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¥ ABSTRACT

\/

Program synthesis is the automated derivation of a computer program from a given specifi-
cation. In the deductive approach, the synthesis of a program is regarded as a theorem-proving
problem; the desired program is constructed as a by-product of the proof. This paper presents

e a formal deduction system for program synthesis, with special features for handling cquality, the
equivalence connective, and ordering relations.

In proving theorems involving the equivalence connective, it is awkward to remove all the
quantifiers before attempting the proof. The system therefore deals with partially skolemized
sentences, in which some of the quantificrs may be left in place. A rule is provided for removing
individual quantificrs when required after the proof is under way.

The system is also nonclausal; i.c., the theorem does not nced to be put into conjunctive
normal form. The equivalence, implication, and other connectives may be left intact.
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INTRODUCTION

One of the earliest techniques for program synthesis, the automated construction of a computer
program, has been the deductive approach, in which the program is developed by proving a theorem
corresponding to the given specification. While program synthesis does not typically require the
proof of deep mathematical theorems, it does need deductive systems specially designed to handle
constructs commonly occurring in specifications, such as equality, equivalence, and orderings.

In this paper, we present a formal system with lacilities for dealing with the equality predicate
(=), the logical equivalence connective (=), and the ordering relations. The system allows us to
defer skolemization, the removal of quantifiers, when it is inconvenient. The system is machine-
oriented and intended for implementation in interactive and automatic program synthesis systems.

The Deductive Approach

In Manna and Waldinger [1980] we presented a deductive system lor the synthesis of applicative
(side-effect-free) programs. The paper considered specifications of form

f(z) & find z such that r(z, 2)
where p(z).

In other words, for an arbitrary input z, the program f is to yield an output z satisfying an
output condition r(z, z), provided that the input satisfies the input condition p(z). The theorem
corresponding to the specification is

(Vz)[if p(z) then (32)r(z, z)}.

The proof is restricted to be sufficiently constructive so that, in establishing the existence of an
output z satislying the required relationship, it tells us how to compute such an output.

For example, to specify a program to find the quotient of dividing a nonnegative integer 7 by

a positive integer 7, we write ‘ T
quot(z,7) & find z such that N \nl® n .
isinteger(z) and ; § °

187 o -~

z‘smtcgc.r(y) and N < n 3%

By |li==z2-7+y and (?,; !Z‘: §§Hg

£3z98) |3E2°
where isinteger(i) and isinteger(j) and |3 ™ § % i

120 and 5 > 0. e lZ§n :;:' >

N S EG3S5 | Aa| Y 2

Il | .. &

Here the predicate isinteger(u) is a type predicate expressing that u is an integer. The theorem

corresponding to this specification is




[‘cwva

;.

i 1

iy [if isinteger(i) and isinteger(j) end]
- i1>0and >0

g then

(Vi)(V7) isinteger(z) and

isinteger(y) and
()|t==z2-7+y and
L 0<yand y<j ]

(32)

(For simplicity, we shall omit the type predicates when the context makes the type clear.)

Design Criteria for a Formal System

A formal system to prove such theorems must have the following capabilities:
e It must prove theorems with both universal and existential quantifiers.

e It must be able to handle theories with mathematical induction, such as nonnega-
tive integers, finite sets, lists, and trees.

e It must be facile in handling the equality predicate, the equivalence connective,
and the ordering relations; these appear frequently in specifications.

In addition, we want the proofs to appear natural to people. The advantage of such a quality
for an interactive system is sclf-evident. For an automatic system, our hope is that a natural form
will enable us to exploit the heuristics of human intuition. On the other hand, we also want the
system to be machine-oriented, in the sense that there should be only a small number of legal next
steps to choose from at each stage.

It has long been observed that systems requiring the theorem to be converted into clause
form can cause it to explode and lose intuitive content. Such systems are particularly awkward for
proving theorems by mathematical induction, because, if the induction hypothesis is propositionally
complex, it may be dispersed over several clauses. This makes it difficult to recognize when we have
succeeded in reducing the'thcorem to an instance of the induction hypothesis, since the theorein
and the induction hypothesis will be syntactically dissimilar. A nonclausal system, which does not
require us to transform the theorem to clause form, is thus particularly appropriate for program
synthesis.

Equivalence and Equality

Our ecarlier deductive system (Mauua and Waldinger [1980]) and that of Murray {1982], are |
both nouclatisal and are snitable candidates for program synthesis. tHowever, neither system has &
any special provisions for handling equality, equivalence, or orderings. The equalily predicate is of
obvious importance in expressing the specifications of programs. Ordering relations not only occur

1
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frequently in specifications, but are also used in the “weli-founded induction principle” we employ.
_G The equivalence connective is of special importance in dealing with specifications expressed in terms

: of the set constructor {z : p(z)} (“the set of all z such that p(z)”).

For example, we might specify a program to find the Cartesian product of two finite sets s,
and 39 as follows:

-

cart(sy,sz) ¢ find z such that

. {y : (azl)(azz)[” T ]}

z) € 8; and z3 € 89

(Here (z;,z2) denotes the pair of clements z, and zg.) Unless the theorem prover deals explicitly
‘ with the set constructor, we are likely to rephrase the specification with the circumlocution:

cart(sz,82) 4 find z such that

(Vy){ye z = (3:51)(3:52)[3’ = (z1, T2) and }}

Ty € 33 and T3 € 32

N | In fact, even if we have the set constructor in our formal language, we are likely to rephrase it in
terms of equivalence during the proof.

Now an equivalence has appeared in our specification and the corresponding theorem. Of
course, we can rernove it by appealing to such rewriting transformations as

7 = [(zf F then §) and]

. &

if G then ¥)
i or
; _ (¥ and §G) or
1 o ((not ) and (not §))| ‘
G »
. But decomposing the connective in this way may necedlessly mnltiply the length of the proof and e
destroy its intuitive content. Instead, we present deduclion rules for dealing with equivalence 1
i explicitly in a nonclausal setting. ]
¢ Skolemization ..1
b Traditionally, all the quanlifiers of a thcorem are removed by skolemization before the proof 1
' begins. Ilowever, if the theorem contains an explicit equivalence, we cannot remove any quantifiers ]
7.' in its scope without removing the equivalence first, as we shall see. Our carlier system and that of -~
— Murray deal only with fully skolemnized sentences, froin which the equivaiences have been removed. -
; The rules we present here, on the other hand, can be applied Lo partially skolemized sentences, 1
L in which some of the quantifiers and equivalences may remain intact. We also present rules for }
b removing quantifiers one at a time, as it becomes expedient, at any point in the theoremn-proving '%
fq - process. ‘9 1
; Our treatment here will be informal; we shall justify only some of the rules, and in an intuitive ]
y way. 1

L . et et . ; : S ” et s il PR
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THE DEDUCTIVE APPROACH

Deductive Tableaus

The basic structure of this approach is the deductive tableau, which consists of a set of rows;
each row contains either an assertion or a goal, and an optional associated output entry.
Ezample:

The rows below are part of the tableau for the synthesis of the integer quotient program; in
the actual synthesis, these rows are interspersed with others.

outpuls

asserlions goals quot(i, j)

1. i>0 and >0

9. (By)[i =z-jJ+y and

0<yand y<j z
3. i<j 0
4. <1 quot(i — j, j)+1

Here, ¢ and 7 arc constants, and y and z are variables. An inslance of a row is obtained by reptacing
free variables of a row with terms; constants and bound variables eannot be replaced. |

The intuitive meaning of the tableau is that if, under any given interpretation, every instance
of each of the assertions is true, then some instance of at least one of the goals is true. In this
case, we will say that the entire tableau is valid. Furthermore, if some instance of one of Lhe goals
is truc or some instance of onc of the assertions is false, then the corresponding instance of the
output entry will satisfy the specification for the desired program.

Thus, Lhe goals of the tablean have a tacit disjuunction between them, while the assertions have

a tacil conjnuction. ln addition, the free variables of the goals have a Lacit existential quantification,
while the free variables of the assertions have a tacit universal quantification. v
b
[For example, the second row above has a free variable z, which is also the output entry. This “

means that if, for a given interpretation, there is some value of z for which goal 2 is true, then

that value of z will salisfy the specification for Lhe quotient program.

Latadud 4 o aies

If an aseertion has no outpnt entry, we are nol concerned with the output in the case in
which the assertion is falsc. For example, assertions thal are axioms will have no output entries.
Typically, all the goals will have output entries.

e aithalasls
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A tableau that contains as a goal the proposition frue, or as an assertion the proposition false,
will always be valid.

It is possible to use tableaus that contain more than one output column, corresponding to the
synthesis of systems of more than one prograin, but we shall not discuss this extension here.

Note that the distinction between assertions and goals is artificial and does not increase the
logical power of the system. In fact, if we delete an assertion from the tableau and add its negation
as a new goal, or delete a goal and add its negation as a new assertion, we obtain an equivalent
tableau; this is known as the duality property. The distinction between assertions and goals does
make proofs easier for people to understand and may have strategic import.

The free variables in a row are dummies; they may be systematically replaced by new variables
without changing the meaning of the tableau. For simplicity, we assume that the variables are
implicitly standardized apart, so that Lhe variables of any row are distinct froin those of auy other
row, and the variable bound by one quantifier is distinet both from that bound by any other
quantifier and from any free variable. If, in an exainple, we happen to wrile a tableau in which this
restriction is violated, we may imagine that the variables are distinguished by invisible subscripts.

How to Begin

If we are given a specification of form

f(z) & find z such that r(z, 2)
where p(z),

the corresponding theorem is
(Vz)[ef p(x) then (32)r(z,2)].

We construct an initial tableau

assertions goals outputs
J(a)

pla)

r(a, 2) z

Ilere a is a constant, obtained by removing the quantifier (Vz) through skolemizatiou, and 2z is a
free variable. The meaning of the tableau is that if, under any interpretation, p(a) is true, then
some instance of r(a, 2) is true, and the corresponding instance of z will satisly the specification.
The output entry is a device for ensuring that the proof will be sufliciently constructive and for
extracting a program froin the proof.




Typically, in addition to the input condition p(a), the initial assertions of the tableau will
include axioms for the theory under consideration (e.g., integers, finite scts, etc.) and the underlying
logic.

The Deductive Process

In the deductive system we describe, we apply deduction rules that add new rows to the
tableau without changing its meaning - i.e., so that an cquivalent tableau is produced. The process
terminates if we develop the final goal

r r true ] t ]

or the final asscrtion

false t

where ¢ is a term cousisting entirely of symbols from the target programming language. Because the
deduction rules preserve meaning, obtaining such a goal or assertion will imply that the original
tableau is valid. We are also assured that ¢ will satisfy the program’s specification. The f(inal
program we obtain is

J{a) &= &

The restriction on the symbols of ¢ will ensure that the proof will be sufliciently constructive
to cnable us to compute the output; in particular, ¢ will not be allowed to contain quantiliers,
untestable predicates, or uncomputable functions.

We assume that the variables of the new rows added by a deduction rule are implicitly
standardized apart in the same way the variables of the original tablcau are.

At each stage, there may be several deduction rules that can legally be applied, not all of
whicli are helpful in reaching a final program. Also, different choices of deduction rules may lead
to dilferent final programs, some of which may be better than olhers. In this paper, we largely
disregard the strategic aspect of making an opportune choice of deduction rules.

PRI s .

w




DEDUCTION RULES

- The deduction rules are divided into several categories:
o The splitting rules break a row down into its logical components.
e  The skolemization rules enable us to remove quantifiers.
o The transformation rules replace subscentences by equivalent sentences.

e The resolution rules cnable us to perform a case analysis on the truth of a
subsentence.

e The substitution rules cnable us to use equivalences, cqualities, or other special
relations that appear in the tableau.

e The matching rules enable us to introduce new equivalences, cqualities, or other
special relations into a tableau.

e The mathematical-induction rule enables us to introduce an induction hypothesis.

The splitting and mathematical-induction rules are basically the same as in Manna and Wald-
inger [1980] but arc outlined here for completeness. The transformation and resolution rules have
been generalized to allow for explicit quantifiers. The skolemization, substitution, and matching
rules are new.

We first describe the splitting and mathematical-induction rules.

The Splitting Rules

The splitting rules break rows down into their logical components. “
Rule (and-split): ) PR

The and-split rule may be expressed in a tableau notation as follows:

assertions goals outputs i ,
F and § t -
—
Si t
g t
. -
This means that if a tableau contains an assertion of forin 7 and §, we may add ¥ and § to our
tableau as two separate assertions. The output entries for the new assertions are inherited from
3
1
L 4
-1
1
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the original assertion; if there is no output entry in the original assertion, there is none in the new
assertion either. The assertion ¥ and § need not be the last row in the tableau; it may occur
anywhere,

In general, the rows above the double line in a rule are the given or originel rows, which are
required to be present in the tableau before the rule is applied; the rows below the double line are
the derived or new rows, which are added to the tableau as a result of applying the rule.

The original assertion is not deleted from the tableau when the rule is applied. Although this
may be advisable for efficiency, we are disregarding strategic considerations here.

The or-split rule is similar to the end-split rule and breaks a goal of form ¥ or § down into
two goals ¥ and §. The #f-split rule breaks a goal of form if ¥ then § down into a new assertion
7 and a new goal §G. There are no rules for breaking down an assertion of form ¥ or § , an
assertion of form if ¥ then G, or a goal of form ¥ and §.

Mathematical Induction

We present here only the simplest case of the induction rule, in which the induction hypothesis
is formed directly from the theorem to be proved, rather than from a subsequent goal or a
generalization.

Rule (mathematical induction):

Suppose our initial tableau is

;i outputs
assertions goals f(a)

?la)

r(a, 2) z

In other words, we are trying to construct a program to produce, for an arbitrary input a, an output
z satisfying the output condition r(a,z), provided that the input @ satisfics the input condition
p(a). Then we may assume inductively that the program f we are trying to construct will produce,
for an arbitrary input u, an output f(u) satisfying the output condition r(u, f(u)), provided that
u satisfies the input condition p(u) and that u is strictly less than a in some well-founded ordering
< w- In other words, we may add to our {ableau as a new assertion the induction hypothesis

if u<ya
then if p(u)

then r(u, f(u))

gy
“AA'

IPPRSPERTeRTEr. ¢
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This induction hypothesis states that the program will work properly on all inputs “smaller” than
the arbitrary input under consideration. The particular well-founded ordering <., to be used in
the proof is left unspecified; it must be discovered during the proof process.

Ezample:

The initial tablcau for the quotient program is

asscrtions goals outputs
quot(, 7)

120 and >0

i=2z-5+y and
(ay)OSy and y < j

By the induction rule, we are justified in adding to our tableau, as a new assertion, the induction
hypothesis

if (u,v) <o (%,7)
then if u >0 and v > 0

u == quot(u,v) - v+y
el and 0 <y and y< v

This assertion contains instances of the term quot(u,v), where quot is the program being
constructed. If this asscrtion is used in the proof, terms of the form quot(s,t) can appear in the
output column, corresponding to recursive calls in the final quof program. §

This is the simplest case of the induction rule; the more general case, not presented here, allows
us to form an induction hypothesis from rows other than the initial rows of the ‘ableau. This more
genceral induction rule enables us to construct auxiliary subprograms.

THE SKOLEMIZATION RULES ' 1
Before we can introduce the skolemization rules, we must introduce the notion of “polarity”
and the associated concept of “quantifier foree.” Polarity is also of strategic import in controlling = )
the other rules. Murray (1982] used it in his formulation of nonclausal resolution and it was known i
to logicians earlicr. ?
- Polarity o

A subsentence of a given sentence is said to be

e Bl
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o  Of positive polerity in Lhe senlence if il is within Lhe scope of an even number of
(explicit or implicil) not conneclives, and.

o  Of negative polarity in Lhe senlence if it is within the scope of an odd number of
(explicit or implicit) not conneclives.

In determining polarity, a subsentence of form if P then Q is regarded as an abbreviation for
(not P) or Q, so that P is wilhin the scope of one more implicil not connective than Q.

A sentence of form P = Q is regarded as an abbrevialion for

(P and Q) or
((not P) and (not Q)),

in which the second occurrences of P and Q are within the scope of one more not connective than
the firsl. As a consequence, P and Q have both positive and negative polarilies in the sentence. A
subsentence is said to be of strict polarity if it docs nol have bolh polarities in the sentence.

Intuilively speaking, the Lruth of a sentence is directly related Lo the truth of its positive
subsentences, and tlie [alsity of its negative ones. In parlicular, we might make a sentence become
true (or valid) by replacing one of its strictly positive subsentences wilh true or one of its strictly
negalive subsentences with false, bul never by replacing one of its striclly negalive subsenlences
with true or onc of ils strictly positive subsentences with false.

Ezample:

The subsentences of the following sentence are annolated according to their polarilies in the
senlence:

(#f plz)~
then ((3y)q(y)+)+)+.

We can exlend the notion of polarily to apply Lo a tableau as well as to a senlence. We regard
cach goal as positive in the Lableau. Because, by the dualily principle, an asserlion F is equivalent
lo a goal not F, each asserlion is within the scope of an implicit not conneclive, and is therefore
negalive in the Lableau.

Ezample:

Tlic subsentences of Lhe following Lableau arc annotlaled according Lo Lheir polarilies in the
Lableau:

Py

| @
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asserlions goals outputs

(if p(z)* )—
then ((3y)a(y)™)"
+\ t
((p(ac):E = la(2)* or r(z)*}*) )
or p(a)*

|

Note that the subsentence p(z) is negative in the sertence

if p(z)
then (3y)q(y)

but positive in the tableau, which contains this sentence as an assertion. Note also that cvery
subsentence of an equivalence has both polarities and the only subsentences of both polarities are
subsentences of equivalences. If we wanted to include the connecuvive if P then Q else R in our
language, the subsentences of P would also have both polarities, since this construct is regarded
as an abbreviation for

(P and Q) or
((not P) aend R).

Ienceforth, however, we shall not regard this connective as part of the language.

The Force of Quantifiers

By the well-known duality between the universal and existential quantifiers, the “rotes” of
the quantifiers are reversed by putting them within the scope of an additional negation sign.
Thus, the universal quantifier in not (Vz)p(z) plays the same role as the existential quantifier in

(3z) [not p(z))-

With this in mind, we deline the foree of a quantifier (Vz) or (3£} in a subsentence € of form
(Vz)F or (32)7 in a sentence (or tableau) according to the following rules:

e The quantifier has universal )arce il it is a universal quantifier and € is of positive
polarity, or il it is an existential quantifier and € is of negative polarity in the
sentence (or tableau).

e The quantifier has existential force if it is an existential quantificr and € is of
positive polarity, or if it is a universal quantifier and € is of negative polarity in
the sentence (or tableau).

e e e s ca— e N T N e e e -
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Because a subsentence may have both positive and negative polarity, a quantifier may be of .
both positive and negative force; these are the quantifiers within the scope of an equivalence. A
quantifier that does not have both forces is said to be of strict force.

Ezample:

The quantifiers in the following tableau are annotated according to their lorces:

assertions goals ontputs

if (3z)%p(z)
then (3y)¥q(y)

(V2)'p(2)

[(3w)"3r(u)] = r(a)

Here, the quantifier (3z) has existential force because the subsentence (3z)p(z) is positive in the
tableau; the quantifier (3y) has universal force because the subsentence (Iy)q(y) is negative in the
tableau. All the quantifiers are of strict force except (3u). B

Removal of Quantifiers

Rather than regard quantifier removal as a separate stage, to be done before thcorem proving
takes place, we allow skolemization to occur at any stage of the theorem-proving process. In
practice, we are likely to defer removal of those quantifiers within the scope of an equivalence,
becanse this will require prior removal of the equivalence, with consequent explosion of the theorem.

The skolemization rules permit us to remove any quantifier of strict force from a tableau; the

variables bound by the quantifier are replaced by free variables il the quantifier is of existential
force, and by “skolem” constants or terms if the quantifier is of universal force. Quantifiers of both
forces cannot be removed. (Ilowever, if we first remove the enclosing equivalences, a quantifier of

both lorces will be split into two or more quantifiers of strict force; see the section “Removal of 9
Equivalences.”)

13 13 ]

Removal of Quantifiers of Universal Force v

=1

We first deal with the removal of quantifiers of strict universal force.

Rule (universal elimination):

Suppose our tableau contains an assertion (or goal) ¥ of form -

73 7o((...2)Y P).

S 2 AP Sty
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Here, (...2)YP denotes a subsentence of 7, where (...z)¥ is a quantifier, either (Vz) or (32), that is
of strict universal force (in the tableau).

Assume that the variables z,z2, ...,z are the only free variables in 7 and that (...y1)?,
(--¥2)?, ..., (--¥n)? are the only quantifiers in ¥ of existential force that contain the subsentene
(...2)¥P within their scope. Let f be a new function symbol, i.e., one that occurs nowhere in the
tableau.

Then we may add to our tableau the new assertion (or goal)

& fo(P‘{Z"’f(zl, s Tmy Y, ---ryn)})'

In other words, ' is formed by removing the quantifier (...z)Y in ¥ and replacing every occurrence
of z in P by the term f(z), ..., Zm,¥1, --.,Yn). We shall refer to a term added in this way as a
skolem term, and to f as a skolem function. We will say that we have “replaced” the quantifier
with the skolem function.

In the special case in which there are no free variables z;,z3, ...,2z,,» and no enclosing
quantifiers (...31)3, (.-.y2)?, . - ., (---¥n)?, we let a be a new constant; then we may add to the tableau
the new assertion or goal

. b Fo(P < {z +~ a}).
We will refer to a constant added in this way as a skolem constant.

Ezample:

Suppose our tableau contains the assertion

assertions goals outputs
F. or(z) or ;
(Vv)°la(z,y) and (32)"p(z,y, 2)] ]

Here, z is the only free variable in 7 and (Vy)® is the only quantifier of existential force that
contains the quantifier (32)¥ within its scope. Therefore, we may remove the quantifier (32)¥ from ]
the assertion by replacing every occurrence of z with the skolem term f(z, ), adding to our tableau -4
the new assertion

F'e r(z) or ol

(Y9)lg(z,9) and p(z,y, f(z,3))] g

3

2 where f is a new function symbol. § !

Note that the rule enables us to remove single occurrences of quantifiers without allering others }
in the sentence. 1
1
{
!
1
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Removal of Quantifiers of Existential Force

The forthcoming existential elimination rule allows us to remove quantifiers of strict existential
force. However, the quantifier to be removed must not be within the scope of any quantifiers of
universal force; such quantifiers should be removed by prior application of the preceding rule.

Rule (ezistential elimination):

Suppose our tableau contains an assertion or goal ¥ of form
EAb Fo((---2)?P)

where (...z)7 is a quantifier of strict existential force. Assume that no quantifiers of universal force
contain the subsentence (...z)?P within their scope. Then we may add to the tableau the new
assertion or goal

7 7o(P).

In other words, we may remove the quantifier (...z)3 so that every occurrence of z in P becomes a
free variable.

Ezample:

Suppose our tableau contains the goal

assertions goals outputs

F: (321)3[p(z1) and (322)%q(z1, 22)]

Here the quantifier (329)? is not within the scope of any quantifier of universal force. Therefore,
we may remove the quantifier (322)2 by adding to the tableau the new goal

7o (321)p(z1) and g(21, 22))

We could also have used the rule to remove the quantifier (3z;) from 7. N
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TRANSFORMATION RULES

Before we introduce the transformation rules, it is necessary to extend the notion of unification
to sentences with quantifiers.

Unification

Unification became widcly known through its use in the original resolution principle (Robinson
[1965]), in which it was applied only to atomic sentences. The extension to nonatomic sentences
with quantifiers is straightforward.

We assume that, in matching subsentences of sentences with quantifiers, the variables that
are bound in the surrounding sentence are distinguishable from free variables by some invisible
annotation. Then:

o Logical connectives are treated like function symbols. Thus,
if p(z) then q(z, f(z))
will unify with
if pla) then q(y, 2),

yielding a most-general unifier

{z «~ a,y «~ a,z ~ f(a)}.

e Bound variables are treated like constants. Thus, we eannot unify the subsentence
p(u) of the sentence

(3u)[p(u) and q(y)]

and the subsentence p(z) of the sentence
(V2)[sf p(2) then r(u,z)).

However, we can unify cither of these subsentences with the subsentence p(z) of
the sentence

p(z) or s(z),

in which z is free, yiclding the most-gencral unifiers {z «~ u} and {z « 2},
respectively.

e To unify two scutences of form (Vz)P and (Vz')P’, we attempt to unify P and
P'4{z' « z}, the result of replacing all ocenrrences of z/ in P/ with z, treating z

R T ey P e e ey
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as a constant. If we are successful, obtaining a unifier 0, our result is {z' < 2}00,
the composition of the substitution {z’ + z} and 0. (Similarly for existential
quantifiers.)

Ezample:

To unify (Vz)p(z, a, u) and (Vy)p(y, v, b), where u and v are free variables, we first unify p(z, e, u)
and p(y,v, b) « {y « z}, that is, p(z,v,d), obtaining a unifier 6 = {v « a,u « b}. Our resulting
unifier is then {y «+~ 2} 0 0 = {y «~ z,v —a,u—b}. &

Statement of a Transformation Rule

Suppose that any sentence of form P is equivalent to the corresponding sentence of form Q.
Then a transformation rule

P = 0

allows us to replace a subsentence of form P by the corresponding equivalent subsentence of form
Q in any assertion or goal, yielding a new assertion or goal, respectively, to add to the tableau.

Before we present the precise statement, let us give a rough schematic description of the
application of a transformation rule to an assertion in the ground case, where there are no variables
and also no output entries:

assertions goals outputs
7(P)
F(Q)

Similarly, to apply the rule to a goal, we write

assertions goals outputs
7(P)
7(Q)

tere, if #(P) is a senlence with a subsentence P, F(Q) is the result of replacing every instance of

P in F(P) with Q.

FFor example, the then-false rule

if G then false = not g
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applied to the goal

I assertions goals outpufs

not| +f p(z) then false | and
not q(z)

yields the new goal

not not p(z) and
not g(z)

We use the box to indicate the subexpression to which the rule is about to be applied.

Other examples of transformation rules are the not-not rule
notnot§g = G

and the or-two rule

Gor G =2 G

To describe the application of these rules more precisely, we regard the script letters g, ¥,
..., that appear in such rules as free variables that range over sentences, and we attempt to unify
the left-hand side of the rule with subsentences of the tableau.

Rule (transformation):

The application of a transformation rule
P = Q

to an assertion is represented in tableau notation by

assertions goals outputs 1
7 f
(F20)a{P 20— Q<0} f<0

Here we assume that
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o Thereis aset {Py, ..., P} of disjoint subsentences of F such that P, Py, ..., Pk
are unifiable, with most-general unifier 8. Thus P <0, P, <0, ..., P 40 are all
identical sentences.

o F40,P«0,0Q«0, and f <0 arc the results of applying the substitution 0 to 7, P,
Q and f, respectively.

o (F<0)«{P 40 — Q <0} is the result of replacing every occurrence of P 40 in 7«0
with Q «6. '

o If z is any free variable in ¥ that occurs within the scope of a quantifier, ¢ cannot
instantiate = to any term ¢ containing a bound variable of 7.
(dependency restriction)

If there is no output entry f in the original row, then there is no output entry in the new row
either.

In the precise version of the rule, we consider a set of subsentences of 7 because these reduce
to a single sentence on application of the substitution 0.

We assume that the variables of transformation rules are standardized apart in the same way
as the variables of the tableau itself. Thus, the bound and free variables of transformation rules
are tacitly renamed so that they are distinet both from one another and from the variables of the
tableau.

The application of a transformation rule P = Q to a goal is similar. In tableau notation, we
have

assertions goals outputs
F )/
(F40)«{P <0~ 20} [0

The same notation and the same restrictions apply as when the rule was applied to an assertion.
It is also possible to apply transformation rules to output entries.

We first illustrate the rule with a straightforward example; then we present a counterexample
to show that the dependency restriction is necessary.
Ezample:

Suppose our tableau contains the assertion

assertions goals outputs
F: |pla,y) and p(z, f(z)) ] or
r(z,y) g(x»y)
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Then we can apply the and-two rule

Gand § = G

to the subexpression p(a,y) and p(z, f(z)) of 7. The unifier @ is

{z —a, y+ fla) G« (s, f(a))}

and the new row is

p(a, f(a)) or 7(a, f(a)) g(a, f(a))

Note that the substitution 8 is applied to the output entry as well as to the assertion. §

The Dependency Restriction

Let us consider the rationale for the dependency restriction.

Ezample:

To see why the restriction is required, suppose our tableau contains the assertion

F: () plz,y) or ply,z) |

Then, were the restriction not required, we could apply the or-two rule

Gor§g = §

to the subsentence

p(z) y) or P(y) :!:)

of the assertion. The unifier 0 would be | ==

{z vy, 6+ pv,9) Z

and the (erroncous) new row would be i
]

(3y)p(y,v)
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This step violates the dependency restriction, because z is a free variable in the assertion, z
occurs within the scope of the quantifier (3y), and 0 instantiates z to the term y, which contains
a bound variable.

The new assertion is not a valid conclusion to draw from the given one. For example, in the
interpretation whose domain is the set of integers {0, 1} and that takes p(z,y) to mean z < y, the
given assertion means

(Fy)lz <y or y < 1]
for any z, which is true, but the new assertion means
(3y)ly < 9,

which is false. @

In fact, if we had skolemized the given assertion, we would have obtained an assertion

p(z, f(z)) or p(f(z), z)

The or-two rule cannot be applied to this assertion, because its left-hand side G or G fails to
unify with the assertion; the subterms z and f(z) cannot be unified. @

Wlien the application of a transformation rule is blocked by the dependency restriction, it is
possible that the rule may be applicable if the quantifier of the offending bound variable is first
removed by skolemization.

Ezxample:

Suppose our tableau contains the goal

assertions goals outputs

(3y)(p(=,y) or p(y,z))

Then if we momentarily disregard the dependency restriction, we can apply the or-two rule

Gor§g =g

to the subscntence p(z,y)or p(y, z). The unifier 0 is

{Z = g (= P(y,y)}
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and the new goal is

(3v)p(y, y)

Although this is a valid step, which preserves the meaning of the tableau, it does violate the
dependency restriction: the free variable z, which is within the scope of the quantifier (3y), is
instantiated to the bound variable y. Thus, in this case, the restriction is unduly prohibitive.

Had we first removed the quantifier by skolemization, however, obtaining the goal

p(z,y) or p(y,z)

we could indeed have applied the or-two rule to obtain the goal

ply, )

The True-False Rules

We assume we have a full complement of true-false rules for removing occurrences of the
propositions true and false from sentences, e.g., the and-true rules

G and true = §
true and § = G,
the then-true and then-false rules,
if G then true = true
if G then false = notg,
and the all-true and all-false rules

(Vz)true = true

(Vz)false = false.

These rules and certain of the other transformation rules are so fundamental that som.ctimes
we will apply thein aulomatically, as a simplification step, without inentioning it.

Removal of Equivalence

We also assume we have the equivalence elimination rules, the iff- o :ule

G6=H1 = (G and X) or
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((not §) and (not X))
and the iff-and rule

G=X = (if G then }) and
(if X then G).

These rules will enable us to remove equivalences when we cannot prove the theorem otherwise.
By repeated application of these rules, we can ensure that a given quantilier has strict force, and
then remove it by skolemization. This may be necessary if we fail to apply, say, a transformation
rule because a quantified variable has caused the unification to fail or the dependency restriction
to be violated.
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THE RESOLUTION RULE

The resolution rule performs a case analysis on the truth of a subsentence of the assertions
or goals of a tableau. At the same time, the rule instantiates variables and accounts for the
introduction of conditional expressions into the program being constructed.

Statement of the Resolution Rule

The rule can be applied to two rows of the tableau, whether these rows contain assertions or
goals. We present first the “GG-form” of the rule, which applies to two goals.

The schematic description of the ground version of the rule is as follows.

assertions goals outputs
7(P) f
9(P) g
if P
F(true) and then f
G(false) else g

In other words, we seck a common subseutence P of ¥ and G, replace 2ii occurrences of P in ¥
and in § with true and false, respectively, and add the conjunction of the resulting sentences as a
new goal. The output entry is a conditional expression, with P as its test.

The rationale for this rule is as lollows. Consider an interpretation under which the derived
goal F(true) and G(false) is true; we seek to show that one of the two given goals F(P) or G(P)
is then also true under this interpretation. Because the conjunction is true, both of its conjuncts
F(true) and G(false) arc true. In the case in which P is true under the interpretation, the given
goal F(P) is true; in this case, [ is a suitable output. In the case in which P is lalse, the given
goal G(P) is true; in this case, g is a suitable output. In either case, the conditional expression
if P then f else g is a suitable output.

The more precise deseription of the rule is as follows:

Rule (resolution):

An application of the resolution rule is written in tableau notation by

B e T P ) Bl bl ot it A e e . PR P R e )
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asscrtions goals outputs
# 4
Y g
f P <0
(F 20)«{P <0 « true} and :{zen <f <0
(G <0)«{P <0 ~ false} else g0

Herc we assume that

e P = {P,...,Px} is a sct of subsentences of F and Q = {Qy, ..., Q¢} is a
sct of subscntences of § that arc all unifiable with most-general unifier 8. Thus
Pi<0, ..., P20, Q140, ...,Q,<«0 arc all identical sentences, denoted (by abuse

of notation) by P «4.

o As before, (F<0)<{P <0 « true} and (§<0)«{P «0 ~ false} dcnote the results
of replacing cvery occurrence of P 40 in ¥ 40 and § <0, respectively, with the
propositional symbols true and false, respectively.

e Il z is any frce variable in ¥ or in G that occurs within the scope of a quantifier,
then 0 cannot instantiate = Lo any term f containing a bound variable of # or of

S.

(dependency restriction)

e No variable that is bound in ¥ or in § may occur frec in the new row.
(no-escape restriction)

In the precise version of the rule, we consider a sct of subscntences of F (and of §) because
these sentences reduce to a single sentence on application of the substitution 0. Recall we have
assumed that the variables of our tableau are standardized apart, so that the variables of 7 are
distinct from thosc of §.

Murray’s [1982] polarity strategy for resolulion allows us to consider only those applications of
the rule under which some occurrence of P« in 70 is positive in the tablean and some occurrence
of P40 in G0 is negative in the tablean. This strategy not only preserves completeness, but also
rarcly blocks a reasonable step.

Examples

We give a straightforward example of the application of the rule and two connterexamples
illustrating the necessity for the dependency and no-escape restrictions.
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Ezample:

Suppose our tablecau contains the two goals

27

asscrtions goals outputs
K f(z)
§: mnot[b<y] 9(v)

Here we use the box notation to indicate the subsentences that are about to be matcked in applying

the rule.

According to the tablcau, if we can find z such that z < a, then f(z) is a suitable output,
and if we can find y such that not (b < y), then g(y) is a suitable output. Let P be the subset
{z < a,b < y} of subsentences of 7 and §. Then P is unifiable with most-general unifier § =

{z « b,y «— a}, and P €0 is b < a. By the resolution rule, we may infer the new goal

ifb<a
(b < a)«{(b < @) « true} and then f(b)
(not (b < a))={(b < a) « false} else g(a)
ifb<a
true and then f(b)
(not false) else g(a)
which reduces to
if b<a
then f(b)
true else g(a)

under the not-false rule
not false = {true
and the and-true rule

P and true = P.

Note that this application of the resolution rule is in accordance with the polarity strategy

FEzample:

To sce why the dependencey restriction is necessary, assume our tableau contains the two goals
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assertions

goals

outputs

§ic

(va)[p(z u] I

G:

(Vy)(not [p(z,3) |)

If the dependency restriction were not imposed, we would be able to apply the resolution rule to
match p(z, u) against p(z,y), with most-general unifier § = {z + z,u « y}, obtaining (erroneously)

the new row

(Vz)true and
(Vy)(not false)

which reduces to

I

r true

after truc-false transformation.

This step violates the dependency restriction, because the free variables z and u, which occur
within the scopes of quantifiers, are instantiated to the bound variables z and y, respectively.

The preceding deduction is not sound, because we can imagine interpretations under which all

instances of both goals are false, e.g., if p is the equality predicate and the domain has more than

one element. 1§

Ezample:

To see why the no-escape restriction is necessary, assume our tableau contains the goals

assertions

goals

outputs

* and q(z)

g(z)

(Vu)(not ‘)

Then, if the no-escape condilion were not imposed, we would be able (erroncously) to derive the

goal

(true and g(u)) and
(Vu)(not false)

g(u)

which reduces to

=y |

-
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Here the bound variable u of the second goal has “escaped” and become free, giving it a tacit
existential quantification in the new goal it did not have in the original goal.

For instance, in an interpretation over the integers in which p(z) and ¢(z) denote the conditions
that z is even and odd, respectively, both given goals are flalse: our first goal requires that we find
a z that is both even and odd, while our second goal requires us to show that every integer is not
even. The ierived goal, on the other hand, is true: it requires that we find an integer u that is
odd.

Note that, i the tableau contains the two goals

assertions goals outputs
p() |

(Vu)(not )

then we could apply the resolution rule to match p(z) against p(u), taking the most-general unifier
0 = {z «~ u} withoul violating either restriction. In this case, the new goal is

true and

(Vu)(not false)

which reduces to

I true 1

Dual Forms of the Resolution Rule

We have given the GG-lform of the resolution rule, which applies to two goals. The AA-, AG-,
and GA-forms of the rule, which apply to two assertions, an assertion and a goal, and a goal and
an assertion, respectively, may be derived by duality from the GG-form. The schematic version of
the GA-form of the rule (ground case) is as follows:

Baiacassannsaanch da oias
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;(‘.] assertions goals outputs
| #(P) s

9(P) g

if P
F(true) and then f

! not G(faise) else g

*" The precise description of the rule and its restrictions are analogous to those of the GG-form.
1 The AA-form is phrased to produce a new assertion rather than a new goal. If onc of the given
rows, say F(P), has no output entry, the output entry for the new row is simply g (or, in the
precise version, g < 0) rather than a conditional expression. If ncither of the given rows has an

output entry, the new row has no output entry either. The polarity strategy for the dual forms of
the resolution rule is precisely the same as that for the GG-form.

Relaxing the Dependency Restriction

The dependency restriction for the resolution rule can be relaxed Lo allow the rule to apply in
more situations; the relaxed restriction, however, is more complex than the original.

Recall that the restriction is

If z is any (ree variable in the given rows 7 or § that occurs within the scope

of a quantifier, then the unifier 0 cannot instantiate £ to any term ¢ containing a
bound variable of 7 or of §.

Actually, the restriction can be rclaxed by applying it orly to free variables that occur within
the scope of a quantifier whose variable actually occurs in one of the matched sentences. More
precisely, the restriction can be revised as follows:

e If zis any free variable in F or in § that occurs within the scope of a quantifier
(...y) whose variable y occurs in at leasl one of the malched sentences Py, ..., Pe
or @4, ...,9¢ then 0 cannot instantiale = to any terim ¢ coulaining a bound
variable of ¥ or of §.

(relazed dependency restriction)

Let us look at an (admittedly rare) example of a valid application of the resolution rule that
violates the original dependency restriction but not the relaxed dependency restriction.
Ezample:

Suppose our tablean contains the goal and assertion
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assertions goals outputs

7: (W)([p@E) ] and q())

6 @) )

Disregarding both versions of the dependency restriction momentarily, we can apply the GA-
resolution rule, taking 0 to be {z « z}, to obtain the new goal

(Vy)(true and g(y)) and
not 33)( 7))

which reduces to

(V¥)a(y) and
not (3z)(not 7(z))

under true-false transformation.

This step is legitimate — it preserves the meaning of the tableau — but it violates the original
dependency restriction. The free variable z in the goal ¥, which occurs within the scope of the
quantifier (Vy), is instantiated by @ to the bound variable 2. On the other hand, the step does not
violate the relaxed dependencty restriction, because the variable y of the quantifier (Vy) does not
occur in the matched subsentence p(z). 1

We did not present the relaxed dependency restriction at first because it is more complex than
the original restriction and only permits a few additional applications of the resolution rule.
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EQUALITY AND EQUIVALENCE SUBSTITUTION RULES

The equality predicale has long been recognized as meriting special trealtment. The use of
axioms to rcpresent the properties of the relation lengthens the proof and dramatically explodes
the scarch space. In the resolution framework, special inference rules such as paramodulation (Wos
and Robinson [1969]) and E-rcsolution (Morris [1969]) were soon bronght Lo bear in an atlempt to
control the proliferation of clauses.

The cquivalence conncctive has not been recognized as such a trouble spot, but, as we have
indicated in the introduction, it is common in the specification of programs. ’rools become longer
and losc their intuitive motivation when equivalence is paraphrased in terms of other connectives.
Furthermore, the techniques that apply to the cquality predicate can be ecasily adapted to the
cquivalence connective. In this scction, we present nonclausal versions ol both paramodulation and
I--resolution and apply the rules to both equality and cquivalence.

Equality Substitution Rule

The “substitution rules” arc our nonclausal connterpart of paramodulation. The cquality
substitution rule allows us to use an eqnality that ocenrs in onc row of a tablcau to replace a
subterm with an cqual term in another (or cven possibly the same) row. We present the AA-form
of the rule, which applies between two assertions.

The rough schematic descriplion of the ground version of the rule is as follows:

asscrtions goals onutpuls
F(s=T) /
9($) g
f&§=T
F(false) or then ¢
g(T) else f
llere, we seck an explicit equality § = T i F, where § also occurs in . We replace cvery
occurrence of § = T in F wilh false, replace somne occurrences of § in § with T, and add their
disjunction as a new assertion. The output entry is a conditional expression with § = T as its

test. Note that, in an abuse of notation, we do not nccessarily replace every occurrence of § in §

with T.

The rationale for this rule is as lollows. Consider an interpretation under which both given
asscrtions are trie; we seck to show that the derived assertion is also true under this interpretation.
Isguivalently, we show that if the derived assertion is false, then one or the other of the given
assertions is also false. Because the disjnuction F(false) or G(T) is false, each of its disjuncts

L
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F(false) and G(T) is false. In the case in which § = T is false, because F(false) is false, we know
the given assertion F(S = T) is false; in this case, f is a suitable output (i.e., it satisfies the
specification for the desired program). In the case in which § = T is true, because G(T) is false,
we know the given assertion G(§) is false; in this case, g is a suitable output. In cither case, the
conditional expression if S = T then g else f is a suitable output.

The precise description of the rule follows:

Rule (equality substitution):

Expressed in our tableau notation, the rule is

assertions goals outputs
A 1’
g g
if S0 =T <0
(F20)<{(S<10=T «0) ~ false} or then g«0
(G20)<a{S<0— T <0} else f<0

Ilere we assume that
e S={s0,81,..-8%}and T = {tr, ...,tx} are sets of terms such that
s ¥ contains at least one occurrence of cach equality sy = ¢y, ..., 8 = t;
= G contains at least one occurrence of sg;

s 0 is a most-general unifier of § and of T: i.e., 30 «0,5; «0,...,s5, <20
are identical terms, denoted by § «0; and ¢, <0, ...,t; <0 are identical
terms, denoted by T «0; and 0 is one of the most-general substitutions
that make these expressions identical.

o (F<0)«{(S<0= T «0) « false} denotes the result of replacing every occurrence
of the subsentence S 40 = T «0 in F <0 with the proposition false.

e The symbol < is defined so that (G «0)< {S <0 «— T «0} denotes the result of

replacing one or more (but not necessarily all) occurrences of § «0 in § 40 with I
T 0. ]
e If z is any variable in 7 or in G that occurs within the scope of a quantifier, then
0 cannot instantiate z to any term ¢ containing a bound variable of ¥ or of G. 1
(dependency restriction) vl
1

¢ No variable that is bound in ¥ or in § may occur free in the new row.
(no-escape restriction)
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If one of the given rows, say ¥, has no output entry, the output entry for the new row is simply
g <0 rather than a conditional expression, as in the resolution rule. Again, il neither of the given
rows has an output entry, the new row has no output entry ecither.

The dependency restriction for this rule can be relaxed in the same way as lor the resolution
rule.

According to the polarity strategy, we may assume that one occurrence of one of the equalities
s; = t; in ¥ is negative in the tableau. We may also require that some clement of § not be a
variable.

This rule degenerates to paramodulation in the clausal, quantifier-free case. The completeness
results of Brand [1975] apply to this rule if the skolemization, splitting, and transformation rules
are included in the system, so that we can reduce our theorem to clause form. We assume the
identity axiom z = z is included among the assertions.

The motivation for the dependency and the no-escape restrictions of the equality substitution
rule is the saine as for the resolution rule.

Ezample:

Assume our tableau contains the two assertions

assertions goals outputs

if q(a) then M: g(z)
(u)p([Sw,2) Ju, )

Then, by the equality substitution rule, taking § = {f(u,v), f(z,0)} and T = {g(z)}, and 0 =
{z + u,v « a}, we can derive the new assertion

(if q(a) then false) or
(Hu)p(g(u), u, a)

which reduces to

(not q(a)) or (Iu)p(g(u),u,a)

We again use the box notation to indicate the expressions to be matched.

Equivalence Substitution Rule

This rule is precisely analogous to the equality substilution rule, with equivalence playing the
role of equality.

R e e ] Sa. P RS
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A The rough schematic description of the ground version of the rule is as follows:
T-
B
p.: asscrtions goals outputs
F(S=T) f
! 9($) g
if S=T
F(false) or then g
g(T) else f
The more precise description of the rule is as follows:
Rule (equivalence substitution):
assertions goals outputs
7 /
g g
if Pall = Q<0
(F <0)<{(P <0 = Q«0) « false} or t{wn g0
(§20)<{P <0 Q0-0} else f<0

The restrictions for the rule are the same as for the equality substitution rule, with cquivalence
playing the role of equality and sentences playing the role of terms.

We assume that we have among our assertions the reflezivity aziom for equivalence § = G,
where § is a metavariable that can be matched against sentences.

To take full advantage of our ability to leave quantifiers intact, we include among our assertions
such familiar equivalences from predicate logic as the some-or cquivalence

(3z)[G or X] = [(32)G or (3x)¥]

and the all-and equivalence

(Vz)[G and H] = |[(Vz)§ and (Vz)H]. 7

Such equivalences are redundant in the presence of the skolemization rules, but may shorten
deductions dramatically by allowing us to avoid skolemization and the rernoval of equivalences.

Example: 4

Suppose our tableau contains a goal
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U “#
- assertions goals outputs _i
- -
] r(z) = [(3y)lp(z,y) or (V2)a(y,2)] | ]
: 1
n Then, by applying the cquivalence substitution rule between this goal and the some-or equivalence, s B
(3z)[G or ¥]| = :
[(32)G or (3z)X] J
we can obtain the new goal ‘]

false or
r(z) = [(3y)p(z,y) or (3y)(V2)aly, 2)]
which reduces to

[(3v)p(z, ) or (I¥)(V2)q(y, 2)]

=
2
i

RESOLUTION AND SUBSTITUTION WITII MATCHING

The matching rules may be regarded as adding a new equality (or equivalence) to a goal when,
because of a mismatch, we fail to apply the resolution rule or a substitution rule. We present first

the GG-resolution rule with equality matching.

Resolution With Equality Matching ]

In its rough schematic form, the rule is as follows:

assertions goals outputs '..
F(R(S)) /
$(R(T)) g
S§=T and if R(S) N
F(truc) and then f 1
G(false) else g

PP,
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Here, we assume that § and T are distinct terms. If they were identical, we could apply the
resolution rule; in this case, we add the conjunct § = T as an additional condition to be proved.

The rationale for the rule is as follows: for an interpretation under which the derived goal is
true, its conjunct S = T is true, and R(S) and R(T) are cquivalent. The justification for this rule
is then the same as for the basic resolution rule, without equality matching. Before we give the
precise description of the rule, let us motivate it with an example.

Ezample:

Supposc our tableau contains the two goals

assertions goals outputs

58 + and
({ple,2,0(2) |t or al2)) /(z)

) if (y)
g "at(then ple,v,9(v)) ) o(v)

In attempting to unify the boxed subsentences of F and of G, the unification algorithm develops
the substitntion

0={z+c y+—a, 2+ a}

and then fails because the correponding terms b and g(a) cannot be unified. If we somchow could
establish that the mismatched terms b and g(a) were equal, we could apply the resolution rule.
This wotivales the precise staternent. We will return to this exawnple afterwards.

The precise description of the rule is as follows:
Rule (resolution with equality matching):

In our tableau notation, the rule is expressed as follows:

assertions goals outputs
F f
g g
S40 =T <0 and if R
(F20)«{Py 20 «— true, ..., P, 20 « true} and then [ <0
| (G20)<{Q 20 + false, ..., Qp 40 « false} else g=0

Here we assume the following:

P A S i H At A e o
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3 e P, P, ..., P are subsentences of .
£ &al
“(' 3 o 0Q4,Qs, ...,Q¢arc subsentenees of §.
: o S={s1,82,...,8k} and T = {t,ta, ...,te} arcsctsof subtermsof Py, ..., P, Qy, ...,
: and Q,.
M e R is a senlence and @ a2 mosi-gencral substitulion such that
i s 0 unifies S;i.e., 8, 20,3240, ..., and s,, 40 are identical terms, denoted |
by S «0. d
| s 0 unifies T; again T <0 denoles the unified term. o
»‘ »
g s S<0and T <0 arc distinctl terms. [
E‘ s R is “ncarly identical” Lo cach of the senilences P; «0; in other words, for
[' cach ¢ between 1 and k&,
J ]
s (P;40)<{S <0~ T <0} is R. A

That is, R can be obtained by replacing in P « 0 zcro, one, or more
occurrences of S <0 with T «0.

= R is “nearly identical” to each of the sentences Q; «0; in other words, for 5
cach j between 1 and ¢,
‘J
(QJ-<0)S{S<0 — T a0} is R.
'Y ~
o If z is any variable in 7 or in § Lhat occurs within Lhe scope of a quantificr, then ]
0 cannol instantiale z Lo any term containing a bound variable of 7 or of §. I
' (dependency restriction)

e No bound variable of ¥ or § may occur frec in the new row. » 4
(no-escape restriction) E

The discovery of thesels § and T and the substitution 0 is the natural by-produet of an attempt
to unify the subsentences B and Q; if the unification algorithm returns pairs of mismatched terms :
when it nearly suecceeds. The rule may be generalized Lo the case in which there are several pairs 5 1
of mismatched terms. The dependency restriction for this rule may be relaxed in Lthe same way as 4
for the resolution rule. !
This rule degenerates to [-resolution (Morris [1969]) in the clausal case. o4
3
P
Ezample: 1
In our discussion prior to the statement of the rule, we considered a tablean with the two goals 1‘
]
1
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assertions goals outputs

7 + and
([ple,z,9(2)) |* or g(z)) f(z)

§: not (z,:,fy-) 9(v)

Recall that the boxed subsentences of ¥ and § failed to unify because of the mismatched terms b

and g(a). However, we can still apply the resolution rule with equality matching, taking

0= {z +c,y —a,z+a},
§ = {b},
T = {9(2), 9(v)},

and
R = p(c, a,b),

to add to our tableau the new goal

b = g(a) and
true and .
((true or q(c))) and if ple,a,b)
(i r(a) tilzen f(e)
oL \ then false else g(a)

which reduces under transformation to

if ple,a,b)
then f(c)
b= g(a) and r(a) else g(a)
" :
@
According to the polarity strategy, we may restrict application of the rule to cases in which, 9

for some ¢, at least onc occurrence of P;«0 in ¥ <0 is positive, and at least one occurrence of Q;«0
in G <0 is negative, in the tableau.




The resolution rule with equivalence matching is identical to the rule with equality matching

if we replace the equality predicate with the equivalence connective, and references to terms and »
subterms with sentences and subsentences, respectively.
Substitution with Equality Matching
®
We can add a new cquality to a row upon failing to apply the equality (or cquivalence)
substitution rule. We present only the schematic AA-form of the cquivalence substitution rule
with cquality matching.
&
asscrtions goals outputs
F(P(s)=0) !
§(P(T) g
. . ®
fS§5=T if PS)=¢Q
then F(false) or then g
9(9Q) else f
»
Here, if S and T werce identical, we could apply the equivalence substitution rule; we therefore add 4
the condition § = T to the assertion as an antecedent. In the GG- and other forms of the rule,
the condition § = T is added to the goal as a conjunct.
A similar rule allows us to add a new cquivalence (rather than an cquality) to a row upon i
failing to apply the equivalence substitution rule. f
Before we introduce the rules for handling special relations other than equality, let us give an
extensive example involving cquality and equivalence. .
.
1
v
i
)
1
E
1
.'i
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EQUALITY AND EQUIVALENCE: A COMPLETE EXAMPLE

In this section we present an example that employs the techniques presented so far. The
cxample is akin to the synthesis of the Cartesian-product program, but is simplified to avoid
constructing auxiliary subprograms, which requires the general induction rule, not the special case
we have discussed here.

The program Lo be constructed appends the integer 1 onto every clement of a given finite set.
Our initial specification is

cartone(s) ¢« find z such that
v yez =
(V) (3z)(y = (1,z) and z € 5)

Ilere (1, z) is the pair whose first clement is 1 and whose second is z. Note that there is no input
condition; the type condition isset(s) is omitted.

In this derivation, we will somelimes simplify new rows antomatically with truc-false and other
fundamental transformation rules, wilhout presenting the intermediate results.

The initial tableau for this specification is

outputs

assertions goals cartone(s)

yez
(Bz)(y

1. (vy)"

(1,z) and z € s) -

The Induction Hypothesis

By the induction rule, we may consider an arbitrary input set s and assume that the program
cartone(u) we are attempting o construct will yield an output that satisfies the given specification,
provided that the input u is a set strictly less than s in some well-founded ordering <,,. Thus, we
can add to our assertions the induction hypothesis

2. fu<ys -
5|¥ € cartone(u) =
then (Vy) (3z)(y = (1,2) and z € u)

Dropping the Quantifiers

As we have indicated by annotation, the quantifier (Vy) in goal 1 is of universal force while
the same quantifier in assertion 2 is of existential force. By the quantifier elimination rules, we

R—————
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can replace the quantifier with a skolem function g in the goal and with a free variable y in the
assertion, thereby obtaining a new goal and assertion

3. g(2)€= (E )
g(2) = (1,z) and )
(Bz)( oy’ ) z
4. tfu<y s W
Y € cartone(u) =
s (3z)(y = (1,7) and zEu)]

We may think of the skolem term g(z) in goal 3 as an arbitrary element.

Note that the subexpression z € s has both polarities because it is within the scope of an
equivalence.

The Base Case

We assume that we have among our assertions the empty-set membership axiom

By the resolution rule with equality matching, we can match the subsentence y € { } in this
assertion against the subsentence z € s in goal 3, taking 0 to be {y « z}. As the polarity
annotations indicate, this match is in accordance with the polarity strategy. The new row we
obtain is

] ! T =

5. 8= {} and
not not true and

g(z) €z =
(3z)(g(2) = (1,z) and false)

| D—

which reduces (under true-false transformation) to

6. s={} and

(ot g(z) €2 :

Applying the GA-resolution rule between goal 6 and the empty-set membership axiom
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we obtain the goal (after transformation)

7. w={} i

Note that in this step we have instantiated the output variable 2, obtaining a ground term in the
output column. This row means that, in the casc in which the input s is the empty set, the output
can also be taken to be the empty set.

Decomposition of the Goal

Let us turn our attention back to the earlier goal 3, which was formed from the initial goal by
removing a quantifier:

g(z)€z =
(3z)(9(2) = (1,2) end [z E€3)) z

We assume that we have among our assertions the nonempty-set membership axiom:

tf not u= { }
= [
then ( (y =elt(u) or y€ rest(u)))

Here elt(u) is an arbitrary clement of the nonempty set %, and rest(u) is the set of all the other
clements of u. By the equality substitution rule, taking 0 to be {y « z,u « 8}, we can use this
assertion to replace z € s in the goal with

z = elt(s) or z € rest(s)

obtaining (after true-false transformation)

8. (not s={}) and
g2) €z =

9(z) = (1,2) and ‘

(32) (z = elts) or z € rest(s))

Applying the equivalence substitution rule twice in succession, first to the and-or distributive
equivalence

I(? and (G or )())I =
(F and G) or (F and X)
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and this goal, and then for the some-or equivalence

(3z)(G or ¥) | =
(3z)G or (32)X

and the resulting goal, we obtain

9. (not 8= {}) and
g2) €2 =

r(az)(g(z) ={(l,z) end z = elt(s)) or]
| (3z)(g9(2) = (1,z) and z € rest(s))

By the transformation rule
ByNF and y=1t) = Fe{y+1t}

applied to the goal, taking 0 = {y « z, F « (g(2) = (l1,z)),t « elt(s)} we obtain

10. (not s ={}) and
(2)ez = [ 9(2) = (1, elt(s)) or z
g 1 l[(az)(g(z) =(1,z) and z € rest(sm

Note that the substitution 0 contains a replacement for the bound variable y; this is because we
are unifying two quantified sentences.

Using the Induction Hypothesis

Recall we have assumed as our induction hypothesis (after skolemization) the assertion 4,

tf u <y 8
y € cartone(u) =

L [ (3z)(y = (1,z) and z € u) I

By the equivalence substitution rule we may use the equivalence of the induction hypothesis (from
right to left, where 0 = {y + g(2),u « rest(s)}) lo replace the subsentence

(3z)(g(2) = (1,2) and z € rest(s))
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of the goal with

E q g(2) € cartone(rest(s))

obtaining

11. (not [d TESHE) < 8]) and
then false

(nots={}) and
z) = (1, elt(s)) or
e e [g() (1, elt(s)) ]

g(2) € cartone(rest(s)) )
L 1 J
which reduces (under true-false transformation) to
12. rest(s) <w 8 and
(nots ={}) and
(@ =T, o) or
golz)€z = g(2) € cartone(rest(s)) z

Introducing the Recursive Call

We assume that we have among our assertions the member-insertton axiom

(r€you) =|(z=y or z€1)]

(Here y ou is the result of adding the clement y to the set u.) By the equivalence substitution rule,
we may usc the axiom (from right Lo left) Lo replace the subsentence

g(z) = (1, elt(s)) or
g(z) € cartone(rest(s))

with the sentence
9(z) € (1,clt(s)) o cartone(rest(s)),

obtaining
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13. rest(s) <. 8 and
(not 8= 1{}) and

[g(z) €z = [g(z) € (1,elts)) o cartone(rest(s)) | I z

Finally, by GA-resolution, matching the subsentence
g(z) € z = g(z) € (1, elt(s)) o cartone(rest(s))

against the cquivalence reflexivity axiom

BTl

taking z to be (1, clt(s)) o cartone(rest(s)), we obtain the goal

14. | rest(s) <. s | and (1, elt(s)) o
(not s={1}) cartone(rest(s))

Note that at this stage we have discovered another instantiation for the output variable 2. The
term, which appears as the output entry, contains a recursive call cartonc(rest(s)). This term is
a suitable output in the case that s is a nonemnpty set, provided we can show that the argument
rest(s) is strictly less than s in the ordering <.

Proof of Termination

We have not yet found a well-founded ordering <., to serve as a basis for the induction. We

expecet to have propertics of many standard orderings among our asscrtions. Assuine that we have
the subset-rest axiom

if not u={}
then | rest(u) < subset 8 |

where < upset 18 the proper subset ordering over the finite sets, By GA-resolution, we can match
the subsentence

rest(s) <y 8

e e i A Aot

B
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of the goal against the subsentence

rest(u) < ubset U

of the assertion, to obtain the goal

(1,elt(s)) o

15. not ‘ . cartone(rest(s))

Note that in this step we have selected the well-founded ordering <., to be the proper subset
ordering < gubsct:

The Final Program

Recall that we have carlier developed goal 7,

s={}" {}

By GG-resolution between this goal and the new goal 15, we obtain the final goal

=20

then {}

else (1,elt(s)) o

16. true cartonc(rest(s))

This step accounts for the introduction of a conditional expression in the output column. The final
program we extract from the proof is

cartone(s) & if s={}
then {}
else (1,elt(s)) o
cartone(rest(s))

Synthesis of the Cartesian-Product Program

The above proof is similar to the derivation of the Cartesian product program cart(s,, sg),
which computes the Cartesian product of two finite sets 8, and sa. The specification for that
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program is

cart(sy,s2) ¢ find z such that

yeEz =
‘V”){(anxazg)[y = (#1,72) and ]}

T, € 8; and z3 € 89

The final program we obtain is the system of two programs

cart(sy,82) & if 8, ={}
then {}
else carttwo(sy,s2) U
cart(rest(sy), s2),

where

carttwo(sy, 83) & if s2 = {}
then {}
else (elt(sy), elt(sz2)) o
carttwo(sy, rest(sz)).

Here, U is the set union function and carttwo(s;, s2) is an auxiliary subprogram that computes the
Cartesian product of {elt(s;)} and sz. The auxiliary program appears through the use of the more
general induction principle.
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POLARITY WITH RESPECT TO SPECIAL RELATIONS

»-
3

Equality is only onc relation that has special importance in program synthesis. The inequalities

< and < over the integers or reals, and the subset relation C and the membership relation € over

the sets, are examples of other relations that merit special treatment. In this section we extend
the rules we have given for cquality to apply to other rclations in particular circumstances. This '

extension is particularly cflective for transitive (ordering) relations. But first we must extend the 4
notion of polarity, which we have introduced for subsentences, to apply to terms as well, relative
to a particular rclation <. ]

Relations and Monotonicity ',
Let < be a relation. We shall say that
o < is trreflezive if
;‘m
notz < z;
o < is total if A
l..:‘
<Yy orrz=y or Yy <7z <
o < is transitive if
. l.'l
if (z <y and y < 2) then z < z; q
1
|
o < is asymmetric if 1
not(z <y and y < z); o
for all z, y, and 2.
We deline the weak relation < associated with < by ;
L J
Sy = (z<y or z=y). g
We shall use y > z and y > 2 synonymously with z < y and z < y, respectively.
Definition: Let [ and p be a function and predicate of arity n and let 5 be an integer between 1 v

and n inclusive,

With respect to a relation <, we shall say that
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o [ is (weakly) monotonically increasing in its jth argument provided that

ifz<y
then f(z1, ... 2j—1,2, 2541, «+ 1 2n) 2 S(21, «+ 1 2521, ¥y 2541, + + +  Zn)

e p is (weakly) monotonically increasing in its jth argument provided that

ifz <y
then if p(z1, ..y 2j—1,Zy 2541y « o+ 2n)
then p(z1, -« .y 2j—1,Y) Zj41y =+ -1 2n)

o [ is (weakly) monotonically decreasing in its jth argument provided that

tfy<z
then f(21, ..., 25—1,%,2541, +++r2n) =X

f(zlr ey %=1 Y 2540y - -)zn)

e p is (weakly) monotonically decreasing in its jth argument provided that

fy<z
then if p(z1, ..., 2j—1, %y 241y + ) 2n)
then p(21, « ..y Zj—1) ¥y Zj41y -+ 1 2n)

forall z, y,and 2y, ...,2,.
Of course, some functions and predicates are neither monotonically increasing nor decrcasing
in some of their arguments with respect to a given relation <.
Frample:

The minus function (=) is monotonically increasing in its first argument with respeet to the
< rclation; i.c.,

fz<y
then z— 2 < y—=z

for all integers z, vy, and 2. Furthermore, the minus function is monotonically decreasing in its
sccond argnment, i.e.,

fy<rz
then 2—z < z—y

for all integers z, y, and 2. 1
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Ezample:

P‘

r

‘C The member predicate € is monotonically increasing in its seccond argument with respect to
R

b the subset relation < upset; i-c.,

:, lf T < subset Yy

b then if z€z

3 then z €y

for all sets z and y and clements z. 1

’

Note that € is ncither monotonically increasing nor decreasing in its first argument with
respect to < ubset-

T

Remark:

If < is a transitive relation, then < is monotonically increasing in its second arguinent with
respect to < itself; i.c.,

ifz <y
then if z < z
then z < y.

Also, < is monotonically decreasing in its first argnment with respect to < itself; i.e.,
fy<z

then if z < =z
then y < 2. 1

Polarity of Terms ]

We are now ready Lo extend the notion of polarity to apply to terms, with respect to a given
relation <.

Definition (polarity):  The polarity of a subsentence of a given sentence or tableau, as defined in
an carlier section, is also its polarily in the sentence or tableau with respeet to <. Ior terms, 4
we have the following additional rutes:

If a subsentence p(sy, ..., 8;-1,¢, 8541, ..., 8a) occurs in a sentence or tableau, then the
polarity of ¢ (with respect to <) is the same as the polarity of the subsentence il p is

P )

L
monotonically increasing in its jth argument, and the polarity of ¢ (with respect to <) wd
is opposite to the polarity of the subsentence il p is onotonically deereasing in its jth ]
argument. i
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Similarly, if a subterm f(sy, ...,8;_1,¢, 8541, ...,8,) occurs in a sentence or tableau,
then the polarity of ¢ (with respect to <) is the same as the polarity of the subterm if
J is monotonically increasing in its jth argument, and the polarity of ¢ (with respect to
<) is opposite to the polarity of the subterm if f is monotonically decreasing in its jth
argument.

Note that some terms may be neither positive nor negative with respect to a given relation
<, and that some terms may be both positive and negative. We shall say that a term has strict
positive or negative polarity if it has one but not both of these polarities.

Ezample:

In the tableau

assertions goals outputs

fz+1<y
then z < y

e The subsentence z + 1 < y is positive in the tableau with respect to < (by the
ordinary rules governing polarity).

e Therefore, the term z + 1 is negative in the tableau with respect to < (because
the < predicate is monotonically decreasing in its first argument with respect to
<).

e Therefore, the first occurrence of the term z is negative in the tableau with respect
to < (because the + function is monotonically increasing in its first argument).

The notion of polarity with respect to a relation < is important because, roughly speaking,
a sentence gets “truer” as its strictly positive subterins get bigger and as its strictly negative
subterms get sinaller. This observation is made precise in the following proposition.

Proposition (polarity): The notion of polarity with respect Lo a relation < satisfies the following
two properties:

if 8 <t
then if &
then £ a{st «~ t} (positive part)

and
if 8>t

then if €
then £ a{s™ « t} (negative part)

¥ VAR S oot sani e B R W S ey e TP SO L e

S Sal S




v

53

for all terms s and ¢ and sentences £, where £ < {8t « t} is the result of replacing one or
more strictly positive occurrences of s in £ with ¢, and £ < {s™ « t} is the result of replacing
one or more strictly negative occurrences of 8 in £ with .

-

The proof of the proposition is by induction on the structure of the sentence.

L s e an

Ezample:

In the tableau

assertions goals outputs

fz+1 Ly
then z < y

with respect to the relation <:

e The occurrence of z + 1 is strictly negative in the sentence z + 1 < y (because
< is monotonically decreasing in its first argument); therefore, replacing this
occurrence by something smaller makes this sentence “truer” (by the negative
part of the proposition).

e The occurrence of z +1 is strictly positive in the sentence if z+1 < y then z <
y; therefore, replacing this occurrence by something bigger makes this sentence
“truer” (by the positive part of the proposition).

e The occurrence of z is strictly negative in the sentence z + 1 < y (because + is
monolonically increasing in its first argument); therefore, replacing this occurrence
by somcthing smaller makes this sentence “truer” (by the negative part of the
proposition). 1§
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RELATION SUBSTITUTION RULE

We are now ready to extend the equality substitution rule to an arbitrary relation <.

Small-to-Big Version

The rough schematic description of the ground version of the rule (AA-form) is as follows:

assertions goals outputs
F(S=<T) /
9(57) g
ST
then g
F(false) or G(T) else f

Itere #(§ < T)is an assertion with an occurrence of the subsentence § < T, where § and T are
terins; G($7) is an assertion with an occurrence of § which is strictly negative in the tableau with
respect to < (or, eqnivalently, $ is strictly positive in G(S)); and G(T) is the result of replacing
that occurrence of S in G(S) with T.

The rationale for this rule is as follows. Consider an interpretation under which both given
asscrtions are true; we seek to show that the derived assertion is also true under this interpretation.
Equivalently, we show that if the derived asscrtion is false, then one or the other of the given
assertions is also falsc.

Because the disjunction F(false) or G(T) is false, each of its disjuncts is false. In the case in
which § < T is false, becanse the disjunct F(false) is false, we know the given assertion (S < T)
is false; in this case, f is a suitable output. tn the case in which § < T is true, becanse the
disjunct G(T) is false, and because § is strictly positive in G(S), we know (by the positive part of
the polarity proposition) the goal G(S) is false; in this case, g is a suitable output. In either case,
the conditional expression if § < T then g else f is a suitable outpnt.

According to the polarity strategy, we may assume that some occurrence of § < T in
F(S < T) is negative in the tableau. We may also assuine that $ is not a free variable.

The precise version of the rule is as lollows:

LTI Y . )
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asserlions goals outputs
7 f
g g
if S40 < T <0
(740)4{($<0<T<0)4—false} or then g=0
(G20)<{S— <0 — T «0} else f«0
E.
;‘ Here we assume that

oS ={s0,81,.-.,8c}and T = {t1, ..., Lk} are sets of terms such that
s ¥ contains at least one occurrence of each inequality 8y < ¢y, ..., 8% < ti;

s G contains at least one occurrence of sp Lhat is strictly negative in the
tableau with respect to <;

s 0 is a most-general unifier of § and of T: i.e., 80 «0,s, <0, ...,s;, <0 are
identical terms, denoted by S «0; and ¢y «0, ..., ¢ <0 are identical terms,
denoted by T «0; and 0 is one of the most-general substitutions that make
these expressions identical.

o (7«40)«{(S <0 < T «0) « false} denotes the result of replacing every occurrence
of the subsentence S <40 < T <0 in ¥ «0 with the proposition false.

e (G40)<{S™ 40 «— T «0} denotes the result of replacing one or more (but not
necessarily all) occurrences of S <0 in G <0 with T «0 for which the corresponding
element of § is strictly negative in the tableau with respect to <.

e If z is any variable in 7 or in § that occurs within the scope of a quantifier, then 0
cannot instantiate z to any term containing a bound variable of ¥ or g.

(dependency restriction)

e No variable that is bound in  or in § may occur free in the new row.

(no-escape restriction)

The dependency restriction may be retaxed as usual. According to the polarity strategy, we
may also assume that at Jeast one ocenrrence of one of the incqualities 3; < ¢; in ¥ is negative in
the tablean. We may also require that one of the elements of § not be a free variable.

Fzample:

Suppose we have the two assertions
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assertions goals outputs
F: if p(z) then ( <e) f(z)
G: if qly) then [ h(b,y) |~ 20 9(v)

Note that the occurrence of k(b,y) is negative in the tablecau with respect to <. Applying the
relation substitution rule, taking 0 = {z « b,y < a}, we can add the new assertion

i h{b,a) <
(if p(b) then false) or :{zen( 922) ‘
(if q(a) then ¢ > 0) else f(b)

which reduces (under transformation) to

(rot 18 or hen o)
(if q(a) then ¢ > 0) else f(b)

Big-to-Small Version

The preceding rute is the “small-to-big” version; it replaces instances of the “small” S <0 by a
“big" T <0, in the case in which 3g is negative in Lthe tableau; there is also a “big-to-small” version
of the rule, which applies in the case in which 3g is strictly posilive in the tableau (and therefore
strictly negative in the assertion). In schematic form, the ground version of this rule is as foltows:

assertions goals outputs
FS>T) e
6(5%) g
fS>T
then ¢
F(false) or G(T) else f

The rationale for this version is analogous to the rationale for the small-to-big version, and relies
on the negative part of the polarity proposition.

The preeise version of the rule and its restrictions are analogous to the previous small-to-big

version.
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TOTAL-RELATION SUBSTITUTION RULE

The above rule applies to any relation <. If the relation < is total, there is an additional rule
we can apply. (Recall that a relation < is total if z < y orz ==y ory < z, for all clements z
and y.)

Small-to-Big Version

Expressed in schematic form, the ground version of the rule is as follows:

assertions goals ontputs
FS<T) f
g(87) g
f $<T
then f
F(true) or G(T) else g

Note that in this rule we require that the occurrence of S be strictly positive in the tablean (or,
equivalently, strictly negative in §(S)) with respect to <.

The rationale for the rule is as follows. Consider an interpretation under which both given
assertions are true; we seck to show that the derived assertion is also true under this interpretation.
Equivalently, we show that if the derived assertion is false, then one or the other of the given
assertions is false.

Because the disjunction F(true) or G(T) is false, cach of its disjuncts is false. In the case in
which § < T is true, because the disjunct F(true) is false, we know the given assertion 7(§ < T)
is false; in this case, f is a suitable output. In the case in which § < T is false, because < is
total, we know that § = T or T < §.

In the case in which § = T, becanse the disjunct G(T) is false, we know the given assertion
G(8) is false; in this case, ¢ is a suitable output. In the case in which T < §, because the disjunct
G(T) is false, and because § is strictly negative in §(S), we know (by the negative part of the
polarity proposition) that again the given assertion G(S) is false; in this case also, g is a suitable
output.

In each case, the conditional expression if S < T then f else g is a suitable output.

According to the polarity strategy, we need apply the rule only when some occurrence of § <
T in 7(§ < T) is positive in the tableau. Thus, we never need to apply both the total-ordering
substitntion rule and the basic ordering substitution rule in the same situation. We may also
require that § not be a free variable.
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We omit the precise description for the total-relation substitution rule, because it is analogous
to the basic rule.

Big-to-Small Version

The preceding version is “small-to-big”; it replaces the “small” § with the “big” T in g($).
The corresponding “big-to-small” version of the rule, which replaces a “big” § with a “small” T,
is as follows (in schematic form for the ground case):

assertions goals outputs
FS>T) i
§(57) g
if S>T
then f
F(true) or G(T) else g

Note here that the occurrence of § in G(S) to be replaced is strictly negative in the tableau, i.c.,
positive in G(§). Furthermore, according to the polarity strategy, we need apply the rule only if
some occurrence of § > T in 7(§ > T) is positive in the tableau. We may also require that §
not be a free variable.

Ezample:

Suppose our tableau contains the assertion

assertions goals outputs
if p(z)
then not ([ [(z,d) |< a)*
and the goal
q(y) end
+
f(br y) 2c t(z) y)

Note that the <-relation is total over the integers and the boxed occurrence of f(b,y) in the goal
is strictly positive in the tableau with respect to <. Applying the AG-form of the total-relation
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substitution rule small-to-big, taking 0 to be
{z+ ¢t y~d}

we can replace f(b,d) with a in the goal to obtain the new goal

(170 Y

then not true

(Z(dz) c‘"“') (b, d)

which reduces to

p(b) and q(d) and a > ¢ t(b, d)

under true-false transformation.

Note that, because the annotated occurrence of f(z,d) < a in the assertion is positive, this
application of the total-relation substitution rule is in accordance with the polarity strategy.
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RESOLUTION WITII RELATION MATCHING

The preceding rules adapt the equality substitution rule to arbitrary relations; in this section
we adapt the resolution rule with equality matehing to use an arbitrary relation, instead of equality.

As usual, we [irst give the schematie form of the ground version of the rule.

assertions goals outputs
F[RTF ST /
S([R(SH, 7)) g

SXT and if R(S,T)
F(true) and then f
G(false) else g

Here the notation | R(§*, T ) | means that § is a strictly positive occurrenee of a term, and T is

a strictly negative oceurrenec of a term, not in the tablean, but in the boxed subsentence R(S, T),
with respect to the relation <. Also, R(T, S) is the result of replacing § with T and T with §,
simultancously, in R(S, T). We assume that § and T are distinct terms, and admit the special
case in which either § or T does not actually oceur in R(S, T).

Note that, if this rule applics, resolution with equality matching also applies. When both rules
apply, however, the rule with relation matching is preferable, as the derived goal of this rule is
easier to establish than the derived goal of the equality rule. The goal for this rule has a weak
inequality § < T, in place of the full equality § = T required by the equality rule.

The rationale lor this rule is as follows. Consider an interpretation under which the derived
goal is true; we seck to show that onc or the other of the two given goals is true.

Beecause the conjunction § < T and F(true) and G(false) is true, each of its conjunets is true.
In the case in which R(S, T) is false, beeause the conjunet G(false) is true, we know the given goal
G(R(S, T)) is also true; in this case, g is a suitable output. In the ease in which R(S, T) is true,
because the conjunet § < T is true, and because § is strictly positive and T strietly negative
in R(S,T), we know (by two applications of the polarity proposition) that R(T, §) is also true.
Therefore, because the conjunct F(true) is true, the given goal F(R(T, §)) is also true; in this ease,
J is a suitable ontput. In cither case, the conditional expression if R(S,T) then f else g is a
suitable output.

According to the polarity strategy, we need only apply either case of the rule if R(T,S) is
positive in the tableau and R(S, T) is negative in the tableau.

The precisc form of the resolution rule with relation matching is as follows.

Rule (resolution with relation matching):
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assertions goals oulputs
5 /
g g
S$49 <X T <0 and if R
(F «0)<{P) <0 « true, ..., P, 40 « true} and then f<0
(G20)2{Q, <0 « false, ..., Qs 40 + false} else g=0

Here we assume Lhat
e P, ..., P are subscntences of 7.
o Qy, ..., Q. are subsentences of §.

oS ={s1,...,8m}and T = {¢ty, ...,t,} aresels of subterms of Py, ..., P, Qy, ..
and Qt.

e R is a senlence and @ a mosi-general substilution such that
» 9 unifies §; i.e., 5, <0, ...,s,, <0 are identlical terms, denoled by § «4.
s 0 unifies T; again, T <0 denoles the unified term.
a $ <0 and T <0 are distincl Lerms.

s R is “falser” than all the senlences P;«0; in other words, for each ¢ belween
I and k,

(Pi20)2{(S20)” « T «0,(T «0)t « §«0}is R.

Thal is, R can be oblained by replacing in P;«0 zero, onc, or more strictly
negalive occurrences of S <0 with T «0, and zero, one, or more strictly
positive occurrences of T <0 with § <8, simultancously.

» R is “truer” than all the senlences Q;«8; in other words, for each j belween
1 and ¢,

(Q;40) a{(S <0t « T «0,(T «0)~ « § <8} is R.

o If z is any variable in 7 or in § that occurs within the scope of a quantifier, then 0
cannot instantiate z to any term containing a bound variable of 7 or of §.

(dependency restriction)

¢ No bound variable of ¥ or of G may occur free in the new row.

(ro-escape restriction)
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The dependency restriction may be relaxed as usual.

The discovery of the sentence R, the sets § and T, and the substitution 0 is the by-product
of an attempt to unify the subsentences 7 and Q; if the unification algorithm returns pairs of
mismatched terms and their polarities when it nearly succeeds.

Example:

Suppose our tableau contains the two goals

assertions goals outputs
7: [cett] and [ces(@ I /()
g: mot[y€sla)t ] 9(v)

We attempt to apply GG-resolution, matching the boxed subscntences. The unification is nearly
successful: if we take

0 to be {z « a, y + c},

the only failure is the occurrence of the constant ¢ in ¥, which will not unify with the corresponding
occurrences of s(z) and s(a).

The mismatched terms, however, are strictly positive, not in the tablcau, but in the boxed

subscntences, with respect to the subset relation < gy45¢:. Therefore, we can apply the resolution
rule with < ,ypsce-matching, taking

Pitobecet,

Pz to be ¢ € 3(z),
Q; to be y € s(a),
R to be ¢ € s(a),

S to be {s(z), s(a)},
T to be {t}.

Note that

(P =20)a{tt « s(a)} is R
Py a0 is R
Q<0 is R.

SRS er s - = -
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Therefore, we can add to our tableau the new goal

8(a) = subsee t and if ¢ € s(a)
(true and true) and then f(a)
] not false else g(c)
E which reduces to
if ¢ € s(a)
- then f(a)
2 8((1) subset t else g(c)

(e ot 2o 4

under true-false transformation.

The above deduction is more complex than a person would usually make in a single step. Let
us show that the conclusion in this case is indced correct.

Suppose that the new goal 8(a) < subsce t is true; we would like to show that one of the given
goals is true. We distingnish between two cases.

Case: c € s(a) is true.

Then, because s8(a) < ubset t, we know ¢ € ¢ is also true. Therefore, if z is taken to be a, both
conjuncts of the given goal ¥ are true and, hence, f(a) is a suitable output.

Case: c € s(a) is false.
Then, taking y to be ¢, the given goal § is true, and, hence, g(c) is a suitable output.

In cither case, the conditional expression if ¢ € s(a) then f(a) else g(c) is a suitable output.

Ezample:

Suppose that our tableau contains the goal

assertions goals outputs

st

7. |\p(::,rc.9t(s)) and | e

| ala) z

and the asscrtion
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]
L:(‘:’ G: if ri(u)
| then if not ra(u)

p(f(u), u) and
J(u) € ut

then

We attempt to apply GA-resolution between the goal and assertion, matching the boxed subsen-
tences. The unification is nearly successful: if we take

0 to be {u « rest(s), z — [(rest(s))},

the only failure is the annotated occurrence of the variable u in §. This variable is instantiated
by € to be rest(s), and therefore will not unify with the corresponding occurrence of the constant

sin 7.

The mismatelied terms, however, are strictly positive, not in the tableau, but in the boxed
subsentences, with respect to the subset relation < upsee. Therefore, we can apply the GA-
resolution rule with ~<,46..c matching. The sentence R can be taken to be

p(/(rest(s)), rest(s)) and
[(rest(s)) € rest(s)

or

p(/(rest(s)),rest(s)) and
f(rest(s)) € s.

The new goal we obtain is

rest(s) < subset 8 and

(true and )
and
q(s)

if r1(rest(s))
not | then if not ry(rest(s)) S (rest(s))
then false

which reduces to

re8t(s) < subset 8 and
q(s) and
r1(rest(s)) and

not ra(rest(s)) [(rest(s))
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under truc-false transformation.

Note that, because the matched subsentence of the given goal is positive, and the matched
subsentence of the given assertion is negative, in the tableau, the application of the rule is in
accordance with the polarity strategy. 8
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EXAMPLE: THE MAXIMUM ELEMENT OF A SET

The program maz(s) to be constructed finds the greatest clement of a finite sct s of integers.
Our initial specification is

maz(s) ¢« find =z such that
2€ s and
(My)lif y € s then 2 > 9]

where not s = { }.

The initial tableau for this specification is

t
assertions goals :::E:;)S
1. nots={}
2. 2z€s and
v f yEs
(V) [then z 2> y] z

where s is a constant and z is a frec variable.

The Induction Hypothesis

By the induction rule, we may consider an arbitrary input sct s and assume that the program
maz(u) to be constructed will yicld an output that satisfics the given specification, provided that
the input u is a set strictly less than s in some well-founded ordering <. Thus, we can add to
our assertions the induction hypothesis

3. fu~<ys
then if not u={}
then maz(u) € v and
3 if yEu
(v4) then maz(u) > y

Dropping the Quantifiers

As we have indicated by anuotation, the quantifier (Vy) in goal 2 is of universal foree while the
same quantifier in assertion 3 is of existential force. By the skolemization rules, we can replace the

A e e
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quantifier with a skolem function g in the goal and with a free variable y in the assertion, thereby
obtaining a new goal and assertion

4., 2€ s and

[ff

then z 2> g(2)

5. fu<yus
then if not u={}
then maz(u) € u and
fy€u
then maz(u) >y

We may think of the skolem term g(z) in goal 4 as an arbitrary element.

Decomposing the Goal

We assume we have among our assertions the nonempty-set membership axiom

if notu={)

then ( pES | = [g :rzljf?lz) orD

Here elt(u) is an arbitrary element of the nonempty set u, while rest(u) is the set of all the other
elements of u.

By the equivalence substitution rule, we can use this asseriion to replace g(2) € s in goal 4
with

g(2) = elt(s) or g(z) € rest(s).

obtaining (after transformation)

. and

z€ s and
. [g(z) = elt(s) or
¥ (g(z) € rest(s) )
then z > g(z)

‘@
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(In an alternative derivation, we apply the same axiom Lo the subsentence z € s instead.)
T The conjunct not 8 = { } of the goal may be dropped by GA-resolution against the input
5 condition

(ots = (1]

! (asscrtion 1), obtaining

7. 2€ 3 and

.. [9(2) = elt(s) or
v (g(z) et )
then z > g(z)

(§

Applying the cquivalence substitution rule between the goal and the if-or distributive cquiv-
alence

5 ‘F1rfv’7‘f- .
. @

[ (F or G) then A | =

if ¥ then ¥) and
Hzf G then )/3 }

we obtain

8. z€49 and
(if ([ox) = eli(s))") "
then z 2
(if g(2) € rcst(s))

then z > g(z2)

At this point. we apply the equality substitution rule to the goal and itselfl (1), using the equality
g(z) = elt(s) to replace one instance ol g(z) by elt(s), obtaining

9. z€3s and
if g(z) = elt(s) ;
ten (T3 7] +)
(ij g(2) € rcst(s))
then z > g(z)

-
s ualim li.cdh

TSGR S UL WAL R OO R W W S0 P 100




L ane o oo

S ik i P

= 69

3 The other instances of g(z) in the goal are allowed to remain. We shall use this goal twice in the
:Q derivation, once to give us the base cases and once to give us the recursive call.
3 .

The Base Cases

E We can now apply the GA-resoludien rule between goal 9 and the >-reflezivity axiom

D el

taking 0 = {z « elt(s), = «— elt(s)}, obtaining

10. (elis)€s|t and

if glelt(s)) € rest(s)
(then elt(s) > g(elt(s))) elt(s)

Note that we have found one instantiation for the output 2.

Assume that we have a member axiom for Lhe element relation

if notu={}
then | elt(u) € u |~

We can then apply GA-resolution between the goal and the axiom, to obtain the goal

11. [nots ={}]* and
(if o(elt(s)) € rest(s) ) elt(s)

then elt(s) > g(eli(s))

The conjunct not s = {} can again be dropped by GA-resolution against the input condition
not s = { }, yiclding

12, if g(elt(s))E rest(s)
then elt(s) > g(elt(s)) elt(s)

A In other words, in the case that elt(s) is greater than or equal to any arbitrary element of rest(s),
we know eli(s) is a suitable output. We shall use this goal twice in the derivation, to provide an

output expression for the program’s two base cases.
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Introducing the Recursive Call

Recall that we have previously developed a goal 9,

z€ sZ‘ )and .
(1feizze 'res: 8 ) and
(ift hg(Z) =Zeli§3;)

then z > eli(s)

(We have commuted the conjuncts in preparation for the next step.)

By GA-resolution with < 4upsc¢ tnatching to this goal and the (skolemized) induction hypothesis
(assertion 5)

if’u<w3
then if not u={}

maz(u) € u* and

then | (if yEu
then maz(u) > y

taking
0 = {u « rest(s), z+ maz(rest(s)), y — g(maz(rest(s)))}

we obtain the goal

13. TESt(s) X oubser 8 and
(if g(maz(rest(s)))= cli(s) ) g
then (ma::('rcst(s))?_ )+

rest(s) <w s and
not (rest(s) = {}) maz(rest(s))

This step was possible becanse the annotated occurrence of u in the indnetion hypothesis is strictly
positive, not in the tablean, but in the boxed subsentence, with respect to the proper-subset relation

~ subsete
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At this stage, through the use of the induction hypothesis, a recursive call has appeared in the
:C output column. We shall use the induction hypothesis one more time.

Introducing the Conditional Expression

Recall that we have previously developed a goal 12,

if g(elt(s)) € rest(s)

then [ elt(s) |* > g(elt(s)) elt(s)

The annotated occurrence of elt(s) in this goal is strictly positive with respect to the <-relation.
Thercfore, we can apply the total-relation substitution rule to goal 13 and goal 12 [bearing in
mind that maz(rest(s))> elt(s) is synonymous with elt(s) < maz(rest(s))] to replace elt(s) with

maz(rest(s)) in goal 12, obtaining the new goal

14. rest(s) <subset 8 and
rest(s) <, s and
not (rest(s) = {}) and if maz(rest(s))> elt(s)
; then maz(rest(s))

if g(elt(s))€ rest(s) else elt(s)
then maz(rest(s))> g(elt(s))

Note that at this stage a conditional expression has appeared in the output column.

The last conjunct of the goal can be dropped by GA-resolution against the induction hypothesis

if u <y 8
then if not u={}
then maz(u) € v and

fy€u
then maz(u) > y

this time taking

0 = {u « rest(s), y«— g(clt(s))}.

We obtain the new goal

. 15. | rest(8) <,ubsee 8 | and if maz(rest(s))> elt(s)
rest(s) <, 8 and then maz(rest(s))
not (rest(s) = { }) else elt(s)
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This completes our use of the induction hypothesis.

Choice of Ordering

Up to now we have not chosen the well-founded ordering <, on which our induction is based.
We assume that among our asscrtions we have the axioms for many orderings.

We apply the equivalence substitution rule to the definition of the weak ordering < upset,

(E )'

(u < subset V OT U = 'l))

and the goal, obtaining

16 (I 'rest(S) < subset 3J+) and
) orrest(s) = s if maz(rest(s))> elt(s)
and then ma::(rest)(s—))

not (rest(s) = { }) else elt(s)

By GA-resolution between the goal and the subset axiom

if notu={}
then | rest(u) < subset ¥ |~

we reduce the goal to

if maz(rest(s))> elt(s
17. not (7'03‘(3) ={}) and t{;cn m(a:n(:fes)t)(;i) =

[rotr =01 e el

With this step, the well-founded ordering <, has been chosen to be the proper-subset ordering
< subser Over Lhe finite sets.
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Final Stages

The conjunct nots = {} is again dropped by GA-resolution between the goal and the input
condition (goal 1) not s = { } obtaining

if maz(rest(s))> elt(s)
then maz(rest(s))

18. not ({})— else elt(s)

In other words, we have determined that, in the case in which rest(s) is not the empty set, a
suitable output is given by the conditional expression in the output entry. Ienceforth (intuitively
speaking), we deal with the case in which rest(s) is the empty set.

Recall that we have already developed a goal 12,

if g(elt(s)) €

then elt(s) > g(elt(s)) elt(s)

By equality substitution between goal 18 and goal 12, we can replace rest(s) with { } in goal 12,
obtaining

if rest(s) = {}

then elt(s)

else if maz(rest(s))> clt(s)

19. i [ g((elt(s)) € {3 ] then maz(rest(s))
then elt(s) > g(elt(s)) else elt(s)

Note that at this stage an additional layer of conditional expression has been wrapped around the

output entry.

At last, by AG-resolution between the empty-set membership axiom

not [y € (3]

and goal 19, we obtain the final goal

if rest(s)={}

then clt(s)

else if maz(rest(s))> elt(s)
then maz(rest(s))

20. true else clt(s)
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Note that by this step an additional layer of conditional expression has been wrapped around the
E('! output entry.

: Because we have obtained the goal true with a primitive output entry, our proof is complete.
[ The final program is thus

maz(s) ¢ if rest(s)= {}
then elt(s)
else if maz(rest(s))> elt(s)
then maz(rest(s))
else elt(s).
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STRATEGY AND DISCUSSION

In this paper we have mainly disregarded the question of strategic gnidanee. We envision an
automatic implementation of our deductive system to be governed by the following crude strategy:

e Remove all quantifiers of strict force by skolemization.

e I a rule fails to apply because of the mismatching of two bound variables or the
violation of the dependency or no-escape restrictions, replace the offending bound
variables by eliminating their quantifiers, after first getting rid of any surrounding
equivalences by the equivalence-removal transformation rules.

e Match larger subexpressions and subterms before matching smaller ones.

In other words, we attempt to complete the proof while leaving the quantifiers and equivalences
intact, but we reinove them when the presence of bound variables is suspected to interfere with
the proof.

The derivations ineluded in this paper are the most concise formal derivations we have seen
for these programs. For an interactive system it is clearly better to introduce high-powered rules
sueh as ours, so that deductions will be shorter and closer to a “natural,” intuitive argument.
For an automatic system, however, it is not necessarily an improvement to introduce such rules,
particularly if they duplieate the efleets of several lower-level rules and thus lead to redundaney in
the search for a proof.

However, the human implementer of an automatic system must be able to read and understand
the “trace,” i.e., the steps in the search for a proof. When the systern is led astray, the synthesis
system designer must provide heuristics to guide the search. If the steps of the trace are in terms
of low-level rules, the person cannol undersiand it well enough to supply this heuristic guidanee.
Our hope is that hnman-oriented heuristics will be easier to discover if proofs are expressed in
higher-level steps. Until we accumulate experimental evidence, we cannot be certain how efficient
the implementation will be.

Acknowledgments: The authors would like to thank IEd Asheroft, Yoni Malachi, Mark
Stickel, Mabry Tyson, Pierre Wolper, and Frank Yellin for their snggestions and careful reading;
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nots = { }, ' yicding

12, if g(elt(s))€ rest(s)
then elt(s) > g(elt(s))

In other words, in the case that el!(s) is greater than or equal to any arbitrary ctement of rest(s),
we know ell(s) is a suitable output. We shall use this goal twice in the derivation, to provide an
output expression for the program’s two base cases.




(if g(maz(rest(s)))= elt(s) ) nd
then (maz(rest(s)) 2 )+

rest(s) <. s and
not (rest(s) = {}) maz(rest(s))

This step was possible because the annotated occurrence of v in the induction hypothesis is strictly
positive, not in the tablcau, but in the boxed subsentence, with respect to the proper-subset relation

< subset-




this time taking

0 = {u « rest(s), y — g(elt(s))}.

We obtain the new goal

15. | rest(s) < ubact 8 | and

rest(s) < s and

not (rest(s) = { })

if maz(rest(s))> elt(s)
then maz(rest(s))
else elt(s)




if maz(rest(s))> elt(s
7. 2ol = (1) od Rl

else elt(s)

With this step, the well-founded ordering <, has been chosen to be the proper-subset ordering
< subset OVer the finite sets.
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and goal 19, we obtain the final goal

if rest(s) = {}

then elt(s)

else if maz(rest(s))> elt(s)
then maz(rest(s))
else elt(s)
















