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I INTRODUCTION

A. Background

The David W. Taylor Naval Ship Research and De, -pment

Center (DTNSRDC) is the lead laboratory for naval logist -. In

addition, the Technical Strategist for Logistics and Faci - is

located there. It is the task of the Technical Strat, to

develop and maintain an overall technical strategy to focus the

thrust of all exploratory development (ED) in the field of naval

logistics (certain specific logistic functions are assigned to

other technical strategists). This approach to planning ED is

innovative, especially for the area of naval logistics.

Naval logistics is heterogeneous, comprising a wide variety

of very different and quite technical functions. These functions

require different expertise, employ different technologies, and

are evaluated by different measures of effectiveness. As a

result, at the supporting establishment level (where most research

and development is conducted), naval logistics has been largely

planned, managed, and conducted in separate functional areas by

separate agencies--e.g., Naval Supply System Command or Naval Sea

Systems Command. For the most part, ED has been conducted

according to the needs felt within each functional area with only

broadbrush coordination among functional areas.

However, the Technical Strategist for Logistics is required

to view naval logistics as a whole. He is to identify the regions

of needed improvement, the pertinent emerging technologies to meet

these needs, and the potential payoff in ED of technologies to

.............. .......-.-- . .i -- i



meet the needs. Then he must recommend, from the alternative

combinations of separate functional area ED programs, the

integrated program that will result in the greatest benefit to

overall naval logistics system effectiveness for the budget

available.

Much work remains to be done before the process of developing

and maintaining a technical strategy for logistics is perfected.

A pressing near-term requirement is a methodology for allocating

ED resources among and within the key areas. A longer-term

requirement is the development of a method to model the overall

naval logistics system in order to measure the impact of changes
in elements of the logistics system on fleet readiness or total

system costs.

These two requirements are related. Proper allocation of the

ED funds requires the knowledge of measures of effectiveness

(MOEs) for the logistics system, and these MOEs are derived from
the different steps required to model the overall naval logistics

system.

Key tasks associated with a resource a-location method are

developing meaningful and useful MOEs and establishing explicit or

implicit relationships (where they exist) among the various MOEs

to better understand their impact on overall effectiveness; and

developing a method of ED resource allocation for trading off the

expected achievable levels of the MOEs that characterize each

program.

This research program is a continuation of previous research

initiated at SRI for DTNSRDC. One of these projects resulted in

the development of a general resource *-llocation (RA) method for
selection of ED programs characterized by multiple disparate MOE

outcomes. The resulting RA method is based on the subjective but

informed judgment of a decision maker (DM) to provide MOE

preference information.

2



In the initial development of the RA method, relatively

simple preference structures among the naval logistics MOEs were

assumed for local modelling of the DMs global preferences. This

led to an RA procedure that can be employed iteratively to

determine the most preferred ED program from among some set of

programs. The existence of more complex preference structures and

their impact of the basic RA procedures were recognized as areas

requiring further investigation. Thus, the purpose of the present

research is to characterize the more complex preference

structures, and refine the RA method as appropriate.

B The Problem

1. Measures of Effectiveness

In each functional area of logistics, different MOEs

have been defined to measure different aspects of

performance--e.g., in the supply system, one MOE for operational

performance is requisition fill rate, and for financial

performance, one MOE is the ratio of sales to value of inventory.

These are valid MOEs from the viewpoint of a supply officer at a

supply depot. Different but related MOEs will be of concern to

the user, such as an operational commander. He will be primarily

concerned with the response time for the system to supply him with

a certain typc of part or quantity of material. This response

time will be a function of, among other functional MOEs, the

requisition fill rate mentioned above. Thus, no simple MOE is

now, or may ever be, available to measure all important aspects of

effectiveness for an entire functional area, and in some cases the

MOEs used may be mutually conflicting.

Among different functional areas--e.g., the supply system and

the maintenance system--the relationships between MOEs is even

more ill defined. Finally, in the overall system the interplay

among different functional MOEs and their cumulative effect on the

evaluation of the overall system effectiveness are only poorly

defined.

3
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2. Resource Allocation for Exploratory Development

Currently the mrtnods of arriving at the ED resource

allocation decisions within the relatively short deadlines imposed

by budget schedules depend mainly on judgment, experience, and

intuition. Without a formal method for allocating ED resources

among the heterogeneous key areas of logistics, the decisions are

difficult to make and the rationale followed in the selection may

be hard to reconstruct.

The difficulty lies in the fact that each key-area

technology program is characterized by a set of expected

achievable levels of different but important MOEs. Each of these

characteristics or attributes measures a different type of

effectiveness, and they cannot now be objectively and

quantitatively traded off to determine the preferred program or

the order of preference of other programs. A subjective

methodology is required, which is based on judgmental inputs by
decision-makers.

3. The Basic RA Method

In previous work, the Basic RA Method was developed to

specifically address the question of how to compare alternatives

whose expected outcomes are multifacetede It relies heavily on

the subjective model relating the needs of the Navy to fulfill its

mission, the various logistics MOEs that relate to the Navy's

capability to carry out this mission, and the relative effects of

improvements in these MOEs on this capability. The method allows

the DM to progressively build up and communicate his preferences

concerning specific ED programs and their expected outcomes

expressed as achievable levels of important MOEs. He does this

through a sequence of MOE tradeoff assessments between two

alternatives that differ only in the values of two MOEs. These

tradeoff assessments result in the construction of a sequence of

hypothetical alternatives that link two real alternatives, and

*H.A. Olender, "A Method for the Allocation of Exploratory

Development Resources in Logistics," SRI International Report
6549, December 1978.

4
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allow the inference of a preference (or ranking) between these two

alternatives. Applying this approach sequentially to all

alternatives results in a relative ranking among them.

The key concept of the method is that the set of

hypothetical alternatives serve as surrogate alternatives for one

of the real alternatives in the sense that the DM is indifferent

between obtaining the set of outcome HOEs for the real alternative

and for any one of the hypothetical alternatives.

As tradeoff assessment information is expressed and

accumulated, an analytical model of the DMs preferenced structure

A can be constructed and employed to rank remaining alternatives

without further tradeoff assessments.

-* The analytical model employed can be characterized as a

linear tradeoff model because it assumes that the tradeoff ratios-*

among the HOEs are constant. This results in linear indifference

functions. The validity and utility of the analytical model

depends on the degree to which the linear assumption is

approximated by the DM's true preference function.

Various types of tradeoff nonlinearities may exist among

MOEs that may require modification or extension of some of the

Basic RA Method procedures. For example, the utility and

preference for certain combinations of MOE outcome values may

depend on acquiring some minimum level of one or more MOE values.

Other MOEs may be required in certain proportion for greatest

utility. In some cases, the exceedance of a given MOE outcome

level may cause a resulting disutility.

The basic tradeoff assessment procedures when applied to

all candidate ED alternatives will generally identify the most

preferred ED program regardless of the presence of the above

nonlinear effects. However, the analytical model and procedures

that are part of the Basic RA Method may perform poorly under

these circumstances. Thus, one research issue is how to modify or

extend the Basic RA Method to handle the nonlinear tradeoff
effects.

4..
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C. Research Objectives and Approach

The objectives of the research reported here were to:

(1) Investigate the implications of nonlinear preference

structures on the Basic RA Method (a linear indifference

model) previously developed at SRI.

(2) Extend or revise the RA method to include procedures for

incorporating nonlinear preference models into the

:-. methodology.

The approach consisted of three phases. The first phase

consisted of an attempt to understand, more comprehensively, the

types of nonlinear effects that may be encountered for the various

naval logistics HOEs. The output of this phase basically consists

of a characterization of MOE tradeoffs and identification of

expected types of nonlinearities.

The second phase consisted of devising and examining various

techniques for modelling the significant types of nonlinear

effects identified in Phase 1. One of the approaches, a piecewise

linear approach, was then selected as most appropriate for

extending the basic linear model. The development of the

mathematical basis and procedures for this model was then

completed.

Finally, in the third phase, a numerical example was

constructed and some of the procedures were applied to illustrate

the method. This example is purely hypothetical and only

illustrates the numerical part of the procedure after the

appropriate tradeoff assessments have been performed.

-',
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II SUMHARY AND CONCLUSIONS

A. Summary

This research has considered a variety of types of nonlinear

effects that may characterize the indifference relationship

between pairs of NOEs. These nonlinearities have been categorized

as:

1. Threshold Effects

2. Convexity

3. Complementarity

4. Disutility

5. Proportionality

We have focussed on methods of modelling the convexity and

complementarity cases with a piecewise linear indifference model.

The remaining three nonlinearity cases appear to have the primary

implications of either eliminating alternative ED programs prior

to the application of the RA method

s, or reducing the number of NOEs that must be processed.

Threshold effects, for example, result in the requirement for

a given level of one or both NOEs before any significant utility

is attached to the values of the HOEs. This type of nonlinearity

suggests that alternative ED programs that have outcomes below the

threshold be discarded prior to the application of the RA methods

developed under this project. The disutility and proportionality

effects on the other hand imply a strong relationship between the

two NOEs that can be modelled by a functional relationship.

Again, only alternatives with outcomes that satisfy this

relationship should be evaluated by the RA methods described in

this report. The strong relationship between these types of NOEs

suggests that a single derived HOE can be used to replace the pair

7



of related HOEs. Alternately, either one or the other MOE can be

retained for processing by the RA methods to serve as surrogate

for the derived MOE.

The piecewise linear model developed in this research

increases the number of tradeoff assessments required from the DM

as we would expect. This nonlinear model which can be

incorporated into the Basic RA Method to form what we have called

the Extended RA Method requires tradeoff assessments for two

distinct purposes. The first purpose is to define the

indifference tradeoff ratios from which hyperplanes can be formed

and incorporated into the model. These tradeoff assessments must

include both negative and positive tradeoff assessments about some

outcome point. The distinction between these two tradeoff

assessments is the direction of movement from the reference

outcome point and is either negative or positive depending on

whether the DM's response is required to be in the negative or

positive direction, respectively.

The second purpose of the tradeoff assessments is to define a

most preferred marginal proportion direction for increasing MOE

values. This information provides weighting factors that are

associated with each hyperplane employed in the piecewise linear

model.

The piecewise linear model includes the strictly linear model

employed in the Basic RA Method. The number of tradeoff

assessments of both types for an arbitrary n-dimensional problem

cannot be specified ahead of time. At the minimum if the model

turns out to be strictly linear, only 2(n-l) indifference tradeoff

assessments will be required, and there will be no need to

determine the most preferred marginal proportion direction. At

the other extreme, n(n-1) indifference assessments will be

required in addition to (n-l) tradeoff assessments for determining

the most preferred marginal proportion direction.

8



The procedures for generating the piecewise linear model

parameters are developed and described within this report. These

include:

1) Indifference tradeoff assessments

2) Tradeoff ratio inferences

3) Tradeoff ratio consistency evaluation

4) Most preferred marginal proportion tradeoff assessments

5) Determination and selection of model hyperplanes

6) Objective function formation

Finally, an illustrative numerical example has been

constructed and processed through these six steps to demonstrate

the new procedures.

B. Conclusions

-)The Extended RA Method provides a method of modelling

nonlinearities in indifference relationships that can be

characterized as convexity or complementarity cases. As in the

Basic RA Method, a sequence of pairwise tradeoff assessments

between MOEs in required. Thus, an advantage of this model is

that its interface with the DM remains the same as the previous

linear model.

However, the cost of the more complex piecewise linear

indifference model is a significant increase in the number of

tradeoff assessments required from the DM. This not only

increases his load directly, but also indirectly in terms of

insuring a consistent set of tradeoff assessment responses. In

this context, the desired consistency is with an increasing

marginal rate of substitution model.

Consistency checking and correcting procedures have been

included in the Extended RA Method procedures, as illustrated

with the numerical example, and these should make the consistency

problem more tractable. 6-

i: " :" : ::--.. ... ..-. -.-...-.. . . . . --: -:i : .. : : : -: : : :- .:: : :.. .. .. .. .. . .: ' : -.- ., ... .. :. .: . .:. . : i i : 9.i



It is difficult to judge at this point whether the utility of

the Extended RA Method is worth the increased load on the DM. The

answer to this issue will depend on the dimensionality of the

nonlinearity relationships. When only one or two HOEs require a

nonlinear model, the tradeoff assessment load is automatically

reduced since many of the remaining tradeoff ratio values required

can be inferred. It is our judgment that only in this latter case

will the Extended RA Method be justified relative to the Basic RA

Method.

10



III THE BASIC RA METHOD

A. Concept and Elements of the RA Method

The Basic RA Method was developed to deal with resource

allocation problems characterized by alternative ED programs whose

outcomes are measured by multiple HOEs (i.e., outcomes are

vectors). One prime difficulty in assessing the relative worth of

these ED programs is the need for simultaneous comparison of and

tradeoff assessments among the different values of the different

types of MOEs.

The essence of the Basic RA Method is to decompose the

multiple MOE assessment problem into a sequence of simpler

tradeoff assessment tasks. This is accomplished by selecting two

alternative ED program expected outcomes and constructing a

sequence of hypothetical outcomes that eventually link the real

outcomes as described below. Each hypothetical outcome differs

from the two sequentially adjacent hypothetical outcomes in only

two MOEs. This is also true for the first real outcome and the

first hypothetical outcome. Comparison of any adjacent pair of

outcome vectors then involves only a "pairwise tradeoff

assessement" between the two differing MOEs. The sequence is also

constructed so that the last hypothetical outcome differs from the

second real outcome in only one MOE.

The application of the pairwise tradeoff assessments works in

such a manner as to construct a sequence of hypothetical outcomes

such that the DM is indifferent among them, and indifferent

between the first real outcome and any hypothetical outcome.

Finally, since the last hypothetical outcome and the second real

outcome differ in only one MOE, a direct preference assessment can

be made between them based on the values of that singular MOE.

11
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For example, if the MOE is "good" (i.e., more is preferred to

less), the outcome with the higher MOE value is preferred. The

preference relationship between the two real outcomes, and thus,

the preference between the two real alternative ED programs, is

established by induction.

The key concept of the method is that the set of
hypothetical alternatives serve as surrogate
alternatives for one of the real alternatives in
the sense that the DM is indifferent between
obtaining the sets of outcome NOEs for the real
alternative and for any one of the hypothetical
alternatives.

In addition to the procedures outlined above, the

* accumulation of tradeoff assessment information can be employed to

contruct a linear model that locally approximates the DM's

indifference function. This model provides a real-valued

objective function that can be employed in an optimization

procedure to determine the most preferred alternative ED programs.

B. Review of the Basic RA Method

The construction of the sequence of hypothetical outcomes

employed in the Basic RA Method is illustrated in Figure III-1.

Assume that two real alternative ED programs with four MOEs have

outcome vectors A and B given by

A - (a,, a2, a3, a4) (I)

12
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and

B ~ 2 b-(b~,,, b b) . (2)

MOE MOE2  MOE3  ME 4

A a (1 a 2  a3  a 4  )

A' - ( b1  C2  a a4

A" 2 ( 3  a4

A"l' - ( b bc
2 3 C4

FIGURE III-1 HYPOTHETICAL OUTCOME SEQUENCE

Three hypothetical outcomes, designated by A', A", and A... are
also shown in Figure 111-1. Note that the two attributes in which
each successive pair of programs differ are indicated within each
dashed box.

13



Comparing A' to A, we see that A' has the same MOE values

except for the first pair of HOEs. The value of MOE1 for A' is

set equal to the value of MOE1 for B, and the value of HOE2 is set

equal to c2. The procedure for obtaining c2 (and the other ci's)

is the pairvise tradeoff assessment and will be described shortly.

In a similar manner A" has the same HOE values as A' except for

the pair of MOEs consisting of HOE2 and MOE3. Through this

stepwise procedure we progress from hypothetical outcomes that

more closely match A to hypothetical outcomes that more closely

match B.

The hypothetical outcomes in Figure III-1 are obtained by the

assignment of values to c 2 , c 3 , and c4 by the DM. He chooses

these values so that he will be indifferent between any adjacent

pair of outcomes. Thus, the construction of the hypothetical

outcomes does not entail lengthy analysis to establish the values

of the MOEs nor does it imply that there exists a feasible ED

program that can produce that outcome.

The pairwise tradeoff assessment is the procedure for

eliciting the required information from the DM. He provides this

information by responding to the following type of question.

Given two outcomes whose HOE values differ in all but two MOEs,

and assume that the level of one MOE for the first outcome can be

increased to the level of the second outcome, how much can the

level of the second HOE for the first outcome be decreased to make

you indifferent between the new outcome and the first outcome?

Stated another way, how much of one MOE are you willing to

tradeoff for another? The quantitative response of the DM

provides the value of the c's discussed above.

After the construction of A"', we see from Figure III-1 that

the preference between A... and B can be determined solely on the

basis of the values for HOE. If b4 is equal to c4, the DM is

indifferent between A... and B; if b4 exceeds c4 , he prefers A"'.

44
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Since he is indifferent between A and A-, his preference

between A and B is established. In this process, we see that A..

(as well as A' and A") serves as a surrogate for A.

The primary objective of constructing the hypothetical

programs is to relieve the DM of the task of assessing

simultaneous tradeoffs among three or more HOEs; it offers him the

less complex, though still difficult task of assessing the

tradeoffs between only two HOEs. It thus allows him to focus his

attention on that part of his internal model of the important

overall effectiveness relationships that relates to the two HOEs.
To facilitate the construction of the sequence of

hypothetical outcomes, a tradeoff assessment tableau was devised.

After the two real alternative programs have been selected and

their MOEs evaluated, we inspect the successive pairs of values

for each MOE. This allows us to determine the number of HOEs, m,

such that the ais dominate the corresponding bi s; the number of

HOEs, q, such that the bi s dominate the corresponding ai s; and

the number of HOEs, p, such that ai M bi.

We select the minimum of m and q (assume it is m) and

rearrange the HOEs so that the first m consist of the case where
ai  b., the next q consist of the case where ai < bi, and the

remaining p consist of the case where aimbi. For specificity

assume that m - 2, q - 3, and p - 1. We can now construct the

tableau shown in Figure 111-2. Note that if q is less than m, we

can always switch names of the real outcomes (A to B and B to A)

so that the same tableau form results.

Figure 111-2 shows several interesting properties of this

procedure. First, the maximum number of hypothetical outcomes,

and thus the maximum number of tradeoff assessments, is m+q-1 (4

in this case). The minimum number of tradeoff assessments

required is max(l, m-l) (1 in this case). The minimum number of

tradeoff assessments would occur if c2 were less than or equal to

15



b 2 (or in general if c m were less than or equal to bm) In such a

case, B would dominate the (m -l)-th hypothetical outcome in at

least q MOEs and not be dominated by any remaining MOE. Thus, B

would be preferred to A.

HOEs a > b b > a a
Si i a

PIrx x x x x I x
Programs 1 x2  13 4 5 6

(Ra)Aa a 25 4 a

(Hypothetical) A' b1  a2  a6
1 F2 3 4I

a+

(Hypothetical) A" b b2  c a5  a6

(Hypothetical) A"' b1  b 1 b c a a61 2 3 41 5

(Hypothetical) A'"" b1  b 3 4 a6
1 2I F

(Real) B b 1  b 2  lb 3  b 4  b 5  b b6  a 6

4FIGURE 111-2 TRADEOFF ASSESSMENT TABLEAU
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If, in fact, B is preferred to A we discover that fact

anywhere from the (m-l)-th tradeoff assessment to the (m+q-l)-th

tradeoff assessment. If, on the other hand, A is preferred to B

or both are equally preferred we would discover that fact only

after the (m+q-l)-th tradeoff assessment.

In Figure 111-2 we can also note the relationship between any

hypothetical outcome and each of the pair of real outcomes. We

see that the first k MOEs of the k-th hypothetical outcome are

equal in value to the MOEs of outcome B, and the last n-k-i are

equal to the MOEs of outcome A. Thus, the hypothetical outcomes

can be readily constructed from A and B. The remaining MOE value

to complete each hypothetical outcome is supplied by the tradeoff

assessment of the DM. He accomplishes this without any thought as

to whether or not there exists a real ED program with that

outcome, or what its real cost may be. This is true since even if

the program were feasible, he need never seriously consider

implementing it. If it costs more than or equal to the budget, he

will select either A or B, since A is as good and B may be better

and neither costs more. If it costs less than the budget, he

should advise h i. ntaff to find an improved alternative whose cost

equals the budgez, and he will select either the new alternative

or B.

Pairwise tradeoff assessment infcvrmation provides a local

approximation to the marginal rate of substitution between two

MOEs. If the marginal rate of sub"tcuticn is independent of the

* outcome MOE levels, then the tradeoff ratio becomes a global

estimate of the marginal rate of substitution. In this case, we

have a M.near indifference aodel of the DM's preference function.

The linear indifference model can be employed in conjunction

with the tradeoff assessment procedure to analytically determine a

most preferred outcome using a linear optimization procedure. The

degree to which this outcome is truly the "most preferred" depends

on how well the constant marginal rate of substitution assumption

is satisfied.

17
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The linear indifference model results in an objective

function of the form

ng X) Y n xi
-i 1= (3)

where n is the number of MOEs and xi is the value of the i-th HOE

outcome. The values of the s are obtained from the tradeoff

assessment procedures that generate the values of the c's in

Figure 111-2. In particular, the tradeoff ratio between any

adjacent pair of MOEs, as shown in the tableau in Figure 111-2, is

defined as

b -ajbi -i+'--1 4

Yi+li = - b (4)

The tradeoff ratio between the n-th and any arbitrary i-th MOE is

defined as

n-lYni 17~ Yk+l,k (5)

k-i

for i < n, and is equal to 1 for i - n.

The outcome from among the set of alternative outcomes that

maximizes g(x) is the most preferred outcome according to the

linear indifference model. The optimization procedure is

graphically illustrated for a two dimensional case in Figure
111-3. The value of Y2 1 corresponds to the negative of the slope

18
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of the linear indifference line. Optimization corresponds to

sliding this line up and to the right until it reaches the last

outcome. This is the "most preferred" outcome. In higher

dimensions the Y s define a hyperplane, and optimization is

achieved by sliding the hyperplane in the direction of increasing
SMOE values to the last outcome.

19
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The steps and procedures of the Basic RA Method are the

following:

(1) Select alternative pair. Initially select the two

potentially most preferred alternative outcomes based

on the subjective assessment of the DM. On subsequent

iterations through Step 1, select the current highest-

ranking alternative and one other potentially most

preferred alternative from among the remaining

alternatives.

(2) Reorder HOEs. Reorder the MOEs so that the minimum

number of dominated HOEs between the two alternatives

are at the beginning of the sequence of MOEs, and the

remaining reverse-dominated MOEs are listed next,

followed by the remaining equal-value MOEs (if any).

(3) Construct tableau. Construct the tradeoff assessment

tableau so that the top alternative dominates the

bottom alternative in the first MOE.

(4) Perform tradeoff assessment. Obtain the DM's response

between the appropriate pair of MOEs within the

tableau. Each response completes the construction of

a hypothetical outcome.

(5) Test for dominance. After the minimum number of trade- 1 -

off assessments (m-l) have been completed, determine

whether the bottom alternative completely dominates

the last hypothetical alternative. If it does, the

bottom alternative is ranked as more preferred than
14 :

the top alternative. If unranked alternatives remain,

20



we proceed to Step 1 or Step 6 at the option of the

DM. Otherwise, we have completed the procedure and

the most preferred alternative has been identified.

If, on the other hand, dominance has not yet occurred,

further tradeoff assessments are required and we

return to Step 4. After the maximum number of trade-

off assessments (m+q-1) have been completed, the two

alternatives are ranked by comparing the last MOE

involved in the tradeoff assessment. Again, we proceed

to Step 1 or Step 6 if unranked alternatives remain.

(6) Complete the tradeoff assessments (optional). If a

complete set of tradeoff ratios has not been estab-

lished, the Y 8ni n Eq. 3 are not all known and the

linear function cannot be optimized to determine the

next alternative. However, at the option of the DM,

the remaining tradeoff assessments (obtained according

to Step 4) can be accomplished. The Yn's, which are

tradeoff ratios between the n-th or last MOE and the

i-th MOE can then be computed according to Eq. 5.

(7) Perform linear optimization for next alternative

selection. Select the next alternative by optimizing

Eq. 3 over all remaining alternatives.

(8) Test for termination (optional). Ask the DM to care-

fully consider each of his most recent tradeoff ratios

and the range of MOE values covered by the remaining

alternatives. Determine whether he would modify any

of these tradeoff ratios as a function of the MOE

values within this range. If he would not, the most

preferred outcome is the outcome that optimizes Eq. 3.

At this point, the most preferred alternative has been

21



identified and we are done. If the DH indicates that

his tradeoff ratios are not constant over the range of

HOE values,proceed to Step 2 with the current highest-

ranking alternative and the alternative obtained In

Step 7.

7.
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IV NONLINEAR EFFECTS IN MOE TRADEOFFS

A. General

A portion of the Basic RA Method, described in the preceding

chapter, is predicated on the assumption that the DM's

indifference curves for each pair of MOEs is linear, at least in

the region of decision. That is, the DM is willing to sacrifice K

units of one MOE in order to gain one unit of the other MOE, where

K is a constant within the region of possible alternative

outcomes.

As described in Chapter III, the Basic RA Method consists of

two parts; an iterative evaluation that eventually identifies a

most preferred outcome from a set of alternative outcomes, and an

analytical model that can be employed to accelerate the process of

identifying a most preferred outcome. The analytical model

portion of the RA method is based on the linearity assumption.

This assumption is usually sufficient in cases where the region of

decision is relatively small. However, as this region expands,

the effects of nonlinearities in the DM's preference structure

may become more and more significant.

This research then was directed toward examining the effects

of such nonlinearities on the Basic RA Method and to identify

procedures to be applied when the linearity assumption becomes

unacceptable. The approach used was to first identify the types

of indifference curves that may be encountered in practice and to

establish a categorization scheme to be used to classify

relationships between pairs of MOEs. The second step was to

theoretically examine the implications that these nonlinearities

will have on the use of the Basic RA Method. The final step was

to develop a nonlinear indifference model and the procedures

required to incorporate it into the RA method.

23



B. Categorization of Nonlinear Indifference Curves

The Basic RA Method is based on the assumption that the DM's

preference pattern between a pair of MOEs results in a linear

indifference curve. In some practical applications, this may well

be the case. However, there are many circumstances where the DM's

preference pattern may vary from this norm. In order to represent

these variations in a convenient manner, a categorization scheme

was developed to classify the types of nonlinearities that one may

encounter in practical situations. The categories that were

selected are as follows:

s Threshold

@ Convexity

* Complementarity

* Disutility

* Proportionality

These categories are not necessarily exclusive, in the sense

that an indifference curve could, over the complete decision

region, exhibit several of the characteristics representing these

categories. However, in a local portion of the decision region,

it is assumed that, at most, only two of the categories hold.

This comonality of characteristics will become apparent in the

descriptions of the various categories that follow. In these

descriptions, it is assumed that an increase in a value of a MOE

is beneficial in the eyes of the DM. That is, more of a MOE is

better than less. This convention precludes the use of some

common HOEs, such as 'response time', where the lesser value is

preferred to the greater. However, these MOEs can be included

merely by assuming their reciprocal values.

Before discussing each of these nonlinear categories, we

review the linearity assumption case. Linearity represents the

case where there is a constant tradeoff between two HOEs. That

is, the DM is willing to sacrifice K units of one MOE in order to

gain one unit of the other MOE, where K is a constant. This case

is illustrated in Fig. IV-1. This case, which is the basis for
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INDIFFERENCE
CURVES

MOE 8

FIGURE IV-1 LINEARITY CASE

4

4the Basic RA Method, provides a local approximation for the more

prevalent convex case, although it may actually be appropriate in

certain cases. For example, in the tradeoff between initial

investment cost and annual operations and maintenance Navy (O&HN)

25
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cost, the DIN say be inclined to be indifferent to a fixed ratio

between these costs. That is, for every million dollars of

investment, the I may be indifferent to an O&MN cost of $75 K per

year, amortized over a period of ten years.

1. Threshold

The threshold categorization factor represents the case

where a minimum amount of one or both of the MOEs is always

required. This case is illustrated in Fig. IV-2, where MOE B

INDIFFERENCE
iCURVES

THRESHOLD MOE e
VALUE

FIGURE IV-2 THRESHOLD CASE

exhibits this threshold characteristic. As an example, MOE B
could represent the fuel resupply rate for a ship deployed at sea

for an extended period of time. The threshold value would denote
the minimum rate at which the ship could Just manage to function
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in its operational environment. Increases in this rate would

allow the ship more flexibility in its ability to maneuver, which

could reduce the requirements imposed on the ship's function

associated with MOE A that represents, for example, the ship's

firepower. The indifference curves illustrated in the figure are

normally convex leading into the threshold barrier. This implies

that the closer the restricted MOE gets to the threshold barrier,

the greater the increase in the other MOE required to offset a

small decrease in the restricted MOE.

2. Convexity

The convexity categorization factor represents the case

where the DM is willing to accept a loss in one MOE that is offset

by an increase in the other MOE, and the amount of offsetting

increase must be larger as the amount of the first MOE gets

smaller. This case is illustrated in Fig. IV-3. This case

INDIFFERENCE
CURVES

MOE 8

FIGURE IV-3 CONVEXITY CASE
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represents the usual norm for indifference curves and is

equivalent to the increasing marginal rate of substitution

assumption. A good example of this is the tradeoff between a

ship's maneuverability and its firepower, as mentioned previously.

Increasing maneuverability will reduce the requirements for

firepower, but at a decreasing rate. The ship, by increasing its

maneuverability, may decrease its susceptability to the submarine

threat, but it may still be as susceptible to the air threat as it

was before. Hence, its firepower requirements against the

submarine threat may be reduced somewhat, but it still must

maintain the same firepower requirements against the air threat.

Thus, its total firepower requirements may be reduced somewhat,

but not proportionately to its initial requirements.

3. Complementarity

The complementarity categorization factor represents the

case where the DM's indifference curve is either convex or linear,

but there exists a point of radical change ini this indifference.

This case is illustrated in Fig. IV-4. What this case implies is

that the DM has a specific balance point between the two MOEs

under consideration, and any deviation from this point is one MOE

requires a markedly different tradeoff in the other MOE than would

be the case if the MOEs were reversed. As an example of such a

case, consider the possible tradeoff between equipment-on-hand and

spare parts inventory. For a specific level of operations, there

may exist an optimal balance point which specifies a certain4
number of spare parts required for a desired number of units of

equipment. A deficiency in the number of spare parts can be

offset by the addition of a specific number of units of equipment.

However, a lack of the same number of units of equipment can only

be compensated for by a much larger increase in spare parts than

was deficient in the former case.
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MOE B

Figure IV-4 COMPLEMENTARITY CASE

Disutilty

The disutility categorization factor is similar in

nature to the complementarity categorization factor, with the
exception that, on either side of the balance point, an abundance

in one MOE can only be offset by a proportional abundance in the

other MOE. This case iA illustrated in Fig. IV-5. What this case

implies is that the DM has a preference for a proper balance

between the two MOEs and an increase 4n one MOE requires some

proportional increase in the other L to satisfy the DM's

preference criteria. As an example, consider an intermediate

storage point such as a warehouse facility. The proper balance
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FIGURE IV-5 DISUTILITY CASE

point could be the warehouse being full to capacity with incoming

supply metric tonnage exactly equaling outgoing supply metric

tonnage. Any increase in the incoming supply rate could only be

tolerated if the outgoing supply rate is also increased, and vice

versa. If the former case were to hold with no increase in the

outgoing supply rate, then the warehouse capacity would have to be

increased or supplies would have to be returned to the sender. In

the latter case where the outgoing supply rate exceeds the

incoming supply rate, the warehouse would not be used to its full

capacity and eventually would become nearly depleted, with the

outgoing supply rate having to be reduced resulting in unused

resources on the outgoing supply operation.
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5. Proportionality

The proportionality categorization factor is actually an

extreme case of the disutility categorization factor. This

implies that the DM's indifference curve is actually a single

point, the point of proper balance between the two MOEs. In the

sample cited in the disutility case above, the DM cannot tolerate

an imbalance in the incoming and outgoing supply rates. An

increase in one supply rate can only be accompanied by an increase

in the other supply rate and this balance point would then

represent a higher level indifference point.

C. Implications of the Nonlinear Categories

The basis for the previous research that resulted in the

Basic RA Method explicitly considered the cases of linearity and

convexity. The implications of convexity on the Basic RA Method

was that an iterative sequence of linear indifference models would

converge to the identification of the most preferred outcome. The

implications of the remaining nonlinear-categories:

* Threshold

9 Proportionality

* Disutility

* Complementarity

are discussed below.

1. Threshold

The principal implication of the threshold case is that

the threshold values must be identified, and this information

incorporated into the alternative ED program selection process.

Thus, any alternative outcome chat has an MOE value below the

required threshold should be discarded or the ED program modified

to increase that MOE above the threshold. Referring to Figure

IV-2 we see that this is equivalent to a translation of the

outcome space along the MOE B axis. When this is done we see that

the threshold case reduces to one of the remaining nonlinear

cases.
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Since the RA Method does not deal with the selection of

alternatives, we have not explicitly considered these effects in

the RA method development.

2. Proportionality

Proportionality implies that there is a strong

functional relationship between pairs of MOEs. An indifference

curve becomes a point, and the family of indifference curves

becomes a line (or curve) of MOE proportions. Agaiu, the

principal implication of proportionality is on the selection of

alternative ED programs. Obviously, the disutility for deviations

from the proper proportion will be so great that outcomes whose

MOEs do not satisfy this proportion should be discarded or

modified.

A second important implication of proportionality is

that the dimensionality of the MOE space can be reduced. For

example, if MOEs A and B are proportionally related whereas A and

C, and B and C are not, the tradeoff between A and C implies a

unique tradeoff between B and C, and vice versa. If all

alternative outcomes have the proper proportion between A and B,

then the issue of finding a most preferred alternative will be

decided by tradeoffs between other MOEs and either A or B.

3. Disutility

The disutility case is somewhat similar to the

proportionality case in that changes of outcome MOEs away from the

line of proper balance (see Figure IV-5) imply a rapid falloff in

utility. Inspection of Figure IV-5 shows that if one started from

an outcome on the line of proper balance an increase in both MOEs

is required just to remain indifferent. But this implies a higher

budget ED program. If feasible, a clearly better way to allocate

32
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that higher budget is to increase the HOEs along the line of

proper balance. This will result in a net increased utility. In

general, then, the selection of alternative Ed programs should be

as close to the proper balance as possible.

We conclude that the disutility case has effectively the

same implications on the RA method as the proportionality case.

4. Complementarity

The complementarity case also has a certain degree of

coupling between pairs of NOEs, but the effect is much reduced

from the disutility case. In particular we note that improvements

in outcome utility can still consist of a tradeoff between the

HOEs. This tradeoff however is not constant and the tradeoff

ratio for improvement depends on which MOE is increased or

decreased. This latter property is also true of the convexity

case.

The knee in the indifference curves of the comple-

mentarity case suggests that a piecewise linear model would more

accurately model the indifference function. Referring to Figure

IV-4, a piecewise linear model would consist of a linear tradeoff

model with a given tradeoff ratio to the right of the line of

proper balance, and a second linear tradeoff model with a

different tradeoff ratio to the left of the line of proper

balance. In higher dimensions, a set of hyperplanes pieced

together in the proper way constitutes the piecewise linear-model.

This type of model can be constructed using the same

basic tradeoff assessment procedures as the Basic RA Method.

However, for every pair of MOEs we would then require two types of

tradeoff assessments. In one case the -,A would decrease one MOE
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in response to an increase in the other, and in the second case

the DM would increase the first MOE in response to a decrease in

the second MOE. In addition tradeoff assessments will be required

to obtain information concerning the proper balance of the MOEs.

Based on the above considerations, we have developed an

Extended RA Method that incorporates a piecewise linear

indifference model.
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V THE EXTENDED RA METHOD

A. Development of the Extended RA Method

The Extended RA Method is a piecewise linear extension of the

linear indifference model. It is primarily designed to handle the
first order nonlinear effect introduced by complementarity between

and among HOEs. However, its utility also applies to the more

general cases of increasing marginal rate of substitution.

The principal concept of the piecewise linear model is to

contruct a nonlinear objective function that consists of linear

indifference segments. This concept is illustrated in Figure V-1.

LINEAR
INDIFFERENCE

SEGMENTS/
MOST PREFERRED

o /- PROPORTION LINE

//

MOE1

FIGURE V-1 PIECEWISE LINEAR INDIFFERENCE CURVES
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The indifference structure illustrated in this figure is the

complementary MOE case where, in general, a certain incremental

proportion between the two MOEs is most preferred. However,

incremental increases in either MOE without corresponding

increases in the other still has some increase in utility, and

therefore, preference. When these conditions prevail, the

indifference functions have the shape illustrated in Figure V-i.

The most preferred proportion between the two MOEs is shown by the

dashed line. The indifference function shows that if one

considers an outcome that has a most preferred proportion between

.*. MOE1 and MOE2, then a small decrease in either MOE requires a

large increase in the other MOE. Conversely, given a large

increase in either MOE, only a small decredse in the other can be

"tolerated" to make the DM indifferent. Graphically, this

situation is characterized by indifference functions that have a

"knee" at the line of "most preferred" proportion.

A first order nonlinear approximation of each indifference

curve is to piece together two linear functions at the line of

most preferred proportion. The optimization problem to find the

most preferred outcome then involves sliding the two associated

slope lines along the line of most preferred proportion until one

of the slope lines encounters the last outcome.

The piecewise linear model requires more information from the

DM than the linear model, as would be expected. However, the same

basic tradeoff assessment procedures as used in the Basic RA

Method are still appropriate. Also, it is necessary to distin-

guish between two types of tradeoff assessments depending upon

whether one of a pair of HOEs is increased or decreased in the

tradeoff assessment. These two types of tradeoff assessments will

be called negative or positive tradeoff assessments according to
the following definitions:
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Negative Tradeoff Assessment. A negative tradeoff assessment

occurs when a DM decreases one MOE in response to a given

increase in the other MOE.

Positive Tradeoff Assessment. A positive tradeoff assessment

occurs when a DM increases one MOE in response to a given

decrease in the other MOE.

In addition to the tradeoff ratios produced by the negative

and positive tradeoff assessments, we need to determine the vector

that defines the most preferred proportion line. One way to

specify this vector is to specify one point on the proportion

line and a direction vector for the line. Each point can then be

obtained as the sum of the specified point (or vector) and some

multiple of the direction vector. The information required to

determine the direction vector can also be obtained by the basic

tradeoff assessment process as will be described shortly.

The piecewise linear objective function is derived in

Appendix B in terms of the direction cosine representation of two

vectors: the hyperplane vector and the most preferred proportion

vector. The direction cosine representation for these vectors,

aandO, are obtained by simply dividing each term of each vector

by its vector magnitude. When this is done, the above vectors are

interpreted as followsi The vector G is the unit vector normal to

a given hyperplane and the vector f is the unit vector defining

the direction of the line of most preferred proportion. The dot

product of any given outcome vector with o gives the "effective"

minimum distance of the outcome point from a hyperplane passing

through the origin. The dot products of a with f gives the

projection of f along the C direction respectively. This last

function, evaluated for each hyperplane, provides the weighting

functions in the objective function.

Consider the following objective function for the

two-dimensional case, where the hyperplanes are lines with unit
41 2

normal vectors and 2 respectively:
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and the vector, a, is an outcome on the most preferred proportion
line. Generally, it ill be the point at which the negative and

positive tradeoff assessments are made and the corresponding

tradeoff ratios computed. 
However, it can be any outcome 

along

the most preferred proportion 
line since the ters in the 

brackets

are only modified by an additive constant.

Graphically, g(x) is interpreted as follows. The quantities

91W and g2(x) are the minimum distances from the origin of the
slope lines passing through x. The quantities gl(x-a) and g2 (x-a)
are the separations between parallel slope lines passing
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through x and through a. The terms l/g1 (x) and l/g2 (x) are

weighting factors that measure the relative importance of a change

in the slope line separations along one slope line compared to the

other. These weighting factors tend to favor points on the most

preferred proportion line.

For example, consider the slope lines, most preferred

proportion line, and outcomes shown in Figure V-2. The value of

//
U1
0

MOE X

FIGURE V-2 PIECEWISE LINEAR GRAPHICAL OPTIMIZATION

g2 (b-a) is zero, and the value of gl(b-a) must be greater than
zero. Thus, g(b) will be zero. Conversely, the value of gl(_- )

is zero, and the value of g2 (c- a) is positive. Thus, g(c) will

also be zero. In fact, any point along the piecewise linear

function in Figure V-2 will be zero, and therefore, equally

preferred.
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For point d, g2(d-a) is zero and gl(d-a) is negative. Thus,

g(d) has a negative value relative to a, b, and c. In a similar

fashion, we can argue that both e and f have positive values

relative a, b, and c.

As illustrated in Figure V-2, e was constructed by adding an

amount of MOE 2 to c, and f was constructed by adding the same

amount of MOE2 to b. Which (e or f) has the greater value of g?

The answer is provided by the value of the weighting functions.

For this example, those weights will be such that g(f) > g(e).

This means that a change in MOE2 of a given amount starting from

point b is more preferred than the same amount of change in MOE2

starting from point c. This result is consistent with the fact

that f is closer to the most preferred proportion line than e.

Generalizing the objective function to higher dimensional

cases, the tradeoff slope lines become hyperplanes, and the

objective function becomes

Lx- a)
g(x) Min - (9)-- i=l,h c

where h is the number of hyperplanes established by the piecewise

linear model. Each of these hyperplanes pass through the

reference point a.

The interpretation of the terms in the brackets is exactly

the same as before, but couched in terms of hyperplanes. Thus,

gi(x-) is the separation between x and a along a direction normal

to the i-th hyperplane. The i-th hyperplane is defined by the

direction cosine vector obtained by the i-th combination of

tradeoff ratios.
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Appendix A specifies how the set of h hyperplanes used for

the piecewise linear model of the indifference function are

determined from the tradeoff assessment data. The total number of

MOE pairs that can be used for tradeoff assessment evaluations is

equal to n(n-l)/2. However, since for each pair of NOEs we have

both positive and negative tradeoff assessments, the maximum

number of distinct tradeoff ratios is n(n-1).

Tradeoff ratio information can be encoded in vectors that

have only two non-zero terms. For tradeoffs between the i-th and

J-th NOEs, the two non-zero tradeoff ratio vector terms are the

i-th and the J-th terms; all remaining terms are zero. Thus,

these vectors have the form

i-th i-th
+ 4 (10)

where Y ij is the tradeoff ratio obtained from the negative

tradeoff assessment of MOEi relative to MOE . Also note that the

tradeoff ratio always has a positive value. The tradeoff ratio

obtained from a positive tradeoff assessment of MOE i relative to

MOE can be viewed as a tradeoff ratio obtained from a negative

tradeoff assessment of MOE relative to MOEi. Thus, we can define
all the tradeoff ratio vectors in terms of equivalent negative

tradeoff assessment information. The counterpart of v(ij) then

becomes v(j,i) and its J-th term is - Y These vectors repre-

sent sample points (within a scale factor) from the nonlinear

indifference hypersurface we are attempting to model and from the

piecewise linear hyperplanes we will use in our model.

The piecewise linear model is obtained by first finding all

hyperplanes that each contain a combination of n-l linearly

independent tradeoff ratio vectors taken from the total set of

n(n-l) vectors. We then select only those hyperplanes that are

consistent with the increasing marginal rate of substitution

assumption, and that include each tradeoff ratio vector in at

least one hyperplane.
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The hyperplanes obtained are also represented by vectors w

which have a direction orthogonal to the hyperplane. In general,

w need only be defined to within a scale factor. When normalized

to a unit vector, v becomes a unique vector designated 1.

The increasing marginal rate of substitution assumption is

equivalent to a convexity assumption that translates into two

conditions:

(1) For any given i and J, Y < I/y

(2) The dot ,product of each tradeoff ratio vector with

any hyperplane vector used in the piecewise linear

model, must be greater than or equal to zero. (It

will equal zero if and only if the tradeoff ratio vector

lies in the hyperplane under consideration).

The "inclusion condition" states:

Each tradeoff ratio vector must be contained in at least
one hyperplane (i.e., v . w - 0) that does not violate
the convexity conditions.
The violation of the inclusion condition means that the

tradeoff assessment data for that vector is inconsistent with the

convexity condition. If this occurs, two options are available.

The first is to reassess the tradeoff ratio until it is consistent

with convexity. The second approach is to simply consider it as a

"bad" datum, discard it, and form a limited piecewise linear

indifference model with the remaining "good" data.

The maximum number of hyperplanes that can be formed from a

set of s - n(n-1) vectors is given by

m - (n - l)!(s - n + 1)! (n1)

Most of these however, violate the convexity and inclusion

conditions stated above and are thus not allowed in the model.

42

- - -- - - - - - - !



4

Appendix A shows that if the tradeoff ratios Vki' YV1 ' and

Y are all mutually consistent with the convexity assumption, then

the selection of n-i tradeoff ratio vectors to form a hyperplane

cannot include pairs that are of the form v(k,i) and v(i,j) where

kj. This result requires that all vectors containing an arbitrary

MOE index i that belong to an allowed set of n-l linearly

independent tradeoff ratio vectors, must have that index always

appear in either the first position or the second position of the

index doublet characterizing those vectors. Thus, the pair v(4,1)

and v(1,2) is not allowed.

Unfortunately, we have not been able to derive a general

analytical expression for the maximum number of allowed

-hyperplanes as a function of the dimensionality. However, if we

let q denote this maximum, and examine several cases, we can

construct Table V-1.

Table V-I

Maximum Number of

Allowed Hyperplanes

n m q

2 2 2

3 15 6

4 220 32
I

Appendix A also shows that if the tradeoff ratios Yki' Y

0k' and Vkj are all mutually consistent with the convexity

assumption, then the selection of n-i tradeoff ratio vectors to

form a hyperplane cannot include pairs of the form v(k,i) and

v(J,i) where k j, unless Y < Y 1Y < 1/

kj ki ji jk
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This numerical condition will work to further reduce the

number of hyperplanes in the piecewise linear model to some r.tzber

h that is less than q. We expect the degree of reduction of

hyperplanes to be significant but cannot quantify it without

specific numerical values.

To summarize, the negative and positive tradeoff assessments

yield up to n(n-1) distinct tradeoff ratio values which can be

represented as n(n-l) vectors. In general, there will be fewer

tradeoff ratio vectors since certain MOE pairs may be linearly

traded off. In the extreme, if all tradeoff assessments are

linear, there will be only one half as many distinct tradeoff

ratio values; however, only one linearly independent set of n-l

vectors will be found. Thus, there will be only one hyperplane

for the piecewise linear model.

The number of hyperplanes allowed in the piecewise linear

model is constrained first by the number of linearly independent

sets of n-1 vectors that can be found. Secondly, the convexity

and inclusion conditions disallow certain hyperplanes. Finally,
numerical values of certain tradeoff ratios may disallow

*additional hyperplanes.

Given an allowed set of h hyperplanes, the reference outcome

vector a at which tradeoff assessments are made, and the most

preferred marginal proportion vector f, the piecewise linear

objective function, g(x), is given by Eq. 9. Selection of a most

preferred alternative ED program, consists of finding an outcome

vector that maximizes g(x). Since each outcome vector corresponds

to an alternative ED program, we choose that corresponding ED

program.

B. Procedures of the Extended RA Method

The previously developed Basic RA Method is based on a

sequence of pairwise MOE tradeoff assessments, the relative

rankin3 of pairs of outcome vectors (i.e., alternative ED

programs), and an optional linear model optimization procedure.
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The research reported herein extended the linear model to a

piecewise linear form of a nonlinear model. The utilization of

the plecewise linear model increases the burden on the DM in terms

of the number of tradeoff assessments required for local

indifference modelling, and for establishing the most preferred

proportion line. However, the piecewise linear model does also

include the linear model in the case that only one hyperplane is

required. In the latter case, the most preferred marginal

proportion line corresponds to the direction of the unit vector

normal to the hyperplane. Thus, the tradeoff assessment load will

reduce to the linear model load.

The extension of the indifference model to a piecewise linear

one does not affect the ranking portion of the Basic RA Method.

The ranking procedure is designed to lead to the selection of the

most preferred alternative from among a given set whether the

indifference function is approximately linear or highly nonlinear.

Unfortunately it provides no model of the indifference structure

that can be employed to reduce the tradeoff assessment load when

considering a new set of alternatives, or when attempting to

synthesize new alternatives that are likely to be highly

preferred. Thus, a linear model evaluation procedure was also

included in the Basic RA Method. Steps 6 and 7 in the procedures

of the Basic RA Method provide for this evaluation. The Extended

RA Method procedures are obtained by revising these two steps.

The list of steps then becomes:

(1) Select alternative pair

(2) Reorder MOEs

(3) Construct tableau

(4) Perform tradeoff assessments

(5) Test for dominance

(6) Complete the tradeoff assessments (optional)

(7) Perform piecewise linear optimization for next

alternative selection (optional)

(8) Test for termination (optional)
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1. Tradeoff Assessment Requirements for Step 6

Step 6 consists of 3 tasks. First, a matrix of pairwise

tradeoff ratios must be determined to characterize the

indifference relationships. Secondly, these tradeoff ratios must
be checked for consistency with the convexity conditions.

Finally, additional tradeoff assessments are required to determine
the direction of most preferred proportion line.

To construct a piecewise linear indifference model, the

first task is to obtain sufficient tradeoff assessment information

from the DM. The number of tradeoff assessments required will
depend on the number of linear pairwise indifference

relationships. The greater this number the fewer tradeoff

assessments required. A linear pairwise indifference relationship

implies that the negative and positive tradeoff assessments yield

the same tradeoff ratio.

The maximum number of tradeoff assessments required is

n(n-1) and the resulting tradeoff ratios can be arranged in a
square matrix. The i-th row and J-th column of this matrix

represents the tradeoff ratio of MOEi relative to MOE for a
negative tradeoff assessment. The diagonal elements of this

matrix are all trivially equal to unity. For i greater than J,
the entry is an equivalent negative tradeoff assessment result

obtained from a positive tradeoff assessment. Its value is the

reciprocal of the positive tradeoff assessment ratio. For

example, if a negative and positive tradeoff assessment of MOE1
with respect to MOEj yields tradeoff ratios of 0.6 and 0.9,

respectively, 7 - 0.6 and Y 1/0.9 - 1.11. These values can
be entered in the (i,j) and (J,i) positions of the matrix. If

MOE and MOE were linearly substitutable, both negative and

positive tradeoff assessments would yield the same value, and if
Y - 0.6, then we would infer that Y - 1/0.6 - 1.67. In the
nonlinear case, the increasing marginal rate of substitution

assumption requires Vji to be less than 1.67 when YVJ is equal to

0.6.
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A matrix of tradeoff ratios for a 4-dimensional problem

is shown in Table V-2.

Table V-2

TRADEOFF RATIO MATRIX

MOE

1 2 3 4

1 1 Y1 2  Y13  Y14

2 Y21 1 Y23 Y2 4

3 Y31 Y32 1 Y34

4 Y41 Y4 2 Y43

It turns out that if the tradeoffs are linear for an
entire row or column in this matrix, then the remaining tradeoff

ratios can be inferred. If only a portion of these are linear

e, then some but not all of the remaining elements can be inferred.

The inferential structure of the tradeoff assessments is defined

in Table V-3 for 3,4, and 5-dimensional problems. The structure

for higher dimensional problems can, in turn, be inferred from

OTable V-3.
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Table V-3

TABLE OF TRADEOFF INFERENCES

n (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

5 L L L L L L L L L L

L L L NL L L NL L NL NL

L L NL NL L NL NL NL NL ?

L NL NL NL NL NL NL ? ? ?

NL NL NL NL ? ? ? ? ? ?

4 L L L L L L

L L NL L NL NL

L NL NL NL NL

NL NL NL ? ? ?

3 L L L

L NL NL L - Linear

NL NL ? NL - Nonlinear

To use Table V-3 we select a row or column of the matrix

of tradeoff ratios for evaluation and rearrange rows and columns

by NOE reordering to move the desired elements to the first row.

We then elicit both negative and positive tradeoff assessment

information from the DM and insert values in the first row and

column of the matrix. Linear tradeoffs are revealed whenever

1/y i. We can then reorder MOEs such that all linear tradeoffs

are moved to the left in a row, or to the top in a column. At

this point we can refer to Table V-3 and find the appropriate case

in one of the leftmost blocks.
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Assume that the problem is 3-dimensional. The lower

leftmost block shows that if the (1,2) and (1,3) tradeoffs

are linear, we can infer that the (2,3) tradeoff will be linear.

If both are nonlinear, we can infer nothing about the (2,3)

tradeoff. If one is linear and the other is not, we can infer

that the (2,3) tradeoff must also be nonlinear. The various

inferences we can make for the 4 and 5-dimensional cases are also

shown in Table V-3.

The results in Table V-3 can readily be extended to

6-dimensions by adding a new first row consisting of all L's to

the leftmost 5-dimensional block, and a fifth column with L for

the first element and NL's for the remaining elements. We can

then fill in the blocks to the right by using the 3-dimensional

results for the various 3-dimensional subspaces of the

6-dimensional case. For example, the fact that the (1,5) and

(1,6) tradeoffs are linear infers that the (5,6) tradeoff will be

linear. If (1,5) is linear and (1,6) is nonlinear, we infer that

(5,6) tradeoff will be nonlinear.

In addition to these inferences characterizing the type

of tradeoffs, we can also infer the value of the tradeoff ratios

for those MOE pairs that we infer are linear. For example, if we

know that the (1,2) and (1,3) tradeoffs are linear and have values

2 and Y we infer that the (2,3) tradeoff will be linear and12 13'
will have a value of Y23 

= V13/V12. Furthermore, .32 
= 712 /YI3

Thus the linear inferences reduce the tradeoff assessment load.

After evaluating the first row and column of tradeoff

ratios, and filling in all the inferential information, the

additional tradeoff assessment requirements are defined by the

sub-matrix obtained by deleting all rows and columns from the top

and left, respectively, whose elements have all been evaluated.

The above procedure is repeated recursively until all elements

have been evaluated.

49



Given a tradeoff ratio matrix we can next test for

consistency of the values with the convexity conditions. The

requirement for consistency is that the value of any given matrix

element be bounded as required by Eq. A-22 in Appendix A. If any

bound is violated, the tradeoff ratios that should be modified,

and the minimum amount they should be modified by, can be inferred

from Eq. A-22. If a consistency violation cannot be resolved, the

remaining procedures can still be applied after excluding the

inconsistent tradeoff ratio vector. This results in a piecewise

linear model based on reduced tradeoff assessment information.

The appropriateness of employing such a limited piecewise linear

model has not been studied in this research effort. It will

undoubtedly be dependent on specific cases and will require a

judgemental decision.

The final task in step 6 is to perform the tradeoff

assessments required to determine the most preferred proportion

vector. This process is described in Appendix C. If we have a

strictly linear case where all MOE tradeoffs are constant, this

vector is not defined, and an arbitrary vector can be assumed.

Thin is true since, in this linear case, there will be only one

hyperplane, and the role of the weighting functions in the

objective fuqction will no longer be applicable. A convenient

value for C in this case is to set it equal to the hyperplane

vector G.

The evaluation of 4 requires n-i additional tradeoff

assessments between nonlinearly related MOE pairs. If a nonlinear

tradeoff exists between any pair of MOEs, we are guaranteed by

inference that there will be at least n-1 nonlinearly related MOE

pairs from which we can perform n-1 independent tradeoff

assessments. This is readily shown by the following argument.

Assume that MOEs k and j are nonlinearly related. Then for any i

not equal to j or k either the (i, k) of (i, J) MOE pairs are

nonlinearly related according to our table of inferences (see

Table V-3). Since there are n-2 values of i, there will be n-1

nonlinearly related pairs.
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Any set of linearly independent MOE pairs can be chosen

for these tradeoff assessments. As discussed in Appendix C, these

tradeoff assessments involve the construction of an outcome of

higher preference than a by increasing a single MOE. A positive

tradeoff assessment is then performed by decreasing that MOE back

to the level of a, and asking the DM how much the second MOE must

be increased to compensate for the reduction. For an (i,j)

tradeoff, the computed tradeoff ratio yields Yjj. These tradeoff

ratios plus the matrix of indifference tradeoff ratios illustrated

in Fig. V-2 are required as input to the equations of Appendix C

for evaluating e.

2. Piecewise Linear Optimization Model for Step 7

After the matrix of tradeoff ratios and the vector

representing the direction of most preferred proportion have been

evaluated, the next task is to determine the vectors representing

the allowed hyperplanes. The procedure for determining the

hyperplanes consists of 7 steps.

1. Form the tradeoff ratio vectors defined by Eq. 10.

2. Select a set of n-i linearly independent tradeoff

ratio vectors.

3. Solve the set of n-i equations formed by setting

the dot product of each tradeoff ratio vector with

the hyperplane vector.

4. Test all remaining tradeoff ratio vectors by com-

puting their dot product with the hyperplane

vector.

5. Discard the hyperplane if any of the dot products

in step 4 are less than zero. Return to step 2

until all sets of n-i vectors have been processed.
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6. Retest all tradeoff ratio vectors by computing

their dot products with all allowed hyperplane

vectors. If there exists at least one zero dot

product for each tradeoff ratio vector, the set of

allowed hyperplanes is complete; otherwise perform

the next step.

7. Those tradeoff ratio vectors failing the test in

step 6 are inconsistent with the convexity

assumption. The tradeoff ratio in these vectors

should be reevaluated (with the assistance of the

inferred tradeoff ratio bounds specified in

Appendix A) and the process repeated from step 2

for those hyperplanes affected.

* 4
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VI ILLUSTRATIVE EXAMPLE RA PROBLEM

A. Problem Description

The example selected to illustrate the use of the Extended RA

Method addresses a standard inventory and maintenance problem at a

large data processing center. It is assumed that the DM has at

his disposal the analytical tools that can provide him with the

optimal balance of units of equipment (central processors, power

supplies, storage devices, printers, etc.) to insure specific

levels of operations. For a specific required level of operation,

say 90% assurance of continuous operation, the optimal balance

consists of 30 units of equipment (assuming some redundancy), 75

spare modules, and 4 maintenance personnel. For any specified

level of operation, the DM has strong feelings about maintaining

the desired balance. However, he is willing to sacrifice, to some

extent, a loss in one of the items at the expense of a gain in one

or both of the other items.

The DM's indifference structure between equipment-on-hand and

spare modules is complementary in nature, as is also his

indifference structure between equipment-on-hand and maintenance

personnel. On the other hand, he is linearly indifferent between

spare modules and maintenance personnel. The applicable pairwise

indifference curves representing three different levels of

operations (80%, 90%, 95%), for this example, are shown in Figures

VI-1, VI-2, and VI-3.
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We assume that the indifference curves shown in these figures

are available to us only for the purpose of this illustrative

problem, and serve as a surrogate for the DM. Thus, any required

tradeoff assessment can be accomplished by referring to these

curves and reading off the equivalent responses of the DM. In

addition, we will only illustrate portions of Steps 6 and 7 in the

Extended RA Method procedures to show how the piecewise linear

model is formed from the tradeoff information.
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B. Tradeoff Assessment Information

The piecewise linear indifference model requires the

identification of an outcome vector which may or may not

correspond to a given alternative ED program, but that lies on the

line of most preferred marginal proportion. It is in the

neighborhood of this point that the DM has differing tradeoff

ratios for the negative and positive tradeoff assessments. In

addition to the evaluation of these tradeoff assessments, we also

need to evaluate the most preferred proportions desired by the DM.

The first task is then to identify an outcome vector, a, on

the line of most preferred proportion. Assume that we focus on

obtaining a 90% system operability figure. The DM responds that

he feels that the most preferred proportion at that level of

system operability is to have 4 maintenance personnel, 75 spare

modules, and 30 units of equipment. We will designate the three

NOEs as follows:

xl - Maintenance personnel

x2 - Spare modules/15

x3 - Equipment/5

Note than an arbitrary scaling of MOEs x2 and x3 has been

performed to bring the numerical values within closer agreement.

The vector a then becomes

a - (4,5,6) (12)

Starting at the reference point a, we initially determine the

negative tradeoff assessment ratios for x1 with respect to and

then with respect to x3. Referring to Figures VI-1 through VI-3,

we infer that the following tradeoff ratios are obtained (after

MOE scaling):

56.
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"12 0.6

Y 0.35 (13)

To obtain these values we assume that we asked the DM to decrease

xI in response to an increase of x2 of 1 scaled unit, and then in

response to an increase of x3 of 1 scaled unit.

Performing the positive tradeoff assessments we obtain

tradeoff ratios of 0.6 and 1.43. Since the negative and positive

tradeoff assessment ratios of x, with respect to x2 are equal, we

have a linear pairwise indifference relationship betweeen xl and

x2.  The equivalent negative tradeoff ratios for the positive

tradeoff assessment ratios are:

"2l = 1/0.6 = 1.67

(14)

31 1/1.43 = 0.7

The tradeoff ratio matrix at this point is:

1 0.6 0.3

1.67 1 NL

0.7 NL 1

The tradeoff between x2 and x3 must be nonlinear by inference

using Table V-3. Furthermore, the convexity and inclusion
conditions require that the value of 23must be equal to 13

according to Eq. A-24 in Appendix A. This is true since the
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pairwise tradeoff between MOEs I and 2 is linear. Similarly th,

value of Y must be equal to V31/ 21 for the same reason. These

values are 0.583 and 0.42, respectively. Note that the pairwise

tradeoff between HOEs 2 and 3 are nonlinear since Y23 is not equal

to 1/y37. The tradeoff ratio matrix can now be updated to:

1 0.6 0.35

1.67 1 0.583

0.7 0.42 1

As a consistency check, we may ask for a tradeoff assessment

between MOEs 2 and 3. If the DM is consistent with the convexity

assumption we will obtain tradeoff ratios equal to these values as

can be inferred from Figures VI-2 through VI-3. For the moment,

assume we do obtain consistent results.

C. Most Preferred Proportion Determination

To determine the vector e that represents the direction of

most preferred proportion, we must perform two (i.e., n-l - 2)

more tradeoff assessments as described in Appendix C. These

tradeoff assessments will be between the MOE pairs x2 and x3, and

between x, and x3. In general we could have selected other MOE

pairs involving tradeoffs between x1 and x2. However, in this

example, the indifference function between xI and x2 is linear,

and Eq. C-11 will be indeterminate.

The required tradeoff assessment between MOE x2  and x3

proceeds by constructing a new outcome vector b from a by setting

b a3 + 1. The value 1 is in scaled units. Outcome b should be

preferred to a by our assumption of "good" MOEs. We then ask the
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DM how much we would have to increase MOE x2 from a2 (note that a2

- b2 ) in order to compensate for a decrease of x3 from a3 + 1 to

a3* The response determines a new outcome vector c that differs

from a only in the value of x2, and that is equally preferred to

b. The tradeoff ratio 32 is then computed from

b3 - 3 (15)

Y32 c - a2

Referring to Figure VI-1 we infer that the DM's response will be

to set c2 equal to 2 + 1.32 scaled units of x2. The value of

3 2 then becomes equal to 0.76. A similar tradeoff assessment

between x1 and x3 yields a value of yl31 equal to 1.59. Eq. C-i

yields

tan 31 -1.0 (16)

tan 32 = 0.84

Using Eq. C-12 yields the value of C.

£ (0.608, 0.511, 0.608) (17)

D. Hyperplane Determinations

The next task is to form the six tradeoff ratio vectors.

These will be:

5
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v(1,2) (-0.6, 1, 0)

_(1,3) -(-.35, 0, 1)

.(2,1) ( , -1.67, 0) (18)

v(2,3) ( 0, -0.58, 1)

v(3,1) ( 1, 0, -0.7)

v(3,2) ( 0, 1, -0.42)

The selection of sets of vector pairs (i.e., n-i is equal to

2 for this 3-dimensional example) that are linearly independent

and that satisfy the selection rule developed in Appendix A gives

the following set of 6 vector pairs.

1(1,2) and v(1,3)

v(1,2) and v(3,2)

v(1,3) and v(2,3)

v(2,1) and v(2,3)

v(2,1) and v(3,1)

1(3,1) and v(3,2)

Thus, we can form at most 6 hyperplanes. Some of these may be

redundant as will happen with this example since the tradeoffs

between MOEs 1 and 2 are linear.

The following two non-redundant hyperplane vectors are

obtained by solving the pair of equations obtained when the dot

products of each pair of vectors with the hyperplane vectors are

set equal to zero.

1
w ( 1, 0.6, 0.35)

2
w 1, 0.6, 1.43) (19)
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One element of each hyperplane is arbitrary at this point, and we

selected the first elements to be equal to unity. To determine

whether these hyperplanes are both allowed, we compute their dot

products with each of the tradeoff ratio vectors. These are all

greater than or equal to zero. Thus, these two hyperplanes are

allowed.

To determine whether all tradeoff ratio vectors are included,

we check that at least one dot product of each vector with the

allowed hyperplanes is zero. This is the case, and we conclude

that our piecewise linear model consists of the above two

hyperplanes. The corresponding unit hyperplane vectors are:

- (0.82, 0.493, 0.287)-2
a - (0.542, 0.325, 0.775) (20)

E. The Objective Function Formulation
e 2Given C9 , C, and a, we form the following objective

function

L.(x - a) a2.(x - a)
g(x) - Min "

-L (21)

To test this function numerically consider two outcomes x and x

given by

1
x " (4,5,7.4)

* 2
x (4,6.67, 6) (22)

6
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The evaluation of g(x) for these two outcomes given

g(x .402 1.0901.925,- " - J = 0.435
(23)

-Min["2 0.543]-0.562g(x) .925' .967

These results show that the piecewise linear model indicates a

preference for x We note that the value of g(x1) was determined

by hyperplane 1 , whereas the value of g(x) was determined by

hyperplane 1 • We also note the roles of the weighting functions
1 2
• .6 and a .6. In this example they do not differ by very much,

and therefore, the numerator terms determine which hyperplane is
1

active in each case. If the value of 6 were such that c C 6 was
2 2

equal to 0.5, and o2. Ewas equal to 1.5, then only hyperplane 2
T

would be active, and x would become the preferred outcome.

F. Tradeoff Assessments Revisited (Consistency Checking)

This completes the illustrative numerical example for the

case where consistent tradeoff ratio evaluations are obtained from

the DM. Let us now consider the case where the DM cannot agree

with the inferred value of Y2 0.42 and estimates the value of
32

Y32 ' 0.50. If the DM has a high confidence in this value, then

we deduce that the constraint (see Eq. A-22) presents the

consistency problem. Therefore, either Y3 1 is too low, or Y2 1 is

too high. If Y 3 1 has lower confidence than Y21' then Eq. A-22

tightly constrains Y3 1 and we deduce that V31 must be raised to

0.833. If the DM4 agrees with this value, the new tradeoff ratio

matrix becomes

1 .6 .35

1.67 1 .583

.833 .5 1
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All of these values now pass the consistency tests and the

procedures for determining the hyperplanes should yield two

hyperplanes as before.

If on the other hand, the value of Y2 1 has less confidence,

it can be decreased to say 1.4. However,. this change results in

modifying the tradeoff between x1 and x2 to a nonlinear case. If

this is accepted by the DM, the new tradeoff ratio matrix becomes

1 .6 .35

1.4 1 .583

.7 .5 1

All these values are now consistent with convexity, but more than

two hyperplanes will be required in our model.

The tradeoff ratio vectors for this case are:

v(1,2) (-0.6, 1, 0)

v(1,3) (-0.35, 0, 1)

v(2,1) ( 1 -1.4, 0)

X(2,3) ( , -0.583, 1) (24)

v(3,1) ( , 0, -0.7)

v(3,2) ( , 1, -0.5)

The following four non-redundant hyperplane vectors are

obtained.

1
w (1) = ( 1, 0.6 0.35)
2
w(l)= ( 1, 0.6 1.25)
3
w (1) - ( 1, 0.714, 0.416) (25)

w 4(1) - ( 1, 0.714, 1.43)

These hyperplanes are all allowed and include all the tradeoff

ratio vectors. Thus, our piecewise linear model now consists of

four hyperplanes. The next step is to normalize these to unit

vectors and proceed with the remaining procedures as before.
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Appendix A

Given a set of tradeoff ratios obtained by a sequence of

tradeoff assessments between pairs of HOEs, we are interested in

selecting a set of hyperplanes that form a piecewise linear

approximation to an "indifference" hypersurface.

For an n-dimensional problem, it is possible to form n(n

-1)/2 pairs of HOEs. However, since we are considering the case

where a tradeoff assessment yields different results, depending on

the direction of change of the reference HOE, there are two

possible tradeoff ratios for each tradeoff pair. Thus, we are

dealing with n(n-l) distinct tradeoff ratios. Each of these

tradeoff ratios can be formed into a vector with only two non-zero

terms. The resulting vectors can then be considered as sample

points from the indifference hypersurface. A piecewise linear

approximation to this hypersurface can be obtained by first

finding all the hyperplanes that each contain n-l linearly

independent vectors taken from the total set of n(n-1) vectors.

The total number of possible hyperplanes is then given by

[n(n- 1)]!
m [n - l]![n(n - 1) - (n - )]! (A-I)

However, by our assumption of increasing marginal rate of

substitution of NOEs we are only interested in those hyperplanes

that form a convex piecewise linear hypersurface. This restriction

reduces the number of hyperplanes required in the model. For

example, a three-dimensional problem yields six tradeoff ratio

vectors and the possibility of forming 15 hyperplanes. Applying

the convexity restrictions reduces the required number of

hyperplanes to six.
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The purpose of the remainder of this appendix is to develop

the procedures for forming and selecting the required hyperplanes, 4

and to develop certain tradeoff ratio bounds that are useful in

evaluating and inferring tradeoff ratio values.

A. Forming and Selecting Hyperplanes

The tradeoff ratio vectors discussed above need only be

defined to within a scale factor to derive the hyperplanes. Thus,

they are defined as

i-th j-th
+ +

vaij) - (0, 0.,-l'"'i,.. ) (A-2)

The term Y is defined as the tradeoff ratio obtained byij
increasing MOEj and decreasing MOE1 . It will always be greater

than zero.

A hyperplane is also defined by a vector. In particular, a

vector w represents a hyperplane containing a vector v if the dot

product of the two vectors is zero. Thus, the vector w is also

defined to within a scale factor. Proper scaling is achieved by

normalizing w to a unit vector

A set of n-i tradeoff ratio vectors define a hyperplane

vector w by the solution of the (n-l) dot product equations of the

form

v(i,j).-w - w -O (A-3)
j iii

A-2
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where i J, v(ij) is taken from the set of n-i vectors, and wk

is arbitrarily set to 1. With wk - 1 we designate the hyperplane

vector w(k). Two particularly simple forms of w(k) result if

either the set of tradeoff ratio vectors consist of v(k,i) or

v (i,k) for i 1 to n and i y k. The first case yields

k-th
+ (A-4)

w(k) = (7kl' 7k2, . , ... , yk)

The second yields

k-th

w(k) = -

(71k Y2k9 7nk)

Other sets of n-l vectors will yield w(k) terms with products of

s in the numerators and/or denominators.

It will be shown that certain combinations of v's will result

in hyperplanes that violate the convexity assumption. In

particular, the vector pair v(i,j) and v(k,i), as well as the

vector pair v(i,j) and v(j,k) lead to convexity violations for any

value of k.

In addition, the vector pair v(k,i) and v(J,i), as well as

the vector pair v(i,k) and v(i,j) may lead to convexity violations

unless the values of the ratiosY 0/' and Y YIk, respectively,
ki ji ij ik

fall within certain limits.

The convexity assumption can be translated into two

conditions:
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(1) For any given i and J, Y < 1/
ii - i

(2) The dot product of each tradeoff ratio vector with any

hyperplane vector used in the piecewise linear model,

must be greater than or equal to zero. (It will equal

zero if, and only if, the tradeoff ratio vector lies in

the hyperplane under consideration.)

In addition to the convexity assumption, we have an inclusion

condition that requires that each tradeoff ratio vector be

contained in at least one hyperplane that does not violate the

convexity condition. The violation of this inclusion condition

means that the tradeoff assessment data in that vector is

inconsistent with the convexity condition. If this occurs, two

options are available. The first is to reassess the tradeoff

ratio until it is consistent with convexity. The second approach

is to simply consider it as a "bad" datum, discard it, and form a

limited piecewise linear indifference model with the remaining

"good" data.

Since we are interested in modelling possible nonlinearities,

we consider only the case for which Vi is strictly less than 1/

Sj', and require that any tradeoff ratio vector that is not used to

form a given hyperplane, has a positive non-zero dot product with

that hyperplane vector.

To show that a hyperplane that includes vectors v(i,j) and

v(k,i) violates the convexity assumption, we proceed by selecting

two hyperplanes and show that if one violates the convexity

condition, then the other does not, and vice versa. It may be

true that both violate the convexity condition, but we are not

concerned with that outcome at this point. We then show that if

we choose to assume that one of these hyperplanes are allowed,

then one particular choice leads to a violation of the inclusion

condition.
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* - Let u(k) be a hyperplane containing the vectors v(k,i) and

v(i,j), and w(k) be a hyperplane containing v(k,i) and v(k,j).

The evaluation of the i,j, and k terms of u(k) and v(k) results in

i-tb J-tb k-tb

-~k y** 'ki' Ykiy ij- 1..i*.. A6

i-tb j-th k-tb

w(k) Y ** 'ki' Y' kj 1 .(A-7)

Consider the dot product of v(k,j) with u(k), and the dot product

of v(i,j) with w(k). this gives

v(kJ) UEk) -- kj+ Yk~i YA8

and

M(i~j).w(k) y kj - kiyij (A-9)

These two equations show that if one dot product is greater than

zero, the other is less than zero. Thus, either u(k) or w(k), or

possibly both, are not allowed.

Now assume that u(k) is allowed and determine the form of an

arbitrary hyperplane yZ(k) containing I(k, J). If this form of

hyperplane is not allowed, then v(k,j) would violate the inclusion

condition. The form of y(k) fs

j-th k-tb
+ + (A-10)

Y(k) ** k'.. 1

The dot products of the vectors v(k,i) and v i,j) with y(k) give

v(k,i)*1 (k) - -(A-11)

v(i,j).y(k) y kj - ijyi (A-12)

A-5
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Combining these equations to eliminate y1 gives

i-
v(i,J). (k) = (ykj - Yki~iJ) - V (k,i).Z (k) (A-13)

But, the first term on the right of the equality is v(i,j) w(k)

which must be less than zero by our assumption that w(k) is not

allowed. Thus, clearly if v(ki) Z(k) is greater than zero as it

must be to allow y(k), then v(i,J) y(k) is less than zero. The

conclusion is that the form of Z(k) is not allowed and therefore

there is no allowed hyperplane containing v(k,J). Thus, v(k,j)

violates the inclusion condition under the assumption that u(k) is

allowed.

The above result shows that whereas w(k) may or may not be

allowed in order that the inclusion condition hold, u(k) cannot

be allowed since the convexity condition would be violated.

In an analogous manner we can select u(k) as a hyperplane

containing X(J,k) and v(i,j), and w(k) as a hyperplane containing

v(i,k) and v(j,k), and again show that u(k) is not allowed.

We finally conclude that vector pairs such as v(i,j) and

v(k,i), as well as v(ij) and v(J,k) are not allowed when all

tradeoff assessments are consistent with convexity and satisfy the

inclusion condition.

However, we also note that if a tradeoff ratio vector turns

out to be inconsistent due to the inclusion condition and is then

excluded from the set of possible tradeoff ratio vectors, the

vector pairs and certain hyperplanes that they are contained in

would no longer be excluded. Thus, these vector pairs provide a

means to check for tradeoff assessment consistency with the

convexity assumption, and a means to form a piecewise linear

indifference model when and if inconsistent tradeoff assessments

are excluded.
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The above results provide restrictions on the number of

allowed hyperplanes that result from convexity assumption

requirements. In addition, certain hyperplanes that may be

allowed by the convexity assumption will not be allowed when

specific numerical values of tradeoff ratios are used. In

particular, the ratio of certain tradeoff ratios must fall within

certain bounds.

B. Tradeoff Ratio Bounds and Inferences

To derive limits on the allowed ratio of Yki1 Yji for a

hyperplane containing v(k,i) and v(j,i) to be allowed we proceed

by first assuming that the hyperplane, call it u(k), is allowed.

By the previous proof, we observe that v(kj) and v(j,k) cannot

then be contained in u(k). The form of u(k) will be

i-th J-th k-th
+ + + (A-14)

u(k) = (..., ki' " ki/ ji' "'' 1 ,.

The dot product of v(k,i) and v(J,k) with u(k) must be greater

than or equal to zero according to the convexity condition. Thus,

X(k,j). u(k) - kj + Yki /ji > 0 (A-15)

and

(j,k).u(k) - yjkyk/yj + 1 > 0
i - (A-16)

These two equations yield

S(A-17)
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Thus, unless the ratio Yki/ji is within the above bounds, u(k)

will not be allowed.

In an exactly analogous manner, we can show that a hyperplane

containing v(i,k) and v(i,j) is allowed only if the limits on the

ratio Y /Yik are given by

ikj < YiJ /ik lj k  (A-18)

Given a consistent set of tradeoff ratios, we have shown that

certain combinations of vector pairs when used to define a

hyperplane will always result in disallowed hyperplanes regardless

of numerical values. In addition, specific numerical values of

the tradeoff ratios may lead to the disallowal of additional

hyperplanes.

These results also allow us to establish bounds on any given

tradeoff ratio. Consider the arbitrary tradeoff ratio 'kJ" The

convexity and inclusion assumptions require that Eqs. A-17 and

A-18 be both simultaneously satisfied. Also since Eq. A-17 holds

for arbitrary ij, and k, we can reverse the roles of i and j and

write,

Yki 1 kj/ ij (A- 1 9

Eq. A-19 provides a lower bound on Ykj" In addition, we can write

Eq. A-17 with the roles of k and i reversed to give,

Yik/yjk I/ i/ji (A-20)

From Eq. A-20 we deduce that

ij k < iyl~k)A-1
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Combining all these results gives,

Yki~ij -- Ykj - M in Yji 7 i 1k' (A-22)

Further, note that if the pairwise tradeoff between i and J is

linear (i.e. V1 = l/^Y,), then the lower and upper bounds on 1kj

are equal, and we must have that

°'"Ykj M Y ki/Y ji (A-23)

Similarly if the pairwise tradeoff between k and i is linear (i.e.

ki 1 1/ik), then

kj m kiij (A-24)

It is interesting to interpret each of the bounds given in

Eq. A-22. They are the inferred value of Ykj under the assumption

that the indifference surface in the 3-dimensional subspace is

linear, and the tradeoff ratio vectors corresponding to the terms

in the bounds lie in the subspace plane for the indifference

surface. For example, if the plane containing v (k,i) and v (J,i)

also contains v (k,j), then the value of Vkj be inferred to be

equal to Vk i " The convexity and inclusion conditions

establish the inequalities when the subspace surface is not a

plane.

Eq. A-22 provides a very useful consistency check on the

tradeoff ratios without having to determine sets of hyperplanes,

and when linear pairwise tradeoffs occur, Eq. A-23, or A-24 allows

us to infer the values of certain tradeoff ratios.

A-
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Appendix B

The linear objective function derived for the Basic RA Method

can be written as

n

g() Yn xi (B-1)
i-i

where Tn1 is the tradeoff ratio between the n-th and i-th MOEs.

These are determined from the decision maker's responses to the

tradeoff assessment procedures. The Ys define a hyperplane in

n-dimensional space that is tangent to an indifference

hypersurface at a point in the neighborhood of those uwed in the

tradeoff assessment procedures.

The Extended RA Method assumes that for certain sets of MOE

pairs, the linear approximation to the indifference hypersurface

may be a poor representation. In particular, a piecewise linear

approximation may be more appropriate as illustrated in Figure B-I

for the two-dimensional case. Here we see that there is a certain

"most preferred proportion" between MOEs xI and x The direction

defined by this proportion represents the direction of steepest

ascent along the true preference function. The linear objective

function approximation to the left will be called gl(x) and the

other, g2 (x). Applying the Basic RA optimization procedure

separately to g1 (x) and g2 (x) will yield as the most preferred

alternatives, d and b, respectively. By construction, we see that

c should indeed be the most preferred alternative. Thus, a new

nonlinear functional is required that combines gl(x), g2 (x), and

the most preferred proportion information, and yields c as the

most preferred alternative.
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FIGURE B-i PIECEWISE LINEAR APPRCXIMATION

To facilitate the development of the appropriate piecewise

linear objective function, the vector of s can be normalized to a

unit vector, a. The elements of u are then the direction cosines

of the normal to the hyperplane. Let 0 represent the direction

cosines corresponding to the Ys for g (x), and 3 represent those

for g2 (x). We can then define

n

g(x) - .x a x (B-2)

and

n

g2(x) O.x = 8 x
i-i~ (B-3)
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Note that the values for these functions now give the distance of
each hyperplane from the origin. These representations are
illustrated in Figure B-2.

C%/ I-'

x
0 02

g2 g a)

MOEXI

Figure B-2 LINEAR FUNCTIONAL REPRESENTATIONS

Assume now that the most preferred proportion has a direction

[ , ~ The value of this function is zero for any point that lies on the .solid line to the left of a and going through a, or on the solid

1 2-

.* line to the right of a and going through a. For any point abovethese two lines, the value will be a function of gl if the point
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is to the left of the C vector, or a function of g2 if to the

right of C. In Eq. B-4, the values gl(C) and g2(f) serve as

weights between the values of g, and g2 "

This function readily generalizes to n-dimensions by simply

adding terms to the minimization function list for each hyperplane

used in the piecewise linear model. The determination of these

hyperplanes is discussed Appendix A. The objective function then

becomes

[gi (x - a]
g(x) M Min -g [ () ] (B-5)

where h is the number of hyperplanes.

For a specific case, the value of g(x) will be determined by

one of the h hyperplanes. The particular hyperplane that

determines g(x) is controlled by the set of weighting functions

g (C).

The optimization problem for finding the most preferred

alternative then becomes:

Find x* such that

g(x*) Max{ Min |i - [ (B-6)
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Appendix C

The evaluation of the components of the most preferred

proportion vector can be carried out employing additional tradeoff

assessment information from the decision maker. Figure C-I

illustrates the problem for the 2-dimensional case with MOEs

arbitrarily labelled xn and xi, or equivalently, the projection of

the n-dimensional case onto the (Xi, xn) plane. The tangents of

the angles 01 and ( 2  are defined by tan Yin and tan Ynil

respectively. These Ys are values obtained from the matrix of

indifference tradeoff ratios. The vector f is the unit vector

that defines the direction for the most preferred proportion of xn

and xI •

Consider the following tradeoff assessment. A hypothetical

outcome b is constructed from a by increasing the value of xn to

some convenient level. For example, the change in x might be
n

calculated assuming an incremental change in budget that is

allocated to the improvement of x only. The point b will lie onn

some new indifference curve. The most preferred proportion

assumption implies that all hyperplanes intersect at the locus of

points along the most preferred proportion direction as indicated

in Fig. C-i by the dashed line.

Given a and b, a positive tradeoff assessment can now be

performed by asking the decision maker how much x i would have to

be increased to compensate for a decrease in xn from the level at

b to the level at a. The decision maker's response allows us to

construct a new outcome c that lies at the same indifference level

as b. The outcome b is constructed by increasing the x i value at

a by the amount of the decision maker's response. Given b and c

the graphical solution for C is obtained by constructing the two

lines forming the indifference curve containing b and c and

determining their intersection point. The vector E must then be

along the direction from this intersection and point a.
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The mathematical solution of this problem proceeds as

follows. Let 6 be the angle between C and the xn axis. The

distances h1 and h2 in Figure C-I are given by

hI  (bn - a n ) sin 0l (C-1)

and

h2 (ci - ai) sin 02 (C-2)

1 in (C-3)
where tan 0, 'f>in(-3

and tan 2 ni (C-4)

The relationship between hi And h2 is given by2Y
hI  h2

sin(01 + *) - sin(0 2 + 90 - (C-5)

Solving Eq. (C-5) for 6 yields
h2 sin 0 - h sin 0
2 1 1 2

tan -hl sin 2 - h cos 0 (C-6)
1 2 2 1(C6

The ratio of (bn-an) to (c -a) is an equivalent negative
n n ii

tradeoff ratio between outcomes b and c, and can be defined as

ni

b -a
n n (C-7)

47ni "ci -a
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Using Eqs. C-I through C-4, and Eq. C-7, the expression for tan 6

becomes

ni in

Eq. C-8 allows us to determine 6 and the elements of 6 for

the 2-dimensional case by setting i-1 and n-2, and noting that

is defined as

E - (sin *, cos (C-9)

This is equivalent to

C(tan~.1
-- i + tan 2  (C-10)

In the higher dimensional cases, we can denote 6 as 6 and
ni

compute tan ini for i-l through n-l from

1 -Y I/Y
!ni ni (-I

::tan 0 ni 1/ (C11

n- /in

The vector C is then given by

(tan ni' tan n2' 1) (C-12)

[ + F] (tan
[, i- n

C-4
V1
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Eq. C-8 will be indeterminate when there is a linear pairwise
tradeoff between MOEs n and i since in that case Y n /Vl and

Yni will be equal to Y When this occurs, Eq. C-il cannot be

used since we will not be able to determine the value of tan n

In that case, we can observe that the vector C represents a

hyperplane and a procedure similar to that described in Appendix A

can be employed to find E. To employ this procedure, we first

define an equivalent tradeoff ratio vector for any pair of MOE's

that has only two non-zero terms. This has the form,

k-th
+ (C-13)

v(kj) = (0, ... , - tan 1kJ' "''' i, ..., 0)

Given n-I linearly independent vectors that span the MOE

space, we can compute a vector w such that its dot product with

each of the n-I vectors is zero. The hyperplane vector w is

obtained by solving the n-I dot product equations

v iw 0 for i-1, n-i (C-14)

for n-I elements of w in terms of one remaining arbitrary element

that can be set equal to unity. The vector E is then given by
-

. - (C-15)

It will always be possible to form the required n-I vectors

unless all pairwise tradeoffs are linear. In this case, the

vector E can be set equal to the linear indifference model

hyperplane vector o.
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