
RD-Ai23 256 MRS MRNURL(U) STRNFORD UNIV CA DEPT OF COMPUTER SCIENCE i/i.
M R GENESERETH ET RL. OCT 81 HPP-88-24 N88814-8i-K-8804

UNCL'RSSIFIED F/G 9/2 NL

MEEhIIEIIIEE*lfllW lllll

* - J.5

1.0 16

02.2

11
1.4i Q6

11

MICROCOPY RESOLUTION TEST CHART

.4 ~NATIONAL BUREAU OF STANDARDS-1963-A .*-

Stanford Heuristic Programming Project First Version December 1980
Memo HPP-80-24 Current Version October 1981

4/00

MRS Manual

by

Michael R. Genesereth
Russell Greiner
David E. Smith

pqZ'

(:*.

Department of Computer Science
School of Humanities and Sciences

Stanrord University

83 01 11 060,
1 p

-- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -, __

Table of Contents "1

L Introduction

2. The Syntax of MRS

2.1 Symbols

2.2 Terms

2.3 Atomic Propositions

Y 24 Logical Propositions

25 Quantified Propositions

2.6 Higher Order Propositions

3. Subroutines and Variables

3.1 User-Level Subroutines

3.2 Predefined Representations

3.3 Predefined Inference Methods

4. Initial Vocabulary

4.1 Logic

4.2 Sets and Mappings

4.3 Arithmetic

4.4 Meta-Level Vocabulary

S. Initial Data Base

5.1 Definitions of the User-Level Subroutines

5.2 Meta-Assertions

6. Using MRS

6.1 System Utilities

6.2 MRS in Afaclisp and Franz Lisp

L

•
"4

""" " "-"." '-. -' • .; . .: . i 1

6.3 MRS in Inierlisp

References

Appendix - A Brief Tour of MRS

*Appendix -An Example of Using MRS in Describing Digital Circuits

5V

thper 1 - Iniroduction

RS is a knowledge representation system intended for use by AI researchers in
building expert systems. It offers a diverse repertory of commands for asserting and
retrieving information, with various inference techniques (e.g. backward and forward
chaining) and various search strategies (e.g. depth-first, breadth-first, and best-first
search). The initial system includes a vocabulary of concepts and facts about logic,
sets, mappings, arithmetic, and procedures. Additional "plug-in" modules are
available to handle contexts, default reasoning, and truth maintenance. There is a
rudimentary compiler to eliminate needless meta-level processing and a meta-level

* consistency checker to protect the user from fatal errors in making system
modifications.

What maktMRS special among knowledge representation systems. is its ability Ir
to utilize multiple representations while providing a single representation-
independent language for stating facts. Because of its multiple representations, it is
computationally superior to other knowledge representation systems; and, because of
its powerful language and inference capability, it is expressively superior to
traditional data definition languages

A second important feature is the system's meta-level capability. In MRS the
system is treated as a domain in its own right. One can write sentences about
subroutines and other sentences and allow the system to reason with them, just as it
reasons about geology or medicine. Environmental considerations (like running time
and storage requirements) and domain and range restrictions can easily be expressed.
In practice, MRS uses this "meta-level" information in deciding how to carry out
each operation. Thus, one can easily switch representations or inference methods by
changing these sentences, and one can implement a variety of different meta-control
schemes. Furthermore, the system is completely modifiable in that, by a progression
of such changes, it can be converted into any program whatsoever.

Section 2 of this manual describes the syntax of MRS in detail, and section 3 lists
the system's subroutines and variables. Section 4 presents the initial vocabulary; and
section 5 lists the initial data base of facts about the predefined symbols. A summary
of the system's utilities and the details of loading and using MRS are given in section
6.

KTtS GRA&I
P?!C TAB 0

DCltributlei/ [
A Availability Codes

'.. ll 4gnd/o:-

DtDt i Speoial

-. . -

6

Chapter 2 - The Syntax of MRS

MRS is a prefix version of the language of predicate calculus.

2.1 Symbols

There are two types of symbols in MRS, viz. variables and constants. Variables
are useful for stating facts about all members of a set or for declaring the existence of
an object without naming it. The use of variables is elaborated below in the
discussion of quantified propositions.

There are three different types of constant symbols. Object symbols name
specific objects or concepts in the world being described, e.g.

Stanford
Kennedy
elephants (the set thereot)
blue
justice

Function symbols are intended to represent functions on the objects of the
world, e.g.

president-of
height-of
cardinal ity-of
sine
@

color-of

Relation symbols represent relations between objects of the world, e.g.

neighbor
subclass

older-than

2.2 Terms

In MRS one can also designate objects by combining these symbols into more
complex expressions, 9alled terms. All variables and constants are terms bydefinition. in addition, gi:'* ' an* n-ary function symbol r and n terms ti, . . ., tn,
then the expression (ef tt ,. tn) is also a term. For example, the following
expressions are legal, e.g.,.

(presiJdent-6di :St~ar~o

(cardinality-of elephants)
(+ 2 2) .
(height-of (pres fdent-o r: Stanford))
((+ 2 2) 3)

7
'4.1

2.3 Atomic Propositions

Facts can be stated withn MRS in the form of proposition& Given an n-ary
relation symbol r and n terms ti, . . , tn, the expression (r ti . tn) is an
atomic pr,.-osition. The following are examples.

(neighbor Palo-Alto Menlo-Park)
(subclass elephants mammals)
(> (* 2 3) (+ 2 3)).

2.4 Logical Propositions

Unfortunately, not all facts are so simple. One often needs to express negations
(e.g. "Lyman is not the president of Stanford), disjunctions (e.g. "Either Lyman is
president or Kennedy is president"), and contingencies (e.g. "If George is at home,
he must be sick"). In MRS facts like these can be written by relating the appropriate
atomic propositions via logical symbols such as not, and, or, and if. For example,
these sentences could be written as follows.

(not (= (president-of Stanford) Lyman))
(or (a (president-of Stanford) Lyman)

(- (president-of Stanford) Kennedy))
(if (location george home) (sick george))

2.5 Quantified Propositions

Finally, there are quantified propositions. With the syntax given so far, one can
only write facts by naming the objects involved. There's no simple way to talk about
all the members of a set or state the existence of an object without naming it.
Quantifiers enable one to state facts like "All apples are red" and "There's a doctor
in the house". There are two quantifiers in MRS, viz. all and exist. The
proposition (all xl... xn (p xl . . . xn)) states that (p xl . . . xn) is true for all
possible values of the variable symbols xl, , xn. The proposition (exist xi . . .
xn (p xi . . . xn)) states that there exist objects al, an for which (p al .
an) is true. For example, the first proposition below states that all apples are red,
and the second says that there's a doctor in the house. Quantified propositions can
also occur within non-atomic propositions, as in the last two examples.

(all x (if (mem x apples) (color-of x red)))

(exist x (and (mom x doctors) (location-of x house)))
(or (all x (apple x)) (some x (pear x)))
(all x (exist y (> y x)))

Multiple variables of the same type can be declared within a single quantified
proposition, as illustrated below. Note, however, that the ordering of quantifiers is
essential whenever a quantified proposition is nested within another. For example, the
last two propositions mean two very different things. Information about the order of
nesting of quantified propositions is sometimes referred to as skolem information.

(all h r (if (and (horse h) (rabbit r)) (can-outrun h r)))
(exist x y (and (= (+ x 1) y) (= (* 2 x) y)))

4

8 r

(all x (exist y (loves x y)))
(exist y (all x (loves x y)))

One particularly usefuil syntactic shorthand is the use of the prefix characters $
and ? to denote universal variables and leftmost existential variables. Each member
of the following pairs of assertions is equivalent to the other.

(all x (if (neighbor x Bertram) (neighbor x Beatrice)))
K; (if (neighbor $x) (neighbor $x Beatrice))

(exist x (and (apple x) (color-of x red)))
(and (apple ?x) (color-of x red))

2.6 Higher Order Propositions

Higher order formulas are formed either by using functional or relational
variables or by applying higher order relations to functional or relational constants.
The induction axiom shown below is a simple example.

Whenever 0 is in a set and n's membership in the set implies the
membership of n + 1, then all integers are in the set.

(all s (if (and (s 0) (all n (if (s n) (s (+ n 1)))))
(all n (s n))))

(Note that asserting such facts does not necessarily ensure that they will be used
Whether an axiomn is used or not depends on the inference procedure the user has
selected)

C

9 Im

Chapter 3 -AIRS's Subroutines and Variables

MRS provides its user with several levels of subroutines for accessing and
modifying its data base. One important property of the user-level subroutines is that
the system reasons about each operation before carrying it out.

3.1 User Level Subroutines and Variables

Important note: In order to facilitate interaction with MRS, there is an additional
sequence of commands that check the user's input for errors and reformat them as
necessary. This preprocessing is separated from the basic routines described below
so that they can be used in programs without sacrificing the time necessary to
perform these error checks and reformatting. The names of these error-checking and
reformatting commands are obtained by prefixing the names below with dollar signs
("$"). For example, ($stash p) removes all prefix quiantifiers, records appropriate
skolem information, and calls stash on the result. The commands sunstash,
$lookup, Sassert, Sunassert, $truep, Strueps, etc. are analogously defined. Until
one is thoroughly familiar with MRS, one should always use the "S" versions.

Currently, the "plural" functions return lists of all appropriate items. In
subsequent versions of MRS, these explicit lists may be replaced with generator
functions.

There are two series of user-level commands in MRS. Each of the commands in
the first series (stash, unstash, lookup, .. .) does meta-level inference to determine
how its argument is represented and then calls the resulting method without
inference. Each of the commands in the econd series (assert, unassert, truep,
etc.) does meta-level inference to determine how much inference to perform in
handling its argument and then calls the resulting inference method.

stash - (stash <p>)
places proposition <p> in the data base, using the method indicated by its
MyToStash property.

unstash - (unstash <p>)
removes the assertion <p> from the data base, using the method indicated by
its MyToUnstash property. Note this is not equivalent to asserting the negation
of <p>.

lookup - (lookup <p>)

checks whether the proposition <p> is asserted in the current data base, using
the method indicated by its MyToLookup property. If <p> contains any
existential variables, the result is a list of variable bindings that satisfies <p>.
If <p> is free of existential variables and <p> is in the data base, the result is
the default binding list ((t . t)).

lookups - (lookups <p>)
checks whether the proposition <p> is present in the current data base, using

10

the method indicated by its MyToLookups property. If <p> contains any
existential variables, the result is a list of binding lists that satisfy <p>. If <p>
is free of existential variables and <p> is in the data base, the result is the list
(((t)).

lookupval - (lookupval (<r> <xl> . <xn>))
uses the method indicated by its MyToLookupval property, which is usually
equivalent to (subvar '$ (lookup (r x1 . . . xn ?))).

lookupvals - (lookupvals (<r> <xl> . <xn>))
uses the meo indicated by its MyToLookupvals property, which is usually
equivalent to (mapcar '(lambda (1) (subvar '?y 1)) (lookups (r xl . . .
xn ?y))).

assert - (assert <p>)

places the proposition <p> in the data base and performs all appropriate
forward inference, using the assertion method indicated by <p>'s MyToAssert
property.

unassert - (unassert <p>)
rins the deletion method indicated by p's MyToUnassert property.

truep - (truep <p>)
tries to determine whether <p> is infen'able from the propositions in the data
base, using the inference method indicated by p's MyToTruep property. If
<p> contains any existential variables, the result is a list of variable bindings
that satisfies <p>. If <p> is free of existential variables and <p> is in the data
base, the result is the default binding list ((t t))

why - (why <p>)
is identical to truep except that it saves justifications for each step in a
deduction.

trueps - (trueps <p>)
runs the inference method indicated by p's MyToTrueps property. If <p>
contains any existential variables, the result is a list of binding lists that satisfy
<p>. If <p> is free of existential variables and <p> is in the data base, the
result is the list (((t . t)))

getbdg - (getbdg <p>)
is equivalent to (cdar (truep p)), i.e. it assumes p contains exactly one
existential variable and returns the value of that variable in the resulting
binding list.

getbdgs - (getbdgs <p>)
is equivalent to (mapcar 'cdar (trueps p)), i.e. it assumes p contains exactly
one existential variable and returns the values of that variable in each of the
resulting binding lists.

11

getval - (getval (<r> <xl> . <xn>))
uses the method indicated by its MyToGetval property, which is usually
equivalent to (getbdg (r xl . . . xn ?y)).

getvals - (Cetvals (<r> xl> <xn>))
uses the method indicated by its MyToGetvals property, which is usually
equivalent to (getbdgs (r xl . . xn ?y)).

3.2 Predefined Representational Methods

pl-stash - (pl-stash (f> <a>))
adds the proposition specified as its argument to the data base in property list
format, i.e. is placed on <a>'s property list under the indicator <f>. This
representation is especially useful for representing the values of unary
functions.

pl-unstash - (pl-unstash (f> <a>))
removes the proposition <p> from the property list representation by deleting ..

the f> property from the atom <a>.

pl-lookup - (p1-lookup (f> <a>))
checks whether the proposition (<f> <a>) exists in the property list
representation by matching against the m1> property of the atom <a>.

pl-lookupval - (pl-lookupval (f> (a>))
returns the <f> property of the atom <a>.

dl-stash - (dl-stash (<r> <a>))

adds the proposition specified as its argument to the data base in "multiple
value" format, i.e. it adds to the list of values stored as the <r> property
of the atom <a>. This representation is particularly useful for representing
binary relations.

dl-unstash - (di-unstash (<r> <a>))
removes the proposition specified as its argument by removing from the
list of values stored as the <r> property of <a>.

d1-lookup - (dl-lookup (<r> <a>))

checks whether the propostion specified as its argument is in the data base by
matching against each of the values stored as the <r> property of <a>
until it either succeeds or runs out of possibilities.

d1-lookups - (d1-lookups (<r> <a>))
checks whether the propostion specified as its argument is in the data base by
matching against all of the values stored as the <r> property of (a>.

dl-lookupval - (di-lookup (<r> <a>))
returns the first element of the list stored as the <r> property of the atom <a>.

_ _, . -; _ . . . - - ,_ . . . -. , ; J o ,, ,. -- . -, . . -

12

dl-lookupvals - (dl-lookupvals (<r> <a>))
returns the list of values stored as the <r> property of the atom <a>.

pr-stash - (pr-stash <p>)
adds the proposition <p> to the propositional data base and returns the
corresponding proposition symbol.

pr-unstash - (pr-unstash <p>)
removes the proposition <p> from the propositional data base.

pr-lookup - (pr-lookup <p>)
checks whether the proposition <p> is in the propositional data base and, if so,
returns the proposition symbol.

pr-lookupval - (pr-lookupval (<f> <al> . . . <an>))
checks whether there is a proposition of the form (<D (al? . <an>) in
the propositional data base and, if so, returns .

pr-lookupvals - (pr-lookupvals (f> <al> . . . <an>))
is similar to pr-lookupval except that it returns a list objects b>
satisfying (<f> <al> . . . <an>).

pr-getfacts - (pr-getfacts <n>)
returns a list of all propositions containing the symbol <n> in the currently
active contexts.

ua-pattern - (ua-pattern <d>)
returns the proposition corresponding to the proposition symbol <d>.

ua-datum - (ua-datum <p>)
returns the proposition symbol corresponding to the proposition <p>.

ua-list - (ua-list t)
returns a list of all symbols that occur in currently asserted propositions.

ut-activate - (ut-activate <cl> . . . <cn>)
makes the assertions in the theories <ct> . . . <cn> available for access.

ut-deactivate - (ut-deactivate <cl> . . . <cn>)

deactivates the named theories.

ut-empty - (ut-empty <c>)

unasserts all the facts in the theory <c>.

currenttheory
is the name of the currently writeable theory. Any atom is an acceptable
theory name.

-". .. i ""0 '" " " - + " - - + ' ..

13 2

activetheories
is a list of all the currently active theories, those whose assertions are available
for retrieval or deduction.

ut-newtheory - (ut-newtheory <cl> .,cn>)

generates a "garbage-collectible" theory with subtheories < c1 . . . (cn>.
Currently, this works only in the Maclisp version.

stash-indb - (stash-indb (indb <p>))
stores the proposition specified as its argument in the data base by stashing
the proposition <p>.

unstash-indb - (stash-indb (indb <p>))
unstashes the proposition specified as its argument by unstashing the
proposition <p>.

lookup-indb - (lookup-indb (indb <p>))
checks whether the proposition specified as its argument is in the data base by
calling lookup on the proposition <p>.

stash-true - (stash-true (true <p> <s>))
stores the proposition <p> in the context <s>.

unstash-true - (unstash-true (true <p> <s>))
removes the proposition <p> from the context <s>.

lookup-true - (lookup-true (true <p> <s>))
binds currenttheory to the context <s> and calls truLp on <p>.

3.3 Predefined Inference Methods

ex-truep - (ex-truep <p>)
uses a matching procedure to determine whether p is implied by the data
base. It matches universal variables in the data base and existential variables
in p only. For example, the data base assertion (r $x Sx Sy Sx) matches the
pattern (r a a (f $z) Sz) with the result ((sz . a) (t . t)).

bc-truep - (bc-truep <p>)
uses backward chaining to determine whether p is true.

cache
is a variable governing whether bc-truep and ex-truep should "cache" their
results. In using MRS's caching capability, it is recommended that one set
currenttheory to some "scratch" theory like cache so that one can apply ut-

* I empty when the cached values are no longer needed.

14

bs-truep - (bs-truep <p>)
is equivalent to (or (lookup p) (bc-truep p)). For example, if the data base
contained the assertions (if (mem $x birds) (flies $x)), (if (feathered
$x) (mer Sx birds)), and (feathered Herbie), then (bs-truep (flies $z))
would return ((Sz Herbie) (t t)).

pi-truep - (pi-truep <p>)
uses property inheritance to determine whether p is true. For example, if the
data base contained the assertions (mem clyde elephants), (subclass
elephants mammals), and (if (mem $x mammals) (temperature $x warm)),
then (pi-truep (temperature clyde warm)) would return ((t t)).
Currently, this works only in the Interlisp version.

truep-not - (truep-not (not <p>))
applies deMorgan's laws as necessary and calls bs-truep otherwise.

thnot - (thnot (not <p>))
calls truep to determine whether <p> is true and returns nil if it is and
otherwise returns ((t . t)).

truep-and - (truep-and (and <p1> . <pn>))
uses truep to find a binding list that makes each of the <pi> true.

trueps-and - (trueps-and (and <p1> , <pn>))
is the plural version of truep-and.

truep-or - (truep-or (or <p> . . . <pn>))
uses truep to find if there is a binding list that makes at least one of the <pi>
true.

trueps-or - (trueps-or (or <pl> . . . <pn>))
is the plural version of truep-or.

truep-trueps - (truep-trueps <p>)
uses truep to find a single binding list that makes <p> true an, if successful,
returns a list of that binding list.

truep-getval - (truep-getval (<f> <al> . . . <an>))
uses truep to find a proposition of the form (<f> <al> . . . <an>) and if
successful returns b>.

trueps-getvals - (trueps-getvals (<f> <al> <an>))
is the plural version of truep-getval.

fc-assert - (fc-assert <p>)
forward chains on all implications of the form (if <p> <q>).

-"

fa-assert -(fa-assert <p>)

forward chains on all implications of the form (if (and <p> .)<q>).I

fs-assert - (fs-assert <p>)
V first checks whether <p> is already in the data base. If not, f s-assert stashes1

<p> and then calls fc-assert and fa-assert.
assert-and - (assert-and (&.it; <p1> .. . (pn>))j

places the proposition specified as its argument in the data base by asserting
each of the propositions <p1>.

assert-iff - (assert-iff (iff <p> <q>))
places the proposition specified as its argument in the data base by asserting
the two propositions (if <p> <q>) and (if <q> <p>).

02

16

Chapter 4 - Vocabulary

This section contains a vocabulary of useful terms for encoding information about
logic, sets and mappings, arithmetic, and time. Most of the terms are mentioned in
one or more of the assertions in the appendices or chapter 5 or are used by one or
more of the inference procedures in chapter 3.

In creating new names, MRS users often observe the following conventions. Sets
are usually named in the plural, e.g. resistors is the set of all resistors. Functions that
apply to an arbitrary number of arguments are terminated with the symbol , e.g.
(union* s1 s2 s3) is the union of the sets s1 , s2 , and s3.

4.1 Logic

= - (W a>)
means that the symbols <a> and are synonymous, i.e. they refer to the
same object.

not - (not <p>)
means that the proposition <p> is false.

and - (and <pl> . . . <pn>)
means that the assertions <p1> . . . <pn> are all true.

or - (or <pl> . . . <pn>)

means that one or more of the assertions <pl> . <pn> is true.

if - (if <p> <q>)
means that whenever proposition <p> is true, proposition <q> is true.

iff - (iff <p> <q>)
is equivalent to (and (if <p> <q>) (if <q> <p>)).

all - (all <xl> . . . <xn> <p>)

means that <p> is true for all bindings of the variables <xi> . . . <xn>. Note
that the "$" functions remove all quantifiers to facilitate matching. Skolem
information is retained on the property lists of the variables in <p>.

exist - (exist <xl> . <xn> <p>)

means that there is some binding for the variables <x> . . . <xn> that makes
<p> true. Note that the "S" functions remove all quantifiers to facilitate
matching. Skolem information is retained on the property lists of the
variables in <p>.

4.2 Sets and Mappings

empty

17

is the empty set.

set - (set <al>,. <an>)
is the set consisting of the members <al> . . . <an>.

seq - (seq <al> . . . <an>)
is the sequence consisting of the members <a> . . . <an>.

mem - (mer <a> <s>)
means that <a> is a member of the set <s>.

subset - (subset <a>)
means that the set <a> is a subset of the set b>.

union* - (union* <si> . . . <sn>)
stands for <si> U . . . U <sn>.

inter* - (inter* <sl> . . . <sn>)
stands for <si> n . . . fl <sn>.

composition* - (composition* <f> . . . <fn>)
means the unary function composed of the unary functions <fi> . . . <(n>.
For example, (composition* spouse mother).

inverse - (inverse <f>)
is the inverse function of <f>.

4.3 Arithmetic

+ - (+ a, . . . an)

-- (-ab)

• (a . . a.)

>- (> a b)

<- (< a b)

4.4 Meta-Level Vocabulary

myto<g> - (myto<g> <p> <f>)
means that the subroutine <f> is to be called in performing the action <g> on
aigumcnt <p>. Each of MRS's user-level commands has associated with it a
relation that specifies the subroutine to be used in carrying out that command.
The relation is named by prefixing the command's name with MyTo, e.g.
MyToAssert. There are similar relations for each of the commands in section
3.1.

7 -,

18

rel - (rel <p>)
is the symbol in the relational position of the proposition <p>.

arg - (arg <i> <p>)
is the symbol in the <i>th argument position of the proposition <p>.

val - (val <p>)

is the symbol in the value position of the proposition <p>, i.e. the second.
~argument.

prop - (prop r a, . . . an)

is the proposition symbol made up of the symbols specified.

indb - (indb <p>)

means that the proposition <p> is stored in the data base.

true - (true <p> <s>)
means that proposition <p> is true in situation <s>. This relation is especially
useful for making statements about time.

just - (just <q> Wi> <pl> . . . <pn>)
states that the justification for believing <q> is teh inference method <i> and
the premises <pi> . . . <pn>.

mytheory - (mytheory <p> <t>)

states that the proposition <p> is stored in.the teory <t>.

subtheory - (subtheory <tl> <t2>)
says that the theory <ti> is a subtheory of the theroy <t2>.

o-

19

Chapter S5 Initial Data Base

5.1 Definitions of the User-level Subroutines

The Maclisp definitions of the key user-level subroutines in MRS are as follows.
The Interlisp versions are equivalent

(defun stash (p) (kb 'MyToStash p))
(defun unstash (p) (kb 'MyToUnstash p))
(defun lookup (p) (kb 'MyToLookup p))
(defun lookups (p) (kb 'tMyToLookups p))
(defun lookupval (x) (kb 'MyToLookupval x))
(defun lookupvals (x) (kb 'MyToLookupvals x))

(defun assert (p) (kb 'MyToAssert p))
(defun unassert (p) (kb 'MyToUnassert p))

7 (defun truep (p) (kb 'MyToTruep p))
(defun trueps (p) (kb 'MyToTrueps p))
(defun getval (x) (kb 'MyToGetval x))
(defun getvals (x) (kb '!yToGetvals x))

(defun kb (g x)
(let ((goals goals))

(if (nemsamep (sotq g (list g x I$)) goals) nil
(funcall (subvar '$ (or (ex-truep g) (bc-truep g)))

The version of kb in the system first checks the list goals to see whether the goal
has Occurred bcfore and, if so, halts. The point of this check is to prevent infinite
recursions when in the process of satisfying a goal, an identical subgoal is generated.

5.2 Initial Akta-assertions
MRS starts out with 100 or so meta-assertions. The curious user can type (ut-

7. contents 'global) to see a list of all the assertions in the global theory or ($facts
* <s>) to see all the facts that MRS knows about the symbol <s>.

20

Chapter 6 - Using MRS

Copies of MRS and its documentation can be obtained by writing to the
Heuristic Programming Project at the following address.

Secretary
Heuristic Programming Project
Computer Science Department
Stanford University
Stanford, California 94305

Bugs and comments should be sent either to the above address or via Arpanet to
CSD.Genesereth@Score or CSD.Smith@Score.

6.1 System Utilitiev

$apropos - ($apropos <string>)
returns a list of all atoms containing <string>.

Sdefunit - ($defunit <name> <pl> <pn>)
allows one to bind together the set of propositions <pi> . . .<pn> associated
with the symbol <name>. The effect of $defunit is the same as if the
propositions were associated singly; its use is purely cosmetic.

sfacts - (sracts <n>)
prints out all assertions about <n> in the currently active theories. This works
only in Maclisp.

$just - ($just <p>)
prints out the justification for the proposition <p>. The user-level command
why automatically creates justification links as it reasons.

$load - ($load <f>)
loads a file <f > of propositions.

ua-list - (ua-lIst t)
returns a list of all symbols that occur in currently asserted facts.

ua-edit - (edit <n>)
invokes the LISP editor to permit the user to edit the assertions associated
with <n>. This works in the lnterlisp version only.

6.2 MRS in Maclisp

MRS is defined as a set of subroutines and data structures that can be loaded into
any Maclisp program with the load command. On the Score machine, this can be
done by typing the following line to any Maclisp program.

21

(load 'I<CSo.MRS>MRS.loadJ)

6.3 MRS in Franz Lisp

As in Maclisp, MRS in Franz Lisp is defined as a set of subroutines and data
structures that can be loaded with the load command. On the Diablo machine, this
can be done by typing the following line to any Franz Lisp program.

(load '/usr/hpp-dart/dart/mrg/mrs. load)

6.4 MRS in Interlisp

On Score, MRS is also available in Interlisp as a sysout. It can be obtained by
typing the following line to the monitor.

<CSD. tRS>MRS.exe

."

. -7-

22

References

Genesereth, M. R.: "The Architecture of a Multiple Representation System", HPP-
81-6, Stanford University Computer Science Department, May 1981.

Greiner, R.: "A Representation Language Language", HPP-80-9, Stanford University
Computer Science Department, May 1980.

Smith, D. E.: "CORLL: A Storage and File Management System for Knowledge
Bases, HPP-80-8, Stanford University Computer Science Department, April 1980.

23 i232
Appendix I - A Brief Tour of MRS

This appendix presents a brief demonstration of some of the capabilities of MRS.
The lines preceded by "->" were typed by the user; the subsequent lines were typed
by M RS.

0> (assert '(color clyde grey))]
I(color clyde grey)l

z> (Struep '(color clyde grey))
((t . 0)

3> (Sgetval '(color clyde))
g rey

0> (Struep '(color Sx grey))r
((Sx . clyde) (t . t))

*> ($assert '(all x (p x)))
Hp~ $x)I

0) (Struep '(p $z))

0 (Sunassert '(color clyde grey))
j(color clyde grey)j

=> ($truep '(color clyde grey))
nil

=> ($assert '(meni clyde elephants))
I(inem clyde elephants)I

=> (Sassert '(all x (if (mem x elephants) (color x grey))))
I(if (mom $x elephants) (color Sx grey))j

0> (Sgetval '(color clyde)) *
grey

a> $asert'(all x (if (and (mem x plants) (color x purple))
(poisonous x))))

4 I(if (and (me. Si plants) (color Si purple)) (Poisonous $X))I

0> (Sassert '(all x (if (me. x mushrooms) (mom x plants))))
1(if (me. Sx mushrooms) (mom Si plants))l

=> ($assert '(mom phil mushrooms))
g(mem phil mushrooms)I

-*0* (Sassert '(color phil purple))
l(color phil purple)l

a> (Struep '(poisonous phil))
((t t)

0) (setq currenttheory 'earth)

SP,

24

earth

0> ($assert '(color sky blue))
I(color sky blue)j

=> (setq currenttheory 'mars)
mars

0> ($assert '(color sky red)) '41
[(color sky red)I

>(Sgetval '(color sky))
red

=> (setq currenttheory 'earth)
earth

a> (Sgetval '(color sky))
blue

=> (setq currenttheory 'global)
global

=> ($facts mytostash)
(mytostash $x pr-stash)
(mytostash (indb $p) stash-indb)
(nytostash (subworld $c $d) stash-subworld)
nil

z> ($assert '(mytostash (neighbor $x $y) dl-stash))
1(mytostash (neighbor $x $y) dl-stash)I

0) ($assert '(mytolookupvals (neighbor $x) dl-lookupvals))
1(mytalookupvals (neighbor $x) dl-lookupvals)I

0> ($assert '(neighbor stanford paloalto))
(paloalto)

=> ($assert '(neighbor stanford menlopark))
(menlopark paloalto)

z> (get 'stanford 'neighbor)
(menlopark paloalto)

0> (Slookupvals '(neighbor stanford))
(menlopark paloalto)

:($facts not)
(mytotruep (not $p) truep-not)
(mytotrueps (not Sp) trueps-not)
nil

z> (Struep '(not (striped zeke)))
nili~. ~>($assert '(mytotruep (not $x) thnot))
1(mytotruep (not Sx) thnot)I

0> (Struep '(not (striped zeke)))

25

a> ($assert '(striped zeke))
I(striped zeke)I

x> (Struep *(not (striped zeke)))
nil

a> (Sassert '(mother bertram allison))
I(mother bertram allison)I

0> (Sassert '(spouse allison arthur))
I(spouse allison arthur)l

0> ($9etval '(father bertram))
nil

0> ($assert '(mytotruep (father Lx $y) truep-father))
j(mytotruep (father Sx Sy) truep-father)I

0> (defun truep-father Mp
(Struep (list 'and

(list 'mother (cadr p) 'Sz)
(list 'Spouse '$z (caddr p)))))

truep-father

=> (Struep '(father bertram arthur))
((Sz .allison) (t .t))

0> (Sgetval '(father bertram))
arthur

z> ($why '(poisonous phil))
((t M)

z> ($just '(poisonous Phil))
(poisonous phil) by bc-truep

(if (and (me. $x plants) (color Lx purple)) (poisonous Lx))(and (mom phil plants) (color phil purple)) -
(and (mem phil plants) (color phil purple)) by truep-and

(mem phil plants)
(color phil purple)

(mem phil plants) by bc-truep
(if (me. Lx mushrooms) (mem $x plants))
(me. phil mushrooms)

nil

a> ($facts phil)
(mem phil mushrooms) ap
(color phil purple)

7-nil

0> (Sfacts oytoassert)
(mytoassert $x stash)
(mytoassert (and $p Sq) assert-and)
(mytoassert (ift Sp Sq) assert-ift)
(mytoassert (true $P Ss) assert-true)

26

nil

Z> ($assert '(mytoassert $p fs-assert)) -

I(mytoassert $p fs-assert)l

=> ($assert '(mem joe mushrooms))
I(mem joe mushrooms)I

=> ($assert '(color joe purple))
I(color joe purple)l

=> ($facts joe)
(mem joe mushrooms)
(mem joe plants)
(color joe purple)
(poisonous joe)
nil

VWI

27

Appendix 2 - An Exam pi'e of Using MRS to Describe Digital Circuits

This appendix presents an example of how MRS can be used to describe the
structure and behavior of digital circuits. The full adder was taken from Mano's
book Computer System Architecture. The gate descriptions are oversimplifications in
that temporal information has been omitted and a simple two-valued logic has been
assumed. For a more extended discussion of how MRS can be used in describing
circuits, the reader should see the "DDL Manual" [Genesereth, Grinberg, Lark].
Section A2.1 presents the description, and section A2.2 shows how it can be used in
answering questions and generating explanations.

AZ I The Description

the behavioral description of an inverter

(if (and (type $g inv) (on (input I $g)))
(off (output 1 $g)))

(if (and (type $g inv) (off (input I $g)))
(on (output I $g)))

the behavioral description of an and-gate

(if (and (type Sg and-gate) (on (input 1 $g)) (on (input 2 $g)))
(on (output I $g)))

(if (and (type $g and-gate) (off (input 1 $g)))
(off (output 1 $g)))

(if (and (type $g and-gate) (off (input 2 $g)))
(off (output 1 $g)))

the behavioral description of an or-gate

(if (and (type $g or-gate) (or (on (input 1 $g)) (on (input 2 $g))))
(on (output 1 Sg)))

(if (and (type $g or-gate) (off (input 1 $g)) (off (input 2 $g)))
(off (output 1 Sg)))

* ;the behavioral description of an xor-gate

(if (and (type $g xor-gate) (off (input 1 $g)) (off (input 2 $g)))
(off (output I $9)))

(if (and (type $g xor-gate) (off (input I $g)) (on (input 2 $g)))

F91

28

(on (output 1 $g)))

(if (and (type $g xor-gate) (on (input 1 $g)) (off (input 2 $g)))
(on (output 1 $g)))

*(if (and (type $g xor-gate) (on (input 1 $g)) (on (input 2 $g)))
(off (output 1 $g)))

* ;;: Structural Description of a full adder. See Mano page 20.

(prototype fa-i full-adder)
(sizein fa-1 3)
(sizeout fa-i 2)

(subpart* xor-1 and-i xor-2 and-2 or-i fa-1)
(type xor-1 xor-gate)
(type and-i and-gate)
(type xor-2 xor-gatc)
(type and-2 and-gate)
(type or-i or-gate)

(conn* (input 1 fa-i) (input I xor-i) (input 1 and-i))
(conn* (input 2 fa-i) (input 2 xor-1) (input 2 and-i))
(conn* (input 3 fa-i) (input 1 xor-2) (input 1 and-2))

(conn* (output 1 xor-i) (input 2 xor-2) (input 2 and-2))
(conn* (output 1 and-i) (input I or-i))
(conn* (output 1 and-2) (input 2 or-)

(conn* (output 1 xor-2) (output 1 fa-1))
(conn* (output 1 or-i) (output 2 fa-i))

A2.2 Using the Description

=> ($assert '(on (input I fa-i)))
~I(on (input 1 fa-i)fl

=> ($assert '(on (input 2 fa-i)))
I(on (input 2 fa-i))I

=> (Sassert '(off (input 3 fa-1)))
I(off (input 3 fa-1))I

=> (Struep '(on (output Sn fa-i)))
((Sn . /2) (t . t))

0> (Struep '(off (output Sn fa-1)))

.7. => ($why '(on (output 2 fa-i)))
((t - tM

*.=> ($just '(on (output 2 fa-i)))
(on (output 2 fa-1)) by bc-truep

(if (and (conn $x $y) (on $x)) (on $y))
(and (conn (output 1 or-i) (output 2 fa-1)) (on (output 1 or-i)))

29

(and (conn (output I or-i) (output 2 fa-1)) (on (output I or-i)))
by truep-and
(conn (output 1 or-i) (output 2 fa-i))
(on (output 1 or-i))

(on (output I or-i)) by bc-truep
(if (and (type $g or-gate)

(or (on (input 1 $g)) (on (input 2 Sg))))
(on (output 1 Sg)))

(and (type or-i or-gate)
(or (on (input 1 or-i)) (on (input 2 or-i))))

(and (type or-i or-gate)
(or (on (input 1 or-i)) (on (input 2 or-i)))) by truep-and

(type or-i or-gate)
(or (on (input 1 or-i)) (on (input 2 or-i)))

(or (on (input 1 or-i)) (on (input 2 or-i))) by truep-or
(on (input I or-i))

(on (input 1 or-i)) by bc-truep
(if (and (conn $x Sy) (on $x)) (on $y))
(and (conn (output I and-i) (input I or-i))

(on (output I and-i)))

(and (conn (output I and-i) (input 1 or-i)) (on (output 1 and-i)))
by truep-and
(conn (output i and-i) (input I or-i))
(on (output 1 and-i))

(on (output I and-i)) by bc-truep
(if (and (type Sg and-gate) (on (input I Sg)) (on (input 2 $g)))

(on (output 1 $g)))
(and (type and-i and-gate)

(on (input I and-i))
(on (input 2 and-i)))

(and (type and-1 and-gate) (on (input I and-i)) (on (input 2 and-i)))
by truep-and
(type and-1 and-gate)
(on (input 1 and-i))
(on (input 2 and-i))

(on (input 1 and-i)) by bc-truep
(if (and (conn $x $y) (on $x)) (on $y))
(and (conn (input 1 fa-i) (input 1 and-i)) (on (input 1 fa-i)))

(and (conn (input 1 fa-1) (input I and-i)) (on (input 1 fa-i)))
by truep-and
(conn (input i fa-i) (input 1 and-i)) P
(on (input I fa-i))

(on (input 2 and-i)) by bc-truep
(if (and (conn $x $y) (on $x)) (on $y))
(and (conn (input 2 fa-i) (input 2 and-i)) (on (input 2 fa-i)))

(and (conn (input 2 fa-i) (input 2 and-i)) (on (input 2 fa-)))
by truep-and

(conn (input 2 fa-1) (input 2 and-i))
(on (input 2 fa-i))

nil

30

r

*f

I

I

I

