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ABSTRACT

An experimental rig consisting of a hydrostatic circular step pad was

constructed to simulate the cavitation phenomenon under a water pressure up to

2000 psi comparable to those in the submarine stern-tube seals. Cavitation

bubbles were observed for water glycerine, and their mixtures.

P Several analytical models were studied, and the physical parameters

influencing bubble growth and collapse were identified. An analysis was also

made to determine the axisymmetric stress in the solid induced by a sudden

pressure distribution during the collapsing of a bubble.

An existing thin-film analysis for determining the flow factors used in

the hydrodyamic analysis of rough surfaces was extended to include the ste-dy-

state cavitation effects. Results showed that the shear flow factors cal-

culated using a model considering cavitation are dependent on ambient presure,

*" surface pattern parameter and the film thickness to roughness ratio, h/a

The model predicts a lower shear flow factor when cavitation is con-

sidered. They approach asymptotically to the non-cavitated values as the

ambient pressure rises. The effect of cavitation are found to be less signi-

ficaut for h/a > 3 or for h/a > 0.75 and more significant for the intermediate

values. The surfaces with transverse roughness resulted in more cavitated

regions than isotropic and longitudinal roughness.
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I * INTRODUCTION

In high pressure face seals, such as the submarine stern-tube seals, it is

often found from the prematurely failed seals that sections of the seal surface

show a matted appearance similar to the surfaces damaged by cavitation (1). This

mode of failure appears to be even more prevalent as both the pressure differential

and the seal size are enlarged. It has been suggested that such surface damage

may be caused by the collapsing of cavitated bubbles associated with the sudden

drop in pressure in a rapidly diverging channel. In order to understand the

basic mechanism of cavitation damage in a narrow gap between the sealing surfaces,

a research program was initiated at Northwestern to meet the following objectives:

a) Design and construct an experiment to simulate the cavitation phenomenon

under conditions comparable to those in the recent high pressure-stern-

tube seals.

b) To formulate an analytical model to explain the growth and collapse of

the cavitating bubbles in a narrow film.

c) To employ an existing thin-film analysis for rough surface to predict

the effect of cavitation on the steady-state performance between

sliding sealing surfaces.

This report presents the results obtained during the first phase of the

above described tasks.

m--
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11. CAVITATION IN FACE SEALS

Mechanical seals consist of two surfaces in relative motion and in intimate

contact. The gap between the parts is of the order of the surface irregularities

(typically a fraction of a micrometer). The formation and collapse of vapor

bubble in the fluid that fills the thin sealing gap is known as cavitation in

face seals.

ICavitation in external flows; e.g., around propellers or moving objects

.immersed in water, involves vapor bubbles growing in the liquid at low pressure

regions, and subsequently collapsing when exposed to a higher pressure. Experi-

* ments have shown these bubbles start as nuclei in the water of about 1 micrometer

* in size (2). Nuclei of this size in a seal gap must grow into disk shaped vapor

*bubbles because of the constraining surfaces. The fundamental geometry is P

* cylindrical rather then spherical (Fig. 1 illustrates this difference).

Cavitation damage to solid surfaces is associated with vapor bubbles

collapsing in the neighborhood of the surface (3). In order to explain cavitation

* damage in seals, it is necessary to establish how vapor bubbles grow and collapse

* in the gap region. A, bubble must grow to a certain size before its collapse can

generate enough disturbance to cause damage.

Several paths can produce this history for a bubble. The most direct occurs

*when the bubble remains stationary in the fluid and the local pressure first

decreases and then increases. Such a pressure history might be generated by

squeeze fim action if the gap between the two surfaces periodically changes

(due to vibration or other dynamical effects). For unconfined flows cavitation

is produced in this manner by ultrasonic generators. Unsteady pressure fields W

such as these are also produced by roughness on the two surfaces. As asperities

pass one another, the neighboring fluid is subjected to a time varying pressure

field. 4

-2-
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Another path is through convection, wherein a bubble is formed in a low

* pressure region and is then transported by the fluid to a region where the pres-

sure is higher. A typical example of this process for unconfined flows occurs

on submerged bodies where vapor bubbles originate at low pressure shoulder regions

and collapse when transported to a reattachment region (4).

* An important question in this case is how a steady flow produces an unsteady

flow of bubbles. Turbulence plays a role as well as the stability properties

of the interface between the vapor and liquid. The incompatability of the con-

stant pressure vapor filled region and the adjacent liquid flow which requires

pressure changes along the boundary is also important (5). This latter effect

might also be important in the seal problem, whereas turbulence and interfacial

instability are unlikely to be of importance because of the characteristically

low Reynolds number for seal flows.

4r



III. STEADY VAPOR BUBBLES IN SEAL FL

The flow in the seal gap satisfies the same equations as the flow in journal

bearings. If only one seal surface is rough, the flow satisfies (6)

3 p 3

where P is the local pressure, x, y are cartesian coordinates in the plane of

the surface, h is the variable spacing between the surfaces, M is the viscosity,

and U is the local velocity of the smooth surface in a coordinate system where

the rough surface is at rest. The local average fluid velocities are

h2
U xUh (2)

2
U BEJLh (3)

y 12a BY

We ask the question.whether a steady vapor bubble is possible in the flow

described by these equations? These equations do not include details of the

bubble shape in the third dimension. The effect of this can be accounted for

to some degree of approximation by imposing a pressure jump across the vapor-

liquid interface equal to the product of the surface tension and the curvature.

For a steady vapor bubble, the requirement at the interface is that the pressure

is constant, and that the interface is a stream line. The bubble must also be

a local minimum of pressure, so that the pressure must rise as one moves away

from the bubble. This pressure gradient always drives the liquid toward the

vapor bubble. The moving boundary always tries to carry the liquid in the

direction of its motion. These two forces can be in balance for a streamline-

bubble boundary only if the normal direction of the bubble surface in the direction

- 4-
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from the vapor to the liquid has a component in the direction of the motion

of the moving boundary. This implies that the only steady bubbles which are

possible are those whose upstream surface is a solid asperity that excludes the

fluid (h-O). Separation of the flow into vapor and liquid layers in the third

dimension is not likely in the steady state unless the vapor in composed of a

permanent gas.

If the solution of Eq. (1) gives a pressure less than the vapor pressure

of the liquid, and the conditions stated above are not met, the flow must

violate the equation either by becoming unsteady or by developing a strong three

dimensional component. Perhaps convected bubbles appear which can be carried to

high pressure regions where they collapse.

For flows where steady vapor bubbles are assumed to exist, the pressure dis-

tribution on the surface is different than that which would exist if no bubbles

were present. Calculations of the effect of this steady cavitation on the

leakage rate and the forces on a seal surface are presented in Section VII.

IJ
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IV. BUBBLE DYNAMICS IN CONFINED SPACES

Some idea of the possible pressures that can be produced by bubble collapse

in the seal gap can be obtained by examining limiting forms of the equations of

motion for bubble growth. The inviscid limit is appropriate when changes occur

so rapidly that viscous shears do not have time to diffuse across the gap. In

this limit, the dynamic equation for a bubble in a constant thickness gap can be

obtained by a simple extension of the equation for a spherical bubble in an

infinite space (7). For the limit that the bubble radius is much greater than

the gap thickness, the equation is

P fa ILL (R". +U NT 2g - pv (4)

R

Here R is the radius of the disk shaped bubble, U is dR/dt, r' is some outer

boundar7 at a distance much greater than R, h is the gap thickness, a is the

surface tension constant, P is the vapor pressure of the liquid, p is the fluidv

pressure at large distances from the bubble, p is the fluid density, and NT is

related to the amount of inert gas within the bubble. Values of R and (P - P)

which make the right hand side equal to zero are possible equilibrium sizes for

a given nucleus. Figure 2 shows this relation graphically. For a given NT,

there is some pressure below which no equilibrium size can exist. For values of

R, (P - P ) off the equilibrium curve, Eq. (4) shows how R changes with time.W0V

If we define
4

_lT2 R 2 0o t t
Ro ( ( I, R' To  -  , th + (P.; v/o O

the equation can be written
2

22 P~ 2fndR" + k/ j R 2  1 + --eo-R (5)

g 0

-6-
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0and R 0are characteristic length and time scales. The solution of this

equation for two different pressure histories are shown in Fig. 3 and Fig. 4.

In Fig. 3 the change in R for a step increase in pressure is shown. The initial

conditions were that R is an equilibrium value at t'- 0, and dR/dt -0. A step

increase in pressure is applied and R is seen to oscillate with a period dependent

00 on the size of the pressure jump. In Fig. 4, a low pressure is first applied so

that the bubble grows, and then a high pressure is applied. Here, the bubble

collapses to zero size. This behavior is similar to that of a spherical bubble

I and is known to lead to high pressures and cavitation damage to surfaces. This

K 2
type of behavior arises from inertia effects that are represented by the U terms

in the dynamical equation.

The other limiting case for bubble growth corresponds to such slow changes,

that viscous forces balance the pressure forces and the inertia is of no impor-

tance,

For this limit, the flow in the neighborhood of tLi liquid-vapor interface

* presents some difficulties. A complex interaction of surface tension, viscous

stresses, and pressure determine the interface shapa, the thickness of the fluid

* layer adhering to the solid surfaces, and the pressure changes in the neighborhood

* of the bubble (8,9). A qualitative view of the flow in this limit can be

obtained by balancing the bubble pressure with a quasi-static viscous flow. An
4 P

approximate equation is

.1k f LL RU- = T2 P - Pv (6)

This equation does not have the non-linear terms that gave the solutions of the

inviscid equation their violent behavior on collapse. If the flow in seal gaps

is controlled to a good approximation by this equation, then the rapid collapse
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of bubbles leading to cavitation damage is not likely. The time scale for growth

and collapse becomes the crucial element in determining which type of flow field

will exist, and the physical basis for estimating this becomes the goal of this

work.j



V. STRESSES IN THE SOLID

Cavitation damage results from the stresses applied to the solid surface by

the flow field associated with a collapsing bubble. For extended flows only a

small fraction of the collapsing bubbles nroduce damage (10). This is thought

to be due to the requirements that damaging collapse must occur near the surface,

and also must be of the type (asymmetric) and orientation that can cause damage.

These two requirements strongly restrict the number of damaging blows.

Cavitation in a gap always occurs in close proximity to the surface and

only one type of collapse is likely. If damaging collapse occurs at all, it is

likely that almost every bubble will produce damage.

The stresses in a solid produced by an axisyumnetric distribution of pressure

on the surface can be computed within the elastic limit by existing theory (11).

Knowledge of the pressure field generated by the fluid motion will easily lead

to an assessment of its damage producing potential. The shear stress on the

axis produced by two different distirbutions of surface pressure is shown in

Fig. 5. One is for a uniform pressure within a circle, and the other is for a

ring shaped distribution. The latter distribution is more typical of that

associated with bubble collapse. In both examples, the shear stress on the axis

is maximum at a short distance below the surface, and is a fraction of the sur-

face pressure. Other distributions of pressure give similar results.

.9



VI. EXPERIENTAL PROGRAM

An apparatus was constructed that could produce cavitation in a seal like

gap, and where the bubble growth and collapse process could be produced in a

controlled and observable manner.2

The Ri2t

A drawing of the rig test area is shown in Fig. 6. A flat or shaped test sur-

* face ((4) in Fig. 6) 25.4 mm in diameter is held. against a flat, transparent quartz

disk ((5) in Fig. 6) by a hydraulic cylinder. The test surface is mounted so that

* it can remain parallel to the quartz surface. A load cell ((7)) supports the

* quartz and measures the force applied to the surface. The force between the

disk and the surface can be varied in time with a frequency up to 200 Hz and I

with an amplitude of the steady component plus the oscillating component of up

* to 2000 lbs (8910N). The test surface has a central hole through which liquid

6can be forced with a pressure up to 2000 psi (13.8 x 10 Pa). A photograph of

the test area is shown in Fig. 7.

The hydraulic cylinder, and load cell are part of the closed loop drive

system shown schematically in Fig. 8. A voltage into the input module causes a

*force to be applied to the test surface with the same time variation as the

voltage and with a level proportional to the voltage. An M'TS "ISERVAC"I controller

is used. An overall view of the test facility is shown in Fig. 9.

Test Procedure

The test surface is held so that it remains parallel to the transparent

surface. An inverted microscope permits observation and photography of the inter-I

face between the disk and test surface by looking through the flat quartz disk.

-10-



A proximity probe (Bentley-Nevada)iznbedded in the quartz senses the motion of

the test surface. A pressure transducer whose face can be lapped flush vith

the test surface is being installed in the test piece.

For normal operation, a test surface is made with a stepped surface as

shown in Fig. 10. The surface can be examined with a tallysurf profilometer to

verify its shape. By changing the liquid pressure and applied steady force,

* the average gap size can be set over a limited range. The pressure distributions

* associated with three different gap sizes are also shown in Fig. 10, each with

a different shape corresponding to a different total force related to the pres-

sure integral. If this steady force is modified by an oscillating force, the

* pressure distribution and gap will vary accordingly, and the desired negative

pressures can be produced in a region of the gap for part of the cycle. Figure

11 shows three instantaneous pressure distributions for different parts of a

cycle - when the surfaces are approaching one another, when they are separating,

and when they are at rest. The velocities shown correspond to a 30 Hz oscillation

* with an aplitude of about half-the initial gap.

_71 The negative pressure region occuring when the plates are separating (or

when upper surface is moving upward) is the region where cavitation is expected

* to occur. The process of bubble growth and collapse in this region can be observed

* and serve as a basis for evaluating the various theoretical models.

Results

The apparatus has gone through several generations of change, and is now
4

rigid enough and with sufficient degrees of freedom, to enable it to perform as

* planned. The control of the pressure in the gap by using the force on the surface

* as the controlled variable has presented some problems, particularly if the force

-4
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changes sign during part of the cycle. Control by means of local pressure or by

relative displacement of the surface is now being investigated and should lead

to better defined conditions in the gap.

Some photographs of bubbles produced by the apparatus are shown in Fig. 12.

The top picture shows several frames of a motion picture take through a micro-

scope at 1000 frames/seconds of bubbles forming and collapsing 
in glycerin. The

large viscosity of glycerin slows down its motion so that the history of the

motion is accessible. The lower picture slows a still picture of bubbles pro-

duced in water (1/1000 second exposure). The small viscosity and large surface

tension of water makes it more difficult to produce bubbles and also more difficult

to follow the details of their history. At this time, all we can say is cavita-

tion bubbles have been produced, but insufficient observations have been obtained

with which develop understanding of the cavitation process.

IP



VII. THE FLOW FACTOR AND LOAD CAPACITY FOR CAVITATION MODEL

Introduction

When sliding is introduced in a rough bearing, there is a possibility of

cavitation at the trailing edge of the asperities. Cavitation is the result

of pressure reductions in the liquid, more precisely, it occurs if the pres-

sure is reduced and maintained for sufficient duration below a certain

critical pressure which is determined by the physical properties and condi-

tions of the liquid. The type of cavitation studied in this section is termed

steady cavitation; it refers to the time independent situation in which the

liquid flow detaches from the rigid boundary of an immersed body.

When a sliding is introduced in a rough bearing, the pressure distribu-

tion about each asperity is expected to be antisymmetric. However, due to the

fact that the lubricant cannot withstand large negative pressures, it can

rupture at the negative pressure zones. There are conflicting views on

* whether or not this cavitation will always occur. For examples, for some

*geometrical situations, Burton (12) believes that cavitation voids could not

be expected to nucleate in the short time available. However, Hamilton et.

*al. (13) relates the load support mechanism in face-type or axial seals to the

cavitation. They show that the classical lubriction theory does not predict

the existence of load support in the case *of flat, parallel surfaces which are

separated by a uniform, steady film of Newtonian fluids. But, since high

positive pressures overcome the negative pressures which are truncated due to

the cavities, these types of seals do produce a net load carrying capacity.

In this section, it is assumed that cavitation occurs whenever the fluid

pressure drops below the ambient pressure. However, as indicated above,

although the pressure drops below the critical pressure, there is some _

question as to whether cavitation always occurs. Therefore, one should be* ]3



aware of the fact that this model may under-estimate the shear flow factor in 2

case of cavitation, which tends to reduce shear flow in a bearing.

A typical contact area in a rough bearing and the negative pressure zones

is shown in Figure 13. As one may observe, most of the cavitation occurs at
the trailing edge of the contacts and the rest occurs at the trailing edge of

the asperities.

To analyze the shear flow and load capacity in case of steady cavitation,

it is assumed that these negative pressure zones are, in fact, isobaricr

regions, whose pressure is equal to the vapor pressure of the lubricant.

pressure build-up in the bearing, it is taken to be zero.

The shear flow factor is calculated by substituting this modified pres-

sure into Equation A-20 (Appear in Appendix A). Finally, the load capacity

for the bearing is evaluated using truncated pressure distribution as

indicated in the following sections.

* Shear Flow Factor

The shear flow factors that are presented in this section are evaluated

using model problem 3 as described in Appendix A. The presence of the *

cavities affects the shear flow in a bearing due to the reduction of the areasp

where lubricant flows. The existence of a cavity strongly depends on the .

ambient pressure and sliding speed of the bearing; therefore, the shear

flow ( )becomes a function of ambient pressure and sliding speed as well

as h/a and y. However, since *5is non-dimensionalized by U, the shear flow

factor becomes

*j **50 (h/a,y,P a (7)
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The effects produced by these parameters are now discussed. In Figure

14, a typical pressure distribution about an asperity is shown. It is evident

also from the figure that as the ambient pressure increases the change of

negative pressures near asperity decreases. Therefore, one expects to get

higher flows as the ambient pressure rises. The effect of ambient pressure on

shear flow for isotropic surfaces is given in Figure 15. It is observed that

as the ambient pressure increases, the s values, evaluated considering cavi-

tation effects, approach asymptotically the shear flow factors without cavita-

tion. This approach of becomes much faster for h/a -3 and h/a -0.5 . It

is slower for the intermediate values.

The faster convergence of shear flow factor *5 at high h/a can be

attributed to the offset of the cavitation effects due to the other

parameters. At high h/a values, the volume occupied by cavitation becomes

less dominant to the min flow. (In contrast, for small values of h/a the

cavit&tion effects become more dominant because of an increasing number of

contacts in the bearing area.)

Figure 16 shows the change of * with ambient pressure for isotropic,

transverse and longitudinal roughness. It is found that the change in s is

larger for transverse roughness type, that is, cavitation is more pronounced

for these types of surfaces. This is vainly due to the fact that the areas

behind the asperities which are cavitated are larger than those of isotropic

and longitudinal, the fluid ust travel a longer distance to fill the cavities

at the trailing edges of the asperities.

In Figure 17, the variation of shear flow factor with h/a for isotropic

surfaces is shown. It is found that shear flow factor for the cavitation

model behaves the same way as the shear flow factor of the model described in

Appendix A for non-cavitating flow. It approaches zero as h/a increases
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above 3 due to the vanishing effect of roughness; as h/a decreases it

increases to a certain imaximin and then sharply drops towards zero. The

reason for this behaviour is due to the increased flow transport in the

valleys. The decrease is due to the decrease in flow area because of

contacts, as described in Appendix A. However, it is found that the mximumj

*points shift towards high h/a values as ambient pressure is increased. When

cavitation occurs, the flow is reduced due to blockade by cavitated regions3

and contacts. It is also observed in Figure 15 that for values of h/ay less

than 1 cavitation effects are less pronounced compared to h/a ), 1

Therefore, as h/a drops below 1, the decrease in flow is compensated by the

decrease in cavitation. This is because at low ambient pressures the

* cavitation is more effective, and compensation becomes more dominant, delaying

the shear factor from dropping towards zero.

Figure 18 shows the change of *with h/a for transversely and

* longitudinally oriented roughness. The surfaces with longitudinal roughness

* result in a lower shear flow than the surfaces with transverse roughness.

However, it is clear from the figure that transversely oriented surfaces are

* more sensible to ambient pressure, since more cavitation occurs for that case.

* Load Capacity

The classical lubrication theory does not predict any load support for

two parallel, smooth surfaces sliding against each other. For rough surfaces,

the pressure distribution about each asperity is anti-symmetric, and the

negative pressures cancel the positive pressures. This results in no net load

support, even for rough surfaces. However, since is practice the negative

pressure regions may be cavitated, rough surfaces can create a net load

capacity.
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The load capacity in a bearing is given by

L L
w f0x f Y p dxdy (8)

0 j
where p is the truncated pressure distribution. Defining non-dimensional

pressure and load as

h 2  h2

- 6PU 2L  w P= 6vUsLx p (9)

Equation (8) becomes

w 1 o P dxdy (10)

The results calculated using Eq. (10) are shown in Figure 19.

Conclusions

1. The shear flow factors calculted using a Model considering cavita-

tion (Model 3 in Appendix A) are found to be dependent on ambient pressure

as well as surface pattern parameter and h/a . The *5 increases

as P increases, and otherwise, exhibits the same behaviour as the non-

cavitated model with respect to changes in h/a and Y.

2. The model predicts a lower shear flow factor when cavitation is

considered. They approach asymptotically to the non-cavitated values as

the ambient pressure rises.
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3. The effect of cavitation is found to be less significant for h/a > 3

or for h/a ) 0.75 and more significant for the intermediate values.

4. The surfaces with transverse roughness resulted in more cavitated

regions than isotropic and longitudinal roughness.
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VIII. COMPARISON OF FLOW FACTORS FOR GAUSSIAN SURFACES

BETWEEN THE OPEN AND CLOSED BOUNDARY MODELS

Introduction

In this section, the flow factors obtained through simulation are2

presented. Although one may use any kind of surface roughness, it is

impossible to consider every possible roughness configuration within the scope

* of this study. Therefore, only the Gaussian surfaces as suggested by Patir

and Cheng (14) have been used to facilitate a direct comparison with their

results. Most of the roughness parameters of a surface can be obtained from

two statistical functions: the frequency density of roughness heights and ther

* auto-correlation function of the surface. Therefore, a convenient way to

characterize surfaces would be to choose specific functions to approximate

*real surfaces. The frequency density of the surfaces used is chosen such that

it caw be approximated by Gaussian frequency density function, and the auto-

correlation function of the surfaces is chosen such that it results in linear

* auto-correlation functions for the x and y profiles which are reasonablq

approximation of the engineering surfaces (15). 7
Since the engineering surfaces exhibit directional properties due to

4 manufacturing processes and/or running-in, these properties of the surfaces

*are projected by y , surface pattern parameter, which is the ratio of x and y

correlation lengths..

It is observed that shear and pressure flow factors are strongly depen-

dent on the exact topography of the surface. The values may differ

* considerably even though they are evaluated for statistically identical sur-

1 faces. The scatter in these values tends to increase as h/a becomes less than

3. This Is minly due to increased dependence of flow factors on h/a and the

-19-
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directional properties of the roughness. Some typical examples of scattering

are given in Table 1. Since it is found that the flow factors do vary, we

decided to evaluate the flow factors for several different but statistically

identical surfaces and average them. The values presented in this thesis are

the average of 20 runs, which are believed to give meaningful averages.

When h/a become less than 3 the asperities start interacting. This

* regime is called partial lubrication regime. Many bearings encountered in

practice operate in this regime. Given the importance of partial

lubrications, it is decided to consider only the cases where h/c, < 3.

However, when h/a is less than .5 the asperity contact may become so severe

* that it formsn barriers, and allows no flow through the bearing. This

* behaviour of the contact may result in unrealistic values for the flow

factors. Therefore, for the above range of the values of h/a, the use of this

model is not advised.

Pressure Flow Factor

The pressure flow factors presented in this sectin are obtained using the

model problem 1 described in Appendix A. They are usually an average of

twenty runs which use different but statistically identical surfaces as

.0indicated in the previous section. It is evident that xis not a function of

velocity since it does not appear in the formulation of model problem 1, and

it is also not a function of the nominal pressure gradient due to the fact

that #* is normalized by this quantity (Eq. A-16). The pressure flow factor

is then only a function of the film thickness - standard deviation of2

roughness ratio and surface pattern parameter of the combined roughnes, that4

Is,

+* # (h/a,y)
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In Patir and Cheng's work (14), a no flow boundary condition is used for

* the sides of the element. This boundary condition is justified if the

* -elements used in the average Reynolds Equation contain a large number of

* .asperities. However, it is of interest to determine the effect of an open

type side boundary, as shown in Figure 21, on the pressure as well as shear

flaw factors.

The results in this section are designed primarily to examine the differ-

*ence between the closed and open boundary conditions. They are presented as

functions of h/a and y . In addition, the effect of the ratio of the element

length to asperity length is studied.

In Figure 20, *, values are plotted against the h/a for y - 1 . The

solid line in the figure represents the average values, while the dotted lines

show the minimum and maximum deviation from the mean. As it is also evident

from the figure that the scatter in these values increases as h/a decreases,

this is mainly due to the fact that a small deviation from isotropy results in

a large change in *x 0 Therefore, the flow factors obtained from different

surfaces scatter.

Figure 21 shows the average pressure flow factor values with open side

boundary for isotropic, transverse and longitudinal roughness. For surfaces

* having larger correlation lengths in the longitudinal direction (y > 1), the

pressure flaw is enhanced. Therefore, f x is greater than unity, but for

isotropic and transverse roughness, 0 is smaller than one and shows a

-w decreasing trend when h/a decreases from 3 to about 1. For h/a 4 1,, an

uptrend for 0xis evidenced.

Figure 22 shows a comparison of 0 between the open boundary solution and

*the closed boundary solution. It is seen that the open boundary solution



-22

yields a higher value of *x particularly for low values of h/a. This discre-

pancy seems to pose a question on whether the close boundary solution is a

good approximation for calculation of these flow factors. This question was

resolved by some additional runs on the effect of N/X on the pressure flow
x

factor x The ratio N/x represents approximately the number of asperities

in the simulated region. It shows very clearly that the open boundary

solutions are affected by the value of N/X whereas the close boundaryxJ
solution is totally insensitive to any change of N/Xx . As N/x becomes

large, the two solutions appear to converge. This result suggests that the

closed boundary solution is indeed a good approximation for calculation of

flow factors as long as there are 10-15 or more asperities within the

elemental area for which x or *s will be used. Recently Tondor (16) and

also Teale and Lebeck (17) also used an approach similar to Patir and Cheng's

to calculate pressure flow factors for isotropic.

Tondor obtained values of the pressure flow factors surfaces much higher

than those calculated by Patir and Cheng. Tondor's model corresponding to the

open boundary solution but with only one or two asperities in the region of

simulation. The results shown in Figure 23 explains that the over estimate

of x from Tondor's model is mainly due to the small sample of asperities in

the simulated region. It is believed that for the average flow model to be

meaningful there must be sufficient asperities in the simulated region to

account for the integrated effect. For this reason, it appears that the close

4 boundary solution should be the most meaningful results for the average flow

model Reynolds equation.
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Shear Flow Factor

The shear flow factors obtained using the open-boundary model are

presented here. The values are computed for twenty surfaces and then

averaged. Similar to the pressure flow factor, the shear flow factor is also

a function of film thickness and the roughness parameters alone. However,

unlike xwhich only depends on the statistics of the combined roughness, the

shear flow factor depends on the statistical parameters of rouoghness of bothJ

surfaces separately. If we consider a bearing in which surface 1 is moving

* and surface 2 stationary, and if the two surfaces are statistically identical,

* there will be no net flow due to the combined effect of sliding and

roughness. If the rough surface is moving, the fluid carried in the valleys

* will result in an additional flow transport, and yield a positive *. On the

other hand, if the smooth surface is moving, the fluid, trapped in the valleys

of the rough surface, will reduce the flow and produce a negative Os

Although the shear flow factor depends on the surface roughness parameter of

both surfaces, since, in this study, the values are obtained by using a smooth

surface and a set of statistically identical surfaces, this dependence is not

cosidered as a parameter.

In Figure 24, 0 is plotted against the nominal film thickness for
5

*different surface pattern parameters. As expected, * approaches zero

as h/a increases because of the vanishing effect of roughness; however, the

flow transport due to the roughness reaches a maximum somewhere

* around h/a - 1 , and then drops rapidly towards zero. This behaviour is I

related to the contacts at partial lubrication regime. Since contacts do not

permit flow, a is decreased due to the decrease in available flow areas
5

as h/a drops below 1.
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Since the longitudinal roughness allows flow between valleys the flow

transported by the valleys of the roughness for the longitudinal roughness is

less than that transported by the transverse roughness. The *curves for the

transverse roughness are at a much higher level than the curves for either

isotropic or longitudinal roughness. The use of an open boundary on the sides

produces shear flow factors slightly lower than those obtained with a closed

boundary condition (Fig. 25). As seen in Figure 26, the open boundary

solution is sensitive to the average number of asperities with the simulated

region, W/A . As this number increases, there is hardly any difference

between the opeii and closed boundary solutions.

- - - - -- - - -



LIX SUMMARY *
Work initiated in understanding the cavitation phenomenon in a narrow gap4

between sealing surfaces has led to the following results:

a) An experimental rig consisting of a hydrostatic circular step pad was

constructed to simulate the cavitation phenomenon under a water *
pressure up to 2000 psi comparable to those in the submarine stern-

tube seals. Cavitation bubbles were observed for water glycerine,

and their mixtures.

b) Several analytical models were studied, and the physical parameters

influencing bubble growth and collapse were identified. An analysis

was also made to determine the axisymmetric stress in the solid

induced by a sudden pressure distribution during the collapsing of a

bubble.

c) An existing thin-film analysis for determining the flow factors used

in the hydrodynamic analysis of rough surfaces was extended to

include the steady-state cavitation effects. Results showed that

1) The shear flow factors *calculated using a model considering

cavitation (Model 3 in Appendix A) are found to be dependent on

ambient pressure P as well as surface pattern parameter y and the
a

film thickness to roughness ratio, h/a. The fsincrease as Pa

increases, and otherwise, exhibits the same behaviour as the non-

cavitated model with respect to changes in h/cr and y.

2) The model predicts a lower shear flow factor when cavitation is

considered. They approach asymptotically to the non-cavitated values

as the ambient pressure rises.

-25-
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3) The effect of cavitation are found to be less significant

for h/a > 3 or for h/a > 0.75 and more significant for the

intermediate values.

4) The surfaces with transverse roughness resulted in more

cavitated regions than isotropic and longitudinal roughness.

r

14



REFERENCES

1. Winn, L. We, and McCormick, J. "Trident Main Shaft Seal Analysis,"
Machnical Technology Inc. Technical Report MTI 76 TRS1, Sept. 1976.

2. Hueter, T. F., and Bolt, R. M. Sonics, John Wiley and Son, New York, p.
220, 1955.

3. Knapp, R. T., Daily, J. T., and Hammitt, F. G. "Cavitation, McGraw-Hill,
New York, pp. 321-361, 1970.

4. Ibid. p. 169.

5. Ibid. pp. 160-161.

6. Cameron, A. Basic Lubrication Theory, Helsted Press, New York, p. 26,
1976.

7. Knapp, op. cit. p. 104.

8. Bretherton, F. P. "The Motion of Long Bubbles in Tubes," J. Fluid
Mechanics,10 , pp. 166-188, 1961.

9. Taylor, G. I. "Cavitation of a Viscous Fluid in Narrow Passages," J.
Fluid Mechanics, 16 pp. 595-619, 1963%

10. Knapp, op. cit. p. 335.

11. Timoshenko, S. P., and Goodier, J. N. Theory of Elasticity, McGraw-Hill,
New York, p. 405, 1970.

12. Burton, R. A. "Effects of Two Dimensional, Sinusoidal Roughness on the
Load Support Characteristics of a Lubricant Film," Trans. ASME, D85, p.
258, 199963.

13. Hamilton, B. D., Walowit, J. A., Allen, C. M. "A Theory of Lubrication by
Microirregularities," J. of Basic Engineering, March 1966/177.

14. Patir, N., and Cheng, H. S. "An Average Flow Model for Determining
Effects of Three Dimensional Roughness on Partial Hydrodynamic Lubrica-
tion," J. of Lubrication Technology, Vol. 100, No. 1, January 1978.

15. Patir, N. "Numerical Procedure for Random Generation of Rough Surfaces,"
WEAR, Vol. 47, No. 2, p. 258, 1978.

16. Tondor, K. "Simulation of the Lubrication of Isotropically Rough Sur-
faces," ASLE Trans. 23, July 1980.

17. Teale, J. L., and Lebeck, A. 0. "An Evaluation of the Average Flow Model
for Surface Roughness Effects in Lubricaton," ASME/ASLE Lubrication
Conference, Paper 79-Lub-37, 1979.

-27-

P



28-

TABLE 1.

SCATTE IN x VALUESr

h/ , -N fxmax x average mi

.75 3 25 1 .99253 .90403 .85333

1 3 25 1 1.03306 .85140 .73472

1.5 3 25 1 1.11279 .83785 .62215

2 3 25 1 1.36528 .90924 .53607

3 3 25 1 1.71792 1.07882 .36928
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Fig. 3. Bubble response to a step increase in pressure. Initial

R - 1.1 p, '-1.25 1. Fluid is water. Each curve corresponds

to a different pressure increment. L.A p 0.1 MPa; P

Ap- 0.5 MPa; 3.Ap -1.0 MPa.
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Fig. 5. Shear stress distribution in a solid beneath a region on its surface
with an applied axi-symmetric pressure distribution. The shear on
the axis is shown. The surface is at Z-0. The shaded areas show

the shape of the pressure distribution on the surface.
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Fig. 10. Static pressure distribution for a stepped test surface. The total

force on the test surface depends on the gap.
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APPENDIX B

AVERAGE REYNOLDS EQUATION

For Reynold's roughness, a term given to roughness with small

slopes, the average Reynold's equation

T.-(a 1 2(2pa) 2 a -3
Mx12v ax~ ayl2 y 2A.

is applicable. Since most of the engineering surfaces are of that type

of roughness, we assumed that local pressure in a rough bearing is

governed by Equation A.l.

The mean pressure is usually the desired quantity in a bearing.

Rowever, since the HT is a random quantity in Equation A.1, the local

pressure is also a random quantity. Therefore, an average Reynolds

equation is derived in terms of average film thickness and average pres-

sure which governs the flow in a rough bearing.

Before deriving the average Reynolds equation, one should

analyze the expected flows.

The local oil flows in a rough bearing are given by

% 13 U +U2

. .- + 1 2 hT A.2;412v 3x 2 T

3 A.3

qy - 2 ay A

- 55 -
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The film geometry randomly varies in a rough bearing. Therefore,

the local oil flows are also random quantities. To obtain an average

oil flow, consider an element with area AxAy (Figure A.1). Note that

this element should contain sufficient numbers of asperities and still

should be small when compared with the dimension of bearing. In this

case, the expected flow has small variances in this control volume.

Therefore, they can be obtained by averaging along the length of the

element. That is,

SE(q) qx dydx A.4

y

x+Ax
q- E(q ) - -i- ff q y xdy A.5

x

where E is the expectancy operator.

In order to relate these mean flows to mean quantities like

mean height and mean pressure, Patir-Cheng defined empirical factors

such that expected unit flows are given by

3 - U+U 2  U1+U2
x 3 x + 2 T +  2 s A.6

3-
qy ""y 1-2uy A.7

where p is the mean pressure and hT is the mean gap.

In Equation A.6 the flow in x direction consists of three parts.

The first term stands for the average flow due to the pressure gradient
QP

in x direction. The symbols x and y are called pressure flow factors,

P1
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and can be thought as the correction factor between a rough and smooth

bearing which has the same nominal geometry.

The second term in Equation A.6 represents the flow due to the

entrainment velocity (U1 + U2)/2. This term is absent in Equation A.7

because there is no velocity in this direction.

The third term in Equation A.6 arises due to the combined effect

of roughness and sliding. i represents the additional flow transport in

the valleys of the rough surface. The 0s term compares the flow in a

rough bearing with a smooth one in case of sliding. The fluid carried

in the valleys of the moving rough surface helps to transport the flow

in the gap between the two surfaces. On the other hand, if a smooth

surface is sliding against a stationary surface, the flow transport will

be obstructed by the stagnant fluid in the valleys of the stationary

surface. For this reason, the fs will be negative.

If we write down the mean flow balance on the control volume

we obtain

ax x y a .

That is, the net flow leaving the volume is equal to net flow coming into

4
the volume and the rate of change of volume.

Substituting Equation A.6 and A.7 into A.8, the following is

obtained:
4 P

a 3  - + 3 -~ U +U2 ahf
ax x 12p ax ay y 12u ay 2 3r

+a2 t 5s.h A.92+a + a
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In order to calculate the mean pressure and mean flow, one should com-

pute the flow factors first, as indicated in Chapters I and II. Flow

factors have the properties

s 0 h/a -

-0 h/a

SI

Derivation of Ox and y through simulation (Model problem 1):

In the previous section, it is assumed that the bearing consists

of small, rectangular bearings with area SAi and a constant nominal film

thickness of h. The partitioned bearing approaches the geometry of the

real bearing as the SAi becomes smaller. However, 6Ai should be large

enough to contain sufficient number of asperities.

For each bearing pressure flow factors can be calculated by

applying an arbitrary pressure flow on the boundaries of the element and

solving pressure distribution and flow, then comparing it with the

rough bearing with the same nominal geometry. Hence, evaluating for

different nominal film heights x and y can be obtained as a function
x y

of h.

To obtain *x , Patir and Cheng (14) assumed U1= U2 w U (pure

rolling) and considered the following model for simulation

h3 h3 h
a T .] + [T -2k] . -T + 21 A.lO

la~xua gy 12u.ayJ ax at

where hr h + 61 + 62 (see Figure A.1),

with boundary conditions (see Figure A.2):
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1) p -PA at x - 0

2) p -p at x -L

3) p( ) PB*(1 - )PA y=0 y=Lxx x

4) no flow at contact points.

If we consider righthand side of Equation A.10, since h is

constant within the element and hT = h + 61 + 62

3hT + ahT (61+62) (61+62)

ax at ax a

The 6 and 62 are time dependent due to the motion of the surface;

therefore one can write them as

S6" 6(i~ - Ut , y), 1 - 1.2 A.12

and

- 6' 1.2 A.13

at ax

Therefore, the righthand side of equation A.10 becomes

- h 3h a6 as: T  hT  i6 i
- + -- u -U -- 0 A.14

Then, Equation 10 becomes:

h 3  h 3

a T R + a T.2k 0 A.15a xlr 2u 3x ay 12 By

The 61 and 62 are randomly generated with known statistical

properties, as outlined in Patir (15).
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The pressure in the simulation element is solved using Equation

A.15 and then is calculated using Equation A.6 and Equation A.5.

Since U1 - U2 - U, Equation A.6 becomes

h 3

qx " - x 12u ax+

After cancellation it becomes

L Lx 3

-~ o o12 1  dyx x

where

-p PB - P
ax L

x

The calculation of 1 follows the same steps. The only dif-

ference is the flow in y-direction sees a different surface pattern

than *x" That is, *x(h/a), y) s *y(h/a, l/y). Therefore, one should

expect to get similar xand *y values for isotropic surfaces.
Since pressure flow factors depend precisely on the roughness

of each surface, in order to obtain a meaningful average one should

solve the same problem for several times and average it.

Derivation of *s through simulation (Model Problem 2):

* ~The shear flow factor, *s' is obtained by eliminating *,x and

A.16

*y from the equation A.8. Although there is a possibility of cavita-

tion in a bearing when some sliding is introduced, this model problem

* does not consider that. This effect will be discussed in the following

section in model problems.7

h a
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To eliminate x and y from equation A.8, the rolling velocity

is taken to be zero (i.e., U1 = U2). Then model problem for s becomes

pure sliding of two nominal surfaces:

3  3
a h T1, ahTxi x]  :+ y A. 17

ax'l2ii ax Y 21 ay at A

= h + 61 + 62

U1 -- U2 =1/2 U s

The boundary conditions are:

1) P = PA at x - 0, x - Lx

2) pi-pA+Cl at y- 0, y-L

3) No flow at contacts.

To obtain flow factors, an infinitesimal displacement is induced

on two surfaces and the pressure is solved.

Solving qx from Equation A.9,
3  L L h 3

h T_ f Yf xh T3
qxME( l2- a2  LxL o 0 -12-V ax dxdy A.18

Since the mean pressure gradient is zero, and there is no rolling

velocity, this expression is equal to the additional flow transport

due to sliding:

!s
q- 2~ a Os A.19

Combining A.19 and A.18, s becomes

L~2) hT3 -- dxdy A.20
2 a L L f ax

s = Us y 0 0
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Derivation of s with effect of cavitation (ModelProblem 3):
s

The shear flow factor is evaluated for cavitation using Equa-

tion A.17 of Model Problem 2 with different boundary conditions. It

is assumed that the lubricant will cavitate the regions where the

pressure is negative and the pressure will be equal to cavity pressure

which is practically zero. The Model Problem 3 becomes the solution

of Equation A.17 with boundary conditions:

(1) P PA x - 0 x Lx

(2) P A + C2  y-0 y-L

p-p if p > 0 0 < x L

0 ifp <0 0<y< L

(4) No flow at contact points.

P,

V!



APPENDIX B

FINITE DIFFERENCE FORMULATION

The Reynolds equation for Model Problem 1 is non-dimensionalized

as:

(L 2aa [3 + -x2  ]3 0 B.1
-D [T a- LF y 1  ~a

axax y

where

P hT  --

Similarly, the Reynolds equation for Model 2 becomes:

L X2 a 3  B.3 1I
ax 

tL± TE 3 a t*

where
a2 (p-pA) , Ust

P U tUL- B.4
60 sLx 2Lx

and the Reynolds equation for Model Problem 3 becomes similar to Equa-

tion B.3 and B.4. However, since the pressure in Model Problem 3 is

sensitive to nominal film thickness and asperity size rather than stan-

dard deviation of roughness a2 and bearing length Lx, the above expression

for P is non-dimensionalized as

h2 (p-pA)
P s B.5

-63 -
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where

Lx = AxAx

and
H2

e - 2s NXx

The boundary conditions are similarly normalized. Since the

lefthand side of the Equations B.I and B.3 are the same, two problems

can be solved simultaneously using the same coefficient matrix.

The finite difference equations for the two model problems can

be written in the form:

GijPi-l,j +Eij Pi,j-l +Dij ij +Gi-l,j Pi+l,j +Ei,j+l Pi,j+l Fij B.6

for i = 1,2,...,N j 1,2,...,M

where

Gij i-l/2,j Eij -HT i,j-l/2

Dij -(Gil + Gi+l,j + Eij + El,j+ I)

To obtain that form of equation both sides of the equation

2
have been multiplied by -(Ax) and the grids are chosen such that:

AxL
1

AyLy

that is

Ax - Ay

The coefficient matrix of the Equation 8.6 may be stored as

symmetric banded matrix with Mx MN dimensions. The finite difference

P
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equation in matrix form becomes

[c]lp] [ f] B.7

and can be solved by Gaussian elimination.

Then flow and shear flow factors can be obtained by numerical

integration of Equations A.16 and A.20 of Appendix A.

To include no flow boundary conditions at contact points, the

Hat a half grid point is set equal to a small e whenever its value

is negative. Although the e does not affect the pressure distribution

through the bearing, it creates some pressure peaks under the contacts

to avoid the pressure gradient created only due to the numerical reason,

the flow is set equal to zero during the integration process to calculate

flow factors. Another numerical problem arises when a pressure point

surrounded by four contact points. To avoid this behaviour, these

equations are helpful.

Finally, one should note that G and E in Equation B.6 are the

W. third power of the heights at half-grid points. These heights at half-

grid points cannot be obtained by averaging the heights at grid points

since it is a random quantity. Therefore, heights should be generated

0 at half-grid points as well.
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Figure A. 1
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Figure A. 2
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