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A BOUNDARY INTEGRAL METHOD FOR EDDY CURRENT FLOW AROUND CRACKS IN THIN PLATES

M.A. Morjeria, S. Mukherjee and F.C. Moon

Department of Theoretical and Applied echanics

Cornell Universicty, Ichace, New York

ABSTRACT

N

A boundary elsment method which employs e Green's function for e crack has been developed to calculate the
induced eddy current flow around cracks in thin conducting platee. The theoretical equations employ a etream
function for the current density vector and is equivalent to the electric field vector potential mechod. A low
frequency or lerge skin depth approximation leads to e Poisson equetion for steady hermonic inductor fields.
Induced currents eround a creck in a square plate due to s uaiform inductor field for verious creck positions

and eites have been calculated in this paper.

The effect of the relative posicion and length of the creck, with reepect to the plete width, on the eddy
current density near the tipe of the crack is given specisl attention. These results may be useful to simulete

eddy current flow detection phenomena.
INTRODUCTION

The boundary elemeat mechod (BEM) (also called
the boundary integrel equation method) has emerged as
an importent computetional technique for electrodynamic
problems, Wu et al {1] and sncelle et al {2) have ad-
dreesed magnetostetic problems by the BEM while Trow-
bridge [3] has considered problems by the magnetic po-
tential method. Very recently, Salon and Schneider
(4] have solved problems of eddy current flow in long
prismatic conductors by the BEM based on the electric
potential approach.

In this paper, we describe e powerful boundery
element technique for celculating induced eddy current
flows in conducting pletes with through cracks using
the electric potential approech. The BEM has the im-
portent advantage that only the boundery of a body
(rather than the entire domain) needs to be discretised
in a numerical solution procedure.

There have been some ettempts to model eddy cur-
tent flow around ennular crecks in rods and in plates
by replecing cracks by slots (eee for example Ref.
(51). However, we have shown thet the induced current
in the vicinity of a crack leads to a eingularity of
current deneity et the crack tipe [6,7]. This high
concentretion ellows one to use eddy current testing
devices such as active and passive seerch coils to
detect the presence of cracks. It elso results in a
temperature hot spot which can be detected by infrared
scanning [6,8]. The boundary element technique intro~
duced by the authors {6,7] and described here allows
one to model exectly the singular neture of current

density at crack tips of thin plates. This technique
can handle any erbitrary shape of the plate and gener-
al magnetic fields.

In this paver we discuss applicetion of the BEM
to eddy current flow in e cracked square plate due to
an uniform {inductor field applied normal ‘o the plate.
A number of creck sizes to plate size configurations
hae been considered., Also, effect of the relative
position of a creck tip to the plate edge on the in-
duced eddy current dietribution has been investigeted.

GOVERNING EQUATIONS

A thin plete with a‘creck in it is shown ia Fig.
1. The plate is made of e conducting meteriel of
conductivity o. The plct{ boundary can be arbitrery
and its chickness (uniform)'is h, The thia line
creck is of length 2e end can have arbitrery ori-
entation reletive to the boundary of the plate. The
coordinats system for the problam is elso shown in
Fig. 1. The origin of coordinetes lies et the center
of the crack and at the mideurface of the plete.

An externel, oscillatory magnet/c field, Eo.
is epplied which induces e current density J in the
plate., [t is essumed that the current density is
uniform across the plete thickness end that the skin
depth (which ie inversely proportional to the square
root of the frequency) is lerge compared to the plete
thickness.
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A stream function (or electric potential) formu-
lation is used in chis problem. The stream function,
w(:l.x:), is defined as

:I - ?"('b_k) - -_k x 7Y (1)

This equation guarantees the conservation of cherge
equation 7-J » 0 for charge free regions.
Using Ohm's law the governing differential equa-
tion for the stream function is obtained as (6,7]
TR X @
In the above, Bg is the self magnetic field
due to the current J. It hes been shown in ref.
{9], however, that for a siausoidal apnlied field,
with the skin depth much greater than the thickness
of the plete, Bl can be neglected relative to the
applied field ?g. This assumption simplifies the
problem, and, with Bg - ﬁg e"“'t (with 1 = /=L
and ., the frequency), the spatial pert of | satis-
fies a two-dimensional nonhomogeneous Poisscn's
equation
72¢ - Lmoﬁg - E(xl.xz) (3)
The boundary condition requires that the curreat
must be tangentiel to the plete boundary. Thus ¢
is required to be constant on the boundaries 3C1
and 3C2. On one boundary, the value of 4 1is set
to zero, while on the other boundary 4 = C and C
is obtained from the assumption that the aet flux flow-
ing through the crack boundary is zero. This leads to
the condition *

¢ Jetds = 0 %)
€, 7
where c is an unic tangent to 3C1 and s 1is the
distance measured along e boundary in the anticlock-
wise sense. This formuletion assumes that no current
flows across the creck or creck tip and leads to e
singulerity of the J fileld at a crack tip. This is
analogous to the stress singularity in fracture me-
chanics. It is possible that some leakage of current
occurs ecross a crack tip and thus relieves the singu-
larity in actual conductors. Possible leakage of
current is not considered in this oceper. (It is noted
here that infrared scans of eddy current flow around
cracks do indeed show a large increese in tempersture
at the creck tips, indicating high current density
at the creck tips (6].)

In summery, the boundary conditions on ¥, wused
in this formulation, are

Y = 0 on the creck boundary 3C (s

1
%% = 0 on the outside boundery 3C, (6)

[ %% ds = 0 (7
acl
These boundery conditions, together with the

€ield equation (3), constitute a well posed oroblem.

BOUNDARY ELEMENT FORMULATION

Integral equetions
An integral equation formuletion for Poisson's

equation (3) can be written as (Fig. 1) {6,7]
2a(p) » § X(p,0)6(0)ds, + )'AK(o.q)f(q)dAa (8)
3C,

This 1; a single layer potentiel formulation
where G, a source strength function on the outside
boundary, must be determined from the boundary condi-
tion on it (equation 9). The points o (or P) and
q (or Q) are source end field points, resvectively,
wich capital letters denoting points on the boundary
of the bodv end lower case letters denoting points
inside the body. The erea of the body B is denoted
by A.

It has been shown (6] that ¢ from equation (8)
with the following kernel seatisfies the boundary cofi-
ditions (5) and (7) imolicictly.

K(p,a) = Re[s(z,7,z] ®
2,2,z ) * taller, /&) = n(lr,©D (10
zo g zg-‘ [}
where Ty 3 A ,ti[ @0
e
g Z = ;Z 4 . IEI : 1

Re denotes the real pert of the complex argument,

z and z, ere the source end field ooint coordinates,
respectively, in complex notation end a suverposed

ber denotes, es usual, the complex conjugate of e com=~
olex quancity.

The remaining boundary condition (6) oa the out-
side surface is setisfied by using e differentieted
version of (8) and taking the limit as » inside B
epproaches a point P on 3C2. Defining

B o= - %) | g . opeiR 4 (an
1 1z 3z 4 iz )z

the boundary condition (6) bHecomes

0= ¢ H,(P,Qn (P)G(Q)ds + 13 (P,q)m (PYE(Q)AA, (12)

3C, Q
vhere -“1 ere the components of the unit outwerd noram-
al to acz at some locelly smooth point on it.

The current, J, at e point inside the vody is
obteined from equetions (1) and (8).
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Discretizacion of eguations end solucion stretegy

The outer boundary of the body, 3C,, is divided
into N, streight boundary elements usi;g Ny (Nb =
Nz) boundary nodes end the interior of the body, A,
is divided into n, triangular internal elements.

1
A discretized version of equation (12) is

0 = Iy, fus 11 B Oy (BG(QE8g

+ inlfaAiﬂt(PM'q)“l(Pu)f(Q)qu (13)

vhere PH is the point P where it coincides with

a node M et a center of e boundery segment on BCZ
and asy end AAL are boundary and internal elements
respectively.

A simple numericel scheme is used in which the
source strengths G ere assumed to be piecewise uni-
form on each boundary segment with their values to be
determined at the nodes which lie et the centers of
each segment. Substitution of the piecewise uniform
source strengths into equation (13) and cerrying out
of the necessary integrations, analytically and aum=
ericelly, leeds to an algebraic system of the type

f0} = {Al{G} * {d} (18)

The coefficients of the mstrix [A] contein
boundery integrels of the kernel. The vector ({d}
contains contributions from the eree integrals end
the vector (G} the unknown source strengths et the
boundary nodes. The dimension of (G} depends only
on the aumber of boundary elements on acz end the
internal discretizetion is necessary only for the
evsluation of integrels with known integrands.

The solution stretegy is as follows. The matrix
[A] end vector (d} in equation (14) are first evel-
uated by using the eppropriete expressions for the
kernels and the prescribed function £ in equation
(3). Equation (14) is solved for the vector (G}.
This velue of (G} 1is now used in e discretized ver-
sion of equation (8) to obtain the values of the
stream function ¢ et any point p. Finally, the
current vector et eny point (s obtained from equetions
analogous to (8).

NUMERICAL RESULTS

In the numerical computetions, ﬁg in Eq. (13)
is assumed to be e constent. Eq. (3) can be non-
dimensionalized to the form

vzw(xl.iz) =1, x = "1/’ (15)

vhers

* wuo 232
4= o= R = =5 and the skin depth
16w838 LE ]
A Jeu
5w = J - =
waug T ixER

For the rasults in this paper a = 2. A typical
mesh for the results for example shown in Fig. 2d
has 48 boundary segments uniformly distributed along
the upper half (due to symmetry) of the boundary

of the plete. 1In order to evaluate the known erea
integral in Equation 13, the internal erea quadra-
ture was used. It took about 300 c.p.u. secs on
IBM 370/168 to obtain the results in Fig. 2d.

The equation (1S5) is identical to one relating
to the torsion of shafts. The BEM was verified by
comparing the numerical results for the solution of
(15) 4in e square plete without e creck to known
analytical results for the torsion of a sheft. The
BEM method has elso been checked ageinst e finite
element technique developed for eddy current prob-
lems (10].

Eddy current stream lines (; lines) are showm
in Figs. 2 and 3 for e square plete with e crack in
it. Fig. 2 (s) - (c) shows how the sctresm lines
are affected by verying the size of the plate while
keeping the crack size same. Dus to symmetry only
the upper helf of the plate is shown in Fig. 2. Fig.
2 (d) shows the effect of moving the crack towerds
one of the plate edges. Fig. 3 shows e close up of
the stream lines near right creck tip for Fig. 2 (c).
The crowding of stream lines neer creck tips leads
to large gradient of ; end therefore large induced
currents in this region. The local tempereture is
proportional to the square of the current density
(3-3). Figure & shows celculeted temperature scens
eio;g e line slightly ebove the creck (;2 = ,0129%)
for the results shown in Fig. 2. From Figs. 4 (e) -
(c) one cen conclude that as the creck size increases
reletive to the plete size the hot spots et creck
tips are more significent compered to thoss et the
edges. The effect of moving the creck near the plate
edge gives rise to significant hot spots es shown
in Fig. 4 (d) end (c). This becomes more epparent
when we look et the 'Eddy Current Intensity Factor'
defined below. It has been shown (6,7] that the
eddvy current density squered is inversely proportion-~
al to the distance r from e creck tip. We can de~
fine an addy current intensity factor, MIII as
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Table 1 shows the calculated values of M___ for the
two crack tips for the results shown in Eig. 2.

It is seen that the value of M ___ remains practical-
ly constant for varying plate ;12;;. However it
changes significantly as a crack tip is brought near
an edge of the plate.

Table 1. Stress Intengity Factor MIII

. in Righe Left Figures 2, &
T D Crack Crack
Tip Tip
0.05 1.0 0.125 0.125 (a)
0.10 1.0 0.130 0.130 (b)
0.25 1.0 0.145 0.145 (c)
0.10 0.6 3.96 1.30 (d)
0.10 0.3 15.45 6.93 (e)
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