final Beport.

Ada Integrated Bethodology, dated 28 June 1982

Ida Capability Study Requirements Document,
dated 9 February 1982, revised 7 June 1982

Ida Capability Study Design Document, dated 29 June 1982

Ada Capability Study Program Listing Document,
dated 21 June 1982

22

L-

S

I...
•

C,-..

r 2

5"..~~-----.-:-----:•-- ---. 1 ." - - " .i i. - /, .. . :...... .• , . _

3. Prolect StaffJl . .Jj-"

Ada Capability Study Vork Plan was published in August, 1981.
The design team lead personnel had been chosen, but the

i design team staffing was incomplete. It was understood that
the success of the contract effort depended to a great extent
on the background and qualifications of the persons selected
as design team members. The project management therefore
sought people with appropriate qualifications and assigned
then to the design team as they became available from other
projects within the corporation. Highly qualified
consultants were also used to support the design team effort.

a total of seven employees were assigned to the design team
during the contract effort, with a maximum staff of six at iW
any one time. Two of the people have master's degrees in
computer science; five have Bachelor's degrees, three in
mathematics and two in electrical engineering. The leader of
the design team was chosen because he had specific experience
in communications and telephone switching systems. Other
team members had varied backgrounds which included real time
systems programming, compiler development, and business data
processing. Your of the people had experience in assembly
language and Fortran; three had used structured higher order
languages including Pascal.

The two consultants who suppocted this design team effort
have PhD degrees and are on the faculty at North Texas State
University. They worked in the methodology development phase
of the Ada Capability Study and were therefore able to advise
the design teas members in the application of the
methodology.

Because of the varied backgrounds of the design team members,

different levels of training were required to ensure the
qualification of each person. The training curriculum is ii
described in Section 4 of this report.

Taken as a group, the design team members performed with
excellence and did an outstanding job in applying the
developed methodology to establish requirements, create a
design, and program a selected module using the Ada language
in its various forms. Of the seven team members chosen,. only
one experienced undue difficulty in applying the developed
methodology. This person, who had many years of experience
with real time assembly language systems, found the methods
used to be incompatible with his experience in system
development and asked to be assigned to another project.

A willingness to accept new concepts and a positive attitude
toward Ada seen to be qualities which were necessary for
successful participation in the design teas effort. An
attitude which reflects these qualities seems to be far more
important than the particular educational backgrcund or
experience of an individual.

3

It should be noted that the design team was comprised of
weil-qualified people who were selected for special
assignment to the Ida Capability Study and who were highly
motivated and intensely interested in the success of the
project. This should be considered in estimating
productivity for any large-scale Ada system development,
because the performance level of a randomly selected group of

V. computer professionals will not be as high.

I..

lo

'44

... 0

. . - - - . ..-...

. •. ° .

4.

4I.1 u s

The training of personnel and the development of a
coordinated and documented training program have been
integral parts of the Ida Capability Study. Early in the
program the project management sought effective Ida training
in the form of books, video tapes, short courses, and
tutorials. It became evident that the availability of
training materials at the level required for the Ida
Capability Study was limited, and that it was necessary to
develop a training curriculum to meet the training
requirements of the project. The experience with project in-
house training was capitalized upon to produce a formal Ida
course in self-instruction format.

1"

I

'm0

:i i -.. . .i :..i" "

4.2.

In-house training of Ida project personnel was conducted in
two phases. The first phase consisted of ten 2- to 3-hour
presentations given to the original members of the Ada
project team by Professor Charles Hammons, a project
consultant from North Texas State University (NTSU). These
presentations were given in seminar fashion, in the form of
lectures with accompanying viewgraphs and handouts, and with
free class discussion. All features of the Ada language were
covered in this phase. Because of time constraints, most
topics were covered rather quickly.

The second phase consisted of a reprise of the first phase
given primarily for new team members, but open to anyone on
the Ida project. These sessions, also conducted by Professor
Hammons, covered fundamentals of the language in more detail
(in seven 2-hour meetings). Attendees in this phase had, on
average, less broad experience in higher order languages than
those in the first phase. Special emphasis was given to
overall program structure, data types, packaging, and
tasking. Phase I experience was useful in identifying and
anticipating student difficulties.

All materials used in the training activity will be delivered
at the end of the contract period in a separate document.

An important activity in the training section was the
formulation and analysis of training issues and training
requirements. A related activity was the evaluation of -V

available training materials.

A major effort in the training section was the development of "
a formal Ada course in computer-assisted-instruction (CAI)
format and its implementation on an Apple II personal
computer. This self-instructional course can be used by
engineering or programming department personnel on-site or on
personal equipment. It uses a coursewriting tool written by
our ITSU consultants independently of this contract.

A hardcopy version of the CAI material will be delivered at
the end of the contract period.

6

4.3 % fl.f, 24_ 331"f

A major issue in curriculum development is the question of
subsetting the language for training purposes. The
experience of the Phase I course showed that thorough
coverage of the language in a short time was predictably -"-.

confusing to students less experienced in higher-order
languages. C-J

There are several approaches to subsetting into a core
course. Often, such approaches assume an academic context
within which not only Ada, but basic programming concepts are
taught. This project has assumed that in-house training will
he to professionals, and that even entry-level personnel will
have the fundamentals of programming and data structures.
Approaches to a core course include the following:

Omit certain topics entirely in the core; for example,
separate out system programming concepts such as tasking
and reserve for advanced or specialized courses.
Problem: in training for embedded systems programmers,
it will be difficult to justify omitting "system"
programming features.

Simplify the language by ignoring certain features and
options. Problem: it is desirable to cover all
features designed to support maintainability and
portability.

Introduce features within a nested sequence of
sublanguages. Problem: while this approach is suited
to the academic environment, for in-house short courses
it loses its designed effect, since the most complex
version of language definition is given shortly after
the simplest.

." 1P

.7

The implementation of a formal Ada course for individual
self-instruction on a personal computer is an original
contribution to the available body of Ida training materials.
Several features of the development tool contribute to the
flexibility and modifiability of the course sequence.

It was realized early in the project that effective course
materials must reflect a "systems approach" to the language.
This means that presentation of language features must be
integrated with a view of the system life cycle, and
accordingly must be related to program design methodologies,
language support issues, and project management tools. The
formal course attempts to achieve this integration to at
least the minimum extent necessary to make the material
appropriate to a variety of potential users.

Project experience in development and application of an Ada
methodology provided a unique practical perspective from
which to formulate a systems viewpoint. Further, project
experience in coding a complex system function provided
insight into the training requirements to support such a
viewpoint, and into design, program management and coding
problems that could be addressed in formal training.

eS

1 -r----
U I..

U

"8T-

i "

4.5 Cgg jj9B

Tt is difficult to establish a single Ada course to satisfythe needs of industry personnel requiring varying levels of
kntledge of the language. Short courses in seminar form

plus a self-instructional or programmed learning sequence is
: suggested as an effective combination.

The most experienced programmers and analysts can profit from
an intensive course covering the entire language. Our Phase
I experience suggests that it is desirable to have a separate
class for this type of student in which potential advantages

* -and risks of the language can be explored in some depth.

Language training will appropriately take place in the
context of modern requirements, design, and development
methodologies and of the role of program management.

- Grasping the design of the language requires a perception of
how it supports development and maintenance, and of how
complexity, portability, and maintainability are managed by
production standards. These issues are especially pertinent
to the training needs of program managers and system
designers.

On the state of language definition: Ada instruction must,
in the short term, take account of open implementation and
language support questions. These involve significant
performance issues such as real time requirements and run
time support provided by the Ada system. Students want a
clear distinction between what is under programmer control -

and what is the responsibility of the system.

Class response as well as coding experience on the priject
has provided insight into some special training issues. Real
time, embedded systems programmers need to be shown that Ada
mill support familiar concepts such as interrupt processing,
priority scheduling, critical timing, background/foreground
processing, common data pools, and programmer control of
execution sequence. Negative transfer from other languages
is likely. Some types of lexical errors tended to persist in
the coding, for example, failing to specify a discrete range
in constrained array declarations.

S

, -_ "

I'22) i - -.: , - " i _ .., .- •

5.,

5.1 gsi
The discussion in this section is the result of the process "-
of designing the TYC-39 message switch. Included are various
findings, problems, deficiencies, high points, history, and
personal feelings relating to this contract. In addition,
the information gained from the various action requests
during the project have been incorporated into this material.
The actual message switch design is contained in documents
accompanying this report, referenced in paragraph 2
(Applicable Documents).

1"2

.1.0

5. 2 D~~~

5.2.1 jgj _j §'

The message switch requirements study began in late July 1981
with a team of requirements analysts composed of the chief
engineer, chief programmer, and one assistant who soon became
a member of the methodology team. A lar, part of the early
effort was spent perusing the "A level" and "B5 level"
specifications and some related documents, namely the Autodin
network, JANAP-128, ACP-127, and data adapter specifications.
In addition, time was spent researching manual methods of
representing and restructuring the data gleaned from these
specifications.

On August 4, 1981, the kickoff meeting was held for the
representatives of the army at Port Worth, and the initial
plans were revealed. During this meeting, a basic
understanding of the message switch was demonstrated by the
chief engineer. As is often the case, plans for various
personnel were changed and several reassignments occurred. A
new chief methodology engineer was appointed, one of the
requirements analysts was switched to the methodology team,
and three talented consultants from North Texas State
University were added.

The chief engineer and chief programmer remained on the
requirements team and one new requirements analyst was added.
After review of various methods of representing requirements,
the SofTech SADT approach was selected because of its ability
to separate data and control, two important components of
real time systems.

A trip to Fort Monmouth, NJ, was made in early Cctober by the
chief engineer, at which time the initial SALT diagrams were
presented to the army. After a day-long discussion, some
simplification of the overall task was agreed upon, and a
better understanding of the message switch battlefield
applications was obtained. There were some minor changes
made to the SADT diagrams, but the initial understanding was
on the right track. Ordinarily, there would be frequent
meetings with the customer to resolve misunderstandings and
incongruities in the specifications; however, the message

VW switch application is a standard part of the army equipment
inventory and the requirements are essentially static. For
the purposes of this contract, any conflicts between wording
of specifications was evaluated in the requirements group and
the most practical approach was taken. This undoubtedly
expedited the requirements phase.

By late October the fixst draft of the Ada Requirements
Methodology (AM) was released from the methodology group.
Fortunately, the data flow diagrams were still based on SALT,
but additional enhancements were supplied by structured
analysis techniques. Some redrawing of the diagrams was

11
t.,

required as a result of the methodology arrival and
additional levels of deccposition occurred. Another
requirements analyst was then assigned to the project. The
chief engineer assigned the analyst to the output message
section. The chief programmer was continuing with message
routing and the previously-assigned analyst continued on the
input message section. Initial assignments were made by the
chief engineer based on individual interest, which was
somewhat related to their backgrounds. Hardware types worked
in areas of I/O and software types in transform analysis.
The chief engineer was coordinating the requirements
development, assisting in message input, and spending part of
his time completing another project unrelated to the message
switch (real world problem).

It became evident that the requirements analyst assigned to
the message input section was having some difficulty in
interpreting the specifications. This could be partly due to
the fact that the A level specification contained two pieces
of army equipment, only one of which was applicable to the
message switch contract, Also, a great amount of
implementation detail was specified, which the army had
verbally indicated we should ignore. It was desired that the
implementation details be driven by the design process (Ida
oriented), not the mapping of Ida into the existing design.
These considerations added a degree of latitude to the
process, but increased the difficulty of getting to the 193.-
requirements. Also there was some relunctance on the part of
this analyst to conform to ARS (old way is better).

The decomposition process continued into December with the
development of a data dictionary of all the data flows on the
DFDs, and the lowest level blocks on the DPDs were expressed
in an Ada subset as much as possible. Disciplined English
was used whenever it was not appropriate to use Ada
constructs to express the functional requirements.

The first technical interchange meeting was held at Port
Vorth in mid-December. At this meeting, the SofTech group
(adjunct contractor) was introduced and a message switch
detailed requirements discussion ensued. Initially, it was
expected that the design document would be completed by
Christmas, but this was not accomplished. The message input
requirements were considerably behind, and the requirements
analyst assigned at that time asked to be removed from the
project. The chief engineer and chief programmer ccmpleted
the section by late January while the other analyst finished
the message output. Also, in January, non-functicnal
requirements were completed, concurrency (high level) was
studied, and a concurrency chart was produced.

The efforts of the design team during the requirements phase
resulted in a 174-page Ada requirements document. This
document restated the "A level" specifications in a more

12

structured, organized format with many more graphic
illustrations of functions.

The application of MDB produced a very good understanding of
the problem during the requirements phase. The success in
this area can be mainly attributed to the functional
decomposition, DID approach used.

5-2-2 g j

A transition from the requirements phase to the design phase
took place in late January. The four requirements analysts
continued on the project and two new personnel were brought
in from engineering. The engineers were given the Ida

(requirements specification as their primary source of
information about the message switch, as well as a briefing
on the methodology. The design team met as a group for
several weeks, scmetimes in full day sessions. Various
issues arose during the sessions and the need for individual
thought dictated half day breaks on many occasions.

The first two weeks were spent on object-oriented design.
Since none of the designers had ever participated in an
object-oriented design session, the methodology group was
frequently invited. It was suggested by the chief
methodology engineer that the search for objects should begin
with the top level DID (node 10). This turned out to be a
good idea since four out of seven objects appeared at that
level. The process of identifying operations to be performed
on the objects gave the design team the opportunity to more
closely observe the relationships between data structure
components. Thus, information hiding techniques could be
applied that allowed operations to be hardware independent.
This was especially evident when designing the "reference
storage" object, where the "construct" operation was defined
to make a sequential operation work acceptably for random
access or sequential hardware devices. In addition, the
"message" data structure and its components provided the
basic structure for the system software design as evidenced
by the "message schema" presented in the design document.

Curing the design sessions, one designer was in charge of
updating the chalkboard as the design evolved. The chief
engineer refereed the discussions, especially when it was
felt that enough time had been spent on a topic. The
chalkboard was copied to paper by the participants at the end
of each design session or when a new topic was to be
ccnsidered.

The object-oriented design sessions could have continued
longer, but opinions varied as to what additional usefulness
would be gained from this relatively new approach. The next
step in the methodology lasted about four weeks and began by
utilizing traditional structured design techniques to
generate a structure chart of the message switch. Although

13

consideration was given to startup/restart, operator
interface, maintenance programs, and runtime support, the
primary design emphasis was related to message processing.
This was because the message processing is the most important
real time aspect of the system and all other software in the
switch is present for its support. The support functions
were somewhat limited because of the time and scope of the
project. The emphasis on support functions was at the
interface to the message processing function.

In mid-February a technical interchange seeting was held at
SofTech in Boston. At this meeting the chief engineer and
the designer who had been transferred from the methodology
group presented the results of the requirements phase,

r. object-oriented design sessions, and part of the structured
design sessions.

The structured design continued after the interchange
meeting. Each portion of the message processing function was
being discussed and successively refined. The two
engineering personnel made gcod contributions to the
sessions. Between the requirements document and group
discussion, they obtained an excellent understanding of the
message switch.

After several rounds of refinements, the chief engineer made
assignments to team personnel. For those who participated in
the requirements phase, the assignments were in a different
functional area. This was not only to provide each person
uith some variety, but also to see if a designer could
interpret the requirements written by another requirements
analyst. From the time the assignments were made, the person
responsible for a particular area of the message switch would
be the resident "expert" during a design session involving
that area. This helped to ensure that a specific designer
was responsible for issues arising during the sessions
pertaining to his area of expertise, and part of his time
outside the sessions was to be utilized solving these
problems.

Throughout February and March, the structure charts were
refined, concurrency requirements were identified and

coupling and cohesion ("goodness" of design) were evaluated..-
In mid-March, an in-house preliminary design review was held.

Ill design and methodology team members were present as well
as an army representative and consultants. An overview of
the message switch was presented for the benefit of the
consultants. Then the object-oriented design, structure
charts, and concurrency were discussed. Some minor errors
were detected during the process and it was generally agreed
that the review was worthwhile.

In late March three areas of the message switch were
identified as potential candidates for coding as required by
the contract. message output was suggested as the number one

14

choice and the army subsequently agreed at the aid-April
technical interchange meeting. Also in late March three
design team members made a presentation regarding the nature
of this contract and the progress made to that time at an
AdaTEC meeting in Salt Lake City, Utah.

In early April interconnectivity charts were made by each
designer for his area of responsibility. The two primary
data structures, linetable and routing indicators, were
formally organized and recorded. One designer with much
hardware experience wrote a description of the "run switch"P module in narrative form. This was done to show that an
effort had been made to do a ccmplete system design. The
area of user interface, startup/restart, fault detection, and
maintenance diagnostics are just as important to the system 2
as the application. Due to the size of the message switch
and the scope of the project, the level of detail in these
areas was necessarily limited. The first seven steps of the
design methodology were complete and a one hundred page
document was compiled for the critical design review held in
mid-April.

(All steps in the methodology were useful for design purposes ..
is. except the interconnectivity charts, which were intended for

documentation of interfaces. The information in these charts
was derived directly from the structure charts. The CDR was
then held at the SofTech office in New Jersey.

After the CDR, the Ada unit specifications for each Ada
design unit of the structure chart were created (step nine of
the design methodology). The designers accomplished this
mostly as an individual effort, with reviews by the chief -

programmer.
The hardware/software partitioning was done concurrently with

the unit specifications. The designer who wrote the "run
switch" description worked an partitioning full time. The
chief engineer assisted with this process on a part-time
basis. In addition to task coordination, time was spent
assisting with the data structure unit specs. It was
discovered that the distributed processing approach decided
upon by the hardware designer could have significant impact
on the structure that had been defined up.to-this poiat. .-The
level of impact depended on where the partition was drawn. A
group meeting was called to discuss the matter, which
resulted in a partitioning that had a minimal design impact,
yet provided good interprocessor load sharing and cost
effectiveness. The conclusion drawn from the experience was
that the hardware/software partitioning should be considered
earlier, particularly in a distributed environment.

Because of the scope of the project, the detailed design was
done only on the selected module and its interfaces. This
included the message output section, part of queueing
(because of the pre-empt requirement), logging history,

15

operator malfunction notification, bottom level support for
message manipulation and validation, and the user interface 2
relating to system dryup, startup, and shutdown. As the
detailed design phase began in mid-April, the first nine
steps of the Ada design methodology were complete and the
tenth (H/S partitioning) was in process.

The detailed design phase was carried out differently than
recommended by the Ada design methcdology, partly because the 2
expression of the system design in Ada PDL would not be very
different from the requirements RSL that already existed,
except in the area of message processing support routines. A
two day group meeting was held to establish the exact
routines and functions needed for this support, including the
memory allocation/deallocation scheme for message buffering.
After establishment of this structure, each
designer/programmer was to use these support routines as
necessary and report to the chief programmer any new support
needed but not yet defined. All routines in the RESSAGE_OPS,
S!GBENTOPS, and HANAGZINTRAMSIT packages resulted from
these sessions, as well as the message schema, a diagram
showing the basic internal message structure. Having these 2
packages at the start of the detail design provided a certain
amount of consistency to the resulting design because each
designer worked with the same building blocks, not creating
individual special purpose routines that partially duplicate
functions. This approach worked extremely well. Two
designers were paired to design the output message validation

routines, another defined the queueing to output port
interface, another designed the output port task call/accept
structure and support routines, and another continued on
hardware/software partitioning.

The final design review called for in the methodology was
held at the technical interchange meeting of May 25 and 26
near Pt. Monmouth, N.J. Essentially, there was a complete
design walk through (informally held at General Dynamics the
week before), a design philosophy review and explanation of
the hardware/software partitioning. The requirements-to-
design traceability had been ccmpleted at the prior design -. "-!
review meeting. Although there was no formal preprogramming
Ada evaluation, a set of standards was developed as
programming progressed, and groups consulted with each other
on a regular basis to ensure that the development stayed on
the right track. Since nc cue had any Ada programming
experience, the Adald compiler was used frequently to find
syntax and compiler errors. 7his was a valuable tool, even
though it was somewhat difficult to use (because of the VAX

* .resources required).

Most of the message switch support routines, queueing
interface and validation routines had been written by the
late-May technical interchange meeting. The "send message"
routines, which required a much closer orientaticn to the
hardware, were written in June. It was quickly determined

16

i.

that Ada has some deficiencies when interfacing at the
hardware level. These are described in other paragraphs of

this report. Also in June, time vas spent formalizing
various documentation, including this report.

The conclusion up to this point is that most of the
constructs needed to do a real time system development are.
available in Ada, but require very careful study to use
correctly. The team members who did Ada programming became
very proficient in its use, partly with help from other
programmers and partly through use of Adald. The remaining
question at this time is whether or not the final compiled
code can run fast enough to actually control a message
switch. Hopefully, this will be determined in the.near
future.

7-

.... ..

17

F: . .Z

5.3H

5.3. 1 §.p!_ § ."

5.3.1.1 ,j ,., ;_ _ . --- i

During the design phase, a potential conflict arose several
times between reliability and maintainability. An example is
in the output message section where there is a reguirement to
validate certain header information that was previously
validated during message input. Since certain code would be
identical, there is good reason to create a package
containing this shared code that would be called from both
sections of message processing. Cne member of the group was
concerned that this approach violated the reliability
requirements because any validation error not detected by the
routine in input would likely not detect the same error in
the output. His suggestion was to have two separately

too designed (and maintained) sets of code, one each embodied in
the input and output sections. This creates not only a
maintainability problem, but in all liklihood does not
enhance reliability, because of the increase in complexity.
This designer was overruled and the common code was inserted
in a single package.

5. 3. 1. 2 Jgj jjjj .

One issue which was raised during the project was the
question of how a procedure or function should pass
information back to the invoking routine when a problem is
encountered. The classic method prior to Ada has been to
return a status. This usually takes the form of a boolean or
an enumeration variable. The status is then tested and the
required action based on the status variable's value is
performed. The alternative provided by Ida is to have the
called routine raise a programmer defined exception. The
invoking routine does not have to explicitly test the -,
exception, but must provide exception handlers at the
appropriate place. If the invoking routine wishes to
continue with some sort of processing after an error, then a
local block will have to be inserted in the invoking
procedure to hold the exception handlers. If this is done,
the amount of code for the alternative solutions (using or W,

not using exceptions) is very nearly the same. In this case,
the only advantage to using exceptions is that a function may
be used in some places where a procedure would be needed if
explicit status was being returned. For further discussion
of this problem, see 5.5.4.3.

5S. 3. 1.* 3 flr
In several areas, the designers felt that knowledge of the

operation of a specific Ida implementation would be
necessary. One of these areas concerned dynamic allocation
of variables. The Ada reference manual does not specify

18

.°S.-- .. .

whether all dynamic variables will be allocated from a common
pool, or from separate pools for each type or each access
type. The ability to specify STCRAGRI'SIZZ for a collection
implies the latter. This knowledge is needed if the designer
is to control memory utilization and overflow (as is required 1
in the message switch).

5.3.2 j_ _

5.3.2.1 J!i_ Systms

Is expressed at several technical interchange meetings, there
is considerable concern over the number of tasks created in a
complex real time Ada environment. It is conceivable that
hundreds of tasks will be required in the message switch as
designed. Although processor units exist that optimize
context switching, there is some doubt that the overhead can
be minimized to the point that message processing (the
application program) will not be adversely affected.

5.*3.*2.2 Diti;

All Ida support provided so far is for a uniprocessor
environment. At the time of hardware/software partitioning
it was determined that a distributed processing approach was
needed to handle the traffic as stated in the a level
specification. Unfortunately, no Ida documentation exists
that explains how tasking, procedure calls, and access types
operate in a distributed processing application. The
approach taken on this project was that an interprocessor
communications handler would act as an interpreter in each
processor, changing intraprocessor commands to a form
suitable to interprocessor exchange and then re-interpreted
in the next processor in the scope of its internal structure * -

(memory layout, resident tasks, etc.). There are potential
problems with this approach mainly because this structure is
not very transportable and not as maintainable because more - -

special purpose code exists than there would be ff this
structure were supported by the Ada run time environment. It
is recommended that, as soon as possible, standard
interprocessor interface packages be developed to work in the
Ada environment. Por example, one serial bus interface
standard is the BIL-STD-1553B bus. A transparent Ada,.run-..
time support package for this bus should be developed on a
priority basis if real time distributed embedded systems are
to be successfully develcped in a maintainable manner.

.r.
5.3.2.3 j _ _._-

There is a concern that additional run time support will not
be identified until late in the system design process, thus
causing impleuentaticn delays while waiting for the run time
support changes to be implemented and tested by the vendor.

5.3-3-

19

5.3.3.1 Sh . jj _

The generic procedure SHARZDVABIABLE_UPDATE is not
sufficient to provide the functions required for mapped
input/output. The problem is that the parameter in the
procedure is of mode "in out". In this node, there is no way
for the compiler to determine whether the programmer intended
a call to SHIAEDVARIABLUPITE as a store or as a load.
The designers of this project feel that
SHARED VARIABLEUPlATB should be replaced by two generics,
possibly called SHARZD_VABIIELRSTCHR and
SHAREDVARIABLALOAD.

5.3.3.2 .

Type string is defined as being indexed by the type natural,
which does not allow a null string, while null arrays may be
defined. If a record is constructed which contains a string
and character count, the count must be of a type other than
natural if no characters are contained in the string (null).
Thus a conversion must be used in order to index by the
count.

5.3.3.33 Conte 3 : -

Context dependencies can beccme rather involved for separate
subunits. In many instances subunits will not require the
context of the parent, nor is it desirable to make the
subunit available on a global basis by including it in a
library. Systems programmers and maintainers would benefit
if a subunit could be specified as "isolated". The term
"isolated" in this instance is the same as "is separate", but
without inheriting the context of the parent.

5.3.4

Conventions and standards need to be set for naming. All
names, with the possible exception of loop indices used in
very small loops, need to be meaningful. For convenience,
abbreviation for long terms may be used, but if they are
allowed, they should be standardized. (?or a more complete
discussion on naming, see SIGPLAN Notices Vol. 17, No. 5, lay
1982 for an article by Ereck Carter entitle.d "On Choosing
Identifiers".)

A special naming problem is posed-by tasks, since the name of
the task should be meaningful by itself, as well as when
combined with the name of its entries. A perfect example of W
how not to name a task and an entry is provided in the task
PR1E_VZB, whose single entry is FREB_VPBSICN. When a call is
made to this entry, the call reads PR1E_VR.PRF_VERSION. An
example of better naming is provided by the task DECOUPL!,
whose entry is LOG for a call of DNCCUPLE.LCG.

20

Common sense naming may cause problems. For example, in a
package with a set of operations on a message where each

routine needs a message as a parameter, then it makes sense ,,
to use the same parameter name for the message in each

routine. Thus given the following procedures:

procedure RIAD_7ROMPART
(MESSAGE : NSGID ; .o.) ;

and

procedure 1IND_3I
(MESSAGE : NSGID ; ...) ;

If RIAD_FROHP&BT is called from
PINDRI the following would result:

BEAD_PRON_PABT M ESSAGE =>
BESSAGI , ...) ;

This may not be a problem; however, it may look strange and
potentially confusing to the novice Ada programmer.

5.3.4.2-

A standard needs to be set for the use of the USE clause (See
the comments under paragraph 5.6) and for qualifying names.
Because of his knowledge of the system design, the original
programmer is likely to use names without qualification. But
the maintainer, who must determine the origin of a name in
order to derive its meaning, may have a different
perspective. More experience with Ada may be required before
a reasonable compromise can be reached.

S. 3. 4. 3-

There is need for a standard relating to the use of separate
compilation of subunits. It is a convenience to the
programmer during development to be able to work on a subunit
in a smaller file which is not being accessed by other
programmers. Separate compilation may also be useful during
debug to limit the size of recompilations. However, separate
compilation poses a problem during maintenance, since a
subunit then appears "out of context". One solution to this
problem might be to use separate compilation during 0
development, but merge the separate files during the final
stages of system integration.

5.3.4.4

It is possible to conditionally exit a loop in Ada with two
different constructs. The first is the "exit when condition"
and the other is by placing an unconditional "exit" statement
in an if statement. To maintain uniformity, it may be useful
to establish a standard favoring one or the other of these
forms. Some of the programmers on this project felt that the
"exit when" statement was insufficiently prominent in order

21

to visually denote its importance as an element of control.
These programmers felt that using an if statement, with the
subsequent change in indentation, made the exit more visible.
Of course, the same effect could be obtained by setting a
special standard for the indentation of the exit statement.

Standards must be set for overloading. The overloading of
enumeration literals can be very confusing and should be
avoided. Overloading of functions and procedures should be
allowed only when the same operation or acticn is being
performed by the overloaded rcutines. A., even more strict
approach might be to restrict overloading of routines to
those produced by instantiation of the same generic. The
cases of overloading in this project were produced in this
way. Some apparent overloading of names which are in
different scopes should be expected in a large project, and
may be tolerated if the scopes are sufficiently separated to
remove all possibility of misunderstanding by a maintainer.
Also, the hiding of names in an outer scope by names declared

* in an inner scope is to be strictly avoided. The potential
. ffor maintainer confusion in such cases is too high.

5.3.*4.*6

A set of standards was developed for the coding phase of the
project. Some Pascal standards were modified for Ada use at
the start of coding and further modified as the project
progressed. See the AI document Chapter 4 entitled "Ada
Development Standards". Some of the items listed in the
standards were added as a result of experience in the coding
phase, thus the output message module furnished with this
report does not reflect all the standards.

Upon interfacing to a hardware integrated circuit (the Intel
8254), a paradox was encountered. The 8254 circuit has three
o independent identical counter/timer channels. Two possible

choices are:

a. Define the utilization and mode of each of the three
p. channels in a single package, or

b. Define the above in those packages in which a channel
(or channels) is used.

The former is advantageous since the hardware utilization is
specified in one place. If the latter method is used, one
cannot easily determine what portion of the hardware is

already allocated, or where it is defined. On the other
hand, defining such in a single package does not hide those
channels from those compilation units that use only a portion
of the resources.

22

5.4 1Ifol_J!2SX2f

Summaries of the lessons learned from the Ada Capability
Study are provided in the following paragraphs.

5.4.1 Iportance f sj a tg

methodologies provide a plan or road nap for system
development. Without a plan, the system development of any
major system is more susceptible tc failure. A methodology,
even though it may only be a framework such as AIM, forces
the project team personnel to think about the problem and
solution in an organized manner. In the words of one of our
consultants, "Any methodology is ninety percent good".

* 5.4-2 IZ ogProb_9.

It is extremely important tc develop an understanding of the
problem in the requirements phase of system development.
This is true regardless of the type of system being developed
(i.e., business, real time, scientific, etc.). Once a good
understanding-of the problem is developed, the design process
is ready to begin. 4

The design team used much more time and effort than
originally anticipated to complete the requirements phase.
However, the feeling is that the eitra time was well spent.
The requirements analysts developed an understanding of the
problem that reduced the effort required during the design
phase.

5.4.3 Reduce_ Pro amm

The Ada Requirements Specifications produced during the
requirements phase eliminated the need for an Ada PDL
expression of the system during the design process. The
design team felt that the Ada Requirements Specifications
were sufficient specifications to begin program development
once architectural design was completed. The programming
effort was also reduced because the frameworks of many of the
Ada procedures were established during the requirements
phase.

5.4. 4

Structured Analysis and Structured Design methodologies do
not integrate as smoothly frcm requirements to design for
real time communications systems as they do in a business
applications environment.

23

Ida has the constructs for forming the base of a structured
English for expressing system requirements and programming
specifications. Therefore, Ada may be used as an BSL and PDL
prior to its use as an implementation language. The use of
Ada throughout the system development life cycle reduces the
conversion efforts normally required to map requirements intc
design and design into ccde.

U

2-4

Sm•'

LJ
R.C r 6M.

Ig-s
Ada will support virtually any methodology. However, it
appears that Ida is more compatible with the object-oriented
design methodology than other methodologies such as
Structured Design, Jackson, and Warnier-Orr.

5.*4.*7 Back ~ I D L 3!D .4Li~~

Of course, it is always important to match people vith
appropriate backgrounds to development projects. The best
programmer is not always the best requirements analyst or
designer. Therefore, the personnel assigned to the
requirements and design phases need not be expert Ada
programmers. However, the requirements analysts and
designers need to have some knowledge of Ida.

The requirements analysts should be familiar with the basic
Ada constructs if Ada is used as an RSL during the
requirements phase. Designers should know enough about ida
to use it as a PDL. Additionally, designers should have a
good understanding of Ada program structure (i.e.,
subprograms and packages) and tasking.

5.4.8 2z2Igdfs2!oD

ARM is heavily oriented toward Structured Analysis. The Ada
language is also key to ARE since it is used to express the
system requirements. Therefore, the Ada Requirements
Document is largely rPDs and Ada Requireuents Specifications.
This format is great for the requirements analysts and
designers. However, from a customer's point of view the Ada
Requirements Document is not a good, clear expression of the .
system. The Structured Analysis and Ada expressicns of the
system need to be augmented with more customer-oriented
system requirements.

5.*4.9

DFDs and structure charts are good tools that facilitate
developing an understanding of the problem and solution . ,

during the requirements and design phases respectively.
However, the use of such tools puts Ada in a more supportive
role than originally anticipated. The graphic illustrations
seem to be easier to understand initially than a pure Ida
expression of the problem and solution.

5.410 .__g_ 9

Structure charts have been used prolificly during the design
of systems to be implemented in CCBCL or FORTRAN. Since
neither of these languages is recursive, there is no need for

25

representing recursicn on the structure chart. The lack of a
structure chart recursion mechanism may he a problem when
trying to model an Ada sclution that is recursive.

5.4.*11

The design team was unable to use the SREH-type concur:ency
charts to represent the concurrency of the message switch
system. One of our consultants tried extensively to draw a
concurrency chart for the message switch system but was
unsuccessful. A second consultant indicated that it was
impossible to illustrate the concurrency of the message
switch using SRIN-type concurrency charts.

5.4. 12 aut

Automated iesign aids could be used to improve project
management, increase productivity, and improve the accuracy
of requirements and design specifications. Specifically,
automated design aids could be used to do the following:

- Draw DPDs and structure charts initially cr from

analyzing Ada code

- Develop traceability matrices

- Structure requirements and design specifications for
clarity

- Develop a data dictionary

- verify requirements and design specifications

- A cross-reference tool to list the location of
packages, type definitions, variable declarations,
subprogram and task specifications, etc.

- Additional crcss reference tcols.

26

AP

5.51

The use of Jackson structure diagrams to depict
objects, attributes o objects and operations on
objects provided a common communicational tool for
the project personnel. The personnel quickly
became fluent with this notation and communicated
with other project personnel successfully in this
environment.

As one might expect, differences arose as to which
components of the system were indeed objects and to
what level of detail these objects should be
modeled. These differences were generally resolved
as the proponents presented arguments for their
view of the system and were required to support
those arguments.

The initial attempt at object development was based
on the requirements documents. This initial
attempt was "reasonably close" to the final version
of objects. Thus, the iterative process of
refining those initial objects was not protracted.
That initial model was an excellent foundation to
work from.

- Clearly, some design decisions which promoted
information hiding evolved from the object oriented
approach. The operations on objects became more
clearly defined within the design sessions leading
to some general operations, thereby increasing the
simplicity of some objects.

The time spent by the requirements team during the
requirements phase definitely-facilitated the
design process at all steps within the methodology.
However, this was very evident during the object
development as the requirements team members
contributed heavily to the object-oriented model.

While the knowledge gained during the requirements
phase was fundamental to understanding and--
constructing the object-oriented design, it was
felt that there was little formal connection
between the two (e.g., traceability).

Within object-oriented design, concern was
expressed over specifying how the objects
interacted with one another (this was referred to
as the "glue" which tied the objects together).
Specifically object-oriented design does not
specify flow of control, this is accomplished using
the Ada PDL.

2

27

Because flow of control is not specified in the

objects, concuzrency vas not indicated (except
through the replication of objects).

Special difficulty existed in representing a
message object, mostly because it "migrated"
through the other objects, changing internal
representation.

The fact that the design team was highly trained
and had experience vith real time processing,
seemed to facilitate the use of all methcdclogies.

5.*5.*2 Prosject Hej1_Gq~j&2Bnj
- very fev general-purpcse packages vere developed in the

course of this project. These are packages that are
suitable for use in a library of such packages; i.e.,
they are "off the shelf* items. The availability of
such packages will greatly reduce coding time over the
course of several projects. Bovever, the writing of
these packages may take additional time in order to
write the necessary extra documentation for future users .

of such packages.

28

28

5.6 Jaue

5-6-1

The use of any high level language (versus the use of
assembly language) automatically generates benefits in two
areas: an increase in the speed of program development, and
an increase in program readability and understandability.
Studies have shown that the rate of program development
(about ten lines per programmer per day) is largely
independent of the language being used. Since a high level
language generates the equivalent of many lines of assembly
language for each line of HOL, a particular program function
can be developed in considerably less time with the HOL than
with assembly language. In addition, the use of an HOL frees
the programmer from the tedious details which are associated
with the use of assembly language, and the many possible
errors for which its use creates a potential, such as losing
a value through failure to store it, or failing to save the
proper registers during calls or interrupts. The readability
of a program in an HCL is enhanced by such things as
meaningful names, decision constructs, and the very absence
of the tedious details mentioned above.

5.6.2 Gen qrj&zga. L _gu g

Structured languages have two major benefits for program
development which nonstructured languages (including
nonstructured HOLs) lack. The first benefit, an increase in
the ease of program design and an increase in readability, is -q
generally recognized, and will not be discussed further. The
second benefit is the fact that a structured language can be
used as a program design and documentation language (PDL).
Using the same language fcr PDL and for coding simplifies
training by making the required training in the PDL simply a
part of the training in the coding language. In addition,
when the design is described in the same language as the
program to be coded, the process of turning a design into
code is greatly simplified and will proceed much more
quickly.

5.6.3 c . - . . _-

5.6.3.1 rj ...f -.

The fact that variables of two different types may not be
mixed in an expression or assigned to each other without an
explicit conversion helps prevent errors in coding, although
it does occasionally add apparent complexity to an
expression. (No real complexity is added by an explicit
expression. The complexity already exists - the conversion
just makes it visible.)

5.6.3.2 Ziai..:

29

Ada's tasking capabilities provide an excellent way to
express any requirements for concurrency which the design may
possess. The abilities to have task types and to dynamically
allocate new tasks as required can add flexibility to a
design.

5. 6.3 3 ,,. jjg

The designers of this project found four criteria for
building packages, each of which seems to have its place:
packaging around a data base, packaging by major program
functional area, packaging around a type (or an cbject), and
packaging for general purpose hardware support.

Packaging around a data base is illustrated in this project
by such packages as 1_OPS and LIYZTBLCPS. By placing
information used by many modules in a package and restricting
access to the data in such a way that the only way the data
can be read or written is through the functions which are
also contained in the package, the integrity of the data may
be more easily ensured. Saintenance is also made easier by
the fact that the only access to the data is through the
routines in the package.

Packaging by major program functional area is illustrated in
this project by such packages as PHISICALPCBT and
PROCESS_HESSIGE. In this technique, the package is used as a
container for the routines and tasks of some major functional
area of the program, along with the types and variables
required for their interfaces. The technique would seem to
be best suited to projects in which the major areas of the
program function independently, and do not have a "driver"
controlling their operations.

Packaging around a type is somewhat similar in motivation to
packaging around a data base, in that access to objects of
the type may be constrained to the routines provided in the
package by the use of private and limited private types, but
the objects reside outside the package. SEGBENTOPS and
MESSAGEROPS are examples of this type of package.

During the technical sessions the Army representatives have
elaborated on the need for "off the shelf" packages that can
he inserted as a particular function is needed. Cue such
package, "Interface to 8254", is a general purpose timer
package developed to support an 8254 SI interval timer.
Three Ada language difficiencies make the package less
universal than desired. Cne restriction is more cosmetic in
nature and is discussed in paragraph 5.6.5.5. Another
relating to hardware interfacing problems is discussed in
paragraph 5.6.5.1 and the third problem relating to shared
variable update is discussed in paragraph 5.3.3.1. It is
fully expected that these problems will recur as other
hardware interface packages are developed.

3C

5.6.3.4 fhag3Df

Slice assignments are a minor but highly appreciated
convenience, since they allow the programmer to accomplish in
one statement what would require a loop in most languages.

The Ada capability for separation of the specification and
the body of a procedure provided two benefits for the
project. The first benefit was that it allowed the
interfaces between modules to be written independently of the
bodies of the modules, in an early stage of the development
of the design. This was especially useful in the case of
modules which were used in more than one case, since the
specification of such a module could be distributed to all
the programmers who were writing modules that called it, so
that they would know what syntax to use in the call. A
second use of this separation capability was that it
prevented circular dependencies from developing between
modules.

5.6.3.6 jjjj .TS_

The dynamic storage allocation capabilities of Ada allowed
the designers to make good use of storage without having to
divide memory into fixed portions at the start. In order to
make full use of this capability, however, the designers

-~*would need to know how the specific Ida implementaticn which
they are using accomplishes those functions.

5.6.3.7

Project personnel found the overloading capabilities of Ada
useful when used for naming subprograms which accomplished
the same function on different types. The specific routines '
with which this was done were TRIP and GET. There are three
routines by each of these names.

5.6.3.8 ~j~~

The program designers used generics to develop subprograms
such as the above mentioned TR! and GET; the individual

to, versions of which are logically the same.
5.6.3 .9 dUI} L I

The Ada enumeration type is very useful, and more enumeratio.
types were declared in this project than any other user
defined type. It proved to be extremely useful to be able to
refer to the parts of a message, for example, as HEADER,
MSGBODY, and TRAILER, rather than by number. Cther
enumeration types were used to represent conditicns and error
codes.

L
31

-(

5.6.3.10 Iz;sR±±2u

The designers found it quite useful to be able to specify
actions to be taken when unanticipated error conditions
arose. Predefined Ada exceptions were used in a number of
places to handle problems which could have been explicitly
checked for by the programmer, and in at least one place an
exception was raised by an explicit check. Programmer
defined exceptions were not utilized, but they could have
been used to pass error conditions up the calling tree.

5.6.3.11 jsggj I

The Ada record type proved to be the second most commonly
defined type in this project. Records proved to be valuable
in linked lists and other linked data structures, as well as
in input/output operations and as parameters.

5.6.3.12 JJj2§Jag.gci 12

All the personnel employed in design and coding cn this
project felt that the use of named association in procedure
and function calls and in record aggregates made the ccde
such more easily understandable.

- 5.6 4

S. 6. 4. 1 Qag
The improper use of overloading can create problems in both
design and maintenance, since it may be difficult for
programmers (both the original coders and the maintainers) to
determine what is being referred toe even when the compiler
is able to resolve the overloading with no difficulty. The
designers on this project feel that overloading shQuld be
strictly controlled, and in the case of subprogram
overloading, be applied only to those subprograms which
accomplish the same action on differing types.

5.6.4.2 askin

The Ada tasking feature should only be used by designers who
are fully conversant with the dangers-of concurrent-
processing. One very distinct possibility raised by the use
of tasking is that of deadlock, also known as deadly embrace.
In this condition, two tasks interact in such a way that
neither task can proceed without some action on the part of
the other. This situation could be difficult to detect in
some systems, since all the other tasks in the system might
continue to operate normally.

5.6.4.3 J~j

The unrestrained use of exceptions to handle problems should
be avoided. It is possible for a routine to be aborted

32
4 -..

through no fault of its own, and without a chance to "clean
upa any of its actions. For example, if routine A calls
routine B which calls routine C, and an exception is raised
in C which is not handled there, it is possible (especially
if the person who wrote B did not know that C could raise
this particular exception) that control could revert to A
without B having any chance to undo any of its actions. The
use of "when others" in the exception portion of a routine
also has its problems, the main one being that an exception
of an altogether unexpected type may occur, perhaps being
raised by some routine which the current routine does not
directly call.

5.*6.5.*1 kgsj±.gEiiA
Although the Ada facilities for machine-dependent prcgramming
look adequate at first glance, actual use reveals severe
deficiencies. This is especially problematical in embedded
systems, where such machine-dependent programming is usually
done. For example, the code statement provided by Ida seems -

to be extremely inflexible. There seems to be no way to use
the code statement with a particular Ada variable, sc code

statements cannot be used for memory-mapped 1/0. (Although a
sequence of code statements to output any register could be
written, there seems to be no way to ensure that what is to
be output is in the register.)

The use of address specifications in interrupt handling
imposes a problem, due to the requirement that the expression
in an address specification be static. This limitation
precludes dynamically changing the assignment of tasks to'
interrupts, which is a requirement of some systems. This
problem is discussed at length elsewhere in this report.

another problem is caused by the requirement for static
expressions in addresses. A package that exemplifies this
restriction is called "Interface to 8254", which is a
general-purpose interface package developed to support an
8254 LSI interval timer. This package is a driver for the
given integrated circuit. All communication to this
peripheral device is handled by the package, since-the
address of the chip is known only inside this package. This
works acceptably for systems with one such chip. However, in j

systems with multiple interface chips of the same type, there
are two conflicting solutions to the address specifications.
Cne solution is to create multiple copies of the package.
Except for the package names and hardware addresses, these
packages would be identical. This textual duplication will
create maintenance problems. A second possible solution is
to create a package that will handle one or more of a given
chip. This would probably complicate the single-chip package
considerably, since it seems the amount of code would be
proportional to the number of chips. For example, the

33

.° ..

reading of the three channels of the 8254 were implemented in
a case statement, with each selection's code differing only
by the names of the variables defined at the respective
addresses.

5.6.5.2 tA..iS.QI i~ak.. 2l

This problem and the ones that follow it differ from the
previous problem in that they are not problems with language
capabilities, but with the proper application of these
capabilities. While separate compilation may be a solution
to one Ada problem (see the next section), its use adds
complications to the testing and maintenance portics of the
software life cycle. One of these complications is the issue
of compilation dependency. Cn a large project, it may be
impossible to keep track of the compilation dependencies.
The separation of specification and body into separate
compilation units may reduce the amount of compilation
dependency. If an environment provides a tool to
automatically keep track of dependencies, the problem of
deciding whether a particular module needs to be recompiled
will remain, even when the tcol calls for it, since not all
changes to modules on which the current module is dependent
will actually cause changes to the context that the dependent
module can "see". Another problem stems from the fact that a
module which is "separate,' inherits the context at the point
of its stub. This means that when a maintainer looks at a
module, he does not have the full context of that module in
front of his. It may actually be in a different file from
the one he is editing. In fact, since the containing routine
can itself be "separate", the context could be contained in
an arbitrarily large number of files. This certainly could
make maintenance much more difficult.

5.6.5.3 s.jija.
Ada inherited a problem from Pascal which makes the reading

,- of programs much more difficult. If a subprogram contains
nested subprograms, the text of the nested routines appears
between the subprogram specification and the body of the
subprogram, separating the specification (and the type and

* object declarations of the program) from the body, sometimes
by several pages in large systems. This textual separation
can make it very difficult to read and understand the
program. Cne way to solve this problem is to use stubs and
separately compile the nested subprograms, but this may
create other problems. (See the previous section for a
discussion of this problem.)

565I

The "use" clause is very useful to the programmer during
program development. It can save him a great deal of trouble
in specifying names in his code. However, the original
programmer has an extreme advantage over any maintainer when

34

it comes to reading and understanding his code, since he
knows where his names came from. The maintenance programmer
has no such knowledge, and say experience very real problems
in resolving the origin of a name in the code. He has only
the context and the meaning (if he knows it) of the name to
go by in finding out its genesis. Because of this problem,
the use of the "use" clause should be restricted to names
which come up often in the code. Also, it would be nice if a
tool could be developed which would add full qualification to
all names in a compilation unit. An alternate tool might
provide a list of referenced items for a compilation unit,
with their origins.

5. 6. S. 5 RE 3II~A!i23S1 Ii nI

The organization of the Ada declarative part with respect to
representation specifications (rep specs) presents a problem

- in readability. All of the designers on this project felt
that the required separation of rep specs from their type
declarations was difficult to read and would present a
maintenance problem. Declaration of a type to be used in
communication with a hardware device should appear
immediately as needed, not in an apparently unrelated area of
the text as is reguired by the language. One prcpcsed
solution would be to declare the types again as a comment in
the rep spec area of the declarative part. Although easier
to read, a documentation problem will arise in keeping the
comment declarations up to date when the real declarations
change.

5.6.5.6 ZnJLti sa.Jshaniu

This mechanism is very versatile; however, when the objective
of inter-task communication is to pass data without actually
halting either task to wait for the other, there very quickly
arises a proliferation of tasks to act as buffers and handle

3the passing of the data. This condition will vary with the
particular application involved but seems very likely to
occur in real time embedded applications.

5.6.5.7 gg _I.zs

The packages of the project- hava tended tor become quite ...
- large. Some are too large; for example, PHYSICAL PCRT is

nearly forty pages long (in sixty-six lines per page format).
This size has several drawbacks.

One hindrance is the difficulty of editing a file. The
amount of editing of a package is proportional to its size;
however, only one person can be working with a given file at

* once. This causes problems if the package is being coded by
several people. Also, one must ensure, before accessing a
file, that a person on another terminal is not currently
modifying that same file. Furthermore, files with hundreds,

35.
tI.

or even thousands, of lines are difficult to edit since the
desired section is acre difficult to locate.

36S

1lo

rr

6. - m f

The Ada Capability Study has been a success and has
demonstrated that Ada can te used effectively in the
definition, design, and programming of a large scale digital
system. In a span of twelve months, a methodology was
developed, personnel were trained, system requirements were
defined, a design was accomplished, and a module of the
system was coded. Since an Ida coupiler and run time support
package are not yet available, it was not possible to execute
any of the implemented code. It is recognized that certain
embedded real time applications may present Ida
implementation problems heretofore not realized, particularly
in the area of hardware interfacing.

A case study such as this is a good beginning, though it is
only the beginning. Continuing research in methodology
development and in the use of Ada is required with the
development of compilers and an Ada environment.

37

!S

14

I

I

