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vj 
ABSTRACT 

A boundary elenenc method which employs a Green's function for a crack has been developed to calculate the 

induced eddy current flow around cracks in thin conducting plates. The theoretical equations employ a stream 

function for the current density vector and is equivalent to the electric field vector potential method. A low 

frequency or large skin depth approximation leads to a Poisson equation for steady harmonic inductor fields. 

Induced currents around a crack in a square plate due to a uniform inductor field for various crack positions 

and sites have been calculated in this paper. 

The effect of the relative position and length of the crack, with respect to the plate width, on the eddy 

current density near the tips of the crack is given special attention. These results may be useful to simulate 

eddy current flow detection phenomena. 

INTRODUCTION A 
The boundary element method (BEM) (also called 

the boundary integral equation method) has emerged as 

an Important computational technique for electrodynamic 

problems. Wu et al [11 and Ancalle et al [2] have ad- 

dressed magnetostatic problems by the BEM while Trow- 

bridge [3] has considered problems by the magnetic po- 

tential method. Very recently, Salon and Schneider 

[4] have solved problems of eddy current flow in long 

prismatic conductors by the BEM based on the electric 

potential approach. 

In this paper, we describe a powerful boundary 

element technique for calculating induced eddy current 

flows in conducting plates with through cracks using 

the electric potential approach. The BEM has the im- 

portant advantage that only the boundary of a body 

(rather than the «ntire domain) needs to be dlscratlsed 

in a numerical solution procedure. 

There have been some attempts to model eddy cur- 

rent flow around annular cracks in rods and In plates 

by replacing cracks by slots (see for example Ref. 

[51). However, we have shown that the induced current 

in the vicinity of a crack leads to a singularity of 

current density at the crack tips [6,7]. This high 

concentration allows one to use eddy current testing 

devices such as active and passive search colls to 

detect the presence of cracks. It also results in a 

temperature hot spot which can be detected by Infrared 

scanning [6,3]. The boundary element technique Intro- 

duced by the authors [6,7] and described here allows 

one to model exactly the singular nature of current 

density at crack tips of thin plates. This technique 

can handle any arbitrary shape of the plate and gener- 

al magnetic fields. 

In this paper we discuss application of the BEM 

to eddy current flow In a cracked square plate due to 

an uniform inductor field applied normal to the plate. 

A number of crack sizes to plate size configurations 

has been considered. AI30, effect of the relative 

position of a crack tip to the plate edge on the In- 

duced eddy current distribution has been investigated. 

GOVERNING EQUATIONS 

A thin plate with a'crack in it is shown in Fig. 

1. The plate is made of a conducting material of 

conductivity 9, The plate boundary can be arbitrary 

and its thickness (uniform) is h. The thin line 

crack is of length 2a and can have arbitrary ori- 

entation relative to the boundary of the plate. The 

coordinate system for the problem is also shown in 

Fig. 1. The origin of coordinates lies at the center 

of the crack and at the aidsurfacs of Che plate. 

An external, oscillatory magnet.c field, 3 , 

is applied which induces a current density J In the 

plate. It is assumed tnat the current density is 

uniform across the plate thickness and Chat the skin 

depth (which is inversely proportional to Che square 

root of the frequency) Is large compared Co Che plate 

thickness. 

^_»_^»_^_ . . . _ 



A scream function (or electric potential) formu- 

lation is used in this problem. The scream function, 

i(x.,x,).  is defined as 

J " 7*(.M   • -k * 74 (1) 

This equation guarantees the conservation of charge 

equation ~-J  - 0 for charge free regions. 

Using Ohm's law the governing differential equa- 

tion for the stream function is obtained as [6,T] 

' £ »H> (Z) 

B. is the self magnetic field 

J. It has been shown in ref. 

Tn the above, 

due to the current 

[9], however, chac for a sinusoidal applied field, 

with Che skin depch much greater than the thickness 

of the plate, 3" can be neglected relative to the 

applied field 3 . This assumption simplifies the 

problem, and, with 3, • B° »^     (with /-l 

and j the frequency), the special part of j, satis- 

fies a cwo-dimensionai nonhomogeneous Foisscn's 

equation 

i^jB-j - f(xx,x2) (3) 

The boundary condition requires that the current 

must be tangential to the plate boundary. Thus ii 

is required to be constant on the boundaries 3C. 

and 3C-. On one boundary, the value of v    is set 

to zero, while on the other boundary  i, • C and C 

is obtained from the assumption that th« nee flux flow- 

ing through the crack boundary is zero. This leads to 

the condition 

d    J.tds - 0 (4) 

*1 • • 
where c is an unit tangent to -,C  and s is the 

distance measured along a boundary In the anticlock- 

wise sense. This formulation assumes that no currenc 

flows across the crack or crack tip and lead« to a 

singularity of the J field at a crack tip. This is 

analogous to the stress singularity in fracture me- 

chanics.  It is possible that some leakage of currenc 

occurs across a crack tip and thus relieves the singu- 

larity in actual conductors. Possible leakage of 

current is not considered in chls osper.  (It is noted 

here that infrared scans of eddy current flow around 

cracks do Indeed show a large Increase in temperature 

at the crack tips, indicating high current density 

at the crack tips (61.) 

In summary, Che boundary conditions on >, used 

in this formulation, are 

v " 0 on the crack boundary «C. 

jt.o 
da 

on  the outside boundary     "<C, 

(5) 

(6) 

9 dn"d8 (7) 

These boundary conditions, together with the 

field equation (3), constitute a well posed oroblem. 

BOUNDARY ELEMENT FORMULATION 

Integral equations 

An integral equation formulation for Poisson's 

equation (3) can be written as (Fig. 1) [6,7] 

2^(p) • i K(o,0)G(0)dS- - / K(p,q)f(q)dA„    (8) 
3C, '   A a 

This is a single layer potential formulation 

where G, a source strength function on the outside 

boundary, must be determined from the boundarv condi- 

tion on it (equation 9). The points p (or P)  and 

q (or Q) are source and field points, resoectively, 

with capital letters denoting points on the boundary 

of the body and lower case letters denoting points 

Inside the body. The aree of the body B is denoted 

by A. 

It has been shown [6] that li from eauetlon (8) 

with the following kernel satisfies the boundary con- 

ditions (5; and (7) implicitly. 

(9) K(p,q) - Re[»(z,z,z ] 
o 

»(z.I.z ) - ln(l-r./J) - ln(l-r.?) 
o I 1 

(10) 

where 
o 

l  t /t -4 

ittm 

I«! < i 

Re denotes the real part of the complex argument, 

z    and z  are the source and field oolnt coordinates, 
o 

respectively, in complex notation and a suoernosad 

bar denotes, as usual, the comolex conjugate of a com- 

plex quantity. 

The remaining boundary condition (6) on the out- 

side surface is satisfied by using a differentiated 

version of (8) and caking the limit as p inside B 

approaches a point P on JC„. Defining 

H. - Im(-^ - •&>  . H, - -ReOJ2 * %     (11) 

the boundary condition (6) becomes 

0 - 6    H1(P,Q)n1(P)G(Q)ds + .'AHi(P,q)n1(P)f(q)dAq(12) 

where n,  are the components of the unit outward norm- 

te, ac some locally smooch point on lc. al co 

The current, J,  at a point inside the body is 

obtained from equations (1) and (8). 



!"T" ' 
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(13) 

Discretization of equations and solution strategy 

The outer boundary of the body,  3C,,  is divided 

into N, straight boundary elements using N, (N. • 

N,) boundary nodes and the interior of the body, A, 

is divided into n.  triangular internal elements. 

A discretized version of equation (12) is 

0" ;v
f
i.1

Hi(V(»ni(VG((»daQ 

«here ?  is the point F where it coincides with 

a node M at a center of a boundary segment on 3C, 

and AS. and AA. are boundary and internal elements 

respectively. 

A simple numerical scheme is used in which the 

source strengths G are assumed to be plecewise uni- 

form on each boundary segment with their values to be 

determined at the nodes which lie at the centers of 

each segment. Substitution of the plecewise uniform 

source strengths into equation (13) and carrying out 

of the necessary integrations, analytically and num- 

erically, leads to an algebraic system of the type 

(0) - [AHO + {d> (14) 

The coefficients of the matrix [Al  contain 

boundary integrals of the kernel. The vector {d} 

contains contributions from the area integrals and 

the vector {G> the unknown source strengths at the 

boundary nodes. The dimension of {C} depends only 

on the number of boundary elements on 3C- and the 

internal discretization is necessary only for the 

evaluation of integrals with known integrands. 

The solution strategy is as follows. The matrix 

[A] and vector <d>  in equation (14) are first eval- 

uated by using the appropriate expressions for the 

kernels and the prescribed function f in equation 

(3). Equation (14) is solved for the vector {G}. 

This value of CO  is now used in a discrstizad ver- 

sion of equation (8) to obtain the values of ehe 

stream function u    at any point p. Finally, the 

currant vector at any polnc is obtained from equations 

analogous to (8). 

NUMERICAL RESULTS 

In the numerical computations, B? in Eq. (13) 

•|m 

14nB°R 

is assumed  to be a constant, 

dimenslonallzed  to the form 

7  ^(x^Xj) 

Eq.   (3)   can be non- 

x,/a (15) 

S 

T<5 

Jatio 

larBjR 

and the skin depth 

where 

For the results In this paper a » 2. A typical 

mesh for the results for example shown in Fig. 2d 

has 48 boundary segments uniformly distributed along 

the upper half (due to symmetry) of the boundary 

of the plate. In order to evaluate the known area 

integral in Equation 13, the Internal area quadra- 

ture was used. It took about 300 c.p.u. sees on 

IBM 370/168 to obtain the results in Fig. 2d. 

The equation (IS) is Identical to one relating 

to the torsion of shafts. The BEM was verified by 

comparing the numerical results for the solution of 

(15) in a square plate without a crack to known 

analytical results for the torsion of a shaft. The 

BEM method has also been checked against a finite 

element technique developed for eddy current prob- 

lems [10]. 

Eddy current stream lines (* lines) are shown 

in Figs. 2 and 3 for a square plate with a crack in 

it. Fig. 2 (a) - (c) shows how the stream lines 

are affected by varying the size of the plate while 

keeping the crack, six* same. Oue to symmetry only 

the upper half of the plate Is shown in Fig. 2. Fig. 

2 (d)shows the effect of moving the crack towards 

one of the plate edges. Fig. 3 shows a close up of 

the stream lines nesr right crack tip for Fig. 2 (c). 

The crowding of stream lines near crack tips leads 

to large gradient of 41 and therefore large induced 

currents In this region. The local temperature is 

proportional to the square of the current density 

(J«J). Figure 4 shows calculated temperature scans 

along a line slightly above the crack (x, " .0125) 

for the results shown in Fig. 2. From Figs. 4 (a) - 

(c) one can conclude that as the crack size increases 

relative to the place size the hot spots at crack 

tips are more significant compared to those at the 

edges. The effect of moving the crack near the plate 

edge gives rise to significant hot spots as shown 

in Fig. 4 (d) and (c). This becomes more apparent 

when we look at the 'Eddy Current Intenaity Factor' 

defined below.  It has been shown [6,?] that the 

eddy current density squared is inversely proportion- 

al to the distance r from a crack tip. We can de- 

fine an eddy current intensity factor, K_. *• 

r-M.-T± 



Table 1 shows ehe calculated values of M.  for the 

two crack tips for the results shown in Fig. 2. 

It is seen that the value of tt-—. remains practical- 

ly constant for varying plate sizes. However it 

changes significantly as a crack tip is brought near 

an edge of the plate. 

Table 1. Stress Intensity Factor Mill 

a 
& L 

Right 
Crack 
Tip 

Left 
Crack 
Tip 

Figures 2, 4 

0.05 1.0 0.125 0.125 (a) 

0.10 1.0 0.130 0.130 (b) 

0.25 1.0 0.145 0.145 (c) 

0.10 0.6 3.96 1.30 (d) 

0.10 0.3 15.45 6.93 (e) 

1. Wu, Y.S., Rizzo, F.J., Shippy, D.J., and Wagner, 
J.A., "An Advanced Boundary Integral Equation 
Method for Two-Dimensional Electromagnetic Field 
Problems", Electric Machines and Electromechanics, 
Vol. 1, 1977, pp. 301-313. 

2. Ancelle, 3., and Sabonnadiere, J.C., "Numerical 
Solution of 3D Magnetic Field Problems using 
Boundary Integral Equations", IEEE Transactions 
on Magnetics. Proceedings of TNTERMAG. Sept. 1980. 

3. Trowbrldge, CM., "Applications of Integral 
Methods for the Numerical Solution of Magneto- 
static and Eddy Current Problems". Report No. 
RL-76-071. Rutherford Laboratory, Chilton, Didcot, 
England. June 1976. 

4. Salon, S.J. and Schneider, J.M., "A Comparison of 
Boundary Integral and Finite Element Formulations 
of the Eddv Current Problem", IEEE Paper 80 SM 
326-4, 1980. 

5. Palanisamy, R. and Lord, W., "Prediction of eddy 
current probe signal trajectories", IEEE Trans. 
Magnetics, MAG-16 (5), p. 1083-1085 (Sept. 1980). 

6. Mukherjee, S., Morjarla, M. and Moon, F.C., 
'Eddy Current Flows Around Cracks in Thin Plates 
for Nondestructive Testing', accepted for publi- 
cation in the ASME Journal of Applied Mechanics. 

7. Morjarla, M., Moon, F.C. and Mukherjee, S., 
'Eddy currents around cracks in thin plates due 
to a current filament'. Accepted fcr oublication 
ir. Slectrlc Machines and Zlectromechar.lcs. 

9. Yuan, K.Y., Moon, F.C. and Abel, J.F., "Numerical 
Solutions for Coupled Magnetomechanics", Depart- 
ment of Structural Engineering and Theoretical 
and Applied Mechanics, Cornell University, Feb- 
ruary 1, 1980. See also, "Magnetic Forces in 
Plates Using Finite Elements", Proceedings of 
the Third Engineering Mechanics Division Speciali- 
ty Conference. ASCE, Austin, Texas, September 
1979, pp. 730-733. 

10. Yuan, K.Y., Abel, J.F. and Moon, F.C, 'Eddy 
current calculations in thin conducting plates 
using a finite element stream function code', 
C0MPÜMAG, Sept. 1981. 

n^ure 1. Cracked. Plate. 

I croc* t 

3. Nehl, T.W. and Demerdash, M.A., "Application of 
finite element eddy current analysis to nondes- 
tructive detection of flaws in metallic struc- 
tures", IEEE Trans. Magnetics, MAG-16 (5) p. 
1080-1082 (Sept. 1980). 

Fig. 2 (a). 

. • • 
- - 



— .      .   ,  •    . r—• « •    ' "      "        1 ^P       """ • •— •"'     -"     -*"""' 

-crock—H 

Fig.  2  (b), 

fig.  2 (o). 

1— crocK—H 

fig. 2 (4). 

-crock- 

fig.  2 (e). 

fig.  2.    Eddy current stream lines in a 3quare plate 
vith a crack induced by an uniform aa^netic  field. 

crock 

a) 

12 20 

fin.  » (a). 

 i . . . -      — -   -    - • -   - •       • -   



1 .» • •     "~•-~ — —•—•- ••. - * 1— •-••--    -    - - I—•—»"--' 

JA* 

40 

i  1 1             i 

30 
• 

20 /- 

10 

n —p         /i 1 • 
-)0 -6-2 2 6 10 

Urack-|     iiL 

200 

160 

f.o. 2x: 
0.6 

d) 

rig. fc (b). ?ig. i* (i). 

50  1 r 

— «0.1      g**»0.3 
i- IT 

e) 

I 
•9 -5 j-l | 3 

-$l kcrccd 

?ig. Mc). Mf 1» (e). 

Fig. 1». Joule heating intensity (J ) on sections 

— » 0.0125 3hovn in ?ig. 2. 



-—.  

COMPOSITE LIST OF TECHNICAL REPORTS 

TO THE 

OFFICE OF NAVAL RESEARCH 

NUMERICAL SOLUTIONS FOR COUPLED MAGNETOTHERMOMECHANICS 

Task Number NR 064-621 

Departments of Structural Engineering and 
Theoretical and Applied Mechanics, 

Cornell University, 
Ithaca, New York 14853 

1. K.Y. Yuan, F.C. Moon, and J.F. Abel, "Numerical Solutions for Coupled 
Magnetomechanics", Department of Structural Engineering Report Number 
80-5, February 1980. 

2. F.C. Moon and K. Hara, "Detection of Vibrations in Metallic Structures 
Using Small Passive Magnetic Fields", January 1981. 

3. S. Mukherjee, M.A. Morjaria, and F.C. Moon, "Eddy Current Flows Around 
Cracks in Thin Plates for Nondestructive Testing", March 1981. 

4. K.Y. Yuan, F.C. Moon, and J.F. Abel, "Finite Element Analysis of Coupled 
Magnetomechanical Problems of Conducting Plates", Department of Structural 
Engineering Report Number 81-10, May i981. 

5. F.C. Moon, "The Virial Theorem and Scaling Laws for Superconducting Magnet 
Systems", May 1981. 

6. K.Y. Yuan, "Finite Element Analysis of Magnetoelastic Plate Problems", 
Department of Structural Engineering Report Number 81-14, August 1981. 

7. K.Y. Yuan et al., "Two Papers on Eddy Current Calculations in Thin Plates", 
September T9~8TT 

i • • • . i i    -      -       : . .  




