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PREFACE

This report documents the analysis and findings of a research pro-
Ject conducted for the David W. Taylor Naval Ship Research and Develop-
ment Center (DTNSRDC). Bethesda, Maryland. The sponsor and technical
monitor was M.J. Zubkoff, Code 187, of DTNSRDC. The work was performed
under Contract N00167-82-K-0019.

The research was performed in the Center for Defense Analysis (CDA)
of the Research and Analysis Division (RAD) of SRI International.
J. Naar is Director of CDA, and D.D. Elliott is Executive Director of
RAD.

H.A. Olender was project leader and principal investigator. He was

assisted by R.H. Monahan and L.C. Goheen.
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I INTRODUCTION

A. Background
The David W. Taylor Naval Ship Research and De' Ipment 5

Center (DTNSRDC) is the lead laboratory for naval logist: :. 1In
addition, the Technical Strategist for Logistics and Faci: .-~ is

located there. It is the task of the Technical Strat. . to o
develop and maintain an overall technical strategy to focus the E’
thrust of all exploratory development (ED) in the field of naval
logistics (certain specific logistic functions are assigned to
other technical strategists). This approach to planning ED is Ei
innovative, especially for the area of naval logistics. 1

Naval logistics 1s heterogeneous, comprising a wide variety f
of very different and quite technical functions. These functions :i
require different expertise, employ different technologies, and .
are evaluated by different measures of effectiveness. As a E!
result, at the supporting establishment level (where most research ‘

and development 1is conducted), naval logistics has been largely N

planned, managed, and conducted in separate functional areas by
separate agencies--e.g., Naval Supply System Command or Naval Sea
Systems Command. For the most part, ED has been conducted
according to the needs felt within each functional area with only
broadbrush coordination among functional areas.

However, the Technical Strategist for Logistics is required
to view naval logistics as a whole. He 1is to identify the regioms
of needed improvement, the pertinent emerging technologies to meet

these needs, and the potential payoff in ED of technologies to

1




meet the needs. Then he must recommend, from the alternative
combinations of separate functional area ED programs, the
integrated program that will result in the greatest benefit to
overall naval logistics system effectiveness for the budget
available.

Much work remains to be done before the process of developing
and maintaining a technical strategy for logistics 1s perfected.
A pressing near-term requirement is a methodology for allocating
ED resources among and within the key areas. A longer-term
requirement is the development of a method to model the overall
naval logistics system in order to measure the impact of changes
in elements of the logistics system on fleet readiness or total
system costs.

These two requirements are related. Proper allocation of the
ED funds requires the knowledge of measures of effectiveness
(MOEs) for the logistics system, and these MOEs are derived from
the different steps required to model the overall naval logistics
system.

Key tasks associated with a resource a_location method are
developing meaningful and useful MOEs and establishing explicit or
implicit relationships (where they exist) among the various MOEs
to better understand their 1impact on overall effectiveness; and
developing a method of ED resource allocation for trading off the
expected achievable 1levels of the MOEs that characterize each
program.

This research program i{s a continuation of previous research
initiated at SRI for DINSRDC. One of these projects resulted in
the development of a general resource -llocation (RA) method for
selection of ED programs characterized by multiple disparate MOE
outcomes. The resulting RA method is based on the subjective but
informed Jjudgment of a decision maker (DM) to provide MOE

preference information.
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In the 1initial development of the RA method, relatively
simple preference structures among the naval logistics MOEs were
assumed for local modelling of the DMs global preferences. This
led to an RA procedure that can be employed iteratively to
determine the most preferred ED program from among some set of
programs. The existence of more complex preference structures and
their impact of the basic RA procedures were recognized as areas
requiring further investigation. Thus, the purpose of the present
research i1s to characterize the more complex preference

structures, and refine the RA method as appropriate.

B The Problem

1. Measures of Effectiveness

In each functional area of logistics, different MOEs
have been defined to measure different aspects of
performance--e.g., in the supply system, one MOE for operational
performance is requisition f1l11 rate, and for financial
performance, one MOE is the ratio of sales to value of inventory.
These are valid MOEs from the viewpoint of a supply officer at a
supply depot. Different but related MOEs will be of concern to
the user, such as an operational commander. He will be primarily
concerned with the response time for the system to supply him with
a certain typc of part or quantity of material. This response
time will be a function of, among other functional MOEs, the
requisition £ill rate mentioned above. Thus, no simple MOE is
now, or may ever be, available to measure all important aspects of
effectiveness for an entire functional area, and in some cases the
MOEs used may be mutually conflicting.

Among different functional areas—-e.g., the supply system and
the maintenance system——the relationships between MOEs is even
more 111 defined. Finally, in the overall system the interplay
among different functional MOEs and their cumulative effect on the
evaluation of the overall system effectiveness are only poorly
defined.

I P IR




2. Resource Allocation for Exploratory Development

Currently the methods of arriving at the ED resource
allocation decisions within the relatively short deadlines imposed
by budget schedules depend mainly on judgment, experience, and
intuition. Without a formal method for allocating ED resources
among the heterogeneous key areas of logistics, the decisions are
difficult to make and the rationale followed in the selection may
be hard to reconstruct.

The difficulty lies in the fact that each key-area
technology program 1is characterized by a set of expected
achievable levels of different but important MOEs. Each of these
characteristics or attributes measures a different type of
effectiveness, and they cannot now be objectively and
quantitatively traded off to determine the preferred program or
the order of preference of other programs. A subjective
methodology is required, which is based on judgmental inputs by

decision-makers.

3. The Basic RA Method

In previous work, the Basic RA Method was developed to

specifically address the question of how to compare alternatives
whose expected outcomes are multifacetedf It relies heavily on
the subjective model relating the needs of the Navy to fulfill its
mission, the various logistics MOEs that relate to the Navy’s
capability to carry out this mission, and the relative effects of
improvements in these MOEs on this capability. The method allows
the DM to progressively build up and communicate his preferences
concerning specific ED programs and their expected outcomes
expressed as achievable levels of important MOEs. He does this
through a sequence of MOE tradeoff assessments between two
alternatives that differ only in the values of two MOEs. These
tradeoff assessments result in the construction of a sequence of

hypothetical alternatives that 1link two real alternatives, and

*H.A. Olender, "A llethod for the Allocation of Exploratory

Development Resources in Logistics," SRI International Report
6549, December 1978.




allow the inference of a preference (or ranking) between these two
alternatives. Applying this approach sequentially to all
alternatives results in a relative ranking among them.

The key concept of the method is that the set of
hypothetical alternatives serve as surrogate alternatives for one
of the real alternatives in the sense that the DM is indifferent
between obtaining the set of outcome MOEs for the real alternative
and for any one of the hypothetical alternatives.

As tradeoff assessment information is expressed and
accumulated, an analytical model of the DMs preferenced structure
can be constructed and employed to rank remaining alternatives
without further tradeoff assessments.

The analytical model employed can be characterized as a
linear tradeoff model because it agsumes that the tradeoff ratios
among the MOEs are constant. This results in linear indifference
functions. The validity and utility of the analytical model
depends on the degree to which the 1linear assumption is
approximated by the DM“s true preference function.

Various types of tradeoff nonlinearities may exist among
MOEs that may require modification or extension of some of the
Basic RA Method procedures. For example, the utility and
preference for certain combinations of MOE outcome values may
depend on acquiring some minimum level of one or more MOE values.
Other MOEs may be required in certain proportion for greatest
utility. In some cases, the exceedance of a given MOE outcome
level may cause a resulting disutility.

The basic tradeoff assessment procedures when applied to
all candidate ED alternatives will generally identify the most
preferred ED program regardless of the presence of the above
nonlinear effects. However, the analytical model and procedures
that are part of the Basic RA Method may perform poorly under
these circumstances. Thus, one research issue is how to modify or
extend the Basic RA Method to handle the nonlinear tradeoff
effects.

‘‘‘‘‘‘‘‘‘‘
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C. Research Objectives and Approach

The objectives of the research reported here were to:

(1) Investigate the implications of nonlinear preference
structures on the Basic RA Method (a linear indifference
model) previously developed at SRI.

(2) Extend or revise the RA method to include procedures for
incorporating nonlinear preference models into the
methodology.

The approach consisted of three phases. The first phase
consisted of an attempt to understand, more comprehensively, the
types of nonlinear effects that may be encountered for the various
naval logistics MOEs. The output of this phase basically consists
of a characterization of MOE tradeoffs and identification of
expected types of nonlinearities.

The second phase consisted of devising and examining various
techniques for modelling the significant types of nonlinear
effects identified in Phase 1. One of the approaches, a piecewise
linear approach, was then selected as most appropriate for
extending the basic linear model. The development of the
mathematical basis and procedures for this model was then
completed.

Finally, in the third phase, a numerical example was
constructed and some of the procedures were applied to 1llustrate
the method. This example 1is purely hypothetical and only
illustrates the numerical part of the procedure after the

appropriate tradeoff assessments have been performed.
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I1 SUMMARY AND CONCLUSIONS

A. Summary
This research has considered a variety of types of nonlinear

effects that may characterize the indifference relationship
between pairs of MOEs. These nonlinearities have been categorized
as:

1. Threshold Effects

2. Convexity

3. Complementarity

4., Disutility

5. Proportionality

We have focussed on methods of modelling the convexity and
complementarity cases with a piecewise linear indifference model.
The remaining three nonlinearity cases appear to have the primary
implications of either eliminating alternative ED programs prior
to the application of the RA method
8, or reducing the number of MOEs that must be processed.

Threshold effects, for example, result in the requirement for

a given level of one or both MOEs before any significant utility

is attached to the values of the MOEs. This type of nonlinearity

suggests that alternative ED programs that have outcomes below the
threshold be discarded prior to the application of the RA methods
developed under this project. The disutility and proportionality
effects on the other hand imply a strong relationship between the
two MOEs that can be modelled by a functional relationship.
Again, only alternatives with outcomes that satisfy this

relationship should be evaluated by the RA methods described in
this report. The strong relationship between these types of MOEs

suggests that a single derived MOE can be used to replace the pair

7




of related MOEs. Alternately, either one or the other MOE can be
retained for processing by the RA methods to serve as surrogate .
for the derived MOE.

The plecewise linear model developed in this research
increases the number of tradeoff assessments required from the DM
as we would expect. This nonlinear model which can be
incorporated into the Basic RA Method to form what we have called
the Extended RA Method requires tradeoff assessments for two
distinct purposes. The first purpose is to define the
indifference tradeoff ratios from which hyperplanes can be formed
and incorporated into the model. These tradeoff assessments must
include both negative and positive tradeoff assessments about some
outcome point. The distinction between these two tradeoff
assessments ig the direction of movement from the reference
outcome point and 1s either negative or positive depending on
whether the DM“s response is required to be in the negative or
positive direction, respectively.

The second purpose of the tradeoff assessments is to define a
most preferred marginal proportion direction for increasing MOE
values. This information provides weighting factors that are
associated with each hyperplane employed in the piecewise linear
model.

The piecewise linear model includes the strictly linear model
employed in the Basic RA Method. The number of tradeoff
assessments of both types for an arbitrary n-dimensional problem
cannot be specified ahead of time. At the minimum 1if the model
turns out to be strictly linear, only 2(n-1l) indifference tradeoff
assessments will be required, and there will be no need to
determine the most preferred marginal proportion direction. At
the other extreme, n(n-l) indifference assessments will be
required in addition to (n—-1) tradeoff assessments for determining
the most preferred marginal proportion direction.
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The procedures for generating the piecewise linear model
parameters are developed and described within this report. These
include:

1) Indifference tradeoff assessments

2) Tradeoff ratio inferences

3) Tradeoff ratio consistency evaluation

4) Most preferred marginal proportion tradeoff assessments

5) Determination and selection of model hyperplanes

6) Objective function formation

Finally, an {fllustrative numerical example has been
constructed and processed through these six steps to demonstrate

the new procedures.

B. Conclusions

“;>TMe Extended RA Method provides a method of modelling
nonlinearities in indifference relationships that can be
characterized as convexity or complementarity cases. As in the
Basic RA Method, a sequence of pairwise tradeoff assessments
between MOEs in required. Thus, an advantage of this model is
that its interface with the DM remains the same as the previous
linear model.

However, the cost of the more complex piecewise 1linear
indifference model {8 a significant increase in the number of
tradeoff assessments required from the DM. This not only
increases his load directly, but also indirectly in terms of
insuring a consistent set of tradeoff assessment responses. In
this context, the desired consistency is with an 1increasing
marginal rate of substitution model.

Consistency checking and correcting procedures have been
included in the Extended RA Method procedures, as illustrated
with the numerical example, and these should make the consistency
problem more tractable. 45;——*
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It is difficult to judge at this point whether the utility of

‘ the Extended RA Method is worth the increased load on the DM. The
-. answer to this issue will depend on the dimensionality of the

nonlinearity relationships. When only one or two MOEs require a
o nonlinear model, the tradeoff assessment load 1is automatically
reduced since many of the remaining tradeoff ratio values required
can be inferred. It is our judgment that only in this latter case
o will the Extended RA Method be justified relative to the Basic RA
Method.

'Q SR
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IIT THE BASIC RA METHOD

A. Concept and Elements of the RA Method

The Basic RA Method was developed to deal with resource
allocation problems characterized by alternative ED programs whose
outcomes are measured by multiple MOEs (i.e., outcomes are
vectors). One prime difficulty in assessing the relative worth of
these ED programs is the need for simultaneous comparison of and
tradeoff assessments among the different values of the different
types of MOEs.

The essence of the Basic RA Method is to decompose the
multiple MOE assessment problem into a sequence of simpler
tradeoff assessment tasks. This is accomplished by selecting two
alternative ED program expected outcomes and constructing a
sequence of hypothetical outcomes that eventually link the real
outcomes as described below. FEach hypothetical outcome differs
from the two sequentially adjacent hypothetical outcomes in only
two MOEs. This is also true for the first real outcome and the
first hypothetical outcome. Comparison of any adjacent pair of
outcome vectors then 1involves only a “"pairwise tradeoff
- asgessement” between the two differing MOEs. The sequence is also
2" constructed so that the last hypothetical outcome differs from the
second real outcome in only one MOE.

The application of the pairwise tradeoff assessments works in
such a manner as to construct a sequence of hypothetical outcomes
such that the DM is indifferent among them, and indifferent
between the first real outcome and any hypothetical outcome.

Finally, since the last hypothetical outcome and the second real
outcome differ in only one MOE, a direct preference assessment can

be made bdetween them based on the values of that singular MOE.

11




For example, if the MOE is "good” (i.e., more 1is preferred to
less), the outcome with the higher MOE value is preferred. The
preference relationship between the two real outcomes, and thus,
the preference between the two real alternative ED programs, is
established by induction.

The key concept of the method is that the set of
hypothetical alternatives serve as surrogate
alternatives for one of the real alternatives in
the sense that the DM 1is indifferent between

obtaining the sets of outcome MOEs for the real
alternative and for any one of the hypothetical
alternatives.

In addition to the procedures outlined above, the
accumulation of tradeoff assessment information can be employed to
contruct a linear model that locally approximates the DM's
indifference function. This model provides a real-valued
objective function that can be employed in an optimization

procedure to determine the most preferred alternative ED programs.

B. Review of the Basic RA Method

The construction of the sequence of hypothetical outcomes
employed in the Basic RA Method is 1llustrated in Figure III-1.
Assume that two real alternative ED programs with four MOEs have
outcome vectors A and B given by

A= (a, a5, 85, 8,) ¢

12




B = (b, by, by, b)) . (2)

MOE, MOE, MOE, MOE,
A = ( a 4, a, a, )
A = b, c, a, a, )
Al = b, b, <, a, )
AT = by b, b, € | )
B = b, b, b, b, )

FIGURE IlI-1  HYPOTHETICAL OUTCOME SEQUENCE

Three hypothetical outcomes, designated by A, A°°, and A""° are ;%
also shown in Figure III-1. Note that the two attributes in which
each successive pair of programs differ are indicated within each

dashed box. "
LY
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Comparing A“ to A, we see that A” has the same MOE values
except for the first pair of MOEs. The value of MOE1 for A is
set equal to the value of HOEI for B, and the value of M0E2 is set
equal to c,. The procedure for obtaining ¢, (and the other ci's)
is the pairwise tradeoff assessment and will be described shortly.
In a similar manner A”” has the same MOE values as A” except for
the pair of MOEs consisting of M0E2 and MOE3. Through this
stepwise procedure we progress from hypothetical outcomes that
more closely match A to hypothetical outcomes that more closely
match B.

The hypothetical outcomes in Figure III-1 are obtained by the
assignment of values to Cys Cq, and cy by the DM. He chooses
these values so that he will be indifferent between any adjacent
pair of outcomes. Thus, the construction of the hypothetical
outcomes does not entail lengthy analysis to establish the values
of the MOEs nor does it imply that there exists a feasible ED
program that can produce that outcome.

The pairwise tradeoff assessment 1is the procedure for
eliciting the required information from the DM. He provides this
information by responding to the following type of question.
Given two outcomes whose MOE values differ in all but two MOEs,
and assume that the level of one MOE for the first outcome can be
increased to the level of the second outcome, how much can the
level of the‘second MOE for the first outcome be decreased to make
you indifferent between the new outcome and the first outcome?
Stated another way, how much of one MOE are you willing to
tradeoff for another? The quantitative response of the DM
provides the value of the ¢“s discussed above.

L d

After the construction of A , we see from Figure III-1 that
the preference between A°°” and B can be determined solely on the
basis of the values for HOEa. If b& is equal to s the DM 1is

P

indifferent between A“““ and B; 1if b4 exceeds 4o he prefers A .




o,

Since he 1s indifferent between A and A“”"", his preference

,or,

between A and B is established. In this process, we see that A

(as well as A" and A"”) serves as a surrogate for A.

The primary objective of constructing the hypotheticai

programs 1s to relieve the DM of the task of assessing
simultaneous tradeoffs among three or more MOEs; it offers him the
less complex, though still difficult task of assessing the
tradeoffs between only two MOEs. It thus allows him to focus his
attention on that part of his internal model of the important
overall effectiveness relatfonships that relates to the two MOEs.

To facilitate the construction of the sequence of
hypothetical outcomes, a tradeoff assessment tableau was devised.
After the two real alternative programs have been selected and
their MOEs evaluated, we inspect the successive pairs of values
for each MOE. This allows us to determine the number of MOEs, m,
such that the ai's dominate the corresponding bi's; the number of
MOEs, q, such that the bi’s dominate the corresponding ai‘s; and
the number of MOEs, p, such that a, = bi'

We select the minimum of m and q (assume it is m) and
rearrange the MOEs so that the first m consist of the case where
a, > bi’ the next q consist of the case where a, < bi’ and the
remaining p consist of the case where ai-bi' For specificity
assume that m = 2, q = 3, and p = 1. We can now construct the
tableau shown in Figure III-2. Note that if q is less than m, we
can always switch names of the real outcomes (A to B and B to A)
so that the same tableau form results.

Figure III-2 shows several interesting properties of this
procedure. First, the maximum number of hypothetical outcomes,
and thus the maximum number of tradeoff assessments, is mhq-1 (4
in this case). The minimum number of tradeoff assessments
required is max(l, m-1) (1 in this case). The minimum number of

tradeoff assessments would occur if c, were less than or equal to
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b2 (or in general {if c, were less than or equal to bm). In such a
case, B would dominate the (m~1)-th hypothetical outcome 1in at
least q MOEs and not be dominated by any remaining MOE. Thus, B

would be preferred to A.

I i
] ! =
MOEs a, >b, : b, > ay b8 T By
Alternative . < : x x < : N
Programs 1 2 | 3 4 5 6
- 1 A
| ]
(Real) A a a, : a, a, ag : ag
|- e |
’ . l (
(Hypothetical) A b1 <, : a, a, ag : ag
| l
y |- i
(Hypothetical) A bl b2 : cq a, ag : ag
bl - l+ :
i
r1e7 ]
(Hypothetical) A b1 b2 : b3 4 ag : ag
| ‘ - l + :
Yy b b : b b :
(Hypothetical) A 1 2 : 3 4 cg : ag
[ 1 .
' | :
1 - .
(Real) B b1 b2 : b3 b4 b5 E b6 ag :
L
FIGURE IlI-2 TRADEQFF ASSESSMENT TABLEAU !
-
4
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If, in fact, B 18 preferred to A we discover that fact
anywhere from the (m-1)-th tradeoff assessment to the (mhq-1)-th
tradeoff assessment. If, on the other hand, A is preferred to B
or both are equally preferred we would discover that fact only
after the (m+q-1)-th tradeoff assessment.

In Figure III-2 we can also note the relationship between any
hypothetical outcome and each of the pair of real outcomes. We
see that the first k MOEs of the k-th hypothetical outcome are
equal in value to the MOEs of outcome B, and the last n-k-1 are
equal to the MOEs of outcome A. Thus, the hypothetical outcomes
can be readily constructed from A and B. The remaining MOE value
to complete each hypotheticazl outcome is supplied by the tradeoff
assessment of the DM. He accomplishes this without ény thought as
to whether or not there exists a real ED program with that
outcome, or what its real cost may be. This i1s true since even if
the program were feasible, he need never seriously consider
implementing it. If it costs more than or equal to the budget, he
will select either A or B, since A is as good and B may be better
and neither costs more. If it costs less than the budget, he
should advise his staff to find an improved alternative whose cost
equals the budge:, and he will select either the new alternative
or B.

Pairwise tradeoff assessment information provides a local
approximation to the marginal rate of substitution between two
MOEs. If the marginal rate of subeticuticn is independent of the
outcome MOE levels, then the tradeoff ratio becomes a global
estimate of the marginal rate of substitution. In this case, we
have a !i{near indifference aodel of the DM“s preference function.

The linear indifference model can be employed in conjunction
with the tradeoff assessment procedure to analytically determine a
most preferred outcome using a linear optimization procedure. The
degree to which this outcome is truly the "most preferred” depends
on how well the constant marginal rate of substitution assumption
is satisfied.

17
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The linear indifference model results in an objective

function of the form

n
g(x) = T v

& Tt * (3)

where n is the number of MOEs and x, is the value of the i-th MOE

i
outcome. The values of the s are obtained from the tradeoff
assessment procedures that generate the values of the ¢“s in
Figure III-2. In particular, the tradeoff ratio between any

adjacent pair of MOEs, as shown in the tableau in Figure II1-2, is

“defined as

, . bi - ai+1 “
i+1,1 ci - bi+1

The tradeoff ratio between the n-th and any arbitrary i-th MOE is
defined as

n-1

y.. = IT v
ni 0 TkHLk (5)

for 1 < n, and is equal to 1 for { = n.

The outcome from among the set of alternative outcomes that
maximizes g(x) 1is the most preferred outcome according to the
linear indifference model. The optimization procedure 1is
graphically i{illustrated for a two dimensional case in Figure
I1I-3. The value of 721 corresponds to the negative of the slope

18
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MOE X2

LINEAR
INDIFFERENCE
LINE

SLOPE = - 7,, ]

MOE X1

FIGURE III-3 GRAPHICAL OPTIMIZATION
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of the 1linear indifference 1line. Optimization corresponds to
sliding this line up and to the right until it reaches the last
outcome. This 18 the "most preferred” outcome. In higher
dimensions the VY s define a hyperplane, and optimization 1is
achieved by sliding the hyperplane in the direction of increasing

MOE values to the last outcome.
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(1)

2)

3)

(4)

(5)

The steps and procedures of the Basic RA Method are the
following:

Select alternative pair. Initially select the two

potentially most preferred alternative outcomes based
on the subjective assessment of the DM. On subsequent
iterations through Step 1, select the current highest-
ranking alternative and one other potentially most
preferred alternative from among the remaining

alternatives.

Reorder MOEs. Reorder the MOEs so that the minimum
number of dominated MOEs between the two alternatives
are at the beginning of the sequence of MOEs, and the
remaining reverse-dominated MOEs are 1listed next,

followed by the remaining equal-value MOEs (1if any).

Construct tableau. Construct the tradeoff assessment

tableau so that the top alternative dominates the
bottom alternative in the first MOE.

Perform tradeoff assessment. Obtain the DM“s response

between the appropriate pair of MOEs within the
tableau. Each response completes the construction of
a hypothetical outcome.

Test for dominance. After the minimum number of trade-

off assessments (m-1) have been completed, determine

whether the bottom alternative completely dominates
the last hypothetical alternative. If it does, the
bottom alternative is ranked as more preferred than

the top alternative. If unranked alternatives remain,

20




we proceed to Step 1 or Step 6 at the option of the
DM. Otherwise, we have completed the procedure and
the most preferred alternative has been identified.

If, on the other hand, dominance has not yet occurred,

SN -] AL
< msaas v . )

further tradeoff assessments are required and we
return to Step 4. After the maximum number of trade- :!
off assessments (mtq-l) have been completed, the two }f
alternatives are ranked by comparing the last MOE
involved in the tradeoff assessment. Again, we proceed

to Step 1 or Step 6 if unranked alternatives remain. F!

(6) Complete the tradeoff agsessments (optional). If a

complete set of tradeoff ratios has not been estab- -
lished, the‘yni's in Eq. 3 are not all known and the Ki
linear function cannot be optimized to determine the

next alternative. However, at the option of the DM,

the remaining tradeoff assessments (obtained according :;
to Step 4) can be accomplished. The Yni's, which are r
tradeoff ratios between the n—-th or last MOE and the
i-th MOE can then be computed according to Eq. 5.

(7) Perform linear optimization for next alternative

gselection. Select the next alternative by optimizing
Eq. 3 over all remaining alternatives.

(8) Test for termination (optional). Ask the DM to care- fi

fully consider each of his most recent tradeoff ratios
and the range of MOE values covered by the remaining ﬁ;
alternatives. Determine whether he would modify any .
of these tradeoff ratfos as a function of the MOE

R

{

values within this range. If he would not, the most

s

preferred outcome is the outcome that optimizes Eq. 3.

At this point, the most preferred alternative has been _ R
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identified and we are done. If the DM indicates that
his tradeoff ratios are not constant over the range of
MOE values,proceed to Step 2 with the current highest-
ranking alternative and the alternative obtained in
Step 7.
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IV NONLINEAR EFFECTS IN MOE TRADEOFFS

A. General
A portion of the Basic RA Method, described in the preceding
chapter, is predicated on the assumption that the DM“s
N indifference curves for each pair of MOEs is linear, at least in
' the region of decision. That is, the DM is willing to sacrifice K Ny
units of one MOE in order to gain one unit of the other MOE, where :

K is a constant within the region of possible alternative
' outcomes.
As described in Chapter III, the Basic RA Method consists of

'y

two parts; an iterative evaluation that eventually identifies a
most preferred outcome from a set of alternative outcomes, and an

analytical model that can be employed to accelerate the process of

4
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identifying a most preferred outcome. The analytical model
portion of the RA method is based on the linearity assumption.
This assumption is usually sufficient in cases where the region of

decision 1is relatively small. However, as this region expands,

the effects of nonlinearities in the DM”“s preference structure

- may become more and more significant.

RSP
el

This research then was directed toward examining the effects

of such nonlinearities on the Basic RA Method and to identify

procedures to be applied when the linearity assumption becomes
unacceptable. The approach used was to first identify the types
of indifference curves that may be encountered in practice and to

establish a categorization scheme to be used to classify

9 ASE AL Te ot
4 odmr S

relationships between pairs of MOEs. The second step was to
theoretically examine the implications that these nonlinearities
will have on the use of the Basic RA Method. The final step was
S to develop a nonlinear indifference model and the procedures
required to incorporate it into the RA method.

23
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B. Categorization of Nonlinear Indifference Curves

The Basic RA Method is based on the assumption that the DM“s
preference pattern between a pair of MOEs results in a linear
indifference curve. In some practical applications, this may well
be the case. However, there are many circumstances where the DM“s
preference pattern may vary from this norm. In order to represent
these variations in a convenient manner, a categorization scheme
was developed to classify the types of nonlinearities that one may
encounter in practical situations. The categories that were
selected are as follows:

° Threshold
Convexity
Complementarity
Disutility
Proportionality

These categories are not necessarily exclusive, in the sense
that an indifference curve could, over the complete decision
region, exhibit several of the characteristics representing these
categories. However, in a local portion of the decision region,
it is assumed that, at most, only two of the categories hold.
This commonality of characteristics will become apparent in the
descriptions of the various categories that follow. In these
descriptions, it is assumed that an increase in a value of a MOE
is beneficial in the eyes of the DM. That is, more of a MOE is
better than 1less. This convention precludes the use of some
common MOEs, such as “response time”, where the lesser value is
preferred to the greater. However, these MOEs can be included
merely by assuming their reciprocal values.

Before discussing each of these nonlinear categories, we
review the linearity assumption chse. Linearity represents the
case where there is a constant tradeoff between two MOEs. That
is, the DM is willing to sacrifice K units of one MOE in order to
gain one unit of the other MOE, where K is a constant. This case
is 1llustrated in Fig. IV-1. This case, which is the basis for

24
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INDIFFERENCE
CURVES

MOE B

FIGURE IV-1  LINEARITY CASE

the Basic RA.Method, provides a local approximation for the more
prevalent convex case, although it may actually be appropriate in
certain cases. For example, in the tradeoff between initial

investment cost and annual operations and maintenance Navy (O&MN)
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cost, the DM may be inclined to be indifferent to a fixed ratio
between these costs. That 1s, for every million dollars of
investment, the DM may be indifferent to an O&MN cost of $75 K per
year, amortized over a period of ten years.
1. Threshold

The threshold categorization factor represents the case
where a minimum amount of one or both of the MOEs 1is always
required. This case 1is illustrated in Fig. IV-2, where MOE B

MOE A

INDIFFERENCE

|
|
]
|
|
|
|
|
|
: CURVES
| /
|
|
|
|
|
|
|
|
|
[}

THRESHOLD MOE B
VALUE

FIGURE IV-2 THRESHOLD CASE

exhibits this threshold characteristic. As an example, MOE B
could represent the fuel resupply rate for a ship deployed at sea
for an extended period of time. The threshold value would denote

the minimum rate at which the ship could just manage to function
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in its operational environment. Increases in this rate would

allow the ship more flexibility in {its ability to maneuver, which

could reduce the requirements imposed on the ship”“s function

- T

associated with MOE A that represents, for example, the ship”s {
firepower. The indifference curves illustrated in the figure are
normally convex leading into the threshold barrier. This implies '
that the closer the restricted MOE gets to the threshold barrier,

VL

the greater the increase in the other MOE required to offset a

small decrease in the restricted MOE. 3

2. Convexity

The convexity categorization factor represents the case
where the DM is willing to accept a loss in one MOE that 1is offset
by an 1increase in the other MOE, and the amount of offsetting -
increase must be larger as the amount of the first MOE gets g
smaller. This case 1is 1llustrated in Fig. IV-3, This case

INDIFFERENCE ‘
CURVES

MOE A

MOE B

FIGURE IV-3 CONVEXITY CASE
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represents the usual norm for indifference curves and 1is
equivalent to the increasing marginal rate of substitution
assumption. A good example of this is the tradeoff between a
ship”s maneuverability and its firepower, as mentioned previously.
Increasing maneuverability will reduce the requirements for

firepower, but at a decreasing rate. The ship, by increasing its

maneuverability, may decrease its susceptability to the submarine
threat, but it may still be as susceptible to the air threat as it
: was before. Hence, its firepower requirements against the
&i submarine threat may be reduced somewhat, but it still must

maintain the same firepower requirements against the air threat.
~E Thus, its total firepower requirements may be reduced somewhat,

but not proportionately to its initial requirements.

3. Complementarity

The complementarity categorization factor represents the
case where the DM“s indifference curve is either convex or linear,
but there exists a point of radical change in this indifference.
This case is illustrated in Fig. IV-4. What this case implies is
that the DM has a specific balance point between the two MOEs
under consideration, and any deviation from this point is one MOE
requires a markedly different tradeoff in the other MOE than would
be the case if the MOEs were reversed. As an example of such a
case, consider the possible tradeoff between equipment—on—hand and
spare parts inventory. For a specific level of operations, there
may exist an optimal balance point which specifies a certain
number of spare parts required for a desired number of units of
equipment. A deficiency in the number of spare parts can be
offset by the addition of a specific number of units of equipment.

However, a lack of the same number of units of equipment can only

be compensated for by a much larger increase in spare parts than

was deficient in the former case.
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. Disutility
The disutility categorization factor is similar in

nature to tiie complementarity categorization factor, with the
exception that, on either side of the balance point, an abundance
in one MOE can only be offset by a proportional abundance in the
other MOE. This case i+ illustrated in Fig. IV-5. What this case
implies 1is that the DM has a preference for a proper balance
between the two MOEs and an increase ‘n one MOE requires some
proportional 1increase 1in the other to satisfy the DM’s
preference criteria. As an example, consider an intermediate

storage point such as a warehouse facility. The proper balance
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MOE B

FIGURE IV-5 DISUTILITY CASE

point could be the warehouse being full to capacity with incoming
supply metric tonnage exactly equaling outgoing supply metric
tonnage. Any increase in the incoming supply rate could only be
tolerated if the outgoing supply rate is also increased, and vice
versa. If the former case were to hold with no increase in the
outgoing supply rate, then the warehouse capacity would have to be
increased or supplies would have to be returned to the sender. In
the latter case where the outgoing supply rate exceeds the
incoming supply rate, the warehouse would not be used to its full
capacity and eventually would become nearly depleted, with the
outgoing supply rate having to be reduced resulting in unused

resources on the outgoing supply operation.
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5. Proportionality

The proportionality categorization factor is actually an
extreme case of the disutility categorization factor. This
implies that the DM“s indifference curve is actually a single
point, the point of proper balance between the two MOEs. In the
sample cited in the disutility case above, the DM cannot tolerate
an imbalance in the incoming and outgoing supply rates. An
increase in one supply rate can only be accompanied by an increase
in the other supply rate and this balance point would then

represent a higher level indifference point.

C. TImplications of the Nonlinear Categories

The basis for the previous research that resulted in the
Basic RA Method explicitly considered the cases of linearity and
convexity. The implications of convexity on the Basic RA Method
was that an iterative sequence of linear indifference models would
converge to the identification of the most preferred outcome. The
implications of the remaining nonlinear-categories:

o Threshold

e Proportionality

® Disutility

e Complementarity

are discussed below.

1. Threshold

The principal implication of the threshold case is that
the threshold values must be 1identified, and this information
incorporated into the alternative ED program selection process.
Thus, any alternative outcome chat has an MOE value below the
required threshold should be discarded or the ED program modified
to increase that MOE above the threshold. Referring to Figure
IV-2 we see that this 1s equivalent to a translation of the
outcome space along the MOE B axis. When this is done we see that
the threshold case reduces to one of the remaining nonlinear
cases.
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Since the RA Method does not deal with the selection of
alternatives, we have not explicitly considered these effects in

the RA method development.

2. Proportionality

Proportionality implies that there 1is a strong
functional relationship between pairs of MOEs. An indifference
curve becomes a point, and the family of indifference curves
becomes a 1line (or curve) of MOE proportions. Again, the
principal implication of proportionality is on the selection of
alternative ED programs. Obviously, the disutility for deviations
from the proper proportion will be so great that outcomes whose
MOEs do not satisfy this proportion should be discarded or
modified.

A second important implication of proportionality is
that the dimensionality of the MOE space can be reduced. For
example, i{f MOEs A and B are proportionally related whereas A and
C, and B and C are not, the tradeoff between A and C implies a
unique tradeoff between B and C, and vice versa. If all
alternative outcomes have the proper proportion between A and B,
then the issue of finding a most preferred alternative will be
decided by tradeoffs between other MOEs and either A or B.

3. Disutility
The disutility case is somewhat similar to the

proportionality case in that changes of outcome MOEs away from the
line of proper balance (see Figure IV-5) imply a rapid falloff in
utility. Inspection of Figure IV-5 shows that if one started from
an outcome on the line of proper balance an increase in both MOEs
is required just to remain indifferent. But this implies a higher
budget ED program. I1f feasible, a clearly better way to allocate
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that higher budget is to increase the MOEs along the line of
proper balance. This will result in a net increased utility. In
general, then, the selection of alternative Ed programs should be
as close to the proper balance as possible.

We conclude that the disutility case has effectively the
same implications on the RA method as the proportionality case.

4, Complementarity

The complementarity case also has a certain degree of
coupling between pairs of MOEs, but the effect is much reduced
from the disutility case. In particular we note that improvements
in outcome utility can still consist of a tradeoff between the
MOEs. This tradeoff however 1s not constant and the tradeoff
ratio for improvement depends on which MOE 1s increased or
decreased. This latter property 1is also true of the convexity
case.

The knee in the indifference curves of the comple-
mentarity case suggests that a piecewise linear model would more
accurately model the indifference function. Referring to Figure
IV-4, a plecewise linear model would consist of a linear tradeoff
model with a given tradeoff ratio to the right of the line of
proper balance, and a second linear tradeoff model with a
different tradeoff ratio to the 1left of the 1line of proper
balance. In higher dimensions, a set of hyperplanes pieced
together in the proper way constitutes the plecewise linear-model.

This type of model can be constructed using the same
basic tradeoff assessment procedures as the Basic RA Method.
However, for every pair of MOEs we would then require two types of

tradeoff assessments. In one case the ,* would decrease one MOE
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- in response to an increase in the other, and in the second case .
(; _ the DM would increase the first MOE in response to a decrease in
the second MOE. In addition tradeoff assessments will be required
to obtain information concerning the proper balance of the MOEs.
Based on the above considerations, we have developed an
Extended RA Method that incorporates a plecewise 1linear

indifference model. -
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V THE EXTENDED RA METHOD

A. Development of the Extended RA Method

The Extended RA Method is a piecewise linear extension of the
linear indifference model. It is primarily designed to handle the
first order nonlinear effect introduced by complementarity between
and among MOEs. However, its utility also applies to the more
general cases of increasing marginal rate of substitution.

The principal concept of the piecewise linear model is to
contruct a nonlinear objective function that consists of linear

indifference segments. This concept is illustrated in Figure V-1.

LINEAR
INDIFFERENCE
SEGMENTS /

MOST PREFERRED
/=" PROPORTION LINE

MOE2

FIGURE V-1  PIECEWISE LINEAR INDIFFERENCE CURVES
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The indifference structure illustrated in this figure 1s the
complementary MOE case where, in general, a certain incremental
proportion between the two MOEs is most preferred. However,
incremental increases in either MOE without corresponding
increases in the other still has some increase in utility, and
therefore, preference. When these conditions prevail, the
indifference functions have the shape illustrated in Figure V-1.
The most preferred proportion between the two MOEs is shown by the
dashed line. The indifference function shows that 1f one
considers an outcome that has a most preferred proportion between
MOE1 and MOEz, then a small decrease in either MOE requires a
large increase in the other MOE. Conversely, given a large
increase in either MOE, only a small decrease in the other can be
“"tolerated”™ to make the DM indifferent. Graphically, this
situation 1is characterized by indifference functions that have a
“"knee” at the line of "most preferred” proportionm.

A first order nonlinear approximation of each indifference
curve is to pilece together two linear functions at the line of
most preferred proportion. The optimization problem to find the
most preferred outcome then involves sliding the two assoclated
slope lines along the line of most preferred proportion until one
of the slope lines encounters the last outcome.

The piecewise linear model requires more information from the
DM than the linear model, as would be expected. However, the same
basic tradeoff assessment procedures as used in the Basic RA
Method are still appropriate. Also, it is necessary to distin-
guish between two types of tradeoff assessments depending upon
whether one of a pair of MOEs 1is increased or decreased in the
tradeoff assessment. These two types of tradeoff assessments will
be called negative or positive tradeoff assessments according to
the following definitions:
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Negative Tradeoff Assessment. A negative tradeoff assessment

(f. . occurs when a DM decreases one MOE in response to a given

increase in the other MOE.

Positive Tradeoff Assessment. A positive tradeoff assessment

occurs when a DM increases one MOE in response to a given
decrease in the other MOE.

In addition to the tradeoff ratios produced by the negative
and positive tradeoff assessments, we need to determine the vector
that defines the most preferred proportion line. One way to
” gspecify this vector 1is to specify one point on the proportion
line and a direction vector for the line. Each point can then be

obtained as the sum of the specified point (or vector) and some

‘ "" ML

multiple of the direction vector. The information required to
determine the direction vector can also be obtained by the basic
tradeoff assessment process as will be described shortly.

The piecewise linear objective function is derived in

Appendix B in terms of the direction cosine representation of two
vectors: the hyperplane vector and the most preferred proportion
vector. The direction cosine representation for these vectors, '
aand €, are obtained by simply dividing each term of each vector q
by its vector magnitude. When this is done, the above vectors are '5‘
interpreted as followss The vector & is the unit vector normal to -1
a given hyperplane and the vector € is the unit vector defining
the direction of the line of most preferred proportion. The dot

product of any given outcome vector with O gives the "effective”

&

wminimum distance of the outcome point from a hyperplane passing

through the origin. The dot products of O with € gives the

projection of € along the @ direction respectively. This last
function, evaluated for each hyperplane, provides the weighting
functions in the objective function. .

Consider the following objective function for the
two-dimensional case, where the hyperplanes are lines with unit

1 2
normal vectors @@ and o respectively:
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g, (© (6)
n
1 1
(x) =a*x= X a % (7
g, \x) =2 oy 174
and
2 3 o,
8,(X) =arx = ¥ o] x (8)
2 =1 * 1

and the vector, a, is an outcome on the most preferred proportion
line. Generally, it will be the point at which the negative and
positive tradeoff assessments are made and the corresponding
tradeoff ratios computed. However, it can be any outcome along
the most preferred proportion line since the terms in the brackets
are only modified by an additive constant.

Graphically, g(x) is interpreted as follows. The quantities
8,(x) and g,(x) are the minimum distances from the origin of the
slope lines passing through x. The quantities 31(3-3) and 32(3_—_a_)

are the separations between parallel slope 1lines passing
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through x and through a. The terms 1/31(_5) and 1/32(1)_are
weighting factors that measure the relative importance of a change
in the slope line separations along one slope line compared to the
other. These weighting factors tend to favor points on the most
preferred proportion line.

For example, consider the slope lines, most preferred

proportion line, and outcomes shown in Figure V-2. The value of

MOE X2

MOE X,

FIGURE V-2 PIECEWISE LINEAR GRAPHICAL OPTIMIZATION

8y(b-a) 1s zero, and the value of g;(b-a) must be greater than
zero. Thus, g(b) will be zero. Conversely, the value of gl(g:g)
is zero, and the value of 32(2:5) is positive. Thus, g(c) will
also be zero. In fact, any point along the piecewise 1linear

function in Figure V-2 will be zero, and therefore, equally

preferred.
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For point d, g,(d-a) is zero and g,(d-a) is negative. Thus,
g(d) has a negative value relative to a, b, and ¢. In a similar
fashion, we can argue that both e and f have positive values
relative a, b, and c.

As illustrated in Figure V-2, e was constructed by adding an
amount of M[OE2 to ¢, and f was constructed by adding the same
amount of MIOE2 to b. Which (e or f) has the greater value of g?
The answer is provided by the value of the weighting functions.
For this example, those weights will be such that g(f) > g(e).
This means that a change in M0E2 of a given amount starting from
point b is more preferred than the same amount of change in MZOE2
starting from point c¢. This result is consistent with the fact
that f is closer to the most preferred proportion line than e.

Generalizing the objective function to higher dimensional
cases, the tradeoff slope 1lines become hyperplanes, and the

objective function becomes

g, (x - a) .
g(x) = il-‘ir:h TE)—— 9

where h is the number of hyperplanes established by the piecewise
linear model. Each of these hyperplanes pass through the
reference point a.

The interpretation of the terms in the brackets is exactly
the same as before, but couched in terms of hyperplanes. Thus,
31(573) is the separation between x and a along a direction normal
to the 1i-th hyperplane. The 1-th hyperplane is defined by the
direction cosine vector obtained by the i-th combination of

tradeoff ratios.
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Appendix A specifies how the set of h hyperplanes used for
the plecewise 1linear model of the indifference function are
determined from the tradeoff assessment data. The total number of
MOE pairs that can be used for tradeoff assessment evaluations is
equal to n(n-1)/2. However, since for each pair of MOEs we have
both positive and negative tradeoff assessments, the maximum
number of distinct tradeoff ratios is n(n-1).

Tradeoff ratio information can be encoded in vectors that
have only two non-zero terms. For tradeoffs between the i-th and
j-th MOEs, the two non-zero tradeoff ratio vector terms are the
i-th and the j~th terms; all remaining terms are =zero. Thus,
these vectors have the form

i-th j-th

+ + (10)
V(3 = 0y eues = Vygs cees 1 , .eer 0)

where 7 is the tradeoff ratio obtained from the negative

tradeoff 2isessment of MOEi relative to MOEj. Also note that the
tradeoff ratio always has a positive value. The tradeoff ratio
obtained from a positive tradeoff assessment of MOE1 relative to
MOEj can be viewed as a tradeoff ratio obtained from a negative
tradeoff assessment of MOE:l relative to MOEi. Thus, we can define
all the tradeoff ratio vectors in terms of equivalent negative
tradeoff assessment information. The counterpart of v(i,j) then
becomes v(j,i) and its j-th term is - 731. These vectors repre-
sent sample points (within a scale factor) from the nonlinear
indifference hypersurface we are attempting to model and from the
plecewise linear hyperplanes we will use in our model.

The piecewise linear model is obtained by first finding all
hyperplanes that each contain a combination of n-1 1linearly
independent tradeoff ratio vectors taken from the total set of
n(n-1) vectors. We then select only those hyperplanes that are
consistent with the increasing marginal rate of substitution
assumption, and that include each tradeoff ratio vector in at
least one hyperplane.
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The hyperplanes obtained are also represented by vectors w
which have a direction orthogonal to the hyperplane. In general,
w need only be defined to within a scale factor. When normalized
to a unit vector, w becomes a unique vector designated .

The increasing marginal rate of substitution assumption is
equivalent to a convexity assumption that translates into two
conditions:

(1) For any given i and j, 713 < 1/')’:‘i

(2) The dot .product of each tradeoff ratio vector with

any hyperplane vector used in the piecewise linear
model, must be greater than or equal to zero. (It
will equal zero if and only if the tradeoff ratio vector
lies 1in the hyperplane under consideration).

The “inclusion condition” states:

Each tradeoff ratio vector must be contained in at least
one hyperplane (i.e., v . w = 0) that does not violate

the convexity conditions.
The violation of the inclusion condition means that the

tradeoff assessment data for that vector is inconsistent with the
convexity condition. If this occurs, two options are available.
The first is to reassess the tradeoff ratio until it is consistent
with convexity. The second approach is to simply consider it as a
"bad” datum, discard it, and form a limited piecewise linear
indifference model with the remaining "good™ data.

The maximum number of hyperplanes that can be formed from a

set of s = n(n-1) vectors is given by

s!
(n=-1)!(s -n+ 1)! (11)

Most of these however, violate the convexity and inclusion

conditions stated above and are thus not allowed in the model.
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Appendix A shows that if the tradeoff ratios yki’ 713’ and
ij are all mutually consistent with the convexity assumption, then
the selection of n-1 tradeoff ratio vectors to form a hyperplane
cannot include pairs that are of the form v(k,i) and v(i,j) where
k#j. This result requires that all vectors containing an arbitrary
MOE index 1 that belong to an allowed set of n-1 1linearly
independent tradeoff ratio vectors, must have that index always
appear in either the first position or the second position of the
index doublet characterizing those vectors. Thus, the pair v(4,1)
and v(1,2) is not allowed.

Unfortunately, we have not been able to derive a general

analytical expression for the maximum number of allowed

- hyperplanes as a function of the dimensionality. However, if we

let q denote this maximum, and examine several cases, we can

construct Table V-1.

Table V-1
Maximum Number of

Allowed Hyperplanes

n m q
2 2 2
3 15

4 220 32

Appendix A also shows that if the tradeoff ratios yki’ yji’
%k’ and ‘}'kj are all mutually consistent with the convexity
assumption, then the selection of n-1 tradeoff ratio vectors to
form a hyperplane cannot include pairs of the form v(k,i) and
v(3,1) where k#j, unless ykj < ykilyji < 1/')’:‘k .
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This numerical condition will work to further reduce the
number of hyperplanes in the piecewise linear model to some ri-ber
h that 1is less than q. We expect the degree of reduction of
hyperplanes to be significant but cannot quantify 1t without
specific numerical values.

To summarize, the negative and positive tradeoff assessments
yield up to n(n-1) distinct tradeoff ratio values which can be
represented as n(n-1) vectors. In general, there will be fewer
tradeoff ratio vectors since certain MOE pairs may be linearly
traded off. In the extreme, 1f all tradeoff assessments are
linear, there will be only one half as many distinct tradeoff
ratio values; however, only one linearly independent set of n-1
vectors will be found. Thus, there will be only one hyperplane
for the pilecewise linear model.

The number of hyperplanes allowed in the piecewise linear
model 1is constrained first by the number of linearly independent
sets of n—1 vectors that can be found. Secondiy, the convexity
and inclusion conditions disallow certain hyperplanes. Finally,
numerical values of certain tradeoff ratios may disallow
additional hyperplanes.

Given an allowed set of h hyperplanes, the reference outcome
vector a at which tradeoff assessments are made, and the most
preferred marginal proportion vector €, the pilecewise 1linear
objective function, g(x), is given by Eq. 9. Selection of a most
preferred alternative ED program, consists of finding an outcome
vector that maximizes g(x). Since each outcome vector corresponds
to an alternative ED program, we choose that corresponding ED

program.

B. Procedures of the Extended RA Method

The previously developed Basic RA Method is based on a
sequence of pairwise MOE tradeoff assessments, the relative
ranking of pairs of outcome vectors (i.e., alternative ED

programs), and an optional linear model optimization procedure.
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The research reported herein extended the 1linear model to a
plecewise linear form of a nonlinear model. The utilization of
the plecewise linear model increases the burden on the DM in terms
of the number of tradeoff assessments required for 1local
indifference modelling, and for establishing the most preferred
proportion line. However, the plecewise linear model does also
include the linear model in the case that only one hyperplane is
required. In the 1latter case, the most preferred marginal
proportion line corresponds to the direction of the unit vector
normal to the hyperplane. Thus, the tradeoff assessment load will
reduce to the linear model load.

The extension of the indifference model to a plecewise linear
one does not affect the ranking portion of the Basic RA Method.
The ranking procedure is designed to lead to the selection of the
most preferred alternative from among a given set whether the
indifference function is approximately linear or highly nonlinear.
Unfortunately it provides no model of the indifference structure
that can be employed to reduce the tradeoff assessment load when
considering a new set of alternatives, or when attempting to
synthesize new alternatives that are likely to be highly
preferred. Thus, a 1linear model evaluation procedure was also
included in the Basic RA Method. Steps 6 and 7 in the procedures
of the Basic RA Method provide for this evaluation. The Extended
RA Method procedures are obtained by revising these two steps.
The 1list of steps then becomes:

(1) Select alternative pair

(2) Reorder MOEs

(3) Construct tableau

(4) Perform tradeoff assessments

(5) Test for dominance

(6) Complete the tradeoff assessments (optional)

(7) Perform piecewise linear optimization for next

alternative selection (optional)

(8) Test for termination (optional)
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1. Tradeoff Assessment Requirements for Step 6

p—ry——

Step 6 consists of 3 tasks. First, a matrix of pairwise . ‘3
tradeoff ratios must be determined to characterize the s

indifference relationships. Secondly, these tradeoff ratios must ) ;

X A
e TV el
Ty

be checked for consistency with the convexity conditions.

oy v e

Finally, additional tradeoff assessments are required to determine

the direction of most preferred proportion line.
To construct a plecewise linear indifference model, the
first task is to obtain sufficient tradeoff assessment information

from the DM. The number of tradeoff assessments required will

R N
as a4 ¢ °

depend on the number of 1linear pairwise indifference
relationships. The greater this number the fewer tradeoff ¥
assessments required. A linear pairwise indifference relationship .
implies that the negative and positive tradeoff assessments yield *
the same tradeoff ratio.

The maximum number of tradeoff assessments required is

n{n-1) and the resulting tradeoff ratios can be arranged in a

square matrix. The i-th row and j-th column of this matrix
represents the tradeoff ratio of MOE1 relative to MOEj for a
negative tradeoff assessment. The diagonal elements of this
matrix are all trivially equal to unity. For i greater than j,
the entry is an equivalent negative tradeoff assessment result
obtained from a positive tradeoff assessment. Its value is the
reciprocal of the positive tradeoff assessment ratio. For
example, 1f a negative and positive tradeoff assessment of MOEi
with respect to MOEj yields tradeoff ratios of 0.6 and 0.9,
713 = 0.6 and )31 = 1/0.9 = 1.11. These values can
be entered in the (i,3) and (3j,1) positions of the matrix. If

respectively,

MOEi and MOEj were linearly substitutable, both negative and
positive tradeoff assessments would yleld the same value, and if
%j = 0.6, then we would infer that yji = 1/0.6 = 1.67. 1In the
nonlinear case, the Iincreasing marginal rate of substitution
asgumption requires ¥ g to be less than 1.67 when yij is equal to

3
0.6.
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A matrix of tradeoff ratios for a 4—-dimensional problem

is shown in Table V-2.

Table V=2

TRADEOFF RATIO MATRIX

MOE
1 2 3 4
L1 iz Y13 Y
2 Y 1 Yas Y
\OE 21 23 You
3|V Y32 1 Y34
41 Y% Ya2 Y43 1

It turns out that 1if the tradeoffs are linear for an
entire row or column in this matrix, then the remaining tradeoff

ratios can be inferred. If only a portion of these are linear

then some but not all of the remaining elements can be inferred.
The inferential structure of the tradeoff assessments is defined
in Table V-3 for 3,4, and 5-dimensional problems. The structure
for higher dimensional problems can, in turn, be inferred from
Table V-3,

PSRN
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Table V-3

TABLE OF TRADEOFF INFERENCES

n |(1,2) (1,3) (1,4) (1,5)](2,3) (2,4) (2,5)|(3,4) (3,5 | (4,5)
5 L L L L L L L L L L
L L L NL L L NL L NL NL
L L NL NL L NL NL NL NL ?
L NL NL NL NL NL NL ? ? ?
NL NL NL NL ? ? ? ? ? ?
4 L L L L L L
L L NL L NL NL
L NL NL NL NL ?
NL NL NL ? ? ?
3 L L L
L NL NL L - Linear
NL NL ? NL - Nonlinear

To use Table V-3 we select a row or column of the matrix
of tradeoff ratios for evaluation and rearrange rows and columns
by MOE reordering to move the desired elements to the first row.
We then elicit both negative and positive tradeoff assessment
information from the DM and insert values in the first row and
column of the matrix. Linear tradeoffs are revealed whenever )Ej
- 1/751. We can then reorder MOEs such that all linear tradeoffs
are moved to the left in a row, or to the top in a column. At
this point we can refer to Table V-3 and find the appropriate case
in one of the leftmost blocks.
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Assume that the problem is 3-dimensional. The lower
leftmost block shows that 1if the (1,2) and (1,3) tradeoffs
are linear, we can infef that the (2,3) tradeoff will be linear.
If both are nonlinear, we can infer nothing about the (2,3)
tradeoff. If one 1s linear and the other 1is not, we can infer
that the (2,3) tradeoff must also be nonlinear. The various
inferences we can make for the 4 and 5-dimensional cases are also
shown in Table V-3.

The results in Table V-3 can readily be extended to
6-dimensions by adding a new first row consisting of all L“s to
the leftmost 5-dimensional block, and a fifth column with L for
the first element and NL“s for the remaining elements. We can
then fill in the blocks to the right by using the 3-dimensional
results for the various 3-dimensional subspaces of the
6-dimensional case. For example, the fact that the (1,5) and
(1,6) tradeoffs are linear infers that the (5,6) tradeoff will be
linear. If (1,5) is linear and (1,6) is nonlinear, we infer that
(5,6) tradeoff will be nonlinear.

In addition to these inferences characterizing the type
of tradeoffs, we can also infer the value of the tradeoff ratios
for those MOE pairs that we infer are linear. For example, 1if we
know that the (1,2) and (1,3) tradeoffs are linear and have values
712 and 713, we infer that the (2,3) tradeoff will be linear and
will have a value of V,, = 713/712. Furthermore, V,, = 7&2 /7i3.
Thus the linear inferences reduce the tradeoff assessment load.

After evaluating the first row and column of tradeoff
ratios, and filling in all the inferential information, the
additional tradeoff assessment requirements are defined by the
sub-matrix obtained by deleting all rows and columns from the top
and left, respectively, whose elements have all been evaluated.
The above procedure is repeated recursively until all elements

have been evaluated.
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Given a tradeoff ratio matrix we can next test for
consistency of the values with the convexity conditions. The
requirement for consistency is that the value of any given matrix
element be bounded as required by Eq. A-22 in Appendix A.
bound 1s violated, the tradeoff ratios that should be modified,

If any

and the minimum amount they should be modified by, can be inferred
from Eq. A-22. 1If a consistency violation cannot be resolved, the
remaining procedures can still be applied after excluding the
inconsigtent tradeoff ratio vector. This results in a plecewise
linear model based on reduced tradeoff assessment information.
The appropriateness of employing such a limited piecewise linear
It will

undoubtedly be dependent on specific cases and will require a

model has not been studied in this research effort.

judgemental decision.

The final task in step 6 is to perform the tradeoff
assessments required to determine the most preferred proportion
vector. This process is described in Appendix C. If we have a
strictly linear case where all MOE tradeoffs are constant, this
vector is not defined, and an arbitrary vector can be assumed.
This 18 true since, in this linear case, there will be only one
hyperplane,

and the role of the weighting functions in the

objective fugpction will no longer be applicable. A convenient
value for € in this case 1s to set it equal to the hyperplane
vector .

The evaluation of € requires n-1 additional tradeoff
assessments between nonlinearly related MOE pairs. If a nonlinear
tradeoff exists between any pair of MOEs, we are guaranteed by
inference that there will be at least n~1 nonlinearly related MOE
pairs from which we can perform n-1 independent tradeoff
assessments. This is readily shown by the following argument.
Assume that MOEs k and j are nonlinearly related. Then for any {
not equal to j or k either the (1, k) of (1, j) MOE pairs are
nonlinearly related according to our table of inferences (see
Table V-3).

nonlinearly related pairs.

Since there are n-2 values of i, there will be n-1
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Any set of linearly independent MOE pairs can be chosen
for these tradeoff assessments. As discussed in Appendix C, these
tradeoff assessments involve the construction of an outcome of
higher preference than a by increasing a single MOE. A positive
tradeoff assessment is then performed by decreasing that MOE back
to the level of a, and asking the DM how much the second MOE must
be 1increased to compensate for the reduction. For an (1i,3)
tradeoff, the computed tradeoff ratio yields 7&1. These tradeoff
ratios plus the matrix of indifference tradeoff ratios illustrated
in Fig. V-2 are required as input to the equations of Appendix C

for evaluating €.

2, Piecewise Linear Optimization Model for Step 7

After the matrix of tradeoff ratios and the vector
representing the direction of most preferred proportion have been
evaluated, the next task is to determine the vectors representing
the allowed hyperplanes. The procedure for determining the
hyperplanes: consists of 7 steps.

l. Form the tradeoff ratio vectors defined by Eq. 10.

2. Select a set of n-1 linearly independent tradeoff
ratio vectors.

3. Solve the set of n-1 equations formed by setting
the dot product of each tradeoff ratio vector with
the hyperplane vector.

4. Test all remaining tradeoff ratio vectors by com—
puting their dot product with the hyperplane
vector.

5. Discard the hyperplane if any of the dot products
in step 4 are less than zero. Return to step 2

until all sets of n-1 vectors have been processed.
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7.

Retest all tradeoff ratio vectors by computing
their dot products with all allowed hyperplane
vectors. If there exists at least one zero dot
product for each tradeoff ratio vector, the set of
allowed hyperplanes is complete; otherwise perform
the next step.

Those tradeoff ratio. vectors failing the test in
step 6 are inconsistent with the convexity
assumption. The tradeoff ratio in these vectors
should be reevaluated (with the assistance of the
inferred tradeoff ratio bounds specified in
Appendix A) and the process repeated from step 2
for those hyperplanes affected.
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VI ILLUSTRATIVE EXAMPLE RA PROBLEM
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A. Problem Description

The example selected to illustrate the use of the Extended RA
Method addresses a standard inventory and maintenance problem at a
large data processing center. It is assumed that the DM has at
his disposal the analytical tools that can provide him with the
optimal balance of units of equipment (central processors, power
supplies, storage devices, printers, etc.) to 1iInsure specific
levels of operations. For a specific required level of operationm,
say 90% assurance of continuous operation, the optimal balance
consists of 30 units of equipment (assuming some redundancy), 75
spare modules, and 4 maintenance personnel. For any specified
level of operation, the DM ha; strong feelings about maintaining
the desired balance. However, he is willing to sacrifice, to some
extent, a loss in one of the items at the expense of a gain in one
or both of the other items.

The DM“s indifference structure between equipment-on-hand and

spare modules is complementary 1in nature, as is also his
indifference structure between equipment-on-hand and maintenance
personnel. On the other hand, he is linearly indifferent between
spare modules and maintenance personnel. The applicable paiirwise

indifference curves representing three different levels of

operations (80%, 90%, 95%), for this example, are shown in Figures X
VI-1, VI-2, and VI-3. x
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We ass\ime that the indifference curves shown in these figures
are available to us only for the purpose of this illustrative

problem, and serve as a surrogate for the DM. Thus, any required

tradeoff assessment can be accomplished by referring to these ‘i
curves and reading off the equivalent responses of the DM. 1In -9
addition, we will only illustrate portions of Steps 6 and 7 in the »‘;

Extended RA Method procedures to show how the plecewise 1linear ;

model is formed from the tradeoff information. . 4




B. Tradeoff Assessment Information

The plecewise 1linear indifference model requires the
identification of an outcome vector which may or may not
correspond to a given alternative ED program, but that lies on the
line of most preferred marginal proportion. It 1is 1in the
neighborhood of this point that the DM has differing tradeoff
ratios for the negative and positive tradeoff assessments. In
addition to the evaluation of these tradeoff assessments, we also
need to evaluate the most preferred proportions desired by the DM.

The first task is then to identify an outcome vector, a, on
the line of most preferred proportion. Assume that we focus on
obtaining a 902 system operability figure. The DM responds that
he feels that the most preferred proportion at that level of
system operability is to have 4 maintenance personnel, 75 spare
modules, and 30 units of equipment. We will designate the three
MOEs as follows:

x = Maintenance personnel

x, = Spare modules/15

X, = Equipment/5
Note than an arbitrary scaling of MOEs Xy and X4 has been
performed to bring the numerical values within closer agreement.

The vector a then becomes
a = (4,5,6) (12)

Starting at the reference point a, we initially determine the
negative tradeoff assessment ratios for Xy with respect to X, and
then with respect to x,. Referring to Figures VI-1 through VI-3,
we infer that the following tradeoff ratios are obtained (after
MOE scaling):
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Y12 = 0.6

Y13 = 0.35 (13)

To obtain these values we assume that we asked the DM to decrease
X in response to an increase of X, of 1 scaled unit, and then in
response to an increase of Xy of 1 scaled unit.

Performing the positive tradeoff assessments we obtain
tradeoff ratios of 0.6 and 1.43. Since the negative and positive
tradeoff assessment ratios of Xy with respect to x, are equal, we
have a linear pairwise indifference relationship betweeen x and
Xye The equivalent negative tradeoff ratios for the positive

tradeoff assessment ratios are:

Yo, = 1/0.6 = 1.67
21 (14

= . = 0.7
y31 1/1.43

The tradeoff ratio matrix at this point is:

1 0.6 0.3
1.67 1
0.7 NL 1

The tradeoff between Xy and X, must be nonlinear by inference
using Table V-3. Furthermore, the convexity and inclusion
‘conditions require that the value of 7,, must be equal to 7217&3,
according to Eq. A-24 in Appendix A. This 1s true since the

57




RAAC St AR

pairwise tradeoff between MOEs 1 and 2 is linear. Similarly thL=
value of 732 must be equal to 751/751 for the same reason. These
values are 0.583 and 0.42, respectively. Note that the pairwise
tradeoff between MOEs 2 and 3 are nonlinear since 723 is not equal

to 1/)32. The tradeoff ratio matrix can now be updated to:

1 0.6 0.35
1.67 1 0.583
0.7 0.42 1

As a consistency check, we may ask for a tradeoff assessment
between MOEs 2 and 3. If the DM is consistent with the convexity
assumption we will obtain tradeoff ratios equal to these values as
can be inferred from Figures VI-2 through VI-3. For the moment,

assume we do obtain consistent results.

C. Most Preferred Proportion Determination

To determine the vector € that represents the directfon of
most preferred proportion, we must perform two (i.e., n-1 = 2)
more tradeoff assessments as described in Appendix C. These
tradeoff assessments will be between the MOE pairs X, and Xq5 and
between x; and Xg. In general we could have selected other MOE
pairs 1involving tradeoffs between X and Xye However, in this
example, the indifference function between Xy and X, is linear,
and Eq. C-11 will be indeterminate.

The required tradeoff assessment between MOE Xy and Xq
proceeds by constructing a new outcome vector b from a by setting
b3 = a, + 1. The value 1 is in scaled units. Outcome b should be

preferred to a by our assumption of "good” MOEs. We then ask the

58




DM how much we would have to increase MOE x2 from a2 (note that a2

3
[
t! } - bz) in order to compensate for a decrease of Xq from ay + 1 to

V-

ag. The response determines a new outcome vector c that differs
from a only in the value of Xy, and that is equally preferred to

b. The tradeoff ratio 5, is then computed from

gl

I el (15)
32 c)-a,

Referring to Figure VI-1 we iInfer that the DM”s response will be

Y L IR
P AR

to set c, equal to a, + 1.32 scaled units of Rye The value of

752 then becomes equal to 0.76. A similar tradeoff assessment
between % and X4 yields a value of 7 31 equal to 1.59. Eq. C-11 i
yields

tan d31 = 1,0 (16)
tan 632 = 0,84

Using Eq. C-12 yields the value of €. R

£ = (0.608, 0.511, 0.608) an {

D. Hyperplane Determinations

The next task 1s to form the six tradeoff ratio vectors.
These will be:
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v(1,2) = (-0.6, 1, 0)
v(1,3) = (-.35, O, 1)

v(2,1) = (1, -1.67, 0) (18)
v(2,3) = (0, =-0.58, 1)

v(3,1) = (1, 0, =0.7)

v(3,2) = (0, 1, <-0.42)

The selection of sets of vector pairs (i.e., n-1 is equal to E:.‘
2 for this 3-dimensional example) that are linearly independent A
and that satisfy the selection rule developed in Appendix A gives ‘q

the following set of 6 vector pairs. .

v(1,2) and v(1,3) =
v(1,2) and y_(3,2) #
v(1,3) and v(2,3)
v(2,1) and v(2,3)
v(2,1) and v(3,1)
v(3,1) and v(3,2)

Thus, we can form at most 6 hyperplanes. Some of these may be
redundant as will happen with this example since the tradeoffs
between MOEs 1 and 2 are linear.

The following two non-redundant hyperplane vectors are
obtained by solving the pair of equations obtained when the dot
products of each pair of vectors with the hyperplane vectors are

set equal to zero.

W= (1, 0.6, 0.35)

W= (1, 0.6, 1.43) (19) ]

B
4
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One element of each hyperplane is arbitrary at this point, and we
selected the first elements to be equal to unity. To determine
whether these hyperplanes are both allowed, we compute their dot
products with each of the tradeoff ratio vectors. These are all
greater than or equal to zero. Thus, these two hyperplanes are
allowed.

To determine whether all tradeoff ratio vectors are included,
we check that at least one dot product of each vector with the
allowed hyperplanes is zero. This is the case, and we conclude
that our pilecewise linear model consists of the above two

hyperplanes. The corresponding unit hyperplane vectors are:

= (0.82, 0.493, 0.287)
= (0.542, 0.325, 0.775) (20)

IR IR

E. The Objective Function Formulation

Given gl, g?', €, and a, we form the following objective

function

21°Qs- a) 23'<£-3)
g(x) = Min 1 ’ 5

-

a e Qa °€ (21)

To test this function numerically consider two outcomes 5} and 5?

-

given by

xt = (4,5,7.4)
x> = (4,6.67, 6) (22)
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The evaluation of g(x) for these two outcomes given

1 0.402 1.090
g(x™) = MinI:o.925’ 0.947] 0.435

(23)

.82 .54
8(5?) -Mi [o 3 0.543

— o | - [ 3
n|5.925° 0.967] 0.362

These results show that the plecewise linear model indicates a
preference for 5?. We note that the value of 3(3}) was determined
by hyperplane g& , Wwhereas the value of g(z?) was determined by
hyperplane g?. We also note the roles of the weighting functions
g}-g.and 93.53 In this example they do not differ by very much,
and therefore, the numerator terms determine which hyperplane is
active in each case. If the value of € were such that gg-g_wns
equal to 0.5, and g?-gyas equal to 1.5, then only hyperplane g?

would be active, and 5} would become the preferred outcome.

F. Tradeoff Assessments Revisited (Consistency Checking)

This completes the illustrative numerical example for the
case where consistent tradeoff ratio evaluations are obtained from
the DM. Let us now consider the case where the DM cannot agree
with the inferred value of 752 = 0.42 and estimates the value of
732 = 0.50. If the DM has a high confidence in this value, then
we deduce that the constraint (see Eq. A-22) presents the
consigtency problem. Therefore, either 731 is too low, or 721 is
too high. 1If 731 has lower confidence than 751, then Eq. A-22
tightly constrains 731 and we deduce that 751 must be raised to
0.833., If the DM agrees with this value, the new tradeoff ratio

matrix becomes

1 .6 .35
1.67 1 .583
.833 .5 1
62
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All of these values now pass the consistency tests and the
procedures for determining the hyperplanes should yield two
hyperplanes as before.

If on the other hand, the value of 721 has less confidence,

Ty s
e, L
- P
. PRI
1

it can be decreased to say l.4. However, this change results in
modifying the tradeoff between X and x, to a nonlinear case. If

this is accepted by the DM, the new tradeoff ratio matrix becomes

1 .6 .35
1.4 1 .583
.7 .5 1

All these values are now consistent with convexity, but more than
two hyperplanes will be required in our model.

The tradeoff ratio vectors for this case are:

v(1,2) = (-0.6, 1, 0)

v(1,3) = (-0.35, o, 1)

v(2,1) = (1 -1.4, 0)
v(2,3) = (0O, -0.583, 1) (24) ;
v(3,1) = (1, o, -0.7) -]
v(3,2) = (0O, 1, -0.5) g
The following four non-redundant hyperplane vectors are z
obtained. - 5
¢ 1 4
- wi(l) = ( 1, 0.6 0.35) Iy
wi (1) = ( 1, 0.6 1.25) )
| W) = (1, 0.714, 0.416)  (25) g’
. Wy o= (1, 0.714, 1.43) - d
' 7]
These hyperplanes are all allowed and include all the tradeoff .
ratio vectors. Thus, our piecewise linear model now consists of g
¢ four hyperplanes. The next step 1s to normalize these to unit é*
- vectors and proceed with the remaining procedures as before. ]
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Appendix A

Given a set of tradeoff ratios obtained by a sequence of
tradeoff assessments between pairs of MOEs, we are interested in
selecting a set of hyperplanes that form a pilecewise 1linear
approximation to an "indifference” hypersurface.

For an n-dimensional problem, it is possible to form n(n
-1)/2 pairs of MOEs. However, since we are considering the case
where a tradeoff assessment yields different results, depending on
the direction of change of the reference MOE, there are two
possible tradeoff ratios for each tradeoff pair. Thus, we are
dealing with n(n-1) distinct tradeoff ratios. Each of these
tradeoff ratios can be formed into a vector with only two non-zero
terms. The resulting vectors can then be considered as sample
points from the indifference hypersurface. A plecewise 1linear
approximation to this hypersurface can be obtained by first
finding all the hyperplanes that each contain n-1 linearly
independent vectors taken from the total set of n(n-1) vectors.

The total number of possible hyperplanes is then given by

D = [n(n - 1)]!
[n-1)t[n(an=-1) = (n - 1))! (A-1)

However, by our assumption of increasing marginal rate of
substitution of MOEs we are only interested in those hyperplanes
that form a convex piecewise linear hypersurface. This restriction
reduces the number of hyperplanes required in the model. For
example, a three-dimensional problem yields six tradeoff ratio
vectors and the possibility of forming 15 hyperplanes. Applying
the convexity restrictions reduces the required number of

hyperplanes to six.
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The purpose of the remainder of this appendix is to develop
the procedures for forming and selecting the required hyperplanes,
and to develop certain tradeoff ratio bounds that are useful in

evaluating and inferring tradeoff ratio values.

A. Forming and Selecting Hyperplanes

The tradeoff ratio vectors discussed above need only be
defined to within a scale factor to derive the hyperplanes. Thus,
they are defined as

i-th j-th
+ +
l(i»j) = (oa esoy T Yijl sy 1 ? *ec 0) (A-Z)

The term 7ij is defined as the tradeoff ratio obtained by
increasing MOEj

and decreasing MOEi. It will always be greater
than zero.

A hyperplane i{s also defined by a vector. In particular, a
vector w represents a hyperplane containing a vector v if the dot
product of the two vectors is zero. Thus, the vector w is also
defined to within a scale factor. Proper scaling is achieved by
normalizing W to a unit vector .

A set of n-l1 tradeoff ratio vectors define a hyperplane
vector w by the solution of the (n-1) dot product equations of the
form

vi,)w=w 0 (A-3)
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where 1 ¥ j, v(1,)) is taken from the set of n-1 vectors, and v
is arbitrarily set to 1l. With Ve = 1 we designate the hyperplane
vector w(k). Two particularly simple forms of w(k) result if
either the set of tradeoff ratio vectors comsist of v(k,i) or
v (1,k) for 1 = 1 to n and { ¥ k. The first case yields

k~th

v (A-4)
WK) = (Ypqs Ypgr ores Loy e V)

The second yields

k~th

1 +
!(k)- Y—’ Lg es s g 1 » ..uy-']'._
1k Y2k Ynk

Other sets of n-1 vectors will yield w(k) terms with products of

(A-5)

s in the numerators and/or denominators.

It will be shown that certain combinations of v's will result
in hyperplanes that violate the convexity assumption. In
particular, the vector pair v(i,j) and v(k,i), as well as the
vector pair v(i,j) and v(3,k) lead to convexity violations for any
value of k.

In addition, the vector pair v(k,i) and v(3},i), as well as
the vector pair v(i,k) and v(i,j) may lead to convexity violations
unless the values of the ratios 7ki/731 and )ij/ylk’ respectively,
fall within certain limits.

The convexity assumption can be translated into two

conditions:
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(1) PFor any given i and j, )ij 5_1/731

(2) The dot product of each tradeoff ratio vector with any
hyperplane vector used in the piecewise linear model,
must be greater than or equal to zero. (It will equal
zero 1f, and only if, the tradeoff ratio vector lies in

the hyperplane under consideration.)

In addition to the convexity assumption, we have an inclusion
condition that requires that each tradeoff ratio vector be
contained in at least one hyperplane that does not violate the
convexity condition. The violation of this inclusion condition
means that the tradeoff assessment data in that vector is
inconsistent with the convexity condition. 1If this occurs, two
options are available. The first is to reassess the tradeoff
ratio until it 1is consistent with convexity. The second approach
is to simply consider it as a "bad" datum, discard it, and form a
limited piecewise linear indifference model with the remaining
“good” data.

Since we are interested in modelling possible nonlinearities,
we congsider only the case for which 7&1 is strictly less than 1/
%1, and require that any tradeoff ratio vector that is not used to
form a given hyperplane, has a positive non-zero dot product with
that hyperplane vector.

To show that a hyperplane that includes vectors v(i,j) and
v(k,1) violates the convexity assumption, we proceed by selecting
two hyperplanes and show that if one violates the convexity
condition, then the other does not, and vice versa. It may be
true that both violate the convexity condition, but we are not
concerned with that outcome at this point. We then show that 1if
we choose to assume that one of these hyperplanes are allowed,
then one particular choice leads to a violation of the inclusion

condition.
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Let u(k) be a hyperplane containing the vectors v(k,i) and
v(i,3), and w(k) be a hyperplane containing v(k,1) and v(k,J).
The evaluation of the 1,j, and k terms of u(k) and w(k) results in

i-th j-th k-th
+ + +
ull) = Covs Yygo coes Yyq¥yqo ooen 1o 0d) (A-6)
i-th j-th k-th
+ + +
W) = Coees Ypgo seen Ypyqo coes 1, ...) (A-7)

Consider the dot product of v(k,j) with u(k), and the dot product
of v(1,3) with w(k). this gives

. - - + Y Y
and

Y1, 3) w0 = v, (4-9)

1" ki
These two equations show that 1f one dot product is greater than
zero, the other is less than zero. Thus, either u(k) or w(k), or
possibly both, are not allowed.

Now assume that u(k) is allowed and determine the form of an
arbitrary hyperplane y(k) containing vk, ). If this form of
hyperplane 1s not allowed, then v(k,j) would violate the inclusion

condition. The form of y(k) is

j-th k-th
M ¥ (A-10)
z(k)-(ooOQ ij, TEE] 1 Iy o.o)

O TP R SR T D
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The dot products of the vectors v(k,i) and v(i,J) with y(k) give

ik, 1)oy(k) =y, = v, (A-11)

J‘. N

¥(1,3) 30 = v (A-12)
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Combining these equations to eliminate Yy gives
Y320 = (= gvyy) - gy L Gy () an13)

But, the first term on the right of the equality is v(i,j) w(k)
which must be less than zero by our assumption that w(k) is not
allowed. Thus, clearly if v(k,i) y(k) is greater than zero as it
must be to allow y(k), then v(i,j) y(k) is less than zero. The
conclusion is that the form of y(k) is not allowed and therefore
there is no allowed hyperplane containing v(k,j). Thus, v(k,J)
violates the inclusion condition under the assumption that u(k) is
allowed.

The above result shows that whereas w(k) may or may not be
allowed in order that the inclusion condition hold, u(k) cannot
be allowed since the convexity condition would be violated.

In an analogous manner we can select u(k) as a hyperplane
containing v(j,k) and v(1,j), and w(k) as a hyperplane containing
v(i,k) and v(3,k), and again show that u(k) is not allowed.

We finally conclude that vector pairs such as v(i,j) and
v(k,1), as well as v(i,J) and v(j,k) are not allowed when all
tradeoff assessments are consistent with convexity and satisfy the
inclusion condition.

However, we also note that if a tradeoff ratio vector turns
out to be inconsistent due to the inclusion condition and is then
excluded from the set of possible tradeoff ratio vectors, the
vector pairs and certain hyperplanes that they are contained in
would no longer be excluded. Thus, these vector pairs provide a
means to check for tradeoff assessment consistency with the
convexity assumption, and a means to form a piecewise 1linear
indifference model when and if inconsistent tradeoff assessments

are excluded.




The above results provide restrictions on the number of
allowed hyperplanes that result from convexity assumption
requirements. In addition, certain hyperplanes that may be
allowed by the convexity assumption will not be allowed when
specific numerical values of tradeoff ratios are used. In
particular, the ratio of certain tradeoff ratios must fall within

certain bounds.

B. Tradeoff Ratio Bounds and Inferences

To derive limits on the allowed ratio of yk:l/yji for a
hyperplane containing v(k,i) and v(j,1) to be allowed we proceed
by first assuming that the hyperplane, call it u(k), is allowed.
By the previous proof, we observe that v(k,j) and v(j,k) cannot
then be contained in u(k). The form of u(k) will be

i-th j-th k~-th
‘ ¥ + (A-14)

() = (eevy Ypys voes Yki/in’ ceer 1, 00)

The dot product of v(k,i) and v(j,k) with u(k) must be greater

than or equal to zero according to the convexity condition. Thus,

and

v(j,k)u(k) = -
y(3,k)-u(k) ij*ki’*ji +1>0 A16)

These two equations yileld

ij < Yki/in < l/ij (A-17)
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Thus, unless the ratio 7"(1/7ji is within the above bounds, u(k)
will not be allowed.

In an exactly analogous manner, we can show that a hyperplane
containing v(i,k) and v(i,J) is allowed only if the limits on the

Y
ratio 1j/?'ik are given by

ey S Va3V S AP (A-18)

Given a consistent set of tradeoff ratios, we have shown that
certain combinations of vector pairs when used to define a
hyperplane will always result in disallowed hyperplanes regardless
of numerical values. 1In addition, specific numerical values of
the tradeoff ratios may lead to the disallowal of additional
hyperplanes.

These results also allow us to establish bounds on any given
tradeoff ratio. Consider the arbitrary tradeoff ratio )kj' The
convexity and 1inclusion assumptions require that Eqs. A-17 and
A-18 be both simultaneously satisfied. Also since Eq. A-17 holds
for arbitrary 1,j, and k, we can reverse the roles of 1 and j and

write,
TR AT (A-19)

Eq. A-19 provides a lower bound on 7%j' In addition, we can write
Eq. A-17 with the roles of k and 1 reversed to give,

(A-20)

From Eq. A-20 we deduce that
A-21
1/yjk < 1/(inY1k) ( )




Combining all these results gives,

Y Y 1 1

ij ki
Yi4Yis £ Yy s < Min ’ , . (A-22)
ki'ij kj Yik' Yy1 YyiYik Yik

Further, note that if the pairwise tradeoff between 1 and j is
linear (i.e. 711 = 1/‘Gi)’ then the lower and upper bounds on ij

are equal, and we must have that
Yig T Vi1 (A-23)

Similarly if the pairwise tradeoff between k and i is linear (i.e.

Y =
ki 1/‘)’1k) , then

Yy =Y, .Y
kj ki'1j (A-24)

It is interesting to interpret each of the bounds given in

Eq. A-22. They are the inferred value of ij

that the indifference surface in the 3-dimensional subspace 1is

under the assumption

linear, and the tradeoff ratio vectors corresponding to the terms
in the bounds lie in the subspace plane for the indifference
surface. For example, if the plane containing v (k,i) and v (3,1)
also contains v (k,j), then the value of ij be inferred to be

equal to ykily The convexity and 1inclusion conditions

establish the 1n;ﬁhalities when the subspace surface 1is not a
plane.

Eq. A-22 provides a very useful consistency check on the
tradeoff ratios without having to determine sets of hyperplanes,
and when linear pairwise tradeoffs occur, Eq. A-23, or A-24 allows

us to infer the values of certain tradeoff ratios.
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Appendix B

3 The linear objective function derived for the Basic RA Method

;‘ can be written as
n
i=]

where Whi is the tradeoff ratio between the n-th and i-th MOEs.
These are determined from the decision maker”s responses to the

tradeoff assessment procedures. The Ys define a hyperplane in

n-dimensional space that 1s tangent to an indifference
hypersurface at a point in the neighborhood of those used in the
tradeoff assessment procedures.

The Extended RA Method assumes that for certain sets of MOE
pairs, the linear approximation to the indifference hypersurface
may be a poor repregentation. In particular, a plecewise linear
approximation may be more appropriate as illustrated in Figure B-1
for the two-dimensional case. Here we see that there is a certain
"most preferred proportion” between MOEs X, and X, The direction
defined by this proportion represents the direction of steepest
ascent along the true preference functicn. The linear objective
function approximation to the left will be called g1(x) and the
other, g,(x). Applying the Basic RA optimization procedure
separately to gl(g) and 32(5) will yield as the most preferred
alternatives, d and b, respectively. By construction, we see that
¢ should indeed be the most preferred alternative. Thus, a new
nonlinear functional 1is required that combines 31(5)’ 32(5)’ and
the most preferred proportion information, and yields ¢ as the
most preferred alternative.

B-1
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FIGURE B-1 PIECEWISE LINEAR APPRCXIMATION

To facilitate the development of the appropriate plecewise
linear objective function, the vector of s can be normalized to a
unit vector, @. The elements of o are then the direction cosines
of the normal to the hyperplane. Let & represent the direction
cosines corresponding to the ¥Ys for 31(5)’ and B represent those

for gz(x). We can then define

n
g (x) =ax= ¥ a X, (B-2)
i=]
t’ and
3 0
g 8,(x) = B:x= 3 B x
L‘ g=1 11 (B-3)

b B_2




Note that the values for these functions now give the distance of
each hyperplane from the origin. These representations are
1llustrated in Figure B-2.

.MOE X2

MOE )(‘l

Figure B-2 LINEAR FUNCTIONAL REPRESENTATIONS

Asgsume now that the most preferred proportion has a direction
cosine vector, €. The elements of € are cos 81 and cos 92,
respectively, where the 0s are defined in Figure B-2. Now
consider the function

g,(x - a) g,(x - a) -
g(x) = Min 1 2 } (B-4)

g, (® g, (e)

The value of this function is zero for any point that lies on the
solid line to the left of a and going through a, or on the solid
line to the right of a and going through a. For any point above
these two lines, the value will be a function of 8; if the point

B-3
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is to the left of the € vector, or a function of g, if to the
right of €. In Eq. B-4, the values gl(g) and g,(€) serve as
weights between the values of 8y and gy

This function readily generalizes to n-dimensions by simply
adding terms to the minimization function 1list for each hyperplane
used In the piecewise linear model. The determination of these

hyperplanes is discussed Appendix A. The objective function then

g;(x - 2)
Bx) = ﬁinh g, (&) (8-3)

becomes

where h 1is the number of hyperplanes.

For a specific case, the value of g(x) will be determined by
one of the h hyperplanes. The particular hyperplane that
determines g(x) 1is controlled by the set of weighting functions
g, (€)-

The optimization problem for finding the most preferred

alternative then becomes:

Find x* such that

[31(5 - ﬂ)] (B-6
g(x*) = Max{ Min -
- x |i=1,h g, ©®
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Appendix C

The evaluation of the components of the most preferred
proportion vector can be carried out employing additional tradeoff
assessment information from the decision maker. Figure C-1
illustrates the problem for the 2-dimensional case with MOEs
arbitrarily labelled X, and Xy, OT equivalently, the projection of
the n-dimensional case onto the (xi, xn) plane. The tangents of
the angles 6, and @, are defined by tan 7’1n and tan yni’
respectively. These s are values obtained from the matrix of
indifference tradeoff ratios. The vector € is the unit vector
that defines the direction for the most preferred proportion of X,
and X

Consider the following tradeoff assessment. A hypothetical
outcome b is constructed from a by increasing the value of L to
some convenient level. For example, the change in X might be
calculated assuming an 1incremental change 1in budget that 1s
allocated to the improvement of x only. The point b will lie omn
gsome new Iindifference curve. The most preferred proportion
assumption implies that all hyperplanes intersect at the locus of
points along the most preferred proportion direction as indicated
in Fig. C-1 by the dashed line.

Given a and b, a positive tradeoff assessment can now be
performed by asking the decision maker how much x, would have to
be increased to compensate for a decrease in X, from the level at
b to the level at a. The decision maker”s response allows us to
construct a new outcome c that lies at the same indifference level
as b. The outcome b is constructed by increasing the X, value at
a by the amount of the decision maker”s response. Given b and ¢
the graphical solution for € is obtained by constructing the two
lines forming the indifference curve containing b and ¢ and
determining their intersection point. The vector € must then be

along the direction from this intersection and point a.

c-1
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The mathematical solution of this problem proceeds as

follows. Let 6 be the angle between € and the x

distances hy and h2 in Figure C-1 are given by

hl = (bn - an) sin ©

1
and
h2 = ((::l - ai) sin 02
where tan 01 = Yin
and tan e2 = Yni

The relationship between h1 And h2 is given by

hy by

sin(0, + ¢) = sin(o, + 90 - ¢)

Solving Eq. (C-5) for ¢ yields

h2 sin 01 - hl sin 02

h1 sin 92 - h2 cos Ol

tan ¢ =

The

(c-1)

(c-2)

(c-3)

(c-4)

(c-5)

(c-6)

The ratio of (bn-an) to (ci-ai) is an equivalent negative

tradeoff ratio between outcomes b and c, and can be defined as

Yni

(c-7)
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Using Eqs. C-1 through C~4, and Eq. C-7, the expression for tan )

becomes
1]

-y /v
tan ¢ = ni’ 'ni (c-8)
Yni - l/Yin

Eq. C-8 allows us to determine ¢§ and the elements of € for
the 2-dimensional case by setting i=1 and n=2, and noting that
is defined as

€ = (sin ¢, cos ¢) (c-9)

This 1s equivalent to

1 (tan ¢, 1)

Jl + tanz ¢ (c-10)

In the higher dimensional cases, we can denote ¢ as ‘ni and

E =

compute tan ‘ni for i=1 through n-1 from

1
1 -y ./
ni’ 'ni
tan ¢ni - —_— (C-11)
Yni - l/Yin

The vector € is then given by

.. (tan ¢ni’ tan ¢n2’ ceey 1) (Cc-12)
n 1/2
2
[l + ;Ei(tan ¢ni) ]
c-4

A
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Eq. C-8 will be indeterminate when there is a linear pairwise
tradeoff between MOEs n and i since in that case )‘ni-l/)’in and

? will be equal to yni When this occurs, Eq. C-11 cannot be

ni
used since we will not be able to determine the value of tan ‘ni'

In that case, we can observe that the vector € represents a
hyperplane and a procedure similar to that described in Appendix A
can be employed to find €. To employ this procedure, we first
define an equivalent tradeoff ratio vector for any pair of MOE’s

that has only two non-zero terms. This has the form,

k~th
M (c-13)
v(k,j) = (0, ..., - tan d’kj' cees 1y, 0oy 0)

Given n-1 1linearly independent vectors that span the MOE
space, we can compute a vector w such that its dot product with
each of the n-1 vectors 1is zero. The hyperplane vector w is

obtained by solving the n-1 dot product equations
_\Li-y_ = 0 for i=l, n-1 (C-14)

for n-1 elements of w in terms of one remaining arbitrary element
that can be set equal to unity. The vector € is then given by

(c-15)

€ =

= |1

It will always be possible to form the required n-1 vectors
unless all pairwise tradeoffs are 1linear. In this case, the
vector € can be set equal to the linear indifference model

hyperplane vector a.




