
p 7 D-A123 268
UNCLASSIFIED

SPECIAL RELATIONS IN PROGRAH-SVNTHETIC DEDUCTIONS)
STANFORD UNIV CA DEPT OF COMPUTER SCIENCE
Z MANNA ET AL. HAR 82 STAN-CS-82-982 N88814-76-C-8687

END

MW«W — w J—••—••."•.•.•.•:•-;

11

- :1

1.0

l.l

W I-
Jr IM

2.5

2.2

US M IM

1.25 Hill 1.4
JA
1.6

MICROCOPY RESOLUTION TEST CH»RT

NATIONAL BUREAU OF STANDARDS 1963-A

;:

*

'-*•-- - * ~ '- - - - -••- -n - n- rri-

i •• '^"'

• ^^^^^^^^^^

M Wm
^w»»«W"^—»-

ittSfr **., mms

March 1982

Also numbered:
AJM-345

Report. No. STAN-CS-82-902

9 1:
if
a«

00
CO

CO

Special Relations in
Program-Synthetic Deduction

by

Zohar Manna

Richard Waklinger

I
4.» I:

I
iff

I
-' Wviixi'iiijö

Department of Computer Science

 ftianfnnl I tfmwp
Stanford, CA 94305

c^Vt* .-»«/

^

>-

cz

ort r> 1 1 1 0KB

1

•»*»*»'> in—« •„• ,» m —* •!•• •OIIWI^III fc^M^—w^N»UI—^M^^^^^^^M^^^^M^^^^^^^^M^^^fc^^^^^^-fcj

SPECIAL RELATIONS IN
PROGRAM-SYNTHETIC DEDUCTION

by

Zohar Manna / Richard Waldinger
Stanford University SRI International

and Weizmann Institute

V
ABSTRACT

Program synthesis is the automated derivation of a computer program from a given specifi-
cation. In the deductive approach, the synthesis of a program is regarded as a theorem-proving
problem; the desired program is constructed as a by-product of the proof. This paper presents
a formal deduction system for program synthesis, with special features for handling equality, the
equivalence connective, and ordering relations.

In proving theorems involving the equivalence connective, it is awkward to remove all the
quantifiers before attempting the proof. The system therefore deals with partially skolemized

sentences, in which some of the quantifiers may be left in place. A rule is provided for removing
individual quantifiers when required after the proof is under way.

The system is also nonclausal; i.e., the theorem docs not need to be put into conjunctive
normal form. The equivalence, implication, and other connectives may be left intact.

^

The research was supported in part by the National Science Foundation under Grants MCS-

78-02591 and MCS-79-09495, irypart by the Office or Naval Research under Contracts N00014-75-

C-0816 and N00014-76-C-0687, and in part by the Air Force Office of Scientific Research under
Contract AFOSR-81-OOM/

The authors' addresses: Z. Manna, Department of Computer Science, Stanford University,

Stanford, CA 94305; R. Waldinger, Artificial Intelligence Center, SRI International, Mcnlo Park,

CA 94025.

•M

INTRODUCTION

One of the earliest techniques for program synthesis, the automated construction of a computer
program, has been the deductive approach, in which the program is developed by proving a theorem
corresponding to the given specification. While program synthesis does not typically require the
proof of deep mathematical theorems, it does need deductive systems specially designed to handle
constructs commonly occurring in specifications, such as equality, equivalence, and orderings.

In this paper, we present a formal system with facilities for dealing with the equality predicate
[=), the logical equivalence connective (=), and the ordering relations. The system allows us to
defer skolemization, the removal of quantifiers, when it is inconvenient. The system is machine-
oriented and intended for implementation in interactive and automatic program synthesis systems.

The Deductive Approach

In Manna and Waldinger [1980] we presented a deductive system for the synthesis of applicative
(sidc-elTcct-free) programs. The paper considered specifications of form

f(x) <= find z such that r(x,z)

where p(x).

In other words, for an arbitrary input x, the program / is to yield an output z satisfying an
output condition r(x, z), provided that the input satisfies the input condition p(x). The theorem
corresponding to the specification is

(Vx)[t/ p(x) then {3z)r[x,z)\.

The proof is restricted to be sufficiently constructive so that, in establishing the existence of an
output z satisfying the required relationship, it tells us how to compute such an output.

For example, to specify a program to find the quotient of dividing a nonnegative integer i by

a positive integer /, we write

quot(i,j) man
• u

o
b »•

find z such that

isintcgcr(z) and
~isinteger{y) and

(3y) i = z • j + y and

.0 < y and y< j\
•«- S •< 3 <H

where iainteger{i) and isintcger(j) and « ** i Jj
. ,. - ..„ • </> t» c •»
i > 0 and 7>0. S Ü? S • i 1 !*(!Jji

in

«si*
• i

Merc the predicate isinte.ger[u) is a type predicate expressing that u is an integer. The theorem

corresponding to this specification is

iS

,.m. ;•*,.:-« i —:~—•— -~ - •• - -1 - - - - - -

(Vt)(Vj)

'if isinteger{i) and isinteger(j) and"

i > 0 and j > 0
then

'isinteger(z) and
isinteger(y) and

(3y) i = z- j + y and

0 < y and y < j.

(3*K

(For simplicity, we shall omit the type predicates when the context makes the type clear.)

Design Criteria for a Formal System

A formal system to prove such theorems must have the following capabilities:

• It must prove theorems with both universal and existential quantifiers.

• It must be able to handle theories with mathematical induction, such as nonnega-
tive integers, finite sets, lists, and trees.

• It must be facile in handling the equality predicate, the equivalence connective,
and the ordering relations; these appear frequently in specifications.

In addition, we want the proofs to appear natural to people. The advantage of such a quality
for an interactive system is self-evident. For an automatic system, our hope is that a natural form
will enable us to exploit the heuristics of human intuition. On the other hand, we also want the
system to be machine-oriented, in the sense that there should be only a small number of legal next
steps to choose from at each stage.

It has long been observed that systems requiring the theorem to be converted into clause
form can cause it to explode and lose intuitive content. Such systems are particularly awkward for

proving theorems by mathematical induction, because, if the induction hypothesis is propositionally
complex, it may be dispersed over several clauses. This makes it difficult to recognize when we have

succeeded in reducing the theorem to an instance of the induction hypothesis, since the theorem

and the induction hypothesis will be syntactically dissimilar. A nonclausal system, which docs not
require us to transform the theorem to clause form, is thus particularly appropriate for program

synthesis.

Equivalence and Equality

Our earlier deductive system (Manna and Waldingcr (I980J) and that of Murray [1982], are

both nonclansal and are suitable candidates for program synthesis. However, neither system has

any special provisions for handling equality, equivalence, or orderings. The equality predicate is of

obvious importance in expressing the specifications of programs. Ordering relations not only occur

V '
'

;
•

., - . . J

• • •

frequently in specifications, but arc also used in the "well-founded induction principle" we employ.
The equivalence connective is of special importance in dealing with specifications expressed in terms

of the set constructor {z : p(x)} ("the set of all x such that p{x)").

For example, we might specify a program to find the Cartesian product of two finite sets «i

and «2 as follows:

cart(s\, 82) *= find z such that

z = \y: (3xi){3x2)
V = (3:1,2:2) and 11

[xi £ Si and X2 6 S2J

(Here (11,22) denotes the pair of elements x\ and x%.) Unless the theorem prover deals explicitly
with the set constructor, we arc likely to rephrase the specification with the circumlocution:

cart(s2,S2) <= find z such that
y = (21,2:2) and

(Vy)|y€* = (3x0(322)
ii Gsi and x2 6 ^2]}

In fact, even if we have the set constructor in our formal language, we are likely to rephrase it in
terms of equivalence during the proof.

Now an equivalence has appeared in our specification and the corresponding theorem. Of
course, we can remove it by appealing to such rewriting transformations as

(if 7 then Q) and

or

f ^ 9 -»

f m g =»

(:/ Q then 7)

(7 and 9) or

((not 7) and (not 9))

Hut decomposing the connective in this way may needlessly multiply the length of the proof and

destroy its intuitive content. Instead, we present deduction rules for dealing with equivalence
explicitly in a nonclausal setting.

Skolemization

Traditionally, all the quantifiers of a theorem arc removed by skolemi/.ation before the proof
begins. However, if the theorem contains an explicit equivalence, we cannot remove any quantifiers

in its scope without removing the equivalence first, as we shall see. Our earlier system and that of

Murray deal only with fully skolemizcd sentences, from which the equivalences have been removed.

The rules we present here, on the other hand, can be applied to partially skolemizcd sentences,

in which some of the quantifiers and equivalences may remain intact. We also present rules for

removing quantifiers one at a time, as it becomes expedient, at any point in the theorem-proving

process.

Our treatment here will be informal; we shall justify only some of the rules, and in an intuitive

way.

THE DEDUCTIVE APPROACH

.

Deductive Tableaus

The basic structure of this approach is the deductive tableau, which consists of a set of rows;
each row contains either an assertion or a goal, and an optional associated output entry.

Example:

The rows below are part of the tableau for the synthesis of the integer quotient program; in
the actual synthesis, these rows are interspersed with others.

assertions goals outputs
quot(i, j)

1. i > 0 and j > 0

2. m i = z • j + y and
0 < y and y < j

z

3. i < j 0

4. j < i quot(i - j, j) + 1

Here, i and j arc constants, and y and z are variables. An instance of a row is obtained by replacing
free variables of a row with terms; constants and bound variables cannot be replaced. |

The intuitive meaning of the tableau is that if, under any given interpretation, every instance
of each of the assertions is true, then some instance of at least one of the goals is true. In this
case, we will say that the entire tableau is valid. Furthermore, if some instance of one of the goals

is true or some instance of one of the assertions is false, then the corresponding instance of the
output entry will satisfy the specification for the desired program.

Thus, the goals of the tableau have a tacit disjunction between them, while the assertions have
a tacit conjunction. In addition, the free variables of the goals have a tacit existential quantification,

while the free variables of the assertions have a tacit universal quantification.

For example, the second row above has a free variable z, which is also the output entry. This

means that if, for a given interpretation, there is some value of z for which goal 2 is true, then

that value of z will satisfy the specification for the quotient program.

If an assertion has no output entry, we are not concerned with the output in the case in

which the assertion is false. For example, assertions that arc axioms will have no output entries.

Typically, all the goals will have output entries.

M

A tableau that contains as a goal the proposition true, or as an assertion the proposition false,

will always be valid.

It is possible to use tableaus that contain more than one output column, corresponding to the
synthesis of systems of more than one program, but we shall not discuss this extension here.

Note that the distinction between assertions and goals is artificial and docs not increase the
logical power of the system. In fact, if we delete an assertion from the tableau and add its negation

as a new goal, or delete a goal and add its negation as a new assertion, we obtain an equivalent
tableau; this is known as the duality property. The distinction between assertions and goals does
make proofs easier for people to understand and may have strategic import.

The free variables in a row are dummies; they may be systematically replaced by new variables
without changing the meaning of the tableau. For simplicity, we assume that the variables are
implicitly standardized apart, so that the variables of any row arc distinct from those of any other
row, and the variable bound by one quantifier is distinct both from that bound by any other
quantifier and from any free variable. If, in an example, wc happen to write a tableau in which this
restriction is violated, wc may imagine that the variables are distinguished by invisible subscripts.

How to Begin

If we are given a specification of form

f(x) <= find z such that r(x,z)

where p(x),

the corresponding theorem is

(Vx)[t/ p(x) then (3z)r{x,z)\.

We construct an initial tableau

assertions goals
outputs

p(a)

r{a, z) z

Here a is a constant, obtained by removing the quantifier (Vz) through skolemization, and z is a

free variable. The meaning of the tableau is that if, under any interpretation, p(a) is true, then

some instance of r(a,z) is true, and the corresponding instance of z will satisfy the specification.

The output entry is a device for ensuring that the proof will be sufficiently constructive and for

extracting a program from the proof.

 ••!••!

^^^

8

Typically, in addition to the input condition p(a), the initial assertions of the tableau will

include axioms for the theory under consideration (e.g., integers, finite sets, etc.) and the underlying
logic.

The Deductive Process

In the deductive system we describe, we apply deduction rules that add new rows to the
tableau without changing its meaning - i.e., so that an equivalent tableau is produced. The process
terminates if we develop the final goal

true t

r

or the final assertion

false t

where t is a term consisting entirely of symbols from the target programming language. Because the
deduction rules preserve meaning, obtaining such a goal or assertion will imply that the original

tableau is valid. We are also assured that t will satisfy the program's specification. The final
program we obtain is

/(«) t.

The restriction on the symbols of t will ensure that the proof will be sufficiently constructive
to enable us to compute the output; in particular, t will not be allowed to contain quantifiers,
untestable predicates, or uncomputable functions.

We assume that the variables of the new rows added by a deduction rule are implicitly
standardized apart in the same way the variables of the original tableau are.

At each stage, there may be several deduction rules that can legally be applied, not all of
which arc helpful in reaching a final program. Also, different choices of deduction rules may lead
to different final programs, some of which may be better than others. In this paper, we largely
disregard the strategic aspect of making an opportune choice of deduction rules.

» 1

—.

m •-"«•-•—-1 • i •—-—»—•

DEDUCTION RULES

The deduction rules are divided into several categories:

• The splitting rules break a row down into its logical components.

• The skolemization rules enable us to remove quantifiers.

• The transformation rules replace subsentences by equivalent sentences.

• The resolution rules enable us to perform a case analysis on the truth of a
subsentence.

• The substitution rules enable us to use equivalences, equalities, or other special
relations that appear in the tableau.

• The matching rules enable us to introduce new equivalences, equalities, or other
special relations into a tableau.

• The mathematical-induction rule enables us to introduce an induction hypothesis.

The splitting and mathematical-induction rules are basically the same as in Manna and Wald-
inger [1980] but are outlined here for completeness. The transformation and resolution rules have
been generalized to allow for explicit quantifiers. The skolemization, substitution, and matching
rules are new.

We first describe the splitting and mathematical-induction rules.

The Splitting Rules

The splitting rules break rows down into their logical components.

Rule (and-split):

The and-split rule may be expressed in a tableau notation as follows:

assertions goals outputs

7 and Q t

7 t

9 t

This means that if a tableau contains an assertion of form 7 and Q, we may add 7 and Q to our

tableau as two separate assertions. The output entries for the new assertions are inherited from

10

the original assertion; if there is no output entry in the original assertion, there is none in the new
assertion either. The assertion 7 and $ need not be the last row in the tableau; it may occur

anywhere.

In general, the rows above the double line in a rule are the given or original rows, which are

required to be present in the tableau before the rule is applied; the rows below the double line a.e
the derived or new rows, which are added to the tableau as a result of applying the rule.

The original assertion is not deleted from the tableau when the rule is applied. Although this
may be advisable for efficiency, we are disregarding strategic considerations here.

The or-split rule is similar to the and-split rule and breaks a goal of form 7 or $ down into
two goals 7 and Q. The if-split rule breaks a goal of form if 7 then Q down into a new assertion
7 and a new goal Q. There are no rules for breaking down an assertion of form 7 or Q , an

assertion of form if 7 then Q , or a goal of form 7 and Q.

Mathematical Induction

We present here only the simplest case of the induction rule, in which the induction hypothesis
is formed directly from the theorem to be proved, rather than from a subsequent goal or a
generalization.

Rule (mathematical induction):

Suppose our initial tableau is

assertions goals
outputs
/(a)

p(a)

r(a,z) z

In other words, we arc trying to construct a program to produce, for an arbitrary input a, an output

z satisfying the output condition r(a,z), provided that the input a satisfies the input condition
p{a). Then we may assume inductively that the program / we are trying to construct will produce,

for an arbitrary input u, an output f(u) satisfying the output condition r[u,f(u)), provided that

u satisfies the input condition p(u) and that u is strictly less than a in some well-founded ordering

-<„,. In other words, we may add to our tableau as a new assertion the induction hypothesis

then if p(u)
then r(u, /(u))

•

"" " 1

11

This induction hypothesis states that the program will work properly on all inputs "smaller" than
the arbitrary input under consideration. The particular well-founded ordering -<„, to be used in
the proof is left unspecified; it must be discovered during the proof process.

Example:

The initial tableau for the quotient program is

assertions goals outputs
quot(i,j)

i > 0 and j > 0

(32/)
i = 2 • j + y and
0 < y and y < j

z

By the induction rule, we arc justified in adding to our tableau, as a new assertion, the induction
hypothesis

«7 («,») -<w (i,j)
then if u > 0 and v > 0

u = quot(u, v) • v + y
and 0 < y and y < v

then (3y)

This assertion contains instances of the term quot{u, v), where quot is the program being

constructed. If this assertion is used in the proof, terms of the form quot(s, t) can appear in the
output column, corresponding to recursive calls in the final quot program. |

This is the simplest case of the induction rule; the more general case, not presented here, allows
us to form an induction hypothesis from rows other than the initial rows of the ableau. This more

general induction rule enables us to construct auxiliary subprograms.

THE SKOLEMIZATION RULES

Before we can introduce the skolcmization rules, we must introduce the notion of "polarity"

and the associated concept of "quantifier force." Polarity is also of strategic import in controlling

the other rules. Murray [1982] used it in his formulation of nonclausal resolution and it was known

to logicians earlier.

.

Polarity

A subscntence of a given sentence is said to be

 ^^mm __,,

12

• Of positive polarity in the sentence if it is within the scope of an even number of
(explicit or implicit) not connectives, and.

• Of negative polarity in the sentence if it, is within the scope of an odd number of
(explicit or implicit) not connectives.

In determining polarity, a subsentence of form if P then Q is regarded as an abbreviation for
(nor P) or Q, so that P is within the scope of one more implicit not connective than Q.

A sentence of form P = Q is regarded as an abbreviation for

(P and Q) or

((not P) and (not Q)),

in which the second occurrences of P and Q are within the scope of one more not connective than
the first. As a consequence, P and Q have both positive and negative polarities in the sentence. A
subsentence is said to be of strict polarity if it does not have both polarities in the sentence.

Intuitively speaking, the truth of a sentence is directly related to the truth of its positive
subsentenccs, and the falsity of its negative ones. In particular, we might make a sentence become
true (or valid) by replacing one of its strictly positive subsentenccs with true or one of its strictly
negative subsentenccs with false, but never by replacing one of its strictly negative subsentences
with true or one of its strictly positive subsentences with false.

Example:

The subsentences of the following sentence are annotated according to their polarities in the

sentence:

(if p(x)-

then ((3y)q(y)+)+)+.

Wc can extend the notion of polarity to apply to a tableau as well as to a sentence. We regard
each goal as positive in the tableau. Because, by the duality principle, an assertion 7 is equivalent

to a goal not 7, each assertion is within the scope of an implicit not connective, and is therefore
negative in the tableau.

Example:

The subsentenccs of the following tableau are annotated according to their polarities in the

tableau:

-T-. .

13

assertions goals outputs

(if P(*)
+

 Y"
{then ((3y)q(y)-y)

f(p(x)± = [9(x)± or r(x)±]±)+V
\or p(a)+)

Note that the subsentence p(x) is negative in the sentence

if p(x)
then (3y)q(y)

but positive in the tableau, which contains this sentence as an assertion. Note also that every
subsentence of an equivalence has both polarities and the only sul'sentenccs of both polarities are
subsentences of equivalences. If we wanted to include the connective if P then Q ehe Z in our
language, the subsentences of P would also have both polarities, since this construct is regarded
as an abbreviation for

[P and Q) or
({notP) and Z).

Henceforth, however, we shall not regard this connective as part of the language.

The Force of Quantifiers

Hy the well-known duality between the universal and existential quantifiers, the "roles" of

the quantifiers are reversed by putting them within the scope of an additional negation sign.

Thus, the universal quantifier in not (Vx);)(x) plays the same role as the existential quantifier in
(3x)[notp(x)\.

With this in mind, we define the force of a quantifier (Vx) or (3r.) in a subsentence £ of form

(Vx)7 or [3x)T in a sentence (or tableau) according to the following rules:

• The quantifier has universal force if it is a universal quantifier and £ is of positive

polarity, or if it is an existential quantifier and £ is of negative polarity in the

sentence (or tableau).

• The quantifier has existential force if it is an existential quantifier and £ is of

positive polarity, or if it is a universal quantifier and £ is of negative polarity in
the sentence (or tableau).

1 • • '

14

Because a subsentence may have both positive and negative polarity, a quantifier may be of
both positive and negative force; these are the quantifiers within the scope of an equivalence. A

quantifier that does not have both forces is said to be of strict force.

Example:

The quantifiers in the following tableau are annotated according to their forces:

assertions goals outputs

if (3x)3p(x)
then [3y)*q{y)

(V*)VP(*)

pU)V3r(*)l = r(a)

Here, the quantifier (3x) has existential force because the subsentence {3x)p[x) is positive in the
tableau; the quantifier {3y) has universal force because the subsentence (3y)q(y) is negative in the
tableau. All the quantifiers are of strict force except (3u). I

Removal of Quantifiers

Rather than regard quantifier removal as a separate stage, to be done before theorem proving
takes place, we allow skolemization to occur at any stage of the theorem-proving process. In
practice, we are likely to defer removal of those quantifiers within the scope of an equivalence,
because this will require prior removal of the equivalence, with consequent explosion of the theorem.

The skolemization rules permit us to remove any quantifier of strict force from a tableau; the
variables bound by the quantifier are replaced by free variables if the quantifier is of existential
force, and by "skolcrn" constants or terms if the quantifier is of universal force. Quantifiers of both

forces cannot be removed. (However, if we first remove the enclosing equivalences, a quantifier of

both forces will be split into two or more quantifiers of strict force; see the section "Removal of
Equivalences.")

Removal of Quantifiers of Universal Force

We first deal with the removal of quantifiers of strict universal force.

Rule (universal elimination):

Suppose our tableau contains an assertion (or goal) 7 of form

7: 7»{{...zYP).

•

15

Here, (...z)* P denotes a subscntence of 7, where (...z)v is a quantifier, either (Vz) or (3z), that is

of strict universal force (in the tableau).

Assume that the variables x\,i<i, ... ,xm are the only free variables in 7 and that (...j/i)3,

(•••I/2)3» • • • > (—1/n)3 are the only quantifiers in 7 of existential force that contain the subsentene
(...z)wP within their scope. Let / be a new function symbol, i.e., one that occurs nowhere in the
tableau.

Then we may add to our tableau the new assertion (or goal)

7' : 7o(P<{z<- f(xu ...,xm,yi, ...,y„)}).

In other words, 7' is formed by removing the quantifier (—z)w in 7 and replacing every occurrence
of z in P by the term f(x\, ... ,xm,j/i, ... ,y„). We shall refer to a term added in this way as a
akolem term, and to / as a skolem function. We will say that we have "replaced" the quantifier
with the skolem function.

In the special case in which there arc no free variables x\,x<i, ..., xm and no enclosing

quantifiers (.••2/i)3, (•••Jte)3» • • • > (•••J'n)3» we let a be a new constant; then we may add to the tableau
the new assertion or goal

7': 7o{P + {z^ a}).

We will refer to a constant added in this way as a skolem constant. "9

Example:

Suppose our tableau contains the assertion

assertions goals outputs

7 : r{x) or
(Vy)3[q{x,y) and {3zfp[x,y,z)\

Here, x is the only free variable in 7 and (Vy)3 is the only quantifier of existential force that
contains the quantifier (3z)v within its scope. Therefore, we may remove the quantifier (3z)v from
the assertion by replacing every occurrence of z with the skolcrn term f(x, y), adding to our tableau
the new assertion

Pi r(x) or
(V2/)[<?(z,y) and p(x,y, f(x,y))\

where / is a new function symbol. I

Note that the rule enables us to remove single occurrences of quantifiers without altering others

in the sentence.

16

Removal of Quantifiers of Existential Force

The forthcoming existential elimination rule allows us to remove quantifiers of strict existential
force. However, the quantifier to be removed must not be within the scope of any quantifiers of
universal force; such quantifiers should be removed by prior application of the preceding rule.

Rule (existential elimination):

Suppose our tableau contains an assertion or goal 7 of form

7: H(...Z)3P)

where (...z)3 is a quantifier of strict existential force. Assume that no quantifiers of universal force
contain the subscntence (,..z)3P within their scope. Then we may add to the tableau the new

assertion or goal

7' HP)-

In other words, we may remove the quantifier (•••z)3 so that every occurrence of z in P becomes a

free variable.

Example:

Suppose our tableau contains the goal

assertions goals outputs

7: (3z,)3[p(2,) and {3ztfq{zuz2)\

Here the quantifier (3z2)
3 is not within the scope of any quantifier of universal force. Therefore,

we may remove the quantifier (322)
3 by adding to the tableau the new goal

7' : {3zt)[p(zi) and q(zuz2))

We could also have used the rule to remove the quantifier (3zi) from 7. I

• ' - • - - - r • • • • i .

• I • ' •—I—I

17

TRANSFORMATION RULES

Before we introduce the transformation rules, it is necessary to extend the notion of unification

to sentences with quantifiers.

Unification

Unification became widely known through its use in the original resolution principle (Robinson
[1965]), in which it was applied only to atomic sentences. The extension to nonatomic sentences
with quantifiers is straightforward.

We assume that, in matching subsentences of sentences with quantifiers, the variables that
are bound in the surrounding sentence are distinguishable from free variables by some invisible
annotation. Then:

• Logical connectives are treated like function symbols. Thus,

if p(x) then q(x, f{x))

will unify with

if p{a) then q{y, z),

yielding a most-general unifier

{x <- a, y «- a, z <- /(a)}.

• Bound variables are treated like constants. Thus, we cannot unify the subscntencc
p(u) of the sentence

(3u)[p(u) and q{y)\

and the subsentence p{z) of the sentence

{Vz)[if p{z) then r(u,z)\.

However, we can unify cither of these subsentences with the subscntencc p(x) of
the sentence

p{x) or s(z),

in which x is free, yielding the most-general unifiers {x <— u} and {x *— z},

respectively.

• To unify two sentences of form (Vz)P and (Vx')P', we attempt to unify P and

P'<{x' *- x), the result of replacing all occurrences of x' in P' with z, treating x

• mil

OT • • • -

18

as a constant. If we are successful, obtaining a unifier 0, our result is {x' *- x}o0,

the composition of the substitution {x' *- x} and 0. (Similarly for existential
quantifiers.)

Example:

To unify (Vz)p(x, a, u) and (Vy)p(y, v, 6), where u and v are free variables, we first unify p(x, a, u)

and p(y, v, b) •* {y «— x}, that is, p[x, v, 6), obtaining a unifier 0 = {u «— a,u <— b}. Our resulting
unifier is then {y *— x} O 0 = {y *— x,v *— a,u *— b}. |

Statement of a Transformation Rule

Suppose that any sentence of form P is equivalent to the corresponding sentence of form Q.

Then a transformation rule

allows us to replace a subsentence of form P by the corresponding equivalent subsentence of form
Q in any assertion or goal, yielding a new assertion or goal, respectively, to add to the tableau.

Before we present the precise statement, let us give a rough schematic description of the
application of a transformation rule to an assertion in the ground case, where there are no variables
and also no output entries:

assertions goals outputs

HP)

HQ)

Similarly, to apply the rule to a goal, we write

assertions goals outputs

HP)

HQ)

Hero, if 7{P) is a sentence with a subsentence P, T(Q) is the result of replacing every instance of

P in 7{P) with Q.

For example, the then-false rule

if Q then false =» not Q

'* '"• e i N • - - - - . T • • • I -*—*M»<—H

• •

19

applied to the goal

assertions goals outputs

and not if p(z) then false

not q(x)

yields the new goal

not not p(x) and
not q(x)

•

We use the box to indicate the subexpression to which the rule is about to be applied.

Other examples of transformation rules are the not-not rule

not not $ =* 9

and the or-two rule

9 or g =» g.

To describe the application of these rules more precisely, we regard the script letters 9,)i,

..., that appear in such rules as free variables that range over sentences, and we attempt to unify
the left-hand side of the rule with subsentcnecs of the tableau.

Rule (transformation):

The application of a transformation rule

P => Q

to an assertion is represented in tableau notation by

assertions goals outputs

7 /

(? + 0)M{P+9<-Q40) f«0

Here we assume that

-"— —. . — - - - - • • - • -

. '•••'" 11-^^^^

'«

20

t
• There is a set {Pi, ..., Pk} of disjoint subsentences of 7 such that P, Pi, ..., Pk

are uniflable, with most-general unifier 0. Thus P + 0, Pi •* 0, ..., Pk •* 0 are all
identical sentences.

• 7-*0,P-*0, Q<0, and f-*0 are the results of applying the substitution 0to7,P,
Q and /, respectively.

• (7 •+&)•+{P -+B *— Q+0} is the result of replacing every occurrence of P-*0 in 7-*0
with Q * 0.

• If i is any free variable in / that occurs within the scope of a quantifier, 0 cannot
instantiate x to any term t containing a bound variable of ?.

(dependency restriction)

If there is no output entry / in the original row, then there is no output entry in the new row
either.

In the precise version of the rule, we consider a set of subsentences of 7 because these reduce
to a single sentence on application of the substitution 0.

We assume that the variables of transformation rules are standardized apart in the same way

as the variables of the tableau itself. Thus, the bound and free variables of transformation rules
are tacitly renamed so that they are distinct both from one another and from the variables of the

tableau.

The application of a transformation rule P =* Q to a goal is similar. In tableau notation, we

have

assertions goals outputs

7 /

{7 + 0) + {P*0+- Q + 6) f«&

The same notation and the same restrictions apply as when the rule was applied to an assertion.
It is also possible to apply transformation rules to output entries.

We first illustrate the rule with a straightforward example; then we present a counterexample
to show that the dependency restriction is necessary.

Example:

Suppose our tableau contains the assertion

assertions goals
_ . . ., _ .

outputs

g{x,v)
7 : p(a,y) and p(x,f(x))] or

r(x,y)

— •

-

a
• 21

Then we can apply the and-two rule

9 and Q =* 9

to the subexpression p(a,y) and p(x, f(x)) of 7. The unifier 9 is

{i 4- a, y+- f{a), Q *- p(a, f(a))}

and the new row is

p(a,f{a)) or r(a, f{aj) fan*))

Note that the substitution 0 is applied to the output entry as well as to the assertion. |

The Dependency Restriction

Let us consider the rationale for the dependency restriction.

Example:

To see why the restriction is required, suppose our tableau contains the assertion

7: (Jy) p{x,y) or p{y,x)

Then, were the restriction not required, we could apply the or-two rule

9 or g -» 9

to the subsentence

p{x,y) or p(y,x)

of the assertion. The unifier 0 would be

{x <- y, 9*- p(y, y)}

and the (erroneous) new row would be

(32/)p(y,y)

--- -«-- - - - - - • --- - - • - - *• • i - ••• fc-

•««•••i

22

This step violates the dependency restriction, because x is a free variable in the assertion, x

occurs within the scope of the quantifier (3j/), and 0 instantiates x to the term y, which contains
a bound variable.

The new assertion is not a valid conclusion to draw from the given one. For example, in the

interpretation whose domain is the set of integers {0,1} and that takes p(x,y) to mean x < y, the
given assertion means

[3y)[x < y or y < x]

for any x, which is true, but the new assertion means

(3J/)IJ/ < y],

which is false. |

In fact, if we had skolemized the given assertion, we would have obtained an assertion

p(x>f(x)) °r p(f(x),x)

The or-two rule cannot be applied to this assertion, because its left-hand side Q or Q fails to
unify with the assertion; the subterms x and f(x) cannot be unified. |

When the application of a transformation rule is blocked by the dependency restriction, it is

possible that the rule may be applicable if the quantifier of the offending bound variable is first
removed by skolcmization.

Example:

Suppose our tableau contains the goal

assertions goals outputs

(3l/)(p(x,l/) or p[y,x))

Then if we momentarily disregard the dependency restriction, we can apply the or-two rule

g or g => g

to the subsentencc p(x,y)or p(y,x). The unifier 0 is

{x<-y, g *- p{y,y)}

23

and the new goal is

(3y)p(y,y)

Although this is a valid step, which preserves the meaning of the tableau, it does violate the
dependency restriction: the free variable x, which is within the scope of the quantifier (3y), is
instantiated to the bound variable y. Thus, in this case, the restriction is unduly prohibitive.

Had we first removed the quantifier by skolemization, however, obtaining the goal

p(x,y) or p{y,x)

we could indeed have applied the or-two rule to obtain the goal
#-

p[y, y)

The True-False Rules

We assume we have a full complement of true-false rules for removing occurrences of the
propositions true and false from sentences, e.g., the and-true rules

Q and true =* Q

true and Q =» Q,

the then-true and then-false rules,

if Q then true =* true

if Q then false =* not Q,

and the all-true and all-false rules

(Vx)true =* true

(Vz)/s/se =* false.

These rules and certain of the other transformation rules are so fundamental that sorr.cUmes

we will apply them automatically, as a simplification step, without mentioning it.

Removal of Equivalence

Wc also assume we have the equivalence elimination rules, the iff

g = X =» (g and X) or

rule

•

24

((not §) and (not X)) .

—— -—r— T-

and the iff-and rule

<5

0 = X => (if g then X) and
(if X then g).

These rules will enable us to remove equivalences when we cannot prove the theorem otherwise.
By repeated application of these rules, we can ensure that a given quantifier has strict force, and
then remove it by skolemization. This may be necessary if we fail to apply, say, a transformation
rule because a quantified variable has caused the unification to fail or the dependency restriction
to be violated.

'•

r

IB

.

25

THE RESOLUTION RULE

The resolution rule performs a case analysis on the truth of a subsentencc of the assertions
or goals of a tableau. At the same time, the rule instantiates variables and accounts for the
introduction of conditional expressions into the program being constructed.

Statement of the Resolution Rule

The rule can be applied to two rows of the tableau, whether these rows contain assertions or
goals. Wc present first the "GG-form" of the rule, which applies to two goals.

The schematic description of the ground version of the rule is as follows.

'

assertions goals outputs

HP) /

9(P) g

7{true) and
Qifalse)

«/ p
then f
else g

In other words, wc seek a common subsentencc P of f and $, replace all occurrences of P in 7

and in Q with true and false, respectively, and add the conjunction of the resulting sentences as a

new goal. The output entry is a conditional expression, with P as its test.

The rationale for this rule is as follows. Consider an interpretation under which the derived

goal 7{true) and Q(false) is true; we seek to show that one of the two given goals 7(P) or Q{P)

is then also true under this interpretation. Because the conjunction is true, both of its conjuncts
7(true) and Q(false) are true. In the case in which P is true under the interpretation, the given

goal 7(P) is true; in this case, / is a suitable output. In the case in which P is false, the given

goal $(P) is true; in this case, g is a suitable output. In cither case, the conditional expression
if P then f else g is a suitable output.

The more precise description of the rule is as follows:

Rule (resolution):

An application of the resolution rule is written in tableau notation by

 I ' • • I

26

I

5

assertions goals outputs

7 /

9 g

(7-0)-*{P -0 <- true} and

{Q+0) + {P +0 <- false}

if P+0
then f + 0
else g-*9

I
•

Here we assume that

• P = {Plt . . . tPk} is a set of subsentcnces of 7 and Q = {<2i, • • • , Q-t} is a
set of suhscntcnces of Q that are all unifiablc with most-general unifier 0. Thus
P\ -*0, . . . , Pk~*0, Q.y*0, . .., Q.f+0 are all identical sentences, denoted (by abuse

of notation) by P -*0.

• As before, (7 + 0)-*{P -*0 <— true} and {5+0)-*{P -«0 <— false} denote the results
of replacing every occurrence of P -+0 in 7 -*0 and Q •+ 0, respectively, with the
propositional symbols true and false, respectively.

• If x is any free variable in 7 or in Q that occurs within the scope of a quantifier,
then 0 cannot instantiate x to any term t containing a bound variable of 7 or of

[dependency restriction)

• No variable that is bound in 7 or in Q may occur free in the new row.
(no-escape restriction)

In the precise version of the rule, wu consider a set of subsentcnces of 7 (and of §) because

these sentences reduce to a single sentence on application of the substitution 0. Recall we have
assumed that the variables of our tableau are standardized apart, so that the variables of 7 are
distinct from those of Q.

Murray's [1982) polarity strategy for resolution allows us to consider only those applications of
the rule under which some occurrence of P-*0 in 7-*0 is positive in the tableau and some occurrence

of P-*0 in Q-*0 is negative in the tableau. This strategy not only preserves completeness, but also

rarely blocks a reasonable step.

Examples

We give a straightforward example of the application of the rule and two counterexamples

illustrating the necessity for the dependency and no-escape restrictions.

P

wmmm

27

Example:

Suppose our tableau contains the two goals

assertions goals outputs

/(*) /: 1 x < ap

9{y) Q : not b < y ~

Here we use the box notation to indicate the subsentences that arc about to be matched in applying
the rule.

According to the tableau, if we can find x such that x < o, then f(x) is a suitable output,
and if we can find y such that not (b < y), then g(y) is a suitable output. Let P be the subset
{x < a, b < y} of subsentences of 7 and Q. Then P is unifiable with most-general unifier 0 =
{x <— b, y <— a}, and P -*0 is 6 < a. By the resolution rule, we may infer the new goal

(6 < a) + {(b < a) <— <rue} and
(no< (b < a))+{(b < a) *- /o/se}

»/ 6 < a
then /(6)
efee 17(a)

i.e.,

true and
(not false)

if b < a
then f(b)
else g(a)

which reduces to

true

if b < 0
then f(b)
else g(a)

<

under the not-false rule

not false => true

and the and-true rule

P and true => P.

Note that this application of the resolution rule is in accordance with the polarity strategy

Example:

To see why the dependency restriction is necessary, assume our tableau contains the two goals

^P"P

28

assertions goals outputs

7: (Vz) p(z,ti) |+

g : {Vy)(not p{x,y) |~)

If the dependency restriction were not imposed, we would be able to apply the resolution rule to
match p{z,u) against p{x,y), with most-general unifier 0 = {x <— z,u *— y}, obtaining (erroneously)
the new row

(Vz)frue and
(Vy)(not false)

which reduces to

true

after true-false transformation.

This step violates the dependency restriction, because the free variables x and u, which occur

within the scopes of quantifiers, are instantiated to the bound variables z and y, respectively.

The preceding deduction is not sound, because we can imagine interpretations under which all
instances of both goals are false, e.g., if p is the equality predicate and the domain has more than
one element. |

Example:

To see why the no-escape restriction is necessary, assume our tableau contains the goals

assertions goals outputs

p(z) Y and q(z) fa)

[Vu)(not p(u) |-)

Then, if the no-escape condition were not imposed, we would be able (erroneously) to derive the
goal

[true and q(u)) and

(Vu)(not false) g{u)

which reduces to

29

g(u) 31«)

Here the bound variable u of the second goal has "escaped" and become free, giving it a tacit
existential quantification in the new goal it did not have in the original goal.

For instance, in an interpretation over the integers in which p(z) and q(z) denote the conditions

that z is even and odd, respectively, both given goals arc false: our first goal requires that we find
a z that is Soth even and odd, while our second goal requires us to show that every integer is not
even. The Jerived goal, on the other hand, is true: it requires that we find an integer u that is

odd.

Note that, if the tableau contains the two goals

assertions goals outputs

P(*) l+

(Vu)(not p(u) ~)

then we could apply the resolution rule to match p{z) against p(u), taking the most-general unifier
0 = {z «— u} without violating either restriction. In this case, the new goal is

true and
(VM)(not false)

which reduces to

true

Dual Forms of the Resolution Rule

We have given the GG-form of the resolution rule, which applies to two goals. The AA-, AG-,

and GA-forms of the rule, which apply to two assertions, an assertion and a goal, and a goal and

an assertion, respectively, may be derived by duality from the GG-form. The schematic version of

the GA-form of the rule (ground case) is as follows:

r-

•

30

Tl

a

assertions goals outputs

HP) /

9(P) 9

T(true) and
not Q(false)

if P
then f
else g

m The precise description of the rule and its restrictions are analogous to those of the GG-form.

The AA-form is phrased to produce a new assertion rather than a new goal. If one of the given
rows, say 7(P), has no output entry, the output entry for the new row is simply g (or, in the
precise version, g •< 0) rather than a conditional expression. If neither of the given rows has an
output entry, the new row has no output entry either. The polarity strategy for the dual forms of
the resolution rule is precisely the same as that for the GG-form.

Relaxing the Dependency Restriction

The dependency restriction for the resolution rule can be relaxed to allow the rule to apply in
more situations; the relaxed restriction, however, is more complex than the original.

Recall that the restriction is

If x is any free variable in the given rows 7 or § that occurs within the scope
of a quantifier, then the unifier 0 cannot instantiate x to any term t containing a
bound variable of 7 or of Q.

Actually, the restriction can be relaxed by applying it only to free variables that occur within
the scope of a quantifier whose variable actually occurs in one of the matched sentences. More
precisely, the restriction can be revised as follows:

• If x is any free variable in 7 or in $ that occurs within the scope of a quantifier
(... y) whose variable y occurs in at least one of the matched sentences Pt, . . ., pk

or Q\, . . . , J2/, then 0 cannot ins!.initiate x to any term t containing a bound
variable of 7 or of Q.

[relaxed dependency restriction)

Let us look at an (admittedly rare) example of a valid application of the resolution rule that

violates the original dependency restriction but not the relaxed dependency restriction.

Example:

Suppose our tableau contains the goal and assertion

31

1
assertions goals outputs

7: (Vj,)(|p(x) + and q(y))

^: P*\th*n p(z)-)

Disregarding both versions of the dependency restriction momentarily, we can apply the GA-
resolution rule, taking 0 to be {x «— z}, to obtain the new goal

(Vj/)(true and q{y)) and

which reduces to

(V2/)q(y) and
not (3z)(not r(z])

under true-false transformation.

This step is legitimate — it preserves the meaning of the tableau — but it violates the original
dependency restriction. The free variable x in the goal 7, which occurs within the scope of the
quantifier (Vy), is instantiated by 0 to the bound variable z. On the other hand, the step does not
violate the relaxed dcpcndcncty restriction, because the variable y of the quantifier (Vj/) does not
occur in the matched subsentencc p(x). |

We did not present the relaxed dependency restriction at first because it is more complex than

the original restriction and only permits a few additional applications of the resolution rule.

imm

32

EQUALITY AND EQUIVALENCE SUBSTITUTION RULES

The equality predicate has long been recognized as meriting special treatment. The use of
axioms to represent the properties of the relation lengthens the proof and dramatically explodes

the search space. In the resolution framework, special inference rules such as paramodulation (Wos
and Robinson [1969]) and E-resolution (Morris [1969]) were soon brought to bear in an attempt to
control the proliferation of clauses.

The equivalence connective has not been recognized as such a trouble spot, but, as we have

indicated in the introduction, it is common in the specification of programs. Proofs become longer
and lose their intuitive motivation when equivalence is paraphrased in terms of other connectives.
Furthermore, the techniques that apply to the equality predicate can be easily adapted to the

equivalence connective. In this section, we present nonclausal versions of both paramodulation and
Irresolution and apply the rules to both equality and equivalence.

Equality Substitution Rule

The "substitution rules" are our nonclausal counterpart of paramodulation. The equality
substitution rule allows us to use an equality that occurs in one row of a tableau to replace a
subterm with an equal term in another (or even possibly the same) row. We present the AA-form
of the rule, which applies between two assertions.

The rough schematic description of the ground version of the rule is as follows:

assertions goals outputs

ns = T) /

$($) 1 9

7{false) or

9(T)

if S = 7
then g
ehe f

Here, we seek an explicit equality S = T in /, where S also occurs in §. We replace every

occurrence of S = T in 7 with false, replace some occurrences of S in Q with T, and add their

disjunction as a new assertion. The output entry is a conditional expression with S = T as its

test. Note that, in an abuse of notation, we do not necessarily replace every occurrence of S in Q

with T.

The rationale for this rule is as follows. Consider an interpretation under which both given

assertions are true; we seek to show that the derived assertion is also true under this interpretation.

Equivalently, we show that if the derived assertion is false, then one or the other of the given

assertions is also false. Because the disjunction 7(false) or §(T) is false, each of its disjuncts

33

7{false) and $(T) is false. In the case in which 5 = T is false, because 7(false) is false, wc know

the given assertion T(S = T) is false; in this case, / is a suitable output (i.e., it satisfies the
specification for the desired program). In the case in which S = T is true, because §(T) is false,
wc know the given assertion Q(S) is false; in this case, g is a suitable output. In cither case, the
conditional expression if S = T then g else f is a suitable output.

The precise description of the rule follows:

Rule (equality substitution):

Expressed in our tableau notation, the rule is

assertions goals outputs

7 /

9 9

(7 + 0) + {(S+0=T+0)<-false} or
{Q40)<{S+0*- 7-0}

if S«0=T <0
then g-0
else f + 0

Here we assume that

• S = {SQ, SI, ... sic} and T = {tt, ... ,tk} are sets of terms such that

• J contains at least one occurrence of each equality s\ = t\, ..., s^ = tie',

• Cj contains at least one occurrence of 8Q\

• 0 is a most-general unifier of S and of T: i.e., SQ-*0, SI •* 0, . ..,s**0

are identical terms, denoted by S -+0; and t\ +0, ...,£&40 are identical
terms, denoted by T -*0; and 0 is one or the most-general substitutions
that make these expressions identical.

• {7-*0)-*{{S -*0 = T -*0) *— false} denotes the result of replacing every occurrence

of the subsentencc S -+0 = T +0 in 7-*0 with the proposition false.

• The symbol < is defined so that [Q •* 0) < {S •* 0 «— T •* 0} denotes the result of

replacing one or more (but not necessarily all) occurrences of S -+Q in Q -+0 with

T+9.

• If x is any variable in 7 or in $ that occurs within the scope of a quantifier, then

0 cannot instantiate x to any term t containing a bound variable of 7 or of Q.

[dependency restriction)

• No variable that is bound in 7 or in Q may occur free in the new row.

(no-escape restriction)

. *., .. »..mi; •— • i • * i ,1 I

T

34

If one of the given rows, say J, has no output entry, the output entry for the new row is simply

g-*0 rather than a conditional expression, as in the resolution rule. Again, if neither of the given
rows has an output entry, the new row has no output entry either.

The dependency restriction for this rule can be relaxed in the same way as for the resolution
rule.

According to the polarity strategy, we may assume that one occurrence of one of the equalities

Si = t{ in 7 is negative in the tableau. We may also require that some element of $ not be a
variable.

This rule degenerates to paramodulation in the clausal, quantifier-free case. The completeness
results of Brand [1975] apply to this rule if the skolemization, splitting, and transformation rules
are included in the system, so that we can reduce our theorem to clause form. We assume the
identity axiom i = x is included among the assertions.

The motivation for the dependency and the no-escape restrictions of the equality substitution
rule is the same as for the resolution rule.

Example:

Assume our tableau contains the two assertions

assertions goals outputs

if q(a) then f(x, a) = g(x)

[3u)p(\ f(u,v) ,u,v)

Then, by the equality substitution rule, taking S
{x «— u, v <— a}, we can derive the new assertion

= {f(u,v),f{x,a)} and T = {g{x)}, and 0 =

(i/ q(a) then false) or

(3u)p(g(u),u,a)

which reduces to

(notq(aj) or (3u)p(g(u), u,a)

We again use the box notation to indicate the expressions to be matched.

Equivalence Substitution Rule

This rule is precisely analogous to the equality substitution rule, with equivalence playing the

role of equality.

. u -• - .

^M " I • • «I

35

The rough schematic description of the ground version of the rule is as follows:

assertions goals outputs

?{$ s T) /

9(S) g

7(false) or

9(T)

if S = T
then g
else f

The more precise description of the rule is as follows:

Rule (equivalence substitution):

assertions goals outputs

7 /

9 9

{7 + 0) + {{P+0 = Q<0) i-false} or

[g+0)<{P+0*- £+0}

if P+0 = Q + 9
then g-*9
else f-*0

The restrictions for the rule are the same as for the equality substitution rule, with equivalence
playing the role of equality and sentences playing the role of terms.

We assume that wc have among our assertions the reflexivity axiom for equivalence Q = Q,

where Q is a metavariable that can be matched against sentences.

To take full advantage of our ability to leave quantifiers intact, we include among our assertions

such familiar equivalences from predicate logic as the some-or equivalence

(3x)[gor)i\ = \{3x)9or(3x)X]

and the all-and equivalence

{Vx)\gandX\ m [(Vz)$amf(Vx)K].

Such equivalences are redundant in the presence of the skolemization rules, but may shorten

deductions dramatically by allowing us to avoid skolemization and the removal of equivalences.

Example:

Suppose our tableau contains a goal

^•P""" 111 • '

36

assertions goals outputs

r(x) = {3y)[p(x,y) or (Vz)q(y,z)}

Then, by applying the equivalence substitution rule between this goal and the aome-or equivalence,

[3x)[Q or X] =

[(3x)9 or (3*)*]

we can obtain the new goal

false or
r(x) = \{3y)p(x,y) or (3y){Vz)q(y, z)}

which reduces to

r(x) = \{3y)p{x, y) or [3y){Vz)q{y, z)\

RESOLUTION AND SUnSTITUTION WITH MATCHING

The matching rules may be regarded as adding a new equality (or equivalence) to a goal when,
because of a mismatch, we fail to apply the resolution rule or a substitution rule. We present first
the CG-rcsolution rule with equality matching.

Resolution With Equality Matching
*

In its rough schematic form, the rule is as follows:

assertions goals outputs

?W)) /

${*{T)) t

S = T and
T(truc) and
g(false)

if *{S)
then f
else g

37

Here, we assume that S and T are distinct terms. If they were identical, we could apply the
resolution rule; in this case, we add the conjunct S = T as an additional condition to be proved.

The rationale for the rule is as follows: for an interpretation under which the derived goal is
true, its conjunct S = T is true, and P(S) and P(T) are equivalent. The justification for this rule
is then the same as for the basic resolution rule, without equality matching. Before we give the

precise description of the rule, let us motivate it with an example.

Example:

Suppose our tableau contains the two goals

assertions goals outputs

fix)

7 : p(x,a,b) + and

(| v{c,z,0{z)) + or q(x))

C no>(ifr{y)) g[y) 9 \then p(c,y,g{y)) J

In attempting to unify the boxed subsentences of 7 and of Q, the unification algorithm develops

the substitution

0 = {x *— c, y *— a, z *— a}

and then fails because the correponding terms b and g(a) cannot be unified. If we somehow could
establish that the mismatched terms b and g(a) were equal, we could apply the resolution rule.
This motivates the precise statement. We will return to this example afterwards. |

The precise description of the rule is as follows:

Rule (resolution with equality matching):

In our tableau notation, the rule is expressed as follows:

assertions goals outputs

7 /

9 9

$+0 = 7+0 and
(7 + 0) +{Pi +0 «- true, ..
(g+0) + {Qi+0^-false, .

., Pk+0 «- true) and

..,Qt + 0*-false)

if Z
then f + 0
else g + 0

Here we assume the following:

. , •

" - - «

38

• Pi, P%i • • •> Pk arc subsentcnces of 7.

• 2ii Q.2t • • • i Q-t are subscntences of $.

• S = {«i, «2i • • •, a*} ana" T = {ti,t2, • • •, tt) are sets ofsubterms of P\t ..., Pkt Qit • • • >
and Q.I.

• P. is a sentence and 0 a most-general substitution such that

• 6 unifies S; i.e., sj 0,S2-*0, ..., and sm-+0 arc identical terms, denoted
by S + 0.

• 0 unifies T; again T <0 denotes the unified term.

• S -+0 and T -+0 are distinct terms.

• Z is "nearly identical" to each of the sentences Pi-*0; in other words, for
each t between 1 and k,

{?i + 0)<{S +0 1- T+0} is Z.

That is, Z can be obtained by replacing in Pi •* 0 zero, one, or more
occurrences of S •* 0 with T -*0.

• Z is "nearly identical" to each of the sentences <2y*0; in other words, for
each j between 1 and I,

{Qj+0)<{$+0<- T+0} is Z.

• If a; is any variable in J or in Q that occurs within the scope of a quantifier, then
0 cannot instantiate x to any term containing a bound variable of 7 or of Q.

[dependency restriction)

• No bound variable of 7 or Q may occur free in the new row.
[no-escape restriction)

The discovery of the sets $ and T and the substitution 0 is the natural by-product of an attempt
to unify the subscntences Px and Q} if the unification algorithm returns pairs of mismatched terms

when it nearly succeeds. The rule may be generalized to the case in which there are several pairs

of mismatched terms. The dependency restriction for this rule may be relaxed in the same way as

for the resolution rule.

This rule degenerates to R-rcsolution (Morris [1969]) in the clausal case.

Example:

In our discussion prior to the statement of the rule, we considered a tableau with the two goals

39

assertions goals outputs

m
7 : p(x, a, b) + and

(p{c,z,g{z)) + or q{x))

t(ifr(y) \
g{y) * ' n{then p(c,y,g{y)) ~)

Recall that the boxed subsentences of 7 and Q failed to unify because of the mismatched terms b

and g{a). However, we can still apply the resolution rule with equality matching, taking

0 = {x *- c,y

S = {>},
T = {g{z),g{y)},

a, z •>.

and

R =p(c,a,b),

to add to our tableau the new goal

b = g(a) and
(true and \ ,
\{true or q{c))j and

not (if r^ ^
ytken false)

if p{c, a, b)
then f(c)
else g(a)

which reduces under transformation to

6 = £|n) and r{a)

if p{c, a, b)
then /(c)
else g(a)

According to the polarity strategy, we may restrict application of the rule to cases in which,

for some i, at least one occurrence of Pi+0 in 7 + 0 is positive, and at least one occurrence of Qj+0

in Q -*0 is negative, in the tableau.

•

40

The resolution rule with equivalence matching is identical to the rule with equality matching
if we replace the equality predicate with the equivalence connective, and references to terms and

subterms with sentences and subsentences, respectively.

Substitution with Equality Matching

We can add a new equality to a row upon failing to apply the equality (or equivalence)
substitution rule. We present only the schematic AA-form of the equivalence substitution rule
with equality matching.

assertions goals outputs

r{p{s) = Q) /

Q(P(T)) 9

if S = T
then T(false) or

9(Q)

if P(S) m Q
then g
else f

Here, if S and T were identical, we could apply the equivalence substitution rule; we therefore add
the condition S = T to the assertion as an antecedent. In the CG- and other forms of the rule,
the condition S = T is added to the goal as a conjunct.

A similar rule allows us to add a new equivalence (rather than an equality) to a row upon
failing to apply the equivalence substitution rule.

Before we introduce the rules for handling special relations other than equality, let us give an

extensive example involving equality and equivalence.

• • ii i i

' —

41

I
EQUALITY AND EQUIVALENCE: A COMPLETE EXAMPLE

In this section we present an example that employs the techniques presented so far. The

example is akin to the synthesis of the Cartesian-product program, but is simplified to avoid
constructing auxiliary subprograms, which requires the general induction rule, not the special case
we have discussed here.

The program to be constructed appends the integer 1 onto every element of a given finite set.

Our initial specification is

cartone(a) <F= find z such that
\y £ z =

^y) [(3i)(y = (l,i) and x g a)

Here (l,x) is the pair whose Prst element is 1 and whose second is x. Note that there is no input
condition; the type condition isaet(a) is omitted.

In this derivation, we will sometimes simplify new rows automatically with true-false and other
fundamental transformation rules, without presenting the intermediate results.

The initial tableau for this specification is

T
assertions goals

outputs
cartone(s)

1. (Vy)v y £ z =
(3x)(y = (l,x) and x E s) z

The Induction Hypothesis

My the induction rule, we may consider an arbitrary input set s and assume that the program

rartonc{u) we are attempting to construct will yield an output that satisfies the given specification,

provided that the input u is a set strictly less than a in some well-founded ordering -<„,. Thus, we
can add to our assertions the induction hypothesis

2. if u <w a

then (V?y)
y (E c<irt(mc(u) =
{3x)(y = (l,x) and z€ u)

Dropping the Quantifiers

As we have indicated by annotation, the quantifier (V.y) in goal 1 is of universal force while

the same quantifier in assertion 2 is of existential force. By the quantifier elimination rides, wc

T

N

42

can replace the quantifier with a skolcm function g in the goal and with a free variable y in the
assertion, thereby obtaining a new goal and assertion

3. g{z)£z =

<*~\(niz) = (l>x) and \ z

4. if u ~

then

<w 8
y £ cartone(u) =. '

(3x)(y = (l,x) and iGu)J
. _i

We may think of the skolem term g(z) in goal 3 as an arbitrary element.

Note that the subexpression x £ s has both polarities because it is within the scope of an
equivalence.

The Base Case

We assume that wc have among our assertions the empty-set membership axiom

1'
not y e { } +

By the resolution rule with equality matching, wc can match the subsentence y 6 { } in this
assertion against the subsentence x £ s in goal 3, taking 0 to be {y *— x}. As the polarity
annotations indicate, this match is in accordance with the polarity strategy. The new row we
obtain is
 1

5. 8 = { } and
not not true and
g{z) £ z m

(3z)((/(z) = (l,x) and false)

which reduces (under true-false transformation) to

6. I = { } and
not g[z) £ z *

Applying the GA-resolution rule between goal I and the empty-set membership axiom

not y £ { } |-

^F-*-

DB

43

we obtain the goal (after transformation)

7. *={} {}

s
Note that in this step we have instantiated the output variable z, obtaining a ground term in the
output column. This row means that, in the case in which the input s is the empty set, the output

can also be taken to be the empty set.

Decomposition of the Goal

Let us turn our attention back to the earlier goal 3, which was formed from the initial goal by
removing a quantifier:

T

g(z) £ z =
z {dx)(g[z) = a,x) and | x 6 • l)

We assume that we have among our assertions the nonempty-set membership axiom:

if not u = { }

then (! V G " 1 - ^
_ (y = elt(u) or y £ rest(u))J

Here ett(u) is an arbitrary clement of the nonempty set u, and rest{u) is the set of all the other

elements of u. By the equality substitution rule, taking 0 to be {y «— x,u «— «}, we can use this
assertion to replace x € s in the goal with

x = elt(s) or x £ rest(s)

obtaining (after true-false transformation)

8. (not s = {}) and
/g(z) e z = \

\g{z) = (\,x) and z
\J3z) (i = elt(s) or x £ rest(s)))

i

Applying the equivalence substitution rule twice in succession, first to the and-or distributive
equivalence

(T and [$ or H)) =

(7 and g) or (7 and X)

n

44

and this goal, and then for the some-or equivalence

| (3z)(9 or Jf) | =

(3x)Q or {3x)k

! and the resulting goal, we obtain

9. {not s = { }) and
fg(z) e z =

\
z

{
(3x)(g(z) = {l,x) and x = elt(s)) or

) (3x)(g{z) = (l,x) and x £ rest(s))

^

By the transformation rule

(3y){7 and y = t) => 7 + {y<-t}

applied to the goal, taking 0 = {y «— x, 7 «— {g(z) = (1, x)), t «— elt(s)} we obtain

10. (not s = { }) and
g(z) = (l,elt{s)) or

(3x)(g(z) = (l,x) and x&rest(8))

Note that the substitution 0 contains a replacement for the bound variable y; this is because we
are unifying two quantified sentences.

I
Using the Induction Hypothesis

Recall we have assumed as our induction hypothesis (after skolcmization) the assertion 4,

if u -<„, 8
y 6 cartone(u) =

then
(3x)(y = (1, x) and x G w)

By the equivalence substitution rule we may use the equivalence of the induction hypothesis (from
right to left, where 0 = {y *- g(z),u «— rc»<(«)}) to replace the subscntence

(3x)(g(z) = (\,x) and x G re8t[s))

of the goal with

g(z) 6 cartone{reat[a))

obtaining

45

/ [»/ reat(a) -<w a]\
11. (nor w) and

\ [then false \)
(not a = { }) and

\g{z) = {l,elt(a)) or
g[z) Gz s

g(z) G cartone(reat(8))
z

which reduces (under true-false transformation) to

12. reat(s) -<«, 8 and
(not a = { }) and

g(z) e z =
g(z) = (l,e/f(s)> or
g(z) G cartone(rest(a))

Introducing the Recursive Call

We assume that we have among our assertions the member-insertion axiom

(xEyou) = (x = y or x 6 u)

(Here you is the result of adding the clement y to the sot u.) Ry the equivalence substitution rule,
we may use the axiom (from right to left) to replace the subsentence

g(z) = (l,elt(a)) or

g(z) g cartone(rcat(a])

with the sentence

g(z) € (i,dt(a)) o cartonc(reat(a)),

obtaining

46

a
13. rest(a) -<w 8 and

(not a = {}) and

z g(z) gz = | g(z) £ (1, e/((s)) o cartone(rest(s))]

Finally, by GA-resolution, matching the subscntence

g(z) € z = g(z) £ (l,elt(s)) o cartone(rest(s))

against the equivalence reflexivity axiom

\7 = 7 1-

taking z to be (l,ett(s)) o cartone(rest(s)), we obtain the goal

14. (l,elt(a))o

cartone(rest(s))
rest(s) -<w s | and

(not 8 = { })

Note that at this stage we have discovered another instantiation for the output variable z. The
term, which appears as the output entry, contains a recursive call cartonc(rest(s)). This term is
a suitable output in the case that s is a nonempty set, provided we can show that the argument
rest(s) is strictly less than s in the ordering -<«,.

Proof of Termination

We have not yet found a well-founded ordering -<„, to serve as a basis for the induction. We

expect to have properties of many standard ordcr'mgs among our assertions. Assume that we have
the subset-rest axiom

if not u = { }
then rest(u) -<aubset w

where ~<subact h Ww proper subset ordering over the finite sets. Hy GA-resolution, we can match
the subscntence

re8t(s) -<w 8

'9

^^^^^^ "•—I—•—"—" «—•—

1
47

of the goal against the subsentence

rest(u) -<aub.et u

of the assertion, to obtain the goal

15. not

(l,elt(a))o

cartone(rest(a)) s = {} ~

r

•

Note that in this step wc have selected the well-founded ordering -<„, to be the proper subset

ordering -<aub„ef

The Final Program

Recall that we have earlier developed goal 7,

{} * = {}+

Dy GG-resolution between this goal and the new goal 15, we obtain the final goal

16. true

ifs = {}
then { }
else (1, elt(s)) o

cartonc(rest(s)}

This step accounts for the introduction of a conditional expression in the output column. The final

program wc extract from the proof is

cartone(») <= if s = { }

then { }

else (1, elt(s)) o

cartone(rcst(t>))

Synthesis of the Cartesian-Product Program

The above proof is similar to the derivation of the Cartesian product program cart(s\,S2),

which computes the Cartesian product of two finite sets sj and «2- The specification for that

«MMMMMM

p^^^"^"

48

program is

cart{si,82) ^ find z such that
(y G z = {y t

2/ = (xi,i2> a««*

ii€ «i and i2 6 «2)

The final program we obtain is the system of two programs

cart(s\,s<i) «/»» = {}
then {}

else carttwo(8i,32) U
cart(rest(si), 8%),

where

carttwo{si, 82) <= t/ 82 = { }
tAen {}
else (elt(si), elt[s2)) °

carttwo^sx, rest(s2)).

Here, U is the set union function and carttwo{a\, 82) 1S an auxiliary subprogram that computes the
Cartesian product of {elt[ai)} and »2. The auxiliary program appears through the use of the more

general induction principle.

49

POLARITY WITH RESPECT TO SPECIAL RELATIONS

Equality is only one relation that has special importance in program synthesis. The inequalities

< and < over the integers or reals, and the subset relation C and the membership relation £ over
the sets, are examples of other relations that merit special treatment. In this section we extend
the rules we have given for equality to apply to other relations in particular circumstances. This
extension is particularly effective for transitive (ordering) relations. But first we must extend the
notion of polarity, which we have introduced for subsentences, to apply to terms as well, relative
to a particular relation -<.

Relations and Monotonicity

Let -< be a relation. We shall say that

• -< is irreflexive if

not x -< x)

• -< is total if

x -< y or x = y or y -< x;

• -< is transitive if

if (x -< y and y < z) then x -< z;

• -< is asymmetric if

not(x -< y and y -< x);

for all x, y, and z.

We define the weak relation ^ associated with -< by

x < y = (x -< y or x = y).

We shall use y >- x and y y_ x synonymously with x -< y and x ^ y, respectively.

Definition: Let / and p be a function and predicate of arity n and let j be an integer between 1

and n inclusive.

With respect to a relation -<, we shall say that

«••••'• •»••!• -»—T"^^f»—»1 = " •

50

• / is (weaMy) monotonically increasing in its jth argument provided that

if x -< y
then f(zi, ... ,Zj-.i,x,Zj+i, ... ,zn) < f(z\, ... ,Zj-i,y,Zj+i, ... ,zn)

• p is [weakly) monotonically increasing in its j'th argument provided that

if x -< y
then if p(zi} ... ,Zj^ltx,Zj+\, ... ,zn)

then p(zu ... ,*,•_!,V,Zj+i, ...,*«)

• / is (weakly) monotonically decreasing in its jth argument provided that

if y <x
then f(z\, ... ,Zj_i,x,Zj+i, ... ,z„) <

f(z\, ... ,Zj-i,y,Zj+\, ... ,zn)

• p is (weakly) monotonically decreasing in its jth argument provided that

if y < x

then if p(zu ... ,Zy_i,Z,*,+n .. . ,zn)
then p(zi, ... ,*,•_!,V,*j+i, •••,zn)

for all x, y, and z\, ... ,zn. |

Of course, some functions and predicates arc neither monotonically increasing nor decreasing
in some of their arguments with respect to a given relation -<.

Example:

The minus function (—) is monotonically increasing in its first argument with respect to the

< relation; i.e.,

if x < y
then x — z < y — z

for all integers x, y, and z. Furthermore, the minus function is monotonically decreasing in its

second argument, i.e.,

if y < x
then z — x < z — y

for all integers x, y, and z. |

-« • - i i r*»>

51

Example:

The member predicate £ is monotonically increasing in its second argument with respect to

the subset relation -<,„&„*; i-e.,

if x -<aub,et y
then if z £ x

then z £ y

for all sets x and y and elements z. |

Note that £ is neither monotonically increasing nor decreasing in its first argument with

respect to -<3u6aet-

Remark:

If -< is a transitive relation, then -< is monotonically increasing in its second argument with

respect to -< itself; i.e.,

if x -< y
then if z -< x

then z -< y.

Also, -< is monotonically decreasing in its first argument with respect to -< itself; i.e.,

if y <x
then if x -< z

then y -< z. |

Polarity of Terms

We arc now ready to extend the notion of polarity to apply to terms, with respect to a given

relation -<.

Definition (polarity): The polarity of a subsentence of a given sentence or tableau, as defined in

an earlier section, is also its polarity in the sentence or tableau with respect to -<. For terms,

wc have the following additional rules:

If a subsentence p[s\, . .. ,.•»_,-), t,Sj+\, .. . ,sn) occurs in a sentence or tableau, then the

polarity of t (with respect to «<) is the same as the polarity of the subsentence if p is

monotonically increasing in its jl.li argument, and the polarity of ((with respect to -<)

is opposite to the polarity of the subsentence if p is monotonically decreasing in its jih

argument.

--*-•-••• • i • i •

52

Similarly, if a subterm /(«i, ..., 8j-i,t, Sj+i, .. ., sn) occurs in a sentence or tableau,
then the polarity of t (with respect to -<) is the same as the polarity of the subterm if
/ is monotonically increasing in its jth argument, and the polarity of t (with respect to

-<) is opposite to the polarity of the subterm if / is monotonically decreasing in its jth
argument.

Note that some terms may be neither positive nor negative with respect to a given relation
-<, and that some terms may be both positive and negative. We shall say that a term has strict

positive or negative polarity if it has one but not both of these polarities.

Example:

In the tableau

assertions goals outputs

if x + 1 < y
then x < y

• The subsentence x + 1 < y is positive in the tableau with respect to < (by the

ordinary rules governing polarity).

• Therefore, the term x + 1 is negative in the tableau with respect to < (because
the < predicate is monotonically decreasing in its first argument with respect to

• Therefore, the first occurrence of the term x is negative in the tableau with respect
to < (because the + function is monotonically increasing in its first argument).

The notion of polarity with respect to a relation -< is important because, roughly speaking,
a sentence gets "truer" as its strictly positive subterms get bigger and as its strictly negative

subterms get smaller. This observation is made precise in the following proposition.

Proposition (polarity): The notion of polarity with respect to a relation -< satisfies the following

two properties:

if 8 -< t
then if £

then £ <{s+ *- t} (positive part)

and

if s y t
then if £

then £ <{s~ 0 (negative part)

- * - -n
 U

53

for all terms s and t and sentences £, where £ < {s+ <— t} is the result of replacing one or

more strictly positive occurrences of s in £ with t, and £ <{s~ <— t} is the result of replacing

one or more strictly negative occurrences of s in £ with t.

The proof of the proposition is by induction on the structure of the sentence.

Example:

In the tableau

assertions goals outputs

if x + I < y
then x < y

with respect to the relation <:

• The occurrence of x + 1 is strictly negative in the sentence x + 1 < y (because
< is monotonically decreasing in its first argument); therefore, replacing this
occurrence by something smaller makes this sentence "truer" (by the negative
part of the proposition).

• The occurrence of x+ 1 is strictly positive in the sentence if x + I < y then x <

y; therefore, replacing this occurrence by something bigger makes this sentence
"truer" (by the positive part of the proposition).

• The occurrence of x is strictly negative in the sentence x + 1 < y (because + is
monotonically increasing in its first argument); therefore, replacing this occurrence

by something smaller makes this sentence "truer" (by the negative part of the
proposition). |

... . •• . i. i

'—•—

54

RELATION SUBSTITUTION RULE

We arc now ready to extend the equality substitution rule to an arbitrary relation -<.

Small-to-Big Version

The rough schematic description of the ground version of the rule (AA-form) is as follows:

assertions goals outputs

ns < T) /

9(S~) 9

T(false) or Q(T)

if S < T
then g
else f

Here 7(S -< T) is an assertion with an occurrence of the stibsentonee S -< T, where 5 and T are
terms; §(S~) is an assertion with an occurrence of S which is strictly negative in the tableau with
respect to -< (or, equivalcntly, S is strictly positive in ${S))\ and §(T) is the result of replacing
that occurrence of S in §(S) with T.

The rationale for this rule is as follows. Consider an interpretation under which both given
assertions are true; we seek to show that the derived assertion is also true under this interpretation.
Equivalcntly, we show that if the derived assertion is false, then one or the other of the given
assertions is also false.

Because the disjunction 7(false) or p(T) is false, each of its disjuncts is false. In the case in
which S -< T is false, because the disjunct 7(false) is false, we know the given assertion 7(S -< T)
is false; in this case, / is a suitable output. In the case in which S -< T is true, because the

disjunct $(T) is false, and because S is strictly positive in £(S), we know (by the positive part of

the polarity proposition) the goal §(S) is false; in this case, g is a suitable output. In either case,

the conditional expression if S ~< T then g else f is a suitable output.

According to the polarity strategy, wc may assume that some occurrence of $ «< T in

7(S -< T) is negative in the tableau. We may also assume that 5 is not a free variable.

The precise version of the rule is as follows:

•••

55

assertions goals outputs

7 /

9 9

(7 + 0) + {(S+0 <T+0)+-false) or
{g + 0)<{S~+0<- T +0}

if S+0 <T + 0
then g-<6
else f<6

I

•

X.

Here we assume that

• S = {so, »ii ..., Sk} and T = {ti, ..., tk) arc sets of terms such that

• 7 contains at least one occurrence of each inequality si -< t\, . . . , s^ -< tk',

• Q contains at least one occurrence of su that is strictly negative in the

tableau with respect to -<;

• 0 is a most-general unifier of S and of T: i.e., SQ •« 0, S\ •* 0, . . . , s^ •« 0 are
identical terms, denoted by S-*0; and t\ -+0, . . . ,tk-*0 are identical terms,
denoted by T-*0) and 0 is one of the most-general substitutions that make
these expressions identical.

• (7 -*0) •* {(S -*0 -< T -*0) <— false) denotes the result of replacing every occurrence
of the subscntence S +0 -< T <0 in 7 -+0 with the proposition false.

• (<J •< 0) < {S~ •* 0 <— T -*0) denotes the result of replacing one or more (but not
necessarily all) occurrences of S <0 in Q-*0 with T -*0 for which the corresponding
clement of S is strictly negative in the tableau with respect to -<.

• If x is any variable in 7 or in Q that occurs within the scope of a quantifier, then 0

cannot instantiate x to any term containing a bound variable of 7 or Q.

(dependency restriction)

• No variable that is bound in 7 or in $ may occur fret; in the new row.
(no-escape restriction)

The dependency restriction may be relaxed as usual. According to the polarity strategy, wc

may also assume that at least one occurrence of one of the Inequalities s, -< (, in 7 is negative in

the tableau. We may also require that one of the elements of S not be a free variable.

Example:

Suppose we have the two assertions

I I I I '^m^^^^^^^gm ' - • • - - I •

A

1

56

assertions goals outputs

/(*) 7 : if p(x) then (h(x, a) < c)

ff(y) g : i/ <7(y) then h{b, y) ~ > 0

Note that the occurrence of h(b,y) is negative in the tableau with respect to <. Applying the
relation substitution rule, taking 0 = {x «— b, y *— a}, we can add th" new assertion

[if p(b) then false) or

(if q(a) then c > 0)

if h(b,a) < c
then g(a)
else f(b)

which reduces (under transformation) to

(not p(b)) or

(if q(a) then c > 0)

if h(b,a) < c
then g(a)
else f(b)

Big-to-Small Version

m
The preceding rule is the "small-to-big" version; it replaces instances of the "small" S -*0 by a

"big" T -*0, in the case in which s0 is negative in the tableau; there is also a "big-to-small" version
of the rule, which applies in the case in which H() is strictly positive in the tableau (and therefore
strictly negative in the assertion). In schematic form, the ground version of this rule is as follows:

assertions goals outputs

T(S y T) /

9(S+) 9

7{false) or g(T)

if S >T
then g
else f

The rationale for this version is analogous to the rationale for the small-to-big version, and relics

on the negative part of the polarity proposition.

The precise version of the rule and its restrictions are analogous to the previous small-to-big

version.

B

57

TOTAL-RELATION SUBSTITUTION RULE

The above rule applies to any relation -<. If the relation -< is total, there is an additional rule
we can apply. (Recall that a relation -< is total if x -< y or x = y or y -< x , for all elements x
and y.)

Small-to-Big Version

Expressed in schematic form, the ground version of the rule is as follows:

-«

assertions goals outputs

ns < T) /

9(S+) 9

7(true) or £(T)

if S <T
then f
else g

X Note that in this rule we require that the occurrence of S be strictly positive in the tableau (or,
equivalcntly, strictly negative in ${S)) with respect to -<.

The rationale for the rule is as follows. Consider an interpretation under which both given
assertions are true; we seek to show that the derived assertion is also true under this interpretation.
Equivalcntly, we show that if the derived assertion is false, then one or the other of the given
assertions is false.

Because the disjunction 7{true) or Q(T) is false, each of its disjuncts is false. In the case in
which S •<, T is true, because the disjunct J[true) is false, we know the given assertion T(S -< T)
is false; in this case, / is a suitable output. In the case in which S -< T is false, because -< is
total, we know that S = T or T -< S.

In the case in which S = T, because the disjunct §(T) is false, we know the given assertion

§(S) is false; in this case, g is a suitable output. In the case in which T < S, because the disjunct
$(T) is false, and because S is strictly negative in §(S), we know (by the negative part of the

polarity proposition) that again the given assertion §(S) is false; in this case also, g is a suitable

output.

In each case, the conditional expression if S < T then f else g is a suitable output.

According to the polarity strategy, we need apply I he rule only when some occurrence of S -<

T in ?(S -< 7) is positive in the table/in. Thus, we never need to apply both the total-ordering

substitution rule and the basic ordering substitution rule in the same situation. We may also

require that S not be a free variable.

p— ' I - • I

•

'•

58

We omit the precise description for the total-relation substitution rule, because it is analogous

to the basic rule.

Big-to-Small Version

sn The preceding version is "small-to-big"; it replaces the "small" S with the "big" T in £(5).
The corresponding "big-to-small" version of the rule, which replaces a "big" $ with a "small" T,
is as follows (in schematic form for the ground case):

•

assertions goals outputs

7{$ > T) /

9(S~) 9

7{true) or £(T)

if S > T
then f
else g

v: Note here that the occurrence of S in ${S) to be replaced is strictly negative in the tableau, i.e.,
positive in $(S). Furthermore, according to the polarity strategy, we need apply the rule only if
some occurrence of S >- T in 7(S >- T) is positive in the tableau. We may also require «hat S

not be a free variable.

a Example:

Suppose our tableau contains the assertion

•
assertions goals outputs

if p(x)

then not(f(x,d) < a)"

d the goal

q(y) and

t(x, y) my)v >c

Note that the <-relation is total over the integers and the boxed occurrence of f(h,y) in the goal

is strictly positive in the tableau with respect to <. Applying the AC-form of the total-relation

p^i

substitution rule small-to-big, taking 0 to be

{z «- b, y «- d}

we can replace f(b,d) with a in the goal to obtain the new goal

which reduces to

59

notfW)and
\then not true/

fq(d) and\
t(b,d)

p(b) and q(d) and a > c t(b,d)

\

under true-false transformation.

Note that, because the annotated occurrence of f(x, d) < a in the assertion is positive, this
application of the total-relation substitution rule is in accordance with the polarity strategy.

ppp ^^m •w-

• 60

r

s

RESOLUTION WITH RELATION MATCHING

The preceding rules adapt the equality substitution rule to arbitrary relations; in this section
we adapt the resolution rule with equality matching to use an arbitrary relation, instead of equality.

As usual, we first give the schematic form of the ground version of the rule.

assertions goals outputs

/ 7{ R(T + ,S-) +)

9 ${ £(5 + ,T-)-)

5 r< T and
T(true) and
g(faUe)

if Z(S,T)
then f
else g

a

<-.••

Here the notation £(S + , T~) means that S is a strictly positive occurrence of a term, and T is
a strictly negative occurrence of a term, not in the tableau, but in the boxed subsentence JZ.(S, T),

with respect to the relation -<• Also, R(T, S) is the result of replacing S with T and T with S,

simultaneously, in R($, T). We assume that 5 and T are distinct terms, and admit the special
case in which either 5 or T does not actually occur in Z(S,T).

Note that, if this rule applies, resolution with equality matching also applies. When both rules
apply, however, the rule with relation matching is preferable, as the derived goal of this rule is
easier to establish than the derived goal of the equality rule. The goal for this rule has a weak
inequality S ^ T, in place of the full equality S = T required by the equality rule.

The rationale for this rule is as follows. Consider an interpretation under which the derived
goal is true; we seek to show that one or the other of the two given goals is true.

Because the conjunction S ^ T and T(true) and §(false) is true, each of its conjuncts is true.

In the case in which R.(S, T) is false, because the conjunct §(false) is true, we know the given goal

$(Z(S, T)) is also true; in this case, g is a suitable output. In the case in which Z(S, T) is true,
because the conjunct S ^ T is true, and because S is strictly positive and T strictly negative

in Z(S,T), we know (by two applications of the polarity proposition) that R.(T, S) is also true.
Therefore, because the conjunct T(true) is true, the given goal T{R.(T, $)) is also true; in this case,

/ is a suitable output. In cither case, the conditional expression if R(S,T) then f else g is a
suitable output.

According to the polarity strategy, we need only apply either case of the rule if £(T,S] is
positive in the tableau and Z(S, T) is negative in the tableau.

The precise form of the resolution rule with relation matching is as follows.

Rule (resolution with relation matching):

61

m

«- A

assertions goals outputs

7 /

9 9

$+0 <T +0 and
[7 + 0) + {Px -8 <- true, ..
(Q+0)<*{Qx+0 <- false, .

., Pk •* 0 <— true} and
• •, hi « 0 <- false}

if Z
then f-*B
else g + 0

Here we assume that

• Pi, .., , Pk are subsentences of 7•

• 2ii •. •, 0.1 are subsentences of Q.

• S = {si, ... ,sm} and T = {tx, . .., tn} are sets of subtcrms of Pi, • • •, Pk, Qi, • • • >
and Q(.

• P. is a sentence and 0 a most-general substitution such that

• 0 unifies 5; i.e., 8| <0, ... ,sm+0 are identical terms, denoted by S +9.

• 0 unifies T; again, T -*0 denotes the unified term.

• S -*0 and T -*0 are distinct terms.

• P. is "falser" than all the sentences Pi+0; in other words, for each i between
1 and k,

{P*+0)<{{S+0)- - T +0,(T +0)+ *- $+0} is P.

That is, P can be obtained by replacing in P{-*Q zero, one, or more strictly

negative occurrences of $ + 0 with T -*0, and zero, one, or more strictly
positive occurrences of T -*0 with S -*0, simultaneously.

• P is "truer" than all the sentences Qj+0; in other words, for each j between
1 and I,

(Q}+0)<{{S+0)^ «- 7*0,(7+0)- - S«0} is P.

• If x is any variable in 7 or in $ that occurs within the scope oT a quantifier, then 0

cannot instantiate x to any term containing a bound variable of 7 or of Q.

(dependency restriction)

• No bound variable of 7 or of £ may occur free in the new row.

(no-escape restriction)

^w

-
I

38

a

62

The dependency restriction may be relaxed aa usual.

The discovery of the sentence P, the sets S and T, and the substitution 0 is the by-product
of an attempt to unify the subscntences Pi and QJ if the unification algorithm returns pairs of
mismatched terms and their polarities when it nearly succeeds.

Example:

Suppose our tableau contains the two goals

assertions goals outputs

/(*) 7 : \cet+ \ and c€ s(x)+ +

g(y) g : not y £ s(a)+

K

a

We attempt to apply GG-resolution, matching the boxed subscntences. The unification is nearly

successful: if we take

0 to be {i <— a, y *— c},

the only failure is the occurrence of the constant t in 7, which will not unify with the corresponding
occurrences of s{x) and s(a).

The mismatched terms, however, are strictly positive, not in the tableau, but in the boxed

subscntences, with respect to the subset relation -<aU63et- Therefore, we can apply the resolution
rule with -<su(,set-matching, taking

Pi to be c £ t,

Pi to be c £ s(x),

Q.I to be y G a(a),

P. to be c g s(a),

S to be {«(*), »(a)},

T to be {«}.

Note that

(Pi+0)<{t+ ^s(a)} is je

P2 -* 0 is P.

Qi*0 is P.

W—mm • i

•«

*

I

Therefore, we can add to our tableau the new goal

which reduces to

63

s(a) ^ subset t and
(true and true) and
not false

if c € «(a)
then f(a)
else g(c)

s{a) ^subset t

if c£ s(a)
then f[a)
else g(c)

under true-false transformation.

The above deduction is more complex than a person would usually make in a single step. Let
us show that the conclusion in this case is indeed correct.

Suppose that the new goal s(a) ^sufc««t t is true; we would like to show that one of the given
goals is true. We disting-'ish between two cases.

Case: c £ s(a) is true.

Then, because s(a) ;<31i(>«t t, wc know c 6 t is also true. Therefore, if x is taken to be a, both
conjuncts of the given goal 7 arc true and, hence, /(a) is a suitable output.

Case: c G n[a) is false.

Then, taking y to be c, the given goal Q is true, and, hence, g(c) is a suitable output.

In cither case, the conditional expression if c £ s(a) then f(a) else g(c) is a suitable output.

Example:

Suppose that our tableau contains the goal

assertions goals outputs

z

7: p(z,rcst(s)) and

2 6l +
and

<?(»)

and the assertion

«...i -,,. • . •' . • •

•

64

M

5

«

9 : *f ri(")
then if not T2(v)

then p(f(u),u) and
f\u) G u+

We attempt to apply GA-resolution between the goal and assertion, matching the boxed subsen-
tences. The unification is nearly successful: if we take

6 to be {u *— reat(a), z *- f(reat[a))},

the only failure is the annotated occurrence of the variable u in Q. This variable is instantiated

by C to be rest(s), and therefore will not unify with the corresponding occurrence of the constant

a in 7.

The mismatched terms, however, are strictly positive, not in the tableau, but in the boxed

subscntences, with respect to the subset relation -<aui>«et- Therefore, we can apply the GA-
resolution rule with ~<aubsr.t matching. The sentence R can be taken to be

or

p(/(rc.si(.s)),res<(s)) and

f(rest(s\) 6 rest(s)

p(f(rest(a)), rest[sy) and

f(rest{s)) 6 a.

The new goal we obtain is

rest{s) :<s1J6«et s and
(true and \ .

U-> Jand
(if ri(rcat{»)) \

not 1 then if not r2(rcst(s)) 1
V then false J

f{rcst(s))

which reduces to

reat(a) ^,u(,«t a and
q(a) and
T\(rcst(a)} and
not T2{re»t(a)) f{rcat(8))

------- _— • • I • 1

r1

X
under true-false transformation.

Note that, because the matched subsentence of the given goal is positive, and the matched
subscntencc of the given assertion is negative, in the tableau, the application of the rule is in
accordance with the polarity strategy. |

X 1

 • I I I I •

•.'-•' 1 m

66

EXAMPLE: THE MAXIMUM ELEMENT OF A SET

The program max(s) to be constructed finds the greatest element of a finite set s of integers.

Our initial specification is

max(s) t= find z such that

z e s and

(w2/)['7 yEs then z>y]

where not s = { }.

The initial tableau for this specification is

assertions goals
outputs
max(s)

1. not s = { }

2. z£ a

(Vy)v

and
if yes
then z > y

z

£ where s is a constant and z is a free variable.

The Induction Hypothesis

My the induction rule, we may consider an arbitrary input set a and assume that the program
max(u) to be constructed will yield an output that satisfies the given specification, provided that

the input u is a set strictly less than s in some well-founded ordering -<„,. Thus, we can add to
our assertions the induction hypothesis

3. if u -<w a
then if not u =

then max(

(Vj/)3

{}
u) 6 u and
if y € w
then max(u) > y

Dropping the Quantifiers

As we have indicated by annotation, the quantifier (Vi/) in goal 2 is or universal force while the

same quantifier in assertion .'{ is of existential force. Hy the skoletnization rules, we can replace the

•• i • • > i •

W~m

67

quantifier with a skolem function g in the goal and with a free variable y in the assertion, thereby

obtaining a new goal and assertion

4. z 6 s and

z if g{z) € s
then z > g(z)

5. if U -<w 8
then if not

then max(u) 6 u and
if y E u
then max(u) > y

We may think of the skolem term g(z) in goal A as an arbitrary clement.

Decomposing the Goal

Wc assume we have among our assertions the nonempty-set membership axiom

Here elt(u) is an arbitrary element of the nonempty set u, while rcst(u) is the set of all the other
elements of u.

By the equivalence substitution rule, we ".an use this assertion to replace g[z) € 8 in goal 4

with

g(z) = e.lt(s) or g(z) G re»t(s).

obtaining (after transformation) m

6. | not s = {} + and

z £ 8 and

' (9{z) = elt{a) orV

\g{z) £ rcst(a))

.then z > g(z)

z
m

i

68

(In an alternative derivation, we apply the same axiom to the subsentence z £ s instead.)

The conjunct not s — {} of the goal may be dropped by GA-resolution against the input

condition

not s = { } |

(assertion 1), obtaining

7. z E a and

z
{f (g{*) = elt(a) or\

\g[*) e rest(a) J
then z > g[z)

Applying the equivalence substitution rule between the goal and the if-or distributive equiv-

alence

(\ if [7 or g) then U

if 7 then M) and
if g then X

we obtain

8. zG» and

[if (g(z) = ell(s))-\
1 I and
\then z > g(z) J

1

(if g(z) e rcst(a)\

\then z > g(z) J
z

1

At this point we apply the equality substitution rule to the goal and itself (!), using the equality

g(z) = clt(n) to replace one instance of g(z) by fi/£(s), obtaining

9. z € s and
[if g(z) = dt{s) \

1 and

z

[then z>eU{»)\ +)

(if g(z) 6 rcst(s)\

\then z > g(z) J

—-—

~;

•

69

The other instances of g(z) in the goal are allowed to remain. We shall use this goal twice in the
derivation, once to give us the base cases and once to give us the recursive call.

The Base Cases

Wc can now apply the GA-resolution rule between goal 9 and the >-reflexivity axiom

X > X

taking 0 = {x *— elt(s),z *— elt(s)}, obtaining

elt{s)

10. | elt(s)es + and
(if g(elt[a)) G rest(s) \

\then elt(s) > g(elt(s))J

Note that wc have found one instantiation for the output z.

Assume that we have a member axiom for the element relation

if notu = { }
then elt(u) £ u

Wc can 'hen apply GA-resolution between the goal and the axiom, to obtain the goal

elt{s)

11. not 8 = { } + and

(if g{elt[a)) G rest{s) \

\then elt(s) > g(elt(s))J

The conjunct not a =
not H = {}, yielding

{ } can again be dropped by GA-resolution against the input condition

12. if g(dt(s))e rcst{s)
then elt(s) > g(elt{sj) clt(s)

In other words, in the case that clt(x) is greater than or equal to any arbitrary element of rr.st(s),

wc know elt(s) is a suitable output. We shall use this goal twice in the derivation, to provide an

output expression for the program's two base cases.

• I ' • . . ••
*• -

• •

70

Introducing the Recursive Call

Recall that we have previously developed a goal 9,

fif g{z) G reat{s)\

\then z > g(z) J

and

/if <j{z) = elt{a)\

\then z > elt{s)J

•

(We have commuted the conjuncts in preparation for the next step.)

By GA-resolution with -<3U6S(.t matching to this goal and the (skolemized) induction hypothesis
(assertion 5)

if u -<w a
then if not u = { }

then

max(u) £ u+ and

fif y£u \
\then max{u) > yj

•

taking

0 = {u <— reat{a), z <— max(rcs£(s)), y *— <7(max(res<(s)))}

we obtain the goal

•

1

13. rest(a) <3ubliet » and

fif r7(max(rc.s<(s)))= elt{s) \
I + J and

max(reat[a))

\then (maz(rcfl<(«))> clt[s)) J

rest(a) -<w a and

not (rcat{a) = { })

.
This step was possible because the annotated occurrence of u in the induction hypothesis is strictly

positive, not in the tableau, but in the boxed subscntence, with respect to the proper-subset relation

*S subset'

^»

71

At this stage, through the use of the induction hypothesis, a recursive call has appeared in the
output column. We shall use the induction hypothesis one more time.

Introducing the Conditional Expression

Recall that we have previously developed a goal 12,

./ g(elt(a)) G reat{a)

elt{s) then elt{a) |+ > g(elt{a))

The annotated occurrence of elt(s) in this goal is strictly positive with respect to the <-relation.
Therefore, we can apply the total-relation substitution rule to goal 13 and goal 12 [bearing in
mind that max(res<(ä))> elt(a) is synonymous with elt(s) < max(rest(s))] to replace elt(a) with
max(rest(a)) in goal 12, obtaining the new goal

14. rest(s) ^aubaet s and
rest(s) -<„ 8 and
not (rest(a) = { }) and if max[re8t{8))> elt(a)

then Tnai(rest(8))
else elt{a)

if g(elt{a))€ reat(s)

then max(re8t{s))'> g(e/i(s))

Note that at this stage a conditional expression has appeared in the output column.

The last conjunct of the goal can be dropped by GA-resolution against the induction hypothesis

if u -<w a
then if not u = { }

then rnax(u) £ u and

if y € «
then max(u) > y

I •

this time taking

0 = {u *- reat(a), y <- g(dt(a))}.

We obtain the new goal

15. if max(rc.at(s))> elt(a)

then max(rcat(a)}
else clt(8)

rcat(a) <aub*et » and
rcat{a) -<w a and
not {rcat(s) = { })

^•^

r>
-

•

a

- • •

-.

•

•

72

This completes our use of the induction hypothesis.

Choice of Ordering

Up to now we have not chosen the well-founded ordering -<„, on which our induction in based.
We assume that among our assertions we have the axioms for many orderings.

We apply the equivalence substitution rule to the definition of the weak ordering ^,ui,eti

I

f\ U ^subset V = \

V (« < subset V OT U = v)J

and the goal, obtaining

16.
(

rest(s) -< subset »
or rc8t(s) = a 1 and

rest(s) -<w s r and

not (rest{s) = { })

:/ max(rest(s))> elt(a)
then max(rest(s))
else elt(s)

By GA-resolution between the goal and the subset axiom

if not u = { }

then rest(u)-^ subset u

we reduce the goal to

17. not(rc8t(s) = {}) and
if moa:(rr;.s<(.s))> e/t(s)
then mai(rc«t(s))
else elt(s) not s = { } |+

With this step, the well-founded ordering -<„, has been chosen to be the proper-subset ordering

-<aubset over the finite sets.

pp

I
•

T

73

Final Stages

The conjunct not a = { } is again dropped by GA-resolution between the goal and the input

condition (goal 1) not a = { } obtaining

if max(reat(a))'> elt(a)
then max(reat(a))
else elt[a) 18. not (rest(a) = { })~

In other words, we have determined that, in the case in which rest(s) is not the empty set, a
suitable output is given by the conditional expression in the output entry. Henceforth (intuitively
speaking), we deal with the case in which rest(s) is the empty set.

Recall that we have already developed a goal 12,

elt(s)

if g{elt{a)) € | reat[a)

then elt(a) > g(elt{a))

By equality substitution between goal 18 and goal 12, we can replace reat(a) with { } in goal 12,
obtaining

if re3t(a) = { }
then elt[a)
else if max(rc.it(s))> clt(a)

then max\rest(a))
else elt{a)

19. if ü((elt(a)) e{} ~

then elt(a) > g(elt(a))

Note that at this stage an additional layer of conditional expression has been wrapped around the
output entry.

At last, by AG-resolution between the empty-set membership axiom

not y G { } +

and goal 19, we obtain the final goal

20. true

if rcat(a) = { }
then e/f(a)
else if mai(rr«<(»))> clt[a)

then m«x(rc»f(j»))
else elt(s)

^^m •- m m • • , , ,.

74

Note that by this step an additional layer of conditional expression has been wrapped around the

output entry.

Because we have obtained the goal true with a primitive output entry, our proof is complete.

The final program is thus

r max(s) <= if rest(s) = { }
- then elt(8)

else if mai(rest(s))> elt(s)

then max{rest(s))

else elt(s).

B
-

•

wmmm

i
75

STRATEGY AND DISCUSSION

In this paper wc have mainly disregarded the question of strategic guidance. We envision an
automatic implementation of our deductive system to be governed by the following crude strategy:

• Remove all quantifiers of strict force by skolemization.

• If a rule fails to apply because of the mismatching of two bound variables or the
violation of the dependency or no-escape restrictions, replace the offending bound

variables by eliminating their quantifiers, after first getting rid or any surrounding
equivalences by the equivalence-removal transformation rules.

• Match larger subexpressions and subtcrms before matching smaller ones.

In other words, wc attempt to complete the proof while leaving the quantifiers and equivalences
intact, but we remove them when the presence of bound variables is suspected to interfere with
the proof.

The derivations included in this paper are the most concise formal derivations we have seen
for these programs. For an interactive system it is clearly better to introduce high-powered rules
such as ours, so that deductions will be shorter and closer to a "natural," intuitive argument.
For an automatic system, however, it is not necessarily an improvement to introduce such rules,
particularly if they duplicate the effects of several lower-level rules and thus lead to redundancy in
the search for a proof.

However, the human implementer of an automatic system must be able to read and understand
the "trace," i.e., the steps in the search for a proof. When the system is led astray, the synthesis
system designer must provide heuristics to guide the search. If the steps of the trace are in terms
of low-level rules, the person cannot understand it well enough to supply this heuristic guidance.
Our hope is that human-oriontcd heuristics will be easier to discover if proofs arc expressed in
higher-level steps. Until we accumulate experimental evidence, we cannot be certain how efficient
the implementation will be.

Acknowledgments: The authors would like to thank Ed Ashcroft, Yoni Malachi, Mark
Stickel, Mabry Tyson, Pierre Wolper, and Frank Yellin for their suggestions and careful reading;

and Evelyn Eldridge-Diaz for preparing the manuscript with the TEX typesetting system.

t

*

76

REFERENCES

Biedsoe, W. W., and L. M. Hines [July 1980], "Variable elimination and chaining in a resolution-
based prover for inequalities," Proceedings of the 5th Conference on Automated Deduction,

Les Arcs, France, pp. 70-87.

_• Brand, D. [Dec. 1975], "Proving theorems with the modification method," SIAM Journal of

Computing, Vol. 4, No. 2, pp. 412-430.

Manna, Z. and R. Waldinger [Jan. 1980], "A deductive approach to program synthesis," ACM

Transactions on Programming Languages and Systems, Vol. 2, No. 1, pp. 92-121.

Morris, J. B. [May 1969], "E-resolution: extension of resolution to include the equality relation,"
Proceedings of the International Joint Conference on Artificial Intelligence, Washington,

DC, pp. 287-294.

Murray, N. V. [Jan. 1982], "Completely non-clausal theorem proving," Artificial Intelligence,

Vol. 18, No. 1, 67-85.

Nrvins, A. J. [Oct. 1974], "A human-oriented logic for automatic theorem-proving," Journal

of the ACM, Vol. 21, No. 4, pp. 606-621.

Robinson, J. A. [Jan. 1965], "A machine-oriented logic based on the resolution principle,"

Journal of the ACM, Vol. 12, No. 1, pp. 23-41.

Siagle, J. B. [Jan. 1972], "Automatic theorem proving with built-in theories including equality,

partial ordering, and sets," Journal of the ACM, Vol. 19, No. I, pp. 120-135.

Wos, L. and G. Robinson [1969], "Paramodillation and theorem proving in first order theories

with equality," in Mac/line Intelligence 4, (B. Mcltzer and D. Michio, editors), American

Elsevier, NY, pp. 135-150.

1 •

7 :

z

p(z,rcnt(n)) and
z € *+

and

'/(*) •

and the assertion

•

not a = { }, yielding

12. if g(dt{s))e rcst(s)
then ett(s) > g(elt(sj) elt(s)

In other words, in the case that elt(s) is greater than or equal to any arbitrary element of rc.it(s),

we know elt(s) is a suitable output. We shall use this goal twice in the derivation, to provide an

output expression for the program's two base cases.

/if j(mui(rcj((s)))= cll(s) \
1 A. 1 and

max(rest(s])

\then (max(rest(s))>\ dt(s) |) /

rest(n) -<w s and

not (rcst(s) = { })

This step was possible because the annotated occurrence of u in the induction hypothesis is strictly
positive, not in the tableau, but in the boxed subscntence, with respect to the proper-subset relation

-^subset'

this time Inking

0 = {u *- reat(s), y - <j(dt{s))}.

We obtain the new goal

15. if max(rest(s))> elt(a)

then max[rest(s))

else elt($)

| rest(n) ^3„(,,et 1 | and

rc»t(s) -<„, s and

not (rest(s) = { })

17. not (rcst(s) = { }) and

| n0< 8 = { } 1+

i/ moi(rcs((s))> e/<(s)
<Aen mai(rcs/(s))
eke e/t(s)

With this step, the well-founded ordering -<„, has been chosen to be the proper-subset ordering

-<»u6aet ovcr the finite sets.

ULS-UJ

and goal 19, we obtain the final goal

20. true

if reat(s) = { }
then ett(s)

else if mai(resl(»))> elt(t>)

then max(rent(s))

ehe elt(s)

I

