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ABSTRACT

An experimental rig consisting of a hydrostatic circular step pad was
constructed to simulate the cavitation phenomenon under a water pressure up to
2000 psi comparable to those in the submarine stern-tube seals. Cavitation
bubbles were observed for water glycerine, and their mixtures.

Several analytical models were studied, and the physical parameters
influencing bubble growth and collapse were identified. An analysis was also
made to determine the axisymmetric stress in the solid induced by a sudden
pressure distribution during the collapsing of a bubble.

An existing thin-film analysis for determining the flow factors used in
the hydrodyamic analysis of rough surfaces was extended to include the ste~dy-
state cavitation effects. Results showed that the shear flow factors ¢: cal-
culated using a model considering cavitation are dependent on ambient presure,
surface pattern parameter and the film thickness to roughness ratio, h/o .

The model predicts a lower shear flow factor when cavitation is con-
sidered. They approach asymptotically to the non-cavitated values as the
ambient pressure rises. The effect of cavitation are found to be less signi-
ficant for h/o > 3 or for h/o > 0.75 and more significant for the intermediate
values. The surfaces with transverse roughness resulted in more cavitated

regions than isotropic and longitudinal roughness.
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: * 1. INTRODUCTION

In high pressure face seals, such as the submarine stern-tube seals, it is
often found from the prematurely failed seals that sections of the seal surface
show a matted appearance similar to the surfaces damaged by cavitation (1). This
mode of failure appears to be even more prevalent as both the pressure differential

and the seal size are enlarged. It has been suggested that such surface damage

may be caused by the collapsing of cavitated bubbles associated with the sudden
drop in pressure in a rapidly diverging channel. In order to understand the
basic mechanism of cavitation damage in a narrow gap between the sealing surfaces,
a research program was initiated at Northwestern to meet the following objectives:
a) Design and construct an experiment to simulate the cavitation phenomenon
under conditions comparable to those in the recent high pressure-stern-
tube seals,
b) To formulate an analytical model to explain the growth and collapse of
the cavitating bubbles in a narrow film.
c) To employ an existing thin-film analysis for rough surface to predict
the effect of cavitation on the steady-state performance between

sliding sealing surfaces,

This report presents the results obtained during the first phase of the

above described tasks.
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II. CAVITATION IN PACE SEALS

Mechanical seals consist of two surfaces in relative motion and in intimate
contact. The gap between the parts is of the order of the surface irregularities
(typically a fraction of a micrometer). The formation and collapse of vapor
bubble in the £luid that fills the thin sealing gap is known as cavitation in
face seals,

Cavitation in external flows; e.g., around propellers or moving objects
immersed in water, involves vapor bubbles growing in the liquid at low pressure
regions, and subsequentiy collapsing when exposed to a higher pressure. Experi-
ments have shown these bubbles start as nuclei in the water of about 1 micrometer
in size (2). Nuclei of this size in a seal gap must grow into disk shaped vapor
bubbles because of the constraining surfaces. The fundamental geometry is
cylindrical rather then spherical (Fig. 1 illustrates this difference).

Cavitation damage to solid surfaces is associated with vapor bubbles
collapsing in the neighborhood of the surface (3). In order to explain cavitation
damage in seals, it is necessary to establish how vapor bubbles grow and collapse
in the gap region. A bubble must grow to a certain size before its collapse can
generate enough disturbance to cause damage.

Several paths can produce this history for a bubble. The most direct occurs
when the bubble remains stationary in the fluid and the local pressure first
decreases and then increases. Such a pressure history might be generated by
squeeze film action if the gap between the two surfaces periodically changes
(due to vibration or other dynamical effects)., For unconfined flows cavitation
is produced in this manner by ultrasonic generators, Unsteady pressure fields
such as these are also produced by roughness on the two surfaces., As asperities
pass one another, the neighboring fluid 1is subjected to a time varying pressure

field.
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Another path is through convection, wherein a bubble is formed in a low
pressure region and is then transported by the fluid to a region where the pres- f
sure is higher. A typical example of this process for unconfined flows occurs
on submerged bodies where vapor bubbles originate at low pressure shoulder regions

and collapse when transported to a reattachment region (4).

QoL

. An important question in this case is how a steady flow produces an unsteady .

flow of bubbles. Turbulence plays a role as well as the stability properties

. vl'.n n ..‘l.
e

of the interface between the vapor and liquid. The incompatability of the con-
stant pressure vapor filled region and the adjacent liquid flow which requires rg
pressure changes along the boundary is also important (5). This latter effect 1

might also be important in the seal problem, whereas turbulence and interfacial

instability are unlikely to be of importance because of the characteristically

low Reynolds number for seal flows.
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III. STEADY VAPOR BUBBLES IN SEAL FLOW
The flow in the seal gap satisfies the same equations as the flow in journal

bearings. If only one seal surface is rough, the flow satisfies (6)

3 3 :
SEDRED-e2

where P is the local pressure, x, y are cartesian coordinates in the plane of
the surface, h is the variable spacing between the surfaces, ({ is the viscosity,
and U is the local velocity of the smooth surface in a coordinate system where

the rough surface is at rest. The local average fluid velocities are

u =D 2P Uh (2)

u --—t-l—a-g (3)

We ask the question.whether a steady vapor bubble is possible in the flow
described by these equations? These equations do not include details of the
bubble shape in the third dimension. The effect of this can be accounted for
to some degree of approximation by imposing a pressure jump across the vapor-
liquid interface equal to the product of the surface tension and the curvature.
For a steady vapor bubble, the requirement at the interface is that the pressure
is constant, and that the interface is a stream line. The bubble must also be

a local minimum of pressure, so that the pressure must rige as one moves away
from the bubble. This pressure gradient always drives the liquid toward the
vapor bubble. The moving boundary always tries to carry the liquid in the

direction of its motion. These two forces can be in balance for a streamline-

bubble boundary only if the normal direction of the bubble surface in the direction
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from the vapor to the liquid has a component in the direction of the motion
of the moving boundary. This implies that the only steady bubbles which are
possible are those whose upstream surface is a solid asperity that excludes the
fluid (h=0). Separation of the flow into vapor and liquid layers in the third
dimension is not likely in the steady state unless the vapor in composed of a
permanent gas.

If the solution of Eq. (1) gives a pressure less than the vapor pressure
of the liquid, and the conditions stated above are not met, the flow must
violate the equation either by becoming unsteady or by developing a strong three
dimensional component. Perhaps convected bubbles appear which can be carried to
high pressure regions where they collapse.

For flows where steady vapor bubbles are assumed to exist, the pressure dis-
tribution on the surface is different than that which would exist if no bubbles
were present. Calculations of the effect of this steady cavitation on the

leakage rate and the forces on a seal surface are presented in Section VII.
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IV. BUBBLE DYNAMICS IN CONFINED SPACES

Some idea of the possible pressures that can be produced by bubble collapse
in the seal gap can be obtained by examining limiting forms of the equations of
motion for bubble growth. The inviscid limit is appropriate when changes occur
so rapidly that viscous shears do not have time to diffuse across the gap. In
this limit, the dynamic equation for a bubble in a constant thickness gap can be
obtained by a simple extension of the equation for a spherical bubble in an
infinite space (7). For the limit that the bubble radius is much greater than
the gap thickness, the equation is

Pm%(R%-&-UZ)sI;—%--Zf-(P;PV) . (4)

Here R is the radius of the disk shaped bubble, U is dR/dt, r' is some outer
boundary at a distance much greater than R, h is the gap thickness, ¢ is the
surface tension constant, P& is the vapor pressure of the liquid, P, is the fluid
pressure at large distances from the bubble, p is the fluid density, and NT is
related to the amount of inert gas within the bubble. Values of R and (P¢; Pv)
which make the right hand side equal to zero are possible equilibrium sizes for
a given nucleus. Figure 2 shows this relation graphically. For a given NT,
there is some pressure below which no equilibrium size can exist. For values of
R, (Pw"Pv) off the equilibrium curve, Eq. (4) shows how R changes with time.

If we define

4
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b + (P°° Pv/ 0 o
the equation can be written
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2 2 P ~
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T and Ro are characteristic length and time scales. The solution of this
equation for two different pressure histories are shown in Fig. 3 and Fig. 4.

In Fig. 3 the changg in R for a step increase in pressure is shown. The initial
conditions were that R is an equilibrium value at t'= 0, and dR/dt = 0. A step
increase in pressure is applied and R is seen to oscillate with a period dependent
on the size of the pressure jump. In Fig. 4, a low pressure is first applied so
that the bubble grows, and then a high pressure is applied. Here, the bubble
collapses to zero size. This behavior is similar to that of a spherical bubble
and is known to lead to high pressures and cavitation damage to surfaces. This
type of behavior arises from inertia effects that are represented by the U2 terms
in the dynamical equation.

The other limiting case for bubble growth corresponds to such slow changes,
that viscous forces balance the pressure forces and the inertia is of no impor-
tance,

For this limit, the flow in the neighborhood of tl.» liquid-vapér interface
presents some difficulties. A complex interaction of surface tensioun, viscous
stresses, and pressure determine the interface shapz, the thickness of the fluid
layer adhering to the solid surfaces, and the pressure changes in the neighborhood
of the bubble (8,9). A qualitative view of the flow in this limit can be
obtained by balancing the bubble pressure with a quasi-static viscous flow, An
approximate equation is

h th

2y ¢! =£-.2_q_<_ )

Z’ﬂRRU h Po Pv (6)
This equation does not have the non-linear terms that gave the solutions of the
inviscid equation their violent behavior on collapse. If the flow in seal gaps

is controlled to a good approximation by this equation, then the rapid collapse
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of bubbles leading to cavitation damage is not likely. The time scale for growth
and collapse becomes the crucial element in determining which type of flow field
will exist, and the physical basis for estimating this becomes the goal of this

work.
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V. STRESSES IN THE SOLID

Cavitation damage results from the stresses applied to the solid surface by
the flow field associated with a collapsing bubble. For extended flows only a
small fraction of the collapsing bubbles nroduce damage (10). This is thought
to be due to the requirements that damaging collapse must occur near the surface,
and also must be of the type (asymmetric) and orientation that can cause damage.
These two requirements strongly restrict the number of damaging blows.

Cavitation in a gap always occurs in close proximity to the surface and
only one type of collapse is likely. If damaging ;ollapse occurs at all, it is
likely that almost every bubble will produce damage.

The stresses in a solid produced by an axisymmetric distribution of pressure
on the surface can be computed within the elastic limit by existing theory (11).
Knowledge of the pressure field generated by the fluid motion will easily lead
to an assessment of its damage producing potential. The shear stress on the
axis produced by two different distirbutions of surface pressure is shown in
Fig. 5. One is for a uniform pressure within a circle, and the other is for a
riqg shaped distribution, The latter distribution is more typical of that
as;Qciated with bubble collapse. In both examples, the shear stress on the axis
is maximum at a short distance below the surface, and is a fraction of the sur-

face pressure, Other distributions of pressure give similar results,
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VI. EXPERIMENTAL PROGRAM
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An apparatus was constructed that could produce cavitation in a seal like

L S SRR IIeY

E‘ gap, and where the bubble growth and collapse process could be produced in a
‘ controlled and observable manner. ]
The Rig !j
A drawing of the rig test area is shown in Fig. 6. A flat or shaped test sur- :
face ((4) in Fig. 6) 25.4 mm in diameter is held against a flat, transparent quartz .
disk ((5) in Fig. 6) by a hydraulic cylinder. The test surface is mounted so that "

it can remain parallel to the quartz surface. A load cell ((7)) supports the
quartz and measures the force applied to the surface. The force between the
disk and the surface can be varied in time with a frequency up to 200 Hz and
with an amplitude of the steady component plus the oscillating component of up "

to 2000 1bs (8910N). The test surface has a central hole through which liquid

) can be forced with a pressure up to 2000 psi (13.8 x 106 Pa). A photograph of iy

' the test area is shown in Fig. 7. %f

The hydraulic cylinder, and load cell are part of the closed loop drive ;E

3 system shown schematically in Fig. 8. A voltage into the input module causes a :ﬁ
; force to be applied to the test surface with the same time variation.as the ?
:3 voltage and with a level proportional to the voltage. An MIS "SERVAC" controller :E
P is used, An overall view of the test facility is shown in Fig. 9. {j

Test Procedure

- The test surface is held so that it remains parallel to the transparent
surface. An inverted microscope permits observation and photography of the inter-

. face between the disk and test surface by looking through the flat quartz disk.

- 10 -
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A proximity probe (Bentley-Nevada)imbedded in the quartz senses the motion of
the test surface., A pressure transducer whose face can be lapped flush with
the test surface is being installed in the test piece.

For normal operation, a test surface is made with a stepped surface as
shown in Fig. 10, The surface can be examined with a tallysurf profilometer to
verify its shape. By changing the liquid pressure and applied steady force,
the average gap size can be set over a limited range. The pressure distributions
associated with three different gap sizes are also shown in Fig. 10, each with
a different shape corresponding to a different total force related to the pres-
sure integral, If this steady force is modified by an oscillating force, the
pressure distribution and gap will vary accordingly, and the desired negative
pressures can be produced in a region of the gap for part of the cycle. Figure
11 shows three instantaneous pressure distributions for different parts of a
cycle - when the surfaces are approaching one another, when they are separating,
and when they are at rest. The velocities shown correspond to a 30 Hz oscillation
with an amplitude of about half the initial gap.

The negative pressure region occuring when the plates are separating (or
when upper surface is moving upward) is the region where cavitation is expected
to occur. The process of bubble growth and collapse in this region can be observed

and serve as a basis for evaluating the various theoretical models,

Results

The apparatus has gone through several generations of change, and is now
rigid enough and with sufficient degrees of freedom, to enable it to perform as
planned., The control of the pressure in the gap by using the force on the surface

as the controlled variable has presented some problems, particularly if the force
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changes sign during part of the cycle, Control by means of local pressure or by
relative displacement of the surface is now being investigated and should lead J
to better defined conditions in the gap.

Some photographs of bubbles produced by the apparatus are shown in Fig. 12.
The top picture shows several frames of a motion picture take through a micro-
scope at 1000 frames/seconds of bubbles forming and collapsing in glycerin. The
large viscosity of glycerin slows down its motion so that the history of the

motion is accessible. The lower picture slows a still picture of bubbles pro-

h ST

duced in water (1/1000 second exposure). The small viscosity and large surface 4
tension of water makes it more difficult to produce bubbles and also more difficult %
to follow the details of their history. At this time, all we can say is cavita- ?
tion bubbles have been produced, but insufficient observations have been obtained 1
with which develop understanding of the cavitation process, j
-3
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VII. THE FLOW FACTOR AND LOAD CAPACITY FOR CAVITATION MODEL

Introduction

When sliding is introduced in a rough bearing, there is a possibility of
cavitation at the trailing edge of the asperities. Cavitation is the result
of pressure reductions in the liquid, more precisely, it occurs if the pres-
sure is reduced and maintained for sufficient duration below a certain
critical pressure which is determined by the physical properties and condi-
tions of the liquid. The type of cavitation studied in this section is termed
steady cavitation; it refers to the time independent situation in which the
liquid flow detaches from the rigid boundary of an immersed body.

When a sliding is introduced in a rough bearing, the pressure distribu-
tion about each asperity is expected to be antisymmetric. However, due to the
fact that the lubricant cannot withstand large negative pressures, it can
rupture at the negative pressure zones. There are conflicting views on
whéther or not this cavitation will always occur. For examples, for some
geometrical situations, Burton (12) believes that cavitation voids could not
be expected to nucleate in the short time available. However, Hamilton et.
al. (13) relates the load support mechanism in face-type or axial seals to the
cavitation. They show that the classical lubriction theory does not predict
the existence of load support in the case of flat, parallel surfaces which are
geparated by a uniform, steady film of Newtonian fluids. But, since high
positive pressures overcome the negative pressures which are truncated due to
the cavities, these types of seals do produce a net load carrying capacity.

In this section, it is assumed that cavitation occurs whenever the fluid
pressure drops below the ambient pressure. However, as indicated above,
although the pressure drops below the critical pressure, there is some

question as to whether cavitation always occurs. Therefore, one should be

- 13 -
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aware of the fact that this model may under-estimate the shear flow factor in

%Z case of cavitation, which tends to reduce shear flow in a bearing.

AL st e s TR

A typical contact area in a rough bearing and the negative pressure zones
is shown in Figure 13. As one may observe, most of the cavitation occurs at
. the trailing edge of the contacts and the rest occurs at the trailing edge of
! the asperities.
g{ To analyze the shear flow and load capacity in case of steady cavitation,
it is assumed that these negative pressure zones are, in fact, isobaric
regions, whose pressure is equal to the vapor pressure of the lubricant.
Since the vapor pressure of lubricant is negligible when compared with the
pressure build-up in the bearing, it is taken to be zero.

The shear flow factor is calculated by substituting this modified pres-
sure into Equation A-20 (Appear in Appendix A). Finally, the load capacity

for the bearing is evaluated using truncated pressure distribution as

indicated in the following sections.

Shear Flow Factor

The shear flow factors that are presented in this section are evaluated

using model problem 3 as described in Appendix A. The presence of the

Ll .',"- . ‘;)14 aarasas tata

cavities affects the shear flow in a bearing due to the reduction of the areas

where lubricant flows. The existence of a cavity strongly depends on the ;i

ambient pressure and sliding speed of the bearing; therefore, the shear Eﬁ

flow (¢:) becomes a function of ambient pressure and sliding speed as well ;j

as h/c and vy. Bowever, since ¢: is non-dimensionalized by ﬁ;, the shear flow T?

factor becomes ;E
¢: - 0: (h/a,Y,P ) '¢)) 1
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The effects produced by these parameters are now discussed. In Figure
14, a typical pressure distribution about an asperity is shown. It 1is evident
also from the figure that as the ambient pressure increases the change of
negative pressures near asperity decreases. Therefore, one expects to get
higher flows as the ambient pressure rises. The effect of ambient pressure on
shear flow for isotropic surfaces is given in Figure 15. It is observed that
as the ambient pressure increases, the ¢: values, evaluated considering cavi-
tation effects, approach asymptotically the shear flow factors without cavita-
tion. This approach of ¢: becomes much faster for h/oc = 3 and h/o = 0.5 . It
is slower for the intermediate values.

The faster convergence of shear flow factor ¢: at high h/o can be
attributed to the offset of the cavitation effects due to the other
parameters. At high h/oc values, the volume occupied by cavitation becomes
less dominant to the main flow. (In contrast, for small values of h/o the
cavitation effects become more dominant because of an increasing number of
contacts in the bearing area.)

Figure 16 shows the change of ¢: with ambient pressure for isotropic,
transverse and longitudinal roughness. It is found that the change in ¢: is
larger for trangverse roughness type, that 1s, cavitation is more pronounced
for these types of surfaces. This is mainly due to the fact that the areas
behind the asperities which are cavitated are larger than those of isotropic
and longitudinal, the fluid must travel a longer distance to fill the cavities
at the trailing edges of the asperities.

In Figure 17, the variation of shear flow factor with h/o for isotropic
surfaces is shown. It is found that shear flow factor for the cavitation
model behaves the same way as the shear flow factor of the model described in

Appendix A for non-cavitating flow. It approaches zero as h/c increases

e

f o
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above 3 due to the vanishing effect of roughness; as h/o decreases it
increases to a certain maximum and then sharply drops towards zero. The

reason for this behaviour is due to the increased flow tramsport in the

r%, valleys. The decrease is due to the decrease in flow area bécause of

Bals o o a4 Tk Rratl L CaTaa o a Ao Ctalatall

contacts, as described in Appendix A. However, it is found that the maximum
points shift towards high h/c values as ambient pressure is increased. When

cavitation occurs, the flow is reduced due to blockade by cavitated regions

and contacts. It is also observed in Figure 15 that for values of h/c less
than 1 cavitation effects are less pronounced compared to h/c > 1 .
Therefore, as h/0 drops below 1, the decrease in flow is compensated by the

decrease in cavitation. This is because at low ambient pressures the ;

cavitation is more effective, and compensation becomes more dominant, delaying

the shear factor from dropping towards zero.

*
Figure 18 shows the change of ¢8 with h/o for transversely and

longitudinally oriented roughness. The surfaces with longitudinal roughness
result in a lower shear flow than the surfaces with transverse roughness.

However, it is clear from the figure that transversely oriented surfaces are

i) M Tir it R
L A A

more sensible to ambient pressure, since more cavitation occurs for that case.

! A
i Load Capacity b
: The classical lubrication theory does not predict any load support for )
? two parallel, smooth surfaces sliding against each other. For rough surfaces,

;‘ the pressure distribution about each asperity is anti-symmetric, and the v
E? negative pressures cancel the positive pressures. This results in no net load -

support, even for rough surfaces. However, since is practice the negative

;; pressure regions may be cavitated, rough surfaces can create a net load ’
- capacity. "
t‘ ’
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The load capacity in a bearing is given by :
-
L Ly l:
w=/["[ p dxdy (8) -
* o
where p 1s the truncated pressure distribution. Defining non-dimensional P
pressure and load as .:
2 2 5
h * h * .
Ve ————y R P& ———p 9) :
6ul LZL 6uUsLx ':
8'xy E
.'._‘
Equation (8) becomes oo
(a
R - - .1

we e axay (10)

oo
The results calculated using Eq. (10) are shown in Figure 19.

Conclusions
®
1. The shear flow factors ’s calculted using a Model considering cavita-

tion (Model 3 in Appendix A) are found to be dependent on ambient pressure

- %

N as well as surface pattern parameter and h/o . The ¢s increases
#i as Pa increases, and otherwise, exhibits the same behaviour as the non- ‘q
cavitated model with respect to changes in h/c and Y.

2. The model predicts a lower shear flow factor when cavitation 1is

b RN
- it

considered. They approach asymptotically to the non-~cavitated values as

PR Y

the ambient pressure rises.
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3. The effect of cavitation is found to be less significant for h/o » 3

or for h/o » 0.75 and more significant for the intermediate values,

4, The surfaces with transverse roughness resulted in more cavitated

regions than isotropic and longitudinal roughness.

sanaal A o
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VIII. COMPARISON OF FLOW FACTORS FOR GAUSSIAN SURFACES

BETWEEN THE OPEN AND CLOSED BOUNDARY MODELS

'-'-
—

Introduction

In this section, the flow factors obtained through simulation are
presented. Although one may use any kind of surface roughness, it is
impossible to consider every possible roughness configuration within the scope

of this study. Therefore, only the Gaussian surfaces as suggested by Patir é

ia

and Cheng (14) have been used to facilitate a direct comparison with their

results. Most of the roughness parameters of a surface can be obtained from

A

two statistical functions: the frequency density of roughness heights and the

auto—correlation function of the surface. Therefore, a convenient way to

R ey & v .
—dabanh faand iiota

characterize surfaces would be to choose specific functions to approximate

real surfaces. The frequency density of the surfaces used is chosen such that

tee s am .-
| 1-‘ P
el ad .

it can be approximated by Gaussian frequency density function, and the auto-
correlation function of the surfaces is chosen such that it results in linear
auto—correlation functions for the x and y profiles which are reasonable ;;
approximation of the engineering surfaces (15). R

Since the engineering surfaces exhibit directional properties due to

- -
AT

manufacturing processes and/or running-in, these properties of the surfaces

are projected by vy , surface pattern parameter, which is the ratio of x and y

’ o
TN

correlation lengths..

s

It is observed that shear and pressure flow factors are strongly depen- »
dent on the exact topography of the surface. The values may differ

considerably even though they are evaluated for statistically identical sur-

- 2. . 2.

faces. The scatter in these values tends to increase as h/d becomes less than

o 3. This is mainly due to increased dependence of flow factors on h/o and the

-~ - 19 - A
f, ’
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directional properties of the roughness. Some typical examples of scattering
are given in Table 1. Since it is found that the flow factors do vary, we
decided to evaluate the flow factors for several different but statistically
identical surfaces and average them. The values presented in this thesis are
the average of 20 runs, which are believed to give meaningful averages.

When h/¢ becomes less than 3 the asperities start interacting. This
regime is called partial lubrication regime. Many bearings encountered in
practice operate in this regime. Given the importance of partial
lubrications, it is decided to consider only the cases where h/¢ < 3.
However, when h/c is less than .5 the asperity contact may become so severe
that it forms barriers, and allows no flow through the bearing. This
behaviour of the contact may result in unrealistic values for the flow
factors. Therefore, for the above range of the values of h/o, the use of this

model is not advised.

Pressure Flow Factor

The pressure flow factors presented in this sectin are obtained using the
model problem 1 described in Appendix A. They are usually an average of
twenty runs which use different but statistically identical surfaces as
indicated in the previous section., It is evident that ¢x is not a function of
velocity since it does not appear in the formulation of model problem 1, and
it is also not a function of the nominal pressure gradient due to the fact
that ¢‘ is normalized by this quantity (Eq. A-16). The pressure flow factor
is then only a function of the film thickness —— standard deviation of
roughness ratio and surface pattern parameter of the combined roughnes, that
is,

’x = ‘x(h/QDY)

PR
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In Patir and Cheng’s work (14), a no flow boundary condition is used for
the sides of the element. This boundary condition is justified if the

elements used in the average Reynolds Equation contain a large number of

FEPEY St VT

asperities. However, it is of interest to determine the effect of an open

type side boundary, as shown in Figure 21, on the pressure as well as shear

DT WP E

flow factors.
The results in this section are designed primarily to examine the differ-

ence between the closed and open boundary conditions. They are presented as

functions of h/o and Y . In addition, the effect of the ratio of the element
length to asperity length is studied.
In Figure 20, ¢x values are plotted against the h/o for vy = 1 . The
solid line in the figure represents the average values, while the dotted lines
show the minimum and maximum deviation from the mean. As it is also evident
from the figure that the scatter in these values increases as h/o decreases, d

this is mainly due to the fact that a small deviation from isotropy results in

a large change in ¢x . Therefore, the flow factors obtained from different
m surfaces scatter. . |
Figure 21 shows the average pressure flow factor values with open side

boundary for isotropic, transverse and longitudinal roughness. For surfaces

I ETEY |

;., having larger correlation lengths in the longitudinal direction (y > 1), the

s

pressure flow is enhanced. Therefore, ¢x is greater than unity, but for
{ isotropic and transverse roughness, ¢x is smaller than one and shows a
i. decreasing trend when h/¢ decreases from 3 to about 1. For h/o < 1,, an 4
| uptrend for ¢x is evidenced.

Figure 22 shows a comparison of ¢x between the open boundary solution and

. the closed boundary solution. It is seen that the open boundary solution E |

Giow e 24 f
-
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yields a higher value of ¢x particularly for low values of h/o. This discre-

pancy seems to pose a question on whether the close boundary solution is a

p
1
P
1
j

good approximation for calculation of these flow factors. This question was

resolved by some additional rums on the effect of N/Ax on the pressure flow

factor ¢x « The ratio N/).x represents approximately the number of asperities
in the simulated region. It shows very clearly that the open boundary
solutions are affected by the value of N/Ax whereas the close boundary
solution is totally insensitive to any change of N/Ax . As N/Ax becomes :
large, the two solutions appear to converge. This result suggests that the
closed boundary solution is indeed a good approximation for calculation of

flow factors as long as there are 10-15 or more asperities within the

o x Rie e et .

elemental area for which ¢x or ¢s will be used. Recently Tondor (16) and
also Teale and Lebeck (17) also used an approach similar to Patir and Cheng’s E
to calculate pressure flow factors for isotropic. :
: Tondor obtained values of the pressure flow factors surfaces much higher ]
than those calculated by Patir and Cheng. Tondor’s model corresponding to the %
open boundary solution but with only one or two asperities in the region of ;
! simulation. The results shown in Figure 23 explains that the over estimate T
; of ¢x from Tondor’s model is mainly due to the small sample of asperities in
;6 the simulated region. It is believed that for the average flow model to be .
g meaningful there must be sufficient asperities in the simulated regiomn to 8
E account for the integrated effect. For this reason, it appears that the close j
i. boundary solution should be the most meaningful results for the average flow "
: model Reynolds equation. j
o .
[ 7
o "
- B
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Shear Flow Factor

The shear flow factors obtained using the open-boundary model are

presented here. The values are computed for twenty surfaces and then
averaged. Similar to the pressure flow factor, the shear flow factor is also
a function of film thickness and the roughness parameters alone. However,
unlike ¢x which only depends on the statistics of the combined roughness, the
shear flow factor depends on the statistical parameters of rouoghness of both
surfaces separately. If we consider a bearing in which surface 1 is moving ;
and surface 2 stationary, and if the two surfaces are statistically identical,
there will be no net flow due to the combined effect of sliding and

roughness. If the rough surface is moving, the fluid carried in the valleys .

s,

will result in an additional flow transport, and yield a positive ¢s. On the

other hand, if the smooth surface is moving, the fluid, trapped in the valleys

coa Yaiareos oo

cosidered as a parameter.

of the rough surface, will reduce_the flow and produce a negative ¢s .

Although the shear flow factor depends on the surface roughness parameter of )
both surfaces, since, in this study, the values are obtained by using a smooth i
surface and a set of statistically identical surfaces, this dependence is not F

In Figure 24, ¢s is plotted against the nominal film thickness for

-

M. SuCien St i

different surface pattern parameters. As expected, ¢s approaches zero

as h/o increases because of the vanishing effect of roughness; however, the

flow trangsport due to the roughness reaches a maximum somewhere

- B
s a.a

;. around h/o = 1 , and then drops rapidly towards zero. This behaviour is
-
related to the contacts at partial lubrication regime. Since contacts do not

permit flow, O is decreased due to the decrease in available flow areas

[ as h/c drops below 1.
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Since the longitudinal roughness allows flow between valleys the flow

transported by the valleys of the roughness for the longitudinal roughness is

less than that transported by the transverse roughness. The ¢s curves for the ?

transverse roughness are at a much higher level than the ¢s curves for either

isotropic or longitudinal roughness. The use of an open boundary on the sides ;

produces shear flow factors slightly lower than those obtained with a closed B

boundary condition (Fig. 25). As seen in Figure 26, the open boundary _

solution is sensitive to the average number of asperities with the simulated ;
y

region, N/Ax . As this number increases, there is hardly any difference

between the opea and closed boundary solutioms.
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IX SUMMARY

Work initiated in understanding the cavitation phenomenon in a narrow gap

between sealing surfaces has led to the following results:

a)

b)

c)

An experimental rig consisting of a hydrostatic circular step pad was
rconstructed to simulate the cavitation phenomenon under a water
pressure up to 2000 psi comparable to those in the submarine stern-
tube seals. Cavitation bubbles were observed for water glycerine,
and their mixtures.

Several analytical models were studied, and the physical parameters
influencing bubble growth and collapse were identified. An analysis
was also made to determine the axisymmetric stress in the solid
induced by a sudden pressure distribution during the collapsing of a
bubble.

An existing thin-film analysis for determining the flow factors used
in the hydrodynamic analysis of rough surfaces was extended to
include the steady-state cavitation effects. Results showed that

1) The shear flow factors ¢: calculated using a model considering
cavitation (Model 3 in Appendix A) are found to be dependent on
ambient pressure Pa as well as surface pattern parameter Y and the
film thickness to roughness ratio, h/o. The ¢: increase as P;
increases, and otherwise, exhibits the same behaviour as the non-
cavitated model with respect to changes in h/c and Y.

2) The model predicts a lower shear flow factor when cavitation is
considered. They approach asymptotically to the non-cavitated values

as the ambient pressure rises.
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3) The effect of cavitation are found to be less significant
for h/o > 3 or for h/o > 0.75 and more significant for the
intermediate values.

4) The surfaces with transverse roughness resulted in more

cavitated regions than isotropic and longitudinal roughness.

- 26 -
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TABLE 1
SCATTER IN ¢x VALUES
h/o Ax-k M=N Y ¢x max ¢ average ¢x min
.75 3 25 1 .99253 .90403 .85333
1 3 25 1 1.03306 .85140 .73472
1.5 3 25 1l 1.11279 .83785 .62215
2 3 25 1 1.36528 . 90924 .53607
3 3 25 1 1.71792 1.07882 .36928
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Figure 1. Possible bubble shapes in the liquid.
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.O
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MICRONS

0.5

Fig. 3.

0.5 1.0
TIME , MSEC.

Bubble response to a step increase in pressure. Initial
R=1.1p, M=1.254. Fluid is water. Each curve corresponds
to a different pressure increment. 1l.Ap= 0.1 MPa;

Ap= 0.5 MPa; 3.Ap =1.0 MPa.
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Bubble response to first a pressure decrease and then a pressure
increase. Bubble data are the same as in Fig. 3.
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Fig. 5. Shear stress distribution in a solid beneath a region on its surface
with an applied axi-symmetric pre—ssure distribution. The shear on
the axis is shown. The surface is at Z=0. The shaded areas show
the shape of the pressure distribution on the surface.
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Figure 9. A general view of the experimental apparatus. The hydraulic
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Fig. 11. Variation of the pressure distribution with velocity for the

stepped surface. H is the gap height velocity
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Micrographs of bubbles appearing in the gap when the gap height changes

with time. a) shows a time sequence at 1000 frames/sec of bubbles

in a water-glycerin solution; b) shows bubbles in pure water.
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Figure 14. Pressure distribution about an asperity.
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Shear flow factor for isotropic surfaces.
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Figure 16.
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A

Change of shear flow factor by ambient pressure for isotropic,

transverse and longitudinal surfaces.
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Figure 17. Change of shear flow factor with h/c for different ambient

pressures.
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Figure 18.

h/c

Shear flow factor for transverse and longitudinal surfaces.
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Figure 21. Pressure flow factor for Gaussian surfaces.
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APPENDIX B

AVERAGE REYNOLDS EQUATION

For Reynold's roughness, a term given to roughness with small

slopes, the average Reynold's equation

3 3
W SIS Wi YN R B S

3x'12p 3% T 3y'‘i2y 3y 7 3x T 3t A.l

is appllcable. Since most of the engineering surfaces are of that type
of roughness, we assumed that local pressure in a rough bearing is
governed by Equation A.l.

The mean pressure is usually the desired quantity in a bearing.
However, since the HT is a random quantity in Equation A.l, the local
pressure is also a random quantity. Therefore, an ;vetage Reynolds
equation is derived in terms of average film thickness and average pres-
sure which governs the flow in a rough bearing.

Before deriving the average Reynolds equation, one should
analyze the expected flows.

The local oil flows in a rough bearing are given by

3
hT U.+U
.o L 3 12
T, ax T2 Pr A.2
_hT3 3p
qy = - Zu ay A.3
- 55 -
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%f " The film geometry randomly varies in a rough bearing. Therefore,

3 the local 0il flows are also random quantities. To obtain an average

oil flow, consider an element with area AxAy (Figure A.l). Note that j
this element should contain sufficient numbers of asperities and still j
should be small when compared with the dimension of bearing. In this k
case, the expected flow has small variances in this control volume.

Therefore, they can be obtained by averaging along the length of the

element. That is,

"
_ Ly
q, = E(q) = TEx / q, dydx AL
y
_ x+4x
= E - q A.5
1, = Elay) = = {! 4, ixdy

where E is the expectancy operator.

In order to relate these mean flows to mean quantities like

3 mean height and mean pressure, Patir-Cheng defined empirical factors g
r ‘_
F! such that expected unit flows are given by %
- 4
- - 3 — U+ U.+U
q a 2 - _h_iE _1_2.._ .i_z
3 U x1max Tz Pt 9% A.6
L. ’
3 - ~9
T = D3P ;
1y ¢y 12u 3y A.7 §
_ ;
i'. '{

where'; is the mean pressure and E& is the mean gap.
In Equation A.6 the flow in x direction consists of three parts. ]
The first term stands for the average flow due to the pressure gradient

in x direction. The symbols ¢x and ¢y are called pressure flow factors, -1
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and can be thouéht as the correction factor between a rough and smooth
bearing which has the same nominal geometry.

The second term in Equation A.6 represents the flow due to the
entrainment velocity (U1 + UZ)/Z. This term is absent in Equation A.7
because there is no velocity in this direction.

The third term in Equation A.6 arises due to the combined effect
of roughness and sliding. i: represents the additional flow tranmsport in
the valleys of the rough surface. The ¢s term compares the flow in a
rough bearing with a smooth one in case of sliding. The fluid carried
in the valleys of the moving rough surface helps to transport the flow
in the gap between the two surfaces. On the other hand, if a smooth
surface is sliding against a stationary surface, the flow transport will
be obstructed by the stagnant fluid in the valleys of the stationary
surface. For this reason, the ¢s will be negative.

If we write down the mean flow balance on the control volume
we obtain

aq Eﬁi 33&

x Ty T3 A.8

That is, the net flow leaving the volume is equal to net flow coming into
the volume and the rate of change of volume.

Substituting Equation A.6 and A.7 into A.8, the following is

obtained:
2 23R, =10 o apy +U2 |
ax "x 12y ox y 120 oy X
e M A B A.9
2 oxX ot
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In order to calculate the mean pressure and mean flow, one should com-
pute the flow factors first, as indicated in Chapters I and II. Flow

factors have the properties

o, o, > 1 h/o + =
¢s->0 .h/o'-reo

Derivation of ¢x and ¢y through simulation (Model problem 1):

In the previous section, it is assumed that the bearing consists
of small, rectangular bearings with area 6Ai and a constant nominal film
thickness of h. The partitioned bearing approaches the geometry of the
real bearing as the SAi becomes smaller. However, GAi should be large
enough to contain sufticient number of asperities.

For each bearing pressure flow factors can be calculated by
applying an arbitrary pressure flow on the boundaries of the element and
solving pressure distribution and flow, then comparing it with the
rough bearing with the same nominal geometry. Hence, evaluating for
different nominal film heights ¢x and ¢y can be obtained as a function
of h.

To obtain ¢x’ Patir and Cheng (14) assumed U1= Uy,=1U (pure

rolling) and considered the following model for simulation

3 3
h h 3h, 3
P S TYION W S T, B |
3%i12y ax) T aylizy oyl T U It he A.10

where hT = h + 61 + 62 (see Figure A.1l),

with boundary conditions (see Figure A.2):
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p=p, atx=0
2) p = Py at x = Lx

l —L = =
D=+ A-7Ip, y=0 y=L

X x
4) no flow at contact points.
If we consider righthand side of Equation A.10, since h is
constant within the element and hT = h + 61 + 62
ﬁ_ah,r N ahT . 3(61+62) 3(61+62) 1l
ax at ox 3t :

The 61 and 62 are time dependent due to the motion of the surface;

therefore one can write them as

§ = 8,(x - ﬁ;, y), 1 = 1.2 A.12
and
36 38
e 1=1.2 A.13
t ax

Therefore, the righthand side of equation A.10 becomes

oh, BhT s 96

= T i i
Usx *35¢ = U5 _Uat 0 A.14
Then, Equation 10 becomes:
3 3
h h
2. I 3%, 3, T 3py,
%125 ax) ¥ Iylize ay) " © A.15

The 61 and 62 are randomly generated with known statistical

properties, as outlined in Patir (15),
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The pressure in the simulation element is solved using Equation

A.15 and then ¢x is calculated using Equation A.6 and Equation A.S5.

Since Ul = U2 = U, Equation A.6 becomes

q. = -¢ h_3_£+u—
Ix x 12u 3x hT

After cancellation it becomes

L. L 3
y xh
Lll. / 1§ %Edydx
Xy 0 O s
¢ = A.16
* 2
12p 3x
where
3p .28 " Pa
3x L
X

The calculation of ¢y follows the same steps. The only dif-
ference is the flow in y-direction sees a different surface pattern
than ¢x. That is, ¢x(h/o), Y) = ¢y(h/o, 1/y). Therefore, one should
expect to get similar ¢x and ¢y values for isotropic surfaces.

Since pressure flow factors depend precisely on the roughness
of each surface, in order to obtain a meaningful average one should

solve the same problem for several times and average it.

Derivation of ¢s through simulation (Model Problem 2):

The shear flow factor, ¢s’ is obtained by eliminating O and
¢y from the equation A.8. Although there is a possibility of cavita-

tion in a bearing when some sliding is introduced, this model problem

does not consider that. This effect will be discussed in the following

section in model problems.
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To eliminate Oy and ¢y from equation A.8, the rolling velocity
is taken to be zero (i.e., Ul = Uz). Then model problem for ¢S becomes

pure sliding of two nominal surfaces:

3 3
h h ]
T 3p, . hT
ax[12u ax] [12u ] = A.17
h.r = h + 61 + 52
Ul = -U2 = 1/2 Us
The boundary conditions are:
1) P= Py at x =0, x = Lx

2 =p,+C. aty=0,y =1L
) P =p,HCy y y=1L
3) No flow at contacts.

To obtain flow factors, an infinitesimal displacement is induced

on two surfaces and the pressure is solved.
Solving E; from Equation A.9,
3 L L 3

hT§2 1 IYIX h
0

% =E(- 12u ax) = LL 0 12]-1 Bx) dxdy A.18

Since the mean pressure gradient is zero, and there is no rolling

velocity, this expression is equal to the additional flow transport

due to sliding:

4
qx.—zs-c ¢s Aalg

Combining A.19 and A.18, ¢s becomes

h
- 2 1 Y ¢ X _T_
% " TG0 LT [ (f) (- 70— 22) dxdy A.20

61 - 1

‘qu~"

L 3
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Derivation of ¢s with effect of cavitation (Model Problem 3):

The shear flow factor is evaluated for cavitation using Equa-
tion A.17 of Model Problem 2 with different boundary conditions. It
is assumed that the lubricant will cavitate the regions where the
pressure is negative and the pressure will be equal to cavity pressure
which 1is practically zero. The Model Problem 3 becomes the solution

of Equation A.17 with boundary conditions:

(1) p= Pa x=0 ’ X = Lx
2 = + C =0 s =L
(2) p=p, +C, y y= L
p ifp>0
(3) p= 0<x<Lx
0 if p<O 0 <y« Ly

(4) No flow at contact points.
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APPENDIX B

FINITE DIFFERENCE FORMULATION

The Reynolds equation for Model Problem 1 is non-dimensionalized

as:

L
3 33 33
2o Ry e DL 32 = 0 B.1
3% ax y 7
where
P-Pp h - -
Pa— H, = —% x ==X y =L B.2
pApr T c L Ly

Similarly, the Reynolds equation for Model 2 becomes:

3
3 3 3p. HT
[H.r —P-]+(-—) ay[r 5 = — B.3
where
o Smy) x5t .
6uU_L, 20

{' and the Reynolds equation for Model Problem 3 becomes similar to Equa-

tion B.3 and B.4. However, since the pressure in Model Problem 3 is -4
E sensitive to nominal film thickness and asperity size rather than stan-
dard deviation of roughness o2 and bearing length Lx’ the above expression

for P is non-dimensionalized as

hz(p-pA)
- —ir B.5
? Py 6uU_L
L‘. ]
- 63 - ’
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:fﬁ where
j-i L, = AxAx
;: and
o o E
8 NXA
x
!! The boundary conditions are similarly normalized. Since the j
f lefthand side of the Equations B.l and B.3 are the same, two problems
can be solved simultaneously using the same coefficient matrix.
-
The finite difference equations for the two model problems can .
be written in the form:
G14P1-1, 581384, 3-1"P13F 157 %11, 3P 141, 574, 4101, 541 = Fys B.6 r!
for 1 =1,2,...,N j=1,2,...,M '
where fj
3 3
€45 = Br 4-1/2, Eiy ™ "B 4, 5-1/2 N
;
Pas ™ "y * O,y * iy * By g 1
i
:
To obtain that form of equation both sides of the equation i
have been multiplied by -(Ax)2 and the grids are chosen such that: A
Af%x -1
, AyL .
P y ,
- that is B
. Ax = Ay
The coefficient matrix of the Equation 8.6 may be stored as
y
,. symmetric banded matrix with Mx MN dimensions. The finite difference -
k f
by ’
t
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equation in matrix form becomes

[cllp] = [£f] B.7

and can be solved by Gaussian elimination.

Then flow and shear flow factors can be obtained by numerical
integration of Equations A.16 and A.20 of Appendix A.

To include no flow boundary conditions at contact points, the
HT at a half grid point is set equal to a small ¢ whenever its value
is negative. Although the € does not affect the pressure distribution
through the bearing, it creates some pressure peaks under the contacts
to avoid the pressure gradient created only due to the numerical reason,
the flow is set equal to zero during the integration process to calculate
flow factors. Another numerical problem arises when a pressure point
surrounded by four contact points. To avoid this behaviour, these
equations are helpful.

Finally, one should note that G and E in Equation B.6 are the
third power of the heights at half-grid points. These heights at half-
grid points cannot be obtained by averaging the heights at grid points
since it is a random quantity. Therefore, heights should be generated

at half-grid points as well.
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Figure A.1
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