
-R123 296 THE ARCHITECtURE OF A MULTIPLE REPRESENTATION SYSTEM i/i
(DRRFT)(U) STANFORD UNIV CA DEPT OF COMPUTER SCIENCE
M R GENESERETH 38 MAY 81 HPP-8i-6 N8B14-8i-K-8084

UNCLRSSIFIED F/G 9/4 NLflllllllllllll

*ILL

1.0 wMI I~ - E L&1220
EM8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

--.7-

Stanford Heuristic Programming Project 30 May 1981
Memo HPP-81-6

The Architecture of a Multiple Representation System (Draft)

by

Michael R. Genesereth

DTIC'
f'~e cerF

,.JAN 1181

Computer Science Department
l School of Humanities and Sciences .~~

-Stanford University
S Stanford, California 94305

LsA

83 01 11 061

Abstract

MRS is a knowledge representation system intended for use by computer
programmers in building models of the world. It provides a single powerful
language for stating facts while storing those facts in a variety of
different representations. Because of its multiple representations, it is
computational ' superior to other knowledge representation systems; and,
because of itz, powerful language and inference capability, it is
expressively superior to traditional data definition languages

The chief question in building such a system is how the various storage
and access routines are tied to the senlences of the formal language. In MRS
the system Is treated in a domain in its own right. One can write sentences
about subroutines and other sentences and allow the system to reason with
them, just as it reasons about geology or medicine. Environmental
considerations (like running time and storage requirements) and domain and
range restrictions can easily be expressed. In practice, MRS uses this
"meta-level" information in deciding how to carry out each operation. Thus,
one can easily switch representations or inference methods by changing these
sentences, and one can implement a variety of different meta-control
schemes. Furthermore, the system is completely modifiable in that, by a
progression of such changes, it can be converted into any program
whatsoever.

MRS is implemented as a practical programming tool in a variety of Lisps.
It offers a diverse repertory of commands for asserting and retrieving
information, with various inference techniques (e.g. backward and forward

".]fcl iFt~X) and various search strategies (e.g. depth-first, breadth-first,
al ' AIA@t-first search). The initial system includes a vocabulary of

),j-cwepts.&n0 facts about logic, sets, mappings, arithmetic, and procedures." Ad atioial "plug-in" modules are available to handle contexts, default

'. 'rqa!gaingi and truth maintenance. There is a rudimentary compiler .to
eTim atq'needless meta-level processing and a meta-level consistency
checker to protect the user from fatal errors in making system
modifications.

0.. .

cvol

F- 'Y .

1.,"t roduction

In a broad sense, much of computer programming is simulation*. One encodes
facts about some aspect of the world and writes programs to answer questions
using those facts. This is true whether one is a writing a complex numerical
code or an inventory control program or an expert system to do medical
diagnosis. In non-numerical programs the selection of a good data structure
to encode facts . particularly important and is often more difficult than
writing the code that processes it. Over the years, two distinct approaches
to representation have arisen, which might be called "theory-building" and
"model-building'.

The theory-building approach is typified by a growing number of
*knowledge representation" systems (e.g. KRL (ref), KLONE (ref), Prolog
(ref), UNITS (ref)). Most of these systems provide languages in which the
"programmer" encodes facts about the world, including in many cases partial
information (e.g. "Arthur is Bertram's father or Allison is his mother.')
and quantification (e.g. "All apples are red'). Most offer some general
inference capabilities for reasoning about rdcts expressed within their
language (e.g. Inheritance in the frame languages). In the vocabulary of
formal logic, a set of such sentences is called a "partial theory'; and, if
the sentences are true in the world being described, that world is called a
"model" of the theory. (-\(See the right hand side of figure 1.) The
methodology implicit I d'most knowledge representation systems might be
called "theory-building" because of the emphasis they place on the
construction of partial theories.

Theory

4.I I
Computational Model Application Area

Figure I - T heories and Models

In order to simplify their task. most of these systems employ a single
data type for encoding facts, e.g. slot-value pairs in frames and links in
semantic nets. The problem with this approach is that it doesn't take

" advantage of the special structure of the knowledge in domains that the
system is being used to describe. For example, Jf one is encoding fictiibout
set membership in a small universe, characteristic bit vectors are a
particularly economical representation and allow much more rapid union and
intersection computations than slot-value pairs.

(Footnote: Each set in the universe is represented by a vector of bits, each
bit corresponding to one member of the universe. The membership of an object
in the set is designated by 'turning on" the corresponding bit in this
vector; its absence is designated by turning the bit off. With this
representation, unions and intersections can be computed using hardware or
microcoded boolean operations.)

An alternative to this approach is to view data representation as model-
building. To describe a world, one constructs a second model of the theory
(the left hand side of figure 1), one whose implicit relations mimic those of
the world being described. The point of building the model is that it 1s
often easier to answer questions by examining the model than by observing the

.4

world or reasoning with a formal representation of the theory. Thus, for
example, an architect builds 3-0 models to help himself and his clients
-envision spatial relationships. Navigators use charts to fix their
positions. Engineers once used slide rules to do multiplication, slide
rules being computational models of the theory of logarithms and
multiplication.

Model-building is the traditional approach in computer programming,
except that the models are built within the computer rather than in the
external world. The programmer selects or designs a data structure to encode
the essential information about his world and writes code to process it. For
example, he might decide on a tree structure to represent an organizational
hierarchy or a bit vector to represent a set, as suggested above.

Because of the difficulty of choosing good data structures in complex
applications, the programming language community has for some time
recognized the desirability of separating the choice of representation in a
program from the structure of the code that processes it. With this
separation different representations can be tried and modifications can be
made without rewriting the code. This realization led to the introduction of
various *record packages" (e.g. in EL-1 (ref), Pascal (ref), Interlisp
(ref), or Lisp Machine Lisp (ref)). For example, ... In addition to
separating data representation from code, this approach has the advantage of
making data access more mnenomic. . .

The major shortcoming of this approach is that it doesn't allow the
encoding of quantification or partial information. Furthermore, none of the
existing systems provides any sort of inference, except for specialized
procedures written by the programmer. While there may be little need for
general inference in finshied programs, such a capability is highly useful
during development.

As computers are applied to increasingly complex tasks (particularly in
AI), the deficiencies of these two approaches in isolation are becoming more
significant. Fortunately, they can be merged in a way that eliminates their
shortcomings. The key idea is provide the programmer with a theory-building
language, like predicate calculus or one of the other AI languages,, while
storing the facts stated in this language in a variety of different ways.
Some facts may be stored in the language verbatim; others may be-stored by
modifying an appropriate computer model. Correspondingly, some facts are
looked up in the theory language; others, in the model. Alternatively, they
may be deduced using general inference procedures on the theory language or
specialized procedures in the model Figure 2 presents theuituation
graphically.

(Footnote: The possibility of multiple languages as well as multiple
representations is discussed further in section ?.)

K-.:
I,:

Propositional Language

-- -- - -- - -- - -- - -- -- -- - - - -- - - -I I I I

Bit Vectors Property Lists . . . Code

Figure 2 - A Multiple Representation System

This paper describes the architecture of a particular multiple
representatlon.called MRS. Section 2 describes MRS's language and
theory-building facilities; section 3 discusses model-building; and
section 4 shows how MRS's architecture makes it completely modifiable.
Section 5 summarizes the state of Implementation and indicates some
directions for future work.

2. Theory-Building in MRS

MRS Is a multiple representation system Implemented in Lisp.
It is a practical programming tool intended for use by Al researchers
in building expert systems. It offers a diverse repertory of comma.$ds.
for asserting and retrieving information, with various inference techniques
(e.g. backward and forward chaining) and various search strategies (e.g.
depth-first, breadth-first, and best-first search). The lpltlal system
includes a vocabulary of concepts and facts about logic, sets,
mappings, arithmetic, and procedures. Additional "plug-in" modules
are available to handle contexts, default reasoning, and truth maintenance.
This section describes only those features of the system relevant to
the succeeding discussion. For further details, the reader should
consult the MRS manual (ref).

2.1 Syntax

MRS's language is a prefix version of the language of
predicate calulus. The syntax is straightforward and should be
apparent from some examples. Each symbol in an assertion is either a
variable or a constant and can stand for an object, a function, an
action, a relation, a relation on relations, a relation on actions,
etc. Each complete lists makes up a formula. The examples in figure
3 show how the various types of formulas in first order pred.itlt...
calculus are expressed. Atomic formulas are represerited by grouping
symbols together with a relation symbol of the appropriate type.
Non-atomic formulas are expressed by relating several formulas with a
logical symbol.

N.-

Bertram and Arthur are neighbors.
(neighbor bertram arthur)

Carleton is not Bertram's neighbor.
(not (neighbor carleton bertram))

Either Carieton is Bertram's father or Beatrice is his mother.
(or (father-of carleton bertram) (mother-of carleton beatrice)).

All apples are red. .
(all x (if (mem x apples) (color-of x red)))

I
4q • .

Some apple is green.
(some x (and (mem x apple) (color-of x green)))

Everybody has someone he loves;
(all x (some y (loves x y)))

There is someone.whom everybody loves.

(some y (all x (loves x y)))

F,gure 3 - First Order Predicate Calculus

Higher order formulas are formed either by using functional or
relational variables or by applying higher order relations to
functional or relational constants. The induction axiom shown in
figure 4 is a simple example.

Whenever 0 is in a set and n's membership in the set implies the
membership of n+1, then every natural number is in the set.

(all s (if (and (s 0) (all x (if (s x) (s (+ x 1)))))

*(all x (s X))))

Figure 4 - An Example of a Second Order Formula

Two useful syntactic features are illustrated in figure 5.
The first is the use of the prefix characters S and ? to denote
universal variables and existential variables without universals
quantified to their left. Second. a function in MRS can be used in
two ways. either with.its arguments in places reserved for individuals
or in assertions with its value as the last argument.

Every neighbor of Bertram is a neighbor of Beatrice.
(all x (if (if (neighbor x Bertram) (neighbor x Beatrice)))
(if (neighbor Sx Bertram) (neighbor Sx Beatrice))

Some apple is green.
(some x (and (mem x apples) (color-of x green)))
(and (mem ?x apples) (color-of ?x green))

Beatrice is Carleton's mother.
(mother-of Carleton Beatrice)
(- (mother-of Carleton) Beatr4ce)

Figure 5 - Some abbreviations

In MRS knowledge representation is an application domain in

its own right, just like geology or medicine. The system contains
knowledge about its own structure and behavior and some popular
variations. This information is encoded within the MRS formalism
itself, and as a result the system can apply to it the same deductive
routines that it uses in reasoning about external domains.

As described above, symnbols in MRS are used to. disignate

objects in the applications domain. In order to state facts about a
symbol itself, one needs a separate symbol to represent it. In MRS
these ometasymbols' are by convention named by prefixing the symbol
represented with an f. Consider,for example, the symbol bachelors
that represents the set of all bachelors and the symbol ?bachelors

II

Q7

that stands for that symbol. Clearly, it is appropriate to add the
assertion (mem bachelors set), and certainly it is the case that (not
(mem tbachelors set)). If bachelors and tbachelors were coalesced, a
contradiction would result. Similarly, one might have an assertion
about the size of a person named John, e.g. (size John large), and a
contradictory assertion about the size of the symbol representing
John, e.g. (size tJohn small). In MRS a symbol and its metasymbol are
connected by the denoted-by relation, e.g. (denoted-by John tJohn).

Terms, like symbols, designate objects In the application
domain; and, as ith symbols, a separate symbol is necessary whenever
one wants to state'a fact about the term itself. The t convention can
be used here as'well. For example, the term (color-of clyde)
designates a point on the visual spectrum, whereas the symbol
t(color-of clyde) designates an atom in MRS.

Since propositions don't refer to objects in the application
domain, they can be used to designate themselves when used as an
argument in another proposition. Figure 5 shows some examples of this
in representing dependency and theory Information.

(dependency (resistance rl 100) (voltage v1 5))
(MyTheory (president US Kennedy) 1961-1963)

Figure 6 - Some meta-assertions

In order to talk about propositions, a few special vocabulary
itens are defined. (Rel p) designates the symbol in the relational
position of the proposition; (arg p) designates the symbol in the
argument position; and (val p) designates the symbol in the value
position. (Prop tr tal . . . tan) designates the proposition symbol
made up of the indicated symbols, i.e. (r al .. . an).

2.2 Subroutines

Propositions can be stored and removed from MRS's data-base
using the subroutines stash and unstash. The lookup subroutine checks
whether a proposition is in the data base and returns ((t . t)) if
succesful and nil otherwise. If the proposition contains existential
variables, lookup returns a binding list for those variables. Lookups
(the plural) returns a list of a11 bindings for which there is a
proposition in the data base. Consider the following examples.

(stash '(neighbor Arthur Bertram))
(neighbor Arthur Bertram)

(stash '(neighbor Arthur Billings))
(neighbor Arthur Billings)

(lookup '(neighbor Arthur Billings))((t .t))

(lookup '(neighbor Arthur ?x))
or

(lookup '(exist ?x (neighbor Arthur ?x)))
((?x . Bertram) (t . t))

(lookups '(neighbor Arthur ?x))-
(((?x Bertram) (t . t))- ((?x . Billings) (t . t)))

K-

-- I

As a convenience for its users, MRS offers a limited amount of
automatic inference. Whenever a fact is asserted, the system may
infer other facts and assert them as well. Whenever a user asks MRS
whether a fact is true, the system may be able to deduce it even
though the fact is not explicitly stored. The uubroutines assert.
unassert, truep, and trueps all perform inference in processing their

,3 arguments. Consider the following examples.

(assert '(elephant clyde))
(elephant'clyde)

(assert '(if (elephant Sx) (color-of Sx grey)))
(if (elephant Sx) (color-of $x grey))

(truep '(color-of clyde ?y)) .1
((?y . grey) (t . t))

The system's default inference method for retrieving
information is depth-first backward chaining. However, a number of
other inference methods are defined as well, and the user can instruct
MRS to use any one of these or one of his own. as described in section
4.

3. Building Models in MRS

3.1 Theories and Models

In formal logic. a theory is defined to be a set of sentences
closed under logical implication. In what follows, this definition
will be broadened to include any set of sentences closed under
inference by an arbitrary inference procedure. If the procedure is
complete (like resolution), the two notions are equivalent, but this
is not the case with the inference methods in most current
representation systems.

The correctness of a theory depends upon the interpretation
one assigns to its sentences. In Tarskian semantics (ref) an
interpretation consists of a set of objects and a mapping from the
symbols of the theory's language to objects in this set, functions on
those objects, and relations among them. An interpretation is a model
of a theory if the sentences are all true under the interpretat4on.--
Of course, there may be more than one model for a given theory. -For
example, the integers undor addition and the rational numbers under "
multiplication are both-models of the theory of groups.

In the theory-building approach to knowledge representatio6,
the task is to encode enough facts and a sufficiently powerful
inference procedure that the resulting theory covers the space of
possible questions. The inference procedure is usually written hy
the system's builder, and the facts are usually entered by either
the system builder or its user. For example, the builder of a
medical diagnosis system encodes inference rules and general facts
about medicine, and the user inputs facts about a specific patient
and asks for the System's conclusions.

In the model-building approach, the task is to build a

second model of the intended theory. This might be another
physical model (e.g. an architect's sketch), or it might be a

,!

set of data structures within a computer (e.g. a bit array).
Most knowledge representation systems deal with computer models;
but, with adequate sensors and effectors, they could produce'and
utilize external physical models equally well.

One of the limitations of the model-building approach is that
there are sentences that cannot be represented in a model. e.g. a
universally quantified formula. Such facts may just happen to be true
of all the objects currently in the model. Alternatively, If the
model is a good one. such facts may be implicit in the representation.

* For example, if a linear list is chosen as a representation of a "
linear order, it's imposssible to state a fact that violates the
trichotomy rule. However, neither of these is an explicit
representation for this fact.

In addition, there is a difficulty in dealing with partial
information. One might, for example, know that A is greater than C
and 8 is greater than C in a linear order, but unless one can r
determine the order of A and B, It's impossible to represent both
of these facts in a linear list representation.

{Footnote: The requirement that certain information be available
before a fact can be asserted in a model is remisicent of the
obligatory character of some slots in Minsky's frame theory {ref.).
An important difference is that, in Minsky's formulation, this
requirement is an explicit feature of each slot. whereas in
model-building it is implicit in the representation.)

In a multiple representation system, quantified formulas ."
can be stored explicitly in the theory language. Furthermore. if
the fact is not implicit in the model, the system can automatically p
enforce it by not allowing any modification to the model that violates
it. Partial information can also be encoded in the theory language,
using logical operators, until all ambiguity is resolved. Of course,
so long as there is a need to represent facts in this language, it's.
necessary to provide an inference method for reasoning with these
sentences, and it's necessary to check both the theory and the model
in accessing the data base. This is the major reason for the existence
of two distinct sets of commands in MRS: stash, unstash, and lookup for
accessing models and assert, unassert, and truep for doing inference
beforehand.

The primary question in implementing such a system is how te the
representations are chosen. One might imagine a system that could
automatically select an appropriate representation. Some exploratory steps
in this direction have already been taken by Barstow {ref),. Low (ref), and
Rovner (ref); and there is an effort underway at Stanford (ref) to study the
question in greater generality. However, so far, the results are limited.
The alternative is to have the programmer specify a desired representation
for each sentence or set of sentences. Then; the system need only look up the
representation subroutines whenever it is processing a sentence. This
latter alternative is really a subset of the former because, even if the
system designs its own data structures, it will need to record its decisions
for later access and modifications. In either case, there is a need to
represent information about how to process a sentence and a procedure for
accessing this information. A specific representation and procedure will be
proposed below after a brief but essential digression on object-oriented
programming.

11072

10

3.2 Object-Oriented Programming and Meta-Level Reasoning

Computer models include not only data structures but also the operations
one can apply to them. In complex domains, different implementations may be
necessary to carry out an operation for different inputs.- For example, the
sign of a complex rumber might be computed in a different way from the sign of
multivariate polynomial. A common approach in this situation is to define as
many different subroutines as necessary and write a dispatching routine that
examines the inputs and -calls the a.ppropriate one. This approach of
determining the ubroutine to be used on the basis of the object it is to be
applied to is often termed "object-oriented programming".

Both the programming language and artificial intelligence communities
have developed programming systems .that facilitate .this style of
programming. In Simula, subroutines are associated with classes of objects
organized into a subclass hierarchy: and the system uses property
inheritance (forward chaining over specified relations, usually membership
and subset) over this hierarchy to retrieve appropriate subroutines. In
Planner, Conniver, QA-3, and QA-4, the programmer defines subroutines for
adding, deleting, and retrieving data base assertions: and the system uses
"pattern-directed invocation" (a subset of universal instantiation and
existential generalization) to associate these subroutines with specific
data base assertions. In the frame-based systems, the user is able to attach
subroutines to the "slots" of each frame, and these procedures are inherited
from frame to frame much as in Simula.

One shortcoming of these systems is the limited amount of inference they
employ in subroutine lookup. The property inheritance method used by Simula
and the frame systems works well when one is computing a function of a s Ingle
argument, but it encounters difficulty when more than one object is
involved, e.g. in adding two numbers of a different type, say a complex
number C and a rational number R. Should the subroutine be inherited from C
or from R or perhaps from+? What if there is a conflict? Some systems, l111
FRL. use inheritance on the argument of the operation (in this case C or R):
others, like RLL, use the operation itself (here +). Each of the systems can
simulate the other but only at some loss in naturalness. The ideal would be to
allow any combination of components to determine the representation.

The Planner approach is slightly more general in that it allows-all of the
objects to be taken into account. However, its pattern matching inference is
less effective and fails when one wants to use partial information. For
example, the programmer may want to specify that table lookup be used in

0 computing any binary relation of the objects S and T and not just membership
or subset.

A further limitation is that there is no easy way of getting any of these
systems to-take environmental considerations into account in selecting
subroutines. Yet, one might want to carry out an operation differently
depending on the time of day or the identity of the operating system or the
amount of storage left. In fact, there isn't even any way of stating such
factors, e.g. in the definition of a Simula class.

An approach that eliminates these shortcomings is to treat the system as
an application area in its own right, like hydrodynamics or truck scheduling
or medicine. In this way, operations and subroutines can be talked about as
objects, as well as the time of day, the operating system, and the amount of
storage left, and one can write statements relating operations to
subroutines and allow the system to reason about the choice of subroutine
just as it reasons about external, domains.

~11r

In MRS the association between an operation F and a subroutine S that
implements it for inputs al, . . ., an is written as an assertion of the form
(MyTo F al . . . an S). In making such assertions one can take advantage of
the full expressive power of MRS's language. For example, one can state that
a subroutine S computes the function F for all inputs via the first sentence
below. The second sentence states that S works in the more specific case
where the second input is B. Using logical operators one can impose partial
constraints as well, as in the third sentence. The fourth sentence
illustrates the incorporation of environmental factors.

(MyTo F Sx $y S)

(MyTo F $x B S)

(if (R Sx) (MyTo F Sx Sy S))

(if (and (R Sx) (< (cost (action S Sx Sy)) 100)) (MyTo F Sx Sy S))

(Footnote: The MyTo relation is a special case of a more general 'ation
between. "goals" and "plans". Specifically, each abstract ope ion is
defined by its goal, and each goal has an associated set of steps, plan,
that achieves it. This relationship between goals and plans qnt be
recorded via an assertion of the form (MyToAchieve goal plan). For imple,
the assertion (MyToAchieve (= (lhs Sx) Sy) (action rplaca Sx Sy)) si That
in order to change the left hand side of a dotted pair one should us ,aca.
The MyTo relation defined above is a special case of this MyToAchieve
relation where the plan is a single subroutine that has the same arguments as
the abstract operation it carries out.)

In practice, MRS uses such assertions in deciding how to carry
out each operation. The exact mechanism for this should be clear
after a look at how MRS works. Figure 8 presents the initial LISP
definitions of a particular operation F. F calls the subroutine kb
with its corresponding MyTo relation and its argument. Kb first uses
backward chaining to decide how to carry out the operation and
extracts it from the binding list using subvar. It then applies the
result to the specified argument.

(defun f (x) (kb 'MyToF p))

(defun kb (f x)
(funcall (subvar '? (bs-truep '(MyTo f x ?)) x)).

Figure 8 - Definitions of MRS's user level subroutines

As a very simple example, consider how MRS handles a request like (F A). A
trace of the relevant function. calls is shown in figure 9. F calls kb with
arguments MyToF and A. Kb uses bs-truep to determine how to look carry out F

4 and finds S. It then applies S to A to get the answer. P

(enter F A)
(enter kb MyToF.A)

(enter bs-truep (MyToF A ?))

eit bs-truep S)
(enter S A)

(exit S B)

*

12

(exit kb B)
(exit F A)

Figure 9 - A trace of function calls in carrying out an operation

An exciting consequence of this architecture is that it allows the system
to think before it acts. Backward chaining is quite limited, but one can
imagine more sophisticated reasoning.

Suppose, for example, the user had made the assertions (MyTo f $x g)'and
(MyTo g Sx f). With kb defined as shown above, the system would go into an
infinite loop, first trying to compute f using g, then trying to compute g
using f. One could forestall this problem in many common cases by using a
more complicated retrieval that first checks whether the indicated method
will halt. See figure 15. If MRS can prove that the indicated method does
not halt, it can notify the user rather than embarking on the endless
computation.

(defun kb (f x)
(setq f (subvar '? (bs-truep (list MyTo f '
(cond ((bs-truep '(non-halting f x)) (print 'Nonhalting))

(t (funcall f x))))

Figure 15 - Meta-reasoning to prevent an infinite loop

Another example of more substantial meta-level reasoning is the
choice of one search method over another. Suppose, for example, that
one had encoded an ancestor hierarchy and needed to determine whether
or not beatrice is an ancestor of clyde. To do this, the system must
decide whether to search beatrice's descendants or clyde's ancestors.
In making this decision, it could reason that the branching factor in
the upward direction is less than the branching factor downwaro, and,
therefore, it's quicker to search upwards.

Ultimately. it might be possible for the system itself to
write the code to carry out an operation. Recent research has yielded a
variety of planning and program synthesis techniques that shoulu be of
value in this regard. Each operation in the domain can be characterized
by the goal it is intended to achieve. For example....

(if (effect $c (R A B)) (instance $c F))

Each available subroutine can be.characterized by its side effects and
the relationship between its inputs and outputs. For example,

(if (and (instance $c S) (precondition Sc (Q C D)))

(effect Sc (R A B)))

(if (instance Sd T) (effect Sd (Q C D))).

Using this information arl a store of planning expertise, a system
should be able to synthesize a program to achieve the goal of a given
operation, in this case using T to achieve the prerequisite for S,
which achieves the desired effect.

9 These'examples are not intended to suggest that these problems
are easy or that MRS makes them any easier. Indeed, researchers have
spent many years making gradual prgress toward their solution. The
point here is that MRS provides a framework in which such techniques

* - - -- . vawr 7-r-r"

13

can be readily incorporated as they become available.

3.3 Compiling for Efficiency

The disadvantage of a. meta-level architecture is the additional cost
incurred in looking up the subroutines associated with an operation.
However, in a production system, the appropriate subroutine can often be
determined in advance (as the result of type declarations, or the
corresponding assertions in the representation language), and then this cost
can be compiled away. In point of fact, programmers using untyped systems
usually do this compilatfon themselves in writing their subroutines.

In order to regain some of this lost efficiency, MRS has a rudimentary
source-to-source translator that eliminates meta-level processing where
possible. The user specifies which facts he wants the translator to use by
declaring them to be "frozen". The translator then uses these facts to
optimize the programs it is called on. At this writing, the translator uses
three optimization techniques: constant folding to incorporate the frozen
information, symbolic evaluation to propagate it, and peephole optimization
to eliminate any obvious inefficiencies uncovered by the other two
techniques.

Consider, for example, the problem of optimizing the code (denom (plus A
B)) propositions and definitions shown below.

(defun rattimes (x y)
(cons (0 (car x) (car y)) C' (cdr x) (cdr y))))

(if.(and (rational Sx) (rational Sy))
(MyTo times Sx Sy rattimes))

(if (and (rational $x) (rational Sy))
(rational (output (act'ion rattimes $x Sy))))

(if (rational"x) (MyTo denom Sx cdr))

(rational A)
(rational B).

Using constant folding, the first MyTo assertion, and the type declarations
on A and B, the call to times is replaced by rattimes. A bit of symbolic
evaluation shows that the output is also a rational number, and so the call to
denom can be replaced by cdr. The translator then open codes the definition
of rattimes and finds that it can apply peephole optimization to get the
final form shown.

S(denom (times A B))

(denom (rattimes A B))

(cdr (rattimes A B))

(cdr (cons (0 (car A) (car B)) ((cdr A) (cdr B))))

((cdr A) (cdr B))

In order to avoid excessive growth in the size of code, the translator has
an arbitrary limit on the amount of open coding it will permit. The
translator also retains information connecting the optimized code to the
assertions on which It depends and retranslates the code whenever the user
unasserts any of the frozen assertions, using the mechanism described in

* -p.

14

section 4.3

4. Modifiability

The importance of object-or1L .ed programming in the design of
a multiple representation system is clearest when one views the system 7
from the meta-level. As with hydrodynamics and medicine, there is a
theory of the system, which describes its operation and structure; and
the sentences in this theory can be encoded in the system itself. For
example, there light be a proposition stating that, whenever the
system contains facts of the form "x is the brother of y? and "y is
the mother-of z", it also contains the fact *x is the uncle of z".

The connection to object-oriented programming comes when one
considers the operations possible in the system, e.g. asserting.
retrieving, or deleting a proposition. The way these operations are
carried out may depend upon the class of propositions to which the
argument belongs. The MyTo relation introduced in the last section
can be used to associate a particular subroutine with each class of
propositions and kb can then be used to retrieve this information and
carry out the operation.

4.1 Simple Modifiability

The advantage of this approach is that it is easy for the
system's user to modify the way a class of propositions is handled.
He simply makes a different MyTo assertion. Of course, this approach
can be used for all of the system's operations, not just data
representation. For example, one could assert different MyTo
assertion for the assert operation to specify a different inference
algorithm; and one could assert various "MyTo Edit" properties to
associate different editing subroutines with different objects or
propositions. The following examples indicate how some of the more
common knowledge representation features can be introduced in MRS
using this approach.

Example - Changing the Representation

While the propositional representation is adequate for representing all
types of information, property lists are a good example of a specialized data
structure that is especially suited to storing the values of unary
functions. For example, the assertion (color-of Clyde gf-y) can be
represented by a color-of property on Clyde's property list. The commands in
figure 11 show how property lists can be utilized in MRS. In particular, they
name the LISP subroutines for accessing and modifying property lists. Of
course, its is necessary to assert that a relation is a unary function
(either directly or indirectly) in order for this information to be found.

40 (assert '(if (unaryfun (rel Sp)) (MyTo stash Sp putp)))
(assert '(if (unaryfun (rel Sp)) (MyTo unstash Sp remp)))
(assert '(if (unaryfun (rel Sp)) (MyTo lookup Sp chkp)))

(defun putp (p) (putprop (cadr p) (caddr p) (car p)))
(defun .remp (p) (remprop (cadr p) (car p)))
(defun chkp (p) (eq (caddr p) (get .(cadr p) (car p))))

Figure 11 - Storing unary functions on property lists

Example - Changing the Inference Algorithm

15

Suppose one wanted to convert MRS into a data base system
without inference. To do this, the only change that is necessary is
to change the system's MyTo truep property to direct
lookup, as shown below. Thereafter, whenever truep is called, kb will
find lookup, and no further deduction will be performed.

(unassert '(MyTo truep Sp bs-truep))

(assert '(MyTo truep $p lookup))

Figure 10 - Switching from backward chaining to direct lookup

Example - Procedural Attachment

Procedural attachment is the association of a procedure with a "slot" in a
"frame" that is executed whenever a value is added to, needed for, or removed
from that slot. In MRS procedural attachment is effected by appropriate MyTo
Assert. MyTo Unassert, and MyTo Truep properties on the relation
corresponding to the "slot". For example, suppose one wanted to build a
kinship data base in which only mother-of and spouse-of links were stored,
leaving father-of to be computed. In MRS this could be implemented by
placing the appropriate properties on father-of as shown in figure 2. When
truep is called with (father-of clyde ?y) as argument, kb finds the truep-
father procedure and applies it.

(assert '(MyTo truep (father Sx Sy) chkfather))

(defun chkfather (p)
(truep '(and (mother ,(cadr p) ?y) (spouse ?y ,(caddr p)))))

Figure 12 - Computing the father relation

Of course, this could have been done more generally as shown in figure 13.
Father is asserted to be a member of the set of ComposedFunctions and is
defined as the composition of spouse and mother. All composed functions have
truep-composed as their MyToTruep property. Therefore, when truep is called
on (father clyde ?y). kb finds truep-composed, which computes the answer as
before. The difference here is that, to implement a new composed function,
one need only assert that it is a member of ComposedFunctions and indicate
the composing functions.

(assert '(mem father-of ComposedFunctions))
(assert '(composition spouse mother father))
(assert '(if (mem (rel Sp) ComposedFunctions)) (MyTo truep Sp chkcomp)) 0

(defun chkcomp (p)
(prog (dum)

(setq dum (truep '(composition ?f ?g ,(car p))))
(return (truep (list 'and

(list (subvar '?f dum) (cadr p) ?z)
(list (.subvar '?g dum) ?z (caddr p)))))))

Figure 13 - Implementation of composed functions

Example - Truth Maintenance

Another example is the partial implementation of truth maintenance.
Suppose. for example, that dependency information is stored as suggested in
figure 6, i.e. as dependency propositions connecting each assertion to the

I . or

16

propositions it depends on. (For simplicity, the possibility of multiple
justifications is ignored in this example.) One can define a truth
maintenance subroutine devil that removes assertions from the data base
whenever their support is removed. The code for devil and the appropriate
meta-assertion are shown in figure 14. As a consequence of this assertion,

* every time UnasserZ is called. devil will be used and the dependencies will
be removed.

(assert '(AyTo unassert Sx devil)).

"(defun devil (p)
(unstash p)
(mapc '(lambda (1) (unassert (subvar '? 1)))

(lookups '(dependency ,p ?))))

Figure 14 -.Partial implementation of Truth Maintenance

4.2 Complete Modifiability

The modification of tMyTo" properties is one way that a
system can be made modifiable. An intriguing consequence of a
multiple representation architecture is that it makes the system
modifiable in a much broader sense as well. The system is a model of
its own theory, just as the human body is a model of the "theory* of
physiology. However, unlike physiology and the human body, the system
can observe and modify itself directly. As a result, there is no need
to create a second model as suggested in figure 1. The system can
examine itself to answer questions and can modify itself in storing
assertions. For example, the meta-proposition (Inferrable (R A B))
can be evaluated by trying to infer (R A B). The proposition (Indb (R
A S.)) can be stored by storing (R A B) using whatever representation
is appropriate for it.

(Footnote: If the system had appropriate sensors, it could use this
technique to answer questions about the external world as well. One
reason for not doing this, even if it had such sensors, is that the
test may be expensive. For the same reason, one might not want to
check whether a fact is inferrable by trying to infer it. However,
the decision about whether to use meta-inference or direct observation
(in this case, inference) is beyond the scope of this paper. The point
is that it's possible to have it either way.)

" In a similar fashion, one can write propositions describing
the code of the system. If the system contains the appropriate "MyTo,
subroutines, these propositions can be evaluated by examini.ng the code
directly; and they can be stored by modifying the code, i.e. it's
possible to reprogram the system merely by making assertions in its
own language. With enough assertions, the system can be converted
• into any other program. In short, it's completely modifiable.

The mechanism for this is straightforward. One can easily
describe Lisp code as sets of assertions. Each s-expression is
represented as an individual "action" with an operator, inputs, outputs,
and controlflow. For example, the subroutine demon-stash defined
below can be described by the assertions that follow. This translation
can be carried out by an automatic procedure listed as the "NyTo Lookup,
property of code-for sentences.

(Footnote: Note that the existence of this automatic translator means

17L.
that one can write procedures in Lisp but still have the system reasonI.:. about them as if they had been defined in assertions.)

(defun demon-stash (p)
(stash p)
(rundemons p))

(code-for demon-stash proc23)
(part sl proc23)
(opr sl stash)
(- (input I proc23) (input 1 sl))
(part rl- proc23)
(opr rl rundemons)
(- (input 1 proc23) (input 1 rl))
(before sl rl)

In order to allow the user to change the definition of subroutines,
there is a simple reverse translator listed as the MyTo Stash property
of code-for sentences. Suppose, for.example, that one wanted to
reverse the order of the steps in demon-stash. One could do this by
defining a new procedure proc24 with steps s2 and r2 such that
(before r2 s2). Then one asserts (code-for demon-stash proc24) and
lets the automatic translator do the rest. Alternatively, one could
simply remoev the assertion (before sl rl) and assert its opposite
(before rl sl). If appropriate dependency links were kept between
this order assertion and the code-for sentence about demon-stash.
this would cause a retranslation to take place, thus updating the
Lisp definition.

Of course, some programming languages, like Lisp. are also
completely modifiable. The difference is that Lisp is purely
procedural -- there's no way of making "declarative" statements about
the external world or the language itself.

4.3 Meta-Level Consistency- Checking and Modification Discipline

One of the optional features of MRS is meta-level consistency checking.
Whenever the user asserts or deletes a fact, the system checks whether the
modification will violate any meta-level assertions and, if so, warns the
user. For example. suppose the user had asserted the uniqueness property for
functions as shown below. Then, if there were sentences in the data base of
the form (color blocki blue) and (function color) and the user tried to
assert (color blocki red), the system would catch the contraid-ton and
offer to unassert one of the above sentences.

l (if (and (indb (Sf Sx Sy))
(inferrable (function Sf))
(not (, Sy Sz)))

(not (indb (sf Sx Sz))))

The same mechanism is used to ensure consistency of the system's theory
of itself and thereby protects the user against unintentional omissions.
One common problem is for the user to assert a special MyTo Stash property
without modifying the MyTo Unstash or MyTo Lookup properties accordingly,

" This problem can be avoided by relating the various subroutines to each other
with assertions like those below. Then, when the user changes one of these
properties, the system will detect the inconsistency and offer to chan e the
others or abandon the request.

(iff (repr Sp plist) (indb (MyTo stash Sp putp)))
(1ff (repr $p plist) (indb (MyTo unstash Sp remp)))
(1ff (repr Sp plist) (indb (MyTo lookup Sp chkp)))

Another common mistake is for the user to delete the gene.ral MyTo Stash
property, making it impossible to assert a new one. One wayto forestall this
possibility is to add an assertion stating that there must always be a MyTo
Stash property, as follows.

(all p (exirt g (Inferrable (MyTo stash p g))))

The nemesis of a modifiable system is its fragility. When a user makes a
mistake, he can easily break the system. Consistency checking and meta-
level assertions like these are essential in making the system a useable
tool. Of course, these properties can be deleted like any others, thus
defeating the protection mechanism, unless they themselves are protected by
similar assertions.

5. Conclusion

5.1 State of Implementation

MRS is implemented as a core system, together with a set.of *plug-in"
modules. The core system is very small and contains the minimal code
necessary for its meta-level architecture. This includes the definitions of
kb and the user-level subroutines, inference via pattern matching and
backward chaining, and various low-level subroutines for MRS's
propositional representation. The "plug-in" modules modify the system to
augment its capabilities. Currently, there are modules that set up other
representations (e.g. property lists), other inference procedures (e.g.
forward chaining via demons, rewrite rules, resolution), and other search
procedures (e.g. breadth-first and best-first). User utilities include a
compiler, a "unit" editor, and an error-checking *front-end".

The system is implemented in a variety of Lisps, Including Maclisp and
Interlisp on the Dec-20, Interlisp on the Xerox Dolphin, and Franz on the
Vax. There are also efforts underway to make it available on IBM equipment
in Lisp370. The system is being used in a variety of projects at Stanford and
elsewhere (e.g. computer diagnosis and intelligent operating system
interface) and is taught in the first graduate level AI course at Stanford.

5.2 Future Work

One of the reasons for building MRS was to have an adcquate basis from
which to do further research in representation. The following paragraphs
summarize a few directions for future work.

Section 3.2 mentioned the possibility of more extensive meta-level
reasoning in subroutine selection. David Smith (ref) is building on the
pioneering work of McCarthy and Hayes (ref), Davis (ref), Wilensky (ref),
and others in developing powerful meta-level heuristics for controlling
search, recognizing unsolvability, monitoring and analyzing plan execution

. " to learn from experience, etc.

Steve Tappel (ref) is interested in problem reformulation; and, as part of
that interest, he is trying to automate the selection of data
representation.- This involves reasoning about each representation to
determine whether it preserves enough information to solve the desired class
of problems; it requires strategies for interfacing different

19 "

representations; and it requires strategies for comparing possibilities to
select the one most suitable. Tappel 's very general approach to this problem
should become crucially important as VLSI research opens the possibility of
heterogeneous systems of processors and thereby engenders a need for new
compiling techniques.

The use of specialized representations gives MRS. an economy and

efficiency not possible with a uniform representation. The economy can be
expressed in terms of the space saved due to the use of relations implicit in
the specialized -epresentation(as the length of a list reflects the degree
of'teh polynomial-it represents). The efficiency in doing deductions is
attributable 'to specialized algorithms. An interesting possibility
suggested- by this economy and efficiency is for the program to use these
criteria in evaluating plausible hypotheses about a new domain. In the face
of incomplete or contradictory data, the program might favor the theory with
a more economical representation. Clearly, there is some evidence for this
sort of behavior in human cognition. Consider, for example, Mendeleev's
discovery of the periodic table of the elements. He was convinced of the
correctness of the format in spite of contradictory data, for reasons that
can only be identified as simplicity, or economy. The key point here is that
the existence of multiple representations may affect the functionality of a
program as well as its efficiency. This possibility is discussed in greater
detail in, {ref), but so far no attempt has been made to. incorporate the
economy heuristic into a theory formation program.

Finally, as in any discussion of meta-level issues, there is the
inevitable question of the meta-meta-level and beyond. As explained above,
it's possible to encode propositions about propositions in MRS. and changing
these propositions can affect the system's behavior. Naturally, one can
encode propositions about propositions about propositions, and the system
can reason with these just as well. The interesting question is whether this
reasoning can affect the system and, if so. how. As described earlier, each
base-level operation takes meta-level propositions into accoutn by calling
kb and letting it reason about how to carry out the operation. One way in
which meta-meta-level information could be used would be to have KB call
itself or yet another kb. The problem with this approach is that the former
possibility results in an infinite recursion and the latter implies that the
number of levels is limited. While a limited number of levels may be OK for
most applications, an alternative that avoids the infinite loop and the
level limit Is to interleave meta-level reasoning with a default base-level
procedure, as suggested in the following definition. Here, bor is a
"breadth-first" or, which time shares the execution of its arguments: until
one returns a non-null value.

(defun newkb (9 x)
(bor (kb g x) (newkb 'kb (list g x))))

Although there are a number of problems with this approach, -it does allow the
system to reason at an arbitrary number of levels. Further study is needed to
determine whether it can be used to any advantage.

(Footnote: Because MRS uses itself as a model of its own theory, the system
conatins an infinite numbor of meta-level propositions-. Consider, for
example., the propositions

(R A B)
(B (R A 8))
(Zos (noS (R A 8)))-

. . .

.~~~~~W W .-- -- -

20.~

MRS stores and retrieves propositions with InDS as relation by storing and
retrieveing the argument. Thus, whenever (R A B) is in the data base, so are
the other propositions shown. Of course, not all InDB propositions can be
stored this way; consider, for example, (exist p (InDB p)), which can't be-
stored without knowing the identity of p.)

5.3 Summary

The intent of this paper is to point out the relationship between the
theory-building approach to knowledge representation -taken by Al
researchers and the more generally used model-building approach. In
particular, it shows how they can be reconciled in a multiple representation
system. Meta-level architecture is a natural way to build such a system and
opens the possibility of substantial meta-level control in carrying out each
operation. Finally, because the system is its own model of its theory, it's
completely modifiable. The architecture should be useful in facilitating
further research in meta-control, theory formation, automatic selection of
data representation, and compiling for a heterogeneous environment of
processors.

r

0

.1i

r

. ..-

21

References

Balzer, R. Automatic Programming

Bobrow, 0. & Winograd, T. KRL paper

Brachman. R. What's.in a Concept

Brachman, R. Epistemological Foundations of Semantic Networks

Brachman, R. default paper

deKleer. J., etc. AMORD

Davis, R. & Buchanan, B. G. Meta-Rules

Doyle, J. A Model for Deliberation, Action. and Introspection. TR-581.
M. I. T. Artificial Intelligence Laboratory. May 1980.

Fahiman, S. E. The Intersection Problem

Floyd, R. program verification paper

Friedland. P. & Smith, R. Units manual

Fox. M. inheritance paper

Genesereth, M. R. Canonicity in Rule Systems, Proceedings of the
Symposium on Symbolic and Algebraic Manipulation, Springer-Verlag.
June 1979. V

Genesereth, M. R. Metaphors and Models, Proceedings of the First
National Conference on Artificial Intelligence, Aug. 1980.

Genesereth, M. R., Greiner, R.,.Smith, D. E. MRS Manual

Greiner, R. D. & Lenat 0. B. A Representation Language Language,
Proceedings of the First National Conference on Artificia1
Intelligence, Aug. 1980.

Hayes, P. H. Logic of Actions

Hendrix, G. Partitioned Semantic Nets

Hewitt, C. thesis'

Hewitt. C. intentions

Lenat, D. B., Hayes-Roth, F., Klahr, P. Cognitive Economy

McCarthy, J. Advice Taker

McCarthy, 3. & Hayes, P. H. problems paper

McDermott, D. & Doyle, J. Non-monotonic Logic

McDermott, D. & Sussman, G. Conniver Manual

qlP •

i -i .

22 r

Minsky. M. Frames

Moses. 3. slmp paper

JMylopoulos procedural semantics

Schubert, L.

Sloinan. A.

Smith, 0. E. CORLL Manual,

Sridharan, etc.* AIMDS

*Sussman, G. J. Microplanner Reference Manual

Warren Prolog

Weyhrauch, R. W. Prolegomena to a Theory of Formal Reasoning,.Al
Journal.

Winograd, T.

Woods, W. A. What's in a Link?

QA-3, QA-4, Simula, FRL

