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by 
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V 
ABSTRACT 

Program synthesis is the automated derivation of a computer program from a given specifi- 
cation. In the deductive approach, the synthesis of a program is regarded as a theorem-proving 
problem; the desired program is constructed as a by-product of the proof. This paper presents 
a formal deduction system for program synthesis, with special features for handling equality, the 
equivalence connective, and ordering relations. 

In proving theorems involving the equivalence connective, it is awkward to remove all the 
quantifiers before attempting the proof. The system therefore deals with partially skolemized 

sentences, in which some of the quantifiers may be left in place. A rule is provided for removing 
individual quantifiers when required after the proof is under way. 

The system is also nonclausal; i.e., the theorem docs not need to be put into conjunctive 
normal form. The equivalence, implication, and other connectives may be left intact. 
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INTRODUCTION 

One of the earliest techniques for program synthesis, the automated construction of a computer 
program, has been the deductive approach, in which the program is developed by proving a theorem 
corresponding to the given specification. While program synthesis does not typically require the 
proof of deep mathematical theorems, it does need deductive systems specially designed to handle 
constructs commonly occurring in specifications, such as equality, equivalence, and orderings. 

In this paper, we present a formal system with facilities for dealing with the equality predicate 
[=), the logical equivalence connective (=), and the ordering relations. The system allows us to 
defer skolemization, the removal of quantifiers, when it is inconvenient. The system is machine- 
oriented and intended for implementation in interactive and automatic program synthesis systems. 

The Deductive Approach 

In Manna and Waldinger [1980] we presented a deductive system for the synthesis of applicative 
(sidc-elTcct-free) programs. The paper considered specifications of form 

f(x) <= find z such that r(x,z) 

where p(x). 

In other words, for an arbitrary input x, the program / is to yield an output z satisfying an 
output condition r(x, z), provided that the input satisfies the input condition p(x). The theorem 
corresponding to the specification is 

(Vx)[t/ p(x)  then {3z)r[x,z)\. 

The proof is restricted to be sufficiently constructive so that, in establishing the existence of an 
output z satisfying the required relationship, it tells us how to compute such an output. 

For example, to specify a program to find the quotient of dividing a nonnegative integer i by 

a positive integer /, we write 

quot(i,j) man 
• u 

o 
b      »• 

find z such that 

isintcgcr(z) and 
~isinteger{y) and 

(3y)   i = z • j + y and 

.0 < y  and y< j\ 
•«- S •< 3 <H 

where iainteger{i) and isintcger(j) and     « ** i Jj 
. ,.   -       ..„                                     • </> t» c •» 
i > 0  and 7>0.                                      S Ü? S • i 1 !*(!Jji 

in 

«si* 
• i 

Merc the predicate isinte.ger[u) is a type predicate expressing that u is an integer. The theorem 

corresponding to this specification is 

iS 

,.m. ;•*,.:-« i —:~—•—    -~   -    ••   -    -1 -    -    -   -    -    - 



(Vt)(Vj) 

'if isinteger{i)  and isinteger(j)  and" 

i > 0 and j > 0 
then 

'isinteger(z)  and 
isinteger(y)  and 

(3y) i = z- j + y and 

0 < y  and y < j. 

(3*K 

(For simplicity, we shall omit the type predicates when the context makes the type clear.) 

Design Criteria for a Formal System 

A formal system to prove such theorems must have the following capabilities: 

• It must prove theorems with both universal and existential quantifiers. 

• It must be able to handle theories with mathematical induction, such as nonnega- 
tive integers, finite sets, lists, and trees. 

• It must be facile in handling the equality predicate, the equivalence connective, 
and the ordering relations; these appear frequently in specifications. 

In addition, we want the proofs to appear natural to people. The advantage of such a quality 
for an interactive system is self-evident. For an automatic system, our hope is that a natural form 
will enable us to exploit the heuristics of human intuition. On the other hand, we also want the 
system to be machine-oriented, in the sense that there should be only a small number of legal next 
steps to choose from at each stage. 

It has long been observed that systems requiring the theorem to be converted into clause 
form can cause it to explode and lose intuitive content. Such systems are particularly awkward for 

proving theorems by mathematical induction, because, if the induction hypothesis is propositionally 
complex, it may be dispersed over several clauses. This makes it difficult to recognize when we have 

succeeded in reducing the theorem to an instance of the induction hypothesis, since the theorem 

and the induction hypothesis will be syntactically dissimilar. A nonclausal system, which docs not 
require us to transform the theorem to clause form, is thus particularly appropriate for program 

synthesis. 

Equivalence and Equality 

Our earlier deductive system (Manna and Waldingcr (I980J) and that of Murray [1982], are 

both nonclansal and are suitable candidates for program synthesis. However, neither system has 

any special provisions for handling equality, equivalence, or orderings. The equality predicate is of 

obvious importance in expressing the specifications of programs. Ordering relations not only occur 

V ' 
' 

; 
• 
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frequently in specifications, but arc also used in the "well-founded induction principle" we employ. 
The equivalence connective is of special importance in dealing with specifications expressed in terms 

of the set constructor {z : p(x)} ("the set of all x such that p{x)"). 

For example, we might specify a program to find the Cartesian product of two finite sets «i 

and «2 as follows: 

cart(s\, 82)   *=    find z such that 

z = \y:     (3xi){3x2) 
V = (3:1,2:2)  and      11 

[xi £ Si   and X2 6 S2J 

(Here (11,22) denotes the pair of elements x\ and x%.) Unless the theorem prover deals explicitly 
with the set constructor, we arc likely to rephrase the specification with the circumlocution: 

cart(s2,S2)   <=    find  z such that 
y = (21,2:2)  and 

(Vy)|y€*   = (3x0(322) 
ii Gsi   and x2 6 ^2 ]} 

In fact, even if we have the set constructor in our formal language, we are likely to rephrase it in 
terms of equivalence during the proof. 

Now an equivalence has appeared in our specification and the corresponding theorem.   Of 
course, we can remove it by appealing to such rewriting transformations as 

(if 7 then Q)  and 

or 

f ^ 9  -» 

f m  g  =» 

(:/ Q  then 7) 

(7  and 9)  or 

((not 7)  and (not 9)) 

Hut decomposing the connective in this way may needlessly multiply the length of the proof and 

destroy its intuitive content. Instead, we present deduction rules for dealing with equivalence 
explicitly in a nonclausal setting. 

Skolemization 

Traditionally, all the quantifiers of a theorem arc removed by skolemi/.ation before the proof 
begins. However, if the theorem contains an explicit equivalence, we cannot remove any quantifiers 

in its scope without removing the equivalence first, as we shall see. Our earlier system and that of 

Murray deal only with fully skolemizcd sentences, from which the equivalences have been removed. 

The rules we present here, on the other hand, can be applied to partially skolemizcd sentences, 

in which some of the quantifiers and equivalences may remain intact. We also present rules for 

removing quantifiers one at a time, as it becomes expedient, at any point in the theorem-proving 

process. 

Our treatment here will be informal; we shall justify only some of the rules, and in an intuitive 

way. 



THE DEDUCTIVE APPROACH 

. 

Deductive Tableaus 

The basic structure of this approach is the deductive tableau, which consists of a set of rows; 
each row contains either an assertion or a goal, and an optional associated output entry. 

Example: 

The rows below are part of the tableau for the synthesis of the integer quotient program; in 
the actual synthesis, these rows are interspersed with others. 

assertions goals outputs 
quot(i,   j) 

1.    i > 0  and j > 0 

2. m i = z • j + y and 
0 < y  and y < j 

z 

3.    i < j 0 

4.    j < i quot(i - j,   j) + 1 

Here, i and j arc constants, and y and z are variables. An instance of a row is obtained by replacing 
free variables of a row with terms; constants and bound variables cannot be replaced.      | 

The intuitive meaning of the tableau is that if, under any given interpretation, every instance 
of each of the assertions is true, then some instance of at least one of the goals is true. In this 
case, we will say that the entire tableau is valid. Furthermore, if some instance of one of the goals 

is true or some instance of one of the assertions is false, then the corresponding instance of the 
output entry will satisfy the specification for the desired program. 

Thus, the goals of the tableau have a tacit disjunction between them, while the assertions have 
a tacit conjunction. In addition, the free variables of the goals have a tacit existential quantification, 

while the free variables of the assertions have a tacit universal quantification. 

For example, the second row above has a free variable z, which is also the output entry. This 

means that if, for a given interpretation, there is some value of z for which goal 2 is true, then 

that value of z will satisfy the specification for the quotient program. 

If an assertion has no output entry, we are not concerned with the output in the case in 

which the assertion is false. For example, assertions that arc axioms will have no output entries. 

Typically, all the goals will have output entries. 



M 

A tableau that contains as a goal the proposition true, or as an assertion the proposition false, 

will always be valid. 

It is possible to use tableaus that contain more than one output column, corresponding to the 
synthesis of systems of more than one program, but we shall not discuss this extension here. 

Note that the distinction between assertions and goals is artificial and docs not increase the 
logical power of the system. In fact, if we delete an assertion from the tableau and add its negation 

as a new goal, or delete a goal and add its negation as a new assertion, we obtain an equivalent 
tableau; this is known as the duality property. The distinction between assertions and goals does 
make proofs easier for people to understand and may have strategic import. 

The free variables in a row are dummies; they may be systematically replaced by new variables 
without changing the meaning of the tableau. For simplicity, we assume that the variables are 
implicitly standardized apart, so that the variables of any row arc distinct from those of any other 
row, and the variable bound by one quantifier is distinct both from that bound by any other 
quantifier and from any free variable. If, in an example, wc happen to write a tableau in which this 
restriction is violated, wc may imagine that the variables are distinguished by invisible subscripts. 

How to Begin 

If we are given a specification of form 

f(x)    <=    find z such that r(x,z) 

where p(x), 

the corresponding theorem is 

(Vx)[t/ p(x)  then (3z)r{x,z)\. 

We construct an initial tableau 

assertions goals 
outputs 

p(a) 

r{a, z) z 

Here a is a constant, obtained by removing the quantifier (Vz) through skolemization, and z is a 

free variable. The meaning of the tableau is that if, under any interpretation, p(a) is true, then 

some instance of r(a,z) is true, and the corresponding instance of z will satisfy the specification. 

The output entry is a device for ensuring that the proof will be sufficiently constructive and for 

extracting a program from the proof. 

     ••!••! 
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Typically, in addition to the input condition p(a), the initial assertions of the tableau will 

include axioms for the theory under consideration (e.g., integers, finite sets, etc.) and the underlying 
logic. 

The Deductive Process 

In the deductive system we describe, we apply deduction rules that add new rows to the 
tableau without changing its meaning - i.e., so that an equivalent tableau is produced. The process 
terminates if we develop the final goal 

true t 

r 

or the final assertion 

false t 

where t is a term consisting entirely of symbols from the target programming language. Because the 
deduction rules preserve meaning, obtaining such a goal or assertion will imply that the original 

tableau is valid. We are also assured that t will satisfy the program's specification. The final 
program we obtain is 

/(«) t. 

The restriction on the symbols of t will ensure that the proof will be sufficiently constructive 
to enable us to compute the output; in particular, t will not be allowed to contain quantifiers, 
untestable predicates, or uncomputable functions. 

We assume that the variables of the new rows added by a deduction rule are implicitly 
standardized apart in the same way the variables of the original tableau are. 

At each stage, there may be several deduction rules that can legally be applied, not all of 
which arc helpful in reaching a final program. Also, different choices of deduction rules may lead 
to different final programs, some of which may be better than others. In this paper, we largely 
disregard the strategic aspect of making an opportune choice of deduction rules. 

» 1 

—. 
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DEDUCTION RULES 

The deduction rules are divided into several categories: 

• The splitting rules break a row down into its logical components. 

• The skolemization rules enable us to remove quantifiers. 

• The transformation rules replace subsentences by equivalent sentences. 

• The resolution rules enable us to perform a case analysis on the truth of a 
subsentence. 

• The substitution rules enable us to use equivalences, equalities, or other special 
relations that appear in the tableau. 

• The matching rules enable us to introduce new equivalences, equalities, or other 
special relations into a tableau. 

• The mathematical-induction rule enables us to introduce an induction hypothesis. 

The splitting and mathematical-induction rules are basically the same as in Manna and Wald- 
inger [1980] but are outlined here for completeness. The transformation and resolution rules have 
been generalized to allow for explicit quantifiers. The skolemization, substitution, and matching 
rules are new. 

We first describe the splitting and mathematical-induction rules. 

The Splitting Rules 

The splitting rules break rows down into their logical components. 

Rule (and-split): 

The and-split rule may be expressed in a tableau notation as follows: 

assertions goals outputs 

7  and Q t 

7 t 

9 t 

This means that if a tableau contains an assertion of form   7 and Q,   we may add 7 and Q to our 

tableau as two separate assertions.  The output entries for the new assertions are inherited from 
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the original assertion; if there is no output entry in the original assertion, there is none in the new 
assertion either. The assertion 7 and $ need not be the last row in the tableau; it may occur 

anywhere. 

In general, the rows above the double line in a rule are the given or original rows, which are 

required to be present in the tableau before the rule is applied; the rows below the double line a.e 
the derived or new rows, which are added to the tableau as a result of applying the rule. 

The original assertion is not deleted from the tableau when the rule is applied. Although this 
may be advisable for efficiency, we are disregarding strategic considerations here. 

The or-split rule is similar to the and-split rule and breaks a goal of form 7 or $ down into 
two goals 7 and Q. The if-split rule breaks a goal of form if 7 then Q down into a new assertion 
7 and a new goal Q. There are no rules for breaking down an assertion of form 7 or Q , an 

assertion of form   if 7 then Q , or a goal of form   7 and Q. 

Mathematical Induction 

We present here only the simplest case of the induction rule, in which the induction hypothesis 
is formed directly from the theorem to be proved, rather than from a subsequent goal or a 
generalization. 

Rule (mathematical induction): 

Suppose our initial tableau is 

assertions goals 
outputs 
/(a) 

p(a) 

r(a,z) z 

In other words, we arc trying to construct a program to produce, for an arbitrary input a, an output 

z satisfying the output condition r(a,z), provided that the input a satisfies the input condition 
p{a). Then we may assume inductively that the program / we are trying to construct will produce, 

for an arbitrary input u, an output f(u) satisfying the output condition r[u,f(u)), provided that 

u satisfies the input condition p(u) and that u is strictly less than a in some well-founded ordering 

-<„,. In other words, we may add to our tableau as a new assertion the induction hypothesis 

then if p(u) 
then r(u, /(u)) 

• 



"" " 1 

11 

This induction hypothesis states that the program will work properly on all inputs "smaller" than 
the arbitrary input under consideration. The particular well-founded ordering -<„, to be used in 
the proof is left unspecified; it must be discovered during the proof process. 

Example: 

The initial tableau for the quotient program is 

assertions goals outputs 
quot(i,j) 

i > 0   and j > 0 

(32/) 
i = 2 • j + y  and 
0 < y  and y < j 

z 

By the induction rule, we arc justified in adding to our tableau, as a new assertion, the induction 
hypothesis 

«7 («,») -<w (i,j) 
then if u > 0 and v > 0 

u = quot(u, v) • v + y 
and 0 < y  and y < v 

then (3y) 

This assertion contains instances of the term quot{u, v), where quot is the program being 

constructed. If this assertion is used in the proof, terms of the form quot(s, t) can appear in the 
output column, corresponding to recursive calls in the final quot program.    | 

This is the simplest case of the induction rule; the more general case, not presented here, allows 
us to form an induction hypothesis from rows other than the initial rows of the ableau. This more 

general induction rule enables us to construct auxiliary subprograms. 

THE SKOLEMIZATION RULES 

Before we can introduce the skolcmization rules, we must introduce the notion of "polarity" 

and the associated concept of "quantifier force." Polarity is also of strategic import in controlling 

the other rules. Murray [1982] used it in his formulation of nonclausal resolution and it was known 

to logicians earlier. 

. 

Polarity 

A subscntence of a given sentence is said to be 

  ^^mm __,, 
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• Of positive polarity in the sentence if it is within the scope of an even number of 
(explicit or implicit) not connectives, and. 

• Of negative polarity in the sentence if it, is within the scope of an odd number of 
(explicit or implicit) not connectives. 

In determining polarity, a subsentence of form   if P then Q   is regarded as an abbreviation for 
(nor P) or Q,  so that P is within the scope of one more implicit not connective than Q. 

A sentence of form  P = Q  is regarded as an abbreviation for 

(P   and Q)  or 

((not P)  and (not Q)), 

in which the second occurrences of P and Q are within the scope of one more not connective than 
the first. As a consequence, P and Q have both positive and negative polarities in the sentence. A 
subsentence is said to be of strict polarity if it does not have both polarities in the sentence. 

Intuitively speaking, the truth of a sentence is directly related to the truth of its positive 
subsentenccs, and the falsity of its negative ones. In particular, we might make a sentence become 
true (or valid) by replacing one of its strictly positive subsentenccs with true or one of its strictly 
negative subsentenccs with false, but never by replacing one of its strictly negative subsentences 
with true or one of its strictly positive subsentences with false. 

Example: 

The subsentences of the following sentence are annotated according to their polarities in the 

sentence: 

(if p(x)- 

then ((3y)q(y)+)+)+. 

Wc can extend the notion of polarity to apply to a tableau as well as to a sentence. We regard 
each goal as positive in the tableau. Because, by the duality principle, an assertion 7 is equivalent 

to a goal not 7, each assertion is within the scope of an implicit not connective, and is therefore 
negative in the tableau. 

Example: 

The subsentenccs of the following tableau are annotated according to their polarities in the 

tableau: 



-T-.   .  
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assertions goals outputs 

(if P(*)
+

                  Y" 
{then ((3y)q(y)-y) 

f(p(x)±    = [9(x)±   or r(x)±]±)+V 
\or p(a)+                                         ) 

Note that the subsentence p(x) is negative in the sentence 

if p(x) 
then (3y)q(y) 

but positive in the tableau, which contains this sentence as an assertion. Note also that every 
subsentence of an equivalence has both polarities and the only sul'sentenccs of both polarities are 
subsentences of equivalences. If we wanted to include the connective if P then Q ehe Z in our 
language, the subsentences of P would also have both polarities, since this construct is regarded 
as an abbreviation for 

[P   and  Q)   or 
({notP)  and Z). 

Henceforth, however, we shall not regard this connective as part of the language. 

The Force of Quantifiers 

Hy the well-known duality between the universal and existential quantifiers, the "roles" of 

the quantifiers are reversed by putting them within the scope of an additional negation sign. 

Thus, the universal quantifier in not (Vx);)(x) plays the same role as the existential quantifier in 
(3x)[notp(x)\. 

With this in mind, we define the force of a quantifier (Vx) or (3r.) in a subsentence £ of form 

(Vx)7 or [3x)T in a sentence (or tableau) according to the following rules: 

• The quantifier has universal force if it is a universal quantifier and £ is of positive 

polarity, or if it is an existential quantifier and £ is of negative polarity in the 

sentence (or tableau). 

• The quantifier has existential force if it is an existential quantifier and £ is of 

positive polarity, or if it is a universal quantifier and £ is of negative polarity in 
the sentence (or tableau). 
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Because a subsentence may have both positive and negative polarity, a quantifier may be of 
both positive and negative force; these are the quantifiers within the scope of an equivalence. A 

quantifier that does not have both forces is said to be of strict force. 

Example: 

The quantifiers in the following tableau are annotated according to their forces: 

assertions goals outputs 

if (3x)3p(x) 
then [3y)*q{y) 

(V*)VP(*) 

pU)V3r(*)l   =   r(a) 

Here, the quantifier (3x) has existential force because the subsentence {3x)p[x) is positive in the 
tableau; the quantifier {3y) has universal force because the subsentence (3y)q(y) is negative in the 
tableau. All the quantifiers are of strict force except (3u).    I 

Removal of Quantifiers 

Rather than regard quantifier removal as a separate stage, to be done before theorem proving 
takes place, we allow skolemization to occur at any stage of the theorem-proving process. In 
practice, we are likely to defer removal of those quantifiers within the scope of an equivalence, 
because this will require prior removal of the equivalence, with consequent explosion of the theorem. 

The skolemization rules permit us to remove any quantifier of strict force from a tableau; the 
variables bound by the quantifier are replaced by free variables if the quantifier is of existential 
force, and by "skolcrn" constants or terms if the quantifier is of universal force. Quantifiers of both 

forces cannot be removed. (However, if we first remove the enclosing equivalences, a quantifier of 

both forces will be split into two or more quantifiers of strict force; see the section "Removal of 
Equivalences.") 

Removal of Quantifiers of Universal Force 

We first deal with the removal of quantifiers of strict universal force. 

Rule (universal elimination): 

Suppose our tableau contains an assertion (or goal) 7 of form 

7: 7»{{...zYP). 

• 
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Here, (...z)* P denotes a subscntence of 7, where (...z)v is a quantifier, either (Vz) or (3z), that is 

of strict universal force (in the tableau). 

Assume that the variables x\,i<i, ... ,xm are the only free variables in 7 and that (...j/i)3, 

(•••I/2)3» • • • > (—1/n)3 are the only quantifiers in 7 of existential force that contain the subsentene 
(...z)wP within their scope. Let / be a new function symbol, i.e., one that occurs nowhere in the 
tableau. 

Then we may add to our tableau the new assertion (or goal) 

7' : 7o(P<{z<- f(xu ...,xm,yi, ...,y„)}). 

In other words, 7' is formed by removing the quantifier (—z)w in 7 and replacing every occurrence 
of z in P by the term f(x\, ... ,xm,j/i, ... ,y„). We shall refer to a term added in this way as a 
akolem term, and to / as a skolem function. We will say that we have "replaced" the quantifier 
with the skolem function. 

In the special case in which there arc no free variables x\,x<i, ..., xm and no enclosing 

quantifiers (.••2/i)3, (•••Jte)3» • • • > (•••J'n)3» we let a be a new constant; then we may add to the tableau 
the new assertion or goal 

7': 7o{P + {z^ a}). 

We will refer to a constant added in this way as a skolem constant. "9 

Example: 

Suppose our tableau contains the assertion 

assertions goals outputs 

7 :    r{x)  or 
(Vy)3[q{x,y)  and {3zfp[x,y,z)\ 

Here, x is the only free variable in 7 and (Vy)3 is the only quantifier of existential force that 
contains the quantifier (3z)v within its scope. Therefore, we may remove the quantifier (3z)v from 
the assertion by replacing every occurrence of z with the skolcrn term f(x, y), adding to our tableau 
the new assertion 

Pi    r(x) or 
(V2/)[<?(z,y)  and p(x,y, f(x,y))\ 

where / is a new function symbol.    I 

Note that the rule enables us to remove single occurrences of quantifiers without altering others 

in the sentence. 



16 

Removal of Quantifiers of Existential Force 

The forthcoming existential elimination rule allows us to remove quantifiers of strict existential 
force. However, the quantifier to be removed must not be within the scope of any quantifiers of 
universal force; such quantifiers should be removed by prior application of the preceding rule. 

Rule (existential elimination): 

Suppose our tableau contains an assertion or goal 7 of form 

7: H(...Z)3P) 

where (...z)3 is a quantifier of strict existential force. Assume that no quantifiers of universal force 
contain the subscntence (,..z)3P within their scope. Then we may add to the tableau the new 

assertion or goal 

7' HP)- 

In other words, we may remove the quantifier (•••z)3 so that every occurrence of z in P becomes a 

free variable. 

Example: 

Suppose our tableau contains the goal 

assertions goals outputs 

7:     (3z,)3[p(2,)  and {3ztfq{zuz2)\ 

Here the quantifier (3z2)
3 is not within the scope of any quantifier of universal force. Therefore, 

we may remove the quantifier (322)
3 by adding to the tableau the new goal 

7' :     {3zt)[p(zi) and q(zuz2)) 

We could also have used the rule to remove the quantifier (3zi) from 7.    I 

• ' - •        -     -      -      r      • • • •   i . 
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TRANSFORMATION RULES 

Before we introduce the transformation rules, it is necessary to extend the notion of unification 

to sentences with quantifiers. 

Unification 

Unification became widely known through its use in the original resolution principle (Robinson 
[1965]), in which it was applied only to atomic sentences. The extension to nonatomic sentences 
with quantifiers is straightforward. 

We assume that, in matching subsentences of sentences with quantifiers, the variables that 
are bound in the surrounding sentence are distinguishable from free variables by some invisible 
annotation. Then: 

• Logical connectives are treated like function symbols. Thus, 

if p(x)  then q(x, f{x)) 

will unify with 

if p{a)  then q{y, z), 

yielding a most-general unifier 

{x <- a, y «- a, z <- /(a)}. 

• Bound variables are treated like constants. Thus, we cannot unify the subscntencc 
p(u) of the sentence 

(3u)[p(u) and q{y)\ 

and the subsentence p{z) of the sentence 

{Vz)[if p{z)  then r(u,z)\. 

However, we can unify cither of these subsentences with the subscntencc p(x) of 
the sentence 

p{x) or s(z), 

in which x is free, yielding the most-general unifiers {x <— u} and {x *— z}, 

respectively. 

• To unify two sentences of form (Vz)P and (Vx')P', we attempt to unify P and 

P'<{x' *- x), the result of replacing all occurrences of x' in P' with z, treating x 

• mil 
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as a constant. If we are successful, obtaining a unifier 0, our result is {x' *- x}o0, 

the composition of the substitution {x' *- x} and 0. (Similarly for existential 
quantifiers.) 

Example: 

To unify (Vz)p(x, a, u) and (Vy)p(y, v, 6), where u and v are free variables, we first unify p(x, a, u) 

and p(y, v, b) •* {y «— x}, that is, p[x, v, 6), obtaining a unifier 0 = {u «— a,u <— b}. Our resulting 
unifier is then {y *— x} O 0 = {y *— x,v *— a,u *— b}.      | 

Statement of a Transformation Rule 

Suppose that any sentence of form P is equivalent to the corresponding sentence of form Q. 

Then a transformation rule 

allows us to replace a subsentence of form P by the corresponding equivalent subsentence of form 
Q in any assertion or goal, yielding a new assertion or goal, respectively, to add to the tableau. 

Before we present the precise statement, let us give a rough schematic description of the 
application of a transformation rule to an assertion in the ground case, where there are no variables 
and also no output entries: 

assertions goals outputs 

HP) 

HQ) 

Similarly, to apply the rule to a goal, we write 

assertions goals outputs 

HP) 

HQ) 

Hero, if 7{P) is a sentence with a subsentence P, T(Q) is the result of replacing every instance of 

P in 7{P) with Q. 

For example, the then-false rule 

if Q  then false   =»   not Q 

'*  '"•      e    i N •       -     -       -      -       .      T •       •   • I -*—*M»<—H 
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applied to the goal 

assertions goals outputs 

and not   if p(z)  then false 

not q(x) 

yields the new goal 

not not p(x)  and 
not q(x) 

• 

We use the box to indicate the subexpression to which the rule is about to be applied. 

Other examples of transformation rules are the not-not rule 

not not $   =*   9 

and the or-two rule 

9 or g =» g. 

To describe the application of these rules more precisely, we regard the script letters 9, )i, 

..., that appear in such rules as free variables that range over sentences, and we attempt to unify 
the left-hand side of the rule with subsentcnecs of the tableau. 

Rule (transformation): 

The application of a transformation rule 

P   =>   Q 

to an assertion is represented in tableau notation by 

assertions goals outputs 

7 / 

(? + 0)M{P+9<-Q40) f«0 

Here we assume that 

-"—      —. . —      -      -       -      - •   • -      •      -  
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t 
• There is a set {Pi, ..., Pk} of disjoint subsentences of 7 such that P, Pi, ..., Pk 

are uniflable, with most-general unifier 0. Thus P + 0, Pi •* 0, ..., Pk •* 0 are all 
identical sentences. 

• 7-*0,P-*0, Q<0, and f-*0 are the results of applying the substitution 0to7,P, 
Q and /, respectively. 

• (7 •+&)•+{P -+B *— Q+0} is the result of replacing every occurrence of P-*0 in 7-*0 
with Q * 0. 

• If i is any free variable in / that occurs within the scope of a quantifier, 0 cannot 
instantiate x to any term t containing a bound variable of ?. 

(dependency restriction) 

If there is no output entry / in the original row, then there is no output entry in the new row 
either. 

In the precise version of the rule, we consider a set of subsentences of 7 because these reduce 
to a single sentence on application of the substitution 0. 

We assume that the variables of transformation rules are standardized apart in the same way 

as the variables of the tableau itself. Thus, the bound and free variables of transformation rules 
are tacitly renamed so that they are distinct both from one another and from the variables of the 

tableau. 

The application of a transformation rule P =* Q  to a goal is similar. In tableau notation, we 

have 

assertions goals outputs 

7 / 

{7 + 0) + {P*0+- Q + 6) f«& 

The same notation and the same restrictions apply as when the rule was applied to an assertion. 
It is also possible to apply transformation rules to output entries. 

We first illustrate the rule with a straightforward example; then we present a counterexample 
to show that the dependency restriction is necessary. 

Example: 

Suppose our tableau contains the assertion 

assertions goals 
_ .                 .       .,   _ . 

outputs 

g{x,v) 
7 :     p(a,y)  and p(x,f(x)) ] or 

r(x,y) 

— •  
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Then we can apply the and-two rule 

9  and Q   =*   9 

to the subexpression  p(a,y) and p(x, f(x))  of 7. The unifier 9 is 

{i 4- a,   y+- f{a),   Q *- p(a, f(a))} 

and the new row is 

p(a,f{a))  or r(a, f{aj) fan*)) 

Note that the substitution 0 is applied to the output entry as well as to the assertion.    | 

The Dependency Restriction 

Let us consider the rationale for the dependency restriction. 

Example: 

To see why the restriction is required, suppose our tableau contains the assertion 

7: (Jy) p{x,y)  or p{y,x) 

Then, were the restriction not required, we could apply the or-two rule 

9 or g  -»  9 

to the subsentence 

p{x,y)  or p(y,x) 

of the assertion. The unifier 0 would be 

{x <- y,  9*- p(y, y)} 

and the (erroneous) new row would be 

(32/)p(y,y) 

--- -«-- -      -              -   - -    •     ---       -      - •   -       - *• •   i - ••• fc- 
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This step violates the dependency restriction, because x is a free variable in the assertion, x 

occurs within the scope of the quantifier (3j/), and 0 instantiates x to the term y, which contains 
a bound variable. 

The new assertion is not a valid conclusion to draw from the given one. For example, in the 

interpretation whose domain is the set of integers {0,1} and that takes p(x,y) to mean x < y, the 
given assertion means 

[3y)[x < y  or y < x] 

for any x, which is true, but the new assertion means 

(3J/)IJ/ < y], 

which is false.    | 

In fact, if we had skolemized the given assertion, we would have obtained an assertion 

p(x>f(x))  °r p(f(x),x) 

The or-two rule cannot be applied to this assertion, because its left-hand side     Q or Q     fails to 
unify with the assertion; the subterms x and f(x) cannot be unified.      | 

When the application of a transformation rule is blocked by the dependency restriction, it is 

possible that the rule may be applicable if the quantifier of the offending bound variable is first 
removed by skolcmization. 

Example: 

Suppose our tableau contains the goal 

assertions goals outputs 

(3l/)(p(x,l/)   or p[y,x)) 

Then if we momentarily disregard the dependency restriction, we can apply the or-two rule 

g or g => g 

to the subsentencc   p(x,y)or p(y,x). The unifier 0 is 

{x<-y,  g *- p{y,y)} 
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and the new goal is 

(3y)p(y,y) 

Although this is a valid step, which preserves the meaning of the tableau, it does violate the 
dependency restriction: the free variable x, which is within the scope of the quantifier (3y), is 
instantiated to the bound variable y. Thus, in this case, the restriction is unduly prohibitive. 

Had we first removed the quantifier by skolemization, however, obtaining the goal 

p(x,y)  or p{y,x) 

we could indeed have applied the or-two rule to obtain the goal 
#- 

p[y, y) 

The True-False Rules 

We assume we have a full complement of true-false rules for removing occurrences of the 
propositions true and false from sentences, e.g., the and-true rules 

Q  and true   =*   Q 

true  and Q    =»   Q, 

the then-true and then-false rules, 

if Q   then true   =*    true 

if Q  then false   =*    not Q, 

and the all-true and all-false rules 

(Vx)true   =*    true 

(Vz)/s/se   =*   false. 

These rules and certain of the other transformation rules are so fundamental that sorr.cUmes 

we will apply them automatically, as a simplification step, without mentioning it. 

Removal of Equivalence 

Wc also assume we have the equivalence elimination rules, the iff 

g = X    =»  (g  and X)  or 

rule 
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((not §)  and (not X)) . 

—— -—r— T- 

and the iff-and rule 

<5 

0 = X   => (if g   then X)  and 
(if X   then g). 

These rules will enable us to remove equivalences when we cannot prove the theorem otherwise. 
By repeated application of these rules, we can ensure that a given quantifier has strict force, and 
then remove it by skolemization. This may be necessary if we fail to apply, say, a transformation 
rule because a quantified variable has caused the unification to fail or the dependency restriction 
to be violated. 

'• 

r 

IB 

. 
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THE RESOLUTION RULE 

The resolution rule performs a case analysis on the truth of a subsentencc of the assertions 
or goals of a tableau. At the same time, the rule instantiates variables and accounts for the 
introduction of conditional expressions into the program being constructed. 

Statement of the Resolution Rule 

The rule can be applied to two rows of the tableau, whether these rows contain assertions or 
goals. Wc present first the "GG-form" of the rule, which applies to two goals. 

The schematic description of the ground version of the rule is as follows. 

' 

assertions goals outputs 

HP) / 

9(P) g 

7{true)  and 
Qifalse) 

«/ p 
then f 
else g 

In other words, wc seek a common subsentencc P of f and $, replace all occurrences of P in 7 

and in Q with true and false, respectively, and add the conjunction of the resulting sentences as a 

new goal. The output entry is a conditional expression, with P as its test. 

The rationale for this rule is as follows. Consider an interpretation under which the derived 

goal 7{true) and Q(false) is true; we seek to show that one of the two given goals 7(P) or Q{P) 

is then also true under this interpretation. Because the conjunction is true, both of its conjuncts 
7(true) and Q(false) are true. In the case in which P is true under the interpretation, the given 

goal 7(P) is true; in this case, / is a suitable output. In the case in which P is false, the given 

goal $(P) is true; in this case, g is a suitable output. In cither case, the conditional expression 
if P then f else g  is a suitable output. 

The more precise description of the rule is as follows: 

Rule (resolution): 

An application of the resolution rule is written in tableau notation by 
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I 

5 

assertions goals outputs 

7 / 

9 g 

(7-0)-*{P -0 <- true}  and 

{Q+0) + {P +0 <- false} 

if P+0 
then f + 0 
else g-*9 

I 
• 

Here we assume that 

• P = {Plt . . . tPk} is a set of subsentcnces of 7 and Q = {<2i, • • • , Q-t} is a 
set of suhscntcnces of Q that are all unifiablc with most-general unifier 0. Thus 
P\ -*0, . . . , Pk~*0, Q.y*0, . .., Q.f+0 are all identical sentences, denoted (by abuse 

of notation) by P -*0. 

• As before, (7 + 0)-*{P -*0 <— true} and {5+0)-*{P -«0 <— false} denote the results 
of replacing every occurrence of P -+0 in 7 -*0 and Q •+ 0, respectively, with the 
propositional symbols true and false, respectively. 

• If x is any free variable in 7 or in Q that occurs within the scope of a quantifier, 
then 0 cannot instantiate x to any term t containing a bound variable of 7 or of 

[dependency restriction) 

•      No variable that is bound in 7 or in Q may occur free in the new row. 
(no-escape restriction) 

In the precise version of the rule, wu consider a set of subsentcnces of 7 (and of §) because 

these sentences reduce to a single sentence on application of the substitution 0. Recall we have 
assumed that the variables of our tableau are standardized apart, so that the variables of 7 are 
distinct from those of Q. 

Murray's [1982) polarity strategy for resolution allows us to consider only those applications of 
the rule under which some occurrence of P-*0 in 7-*0 is positive in the tableau and some occurrence 

of P-*0 in Q-*0 is negative in the tableau. This strategy not only preserves completeness, but also 

rarely blocks a reasonable step. 

Examples 

We give a straightforward example of the application of the rule and two counterexamples 

illustrating the necessity for the dependency and no-escape restrictions. 

P 



wmmm 

27 

Example: 

Suppose our tableau contains the two goals 

assertions goals outputs 

/(*) /:    1 x < ap 

9{y) Q :     not   b < y ~ 

Here we use the box notation to indicate the subsentences that arc about to be matched in applying 
the rule. 

According to the tableau, if we can find x such that x < o, then f(x) is a suitable output, 
and if we can find y such that not (b < y), then g(y) is a suitable output. Let P be the subset 
{x < a, b < y} of subsentences of 7 and Q. Then P is unifiable with most-general unifier 0 = 
{x <— b, y <— a}, and P -*0 is 6 < a. By the resolution rule, we may infer the new goal 

(6 < a) + {(b < a) <— <rue}  and 
(no< (b < a))+{(b < a) *- /o/se} 

»/ 6 < a 
then /(6) 
efee 17(a) 

i.e., 

true  and 
(not false) 

if b < a 
then f(b) 
else g(a) 

which reduces to 

true 

if b < 0 
then f(b) 
else g(a) 

< 

under the not-false rule 

not false   =>   true 

and the and-true rule 

P   and true   =>    P. 

Note that this application of the resolution rule is in accordance with the polarity strategy 

Example: 

To see why the dependency restriction is necessary, assume our tableau contains the two goals 
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assertions goals outputs 

7:     (Vz) p(z,ti) |+ 

g :     {Vy)(not  p{x,y) |~) 

If the dependency restriction were not imposed, we would be able to apply the resolution rule to 
match p{z,u) against p{x,y), with most-general unifier 0 = {x <— z,u *— y}, obtaining (erroneously) 
the new row 

(Vz)frue  and 
(Vy)(not false) 

which reduces to 

true 

after true-false transformation. 

This step violates the dependency restriction, because the free variables x and u, which occur 

within the scopes of quantifiers, are instantiated to the bound variables z and y, respectively. 

The preceding deduction is not sound, because we can imagine interpretations under which all 
instances of both goals are false, e.g., if p is the equality predicate and the domain has more than 
one element.    | 

Example: 

To see why the no-escape restriction is necessary, assume our tableau contains the goals 

assertions goals outputs 

p(z) Y   and q(z) fa) 

[Vu)(not    p(u) |-) 

Then, if the no-escape condition were not imposed, we would be able (erroneously) to derive the 
goal 

[true  and q(u))  and 

(Vu)(not false) g{u) 

which reduces to 
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g(u) 31«) 

Here the bound variable u of the second goal has "escaped" and become free, giving it a tacit 
existential quantification in the new goal it did not have in the original goal. 

For instance, in an interpretation over the integers in which p(z) and q(z) denote the conditions 

that z is even and odd, respectively, both given goals arc false: our first goal requires that we find 
a z that is Soth even and odd, while our second goal requires us to show that every integer is not 
even. The Jerived goal, on the other hand, is true: it requires that we find an integer u that is 

odd. 

Note that, if the tableau contains the two goals 

assertions goals outputs 

P(*) l+ 

(Vu)(not    p(u) ~) 

then we could apply the resolution rule to match p{z) against p(u), taking the most-general unifier 
0 = {z «— u} without violating either restriction. In this case, the new goal is 

true  and 
(VM)(not false) 

which reduces to 

true 

Dual Forms of the Resolution Rule 

We have given the GG-form of the resolution rule, which applies to two goals. The AA-, AG-, 

and GA-forms of the rule, which apply to two assertions, an assertion and a goal, and a goal and 

an assertion, respectively, may be derived by duality from the GG-form. The schematic version of 

the GA-form of the rule (ground case) is as follows: 
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Tl 

a 

assertions goals outputs 

HP) / 

9(P) 9 

T(true)  and 
not Q(false) 

if P 
then f 
else g 

m The precise description of the rule and its restrictions are analogous to those of the GG-form. 

The AA-form is phrased to produce a new assertion rather than a new goal. If one of the given 
rows, say 7(P), has no output entry, the output entry for the new row is simply g (or, in the 
precise version, g •< 0) rather than a conditional expression. If neither of the given rows has an 
output entry, the new row has no output entry either. The polarity strategy for the dual forms of 
the resolution rule is precisely the same as that for the GG-form. 

Relaxing the Dependency Restriction 

The dependency restriction for the resolution rule can be relaxed to allow the rule to apply in 
more situations; the relaxed restriction, however, is more complex than the original. 

Recall that the restriction is 

If x is any free variable in the given rows 7 or § that occurs within the scope 
of a quantifier, then the unifier 0 cannot instantiate x to any term t containing a 
bound variable of 7 or of Q. 

Actually, the restriction can be relaxed by applying it only to free variables that occur within 
the scope of a quantifier whose variable actually occurs in one of the matched sentences. More 
precisely, the restriction can be revised as follows: 

• If x is any free variable in 7 or in $ that occurs within the scope of a quantifier 
(... y) whose variable y occurs in at least one of the matched sentences Pt, . . ., pk 

or Q\, . . . , J2/, then 0 cannot ins!.initiate x to any term t containing a bound 
variable of 7 or of Q. 

[relaxed dependency restriction) 

Let us look at an (admittedly rare) example of a valid application of the resolution rule that 

violates the original dependency restriction but not the relaxed dependency restriction. 

Example: 

Suppose our tableau contains the goal and assertion 
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1 
assertions goals outputs 

7:     (Vj,)(|p(x) +   and q(y)) 

^:    P*\th*n   p(z)-) 

Disregarding both versions of the dependency restriction momentarily, we can apply the GA- 
resolution rule, taking 0 to be {x «— z}, to obtain the new goal 

(Vj/)(true   and q{y))   and 

which reduces to 

(V2/)q(y)  and 
not (3z)(not r(z]) 

under true-false transformation. 

This step is legitimate — it preserves the meaning of the tableau — but it violates the original 
dependency restriction. The free variable x in the goal 7, which occurs within the scope of the 
quantifier (Vy), is instantiated by 0 to the bound variable z. On the other hand, the step does not 
violate the relaxed dcpcndcncty restriction, because the variable y of the quantifier (Vj/) does not 
occur in the matched subsentencc p(x).    | 

We did not present the relaxed dependency restriction at first because it is more complex than 

the original restriction and only permits a few additional applications of the resolution rule. 
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EQUALITY AND EQUIVALENCE SUBSTITUTION RULES 

The equality predicate has long been recognized as meriting special treatment. The use of 
axioms to represent the properties of the relation lengthens the proof and dramatically explodes 

the search space. In the resolution framework, special inference rules such as paramodulation (Wos 
and Robinson [1969]) and E-resolution (Morris [1969]) were soon brought to bear in an attempt to 
control the proliferation of clauses. 

The equivalence connective has not been recognized as such a trouble spot, but, as we have 

indicated in the introduction, it is common in the specification of programs. Proofs become longer 
and lose their intuitive motivation when equivalence is paraphrased in terms of other connectives. 
Furthermore, the techniques that apply to the equality predicate can be easily adapted to the 

equivalence connective. In this section, we present nonclausal versions of both paramodulation and 
Irresolution and apply the rules to both equality and equivalence. 

Equality Substitution Rule 

The "substitution rules" are our nonclausal counterpart of paramodulation. The equality 
substitution rule allows us to use an equality that occurs in one row of a tableau to replace a 
subterm with an equal term in another (or even possibly the same) row. We present the AA-form 
of the rule, which applies between two assertions. 

The rough schematic description of the ground version of the rule is as follows: 

assertions goals outputs 

ns = T) / 

$($)                 1 9 

7{false)  or 

9(T) 

if S = 7 
then g 
ehe  f 

Here, we seek an explicit equality S = T in /, where S also occurs in §. We replace every 

occurrence of S = T in 7 with false, replace some occurrences of S in Q with T, and add their 

disjunction as a new assertion. The output entry is a conditional expression with S = T as its 

test. Note that, in an abuse of notation, we do not necessarily replace every occurrence of S in Q 

with T. 

The rationale for this rule is as follows. Consider an interpretation under which both given 

assertions are true; we seek to show that the derived assertion is also true under this interpretation. 

Equivalently, we show that if the derived assertion is false, then one or the other of the given 

assertions is also false.   Because the disjunction    7(false) or §(T)   is false, each of its disjuncts 
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7{false) and $(T) is false. In the case in which 5 = T is false, because 7(false) is false, wc know 

the given assertion T(S = T) is false; in this case, / is a suitable output (i.e., it satisfies the 
specification for the desired program). In the case in which S = T is true, because §(T) is false, 
wc know the given assertion Q(S) is false; in this case, g is a suitable output. In cither case, the 
conditional expression   if S = T then g else f  is a suitable output. 

The precise description of the rule follows: 

Rule (equality substitution): 

Expressed in our tableau notation, the rule is 

assertions goals outputs 

7 / 

9 9 

(7 + 0) + {(S+0=T+0)<-false}   or 
{Q40)<{S+0*- 7-0} 

if S«0=T <0 
then g-0 
else f + 0 

Here we assume that 

• S = {SQ, SI, ... sic} and T = {tt, ... ,tk} are sets of terms such that 

• J contains at least one occurrence of each equality s\ = t\, ..., s^ = tie', 

• Cj contains at least one occurrence of 8Q\ 

• 0 is a most-general unifier of S and of T: i.e., SQ-*0, SI •* 0, . ..,s**0 

are identical terms, denoted by S -+0; and t\ +0, ...,£&40 are identical 
terms, denoted by T -*0; and 0 is one or the most-general substitutions 
that make these expressions identical. 

• {7-*0)-*{{S -*0 = T -*0) *— false} denotes the result of replacing every occurrence 

of the subsentencc S -+0 = T +0 in 7-*0 with the proposition false. 

• The symbol < is defined so that [Q •* 0) < {S •* 0 «— T •* 0} denotes the result of 

replacing one or more (but not necessarily all) occurrences of S -+Q in Q -+0 with 

T+9. 

• If x is any variable in 7 or in $ that occurs within the scope of a quantifier, then 

0 cannot instantiate x to any term t containing a bound variable of 7 or of Q. 

[dependency restriction) 

• No variable that is bound in 7 or in Q may occur free in the new row. 

(no-escape restriction) 

.   *.,   .. »..mi;   •— •   i     •   *      i  ,1     I 
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If one of the given rows, say J, has no output entry, the output entry for the new row is simply 

g-*0 rather than a conditional expression, as in the resolution rule. Again, if neither of the given 
rows has an output entry, the new row has no output entry either. 

The dependency restriction for this rule can be relaxed in the same way as for the resolution 
rule. 

According to the polarity strategy, we may assume that one occurrence of one of the equalities 

Si = t{ in 7 is negative in the tableau. We may also require that some element of $ not be a 
variable. 

This rule degenerates to paramodulation in the clausal, quantifier-free case. The completeness 
results of Brand [1975] apply to this rule if the skolemization, splitting, and transformation rules 
are included in the system, so that we can reduce our theorem to clause form. We assume the 
identity axiom i = x is included among the assertions. 

The motivation for the dependency and the no-escape restrictions of the equality substitution 
rule is the same as for the resolution rule. 

Example: 

Assume our tableau contains the two assertions 

assertions goals outputs 

if q(a)  then    f(x, a)   = g(x) 

[3u)p(\ f(u,v) ,u,v) 

Then, by the equality substitution rule, taking S 
{x «— u, v <— a}, we can derive the new assertion 

= {f(u,v),f{x,a)} and T = {g{x)}, and 0 = 

(i/ q(a)  then false)  or 

(3u)p(g(u),u,a) 

which reduces to 

(notq(aj)  or (3u)p(g(u), u,a) 

We again use the box notation to indicate the expressions to be matched. 

Equivalence Substitution Rule 

This rule is precisely analogous to the equality substitution rule, with equivalence playing the 

role of equality. 

.   u -• -  .  
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The rough schematic description of the ground version of the rule is as follows: 

assertions goals outputs 

?{$ s T) / 

9(S) g 

7(false)  or 

9(T) 

if S = T 
then g 
else f 

The more precise description of the rule is as follows: 

Rule (equivalence substitution): 

assertions goals outputs 

7 / 

9 9 

{7 + 0) + {{P+0 = Q<0) i-false}  or 

[g+0)<{P+0*- £+0} 

if P+0 = Q + 9 
then g-*9 
else f-*0 

The restrictions for the rule are the same as for the equality substitution rule, with equivalence 
playing the role of equality and sentences playing the role of terms. 

We assume that wc have among our assertions the reflexivity axiom for equivalence   Q = Q, 

where Q is a metavariable that can be matched against sentences. 

To take full advantage of our ability to leave quantifiers intact, we include among our assertions 

such familiar equivalences from predicate logic as the some-or equivalence 

(3x)[gor)i\   =    \{3x)9or(3x)X] 

and the all-and equivalence 

{Vx)\gandX\   m    [(Vz)$amf(Vx)K]. 

Such equivalences are redundant in the presence of the skolemization rules,  but may shorten 

deductions dramatically by allowing us to avoid skolemization and the removal of equivalences. 

Example: 

Suppose our tableau contains a goal 
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assertions goals outputs 

r(x)   =    {3y)[p(x,y) or (Vz)q(y,z)} 

Then, by applying the equivalence substitution rule between this goal and the aome-or equivalence, 

[3x)[Q or X]    = 

[(3x)9  or (3*)*] 

we can obtain the new goal 

false or 
r(x)    =    \{3y)p(x,y) or (3y){Vz)q(y, z)} 

which reduces to 

r(x)   =   \{3y)p{x, y) or [3y){Vz)q{y, z)\ 

RESOLUTION AND SUnSTITUTION WITH MATCHING 

The matching rules may be regarded as adding a new equality (or equivalence) to a goal when, 
because of a mismatch, we fail to apply the resolution rule or a substitution rule. We present first 
the CG-rcsolution rule with equality matching. 

Resolution With Equality Matching 
* 

In its rough schematic form, the rule is as follows: 

assertions goals outputs 

?W)) / 

${*{T)) t 

S = T   and 
T(truc)  and 
g(false) 

if *{S) 
then f 
else g 
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Here, we assume that S and T are distinct terms.   If they were identical, we could apply the 
resolution rule; in this case, we add the conjunct S = T as an additional condition to be proved. 

The rationale for the rule is as follows: for an interpretation under which the derived goal is 
true, its conjunct S = T is true, and P(S) and P(T) are equivalent. The justification for this rule 
is then the same as for the basic resolution rule, without equality matching. Before we give the 

precise description of the rule, let us motivate it with an example. 

Example: 

Suppose our tableau contains the two goals 

assertions goals outputs 

fix) 

7 :      p(x,a,b) +   and 

(| v{c,z,0{z)) +   or q(x)) 

C        no>(ifr{y)                         ) g[y) 9              \then    p(c,y,g{y))     J 

In attempting to unify the boxed subsentences of 7 and of Q, the unification algorithm develops 

the substitution 

0 = {x *— c,   y *— a,   z *— a} 

and then fails because the correponding terms b and g(a) cannot be unified. If we somehow could 
establish that the mismatched terms b and g(a) were equal, we could apply the resolution rule. 
This motivates the precise statement. We will return to this example afterwards.     | 

The precise description of the rule is as follows: 

Rule (resolution with equality matching): 

In our tableau notation, the rule is expressed as follows: 

assertions goals outputs 

7 / 

9 9 

$+0 = 7+0  and 
(7 + 0) +{Pi +0 «- true, .. 
(g+0) + {Qi+0^-false, . 

., Pk+0 «- true)  and 

..,Qt + 0*-false) 

if Z 
then f + 0 
else g + 0 

Here we assume the following: 

.    , • 
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• Pi, P%i • • •> Pk arc subsentcnces of 7. 

• 2ii Q.2t • • • i Q-t are subscntences of $. 

• S = {«i, «2i • • •, a*}  ana" T = {ti,t2, • • •, tt) are sets ofsubterms of P\t ..., Pkt Qit • • • > 
and Q.I. 

• P. is a sentence and 0 a most-general substitution such that 

• 6 unifies S; i.e., sj    0,S2-*0, ..., and sm-+0 arc identical terms, denoted 
by S + 0. 

• 0 unifies T; again T <0 denotes the unified term. 

• S -+0 and T -+0 are distinct terms. 

• Z is "nearly identical" to each of the sentences Pi-*0; in other words, for 
each t between 1 and k, 

{?i + 0)<{S +0 1- T+0}  is  Z. 

That is, Z can be obtained by replacing in Pi •* 0 zero, one, or more 
occurrences of S •* 0 with T -*0. 

• Z is "nearly identical" to each of the sentences <2y*0; in other words, for 
each j between 1 and I, 

{Qj+0)<{$+0<- T+0}  is  Z. 

• If a; is any variable in J or in Q that occurs within the scope of a quantifier, then 
0 cannot instantiate x to any term containing a bound variable of 7 or of Q. 

[dependency restriction) 

• No bound variable of 7 or Q may occur free in the new row. 
[no-escape restriction) 

The discovery of the sets $ and T and the substitution 0 is the natural by-product of an attempt 
to unify the subscntences Px and Q} if the unification algorithm returns pairs of mismatched terms 

when it nearly succeeds. The rule may be generalized to the case in which there are several pairs 

of mismatched terms. The dependency restriction for this rule may be relaxed in the same way as 

for the resolution rule. 

This rule degenerates to R-rcsolution (Morris [1969]) in the clausal case. 

Example: 

In our discussion prior to the statement of the rule, we considered a tableau with the two goals 
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assertions goals outputs 

m 
7 :      p(x, a, b) +  and 

( p{c,z,g{z)) + or q{x)) 

t(ifr(y)                       \ 
g{y) * '        n{then    p(c,y,g{y)) ~) 

Recall that the boxed subsentences of 7 and Q failed to unify because of the mismatched terms b 

and g{a). However, we can still apply the resolution rule with equality matching, taking 

0 = {x *- c,y 

S = {>}, 
T = {g{z),g{y)}, 

a, z •>. 

and 

R =p(c,a,b), 

to add to our tableau the new goal 

b = g(a)  and 
(true  and         \        , 
\{true  or q{c))j  and 

not (if r^      ^ 
ytken false) 

if p{c, a, b) 
then f(c) 
else g(a) 

which reduces under transformation to 

6 = £|n)   and r{a) 

if p{c, a, b) 
then /(c) 
else g(a) 

According to the polarity strategy, we may restrict application of the rule to cases in which, 

for some i, at least one occurrence of Pi+0 in 7 + 0 is positive, and at least one occurrence of Qj+0 

in Q -*0 is negative, in the tableau. 

• 
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The resolution rule with equivalence matching is identical to the rule with equality matching 
if we replace the equality predicate with the equivalence connective, and references to terms and 

subterms with sentences and subsentences, respectively. 

Substitution with Equality Matching 

We can add a new equality to a row upon failing to apply the equality (or equivalence) 
substitution rule. We present only the schematic AA-form of the equivalence substitution rule 
with equality matching. 

assertions goals outputs 

r{p{s) = Q) / 

Q(P(T)) 9 

if S = T 
then  T(false)  or 

9(Q) 

if P(S) m Q 
then g 
else  f 

Here, if S and T were identical, we could apply the equivalence substitution rule; we therefore add 
the condition S = T to the assertion as an antecedent. In the CG- and other forms of the rule, 
the condition S = T is added to the goal as a conjunct. 

A similar rule allows us to add a new equivalence (rather than an equality) to a row upon 
failing to apply the equivalence substitution rule. 

Before we introduce the rules for handling special relations other than equality, let us give an 

extensive example involving equality and equivalence. 

•   • ii   i     i 
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I 
EQUALITY AND EQUIVALENCE:    A COMPLETE EXAMPLE 

In this section we present an example that employs the techniques presented so far. The 

example is akin to the synthesis of the Cartesian-product program, but is simplified to avoid 
constructing auxiliary subprograms, which requires the general induction rule, not the special case 
we have discussed here. 

The program to be constructed appends the integer 1 onto every element of a given finite set. 

Our initial specification is 

cartone(a)   <F=  find z such that 
\y £ z   = 

^y) [(3i)(y = (l,i)   and x g a) 

Here (l,x) is the pair whose Prst element is 1 and whose second is x.  Note that there is no input 
condition; the type condition isaet(a) is omitted. 

In this derivation, we will sometimes simplify new rows automatically with true-false and other 
fundamental transformation rules, without presenting the intermediate results. 

The initial tableau for this specification is 

T 
assertions goals 

outputs 
cartone(s) 

1.    (Vy)v y £ z   = 
(3x)(y = (l,x)  and x E s) z 

The Induction Hypothesis 

My the induction rule, we may consider an arbitrary input set s and assume that the program 

rartonc{u) we are attempting to construct will yield an output that satisfies the given specification, 

provided that the input u is a set strictly less than a in some well-founded ordering -<„,. Thus, we 
can add to our assertions the induction hypothesis 

2.     if u <w a 

then (V?y) 
y (E c<irt(mc(u)    = 
{3x)(y = (l,x)  and z€ u) 

Dropping the Quantifiers 

As we have indicated by annotation, the quantifier (V.y) in goal 1 is of universal force while 

the same quantifier in assertion 2 is of existential force.   By the quantifier elimination rides, wc 
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can replace the quantifier with a skolcm function g in the goal and with a free variable y in the 
assertion, thereby obtaining a new goal and assertion 

3.    g{z)£z   = 

<*~\( niz) = (l>x)  and \ z 

4.    if u ~ 

then 

<w 8 
y £ cartone(u)    =.                 ' 

(3x)(y = (l,x)  and iGu)J 
. _i 

We may think of the skolem term g(z) in goal 3 as an arbitrary element. 

Note that the subexpression x £ s has both polarities because it is within the scope of an 
equivalence. 

The Base Case 

We assume that wc have among our assertions the empty-set membership axiom 

1' 
not   y e { } + 

By the resolution rule with equality matching, wc can match the subsentence y 6 { } in this 
assertion against the subsentence x £ s in goal 3, taking 0 to be {y *— x}. As the polarity 
annotations indicate, this match is in accordance with the polarity strategy. The new row we 
obtain is 
 1 

5.    8 = { }   and 
not not true and 
g{z) £ z   m 

(3z)((/(z) = (l,x)  and false) 

which reduces (under true-false transformation) to 

6.    I = { }   and 
not g[z) £ z * 

Applying the GA-resolution rule between goal I and the empty-set membership axiom 

not y £ { } |- 
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we obtain the goal (after transformation) 

7.    *={} {} 

s 
Note that in this step we have instantiated the output variable z, obtaining a ground term in the 
output column. This row means that, in the case in which the input s is the empty set, the output 

can also be taken to be the empty set. 

Decomposition of the Goal 

Let us turn our attention back to the earlier goal 3, which was formed from the initial goal by 
removing a quantifier: 

T 

g(z) £ z   = 
z {dx)(g[z) = a,x)  and   | x 6 • l) 

We assume that we have among our assertions the nonempty-set membership axiom: 

if not u = { } 

then ( ! V G " 1 -                            ^ 
\_  (y = elt(u)   or y £ rest(u))J 

Here ett(u) is an arbitrary clement of the nonempty set u, and rest{u) is the set of all the other 

elements of u. By the equality substitution rule, taking 0 to be {y «— x,u «— «}, we can use this 
assertion to replace x € s in the goal with 

x = elt(s)  or x £ rest(s) 

obtaining (after true-false transformation) 

8.    (not s = {})  and 
/g(z) e z   =                                      \ 

\g{z) = (\,x)  and z 
\J3z) (i = elt(s)  or x £ rest(s)) ) 

i 

Applying the equivalence substitution rule twice in succession, first to the and-or distributive 
equivalence 

(T and [$  or H))    = 

(7 and g) or (7 and X) 
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and this goal, and then for the some-or equivalence 

| (3z)(9 or Jf) | = 

(3x)Q or {3x)k 

! and the resulting goal, we obtain 

9.    {not s = { })  and 
fg(z) e z   = 

\ 
z 

{ 
(3x)(g(z) = {l,x)  and x = elt(s))  or 

) (3x)(g{z) = (l,x)  and x £ rest(s)) 

^ 

By the transformation rule 

(3y){7  and y = t)   =>    7 + {y<-t} 

applied to the goal, taking 0 = {y «— x, 7 «— {g(z) = (1, x)), t «— elt(s)} we obtain 

10.    (not s = { }) and 
g(z) = (l,elt{s))  or 

(3x)(g(z) = (l,x)  and x&rest(8)) 

Note that the substitution 0 contains a replacement for the bound variable y; this is because we 
are unifying two quantified sentences. 

I 
Using the Induction Hypothesis 

Recall we have assumed as our induction hypothesis (after skolcmization) the assertion 4, 

if u -<„, 8 
y 6 cartone(u)   = 

then 
(3x)(y = (1, x)  and x G w) 

By the equivalence substitution rule we may use the equivalence of the induction hypothesis (from 
right to left, where 0 = {y *- g(z),u «— rc»<(«)}) to replace the subscntence 

(3x)(g(z) = (\,x)  and x G re8t[s)) 
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/       [»/ reat(a) -<w a]\ 
11.    (nor              w             )  and 

\       [then false         \) 
(not a = { })  and 

\g{z) = {l,elt(a))  or 
g[z) Gz   s 

g(z) G cartone(reat(8)) 
z 

which reduces (under true-false transformation) to 

12.    reat(s) -<«, 8  and 
(not a = { })  and 

g(z) e z   = 
g(z) = (l,e/f(s)>  or 
g(z) G cartone(rest(a)) 

Introducing the Recursive Call 

We assume that we have among our assertions the member-insertion axiom 

(xEyou)   = (x = y  or x 6 u) 

(Here you is the result of adding the clement y to the sot u.) Ry the equivalence substitution rule, 
we may use the axiom (from right to left) to replace the subsentence 

g(z) = (l,elt(a))  or 

g(z) g cartone(rcat(a]) 

with the sentence 

g(z) € (i,dt(a)) o cartonc(reat(a)), 

obtaining 
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a 
13.    rest(a) -<w 8  and 

(not a = {})  and 

z g(z) gz   =   | g(z) £ (1, e/((s)) o cartone(rest(s)) ] 

Finally, by GA-resolution, matching the subscntence 

g(z) € z   =   g(z) £ (l,elt(s)) o cartone(rest(s)) 

against the equivalence reflexivity axiom 

\7   =   7 1- 

taking z to be  (l,ett(s)) o cartone(rest(s)),  we obtain the goal 

14. (l,elt(a))o 

cartone(rest(s)) 
rest(s) -<w s | and 

(not 8 = { }) 

Note that at this stage we have discovered another instantiation for the output variable z. The 
term, which appears as the output entry, contains a recursive call cartonc(rest(s)). This term is 
a suitable output in the case that s is a nonempty set, provided we can show that the argument 
rest(s) is strictly less than s in the ordering -<«,. 

Proof of Termination 

We have not yet found a well-founded ordering -<„, to serve as a basis for the induction. We 

expect to have properties of many standard ordcr'mgs among our assertions. Assume that we have 
the subset-rest axiom 

if not u = { } 
then    rest(u) -<aubset w 

where ~<subact h Ww proper subset ordering over the finite sets. Hy GA-resolution, we can match 
the subscntence 

re8t(s) -<w 8 

'9 
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of the goal against the subsentence 

rest(u) -<aub.et u 

of the assertion, to obtain the goal 

15. not 

(l,elt(a))o 

cartone(rest(a)) s = {} ~ 

r 

• 

Note that in this step wc have selected the well-founded ordering -<„, to be the proper subset 

ordering -<aub„ef 

The Final Program 

Recall that we have earlier developed goal 7, 

{} * = {}+ 

Dy GG-resolution between this goal and the new goal 15, we obtain the final goal 

16.    true 

ifs = {} 
then { } 
else (1, elt(s)) o 

cartonc(rest(s)} 

This step accounts for the introduction of a conditional expression in the output column. The final 

program wc extract from the proof is 

cartone(»)   <=   if s = { } 

then  { } 

else (1, elt(s)) o 

cartone(rcst(t>)) 

Synthesis of the Cartesian-Product Program 

The above proof is similar to the derivation of the Cartesian product program cart(s\,S2), 

which computes the Cartesian product of two finite sets sj and «2-   The specification for that 

«MMMMMM 
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program is 

cart{si,82)   ^   find z such that 
(y G z   = {y t 

2/ = (xi,i2>  a««* 

ii€ «i   and i2 6 «2 ) 

The final program we obtain is the system of two programs 

cart(s\,s<i) «/»» = {} 
then {} 

else carttwo(8i,32)   U 
cart(rest(si), 8%), 

where 

carttwo{si, 82)    <=   t/ 82 = { } 
tAen {} 
else (elt(si), elt[s2)) ° 

carttwo^sx, rest(s2)). 

Here, U is the set union function and carttwo{a\, 82) 1S an auxiliary subprogram that computes the 
Cartesian product of {elt[ai)} and »2. The auxiliary program appears through the use of the more 

general induction principle. 
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POLARITY WITH RESPECT TO SPECIAL RELATIONS 

Equality is only one relation that has special importance in program synthesis. The inequalities 

< and < over the integers or reals, and the subset relation C and the membership relation £ over 
the sets, are examples of other relations that merit special treatment. In this section we extend 
the rules we have given for equality to apply to other relations in particular circumstances. This 
extension is particularly effective for transitive (ordering) relations. But first we must extend the 
notion of polarity, which we have introduced for subsentences, to apply to terms as well, relative 
to a particular relation -<. 

Relations and Monotonicity 

Let -< be a relation. We shall say that 

• -< is irreflexive if 

not x -< x) 

• -< is total if 

x -< y  or x = y  or y -< x; 

• -< is transitive if 

if (x -< y  and y < z) then x -< z; 

• -< is asymmetric if 

not(x -< y  and y -< x); 

for all x, y, and z. 

We define the weak relation ^ associated with -< by 

x < y   =   (x -< y  or x = y). 

We shall use y >- x and y y_ x synonymously with x -< y and x ^ y, respectively. 

Definition:    Let / and p be a function and predicate of arity n and let j be an integer between 1 

and n inclusive. 

With respect to a relation -<, we shall say that 
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• / is (weaMy) monotonically increasing in its jth argument provided that 

if x -< y 
then f(zi, ... ,Zj-.i,x,Zj+i, ... ,zn) < f(z\, ... ,Zj-i,y,Zj+i, ... ,zn) 

• p is [weakly) monotonically increasing in its j'th argument provided that 

if x -< y 
then if p(zi} ... ,Zj^ltx,Zj+\, ... ,zn) 

then p(zu ... ,*,•_!,V,Zj+i, ...,*«) 

• / is (weakly) monotonically decreasing in its jth argument provided that 

if y <x 
then f(z\, ... ,Zj_i,x,Zj+i, ... ,z„) < 

f(z\, ... ,Zj-i,y,Zj+\, ... ,zn) 

• p is (weakly) monotonically decreasing in its jth argument provided that 

if y < x 

then if p(zu ... ,Zy_i,Z,*,+n .. . ,zn) 
then p(zi, ... ,*,•_!,V,*j+i, •••,zn) 

for all x, y, and z\, ... ,zn.    | 

Of course, some functions and predicates arc neither monotonically increasing nor decreasing 
in some of their arguments with respect to a given relation -<. 

Example: 

The minus function (—) is monotonically increasing in its first argument with respect to the 

< relation; i.e., 

if x < y 
then x — z < y — z 

for all integers x, y, and z.   Furthermore, the minus function is monotonically decreasing in its 

second argument, i.e., 

if y < x 
then z — x < z — y 

for all integers x, y, and z.    | 

-« • - i i r*»> 
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Example: 

The member predicate £ is monotonically increasing in its second argument with respect to 

the subset relation -<,„&„*; i-e., 

if x -<aub,et y 
then if z £ x 

then z £ y 

for all sets x and y and elements z.    | 

Note that £ is neither monotonically increasing nor decreasing in its first argument with 

respect to   -<3u6aet- 

Remark: 

If -< is a transitive relation, then -< is monotonically increasing in its second argument with 

respect to -< itself; i.e., 

if x -< y 
then if z -< x 

then z -< y. 

Also, -< is monotonically decreasing in its first argument with respect to -< itself; i.e., 

if y <x 
then  if x -< z 

then y -< z.    | 

Polarity of Terms 

We arc now ready to extend the notion of polarity to apply to terms, with respect to a given 

relation -<. 

Definition (polarity): The polarity of a subsentence of a given sentence or tableau, as defined in 

an earlier section, is also its polarity in the sentence or tableau with respect to -<. For terms, 

wc have the following additional rules: 

If a subsentence p[s\, . .. ,.•»_,-), t,Sj+\, .. . ,sn) occurs in a sentence or tableau, then the 

polarity of t (with respect to «<) is the same as the polarity of the subsentence if p is 

monotonically increasing in its jl.li argument, and the polarity of ( (with respect to -<) 

is opposite to the polarity of the subsentence if p is monotonically decreasing in its jih 

argument. 

--*-•-•••               •     i • i • 
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Similarly, if a subterm /(«i, ..., 8j-i,t, Sj+i, .. ., sn) occurs in a sentence or tableau, 
then the polarity of t (with respect to -<) is the same as the polarity of the subterm if 
/ is monotonically increasing in its jth argument, and the polarity of t (with respect to 

-<) is opposite to the polarity of the subterm if / is monotonically decreasing in its jth 
argument. 

Note that some terms may be neither positive nor negative with respect to a given relation 
-<, and that some terms may be both positive and negative. We shall say that a term has strict 

positive or negative polarity if it has one but not both of these polarities. 

Example: 

In the tableau 

assertions goals outputs 

if x + 1 < y 
then x < y 

• The subsentence x + 1 < y is positive in the tableau with respect to < (by the 

ordinary rules governing polarity). 

• Therefore, the term x + 1 is negative in the tableau with respect to < (because 
the < predicate is monotonically decreasing in its first argument with respect to 

• Therefore, the first occurrence of the term x is negative in the tableau with respect 
to < (because the + function is monotonically increasing in its first argument). 

The notion of polarity with respect to a relation -< is important because, roughly speaking, 
a sentence gets "truer" as its strictly positive subterms get bigger and as its strictly negative 

subterms get smaller. This observation is made precise in the following proposition. 

Proposition (polarity):    The notion of polarity with respect to a relation -< satisfies the following 

two properties: 

if 8 -< t 
then if £ 

then £ <{s+ *- t} (positive part) 

and 

if s y t 
then if £ 

then £ <{s~ 0 (negative part) 

-     *     -     -n 
 U 
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for all terms s and t and sentences £, where £ < {s+ <— t} is the result of replacing one or 

more strictly positive occurrences of s in £ with t, and £ <{s~ <— t} is the result of replacing 

one or more strictly negative occurrences of s in £ with t. 

The proof of the proposition is by induction on the structure of the sentence. 

Example: 

In the tableau 

assertions goals outputs 

if x + I < y 
then x < y 

with respect to the relation <: 

• The occurrence of x + 1 is strictly negative in the sentence x + 1 < y (because 
< is monotonically decreasing in its first argument); therefore, replacing this 
occurrence by something smaller makes this sentence "truer" (by the negative 
part of the proposition). 

• The occurrence of x+ 1 is strictly positive in the sentence if x + I < y then x < 

y; therefore, replacing this occurrence by something bigger makes this sentence 
"truer" (by the positive part of the proposition). 

• The occurrence of x is strictly negative in the sentence x + 1 < y (because + is 
monotonically increasing in its first argument); therefore, replacing this occurrence 

by something smaller makes this sentence "truer" (by the negative part of the 
proposition).    | 

...   .   •• . i.   i 
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RELATION SUBSTITUTION RULE 

We arc now ready to extend the equality substitution rule to an arbitrary relation -<. 

Small-to-Big Version 

The rough schematic description of the ground version of the rule (AA-form) is as follows: 

assertions goals outputs 

ns < T) / 

9(S~) 9 

T(false)   or Q(T) 

if S < T 
then g 
else  f 

Here 7(S -< T) is an assertion with an occurrence of the stibsentonee S -< T, where 5 and T are 
terms; §(S~) is an assertion with an occurrence of S which is strictly negative in the tableau with 
respect to -< (or, equivalcntly, S is strictly positive in ${S))\ and §(T) is the result of replacing 
that occurrence of S in §(S) with T. 

The rationale for this rule is as follows. Consider an interpretation under which both given 
assertions are true; we seek to show that the derived assertion is also true under this interpretation. 
Equivalcntly, we show that if the derived assertion is false, then one or the other of the given 
assertions is also false. 

Because the disjunction 7(false) or p(T) is false, each of its disjuncts is false. In the case in 
which S -< T is false, because the disjunct 7(false) is false, we know the given assertion 7(S -< T) 
is false; in this case, / is a suitable output. In the case in which S -< T is true, because the 

disjunct $(T) is false, and because S is strictly positive in £(S), we know (by the positive part of 

the polarity proposition) the goal §(S) is false; in this case, g is a suitable output. In either case, 

the conditional expression   if S ~< T then g else f  is a suitable output. 

According to the polarity strategy, wc may assume that some occurrence of $ «< T in 

7(S -< T) is negative in the tableau. We may also assume that 5 is not a free variable. 

The precise version of the rule is as follows: 
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assertions goals outputs 

7 / 

9 9 

(7 + 0) + {(S+0 <T+0)+-false)  or 
{g + 0)<{S~+0<- T +0} 

if S+0 <T + 0 
then g-<6 
else f<6 

I 

• 

X. 

Here we assume that 

• S = {so, »ii ..., Sk} and T = {ti, ..., tk) arc sets of terms such that 

• 7 contains at least one occurrence of each inequality si -< t\, . . . , s^ -< tk', 

• Q contains at least one occurrence of su that is strictly negative in the 

tableau with respect to -<; 

• 0 is a most-general unifier of S and of T: i.e., SQ •« 0, S\ •* 0, . . . , s^ •« 0 are 
identical terms, denoted by S-*0; and t\ -+0, . . . ,tk-*0 are identical terms, 
denoted by T-*0) and 0 is one of the most-general substitutions that make 
these expressions identical. 

• (7 -*0) •* {(S -*0 -< T -*0) <— false) denotes the result of replacing every occurrence 
of the subscntence   S +0 -< T <0  in 7 -+0 with the proposition false. 

• (<J •< 0) < {S~ •* 0 <—  T -*0) denotes the result of replacing one or more (but not 
necessarily all) occurrences of S <0 in Q-*0 with T -*0 for which the corresponding 
clement of S is strictly negative in the tableau with respect to -<. 

• If x is any variable in 7 or in Q that occurs within the scope of a quantifier, then 0 

cannot instantiate x to any term containing a bound variable of 7 or Q. 

(dependency restriction) 

• No variable that is bound in 7 or in $ may occur fret; in the new row. 
(no-escape restriction) 

The dependency restriction may be relaxed as usual. According to the polarity strategy, wc 

may also assume that at least one occurrence of one of the Inequalities s, -< (, in 7 is negative in 

the tableau. We may also require that one of the elements of S not be a free variable. 

Example: 

Suppose we have the two assertions 
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assertions goals outputs 

/(*) 7 :      if p(x)  then ( h(x, a)    < c) 

ff(y) g :     i/ <7(y)  then    h{b, y)   ~ > 0 

Note that the occurrence of h(b,y) is negative in the tableau with respect to <.   Applying the 
relation substitution rule, taking 0 = {x «— b, y *— a}, we can add th" new assertion 

[if p(b)  then false)  or 

(if q(a)   then c > 0) 

if h(b,a) < c 
then g(a) 
else f(b) 

which reduces (under transformation) to 

(not p(b))  or 

(if q(a)   then c > 0) 

if h(b,a) < c 
then g(a) 
else f(b) 

Big-to-Small Version 

m 
The preceding rule is the "small-to-big" version; it replaces instances of the "small" S -*0 by a 

"big" T -*0, in the case in which s0 is negative in the tableau; there is also a "big-to-small" version 
of the rule, which applies in the case in which H() is strictly positive in the tableau (and therefore 
strictly negative in the assertion). In schematic form, the ground version of this rule is as follows: 

assertions goals outputs 

T(S y T) / 

9(S+) 9 

7{false)  or g(T) 

if S >T 
then g 
else f 

The rationale for this version is analogous to the rationale for the small-to-big version, and relics 

on the negative part of the polarity proposition. 

The precise version of the rule and its restrictions are analogous to the previous small-to-big 

version. 
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TOTAL-RELATION SUBSTITUTION RULE 

The above rule applies to any relation -<. If the relation -< is total, there is an additional rule 
we can apply. (Recall that a relation -< is total if x -< y or x = y or y -< x , for all elements x 
and y.) 

Small-to-Big Version 

Expressed in schematic form, the ground version of the rule is as follows: 

-« 

assertions goals outputs 

ns < T) / 

9(S+) 9 

7(true)  or £(T) 

if S <T 
then f 
else g 

X Note that in this rule we require that the occurrence of S be strictly positive in the tableau (or, 
equivalcntly, strictly negative in ${S)) with respect to -<. 

The rationale for the rule is as follows. Consider an interpretation under which both given 
assertions are true; we seek to show that the derived assertion is also true under this interpretation. 
Equivalcntly, we show that if the derived assertion is false, then one or the other of the given 
assertions is false. 

Because the disjunction 7{true) or Q(T) is false, each of its disjuncts is false. In the case in 
which S •<, T is true, because the disjunct J[true) is false, we know the given assertion T(S -< T) 
is false; in this case, / is a suitable output. In the case in which S -< T is false, because -< is 
total, we know that S = T or T -< S. 

In the case in which S = T, because the disjunct §(T) is false, we know the given assertion 

§(S) is false; in this case, g is a suitable output. In the case in which T < S, because the disjunct 
$(T) is false, and because S is strictly negative in §(S), we know (by the negative part of the 

polarity proposition) that again the given assertion §(S) is false; in this case also, g is a suitable 

output. 

In each case, the conditional expression   if S < T then f else g  is a suitable output. 

According to the polarity strategy, we need apply I he rule only when some occurrence of S -< 

T in ?(S -< 7) is positive in the table/in. Thus, we never need to apply both the total-ordering 

substitution rule and the basic ordering substitution rule in the same situation. We may also 

require that S not be a free variable. 
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We omit the precise description for the total-relation substitution rule, because it is analogous 

to the basic rule. 

Big-to-Small Version 

sn The preceding version is "small-to-big"; it replaces the "small" S with the "big" T in £(5). 
The corresponding "big-to-small" version of the rule, which replaces a "big" $ with a "small" T, 
is as follows (in schematic form for the ground case): 

• 

assertions goals outputs 

7{$ > T) / 

9(S~) 9 

7{true)  or £(T) 

if S > T 
then f 
else g 

v: Note here that the occurrence of S in ${S) to be replaced is strictly negative in the tableau, i.e., 
positive in $(S). Furthermore, according to the polarity strategy, we need apply the rule only if 
some occurrence of S >- T in 7(S >- T) is positive in the tableau. We may also require «hat S 

not be a free variable. 

a Example: 

Suppose our tableau contains the assertion 

• 
assertions goals outputs 

if p(x) 

then not(   f(x,d)  < a)" 

d the goal 

q(y) and 

t(x, y) my)v >c 

Note that the <-relation is total over the integers and the boxed occurrence of f(h,y) in the goal 

is strictly positive in the tableau with respect to <. Applying the AC-form of the total-relation 
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substitution rule small-to-big, taking 0 to be 

{z «- b, y «- d} 

we can replace f(b,d) with a in the goal to obtain the new goal 

which reduces to 

59 

notfW              )and 
\then not true/ 

fq(d)  and\ 
t(b,d) 

p(b)  and q(d)  and a > c t(b,d) 

\ 

under true-false transformation. 

Note that, because the annotated occurrence of f(x, d) < a in the assertion is positive, this 
application of the total-relation substitution rule is in accordance with the polarity strategy. 
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RESOLUTION WITH RELATION MATCHING 

The preceding rules adapt the equality substitution rule to arbitrary relations; in this section 
we adapt the resolution rule with equality matching to use an arbitrary relation, instead of equality. 

As usual, we first give the schematic form of the ground version of the rule. 

assertions goals outputs 

/ 7{  R(T + ,S-) +) 

9 ${  £(5 + ,T-)-) 

5 r< T   and 
T(true)   and 
g(faUe) 

if Z(S,T) 
then f 
else g 

a 

<-.•• 

Here the notation £(S + , T~) means that S is a strictly positive occurrence of a term, and T is 
a strictly negative occurrence of a term, not in the tableau, but in the boxed subsentence JZ.(S, T), 

with respect to the relation -<• Also, R(T, S) is the result of replacing S with T and T with S, 

simultaneously, in R($, T). We assume that 5 and T are distinct terms, and admit the special 
case in which either 5 or T does not actually occur in Z(S,T). 

Note that, if this rule applies, resolution with equality matching also applies. When both rules 
apply, however, the rule with relation matching is preferable, as the derived goal of this rule is 
easier to establish than the derived goal of the equality rule. The goal for this rule has a weak 
inequality S ^ T, in place of the full equality S = T required by the equality rule. 

The rationale for this rule is as follows. Consider an interpretation under which the derived 
goal is true; we seek to show that one or the other of the two given goals is true. 

Because the conjunction S ^ T and T(true) and §(false) is true, each of its conjuncts is true. 

In the case in which R.(S, T) is false, because the conjunct §(false) is true, we know the given goal 

$(Z(S, T)) is also true; in this case, g is a suitable output. In the case in which Z(S, T) is true, 
because the conjunct S ^ T is true, and because S is strictly positive and T strictly negative 

in Z(S,T), we know (by two applications of the polarity proposition) that R.(T, S) is also true. 
Therefore, because the conjunct T(true) is true, the given goal T{R.(T, $)) is also true; in this case, 

/ is a suitable output. In cither case, the conditional expression if R(S,T) then f else g is a 
suitable output. 

According to the polarity strategy, we need only apply either case of the rule if £(T,S] is 
positive in the tableau and Z(S, T) is negative in the tableau. 

The precise form of the resolution rule with relation matching is as follows. 

Rule (resolution with relation matching): 



61 

m 

«-     A 

assertions goals outputs 

7 / 

9 9 

$+0 <T +0  and 
[7 + 0) + {Px -8 <- true, .. 
(Q+0)<*{Qx+0 <- false, . 

., Pk •* 0 <— true}  and 
• •, hi « 0 <- false} 

if Z 
then f-*B 
else g + 0 

Here we assume that 

• Pi, .., , Pk are subsentences of 7• 

• 2ii •. •, 0.1 are subsentences of Q. 

• S = {si, ... ,sm} and T = {tx, . .., tn} are sets of subtcrms of Pi, • • •, Pk, Qi, • • • > 
and Q(. 

• P. is a sentence and 0 a most-general substitution such that 

• 0 unifies 5; i.e., 8| <0, ... ,sm+0 are identical terms, denoted by S +9. 

• 0 unifies T; again, T -*0 denotes the unified term. 

• S -*0 and T -*0 are distinct terms. 

• P. is "falser" than all the sentences Pi+0; in other words, for each i between 
1 and k, 

{P*+0)<{{S+0)- - T +0,(T +0)+ *- $+0} is P. 

That is, P can be obtained by replacing in P{-*Q zero, one, or more strictly 

negative occurrences of $ + 0 with T -*0, and zero, one, or more strictly 
positive occurrences of T -*0 with S -*0, simultaneously. 

• P is "truer" than all the sentences Qj+0; in other words, for each j between 
1 and I, 

(Q}+0)<{{S+0)^ «- 7*0,(7+0)- - S«0} is P. 

• If x is any variable in 7 or in $ that occurs within the scope oT a quantifier, then 0 

cannot instantiate x to any term containing a bound variable of 7 or of Q. 

(dependency restriction) 

• No bound variable of 7 or of £ may occur free in the new row. 

(no-escape restriction) 
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The dependency restriction may be relaxed aa usual. 

The discovery of the sentence P, the sets S and T, and the substitution 0 is the by-product 
of an attempt to unify the subscntences Pi and QJ if the unification algorithm returns pairs of 
mismatched terms and their polarities when it nearly succeeds. 

Example: 

Suppose our tableau contains the two goals 

assertions goals outputs 

/(*) 7 :    \cet+ \ and   c€ s(x)+ + 

g(y) g :     not  y £ s(a)+ 

K 

a 

We attempt to apply GG-resolution, matching the boxed subscntences.  The unification is nearly 

successful: if we take 

0 to be {i <— a, y *— c}, 

the only failure is the occurrence of the constant t in 7, which will not unify with the corresponding 
occurrences of s{x) and s(a). 

The mismatched terms, however, are strictly positive, not in the tableau, but in the boxed 

subscntences, with respect to the subset relation -<aU63et- Therefore, we can apply the resolution 
rule with -<su(,set-matching, taking 

Pi to be c £ t, 

Pi to be c £ s(x), 

Q.I to be y G a(a), 

P. to be c g s(a), 

S to be {«(*), »(a)}, 

T to be {«}. 

Note that 

(Pi+0)<{t+ ^s(a)} is je 

P2 -* 0 is P. 

Qi*0 is P. 
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Therefore, we can add to our tableau the new goal 

which reduces to 

63 

s(a) ^ subset t and 
(true  and true)  and 
not false 

if c € «(a) 
then f(a) 
else g(c) 

s{a)  ^subset t 

if c£ s(a) 
then f[a) 
else g(c) 

under true-false transformation. 

The above deduction is more complex than a person would usually make in a single step. Let 
us show that the conclusion in this case is indeed correct. 

Suppose that the new goal s(a) ^sufc««t t is true; we would like to show that one of the given 
goals is true. We disting-'ish between two cases. 

Case:   c £ s(a) is true. 

Then, because s(a) ;<31i(>«t t, wc know c 6 t is also true. Therefore, if x is taken to be a, both 
conjuncts of the given goal 7 arc true and, hence, /(a) is a suitable output. 

Case:   c G n[a) is false. 

Then, taking y to be c, the given goal Q is true, and, hence, g(c) is a suitable output. 

In cither case, the conditional expression   if c £ s(a) then f(a) else g(c)   is a suitable output. 

Example: 

Suppose that our tableau contains the goal 

assertions goals outputs 

z 

7: p(z,rcst(s))  and 

2 6l + 
and 

<?(») 

and the assertion 

«...i -,,. •   .   •' .   • • 
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« 

9 :    *f ri(") 
then  if not T2(v) 

then p(f(u),u) and 
f\u) G u+ 

We attempt to apply GA-resolution between the goal and assertion, matching the boxed subsen- 
tences. The unification is nearly successful: if we take 

6 to be {u *— reat(a), z *- f(reat[a))}, 

the only failure is the annotated occurrence of the variable u in Q. This variable is instantiated 

by C to be rest(s), and therefore will not unify with the corresponding occurrence of the constant 

a in 7. 

The mismatched terms, however, are strictly positive, not in the tableau, but in the boxed 

subscntences, with respect to the subset relation -<aui>«et- Therefore, we can apply the GA- 
resolution rule with ~<aubsr.t matching. The sentence R can be taken to be 

or 

p(/(rc.si(.s)),res<(s))   and 

f(rest(s\)  6 rest(s) 

p(f(rest(a)), rest[sy)  and 

f(rest{s)) 6 a. 

The new goal we obtain is 

rest{s) :<s1J6«et s  and 
(true  and \        . 

U->    Jand 
(if ri(rcat{»))                  \ 

not 1 then if not r2(rcst(s)) 1 
V          then false             J 

f{rcst(s)) 

which reduces to 

reat(a) ^,u(,«t a  and 
q(a)  and 
T\(rcst(a)}  and 
not T2{re»t(a)) f{rcat(8)) 

------- _— • • I • 1 
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X 
under true-false transformation. 

Note that, because the matched subsentence of the given goal is positive, and the matched 
subscntencc of the given assertion is negative, in the tableau, the application of the rule is in 
accordance with the polarity strategy.    | 

X 1 

 •    I    I    I    I    •  
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EXAMPLE:    THE MAXIMUM ELEMENT OF A SET 

The program max(s) to be constructed finds the greatest element of a finite set s of integers. 

Our initial specification is 

max(s)   t=  find    z such that 

z e s  and 

(w2/)['7 yEs  then z>y] 

where not s = { }. 

The initial tableau for this specification is 

assertions goals 
outputs 
max(s) 

1.    not s = { } 

2.    z£ a 

(Vy)v 

and 
if yes 
then z > y 

z 

£ where s is a constant and z is a free variable. 

The Induction Hypothesis 

My the induction rule, we may consider an arbitrary input set a and assume that the program 
max(u) to be constructed will yield an output that satisfies the given specification, provided that 

the input u is a set strictly less than s in some well-founded ordering -<„,. Thus, we can add to 
our assertions the induction hypothesis 

3. if u -<w a 
then if not u = 

then max( 

(Vj/)3 

{} 
u) 6 u  and 
if y € w 
then max(u) > y 

Dropping the Quantifiers 

As we have indicated by annotation, the quantifier (Vi/) in goal 2 is or universal force while the 

same quantifier in assertion .'{ is of existential force. Hy the skoletnization rules, we can replace the 

••   i   •   •   >   i   • 
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quantifier with a skolem function g in the goal and with a free variable y in the assertion, thereby 

obtaining a new goal and assertion 

4. z 6 s and 

z if    g{z) € s 
then z > g(z) 

5. if U -<w 8 
then  if not 

then max(u) 6 u  and 
if y E u 
then max(u) > y 

We may think of the skolem term g(z) in goal A as an arbitrary clement. 

Decomposing the Goal 

Wc assume we have among our assertions the nonempty-set membership axiom 

Here elt(u) is an arbitrary element of the nonempty set u, while rcst(u) is the set of all the other 
elements of u. 

By the equivalence substitution rule, we ".an use this assertion to replace g[z) € 8 in goal 4 

with 

g(z) = e.lt(s)  or g(z) G re»t(s). 

obtaining (after transformation) m 

6.    | not s = {} +   and 

z £ 8  and 

'    (9{z) = elt{a)  orV 

\g{z) £ rcst(a)     ) 

.then z > g(z) 

z 
m 

i 
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(In an alternative derivation, we apply the same axiom to the subsentence z £ s instead.) 

The conjunct not s — {} of the goal may be dropped by GA-resolution against the input 

condition 

not s = { } | 

(assertion 1), obtaining 

7. z E a  and 

z 
{f (g{*) = elt(a)  or\ 

\g[*) e rest(a)     J 
then z > g[z) 

Applying the equivalence substitution rule between the goal and the if-or distributive equiv- 

alence 

(\ if [7  or g)  then U 

if 7  then M)  and 
if g  then X 

we obtain 

8.    zG»  and 

[if (    g(z)  = ell(s))-\ 
1                                       I  and 
\then z >   g(z)           J 

1 

(if g(z) e rcst(a)\ 

\then z > g(z)   J 
z 

1 

At this point we apply the equality substitution rule to the goal and itself (!), using the equality 

g(z) = clt(n) to replace one instance of g(z) by fi/£(s), obtaining 

9.    z € s  and 
[if g(z) = dt{s)        \ 

1   and 

z 

[then    z>eU{»)\ + ) 

(if g(z) 6 rcst(s)\ 

\then z > g(z)   J 

—-—       
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The other instances of g(z) in the goal are allowed to remain. We shall use this goal twice in the 
derivation, once to give us the base cases and once to give us the recursive call. 

The Base Cases 

Wc can now apply the GA-resolution rule between goal 9 and the >-reflexivity axiom 

X >  X 

taking 0 = {x *— elt(s),z *— elt(s)}, obtaining 

elt{s) 

10.    | elt(s)es   +  and 
(if g(elt[a)) G rest(s)    \ 

\then elt(s) > g(elt(s))J 

Note that wc have found one instantiation for the output z. 

Assume that we have a member axiom for the element relation 

if notu = { } 
then    elt(u) £ u 

Wc can 'hen apply GA-resolution between the goal and the axiom, to obtain the goal 

elt{s) 

11.      not 8 = { }   +   and 

(if g{elt[a)) G rest{s)  \ 

\then elt(s) > g(elt(s))J 

The conjunct   not a = 
not H = {},  yielding 

{ }   can again be dropped by GA-resolution against the input condition 

12.    if g(dt(s))e rcst{s) 
then elt(s) > g(elt{sj) clt(s) 

In other words, in the case that clt(x) is greater than or equal to any arbitrary element of rr.st(s), 

wc know elt(s) is a suitable output. We shall use this goal twice in the derivation, to provide an 

output expression for the program's two base cases. 
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Introducing the Recursive Call 

Recall that we have previously developed a goal 9, 

fif g{z) G reat{s)\ 

\then z > g(z)   J 

and 

/if <j{z) = elt{a)\ 

\then z > elt{s)J 

• 

(We have commuted the conjuncts in preparation for the next step.) 

By GA-resolution with -<3U6S(.t matching to this goal and the (skolemized) induction hypothesis 
(assertion 5) 

if u -<w a 
then if not u = { } 

then 

max(u) £ u+  and 

fif y£u \ 
\then max{u) > yj 

• 

taking 

0 = {u <— reat{a),   z <— max(rcs£(s)),   y *— <7(max(res<(s)))} 

we obtain the goal 

• 

1 

13.    rest(a) <3ubliet »  and 

fif r7(max(rc.s<(s)))= elt{s)          \ 
I                                                        + J   and 

max(reat[a)) 

\then (maz(rcfl<(«))>  clt[s)   )   J 

rest(a) -<w a and 

not (rcat{a) = { }) 

. 
This step was possible because the annotated occurrence of u in the induction hypothesis is strictly 

positive, not in the tableau, but in the boxed subscntence, with respect to the proper-subset relation 

*S subset' 
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At this stage, through the use of the induction hypothesis, a recursive call has appeared in the 
output column. We shall use the induction hypothesis one more time. 

Introducing the Conditional Expression 

Recall that we have previously developed a goal 12, 

./ g(elt(a)) G reat{a) 

elt{s) then    elt{a) |+ > g(elt{a)) 

The annotated occurrence of elt(s) in this goal is strictly positive with respect to the <-relation. 
Therefore, we can apply the total-relation substitution rule to goal 13 and goal 12 [bearing in 
mind that max(res<(ä))> elt(a) is synonymous with elt(s) < max(rest(s))] to replace elt(a) with 
max(rest(a)) in goal 12, obtaining the new goal 

14. rest(s) ^aubaet s   and 
rest(s) -<„ 8  and 
not (rest(a) = { })  and if max[re8t{8))> elt(a) 

then Tnai(rest(8)) 
else elt{a) 

if g(elt{a))€ reat(s) 

then max(re8t{s))'> g(e/i(s)) 

Note that at this stage a conditional expression has appeared in the output column. 

The last conjunct of the goal can be dropped by GA-resolution against the induction hypothesis 

if u -<w a 
then if not u = { } 

then rnax(u) £ u and 

if y € « 
then max(u) > y 

I   • 

this time taking 

0 = {u *- reat(a),   y <- g(dt(a))}. 

We obtain the new goal 

15. if max(rc.at(s))> elt(a) 

then max(rcat(a)} 
else clt(8) 

rcat(a) <aub*et »    and 
rcat{a) -<w a  and 
not {rcat(s) = { }) 
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This completes our use of the induction hypothesis. 

Choice of Ordering 

Up to now we have not chosen the well-founded ordering -<„, on which our induction in based. 
We assume that among our assertions we have the axioms for many orderings. 

We apply the equivalence substitution rule to the definition of the weak ordering ^,ui,eti 

I 

f\ U ^subset V    =                   \ 

V («  < subset V   OT   U = v)J 

and the goal, obtaining 

16. 
( 

rest(s) -< subset » 
or rc8t(s) = a 1 and 

rest(s) -<w s r   and 

not (rest{s) = { }) 

:/ max(rest(s))> elt(a) 
then max(rest(s)) 
else elt(s) 

By GA-resolution between the goal and the subset axiom 

if not u = { } 

then    rest(u)-^ subset u 

we reduce the goal to 

17.    not(rc8t(s) = {})  and 
if moa:(rr;.s<(.s))> e/t(s) 
then mai(rc«t(s)) 
else elt(s) not s = { } |+ 

With this step, the well-founded ordering -<„, has been chosen to be the proper-subset ordering 

-<aubset over the finite sets. 



pp 

I 
• 

T 

73 

Final Stages 

The conjunct  not a = { }  is again dropped by GA-resolution between the goal and the input 

condition (goal 1) not a = { } obtaining 

if max(reat(a))'> elt(a) 
then max(reat(a)) 
else elt[a) 18.    not ( rest(a) = { })~ 

In other words, we have determined that, in the case in which rest(s) is not the empty set, a 
suitable output is given by the conditional expression in the output entry. Henceforth (intuitively 
speaking), we deal with the case in which rest(s) is the empty set. 

Recall that we have already developed a goal 12, 

elt(s) 

if g{elt{a)) € | reat[a) 

then elt(a) > g(elt{a)) 

By equality substitution between goal 18 and goal 12, we can replace reat(a) with { } in goal 12, 
obtaining 

if re3t(a) = { } 
then elt[a) 
else  if max(rc.it(s))> clt(a) 

then max\rest(a)) 
else elt{a) 

19.     if   ü((elt(a))  e{} ~ 

then elt(a) > g(elt(a)) 

Note that at this stage an additional layer of conditional expression has been wrapped around the 
output entry. 

At last, by AG-resolution between the empty-set membership axiom 

not    y G { } + 

and goal 19, we obtain the final goal 

20.    true 

if rcat(a) = { } 
then e/f(a) 
else  if mai(rr«<(»))> clt[a) 

then m«x(rc»f(j»)) 
else elt(s) 
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Note that by this step an additional layer of conditional expression has been wrapped around the 

output entry. 

Because we have obtained the goal true with a primitive output entry, our proof is complete. 

The final program is thus 

r max(s)   <=  if rest(s) = { } 
- then elt(8) 

else  if mai(rest(s))> elt(s) 

then max{rest(s)) 

else elt(s). 

B 
- 

• 
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STRATEGY AND DISCUSSION 

In this paper wc have mainly disregarded the question of strategic guidance. We envision an 
automatic implementation of our deductive system to be governed by the following crude strategy: 

• Remove all quantifiers of strict force by skolemization. 

• If a rule fails to apply because of the mismatching of two bound variables or the 
violation of the dependency or no-escape restrictions, replace the offending bound 

variables by eliminating their quantifiers, after first getting rid or any surrounding 
equivalences by the equivalence-removal transformation rules. 

• Match larger subexpressions and subtcrms before matching smaller ones. 

In other words, wc attempt to complete the proof while leaving the quantifiers and equivalences 
intact, but we remove them when the presence of bound variables is suspected to interfere with 
the proof. 

The derivations included in this paper are the most concise formal derivations we have seen 
for these programs. For an interactive system it is clearly better to introduce high-powered rules 
such as ours, so that deductions will be shorter and closer to a "natural," intuitive argument. 
For an automatic system, however, it is not necessarily an improvement to introduce such rules, 
particularly if they duplicate the effects of several lower-level rules and thus lead to redundancy in 
the search for a proof. 

However, the human implementer of an automatic system must be able to read and understand 
the "trace," i.e., the steps in the search for a proof. When the system is led astray, the synthesis 
system designer must provide heuristics to guide the search. If the steps of the trace are in terms 
of low-level rules, the person cannot understand it well enough to supply this heuristic guidance. 
Our hope is that human-oriontcd heuristics will be easier to discover if proofs arc expressed in 
higher-level steps. Until we accumulate experimental evidence, we cannot be certain how efficient 
the implementation will be. 

Acknowledgments: The authors would like to thank Ed Ashcroft, Yoni Malachi, Mark 
Stickel, Mabry Tyson, Pierre Wolper, and Frank Yellin for their suggestions and careful reading; 

and Evelyn Eldridge-Diaz for preparing the manuscript with the TEX typesetting system. 
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p(z,rcnt(n))   and 
z € *+ 

and 

'/(*) • 

and the assertion 
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not a = { },  yielding 

12.    if g(dt{s))e rcst(s) 
then ett(s) > g(elt(sj) elt(s) 

In other words, in the case that elt(s) is greater than or equal to any arbitrary element of rc.it(s), 

we know elt(s) is a suitable output. We shall use this goal twice in the derivation, to provide an 

output expression for the program's two base cases. 



/if j(mui(rcj((s)))= cll(s)         \ 
1                                                         A. 1  and 

max(rest(s]) 

\then (max(rest(s))>\ dt(s) |)  / 

rest(n) -<w s and 

not (rcst(s) = { }) 

This step was possible because the annotated occurrence of u in the induction hypothesis is strictly 
positive, not in the tableau, but in the boxed subscntence, with respect to the proper-subset relation 

-^subset' 



this time Inking 

0 = {u *- reat(s),   y - <j(dt{s))}. 

We obtain the new goal 

15. if max(rest(s))> elt(a) 

then max[rest(s)) 

else elt($) 

| rest(n) ^3„(,,et 1 | and 

rc»t(s) -<„, s   and 

not (rest(s) = { }) 



17.    not (rcst(s) = { })  and 

| n0< 8 = { } 1+ 

i/ moi(rcs((s))> e/<(s) 
<Aen mai(rcs/(s)) 
eke e/t(s) 

With this step, the well-founded ordering -<„, has been chosen to be the proper-subset ordering 

-<»u6aet ovcr the finite sets. 
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and goal 19, we obtain the final goal 

20.    true 

if reat(s) = { } 
then ett(s) 

else  if mai(resl(»))> elt(t>) 

then max(rent(s)) 

ehe elt(s) 
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