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ON THE DESIGN OF REINFORCED HULL PANELS

[Gonza"lez Gonzilez, Francisco; Del Proyecto de Paneles Renforzados; Ingenieria
Naval, No. 561 (undated); pp 78-88; Spanish]

Author's Abstract /78*

The arrangement of transverse stiffeners in rectangular gross panels under
combined lateral and in-plane, compressive loads is studied and a reasonable
method for optimizing the design is arrived at.

The analysis is based on a combined deflection-strength-weight criterion.
Minimum weight compatible with limited stress and deflection is obtained through
a combination of simple formulae that take into account possible buckling modes
of the structure.
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1. Introduction

One of the typical structural substructures or subsystems of the hull of a
ship is a plate--plane or curved - reinforced by stiffeners welded to it.

The arrangement o7 the structural stiffeners usually meet design consideratios,
adoption of which is related to aspects such as:

--periphery support conditions of the substructure;
--loads on the connection to the rest of the structure;
--own loads of the substructure;
--restrictions imposed by the local geometry and the adjoining structure.

*Numbers in right margin indicate pagination in the original text.



Traditionally, the hull of welded steel ships is constructed by selecting
one of two fundamental types of stiffener:

--longitudinal;
--transverse.

In the study of the working stresses of each structural element, the loads
can be divided into three different groups:

--normal to the edges of the plate and in its plane;
--tangential to the edges of the plate and in its plane;
--normal to the plane of the panel.

In the study of the behavior of the stiffened flat panels, the analysis of
aeronautical engineering has made a fundamental contribution; however, in naval
architecture the requirements on the panels usually present conditions which
complicate the problem of design with other contour conditions and other loads on
the structure.

In this work we are going to study the design of a type of panel which has been
avoided in the technical literature owing to its admitted complexity. This
involves the case of a plate with its four edges fixed at the periphery, subjected
to pressure loads normal to its plane and coplanar compressive loads in the
direction of its larger dimension and stiffened by reinforcements perpendicular
to the coplanar load.

This work arrives at a simple expression of the effectiveness of the design
expressed in terms of weight of the structure. This parameter is usually important
in the design of warship hulls, a case in which, moreover, the loads contour
conditions, and arrangement of the stiffeners adopted in this study are usually
presented.

In merchant ship construction, however, the minimum cost is not necessarily

synonymous with the lower weight of the hull, if the latter is attained at the
expense of inefficient forms or of abnormal arrangements of the elements of the
structure.

In order to be able to state the solution in a simple and practical expression,
the following assumptions are made:

--uniformly distributed normal pressure load;
--uniformly distributed coplanar compression.

The work of Klitchieff (1) analyzes the case of a panel simply supported at
its periphery, and arrives at a simple and neat solution to express the resistance /79
to bending. Timoshenko (2) presents the classical method of analysis of this type
of structural problem. The solution of the simply supported panel with minimal
weight is studied by Gomez and Seide (3) and by Wah (4), who, together with Bleich
(5), also presents a valuable collection of the practical results of the investi-
gations from various sources.

In one way this work has followed the analytical fccus cf Klitchieff (1) to
continue on the practical line laid out by Wah (4) and Bleich (5), although with
the complexity which the contour conditions adopted impose. In this way. we
avoided diverting attention and confusing the discussion with the formulation of
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a complete mathematical solution. Since the arrangement of stiffeners in the
structure of a ship is usually uniform, this simplification was adopted from
the outset of the work.

On the other hand, a greater simplicity of the calculation process is attained
if the stiffeners are assumed to be situated in the nodal lines of the deformed
plate. In reality, this assumption is in line with that adopted by Klitchieff,
and therefore permits reaching a solution with an equal degree of validity. As
a special load case, Heller and Jasper (6) are studying the structural resistance
of planing ships. In these cases, the normal pressure is dynamic, and cannot

be assumed to be uniformly distributed. Nevertheless, a first approximation would
permit considering an equivalent uniform pressure which would produce the same
deformation or identical level of stress.

Finally, in this study, only elastic and minor deformations are considered,

so that the effect of the membrane stresses on the result can be disregarded.

2. Table of Symbols

P Kg/cm2 , coplanar compression at the edge of the plate, in the x-direction

q Kg/cm2 , lateral pressure normal to the plane of the plate

a Length of the panel, in the x-direction

b width of the panel, in the y-direction

c length of the subpanel, or section, in the x-direction

d proportion of one section - c/b

h thickness of the plate

u h/b

r number of stiffeners

RA Proportion, ratio of the panel area = a/b

A area of section of one stiffener

I moment of flexural inertia of one stiffener

m load interaction factor

s stress, strain

f deformation

D flexural rigidity of the plate

E Young's modulus

v Poisson ratio

i>3

4 ,



Subscripts

as antisymmetrical

cr critical, - a

e elastic limit

x, y coordinates of the plate or panel

bx, by flexure in the x- and y- directions

s relative to stresses

f relative to deformations

1, 2 subcases

(f)x~n nth partial derivative of f with respect to x.

Note: Numbers in parentheses refer to bibliography at the end of this wc,'k.

3. Geometry, Loads, and Contour Conditions

A panel is considered as composed of a flat plate with stiffeners parallel to
one of the edges. The proportion of the dimensions or aspect ration of the panel

RA = a/b is not limited. The number of sections, that is the number of stiffeners
plus one, is taken as greater than four. The proportion of these sections is held
variable between 0 and approximately 1.5.

The normal, lateral pressure can act on any of the faces of the panel. The
compressive load in the plane of the panel acts in a direction perpendicular to

the stiffeners.

The panel is fixed along its four edges. The stiffeners are fixed at their
extremities, and are connected to the plate so that each one of the smaller panels,
or sections, can behave as if fixed at the connection of the stiffeners.

4, Analysis of the Problem

4.1. Deformations

In panels with their simply supported edges, the deformation can normally
exceed half of the thickness of the plate. In the case where the four edges are
held fixed, this value of the deformation can be considered as a valid upper limit.

According also to Bleich (5), the effect of superposing the two types of load

can be expressed by way of an interaction factor m, such that:

f - m - f.

That is, the total deformation due to the combination of a compressive load
at edges p and another. normal pressure load q can be evaluated as a function of
the deformation f. produced by the lateral pressure alone,

4
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The factor m takes the value: /80

S.,

where Scr represents the unit bending stress of the reinforced panel.
S.,r g S'

f :h, 2

With these two limitations a linear approximation can be used which is
derived from the theory of large deformations. The result of this linearization is

the characteristic factor m.

The deformation Fo is a linear function of the lateral pressure q, provided

the material is not stressed beyond its elastic limit.

Timoshenko (7) gives for deformation fo an expression of the form
q

f. = K
384 D

in which k is a function of the ratio c/b, whose values are given in Appendix A for
the various values of that proportion.

D represents the fluxural rigidity of the plate, assumed isotropic.

If the buckling modes of the panel are defined on the basis of the condition
of non-deformed stiffeners, this justifies the selection of a section as a unit
of study of the elastic deformation. In reality, the deformation at any point

i5

"°" " ° . .. ..



on the panel (x, y) can be expressed by the sum of two terms:

f = + f:

f' being the primary deformation which results from considering the plate hinged
at the reinforcements and infinitely rigid everywhere else, and f2 , the secondary
deformation, which appears only on the plate.

In other words, the total deformation can be produced by superposition of what
is produced in the hinged rigid plate and that which the plate takes between
reinforcements when it loses its rigidity.

In panels with fixed edges, the two addends of the deformation are much
smaller than in those which have their edges supported. On the other hand, the
magnitude of the deformation can be expected to be distributed in a different
proportion between the two, such that f2 can be considered predominant when infin-
itely rigid stiffeners welded to the plate are put in place.

4.2. Resistance to bending

In Appendix B is presented the application which was made of the theory of
cuts in order to solve the problem of finding an expression of the critical stress

of the reinforced panel.

In order to find a value below Scr, only transverse waves are considered. The
presence of stiffeners forces the plate to buckle in a definite number of half
waves in the direction normal to those stiffeners.

The first mode has (n-1) regularly spaced nodal lines. The second mode has
nodal lines uniformly spaced at the center, but with a separation of the extreme
lines at the parallel edges, which approaches 1.5 times the separation when n
increases. This characteristic of the second mode becomes precise for very large
values of n.

If the reinforcements are placed in the nodal lines, it happens that those
elements deform exclusively by lateral torsion to follow and to permit the undu-
lated deformation of the plate, assuming that it is rigidly welded to the reinforce-
ments.

......... ... . ... ... . a. Symmetric bending

PanoIMtrico b. Antisymmetric bending
c. Compressive loads
d. Transverse buckling

P*Woo d iSInu&tr/

I e. Fig. 2. Examples of buckling

For both buckling modes, the first symmetric [ii and the second, antisymmetric
[as], there are obtained for each values of Kcr as a function of a variable d which
has the values:
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RA RA
d.. = -

2n+1 r-+2

RA RA

n r+lI

4.3. Stresses

According to Bleich (5), the greater values of the composite stress must
occur at the central points of the edges of thesmaller panels, or sections, (in
the extreme sections in the case of antisymmetric buckling). The resulting
values of the stresses are:

S. = P + m Sb.

The stress in the [symbol missing?] direction is not considered when the term
for compression, P, is not included. The value Sbx represents the flexural
component in the x-direction which is produced by lateral pressure q.

The coefficient m has the same value set forth above.

4.4. Flexural stress

For any proportion of dimensions of the section, the flexural stress due to
lateral pressure q can be expressed by:

q
S,, = K. -- (b/h) 2

2

This relation is the result of working up the Timoshenko coefficients

presented in Appendix A.

Coefficient K is a function of the proportions of the sections.

4.5. Restrictions

As pointed out earlier, there are limitations which must be observed in order
to be able to apply the linear theory of small deformations:

f= m f, sawtd .- ias h 2. y
s, P M - S,, si|ftet*A S,

All the variables have been defined on the basis of Appendices A and B. /81
It then becomes easy to obtain an expression for the corresponding limit values
of u m h/b:

p-

ul P2 P 2 q 0 -v)
U =. ..... + K.-

F F 16.E

,= P q,2
u,= -- + K. -- -

7
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Fig. 3. Loads and stresses on extreme sections

These two values limit the thickness-to-width ratio of the panel such that
u = h/b must always be greater than Uf and less than Us .

The value of F is:
E • .. K

12 (1 -V 2 )

where Kcr alternately takes the values of Ksi and Kas in each of the buckling
modes discussed.

The calculation conducted for usual values of E, u, P and q permits simpli-
fication to

uf d= us .

Consequently, the limit value for U = h/b turns out to be uf, and the construc-
tion of lower weight is obtained for u = uf.

The influence of the value of u on the total weight is discussed in the next

section.

4.6. Weight of the panel

For any material used in the construction of a reinforced plate, the total
weight is proportional to its volume.

V=a.b.h+r.Ab

A being the area of the right section of one of the two reinforcements, and all

of the latter are equal.

S-1
o.1



To select the structure of least weight, merely select that of lower weight
per unit of area of the panel, or minimize the equivalent mean thickness:

V r.A
h,- -h+-

a-b a

In naval shipbuilding, the sections of the reinforcements can be expressed in
a great number of ways as a function of their inertias.

A=K.IYX,iin =
2 6 3

1 being the moment of inertia of the transverse area of the reinforcement with
respect to an axis located at the union of the reinforcement with the plate (4):

Kn is a non-dimensional factor which takes the values K2 and K3 according to
the value of n.

In order to keep this study brief, only the profiles with n = z will be
considered, that is, the majority of sections at T and L.

On the other hand the condition which has been imposed on the reinforcements
to act at y as nodal lines of the buckling requires a minimum value of 1.

This minimum value of the inertia can be expressed as a function of a variable:

E.I

b.D

Klitschieff (1) gives the expression of that variable for the case of panels

simply supported at their periphery. In this work, that value of gmin is
accepted as the lower limit for 1. In reality, a different value can be expected
for the panel with fixed edges, but a theoretical consideration of the interaction
of the plate and its reinforcements with the two contour conditions suggests that
a similar distribution of deformation energy can occur between the two elements
only slightly affected by the contour conditions.

The expression of (1) can be simplified and substituted by:

2 (1 -d] 2

d' (5-d)

with a small error, provided r>3.

Hence, it follows that the minimum value 1 compatible with a buckling mode
can be calculated by:

b.D

E

Strictly speaking, the buckling made of the plate is governed by two factors:

--the rigidity of the reinforcements;

--the position of those reinforcements along the a dimension of the panel.

9V
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The torsional rigidity of the reinforcements can be disregarded without

significant error (1) (3).

In accordance with these considerations, the equivalent thickness can be
expressed thus:

1 2 ' •h3/. I
K, ."9 ! 1hh =h+
12 (1 -V)'/ d b'!2

S - b -M

d

u=h b /82

and

M=
12 (1 -V!)' 2

with d = das or dsi, depending on the buckling mode selected.

4.7. Minimum weight solutions

The application of the calculation of variations to heq as a function of u,

b, and d leads to the trivial solutions:

b = 0. de (h.).= 0

and
u = 0, de (h )= 0

This suggests the selection of an other evaluation function:

w = heq/b

to minimize it, or the function

g'P. U3/2

w=u+ M.
d

The real minimum can be obtained with:

U=Uf

g = g.i.

With that the variable d is left as the only independent one.

Nevertheless, the analytical solution of wmin is not direct. The equation
which results at d includes functions of the load (p, g) and of the geometry of
the panel and its material (M).

The calculation of u and w is performed then as a function of d for the
possible values of the rest of the variables of the problem: E, u, .S, P, q, M.

4.8. Effective width of the panel

10
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In the analysis of this work, and for the loads assumed, it appears logical
to consider the whole plate as effectively associated with the reinforcements.
This makes the procedure consistent with the first assemption made of a large
number of reinforcements.

4.9. Safety factor

In this study, no type of safety margin or factor was taken into account in
any of the components or stages. It must be admitted that the adoption of a
safety coefficient is a decision of the designer, who takes it as a function of
the special circumstances of each problem and by taking into account the reliability
of the working up or the theoretical procedure which may have created the formulation
which he uses.

By not adopting such a guarantee, the study is kept within the strictly

theoretical field in which it was planned.

5. Results

The calculation of the relations proposed for w and u as a function of d can
be extended to a practical limit of the variation of the other parameters p, q, M.

The graph representing those parameters is presented by way of illustration:

E = 10,3 x 10' Kg cm' (alumin ).

S. - 2.100 Kg, cm-.

M = 0,050.
P = 1.400 Kg/cm.
q = 0.7 Kg'cm-.

and it gives the values of u as a function of d.

The most prominent characteristics of the calculation can be summarized thus:

a. The two curves (uas and usi are very similar for any combination of values
of (p, q, M).

b. The two curves intersect at point A, which divides the variation interval
of d into two different zones:

-- For d<dA.u..<u,, and

w.,<w.. - that is,

the arrangement of the reinforcements for antisymmetric buckling determines a

lighter structure.

--for d-dA, opposite results are obtained.

c. The least weight solution is obtained for d = o, that is to say, that the
closer the reinforcements are, the less the weight of the resulting structure.

d. The location of the point of intersection A changes with the values of
p and q:

1
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--when p increases, A is displaced toward the right and the zone
of advantage for the antisymmetric arrangement of reinforcements
is larger;

--when q increases, point A is displaced to the lowest zone of d
to the benefit of the advantage of the symmetric arrangement of
reinforcements;

--the zone in which the point of intersection A occurs, for small
values of p and high values of q, is around the value d = 0.40;

--the absence of an absolute minimum for w with d different from d = o /83
leaves the designer with determining the value of the thickness of

the plate based on a permissible minimum value of u, that is, u = uf;
the section of the corresponding reinforcements is determined by

g = gmin for each pair of values (p, q) and a geometry M.

u h/b

E - 10.3. 104 N,/cmt
2teiroia" .S. 2100 g/c..

V 0.3

24*0.030

**7

d * c/b

0.7 0. .0 a . 0ie i ,

ds. Figurm 4-Grifio do ecclin.

a. Symmetrical [si]
b. Antisymmetric [as]
c. Case
d. Fig. 4. Selection graph (page 82)

6. Conclusions

The result obtained permits the preparation of design graphs to establish the
dimensions of a panel with minimal weight.

Once the gin is known for a buckling mode, the minimum thickness of the
plate associated with this mode can be determined, as can the scaling of the

12
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of the reinforcements which permit that gmin.

Since an absolute minimum value was not obtained as a single solution, no

value remains in the set of relations obtained to obtain a panel with the least

weight starting from uf and gmin"

Finally, the result that a larger number of reinforcements provides a smaller

total weight for the panel coincides with the conclusions reached in other works

published on this same subject.

7. Recommendations

--It would be desirable to test the validity of the calculations included

here with experimental data so as to ratify the practical validity of

some of the assumptions of the proposed solution;

--The theory developed contemplates the position of the reinforcements

as determining the buckling mode. This procedure ought to be extended

to other arrangements of reinforcements which can hold practical interest;

--The final objective must continue to be the development of a simple

mathematical expression of the type derived by Klitchieff (1). To that

end, some transformations of the elastic deformation equations must be

accepted.
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Appendix A

Reworking of the Timoshenko expressions for deformations and stresses on a
small panel due to lateral pressure loads with proportions which vary from 0.2
to 1.4.

1. Antisymmetric buckling:

3 a
C

2 r+2

for an extreme panel. And:

c/b = 3 d/2

2. Symmetric buckling:

d = c~b = RA,(r + 1)

The following can be expressed with these relations:
a

Sb. = K,.
2 • 

2

q •b (1- VI)
f= K,

h' 32. E

where the Ks include all the parameters which are not explicit.

In the following tables are listed the values of K and Kf, which have been
calculated from the Timoshenko curves and by including the absent variables:

d K, Kt K, K,

0.2 0.090 0.0081 0.040 0.0016
0.4 0.342 0.0117 0.160 0.0253
0.6 0.567 0.4205 0.342 0.1165
0,8 0.660 0.66 0,512 0.287
1.0 0.684 0,85 0,610 0.48
1,2 0.685 0.94 0.66 0.66
1.4 C,685 0.99 0.68 0.79

antisymmetric mode symmetric mode

Appendix B

Resistance to buckling of a rectangular plate with its four edges fixed.

The buckling of a column with fixed ends subject to axial compression P
is governed by the differential equation (2):

(f), + K2 • (f). 02 0

with

K2= PE

The valid solutions have the form:

f =A sin Kx + B cos Kx 4- Cx + D



The contour conditions corresponding to fixed ends give:

(f), =0, para x= 0 y x a,

a being the length of the column and f, the deformation:

f =0

at both extremes.

In this manner, two values for K can be found, one to define each of the two
possible bucking modes:

a. Symmetric buckling /88

Ka
sin =0

2

or

Ka= 2 i

b. Antisymmetric buckling:

Ka Ka
tan -

2 2

which, for n 3 can be approximated by:

Ka =(2n + 1)

without appreciable error.

The first buckling mode defines (n-l) intermediate nodes and the second,
(2n-l).

If we assume the panel composed of an infinite number of elementary columns,
there will also be two buckling modes in the panel.

The deformation of the panel can be written:

f (x,y) = f, (x) f2 (Y)

where fl(x) has the form of the equation solved above, and f2(y) is assumed to be
in the form of a single transverse wave of the symmetric type.

Once the deformation of the panel is known, its resistance to buckling can be
calculated by energy methods (8).

In essence, these methods consist in equalizing the energy stored in the
7. deformation with the work performed by the forces applied during the deformation

until a position of neutral equilibrium is reached. The value (or values) of
P which verify this condition of equilibrium is called the critical value of the
compressive load.

For the symmetric type of deformation this critical value is:

D.

h .b

15
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.. . . -.- . .P-.. .

with

4 n' 4. RAI 8K., =+ + - = K.,

RAI n2 3

with

RA = a/b

The same expression S is verified for the antisymmetric buckling mode,
but wi th: c

2n + 1) 16 RA 8
K,= A + B+-=K,.

RAI 3 (2n -I 111 3

where the constants A and B have the values

4 + (Ka)IA-
-4 + (Ka)l

and

5 (Ka) 2-36

3 (Ka) - 12

with

(Ka) = (2 n + 1) 7:

For a large number of nodes, these coefficients do not differ much in value
from:

A--'I

BI 53,

which can be considered as sufficiently exact approximations in practice.

V6
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