
-A123 225 ECONOMETRIC MODEL FOR OPTIMIZING TROOP DINING FACILITY 1/2
BETHESDA HD A C MANOUSO DEC 82 CRR-D-82-4

UNCLRSSIFIED F/G 816 Umm0hhhi

"j'jj

.I..122,-
',,

' o.
w ,

1.0

•. .1.8

11115L-16

MICROCOPY RESOLUTION TEST CHART

.7
NATIONAL BUREAU OF STANDARDS-1963-A

1K

,f.1

n o W 1,- 1 1 1

C44

ECONOMETRIC MODEL FOR OPTIMIZING TROOP
DINING FACILITY OPERATIONS-

-- USER'S AND PROGRAMER'S REFERENCE MANUAL

DECEMBER 1982

DTIC

- PREPARED BY JAN 693

US ARMY CONCET ANALYSIS AGENCY
8120 WOODMONT AVENUE

.;:... BETHESDA, MARYLAND 20814

Thi document has been approved
Om .for public release and sale; its
'" .di!tnibution is unlimited.

GOV83 01 05 087
" .

l
I
-1L

DISCLAIMER

The findings of this report are not to be construed as an official
Department of the Army position, policy, or decision unless so
designated by other official documentation. Comments or suggestions r
should be addressed to:

Di rector
US Amy Concepts Analysis At ncy
ATTN: CSCA-AS
8120 Woodmont Avenue
Bethesda, ND 20814

b|

I

it

i.

-'I

-" . ""'"o " " - - "-" " - " • ' -' " " , "i . , . "" " - " " ' 2" L

CAA-D-82-4

r~*. UNCLASSIFVIED
SECURITY CLASSIFICATION OF THIS PAGE Men'. Date 60OOe

REPOR DOCUMENTATIOI4 PAGE RZADm COTUMEO N.

1REOTMUMSI. GOVT ACCREO O 7 iEMT'SCATALOG NUMBER

4- T&TLE faid! &"do) S. TYPE or REPORT a PERIOD COVERED
Documentation

Econometric Model for Optimizing Troop Dining 1 Nov 81 to 31 Oct 82
Facility Operations (User's and Programer's

RefeenceManal) U)S. PERFORMING ORg. REPORT NUMBERRefeenc Manal) CU)CAA-D-82-4
7. A1JTHO~q) S OTAT

CPT August C. Manguso

II. PERFORING ORGANIZ2ATION NME AND ADDRESS I0. PROGRAM "LEtNUMERO.SK

US Army Concepts Analysis AgencyARAWKN
8120 Woodniont Avenue (ATTN: CSCA-ASA)
Bethesda, MD 20814 _____________

11. CONTROLLING OFFICE NME AMD ADDRESS I2. REPORT DATE

Office of the Deputy Chief of Staff for Logistics December 1982
Department of the Army (ATTN: DALO-TST) 1S. NUMBER Of PAGES

WaShington DC 201 168
.LMONITORING AGEMCY MAN . ADORESSMI 4111fout hM CmobOUliod 01000) 111. SECURITY CLASS. (of thl. "oPM~)

UNCLASSIFVIED
I.CLA-SI CATION/ DOWNGRADING

1S. DISTRIBUTION STATEMENT (of hAl. Ap*H)

Approved for public release

17. DISTRIBUTION STATEMENT (.f th. .b.tract onired In Block20 It dfffto~t 1o. Rtpoft)

Unlimited

I&. SUPPLEMENTARY NOTES

I9. KEY WORDS (Co.,te on reoo. .Ido If neco..av md tdo*Itfy by black n inbw)

(U) Active Army; (U) Logistics; (U) Planning; (U) Model Development;
(U) Menu Planning; (U) Goal Prcgraming

PL. ABSTACT (CWIANon - ebb C nooinpm Idwtify by block number)

This manual provides the user and the programer with reference material con-
cerning the operations and maintenance of the Econometric Model for Optimizing
Troop Dining Facility Operations --This model, also referred to as the menu

Vplanning model, was presented in the U Concepts Analysis Agency (CAA)
study report CAA-SR-82-1O, dated October 1982-.", The model is centered around
a goal programing model, capable of selectively achieving goals for food cost,

b labor cost, acceptability and nutrition in the design of the Army Master Menu.
This manual is divided into two main parts: a user's guide, and a programer s

PD I~7S103 £UrfO.IF'MVSSG.GETEUNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whn, Does EnI...d)

" \ JA N 6 18

-7 .7

CAA-D -82-4

UNCLA3SIFIED
SCUmrY CLAUIFICATWU OF THIG PAO*~a Dea ROWS*

reference manual. The user's guide is oriented to the non-technical user, I
while the programer's reference is directed to the knowledgeable FORTRAN
programer. Material presented in this manual applies to that revision of
the model that was placed into operations on the Burroughs BG0 computer
used by the US Army Troop Support Agency (TSA) at Ft. Lee, VA. Runstreams
pertaining to the revision of the model that was developed on the UNIVAC
1100/82 at CAA are included in an appendix of this manual.

II

UNCLASSI FIEP

UCUPITy CLAIUPC*ATION OF TNIS PASlme bDOS Ebm

V71

DOCUMENTATION
CAA-D-82-4

ECONOMETRIC MODEL FOR OPTIMIZING TROOP

DINING FACILITY OPERATIONS

USER'S AND PROGRAMER'S REFERENCE MANUAL

December 1982

Prepared by

Analysis Support Directorate

US Army Concepts Analysis Agency Ac6e95i n:
8120 Woodmont Avenue NTIS GRAXI

Bethesda, Maryland 20814 DTIC TAB

W~anxiouraeed :3~ustificatioa

i u
' ! C

CAA-D-82-4 :
CONTENTS

CHAPTER Page

1 INTRODUCTION .. 1-1

Purpose ... 1-1
Background .. 1-1
Methodology ... 1-2
System Design and Model Structure 1-3

System Application 1-4

2 USER'S GUIDE 2-1

Model Structure 2-1
User Interactions 2-1
Data Handling Module 2-2
Parameterization Module 2-21
Solution Module 2-29
Sample Sol ution 2-31

Summary ... 2-40

3 PROGRAMER'S REFERENCE MANUAL 3-1

,.Introduction .. 3-1

Data Handling Module 3-1
Parameterization Module 3-33Sol ution Module 3-52

Summary 3-79

APPENDIX

A Study Contributors A-i

B Introduction to XMP B-1

C UNIVAC Runstreams C-1

D Bibl iography .. D-1

I .
-.

- ---' • -- -+.-

CAA-D-82-4

FIGURES

FIGURE Page r

1-1 Menu Planning Goals 1-3

2-1 Menu Planning Model Structure 2-4
2-2 Data Handling Module 2-5
2-3 Data Module Interface 2-6
2-4 Recipe Attribute File Interface 2-7
2-5 Recipe Listing Interface 2-7
2-6 Procedure for Listing Individual Recipe Data 2-8
2-7 Procedure for Deleting a Recipe 2-8
2-8 Procedure for Inserting a Recipe 2-9
2-9 Procedure for Modifying a Recipe 2-10
2-10 Loading Recipe Data 2-11
2-11 Menu Component File Interface 2-12
2-12 Menu Component Listing Interface 2-13
2-13 Procedure for Listing. Individual Menu Component Data 2-13
2-14 Procedure for Inserting Menu Component Data 2-14
2-15 Procedure for Modifying Menu Component Data 2-15
2-16 Procedure for Deleting Menu Component Data 2-16
2-17 Procedure for Loading Menu Component Data 2-17.
2-18 Executing the Preprocessor 2-18
2-19 Accessing the Menu Attribute File 2-19
2-20 Generating a Recipe-Menu Cross Reference Listing 2-20
2-21 Parameterization Module 2-22
2-22 Parameterization Module Interface 2-24
2-23 Executing the Matrix Generator 2-25
2-24 Accessing the Bounds Fele 2-26
2-25 Accessing the Goals Fle 2-27
2-26 Accessing the Priority File 2-28
2-27 Solution Module 2-30
2-28 Sample Goals .. 2-32
2-29 Priority Order 2-33
2-30 Sample Menu Ltst 2-34
2-31 Sample Menu Attribute Summary 2-36
2-32 Goals and Deviations 2-37
2-33 Menu List with Associated Recipese.............. 2-38
2-34 Recipe-Menu Cross Reference List 2-39

TABLES

TABLE

3-1 Recipe Attribute File 3-2
3-2 Menu Components Fle.. 3-3
3-3 Menu Attribute File 3-4
3-4 TSA Recipe Data File 3-6
3-5 TSA Menu Data File 3-7

iv

CAA-D-82-4

USER'S AND PROGRAMER'S REFERENCE MANUAL

CHAPTER I

INTRODUCTION

1-1. PURPOSE. This manual is intended to provide the user and the pro-
gramer with information concerning the application and maintenance of
the Econometric Model for Optimizing Troop Dining Facility Operations.
The model is intended to provide a design tool which can be used to
guide the analytical preparation of the Army Master Menu, and thereforeK the model will be referred to as the Menu Planning Model. This manual
is divided into two main parts: the first, covered in Chapter 2, is a
guide to the user, and the second, covered in Chapter 3, is a reference
manual for the programer. The user should not have to refer to the sec-
ond part in order to successfully use the model.

1-2. BACKGROUND. A detailed discussion of all the factors that went
into the design of the Menu Planning Model is contained in CAA Study Re-
port 82-10. Background information is provided here for the sole pur-
pose of orienting the user and programer to the model design and the
factors that influenced that design. Effective application of the model
is largely dependent on the understanding that the user has of the model
and its capabilities; therefore, the user is encouraged to read the
study report before attempting to apply the model.

a. The Amy Master Menu. The Amy Master Menu is an integral part
of the Army food program and essentially a list of "what is to be made."
The Master Menu is currently published on a monthly basis and is used in
the planning of meal selections. The food service sergeant may follow
the Master Menu or make whatever deviations are necessary to satisfy the
eating habits and desires of the soldiers eating in his dining facility.
The Master Menu is important as a guide because although deviations may
be allowed, the Master Menu provides for nutritional adequacy, relative
cost efficiency, and general acceptability. Currently, the Master Menu
is based on a 42-day menu cycle and reflects an effort to balance the
factors of cost, nutrition, and acceptability.

b. Problem. The current method of developing the Master Menu is
based on manual and partially automated procedures. There is no consis-
tent analytical approach to the consideration of food cost, acceptabil-
ity, nor nutritional adequacy in the design of the Master Menu. In ad-
dition, the relative labor costs of alternative menu plans are not
considered.

1-1

w . g r . - - - .. -+ . o .. - o . + +
-.

CAA-D-82-4

c. Objectives. The specific objectives of the study under which theMenu Planning model was developed are discussed in the study report. Ingeneral, those objectives provide for the development of both a metho-
dology which provides for the consistent analytical consideration offood cost, labor cost, nutrition, and acceptability in the design of theArmy Master Menu, and a model that is capable of applying that methodol-ogy. Inherent in the development of the methodology is the collectionand analysis of data for recipes and selected menus, along with theidentification of appropriate goals for food cost, labor cost, accept-
ability, and nutritional adequacy.

1-3. METHODOLOGY

a. Goal Programing (GP). GP is a mathematical programing technique
that allows for the consideration of several goals in the optimization
process. In this model, the goals shown in Figure 1-1 are prioritizedat the time the menu is being planned. The GP algorithm then selects
the combination of menus that results in the least deviation from those,prioritized goals. The GP methodology employed in the Menu PlanningModel is based on an attempt to achieve each goal in a preemptive fa-shion. Prioritizing the four goals implies that one is preferred toanother, which is preferred to another, etc. Preemptive prioritization
implies that one is preemptively, or infinitely, preferred to another.
This means that the second priority goal may be achieved only so long asits achievement does not reduce the achievement of the first prioritygoal. The relative achievement of a goal is measured by the positive ornegative deviation from that goal. From this it can be seen that theaim in GP is to minimize the deviation from the various goals, and withconflicting goals, the reordering of priorities can lead to entirely
different solutions.

b. Menu Attributes. The Menu Planning Model incorporates a process
for assessing the relative worth of menus in terms of attributes forfood cost, labor cost, acceptability, and nutritional content. Thisprocess allows for the consistent analytical determination of menu at-tributes which are subsequently used as input to the GP algorithm.

fl]

V

1-2

CAA-D-82-4

Inutritional

Rema i n
within BDFA
toleranceac

(Hold down\
labor costs

Maintain hig
acceptability

Figure 1-1. Menu Planning Goals

1-4. SYSTEM DESIGN AND MODEL STRUCTURE

a. Integration With the Existing System. The system design was in-
tended to correspond with the logical sequence of operations in menu
planning. The user is able to interface with recipe and menu data files
in order to maintain and update that data. The user may set upper lim-
its on the number of times that any menu may be repeated during the menu
cycle and may subsequently alter those limits for specific menus. The
user also has the capability of establishing goals and reordering pri-
orities in order to assess the effect of those factors on the overall
menu plan.

p
b. Modularity. The Menu Planning Model is divided into three dis-

tinct modules that correspond to the functional processes of menu plan-
ning: data maintenance, establishment of planning parameters, and gen-
eration of complete plans. They are, respectively, the data handling
module, the parameterization module, and the solution module.

6 c. Portability. The Menu Planning Model was developed on a UNIVAC
1100/82 at the Concepts Analysis Agency, however a version has been
placed on the Burroughs B6800 at Ft Lee, VA. Although there is little
difference between the two versions, the instructions contained in this
manual are intended to refer to the Burroughs version. Pertinent UNIVAC
runstreams and file names are listed in Appendix C.

1-3

CAA-D-82-4

d. Data Sources. Data for the model may come from a number of
sources, including a Management Information System that is to be devel-
oped at TSA. The data necessary for the successful use of the model
consists of two fairly simple data files: one-containing a list of re-
cipes and the worth of those recipes in terms of food cost, labor cost,
acceptability, and nutritional content for 10 nutrients; the other being
a list of candidate menus and the recipes that comprise those menus. A
detailed description of the data files is included in this manual.

1-5. SYSTEM APPLICATION

a. Users. It is intended that the users of the Menu Planning Model
will ultimately be the TSA menu planners. The model may also have ap-
plication in the assessment of concepts in menu design, but the-user in-
terfaces are intended to allow the model to be run by persons who may
not be computer oriented.

b. Uses. As mentioned above, the model may have applications in
assessmenf-of different concepts, but the model is intended to be a tc

*;. for use in guiding the analytical design of the Amy Master Menu.

1-4

CAA-D-82-4

CHAPTER 2

USER'S GUIDE

2-1. MODEL STRUCTURE. The structure of the Menu Planning Model is rep-
resented schematically in Figure 2-1. This figure is not intended to be
a logical flow chart since much of the detail is intentionally elimi-
nated. The user may find it handy to refer to Figure 2-1 while using
this guide in order to keep track of the interactions of the various
model components. The model is actually divided into three distinct
modules: the data handling module, the parameterization module, and the
solution module. The remainder of this chapter discusses each module in
turn. The discussion is intended to explain processes and alternative
courses of action available to the user. Where necessary, data sources
and input requirements will be discussed. For details on the programs
and subroutines themselves, the user may wish to refer to Chapter 3, or
the documented source code listing.

2-2. USER INTERACTIONS. In operating this model from a remote termi-
nal, the user will be prompted for a variety of input. In many cases, p
the reply will be a simple "ye3", "no", or the selection of a single
digit number. In some cases, a special response must be made such as
the entry of names or numbers. In those cases, the user will usually be
told how to respond. If told to respond with an "F" format, that simply
means to enter a real number (a number with a decimal point, i.e.,
45.0). An "I" format means an integer number (no decimal, such as 45),
and an "A" format means any series of numbers or characters. If a spe-
cific length, or placement of input is expected, the uqer will be given
a display such as:

ENTER RECIPE NUMBER:
;' AAAAAAAAA

This means that the user should enter up to 10 characters directly below
the "As." As an example:

ENTER RECIPE NUMBER:
AAAAAAAAAA
L-150-1

Alternatively, the user may be expected to respond with mixed data, such
as in this case:

ENTER NEW BOUND IN THE FOLLOWING FORMAT:
AA FFFFFFFFFFFF

The response might be:

ENTER NEW BOUND IN THE FOLLOWING FORMAT:

2-1

op

CAA-D-82-4

In those cases when a specific format is not indicated, the format of
the expected response is either obvious or immaterial.

2-3. DATA HANDLING MODULE

a. Purpose. The data handling module, also referred to as the data
module, allows the user to interface with the basic data files. Themodule is represented in Figure 2-2. The user would run this module in

order to perform those actions necessary to establish a valid data set.
The user must ensure that the data is valid before going on to planning
menus.

b. Data Sources. Data concerning recipes and menus may come from a
variety of sources, including a management information system. The mod-
ule maintains two data files: the recipe attribute file, and the menu
component file. A third file, the menu attribute file, is generated
from the data contained in the first two files. Data from other data
sources may be loaded into the recipe attribute file and the menu compo-
nent file.

c. Input Requirements

(1) Recipe Attribute File. This file is maintained by the data
module and should not be altered by using a text editor. The data in
this file and the menu component file may be modified by exercising the
options provided in the data module. The format of the recipe attribute
file is shown in Chapter 3. Basically, the file consists of data for
each recipe, including recipe number, name, kind, food cost, labor cost,
acceptability, and nutritional content for the following 10 nutrients:

Calories
Protein
Fat
Calcium
Iron
Vitamin A
Thiamin
Riboflavin
Niacin
Vitamin C

The file name is CAA/RECIPEDATA.

2-2

- - -, . ":'-- - - -4." . - -"" L i "..... - -

CAA-D-82-4

(2) Menu Component File. This file is also maintained by the data
module and should not be altered by using a text editor. The format of
the menu component file is shown in Chapter 3. This file consists of alist of selected menu numbers. These are candidate menus which may or
may not be selected for inclusion in the solution. Each is defined in
terms of the recipes that comprise the menu. The file name is CAA/MENU-
DATA.

(3) Menu Attribute File. This file is created by the data module
and should not be altered by using a text editor. The format of the
menu attribute file is shown in Chapter 3. This file consists of data
for each menu listed in the menu component file. This data includes themenu number, food cost, labor cost, acceptability, and nutritional con-
tent for each of the 10 nutrients mentioned earlier. The file name is
CAA/MENATTDAT.

WI

2

2-3

CAA-D-82-4

ei p RepertK ~~trbt comisaponenbt R~pelit~ it

Lao menus~ witth

Nutruret listin MeuPanigMdlftut

2-4o

CAA-D-82-4

r

r

interface_____'aamtelz-

Food cost CaIi ndiode

Pre--

Figure~~10 2-2. Daaoandiglodl

Fodcs
Labor

II
Figue 2-. Dta Hndlng Mdul

CAA-D-82-4

(4) External Data Files. Two classes of external data files are
intended as input to the data module. The first class may be referred
to as working files. They have the same format as the files maintained
by the data module. In fact, once the recipe attribute or menu compo-
nent data are verified, they may be copied out into working recipe and
menu data files. These files may then be loaded at a later date by the
data module. The files are named CAA/WRKRECDAT and CAA/WRKMENDAT. The
second class of external data files correspond in format to those data
files originally received from TSA for the purpose of model development.
The file names are CAA/TSARECDAT and CAA/TSAMENDAT. The purpose of the
external data files is to provide a source of input that is external to
the model itself. These files may consist of specialized data, such as
single entree menus for mobilization menu planning, that were riginally
developed within the model and saved for later use. In addition, they
may include data produced by a management information system. The file
formats are shown in Chapter 3.

d. Sample Procedures. The user may execute the data module by
enteri ng:

RUN CAA/DATAMOD

The user must then respond to the display as shown in Figure 2-3.

WELCOME TO THE ARMY MASTER MENU DATA HANDLING PROGRAM

IF NOT FAMILIAR WITH THE PROGRAM STRUCTURE, PLEASE TERMINATE.

** THE USER MAY SELECT ANY OF THE FOLLOWING TRANSACTIONS: **

1 ACCESS THE RECIPE ATTRIBUTE FILE

2 ACCESS THE MENU COMPONENT FILE

3 EXECUTE THE PREPROCESSOR

4 ACCESS THE MENU ATTRIBUTE FILE

5 GENERATE A RECIPE-MENU CROSS REFERENCE LIST

6 TERMINATE THIS ROUTINE

**ENTER TRANSACTION NUMBER:

Figure 2-3. Data Module Interface

2-6

CAA-D-82-4

(1) Accessing the Recipe Attribute File. Once the user accesses
the rec pe attribute rlle, those actions snown in Figure 2-4 may be
taken.

**THIS PROGRAM MAINTAINS A DIRECT FILE OF RECIPES AND THEIR **

**ASSOCIATED ATTRIBUTES. **

**SELECT ONE OF THE FOLLOWING TRANSACTIONS: **

1 LIST A PORTION OF THE FILE

2 LOCATE AN INDIVIDUAL RECIPE

3 DELETE A RECIPE FROM THE FILE

4 INSERT A RECIPE INTO THE FILE

5 MODIFY A RECIPE

6 LOAD EXTERNAL DATA FILE

7 TERMINATE THIS ROUTINE

** ENTER TRANSACTION NUMBER:

Figure 2-4. Recipe Attribute File Interface

(a) Listing a Portion of the File. A portion of the file may be
listed as shown in Figure 2-5. The display is intended to assist the
user with input. As an example, "KIND VEG" is to be entered directly
below the "AAAA AAA".

NOTE: RECIPES MAY BE LISTED BY KIND OR BY PREFIX. ENTER KIND OR PREF
FOLLOWED BY A PARAMETER WHICH MAY BE VEG, STA, ENT, DES, OR SAL FOR A
LISTING BY KIND, OR L, Q, ETC. FOR A LISTING BY PREFIX. EXAMPLE: "KIND
VEG" WILL LIST ALL VEGETABLE RECIPES WHILE "PREF L" WILL LIST ALL RE-
CIPES WITH AN L PREFIX.

ENTER REQUEST:
AAAA AAA
KIND VEG

Figure 2-5. Recipe Listing Interface I
2-7 1

CAA-D-82-4

(b) Locating an Individual Recipe. The procedure for locating
data concerning an individual recipe may be displayed by responding to
the display shown in Figure 2-6. Recipe numbers should normally corre-
spond to those listed in TM 10-412, although d recipe may be given any
identifying number. The data file will be searched until the recipe is
found; therefore, if the recipe is not on the data file, there will be a
significant delay before the user is told that the recipe cannot be
found.

THIS ROUTINE WILL LOCATE AND DISPLAY RECIPES FROM THE RECIPE DATA FILE.

HOW MANY RECIPES DO YOU WANT TO SEE?
1

ENTER RECIPE NUMBER:
AAAAAAAAAA
L-150
RECIPE #: L-150 NAME: CHICKEN CHOW MEIN
KIND: ENT
FOOD COST: $ 54.98 LABOR: 2.99 MAN-HRS ACCEPTABILITY: 50.0
NUTRIENTS:
CALORIES: 63418. PROTEIN: 3866.8 FAT: 2183.6
CALCIUM: 10582. IRON: 223.4 VITAMIN A: 38148.
THIAMIN: 12.82 RIBOFLAVIN: 61.72 NIACIN: 815.2
VITAMIN C: 2368.2

TRANSACTION COMPLETED. DO YOU WANT TO DO ANYTHING ELSE WITH THE RECIPE
FILE?

ENTER YES OR NO:

Figure 2-6. Procedure for Listing Individual Recipe Data

(c) Deleting a Recipe. The procedure for deleting a data record
for a particular recipe is as shown in Figure 2-7. As with locating a
recipe, there will be a significant delay if the recipe is not on the
data file.

THIS ROUTINE WILL DELETE RECIPES FROM THE RECIPE DATA FILE. HOW MANY
DELETIONS DO YOU WISH TO MAKE?

ENTER RECIPE NUMBER:
AAAAAAAAAA
L-150

Figure 2-7. Procedure for Deleting a Recipe

2-8

CAA-D-82-4

(d) Insertin a Recipe. The procedure for inserting data
concerning a new recipe with sample entries is shown in Figure 2-8.
Care should be taken to ensure that the recipe number has not already
been used, since this will cause duplicate records to be entered on the
data files. If a variation of an existing recipe is to be entered it
may be desirable to give the new recipe the same number with an addi-
tional -#. As an example, a variation of L-150 might be L-150-1. Names
may not exceed 10 characters in length. All input data must be for 100
servings of the recipe.

THIS ROUTINE WILL INSERT RECIPES INTO THE RECIPEINSERT DATA FILE.
HOW MANY ENTRIES DO YOU WISH TO MAKE?

ENTER RECIPE NUMBER AND NAME (NOT TO EXCEED 30 CHARACTERS):
AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Z-100 HILL OF BEANS
USING A3 FORMAT, ENTER THE KIND OF RECIPE I.E. VEG, DES, ENT
AAA
VEG
USING F6 FORMAT, ENTER RAW FOOD COST PER 100 SERVINGS:
FFFFFF
25.00
USING F5 FORMAT, ENTER NUMBER OF MAN-HOURS PER 100 SERVINGS:
FFFFFF
2.5
USING F5 FORMAT, ENTER ACCEPTABILITY FACTOR:
FFFFF
45
USING F7 FORMAT, ENTER NUTRIENT VALUE PER 100 SERVINGS FOR THE FOLLOWING
FACTORS:
CALORIES:
5000
PROTEIN:
3800
FAT:
2000
CALCIUM:
9000
IRON:
220
VITAMIN A:
35160
THIAMIN:
12
RISOFLAVIN:
61.7
NIACIN:
820
VITAMIN C:
2300

*RECIPE L-100 HAS BEEN INSERTED AS FOLLOWS.

RECIPE #: Z-100 NAME: HILL OF BEANS KIND: VEG
FOOD COST: $ 25.00 LABOR: 2.20 MANHRS ACCEPTABILITY FACTOR: 45.0%
NUTRIENTS:
CALORIES: 5000. PROTEIN: 3800.0 FAT: 2000.0
CALCIUM: 9000. IRON: 220.0 VITAMIN A: 35160.
THIAMIN: 12.00 RIBOFLAVIN: 61.70 NIACIN: 820.0
VITAMIN C: 2300.0
TRANSACTION COMPLETED. 00 YOU WANT TO DO ANYTHING ELSE WITH THE RECIPE
FILE? ENTER YES OR NO:

Figure 2-8. Procedure for Inserting a Recipe

2-9

CAA-D-82-4

(e) Modifdina a Recipe. The procedure for modifying recipe

data is shown in Figure Z-9. An example is shown where the cost of
serving a "hill of beans" has gone from $25.00 to $30.00.

THIS ROUTINE WILL MAKE CHANGES TO CURRENT RECIPES. ENTER RECIPE NUMBER:
AAAAAAAAAA
Z-100

THE CURRENT DATA FOR RECIPE Z-100 IS AS FOLLOWS:

RECIPE #: Z-100 NAME: HILL OF BEANS KIND: VEG
FOOD COST: $25.00 LABOR: 2.20 MAN-HRS ACCEPTABILITY: 45.0
NUTRIENTS:
CALORIES: 5000. PROTEIN: 3800.0 FAT: 2000.0
CALCIUM: 9000. IRON: 220.0 VITAMIN A: 35160.
THIAMIN: 12.00 RIBOFLAVIN: 61.70 NIACIN: 820.0
VITAMIN C: 2300.0

THE FOLLOWING CHANGES MAY BE MADE:

1 CHANGE RECIPE NAME
2 CHANGE RECIPE KIND
3 CHANGE FOOD COST
4 CHANGE LABOR MAN-HOURS
5 CHANGE ACCEPTABILITY FACTOR
6 CHANGE A NUTRITIONAL FACTOR
7 MAKE NO CHANGES

**ENTER TYPE:

3
ENTER NEW FOOD COST:
FFFFF
30.00

THE CURRENT DAfA FOR RECIPE Z-100 IS AS FOLLOWS:

RECIPE #: Z-100 NAME: HILL OF BEANS KIND: VEG
FOOD COST: $ 30.00 LABOR: 2.20 MANHRS ACCEPTABILITY: 45.0
NUTRIENTS:
CALOkIES: 5000. PROTEIN: 3800.0 FAT: 2000.0
CALCIUM: 9000. IRON: 220.0 VITAMIN A: 35160.
THIAMIN: 12.00 RIBOFLAVIN: 61.70 NIACIN: 820.0
VITAMIN C: 2300.0

DO YOU WISH TO CHANGE ANY OTHER RECIPES? ENTER YES OR NO:

Figure 2-9. Procedure for Modifying a Recipe

2-10

CAA-D-82-4

(f) Loading an External Data File. As discussed earlier, an ex-
ternal data file may be loaded. An example of the procedure and the
corresponding user display is the user to rapidly load a set of recipe r
data that may have been current recipe data file. The procedure is in-
tended to allow the user to rapidly load a set of recipe data that may
have been developed outside the menu planning model.

I

CAUTION ** EXECUTION OF THIS ROUTINE WILL DESTROY DATA CURRENTLY EX-
ISTING ON UNIT 10

**YOU MAY SELECTED ONE OF THE FOLLOWING TYPE TRANSACTIONS:

1 LOAD A TSA FORMATTED RECIPE DATA FILE
2 LOAD A WORKING RECIPE DATA FILE WITH THE SAME FORMAT AS THE DI-

RECT FILE

3 DO NOT LOAD ANYTHING

1 **ENTER TYPE:
2
** WAIT. RECIPE FILE IS BEING INITIALIZED FOR DIRECT ACCESS.

UNCLASSIFIED

UNCLASSIFIED

** WAIT. WORKING RECIPE DATA FILE IS BEING LOADED. **

** WAIT. LOADING CONTINUES. 250 RECORDS LOADED.

** WAIT. LOADING CONTINUES. 500 RECORDS LOADED.

** WAIT. LOADING CONTINUES. 750 RECORDS LOADED.

** WAIT. LOADING CONTINUES. 1000 RECORDS LOADED.

** WAIT. LOADING CONTINUES. 1250 RECORDS LOADED.

** WAIT. LOADING CONTINUES. 1500 RECORDS LOADED.

**LOAD COMPLETED. 1674 RECORDS LOADED.

TRANSACTION COMPLETED. DO YOU WANT TO DO ANYTHING ELSE WITH THE RECIPE
FILE?

ENTER YES OR NO:

Figure 2-10. Loading Recipe Data

2-11

CAA-D-82-4

(g) Terminating the Routine. Access to the recipe attribute
file may be terminated by entering the appropriate transaction number.
This does not terminate access to the data module. The user may then
continue working with the data module by responding to the display shown
earlier in Figure 2-3.

(2) Accessing the Menu Cnmponent File. Once the user accesses the
menu component file, those actions shown in Figure 2-11 may be taken.

**THIS PROGRAM MAINTAINS A DIRECT FILE OF MENUS AND THEIR **
**ASSOCIATED RECIPES. **

**SELECT ONE OF THE FOLLOWING TRANSACTIONS: **

1 LIST A PORTION OF THE FILE

2 LOCATE AN INDIVIDUAL MENU

3 DELETE A MENU FROM THE FILE

4 INSERT A MENU INTO THE FILE

5 MODIFY A MENU

6 LOAD EXTERNAL DATA FILE

7 TERMINATE THIS ROUTINE

**ENTER TRANSACTION NUMBER:

Figure 2-11. Menu Component File Interface

2-12

CAA-D-82-4

(a) Listing a Portion of the File. A portion of the menu compo-

nent file may be listed as shown in Figure 2-12. Listings are automati-
cally queued to the printer.

NOTE: MENUS MAY BE LISTED BY MEAL.
1 BREAKFAST
2 LUNCH
3 SHORT ORDER
4 DINNER

ENTER MEAL TYPE:
1
3

WAIT. MENU FILE IS BEING LISTED.

TRANSACTION COMPLETED. DO YOU WANT TO DO ANYTHING ELSE WITH THE MENU

FILE?

ENTER YES OR NO:

Figure 2-12. Menu Component Listing Interface

(b) Locating an Individual Menu. Data concerning a particular
menu may be accessed by responding to the display shown in Figure 2-13.
Menu numbers are normally assigned by the model at loading time. The
format for menu numbers is A-###, where A is either B, S, L, or D for
breakfast, short order, lunch or dinner ### is a three-digit number
identifying the particular menu. These numbers are assigned sequen-
tially so that if, as an example, 37 short order menus are loaded, they
will be numbered S-001 through S-037. Numbers less than three digits
should be preceded by zeros, i.e., B-002, and not B-2.

THIS ROUTINE WILL LOCATE AND DISPLAY MENUS FROM THE MENU DATA FILE.

ENTER MENU NUMBER:
AAAAAAAAAA
L-098
**MENU L-098 CONSISTS OF THE FOLLOWING 18 RECIPES:

C-12 C-5 D-16 1-48
J-8-2 L-46-1 L-88-2 M-44
M-71 P-25 Q-17-1 Q-57 p
X-141 X-48 X-49 X-50
X-51 X-71

DO YOU WISH TO SEE ANY OTHER MENUS?
ENTER YES OR NO:

Figure 2-13. Procedure for Listing Individual Menu Component Data 1

2-13

' "1

*p

CAA-D-82-4

(c) Insertin a Menu. The procedure for inserting data concern-
ing a menu is shown in Figure 2-14. The menu numbering convention
should be observed and care should be taken to ensure that a previously
used menu number is not used.

THIS ROUTINE WILL INSERT MENUS INTO THE MENU DATA FILE. HOW MANY EN-
TRIES DO YOU WISH TO MAKE?
1
ENTER MENU NUMBER:
AAAAAAAAAA
S-100
ENTER THE NUMBER OF RECIPES IN MENU S-100:
NOTE: THERE CAN BE NO MORE THAN 30 RECIPES.
II

10
ENTER RECIPE 1 OF 10 RECIPES:
A-1
ENTER RECIPE 2 OF 10 RECIPES:
A-2
ENTER RECIPE 3 OF 10 RECIPES:
A-3
ENTER RECIPE 4 OF 10 RECIPES:
A-4
ENTER RECIPE 5 OF 10 RECIPES:
A-5
ENTER RECIPE 6 OF 10 RECIPES:
A-6
ENTER RECIPE 7 OF 10 RECIPES:
A-7
ENTER RECIPE 8 OF 10 RECIPES:
A-8
ENTER RECIPE 9 OF 10 RECIPES:
A-9
ENTER RECIPE 10 OF 10 RECIPES:
A-10

**MENU S-100 HAS BEEN INSERTED AS FOLLOWS:
MENU #:S-100 RECIPES: A-1 A-2 A-3 A-4

A-5 A-6 A-7 A-8
A-9 A-10

TRANSACTION COMPLETED. DO YOU WANT TO DO ANYTHING ELSE WITH THE MENU
FILE?
ENTER YES OR NO:

Figure 2-14. Procedure for Inserting Menu Component Data

2-14

CAA-D-82-4

(d) Modifyin Menu Component Data. The procedure for modifying
menu component data is shown in Figure 2-15. In this example, recipe
A-5 is replaced by recipe X-15.

THIS ROUTINE WILL MAKE CHANGES TO CURRENT MENUS.
ENTER MENU NUMBER:
AAAAAAAAAA
S-100
THE CURRENT DATA FOR MENU S-100 IS AS FOLLOWS:
MENU #:S-100 RECIPES: A-1 A-2 A-3 A-4

A-5 A-6 A-7 A-8
A-9 A-10

THE FOLLOWING CHANGES MAY BE MADE:

1 CHANGE A RECIPE NUMBER

2 DELETE A RECIPE

3 ADD A RECIPE

4 MAKE NO CHANGES

**ENTER TYPE:

1
HOW MANY RECIPES DO YOU WANT TO REPLACE?
1 I
ENTER OLD RECIPE NUMBER FOLLOWED BY NEW RECIPE NUMBER
AAAAAAAAAA AAAAAAAAAA
A-5 X-15

THE CURRENT DATA FOR MENU S-100 IS AS FOLLOWS:
MENU #:S-100 RECIPES: A-i A-2 A-3 X-4

X-15 A-6 A-7 A-8
A-9 A-10

DO YOU WISH TO CHANGE ANY OTHER MENUS?
ENTER YES OR NO:

Figure 2-15. Procedure for Modifying Menu Component Data

2-15

CAA-D-82-4

(e) Deleting Menu Component Data. The procedure for removing a

menu from the menu component data file is shown in Figure 2-15.

0 THIS ROUTINE WILL DELETE MENUS FROM THE MENU DATA FILE. HOW MANY DELE-
TIONS DO YOU WISH TO MAKE?
I
ENTER MENU NUMBER:
AAAAAAAAAA
S-100
MENU NUMBER S-100 HAS BEEN DELETED FROM THE FILE.

TRANSACTION COMPLETED. DO YOU WANT TO DO ANYTHING ELSE WITH THE MENU
FILE?

ENTER YES OR NO:

Figure 2-16. Procedure for Deleting Menu Component Data

2

w-2-16

i-

CAA-D-82-4

(f) Loading External Data Files. As with the recipe attribute
file, menu component data may also be loaded. The procedure for loading
an external data file is shown in Figure 2-17.

** CAUTION ** EXECUTION OF THIS ROUTINE WILL DESTROY DATA CURRENTLY

EXISTING OF UNIT 12

YOU MAY SELECT ONE OF THE FOLLOWING TYPE TRANSACTIONS:

1 LOAD A TSA FORMATTED MENU DATA FILE

2 LOAD A WORKING MENU DATA FILE WITH THE SAME FORMAT AS THE
DIRECT FILE

3 DO NOT LOAD ANYTHING

** WAIT. MENU FILE IS BEING INITIALIZED FOR DIRECT ACCESS.

** WAIT. WORKING MENU DATA FILE IS BEING LOADED. **

** WAIT. LOADING CONTINUES. 250 RECORDS LOADED.

**LOAD COMPLETED. 325 RECORDS LOADED.
66 BREAKFAST MENUS
112 LUNCH MENUS
37 SHORT ORDER MENUS
110 DINNER MENUS

TRANSACTION COMPLETED. DO YOU WANT TO DO ANYTHING ELSE WITH THE MENU
FILE?

ENTER YES OR NO:

Figure 2-17. Procedure for Loading Menu Component Data

(g) Terminating Access to the Menu Component File. Access to
the menu component data file may be accessed by responding with the ap-
propriate answer or by entering a "7" when presented with the display
shown earlier in Figure 2-11. The user may then continue working with
the data module by responding to the display that was shown in Figure
2-3.

2-17

Vr

CAA-D-82-4

(3) Executing the Preprocessor. The preprocessor performs the
task of identifying the recipes that are in the menu component file in
terms of their attributes. Data for each recipe in each menu is re-
trieved; therefore, if a menu is to include a particular recipe, data
for that recipe must be in the recipe attribute file. (Whenever a re-
cipe cannot be found, that recipe number will be displayed and the rou-
tine will terminate.) Data generated by the preprocessor are entered
into the menu attribute file. An example of executing the preprocessor
is shown in Figure 2-18.

** WELCOME TO THE ARMY MASTER MENU DATA HANDLING PROGRAM **

** IF NOT FAMILIAR WITH THE PROGRAM STRUCTURE, PLEASE TERMINATE. **
r

** THE USER MAY SELECT ANY OF THE FOLLOWING TRANSACTIONS:
**

1 ACCESS THE RECIPE ATTRIBUTE FILE

2 ACCESS THE MENU COMPONENT FILE

3 EXECUTE THE PREPROCESSOR

4 ACCESS THE MENU ATTRIBUTE FILE

5 GENERATE A RECIPE-MENU CROSS REFERENCE LIST

6 TERMINATE THIS ROUTINE

** ENTER TRANSACTION NUMBER:

3

**WAIT. THE MENU ATTRIBUTE FILE IS BEING GENERATED.

WAIT. 50 MENUS HAVE BEEN PROCESSED.

WAIT. 100 MENUS HAVE BEEN PROCESSED.

WAIT. 150 MENUS HAVE BEEN PROCESSED.

WAIT. 200 MENUS HAVE BEEN PROCESSED.

WAIT. 250 MENUS HAVE BEEN PROCESSED.

WAIT. 300 MENUS HAVE BEEN PROCESSED.

MENU ATTRIBUTE FILE COMPLETED ON UNIT 14. 325 MENUS PROCESSED.

* Figure 2-18. Executing the Preprocessor

2-18

S

-"2

CAA-D-82-4

(4) Accessing the Menu Attribute File. Unlike the recipe attri-
bute file, or the menu component file, the data in the menu attribute
file is not to be changed. The user is allowed tc display selected por-
tions of the menu attribute data file. The options available to the
user with sample output are shown in Figure 2-19. Except for data con-
cerning an individual menu, listings are sent to the printer. If the
user desires information concerning the recipes comprising the selected
menu, that listing is also sent to the printer. Menu attribute data isA

related to serving 100 persons.

* THIS ROUTINE PRODUCES A LISTING *

* OF THE CURRENT MENU ATTRIBUTE DATA. *

** SELECT ONE OF THE FOLLOWING TRANSACTIONS:

1 LIST ALL THE MENUS

2 LIST BREAKFAST MENUS

3 LIST LUNCH MENUS

4 LIST DINNER MENUS

5 LIST SHORT ORDER MENUS

6 LIST AN INDIVIDUAL MENU

7 PRODUCE NO LISTING

**ENTER TRANSACTION TYPE:
6
**ENTER MENU NUMBER:
AAAAAAAAAA
L-098
MENU NO. = L-098

ACCEPTABILITY FOOD COST LABOR MANHOURS
65.66 93.55 26.20

CALORIES PROTEIN FAT CALCIUM IRON
151400.83 4576.92 7525.55 61530.15 576.83
VITAMIN A THIAMIN RIBOFLAVIN NIACIN VITAMIN C
608097.72 64.08 107.29 714.41 5186.92

**DO YOU WANT A LISTING OF THE RECIPE ATTRIBUTE DATA FOR EACH OF THE RE-

CIPES IN MENU L-098?
**ENTER YES OR NO:
YES
**LISTING COMPLETED. 1 MENU LISTED

Figure 2-19. Accessing the Menu Attribute File
21

2-19

U

7W
CAA-D-82-4

(5) Generating a Recipe-menu Cross Reference List. Although the
menu component file provides information about which recipes are in-
cluded in each menu, it is also necessary to k'now in which menus certain
recipes appear. This information may be especially important to the
user before executing the preprocessor. If the preprocessor fails, the
user is then able to locate all the menus in which the recipe of concern
is included. The procedure for generating a recipe-menu cross reference
list is dependent on the ability to sort various files. At the time the
model was first implemented, a FORTRAN callable system sort routine was
not available; therefore, a natural merge sort routine was developed for
inclusion in the model. This sort routine was somewhat slower than
might be desirable, and therefore an alternative approach was developed
which was not only much faster, but also allowed the user to continue
operating at the terminal while the cross reference list was being gen-
erated. The two different procedures are described below. The cross
reference list will be queued to the printer.

(a) The procedure for generating a recipe-menu cross reference
list within the data module is shown in Figure 2-20. This procedure may
be fairly slow.

Si

** WELCOME TO THE ARMY MASTER MENU DATA HANDLING PROGRAM **

** IF NOT FAMILIAR WITH THE PROGRAM STRUCTURE, PLEASE TERMINATE. **

** THE USER MAY SELECT ANY OF THE FOLLOWING TRANSACTIONS:

1 ACCESS THE RECIPE ATTRIBUTE FILE

2 ACCESS THE MENU COMPONENT FILE

3 EXECUTE THE PREPROCESSOR

4 ACCESS THE MENU ATTRIBUTE FILE

5 GENERATE A RECIPE-MENU CROSS REFERENCE LIST

0 6 TERMINATE THIS ROUTINE

** ENTER TRANSACTION NUMBER:

5

**WAIT. CROSS-REFERENCE IS BEING LISTED.

WAIT. CROSS-REFERENCE LIST IS BEING SORTED.

**CROSS-REFERENCE LIST COMPLETED.

Figure 2-20. Generating a Recipe-Menu Cross Reference Listing

2-20

CAA-D-82-4

(b) An alternate procedure for generating a recipe-menu cross
reference list outside the data module Is to simply enter the following
command after terminating access to the data handling module:

"START CAA/FILEXREF/JOB"

This command generates a separate job which will send the cross-
reference listing to the printer.

(6) Terminating Access to the Data Handling Module. Access to the

data module may be terminated by responding appropriately to the display
shown earlier in Figure 2-3. Printouts that may have been generated
during the session may be queued to the printer by entering either a
"SPLIT" command or a "BYE" command.

e. As with any system, the information that goes into the menu plan-
ning model is of the utmost importance. Without reliable data, there is
no sense in continuing with the menu planning process. The data module,
however is intended to make the maintenance of data a reliable process
leading to a consistent analysis of the relative worth of the various
menus that may ultimately be served to the soldier in the field. Once
the user is satisfied with the data contained in the menu attribute
file, it is possible to proceed to the parameterization module where the
menu planning parameters may be established.

2-4. PARAMETERIZATION MODULE

a. Purpose. The parameterization module allows the user to estab-
Aish the menu planning parameters. The module is represented in Figure
2-21. As can be seen by referring back to Figure 2-1, the parameteriza-
tion module is the link between the data module and the solution module.

2-21

Si"

CAA-D-82-4

1%

momodule I

Matrix-
geer

Figure -21. Paameteriatorodl

Use

2-erae2oud

CAA-D-82-4

b. Data Sources. The link between the parameterization and the data
handling module is through the menu attribute data file. The validity
of the data in that file should be verified before establishing menu
planning parameters. All other data files are created and maintained
within the parameterization module as explained below.

c. Input Requirements. As explained above, the menu attribute file
is the only external file required as input to the parameterization mod-
ule. Several other files are maintained by the module and are accessed
through user interfaces.

(1) Menu Attribute File. See paragraph 2-2c(3).

(2) Goal Programing Problem Matrix. As will be explained later,
this file is created and maintained by the parameterization module. The
format of the file corresponds to a standard input format for many large
scale LP packages. The file name is CAA/GPDATA.

(3) Bounds File. This file is also created within the parameter-
ization module. The file name is CAA/BOUNDS.

(4) Goals File. This file is created and maintained by the pa-
rameterization module. In goal programing terminology, the goals are
often referred to as the right hand side or RHS; accordingly, the file
name is CAA/RHS.

(5) Priority File. The priority file is created and maintained by
the parameterization module. The file name is CAA/PRIORS.

2-1

2-23

CAA-D-82-4

d. Sample Procedures. The user may execute the parameterization
module by entering:

RUN CAA/PARAMOD

The user must then respond to the display as shown in Figure 2-22.

** WELCOME TO THE MASTER MENU PARAMETERIZATION PROGRAM **

** IF NOT FAMILIAR WITH THE PROGRAM STRUCTURE, PLEASE TERMINATE.**
** THE USER MAY SELECT ANY OF THE FOLLOWING TRANSACTIONS: **

1 EXECUTE THE MATRIX GENERATOR

2 ACCESS THE BOUNDS FILE

3 ACCESS THE GOALS FILE

* 4 ACCESS THE PRIORITY ORDERING

5 TERMINATE THIS ROUTINE

** ENTER TRANSACTION NUMBER:

Figure 2-22. Parameterization Module Interface

(1) Executing the Matrix Generator. The matrix generator must beexecuted in order to produce a current GP problem matrix from which the
solution will be derived. As shown in Figure 2-23, two actions takeplace when the problem matrix is generated. One is the creation of theproblem matrix itself, and the other is the creation of the initialbounds. The initial bounds are upper limits on the number of times thata menu of any meal type may be repeated during the menu planning cycle.

2-24

CAA-D-82-4

* AN UPPER BOUND SHOULD BE PLACED ON EACH MEAL. THIS UPPER BOUND SHOULD
BE THE LARGEST NUMBER OF TIMES THAT ANY MENU IS TO BE REPEATED DURING
THE MENU CYCLE. AS AN EXAMPLE: IF BREAKFAST IS GIVEN AN UPPER BOUND OF
4 THEN NO BREAKFAST MENU WILL BE REPEATED IN ITS ENTIRETY MORE THAN 4
TIMES DURING THE CYCLE. AN UPPER BOUND OF 1 ON A MEAL MEANS THAT NO
MENU WILL BE REPEATED FOR THAT MEAL.

* WARNING: A SITUATION SUCH AS PLACING AN UPPER BOUND OF 1 ON A MEAL
FOR A 365 DAY CYCLE WHEN THERE ARE ONLY 100 MENUS OF THAT MEAL TO SELECT
FROM IS INFEASIBLE.

* PLEASE ENTER UPPER LIMITS ON MENUS FOR BREAKFAST, SHORT ORDER, LUNCH,

AND DINNER.

4222

MENU UPPER LIMITS ARE:
BREAKFAST 4.00
SHORT ORDER 2.00
LUNCH 2.00
DINNER 2.00

GENERATION OF THE PROBLEM MATRIX IS COMPLETE.

Figure 2-23. Executing the Matrix Generator

(2) Accessing the Bounds File. Although upper bounds are ini-
tially set in by the matrix generator, bounds on particular menus may
be established by accessing the bounds file. There are three types of
bounds, only one of which may be applied at a time: upper (UP), lower
(LO), and fixed (FX). An upper bound is the maximum number of times
that a menu may be repeated during the cycle. A lower bound is the
least number of times that a menu is to be served during a cycle. A
fixed bound requires that a menu is to be served exactly that many times
during a cycle. As an example, it may be desirable to set a fixed bound
of 1 on a Thanksgiving dinner menu if planning for the month of Novem-
ber, or it may be necessary to set a fixed bound of 0 on a meal that for
one reason or another is not to be included in the cycle. The procedure
for accessing the bounds file along with an example is shown in Figure
2-24.

2-2p

2-25

CAA-D-82-4

***** MENU BOUNDS *****

EACH MENU WAS GIVEN AN UPPER BOUND BY THE MATRIX GENERATOR.

THIS ROUTINE ALLOW THE USER TO REVISE THESE BOUNDS TO EITHER A NEW UPPER
BOUND, A LOWER BOUND OR A FIXED VALUE.

HOW MANY BOUNDS DO YOU WANT TO REVISE?
1

** ENTER MENU NUMBER:
L-050
**CURRENT BOUND FOR MENU L-050 IS: UP 2.

ENTER NEW BOUND IN THE FOLLOWING FORMAT:

AA FFFFFFFFFFFF
FX 0.
** NEW BOUND FOR MENU L-050 IS: FX 0.
** 1 REVISION COMPLETED.

Figure 2-24. Accessing the Bounds File

(3) Accessing the Goals File. The menu planning goals may be ac-
cessed through the parameterization module by responding to the display
shown earlier in Figure 2-22. A sample procedure is shown in Figure
2-25.

2-26

CAA-D-82-4

"' CURRENT MENU PLANNING GOALS "'

LENGTH OF MENU PLANNING CYCLE: 42.0 DAYS

BASIC DAILY FOOD ALLOWANCE: $ 3.47

ACCEPTABILITY(%) LABOR (NAN-HOURS/MEAL)

BREAKFAST: 99. 14.
SHORT ORDER: 69. 12.
LUNCH: 73. 16.
DINNER: 79. 16.

NUTRITION

CALORIES: 3200.00 VITAMIN A: 5000.00
PROTEIN: 100.00 THIAMIN: 1.60
FAT: .00 RIBOFLAVIN: 2.00
CALCIUM: 800.00 NIACIN: 21.00
IRON: 18.00 VITAMIN C: 60.00

*DO YOU WANT TO CHANGE ANY OF THE ABOVE GOALS? ANSWER YES OR NO.
YES
"THE FOLLOWING TYPE GOALS NAY BE CHANGED:

1 LENGTH OF MENU PLANNING CYCLE

2 ACCEPTABILITY

3 FOOD COST

4 LABOR

5 NUTRITION

**ENTER TYPE:
3
CURRENT BASIC DAILY FOOD ALLOWANCE IS $ 3.47

ENTER NEW VALUE:
3.86
"' CURRENT MENU PLANNING GOALS ***

LENGTH OF MENU PLANNING CYCLE: 42.0 DAYS

BASIC DAILY FOOD ALLOWANCE: $ 3.86

ACCEPTABILITY(%) LABOR (MANHOURS/MEAL)

BREAKFAST: 99. 14.
SHORT ORDER: 69. 12.
LUNCH: 73. 16.
DINNER: 79. 16.

NUTRITION

CALORIES: 3200.00 VITAMIN A: 5000.00
PROTEIN: 100.00 THIAMIN: 1.60
FAT: .00 RIBOFLAVIN: 2.00
CALCIUM: 800.00 NIACIN: 21.00
IRON: 18.00 VITAMIN C: 60.00

"*DO YOU WANT TO CHANGE ANY OF THE ABOVE GOALS? ANSWER YES OR NO.

Figure 2-25. Accessing the Goals File

2-27

CAA-D-82-4

(4) Accessing the Priority File. The priority file may be ac-cessed by responding to the display shown earlier in figure 2-22. Thepurpose of accessing the priority file is to establish the order inwhich the menu attributes are to be considered'in the design of the sub-sequently produced menu plan. A sample procedure is shown in Figure
2-26.

**** PRIORITY ORDER *****

SELECT THE PRIORITY ORDERING BY ENTERING A 1, 2, 3, OR 4 AFTER EACH
ATTRIBUTE AS IT IS DISPLAYED:

NUTRITION:
2
ACCEPTABILITY:
3

"* FOOD COST:
4
LABOR COST:
I

THANK YOU.

THE FOUR MENU ATTRIBUTES WILL BE ORDERED IN THE FOLLOWING PRIORITIES:

1 LABOR COST:

2 NUTRITION:

3 ACCEPTABILITY:

4 FOOD COST:

ARE THERE ANY CHANGES?

Figure 2-26. Accessing the Priority File

(5) Terminating Access to the Parameterizatlon Module. Access tothe parameterization module may be termlnated by responding appropri-
ately to the display shown earlier in Figure 2-22. No printouts aregenerated by the parameterization module and theref-'e it is not neces-sary to enter the "SPLIT" command as in the data mo,,,

2-28

CAA-D-82-4

e. It should be remembered that the parameterization module is the
link between the data module and the solution module. The problem ma-
trix is based on the data contained in the menu attribute file, and the
solution to be generated in the solution module is produced strictly
within the framework of the parameters established in the parameteriza-
tion module.

2-5. SOLUTION MODULE

a. Purpose. The solution module allows the user to produce a menu
plan based on the previously entered data and within the established pa-
rameters. The module is represented in Figure 2-27. As can be seen by
referring back to Figure 2-1, the solution module is the final step in
the menu planning process.

b. Data Sources. All data used by the solution module are developed
in either the data module or the parameterization module. In the
strictest sense, those data files produced by the parameterization mod-
ule are sufficient for execution of the solution module, however some of
the reports produced by the postprocessor are dependent upon the data
files maintained by the data module.

c. Input Requirements

(1) Recipe attribute file. See paragraph 2-2c(1).

(2) Menu component file. See paragraph 2-2c(2).

(3) Menu attribute file. See paragraph 2-2c(3).

(4) GP problem matrix file. See paragraph 2-3c(2).

(5) Bounds file. See paragraph 2-3c(3).

(6) Goals file. See paragraph 2-3c(4).

* (7) Priority file. See paragraph 2-3c(5).

2

2-29

CAA-D-82-4

j Parameteri- G orali
zation moduleprbe

4,G P

Reportsr

m m Recipe listE
Mnlit Goals and Attribute with cross MenU is t
stdeviations smayreference with recipes

Figure 2-27. Solution Module

2-30

CAA-D-82-4

d. Sample Procedurer. The user may execute the solution module byenterin-g:

START CAA/MENUPLAN

After entering the above command, the user may sign off the terminal or
go on to other work. Care should be taken that none of the input files
are changed until the menu plan is completed. A printout of the five
reports shown in Figure 2-27 will be produced and sent to the printer.

e. As mentioned in paragraph 2-2d(5), a FORTRAN callable system sort
was not available at the time the model was first implemented, and
therefore an alternate procedure for producing a cross reference listing
of the solution is to simply enter the following command:

"START CAA/SOLNXREF/JOB"

This command generates a separate recipe-menu cross reference listing
that will be queued to the printer.

2-6. SAMPLE SOLUTION. The following discussion is intended to provide
the user with an overview of the procedures for generating a menu plan.

a. General Solution Procedure. Since the generation of a menu plan
is the final step in the process, the steps that precede it impact on
the validity of the solution. The general sequence of actions taken in
producing a menu plan are as follows:

9 Verify validity of data set
* Generate preprocessor to produce the menu attribute file
* Execute matrix generator
9 Establish bounds as necessary
e Verify goals
* Enter priority order
* Execute solution module
* Examine solution

b. Sample Solution. As always the validity of the data set is of
the utmost importance, however the assumption in this discussion is that
the data set has been validated and that the menu attribute file has
been generated successfully.

(1) Upper Bounds. As explained earlier, the matrix generator not
only generates the problem matrix, but also sets in the initial upper
bounds. The upper bounds shown in Figure 2-23 are applied to this ex-
ample also. This means that no breakfast menu may be repeated more than
4 times during the cycle, while no lunch, dinner or short order menu may
be repeated more than twice.

2-31

CAA-D-82-4

(2) Goals. The goals to be used in this particular example are
shown In Ffgure 2-28. These goals tell the user that a 42 day menu plan
is to be generated. The basic daily food allowance for the period is
$3.47, and the nutritional standards of AR 30-1 are to be applied. The
acceptability and labor goals correspond to very high goals for those
two attributes. The menu planner may wish to change them to more appro-
priate goals, using the parameterizaton module, depending on the solu-
tion.

*** CURRENT MENU PLANNING GOALS ***

LENGTH OF MENU PLANNING CYCLE: 42.0 DAYS

BASIC DAILY FOOD ALLOWANCE: $ 3.47

ACCEPTABILITY(%) LABOR (MANHOURS/MEAL)

BREAKFAST: 99. 14.
SHORT ORDER: 69. 12.

LUNCH: 73. 16.
DINNER: 79. 16.

NUTRITION

CALORIES: 3200.00 VITAMIN A: 5000.00
PROTEIN: 100.00 THIAMIN: 1.60
FAT: .00 RIBOFLAVIN: 2.00
CALCIUM: 800.00 NIACIN: 21.00
IRON: 18.00 VITAMIN C: 60.00

jI

Figure 2-28. Sample Goals

(3) Priority Order. The order in which the four attributes are
prioritize may change depending on the particular situation at the time
the plan is being generated. The priority order may also be revised if
the solution Is not satisfactory. In this particular example the attri-
butes are to be prioritized in the following order: Acceptability, Nu-
trition, Food Cost, and Labor Cost. This is shown in Figure 2-29.

2-32

I.

I

CAA-D-82-4

* ECONOMETRIC MODEL FOR OPTIMIZING *

* TROOP DINING FACILITY OPERATIONS *

MENU PLAN

THIS MENU PLAN IS BASED ON GOALS THAT ARE

PRIORITIZED IN THE FOLLOWING ORDER:

''4

** ACCEPTABILITY

** NUTRITION

FOOD COST

** LABOR COST

Figure 2-29. Priority Order

(4) Analysis of Solution. Once the parameters have been estab-
lished as explained, the solution may be generated. The actual creation
of a menu plan may be an iterative process because an analysis of the
solution may reveal various factors that are unsatisfactory for one rea-
son or another. As an example, goal achievement may be unsatisfactory,
or a particular recipe may be served too often during the cycle. Each
solution results in the creation of five reports which should be exa-
mined closely.

(a) Menu List. The menu list for the current example is shown
in Figure 2-30. This simply lists the selected menus and the number of
times each is to be served during the cycle.

2-33

P

CAA-D-82-4

z

w z Oncp dfte~N~ I ftONEWff P-o mn NN

a

WW Ow *Sl pg"VS"gsgetgaeegmmmg

wC

amm

z au
u ua
a Z- OCCCMO.OO...

Gnu U~44Puedlee~isr

a aa 000z~fhiMfiM~

in .a o O c~eccca~caa c

2-3-

p

CAA-D-82-4

(b) Attribute Summary. The summary of the menu plan in terms of
the attributes is shown in Figure 2-31. Included is information con-
cerning the average daily values of each of the attributes for combina- m
tions of three meals per day: breakfast-lunch-dinner (B-L-D), and
breakfast-short order-dinner (B-S-D). At the bottom are indicated the
number of menus of each meal type selected. It is possible to have a
number that is not in keeping with the cycle length, i.e., 41 breakfast
menus for a 42-day cycle. In this case, bounds should be adjusted and
the solution regenerated.

(c) Goals and Deviations. This report is one of the most help-
ful in a quick analysis of the solution. The information provided in
this report and shown in Figure 2-32 tells the user how well this solu-
tion satisfies the various ca"17,.

(5) Menus with Associated Recipes. Because the menu list simply
displays the selected menus, it may also be desirable to see a listing
of the actual composition of those menus in terms of recipes, and there-
fore, the report shown in Figure 2-33 is provided. Also provided is in-
formation concerning the number of times that each menu is to be served
during the cycle. U

(6) Recipe-menu Cross Reference List. The recipe-i-enu cross ref-
erence list tells the menu planner how many times individual recipes are
to be served in the plan and in which menus those recipes are included.
This information allows the menu planner to make decisions concerning
the frequency with which various recipes should be served. In those
cases when a recipe is being served too often, the menu planner may find
* it desirable to exclude some of the menus in which that recipe appears
from the solution by adjusting the appropriate bounds. A portion of the
recipe-menu cross reference list for this example is shown at Figure
2-34.

4.

2-35

LU

CAA-D-82-4

40 19 0 0 ft ft 0

P, 0 f 0 0 0 0 I

ff., o . 'P4.00 ; 00 00 .40

0 t - a -46 4 4 0 0 .

0 .f 0 P446

ft*0 8PdC6 06 . 0

on 6 00 00 a a a ,

04 04 066
4 . e- 6 4.

&4. . 4 ft .f

fto 0 00 04 641.6
&.. "8646.4 0. &

60 6 4-404 4
2 4 4 .4 .44

* 6P. 00 0 a0 C8 0
*~~~~ "4 ft6.4.4 C 6 . 00 0

A4 .4 066.4.4C; 0 6..I"
4h .4 fm0 N 3 f 0 P0 aI
a .4 on .0a

*4 0 C n 4

0.46 -6 0 . 0 0

2-36. 44 .4 . .4 4

CAA-D-82-42

6-

z

0i0 0 00. * 0 gee * gee. acone 0"040fti.n C010~ 'aO D c. o

V4 V

13 %WY~ %aO, *.Ofl -O~4W gflV'iNOOfM.4
140 00 000V6 %;0 0*e * e o e

Me-O4 N %at .".o% NCO
9.4 W44 .

CP 0 Q40 M %D 0

o0 0bL f

0k3k c AV CZO 0000 OW 000E

4 4 X4.4- 00 ZIC0 %NO 0xz
4o 1U Cf ou C.46D " 0

103olzw Za PMLi cxfxw "0390-X AJ 6-mw

49cx z "W Mu Z4 cz z 40:u Col- Q 49CO\4
P.LLJ ZZ %Wozz 0610 z CcvZ

00
u LAL

w 0 - 94 (z
i 0 di. i to I- r 2(

1- o-1- 4- 41- 4
9-40&P 4mL.

4 ~401440140 2 0 ~ LZ ZK2-37

eta. 0 ~ OILa a L. ~ 1Ia.I t~~9.~.4 -9..-4.~e-

CAA-D-82-4

**MjNIPMB[:1 2 B-003 HOIEERVED '. TIMES.. *ID: T

RECI PC C- COFF CE AUTOMATIC URN ,KIND : 0TH
RE ~ 022 ,REM H TOAST :KIND : ENT

RECIPE: D: j9-1 LYSRRYNUFFINS KN T
RICIPI: F-11-2 sCEESE OMELETTE *KIND : ENT
R : C:P : -3SCRAMFkEfEj6S :IND t ENT

RECIPE: L-S8 ,SRILLED SAUSASE LINKS KIND 9 ENT
RECIPEt : 11 N-l'PANCAKE iMIX) ,KIND t ENT
RECIPE: X-. 4 MAPLE SYRUP ,KIND : 0TH
RECIPE: X-43 9M E ,KINO : 0TH
RECIP: N-%%' 9 sN AV-OET9IND t ENT
RECIPE: X-49, .3TTER ,KINB : 0TH
RECIPE X -5O :M LK KIN : 0TH
RECIP! :-h EDOANGELUIE :KIND : 0TH
RECIP : N- 2 ,CTL IAC CNAOPKIND : 0TH

MENU NUMBER: 8-006 If~ SERVED 6 TIMES* KN TRECTIiE:. CI12 :N0T
RJj~ CS*OFFFE AUTOMATIC URN :KIN8 : T

PIC P11 8:22 ,REMN TOAST -,:ND ENT
R C P : F-1O *GRIDDLE FRIED E6GS MKN : ENT
RECIPE: F: -- 2 ,CHEESE OMELETTE :KRNO t ENT

RCP:L - :~ILLE BA ON5 :KINO : ENT
RECIPE: L:-304 ,CRMQ GROUND BEEF ,KIND t ENT
RECIPE: N-' *PANC AKES IMIX) ,KN : EN?
RECIPE: X-23 9C ILLED APPLEJUICE 9K88O : 0TH
RECIPEs R-'.2 ,MPLC SU KIND : 0TH
R~ CIP t X-'.3 ,JAMIJELLYU * IND 2 TH

R I N: -4' ,CEREAL READY-TO-EAT KND 5 N?
RECIPE: X-'.9 :BUTTER *KIND : TH
RECIPE .N-SO ,MILK #KIND : TH
RECIPE: x-76 :TOAST :K IND t 0TH
RECIPE: x-8S vCHILLED GRAPEFRUIT E ORANGE JU K INO t 0TH

**MENU NUMBER: B-012 IS SERVED '. TIMES*0T
ECI :j - v FE AUTOMATIC URN NOf 0 TH

R fCIPE: D-22 vFRENCH TOAST ,KIND : ENT
R CIPE: CE-Z-3 *HOT ROLLED OTIS KIND t EN?
RECIPE: F- - RIDDLE FRIED EGGS :KIND S EN?

PE~lPE: 11- ,CHEESE OMELETTE ,KIND NPCIP: F -i SCRAMBLED EGGS KIND t EN?
RECIPE: L-2 :OVEN FRIED BACON ,KIND t EN?
RECIPE: L-6B-: ,BAKED SAUSAGE LINKS :KIND x EN?
RECIPE: Q-.6Z ,COTTAGE FRIED POTATOES MKIND : STA
RECIPE: N 102 :CHILLED PRUNES :K IND O TH
RECIPE: N-x ' , PANCAKES IMIXI ,K IND :ENT
:ECIPE: N-'.? 0MAPLE SYRUP ,KIND O TH
RECIPE: N -3 JAMdJELLY ,AINO : TH
RECIPE: N:4 :I' CEREAL READY-TO-EAT ,K No MYN
RECIPE: X-'e9 9BUTTER VNINO : TH
RECIPE: N-SO MKID:0T
RECIPE: N8 ,CHILLED ORANGE JUICE 9KIND8 8 TH

MEU NUMBER: S-014 IS SERVED '. TIMES*
RECIPE: C-12 ,NOT TEA 'KIND O TH
RECIPE, C-S COFF C AUTOMATIC URN31 W
RECIPE: 0-22 PENC+ TOAST
REC P -36-1 ,SVEE DOUGH *K NO I TH
RECIPE: 0- -2 CINNAMON SUGAR RAISIN FILLING *KIND t 0TH
PECIPE: D- :BTEUS KIND : 0TH

RECIPC: E-; ,BUTTER GRASKN VREC PE v -1 : DDE F IE EGGS :ID MRECIPE: F-11-2 :CHEESE OMELETTE 91D ENT
RECIPE: F-13 *SCRAMBLED EGGS ::IND ENT
RECIPE: L-2 ,OVEN FRIED BACON KI ND S EN?

-SFigure 2-33. Menu List with Associated Recipes

2-38

CAA-D- 82-42

ma." aefa

sell g'll, a
U00"5GGi56C

660.5 60.;05 0

wboa S .

Col - - a - - - - -

oe66 2 a02 2 000,0 2A.0

tI.m f. to. 4.* * *
a 2 x 2 z

Bor* Be a a
a...SO bo 01~a %0 . a ~ . I I a

a ee sge w a a" ba. O1 We V

11 S =.=

site -a a1a - a a - -? - - 4

aftvoaa a ftO.i. a at a4 at a : ft AP al a 0
a aI a a a a a a -00., a

11 a a 0 a a a Z

aa aa a a a. w of Be
a 1a. a, O..i . a aZ -I. a a U. a00 ao a. .0. am 3

19 -a Z~s fl w a a a - 1 V a a jaaa a a ~'
.0-15. &N000.5*. oj &"a 5. :.

wa w

sell$*a wo 010~a. a a ail a .aaU.
aa0aasaaof-a se h0.

0.0 a, a, a0 aUm ao P a.j aa a aa0.60- -Moa -
2 4.5 a a.

a aa U ha hi i h~ahi a a aa a a ftft.

a C a - a a a aa a a a aS2-3a9

CAA-D-82-4

c. Refining the Solution. As mentioned earlier, the process of pro-
ducing a menu plan Is often an iterative one in that there are a number
of factors that may be unsatisfactory in the context of the overall
plan. The plan may usually be refined by changing selected parameters,
and regenerating the solution. The order in which the various parame-
ters are changed can be important, and therefore the following general
order is recommended.

* Change priority order until relative goal achievement is satis-

factory.

* Adjust goals if desired.

* Adjust bounds.

2-7. SUMMARY. Although this chapter is intended to provide the user
with the necessary information to operate the model, the best use of the
model may be realized through a complete understanding of the concepts
behind the model design. It is therefore recommended that the menu
planner use this user's guide in conjunction with the study report. Ad-
ditional information may also be gained by an understanding of the mate-
rial to be presented in the next chapter. The most important factor in
planning good menus is still experience, just as It has been in the
past; therefore, the menu planner should use the model to explore con-
cepts and simply practice generating sample menu plans.

2-40

p

CAA-D -82-4

CHAPTER 3

PROGRAMER'S REFERENCE MANUAL

3-1. INTRODUCION. This chapter is intended to provide the user with
program descriptions for each routine in the menu planning model. The
information provided in this chapter, when used in conjunction with the
documented source code listing, will enable the programer to maintain
and modify the programs as needed. The organization of this chapter
corresponds to the structure of the model. Each of the three modules is
discussed in the order in which they would typically be employed. An
overview of the module is followed by file attribute information and a
description of each subprogram. The intent is to provide the programer
with as much information as is needed to maintain the model. Inconsis-
tencies in format may be a result of the unique nature of some of the
programs and the long period of time over which the programs were devel-
oped and documented.

3-2. DATA HANDLING MODULE. The data handling module maintains two di-
rect access files: the recipe attribute file and the menu component
file. Various operations may be performed on each file including the
entry, deletion, and modification of data. Data is located by way of a
hashing algorithm with the key being either the recipe number or the
menu number, depending on the file. Linear probing is the search proce-
dure that is employed, and the entire file will be searched before indi-
cating that a record cannot be found. A third file, the menu attribute
file, is created by the preprocessor, as described in Chapter 2. List-
ings of each of the files may be produced along with a recipe-menu cross
reference listing. These and other files associated with the data mod-
ule are discussed below. Some of the files, as indicated, are defined
for output to the remote terminal and printer.

a. Files

(1) Unit 6

(a) Name. Remote terminal

(b) Purpose. Output to user.

(c) Description. Information is displayed to the user from
*which decisions may be made concerning potential transactions.

(d) File Statement. FILE 6(KIND="REMOTE",MAXRECSIZE=14)

(2) Unit 10

* (a) Name. CAA/REGIPEDATA

3-1

CAA-D-82-4

(b) Purpose. Recipe attribute data file. Maintains current
data concerning recipes and attributes: food cost, labor cost, accept-
ability, nutrients, and kind.

(c) Description. Direct access file. 4,999 records, each 130
characters (see Table 3-1 for file format).

(d) File Statement.
FILE 10(TITLE="CAA/RECIPEDATA",KIND="DISK",MYUSE="IO",
UPDATEFILE="TRUE",INTMODE=4,UNITS="CHARACTERS")

Table 3-1. Recipe Attribute File

Field Columns Contents Comments

1 1 Index Indicate by 0 or 1
whether record is
empty or not

2 2-11 Recipe number As defined in TM 10-412
plus other TSA recipe
numbers

3 12-41 Recipe name Up to 30 characters

4 42-44 Recipe kind Three-letter abbrevia-
tions for entree,
vegetable, starch,
salad, dessert, other

5 45-50 Food cost $/100 servings

6 51-55 Labor cost Manhours/100 servings

7 56-60 Acceptability Percentage

8 61-67 Calories Calories/100 servings
9 68-74 Protein gm/100 servings

10 75-81 Fat gm/lO0 servings
11 82-88 Calcium mg/lO0 servings
12 89-95 Iron mg/1O servings
13 96-102 Vitamin A IU/lO0 servings
14 103-109 Thiamin mg/lOG servings
15 110-116 Riboflavin m,'100 servings
16 117-123 Niacin mg/lOG servings
17 124-130 Vitamin C mg/lO0 servings

3-2

U P,

CAA-D-82-4

(3) Unit 11

(a) Name. Printer

(b) Purpose. Queue listings from recipe attribute file to
printer

(c) Description. Not applicable.

(d) File Statement. FILE 11(KIND="PRINTER")

(4) Unit 12

(a) Name. CAA/MENUDATA

(b) Purpose. Menu component file. Maintains current data con-
cerning menus and recipes that comprise each.

(c) Description. Direct access file. 1,999 records, each 330
characters long. Menu number is followed by the number of recipes and
the list of recipe numbers comprising that menu (see Table 3-2 for file
format).

(d) File Statement.
FILE 12 (TITLE="CAA/MENUDATA.",KIND="DISK",MYUSE="IO",
UPDATEFILE="TRUE",INTMODE=4,UNITS="CHARACTERS")

Table 3-2. Menu Component File

Field Columns Contents Comments

1 1 Index Indicate by 0 or I whether
record is empty or not

* 2 2-11 Menu number Sequentially ordered and
preceded by a letter indicating
type menu, Ex.: B-001,
B-002,...L-0O1, L-002,...etc.

3 12-13 Number of recipes The number of recipes in the
menu. Maximum = 30

4-33 14-330 Recipe number Same as recipe file

3-3

CAA-D-82-4

(5) Unit 13

(a' Name. Printer

(b) Purpose. Queues listings from menu component file to
printer.

(c) Description. Not applicable.

(d) File Statement. FILE 13(KIND="PRINTER")

(6) Unit 14

(a) Name. CAA/MENATTDAT

(b) Purpose. Menu ttribute data file. Maintains current data
concerning menus and attributes: food cost, acceptability, labor, and
nutrients.

(c) Description. Sequential file. 130 characters per record.
Generated from the menu component file and the recipe attribute files by
the preprocessor. Therefore, the number of menus corresponds to the
number on the menu component file (see Table 3-3 for file format).

(d) File Statement.
FILE 14(TITLE="CAA/MENATTDAT",KIND="DISK",MYUSE="I0",
UPDATEFILE="TRUE",INTMODE=4,UNITS="CHARACTERS")

Table 3-3. Menu Attribute File

Field Columns- Contents Comments

1 1-10 Menu number Same as menu component file
2 11-15 Acceptability Percentage
3 17-22 Food cost $/100 Servings
4 24-29 Labor cost Manhours/100 servings
5 31-39 Calories Calories/lOO servings
6 40-48 Protein gm/100 servings
7 49-57 Fat gm/100 servings
8 58-66 Calcium mg/100 servings
9 67-75 Iron mg/100 servings

10 78-87 Vitamin A IU/100 servings
11 88-95 Thiamin mg/100 servings
12 96-103 Riboflavin mg/10 servings
13 104-111 Niacin mg/1OG servings
14 112-120 Vitamin C mg/100 servings

3-4

CAA-D-82-4

(7) Unit 15 9

(a) Name. Printer.

fil b)~~ Purpose. Queues listings of data from the menu attribute
fileto te prnter

(c) Description. Not applicable.

(d) File Statement. FILE 15(KIND="PRINTER")

(8) Unit 20

(a) Name. Scratch

(b) Purpose. Scratch file for sorts.

(c) Description. Not applicable.

(d) File Statement. FILE 20(STATUS=SCRATCH,MYUSE=10").

(9) Unit 21

(a) Name. CAA/TSARECDAT

(b) Purpose. Recipe data file from which data may be loaded.

(c) Description. Sequential file. Format corresponds to the
original re'p ata file provided by TSA. Format may be changed to
correspond to appropriate data source (see Table 3-4 for file format).

(d) File Statement.
FILE 21 (TITLE="CAA/TSARECDAT.",KIND="DISK",MYUSE="IO",
UPDATEFILE="TRUE",INTMODE=4,UNITS="CHARACTERS")

3-5

CAA-D-82-4

Table 3-4. TSA Recipe Data File

Record IColumnsi Contents I Comments

1 1-10 Recipe number Up to 10 characters
1 16-60 Recipe name Only first 30 characters

will be read

1 73-75 Number of items Not required for
this model

2 1-80 Ingredient data Not required for
this model

3 1-80 Weight & volume Not required for
requirements this model

4 15-18 Acceptability (%) F 4.0

4 66-70 Labor in manhrs F 5.2

4 76-80 Food cost in dollars F 5.2

5 16-21 Calories (kcal) F 6.0

5 22-27 Protein (gm) F 6.2

5 28-33 Fat (gm) F 6.1

5 34-39 Calcium (mg) F 6.0

5 40-45 Iron (mg) F 6.1

5 46-51 Vitamin A (IV) F 6.0

5 52-57 Thiamin (gm) F 6.2

5 58-63 Riboflavin (gm) F 6.2

5 64-69 Niacin (gm) F 6.1

5 70-75 Vitamin C (gm) F 6.1

3

3-6

CAA-D-82-4

(10) Unit 22

(a) Name. CAA/WRKRECDAT

(b) Purpose. Recipe data file from which data may be loaded.

(c) Description. Sequential file. Same format as CAA/RECIPE-
DATA. Empty records may be indicated by a zero in first column; occu-
pied records have a 1 in the first column. This format allows the user
to copy CAA/RECIPEDATA to CAA/WRKRECDAT for later use.

(d) File Statement.
FILE 22(TITLE="CAA/WRKRECDAT",KIND="DISK",MYUSE="IO",
UPDATEFILE= "TRUE" ,INTMODE=4,UNITS= "CHARACTERS")

(11) Unit 23

(a) Name. CAA/TSAMENDAT

(b) Purpose. Menu data file from which menu component data may
be loaded.

(c) Description. Sequential file. Format corresponds to the
original menu data file provided by TSA. Format may be changed to cor-
respond to appropriate data sources (see Table 3-5 for file format).

(d) File Statement.
FILE 23(TITLE="CAA/TSAMENDAT",KIND="DISK",MYUSE="I0",
UPDATEFILE="TRUE",INTMODE=4,UNITS-"CHARACTERS")

Table 3-5. TSA Menu Data File

Record Columns Contents Comments :

1 11-30 Meal name Breakfast, Short Order
Lunch, or Dinner

1 31-32 Number of Determines number of
recipes records to follow

2 11-20 Recipe number Up to 10 characters

2 21-65 Recipe name Only first 30 characters
will be read

3-7

'p

CAA-D-82-4

(12) Unit 24

(a) Name. CAA/WRKMENDAT

(b) Purpose. Menu component data file from which data may be
loaded.

(c) Description. Sequential file. Same format as CAA/MENUDATA.
Empty records may be indicated with a zero in column one, while occupied
records have a 1 in column one.

(d) File Statement.
FILE 24(TITLE="CAA/WRKMENDAT",KIND="DISK",MYUSE="IO",UPDATEFILE="TRUE",INTMODE=4,UNITS="CHARACTERS")

b. Subprogram Descriptions. The material presented in this section

is intended to provide the programer with a description of each subpro-
gram or included text in the data handling module. The purpose of the
routine is provided along with the names of the routines from which the
subprogram is called and the names of the routines called from the sub-
programs. Names of common blocks, included text, and associated FORTRAN
I/O units are also provided. Calling arguments are listed as parame-
ters. Other variables are normally documented within the source code
listing.

(1) Name. COPY (subroutine)

Purpose: Copies one item from file X to file Y. Part of the
natural merge sort.

Called by: COPYR, MERGER

Calling sequence: CALL COPY(X,Y)
Parameters: X: input file identifier (integer)

Y: output file identifier (integer)

Calls: PFREAD, PFWRIT

Files: Input: File X
Output: File Y

Common blocks: see NMPROC and PFPROC

Included text: NMPROC, PFPROC

0 3-8

S

r

CAA-D-82-4

(2) Name. COPYR (subroutine)

Purpose: As a part of the sort algorithm, this subroutine
copies one run from file X to file Y.

Called by: DISTRI, MERGE, MERGER

Calling sequence: CALL COPYR(X,Y)

Parameters: X: input file identifier (integer)
Y: output file identifier (integer)

Calls: COPY

Files: Input: File X
Output: File Y

Common blocks: See NMPROC and PFPROC
ip

Included text: NMPROC, PFPROC

(3) Name. DELMEN (subroutine)

Purpose: This subroutine deletes menus from the menu component
file. p

Called by: MENU

Calling sequence: CALL DELMEN

Parameters: none l W

Calls: HASHM

Files: Input: 5, 12
Output: 6, 12

Common blocks: MENCOM

Included text: none

3-9

CAA-D-82-4

(4) Name. DELREC (subroutine)

Purpose: This subroutine deletes recipes from the recipe at-
tribute file.

Called by: RECIPE

Calling sequence: CALL DELREC

Parameters: none

Calls: HASHR

Files: Input: 5, 10
Output: 6, 10

Common blocks: RECCOM

Included text: none

(5) Name. DESSRT (common block)

Purpose: This common block contains initialized variables per-
taining to desserts for use in the preprocessor.

Variables: DESCNT=dessert counter (integer)
DESAC = acceptability of individual dessert (real)
DESACC = acceptability of dessert portion of meal
(real)
DESFC = dessert food cost (real)
DESLC = dessert labor cost (real)
DESNUT = array of 10 dessert nutrients (real)
DESDEN = denominator, sum of dessert acceptability
(real)

Used in: INITMA, PREP

(6) Name. DISTRI (subroutine)

Purpose: As a part of the sort algorithm, this subroutine dis-
tributes runs from file C to files A and B.

Called by: NMSORT

Calling sequence: CALL DISTRI

Parameters: none

Calls: COPYR

• 3-10

CAA-D-82-4

Files: This subroutine has no direct input/output

Common blocks: see NMPROC and PFPROC

Included text: NMPROC, PFPROC

(7) Name. ENTREE (common block)

Purpose: This common block contains initialized variables per-
taining to entrees for use in the preprocessor.

Variables: ENTCNT = entree counter (integer)
ENTAC = acceptability of individual entree (real)
ENTACC = acceptability of entree portion of meal
(real)
ENTFC = entree food cost (real)
ENTLC = entree labor cost (real)
ENTNUT = array of 10 entree nutrients (real)
ENTDEN = denominator, sum of entree acceptability
(real)

Used in: INITMA, PREP

(8) Name. EXEC (main program)

Purpose: This is the executive routine for the data handling
module. It displays user information.

Called by: Not applicable.

Calling sequence: Not applicable.

Parameters: none

Calls: RECIPE, MENU, PREP, MENATT, XREF

Files: Input: 5
Output: 6

Common blocks: none

Included text: none

(9) Name. GETMEN (subroutine)

Purpose: This subroutine retrieves data from the menu compo-
nent file.

Called by: MENATT-

3-11

CAA-D-82-4

Calling sequence: CALL GETMEN(MENNUM, NUMREC, RECNUM)

Parameters: MENNUM: Menu number (Character*1O)
NUMREC: Number of recipes (Integer)
RECNUM: Array of up to 30 recipe numbers
(Character*1O)

Calls: HASHM

Files: Input: 12
Output: 6

Common blocks: MENCOM

Included text: none

(10) Name. GETREC (subroutine)

Purpose: This subroutine retrieves recipe data from the recipe
attribute file.

Called by: LSTXRF, MENATT, PREP

Calling sequence: CALL GETREC(RECNUM, NAME, KIND, RECRFC, RECLC,
RECACC, RECNUT)

Parameters: RECNUM: Recipe number (Character*10)
NAME: Recipe name (Character*30)
KIND: Recipe kind (Character*3)
RECRFC: Recipe labor cost (Real)
RECLC: Recipe food cost (Real)
RECACC: Recipe acceptability (Real)
RECNUT: Array of 10 nutrients (Real)

Calls: HASHR

Files: Input 10
Output 6

Common blocks: RECCOM

Included text: none

(11) Name. HASHA (function)

Purpose: This function hashes a Character*10 value into an in-
teger value by performing an exclusive-or operation
on the bit representation of the first 4 characters
and the next 4 characters, then multiplying two
16-bit parts.

3-12

CAA-D-82-4

Called by: HASHM, HASHR

Calling sequence: HASHA(NUMBER)

Parameters: NUMBER: Number to be hashed (Character*1O)

Calls: none

Files: none

Common blocks: none

Included text: none

(12) Name. HASHM (subroutine)

Purpose: Determines the address on the menu component data
file for any menu number.

Calledby: DELMEN, GETMEN, INSMEN, LDTSAM, LDWRKM, LOCKMEN,
MODMEN

Calling sequence: CALL HASHM(NUMBER, RBA, STOP)

Parameters: NUMBER: Menu number (Character*1O)
RBA: Address on the menu component file for any re-
cipe number (Integer)
STOP: Address beyond which no searching will be done
(Integer)

Calls: HASHA

Files: none

Common blocks: MENCOM

Included text: none

(13) Name. HASHR (subroutine)

Purpose: Determines the address on the recipe attribute data

file for any recipe number.

Called by: DELREC, GETREC, INSREC, LDTSAR, LDWRKR, LOCREC,
MODREC

Calling sequence: CALL HASHR(NUMBER, RBA, STOP)

3-13

CAA-D-82-4

Parameters: NUMBER: Recipe number (Character*1O)
RBA: Address on the Recipe attribute file for any
recipe number (Integer)
STOP: Address beyond which no searching will be done
(Integer)

Calls: HASHA

Files: none

Common blocks: RECCOM

Included text: none

(14) Name. INITM (subroutine)

Purpose: This subroutine will initialize the menu component
file for direct access by placing a zero in the first
field of each record. This subroutine is used prior
to loading data.

Called by: LODMEN

Calling sequence: CALL INITM

Parameters: none

Calls: none

Files: Input: none
Output: 6, 12

Common blocks: MENCOM

Included text: none

(15) Name. INITMA (subroutine)

Purpose: This subroutine initializes the variables that are
used in the preprocessor.

Called by: PREP

Calling sequence: CALL INITMA

Parameters: see PREP

Calls: none

Files: none

3-14

CAA-D-82-4

Common blocks: MENCOM, RECCOM, ENTREE, VEGET, STARCH, SALAD, DESSRT,
OTHER, MENUS

Included text: none

(16) Name. INITR (subroutine)

Purpose: This subroutine initializes the recipe attribute file
for direct access by placing a zero in the first
field of every record. This subroutine is used prior
to loading data.

Called by: LODREC

Calling sequence: CALL INITR

Parameters: none

Calls: none

Files: Input: none
Output: 6, 10

Common blocks: RECCOM

Included text: none

(17) Name. INSMEN (subroutine)

Purpose: This subroutine will insert menus and their asso-
ciated recipes into the menu component data file.

Called by: MENU

Calling sequence: CALL INSMEN

Parameters: none

Calls: HASHM

Files: Input: 5, 12
Output: 6, 12

Common blocks: MENCOM

Included text: none

3-15

CAA-D-82-4

(18) Name. INSREC (subroutine)

Purpose: This subroutine will insert recipes and their attri-
butes into the recipe attribute data file.

Called by: RECIPE

Calling sequence: CALL INSREC

Parameters: none

Calls: HASHR

Files: none

Common blocks: RECCOM

Included text: none

(19) Name. LDTSAM (subroutine)

Purpose: This subroutine will load a TSA formatted menu data
file from unit 23 onto the direct menu component data
file on unit 12. This subroutine is meant to allow
the user to load menu data from sources such as a
management information system.

Called by: LODMEN

Calling sequence: CALL LDTSAM

Parameters: none

Calls: HASHM

Files: Input: 12, 23
Output: 6, 12

Common blocks: MENCOM

Included text: none

3-16

K , , --• " m

CAA-D-82-4

(20) Name. LDTSAR (subroutine)

Purpose: This subroutine will load a TSA formatted recipe data
file from unit 21 onto the direct recipe data file on
unit 10. This enables the user to load recipe data
from an externally created data file such as might be
created by a management information system.

Called by: LODREC

Calling sequence: CALL LDTSAR

Parameters; none

Calls: HASHR

Files: Input: 10, 21
Output: 6, 10

Common blocks: RECCOM

Included text: none

(21) Name. LDWRKM (subroutine)

Purpose: This subroutine will load a working menu data file
from unit 24 onto the direct menu component data file
on unit 12. This enables the user to load menu data
from a previously prepared data file. As an example,
the user may have designed a special set of menus by
interfacing with the menu component file. Once that
menu component file was satisfactory, it may have
been copied out into another file for later use.
When the user wants to use that file he or she simply
loads it by using this routine.

Called by: LODMEN

Calling sequence: CALL LDWRKM

Parameters: none

Calls: HASHM

Files: Input: 12, 24
Output: 6, 12

Common blocks: MENCOM

Included text: none

3-17

PI

CAA-D-82-4

(22) Name. LDWRKR (subroutine)

Purpose: This subroutine will load a working recipe data file
from unit 22 onto the direct recipe attribute data
file on unit 10. This enables the user to load re-
cipe data from a previously prepared data file. As
an example, the user may have designed a special set
of recipes by interfacing with the recipe attribute
file. Once that recipe attribute file was satisfac-
tory, it may have been copied out another file for
later use. When the user wants to use that data, he
or she simply loads it by using this routine.

Called by: LODREC

Calling sequence: CALL LDWRKR

Parameters: none

Calls: HASHR

Files: Input: 10, 22
Output: 6, 10

Common blocks: RECCOM

Included text: none

(23) Name. LOCMEN (subroutine)

Purpose; This subroutine will locate data concerning individ-
ual menus on the menu component data file, and dis-
play that data to the user.

Callnd by: MENU

Calling sequence: CALL LOCMEN

Parameters: none

Calls: HASHM

Files: Input: 5, 12
Output: 6

Common blocks: MENCOM

Included text: none

3-18

I-[,

CAA-D-82-4

(24) Name. LOCREC (subroutine)

Purpose: This routine will locate data concerning individual
recipes on the recipe attribute data file, and dis-
play that data to the user.

Called by: RECIPE

Calling sequence: CALL LOCREC

Parameters: none

Calls: HASHR

Files: Input: 5, 10
Output: 6

Common blocks: RECCOM

Included text: none

(25) Name. LODMEN (subroutine)

Purpose: This subroutine will load an external menu data file.
Two type files may be loaded: a TSA formatted menu
data file, or a working menu data file with a format
corresponding to that of the direct menu component
data file. The menu component file is initialized by
a call to INITM prior to loading.

Called by: MENU

Calling sequence: CALL LODMEN

Parameters: none

Calls: INITM, LDTSAM, LDWRKM

Files: Input: 5
Output: 6

Common blocks: none

Included text: none

3-19

P4

CAA-D-82-4

(26) Name. LODREC (subroutine)

Purpose: This subroutine calls other subroutines to load an
external recipe data file. -Two type files may be
loaded: a TSA formatted recipe data file, or a work-
ing recipe data file with a format corresponding to
that of the direct recipe attribute data file. The
recipe attribute file is initialized by a call to
INITR prior to loading.

Called by: RECIPE

Calling sequence: CALL LODREC

Parameters: TYPE: Request type (integer)

Calls: INITR, LDTSAR, LDWRKR

Files: Input: 5
Output: 6

Common blocks: none

Included text: none

(27) Name. LSTMEN (subroutine)

Purpose: This subroutine produces listings of selected data
from the current menu component data file. These
listings are queued to the printer via Unit 13.

Called by: MENU

Calling sequence: CALL LSTMEN

Parameters: none

Calls: SORTM

Files: Input: 5, 12, 20 (scratch file for sorts)
Output: 6, 13, 20 (scratch file for sorts)

Common blocks: MENCOM

Included text: none

3-20

CAA-D-82-4

(28) Name. LSTREC (subroutine)

Purpose: This subroutine produces listings of selected data
from the current recipe attribute data file. These
listings are queued to the printer via Unit 11.

Called by: RECIPE

Calling sequence: CALL LSTREC

Parameters: none

Calls: SORTR

Files: Input: 5, 10, 20 (scratch file for sorts)
Output: 6, 11, 20 (scratch file for sorts)

Common blocks: RECCOM

Included text: none

(29) Name. LSTXRF (subroutine)

Purpose: This subroutine will display the cross reference list
for all-menus and their associated recipes. The to-
tal number of times that each recipe appears will
also be displayed.

Called by: XREF

Calling sequence: CALL LSTXRF

Parameters: none

Calls: GETREC

* Files: Input: 20 (previously sorted file)
Output: 9

Common blocks: RECCOM

Included text: none

(30) Name. MENATT (subroutine)

Purpose: This subroutine produces listings of the menu attri-
bute data file. The listings may be of individual
menus, all menus, or all menus of a given meal type.

3-21

CAA-D-82-4

Called by: EXFC (main program)

Calling sequence: CALL MENATT

Parameters: none

(31) Name. MENCOM (common block)

Calls: GETMEN, GETREC

Files: Input: 5, 14
Output: 6, 15

Common blocks: MENCOM
RECCOM

Included text: none

Purpose: This common block contains the upper limit on the
number of menus that can be on the menu component
file.

Variables: LASTMN = Maximum number of menus. This integer vari-.
able should be set to a prime number. In
the model development, it was set to 1999.

Used in: DELMEN, GETMEN, HASHM, INITM, INITMA, INSMEN, LDTSA4,
LDWRKM, LOCMEN, LSTMEN, MENATT, MENU, MODMEN

(32) Name. MENU (subroutine)

Purpose: This subroutine is designed to maintain a direct file
of menus and associated data. There are six execut-
able options: list, locate, delete, insert, modify,
and load. A seventh option terminates the routine.

Called by: EXEC (main program)

Calling sequence: CALL MENU

Parameters: none

Calls: DELMEN, INSMEN, LOCMEN, LODMEN, LSTMEN, MODMEN

Files: Input: 5

Output: 6

3-22

CAA-D-82-4

Common blocks: MENCOM

Included text: none

(33) Name. MENUS (common block)

Purpose: This common block contains initialized variables per-
taining to menu attributes for use in the preproces-
sor.

Variables: MENRFC = menu food cost (real)

MENLC = menu labor cost (real)
MENNUT = array of 10 nutrients for the menu (real)

Used in: INITMA, PREP

(34) Name. MERGE (subroutine)

Purpose: Part of the sort algorithm, this subroutine merges
runs from files A and B into file C.

Called by: NMSORT

Calling sequence: CALL MERGE

Parameters: none

Calls: COPYR, MERGER

Files: No direct input/output

Common blocks: see NMPROC and PFROC

Included test: NMPROC, PFPROC

(35) Name. MERGER (subroutine)

Purpose: Part of the sort algorithm, this subroutine will
merge a pair of runs, one from A and one from B, into
a single run on C.

Called by: MERGE

Calling sequence: CALL MERGER

Parameters: none

Calls: COPY, COPYR

3

3-23

CAA-D-82-4

Common blocks: see NM4PROC and PFPROC

Included text: NMPROC, PFPROC

(36) Name. MODMEN (subroutine)

Purpose: This subroutine will make selected changes to current
menus.

Called by: MENU

Calling sequence: CALL MODMEN

Parameters: none

Calls: HASHM

Files: Input: 5, 12
Output: 6, 12

Common blocks: MENCOM

Included text: none

(37) 'Name. MODREC (subroutine)

Purpose: This subroutine will make selected changes to current
recipes.

Called by: RECIPE

Calling sequence: CALL MODREC

Parameters: none

Calls: HASHR

Files: Input: 5, 10
Output: 6, 10

Common blocks: RECCOM

Included text: none

(38) Name. NMPROC (included text)

Purpose: This procedure is included in subroutines that are
part of the sort algorithm. The purpose of the
procedure is to establish parameters and common
blocks. Parameters are explained in the documented
source code listing.

3-24

I1
CAA-D-82-4

Called by: Not applicable. r

Calling sequence: Not applicable.

FORTRAN parameters (i.e., symbolic names for constants):
A,B,C = FILE NUMBERS FOR 'PASCAL'- STYLE 10
(integers)

Calls: none

Files: none

Common blocks: /NMDAT/ L, EOR, RLEN, KSTART, KEND
L = THE NUMBER OF RUNS MERGED (integer)
EOR = END-OF-RUN INDICATOR (integer)
RLEN = LENGTH OF RECORDS (integer)
KSTART = STARTING CHARACTER POSITION OF THE SORT KEY
(integer)
KEND = ENDING CHARACTER POSITION OF THE SORT KEY

Included text: none

(39) Name. NMSORT (subroutine)

Purpose: This subroutine is the main subroutine for the sort
algorithm. It validates input parameters and begins
natural merge sort.

Called by: LSTREC

Calling sequence: CALL NMSORT(IUNITC, IUNITA, IUNITB, IRECL, IKSTRT, p
IKEND)

Parameters: IUNITC = THE FORTRAN unit containing the input data.
On completion of the sort, the sorted data has re-
placed the input data (integer).
IUNITA, IUNITB = Two FORTRAN unit numbers for work p
files. (Note: all units must be capable of being re-
wound and rewritten) (integer)
IRECL = The length (characters) of the input records
(integer)
IKSTRT = The starting position (characters) of the
key field (integer). W,
IKEND = The ending position (characters) of the key
fields (integer)

Calls: DISTRI, MERGE, PFRSET, PFRWRT

3-25

!W

CAA-D-82-4

Files: This subroutine has no direct input/output but calls
subroutines that read from and write to files IUNITA,
IUNITB, and IUNITC.

Common blocks: see INNPROC and PFPROC

Included text: NMPROC, PFPROC

(40) Name. OTHER (common block)

Purpose: This common block contains initialized variables per-
taining to "other" recipe and menus for use in the
preprocessor.

Variables: OTHFC = "other" food cost (real)

OTHLC = "other" labor cost (real)
OTHNUT = array of 10 "other" nutrients (real)

Used in: INITMA, PREP

(41) Name. PFERR (subroutine)

Purpose: As a part of the sort algorithm, this subroutine
issues an error message and stops. The message is
selected from an interval table of "canned" messages.

Called by: PFREAD' PFRSET, PFRWRT, PFWRIT

Calling sequence: CALL PFERR(MSGNO)

Parameters: MSGNO: A number corresponding to the error to be
displayed (Integer)

Calls: none

Files: Output: 6

Common blocks: none

Included text:

(42) Name. PFPROC (included text)

Purpose: This procedure is included in subroutines that are
part of the sort algorithm. The purpose of the
procedure is to establish parameters and common
blocks.

Called by: Not applicable.

u 3-26

CAA-D -82-4

Calling sequence: Not applicable.

FORTRAN parameters (i.e., symbolic names for constants):
MAXLEN = The maximum length record that can be
processed (integer)
MAXF = The maximum number of files that can be
handled (integer)

Calls: none

Files: none

Common blocks: /PFCDAT/ BUFFER(MAXF)
/PFDAT/ UNIT(MAXF), RECLEN(MAXF), EOF(MAXF)
BUFFER(I) = the input buffer for file I (character *
maxlen)
UNIT(I) = The FORTRAN unit number for file I (in-
teger)
RECLEN(I) = The length of the record to be read from
file I (integer)
EOF(I) = The (PASCAL) end-of-file indicator for file
I (logical)

Included text: none

(43) Name. PFREAD (subroutine)

Purpose: As a part of the sort algorithm, this subroutine
simulates a PASCAL style "READ (F,X)"

Called by: COPY

Calling sequence: CALL PFREAD(F,X)

Parameters: F: input file identifier (integer)
X: input record (character)

Calls: PFERR

Files: A, B, or C

Common blocks: See PFPROC

Included text: PFPROC

(44) Name. PFRSET (subroutine)

Purpose: As a part of the sort algorithm, this subroutine re-
sets file F by rewinding and reading first record.
This simulates a Pascal RESET(F) instruction.

3-27

CAA-D-82-4

Cal l ed by: NMSORT

Calling sequence: CALL PFRSET(F)

Parameters: F: file identifier (integer)

Calls: PFERR

Files: A, B, or C

Common blocks: See PFPROC

Included text:. PFPROC

(45) Name. PFRWRT (subroutine)

Purpose: As a part of the sort algorithm, this subroutine has
the purpose of rewriting file F. This simulates a
Pascal REWRITE(F) instruction.

Called by: NMSORT

Calling sequence: CALL PFRWRT(F)

Parameters: F: File identifier (integer)

Calls: PFERR

Files: A, B, or C

Common blocks: See PFPROC

Included text: PFPROC

(46) Name. PFWRIT (subroutine)

Purpose: As part of the sort algorithm, this subroutine simu-
lates a PASCAL TYPE "WRITE(F,X)"

Called by: COPY

Calling sequence: CALL PFWRIT(F,X)

Parameters: F: output file identifier (integer)
X: output record (character)

Calls: PFERR

Files: A, B, or C

3-28

a]

CAA-D -82-4

Common blocks: See PFPROC

Included text: PFPROC NONE t

(47) Name. PREP (subroutine)

Purpose: This subroutine is intended to generate the menu at-
tribute data from the menu component data and the re-
cipe attribute data. The subroutine accesses the
menu file sequentially, and retrieves recipe attri-
bute data for each recipe in that particular menu.
When all recipe data has been gathered, the menu at-
tributes of food cost, labor cost, nutrition and ac-
ceptability are computed and then written on the menu
attribute data file. When all menus have been pro-
cessed, the file is sorted by menu number.

Called by: EXEC (main program)

Calling sequence: CALL PREP

Parameters: none

Calls: IRT, GETREC, INITMA

Files: Input: 12
Output: 6, 14

Common blocks: MENCOM, RECCOM, ENTREE, VEGET, STARCH, SALAD, DESSRT,
OTHER, MENUS

Included text: none

(48) Name. RECCOM (common block)

Purpose: This common block contains the upper limit on the
number of recipes that can be on the recipe attribute
file.

Variables: LASTRC = Maximum number of recipes. This integer
variable should be set to a prime number.
In the model development, it was set to
4999.

Used in: DELREC, GETREC, HASHR, INITMA INITR, INSREC, LDTSAR,
LDWRKR, LOCREC, LSTREC, LSTXR, MENATT, MODREC,
RECIPE, XREF

3-29

CAA-D-82-4

(49) Name. RECIPE (subroutine)

Purpose: This subroutine is designed to maintain a direct file
of recipes and their associated attributes. There
are seven executable options: list, locate, insert,
delete, modify, load, and terminate.

Called by: EXEC (main program)

Calling sequence: CALL RECIPE

Parameters: none

Calls: Calls: DELREC, INSREC, LOCREC, LODREC, LSTREC, MODREC

Files: Input: 5
Output: 6

Common blocks: RECCOM

Included text: none

(50) Name. SALAD (common block)

Purpose: This common block contains initialized variables per-
taining to salads for use in the preprocessor.

Variables: SALCNT = salad counter (integer)
SALAC = acceptability of individual salad (real)
SALACC = acceptability of salad portion of meal
(real)
SALFC = salad food cost (real)
SALLC - salad labor cost (real)
SALNUT = array of 10 salad nutrients (real)
SALDEN = denominator, sum of salad acceptability
(real)

Used in: INITMA, PREP

6 3-30

6

CAA-D-82-4

(51) Name. STARCH (common block)

Purpose: This common block contains initialized variables per-
taining to starches for use in the preprocessor.

Variables: STACNT = starch counter (integer)
STAAC = acceptability of individual starch (real)
STAACC = acceptability of starch portion of meal
(real)
STAFC = starch food cost (real)
STALC = starch labor cost (real)
STANUT = array of 10 starch nutrients (real)
STADEN = denominator, sum of starch acceptability
(real)

Used in: INITMA, PREP

(52) Name. VEGET (common block)

Purpose: This common block contains initialized variables,
pertaining to vegetables for use in the preprocessor.

Variables: VEGCNT = vegetable counter (integer)
VEGAC = acceptability of individual vegetable (real)
VEGACC = acceptability of vegetable portion of meal
(real)
VEGFC = vegetable food cost (integer)
VEGLC = vegetable labor cost (real)
VEGNUT = array of 10 vegetable nutrients (real)
VEGOEN = denominator, sum of vegetable acceptability
(real)

Used in: INITMA, PREP

3-31

-Ip

CAA-D-82-4

(53) Name. XREF (subroutine)

Purpose: This subroutine will produce a cross reference list-
ing of recipes and the menus in which they appear for
all menus that are listed in the menu component file.

Called by: EXEC (main program)

Calling sequence: CALL XREF

Parameters: none

Calls: Calls: LSTXRF, SORTX

Files: Input: 12
Output: 6, 9, 20 (scratch file for sorts)

Common blocks: RECCOM

Included text: none

c. Sort Routines. Because data on the recipe attribute and menu
component data files are not in sorted order, the routines that display
listings from those files call a sort routine prior to sending data to
the printer. The preprocessor calls a sort routine before writing data
to the menu attribute file. In addition, the logic employed in generat-
ing the cross reference list is based on the use of sorted files. The

* absence of a FORTRAN callable system sort at the time the menu planning
model was placed on the Burroughs meant that most output was not dis-
played in sorted order. An alternative approach to generating the cross
reference listing was discussed in Chapter 2. Once a FORTRAN callable
system sort is developed, it may be easily incorporated into the model.

3-32

CAA-D-82-4

As the model is designed, a call to SORTR is intended to sort recipe
data records of 130 characters by recipe number (character positions 2
through 11). A call to SORTM is intended to sort menu data records of
323 characters by menu number (character positions 2 through 11). A
call to SORTX is intended to sort first by recipe number (character po-
sitions 15 through 24), and then by menu number (character positions 1
through 10). The scratch file for sorts is unit 20. Until a FORTRAN
callable system sort is incorporated into the model, a natural merge
sort may be used. This sort routine was partially incorporated into the
model, and the subprograms are described above. The routine may be
called by calling NMSORT. In this case, files 9, 20, and 30 are scratch
files with unit 20 being the file that is to be sorted.

3-3. PARAMETERIZATION MODULE. The parameterization module enables the
user to establish menu planning parameters and to access information re-
garding those parameters. A matrix generator creates the goal program-
ing problem matrix and the set of initial upper bounds. User interfaces
with the bounds, goals, and priority order files are provided. Files
associated with the parameterization module are discussed below.

a. Files

(1) Unit 6

(a) Name. Remote terminal

(b) Purpose. Output to user

(c) Description. Output to the user is displayed at the
terminal.

(d) File Statement. FILE 6(KIND="REMOTE",MIAXRECSIZE=14)

(2) Unit 14

(a) Name. CAA/MENATTDAT

(b) Purpose. Maintains menu attribute data.

3-33

-U pl

CAA-D-82-4

(c) Description. See paragraph 3-2a(6).

(d) File Statement.
FILE 14(TITLE="CAA/MENATTDAT",KIND="DISK",MYUSE="I0",
UPDATEFILE="TRUE",INTMODE=4,UNITS="CHARACTERS")

(3) Unit 16

(a) Name. CAA/GPDATA

(b) Purpose. Maintain goal programing problem matrix.

(c) Description. Sequential file. Data is organized into
"ROWS" and LUMNS" sections in keeping with the format of FMPS. ROWS
section contains all row names including objective function names. COL-
UMNS section includes column or variable name and the associated row
name with the value of the coefficient.

(d) File Statement.
FILE 16(TITLE:CAA/GPTA.",INTMODE=4,KIND="DISK",
UNITS="CHARACTERS",MYUSE="IO",UPDATEFILE="TRUE")

(4) Unit 17

(a) Name. CAA/BOUNDS

(b) Purpose. Maintain the bounds portion of the problem.

(c) Description. Sequential file. Data includes all bounded
variables, the type bound (LO for lower, FX for fixed, and UP for
upper), and the value of the bound.

(d) File Statement.
FILE 17(TITLE="CAA/BOUNDS.",INTMODE=4,KIND="DISK",
UNITS="CHARACTERS" ,MYUSE="IO" ,UPDATEFILE="TRUE")

(5) Unit 18

(a) Name. CAA/RHS

(b) Purpose. Maintain the right-hand side (RHS) portion of the
problem.

(c) Description. Sequential file. Data includes row names and
the associated RHS values.

(d) File Statement.
FILE 18(TITLE="CAA/RHS.",INTMODE=4,KIND-"DISK",
UNITS= CHARACTERS" ,MYUSE-"IO'",UPDATEFILE="TRUE")

3-34

CAA-D -82-4

(6) Unit 19

(a) Name. CAA/PRIORS

(b) Purpose. Maintains the priority ordering for the attri-
butes.

(c) Description. Sequential file. The name of each objective
function is listed in the order in which they are prioritized. Each ob-
jective function is followed by the number of constraints associated
with that objective and the row names of those constraints.

(d) File Statement. w
FILE 19(TITLE="CAA/PRIORS.",INTMODE=4,KIND="DISK",
UNITS="CHARACTERS",MYUSE="10",UPDATEFILE="TRUE")

b. Subprogram Descriptions. The material presented in this section
is intended to provide the programer with a description of each subpro-
gram or included text in the parameterization module. The purpose of
the routine is provided along with the names of the routines from which
the subprogram is called and the names of the routines called from the
subprograms. Names of common blocks, included text, and associated FOR-
TRAN I/O units are also provided. Calling arguments are listed as pa-
rameters. Other variables are normally documented within the source
code listing.

(1) Name. BOUNDS (subroutine)

Purpose: This subroutine will allow the user to revise bounds
on variables before running the goal programing algo-
rithm. A variable may have one of three type bounds:
upper, lower, or fixed. An upper bound is originally
placed on each variable by the matrix generator. An
upper bound on a variable means that variable may not
exceed the value of the bound while a lower bound
means that the variable may not take on a value less
than the bound. A fixed bound means that the vari-
able must equal the value of the bound. The goal
programing algorithm recognizes these bounds as UP,
LO, or FX.

Called by: EXEC (main program)

Calling sequence: CALL BOUNDS

Parameters: none

3

3-35

-S

., ~ ~ j

CAA-D-82-4

(2) Name. EXEC (main program)

Purpose: This program is the executive routine for the parame-
terizatlon module. Instructions to the user are dis-
played upon execution of this routine.

Called by: Not applicable.

Calling sequence: Not applicable.

Parameters: none

Calls: MATGEN, BOUNDS, GOAL, PRIORS

Files: Input: 5
Output: 6

Common blocks: none

Included text: none

(3) Name. FBNDO (subroutine)

Purpose: Writes an FMPS BOUNDS header card

Called by: GEND

Calling sequence: CALL FBNDO

Parameters: none

Calls: none

Files: 16 (output)

Common blocks: none

Included text: none

(4) Name. FBOUND (subroutine)

Purpose: This routine writes an LP upper bound data card in
UNIVAC FMPS format to the bounds file. Note that
this is not the same file as the LP data file which
most of the other routines write to.

Called by: GBOUND

Calling sequence: CALL FBOUND (COLNM, VALUE)

U 3-36

U

CAA-D -82-4

Parameters: COLNM - the column name (Character*8)
VALUE - the upper bound value (real)

Calls: none

Files: 17 (output)

Common blocks: none

Included text: none

(5) Name. FCOL (subroutine)

Purpose: This routine writes an LP column data card, in UNIVAC
FMPS format, to the LP data file.

Called by: GACC, GADEV, GFCOST, GFTCAL, GLCOST, GNTOT, GNUTR,
GSTRUC

Calling sequence: CALL FCOL (COLNM, ROWNM, VALUE)

Parameters: COLNM -the column name (Character*8)
ROWNM - the row name (Character*8)
VALUE -the coefficient value (real)

Calls:
none

Files: 16 (output)

Common blocks: none

Included text: none

(6) Name. FCOLO (subroutine)

Purpose: This routine writes an LP data column section header
card, in UNIVAC FMPS format, to the LP data file.

Called by: GSTART

Calling sequence: CALL FCOLO

Parameters: none

Calls: none

Files: 16 (output)

3-37

""

CAA-D-82-4

Common blocks: none

Included text: none

(7) Name. FEND (subroutine)

Purpose: This routine writes an LP data 'ENDATA' card, in
UNIVAC FMPS format, to the LP data file.

Called by: GEND

Calling sequence: CALL FEND

Parameters: none

Calls: none

Files: 17 (output)

Common blocks: none

Included text: none

(8) Name. FNAME (subroutine)

Purpose: This routine writes an LP data 'NAME' card, in UNIVAC
FMPS format, to the LP data file.

Called by: GSTART

Calling sequence: CALL FNAME(NAME)

Parameters: NAME - the name of the data file (Character*8)

Calls: none

Files: 16 (output)

Common blocks: none

Included text: none

33

* 3-38

-r

CAA-D-82-4

(9) Name. FRHSO (subroutine)

Purpose: This routine writes an LP data 'RHS' card, in UNIVAC
FMPS format, to the LP data file. In addition, it
writes 'ADD RHS' as a flag to indicate that RHS data
is to be retrieved.

Called by: GEND

Calling sequence: CALL FRHSO

Parameters: none

Calls: none

Files: 16 (output)

Common blocks: none

Included text: none

(10) Name. FROW (subroutine)

Purpose: This routine writes an LP row data card, in UNIVAC
FMPS format, to the LP data file.

Called by: GROWS

Calling sequence: CALL FROW (TYPE, ROWNM)

Parameters: TYPE - the row type (Character*1)
ROWNM - the row name (Character*8)

Calls: none

Files: 16 (output)

Common blocks: none

Included text: none

3-39
U

CAA-D-82-4

(11) Name. FROWO (subroutine)

Purpose: This routine writes an LP data row section header
card, in UNIVAC FMPS format; to the LP data file.

Called by: GSTART

Calling sequence: CALL FROwU

Parameters: none

Calls: none

Files: 16 (output)

Cmmon blocks: none

Included text: none

(12) Name. GACC (subroutine)

Purpose: This routine generates the column entry in the ac-
ceptability goal row for a specific meal and menu.

Called by: MATGEN

Calling sequence: CALL GACC (MEAL, MENNUM, MENACC)

Parameters: MEAL - the meal number (integer)
MENNUM - the menu number (Character*8)
MENACC - the acceptablity of the menu (real)

Calls: FCOL, RkC

Files: none

Common blocks: none

Int:luded text: none

(13) Name. GADEV (subroutine)

Purpose: This routine generates the column entries for the
goal programing deviational variables for a specific
row in the LP data file. The routine also generates
the column entries for these variables in a specific
objective function row, with weights as specified by
the caller of the routine.

SI 3-40

CAA-O-82-4

Called by: GDEVS

Calling sequence: CALL GADEV (ROWNM, OBJNM, NEGWT, POSWT)

Parameters: ROWNM - the name of the row
OBJNM - the name of the objective row
NEGWT - the weight to be assigned to the negative
deviation
POSWT - the weight to be assigned to the positive
deviation

Calls: FCOL

Files: none

Common blocks: none

Included text: none

(14) Name. GBOUND (subroutine)

Purpose: This routine generates an upper bound on a specific
menu in a particular meal.

Called by: MATGEN

Calling sequence: CALL GBOUND (MEAL, MENNUM, LIMITS)

Parameters: MEAL - the meal number (Integer)
MENNUM - the menu number (Character*8)
LIMITS - an array containing the upper limit on each 9

meal (Real) dimensioned (4)

Calls: FBOUND

Files: none

Common blocks: none

Included text: none

(15) Name. GDEVS (subroutine)

Purpose: This routine generates the column entries for goal
programing deviational variables in the LP data file.

Called by: GSTART

Calling sequence: CALL GOEVS

3-41

CAA-D-82-4

Parameters: none

Calls: GADEV, RAC, RFAT, RFC, RLC, RNUT, RST

Files: none

Common blocks: none

Included text: none

(16) Name. GEND (subroutine)

Purpose: This routine generates the end of the LP data file.

Called by: MATGEN

r
Calling sequence: CALL GEND

Parameters: none

Calls: FBNDO, FEND, FRHSO

Files: none

Common blocks: none

Included text: none

(17) Name. GFCOST (subroutine)

Purpose: This routine generates the column entry for the food
cost goal row for a specific meal and menu.

Called by: MATGEN

Calling sequence: CALL GFCOST (MEAL,MENNUM,MENRFC)

Parameters: MEAL - the meal number (Integer)
MENNUM - the menu number (Character*8)
MENRFC - the food cost of the menu (Real)

Calls: FCOL, RFC

Files: none

Common blocks: none

Included text: none

3-42

I

F

CAA-D -82-4

(18) Name. GFTCAL (subroutine)

Purpose: This routine generates the column entry for the fat/
calorie ratio goal for a specific meal and menu.

Called by: MATGEN

Calling sequence: CALL GFTCAL (MEAL, MENNUM, CAL, FAT)

Parameters: MEAL - the meal number (integer)
MENNUM - the menu number (Character*8)
CAL - the number of calories in the menu (real)
FAT - the amount of fat in the menu (real)

Calls: FCOL, RFAT

Files: none

Common blocks: none

Included text: none

(19) Name. GLCOST (subroutine)

Purpose: This routine generates the column entry for the labor
cost goal row for a specific meal and menu.

Called by: MATGEN

Calling sequence: CALL GLCOST (MEAL,MENNUM,MENLC)

Parameters: MEAL - the meal number (integer)
MENNUM - the menu number (Character*8)
K.NLC - the menu labor cost (real)

Calls: FCOL, RLC

Files: none

Common blocks: none

Included text: none

3

3-43

! - ' ! - I

CAA-D-824

(20) Name. GNTOT (subroutine)

Purpose: This routine generates column entries for goals of
nutritional totals for each meal.

Called by: none

Calling sequence: CALL GNTOT

Parameters: none

Calls: FCOL, RNTOTM, RNUT, RNUTM

Files: none

Common blocks: none

Included text: none

(21) Name. GNUTR (subroutine)

Purpose: This routine generates the column entry for the nu-
trient goal row for a specific combination of meal,
menu, and nutrient.

Called by: MATGEN

Calling sequence: CALL GNUTR (MEAL,MENNUM,MENNUT,I)

Parameters: MEAL - the meal number (integer)
MENNUM - the menu number (Character*8)
MENNUT - th amount of the specified nutrient in this
menu (Re?
I - the number (1-10) of the nutrient (integer)

Calls: FCOL, RNUT

Files: nene

Common blocks: none

Included text: none

3-44

CAA-D -82-4

(22) Name. GOAL (subroutine'

Purpose: This subroutine allows the user to access the goals
(also called the right-hand side values). These val-
ues are located on unit 18 in a form that is suitable
for access by the goal programing algorithm. The
user does not normally see the values on unit 18, but
instead sees the values in terms that have more mean-
ing to him or her. Food cost goals are determined
from the BDFA, labor cost goals are determined from
user input for the number of manhours per meal, ac-
ceptability goals are determined from user input for
acceptability per meal, nutritional goals are deter-
mined from user input for the various nutrients per
individual per day (normally the nutrition goals in-
put by the user are the recommended daily food allow-
ances), and the length of the menu planning cycle in
days is used to determine the actual goals used by
the goal programing algorithm.

Called by: EXEC

Calling sequence: CALL GJAL

Parameters: none

Calls: none

Files: Input: 5, 18
Output: 6, 18

Common blocks: none

Included text: none

(23) Name. GROWS (subroutine)

Purpose: This routine generates the 'ROWS' section of the LP
data file.

Called by: GSTART

Calling sequence: CALL GROWS

Parameters: none

Calls: FROW, RAC, RFAT, RFC, RLC, RNUT

SFiles: none

3 -

RD-R123 225 ECONOMETRIC MODEL FOR OPTIMIZING TROOP DINING FACILITY 212
BETHESDA NO A C MANGUSO DEC 82 CA-D-82-4

UNCLASSIFIED F/G 8/6 N

E1 hEEEEEE

Iin Q8 122L.

AL2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I7 7

CAA-D-82-4

Common blocks: none

Included text: none

(24) Name. GSTART (subroutine)

Purpose: This routine initiates the generation of the LP data
file.

Called by: MATGEN

Calling sequence: CALL GSTART

Parameters: none

Calls: FCOLO, FNAME, FROWO, GDEVS, GROWS

Files: none

Common blocks: none

Included text: none

(25) Name. GSTRUC (subroutine)

Purpose: This routine generates the column entries for struc-
tural goals.

Called by: MATGEN
Calling sequence: CALL GSTRUC (MEAL, MENNUM)

Parameters: MEAL - the meal number (integer)

MENNUM - the menu number (Character*8)

Calls: FCOL, RST

Files: none

Common blocks: none

Included text: none

(26) Name. MATGEN (subroutine)

.4 Purpose: This routine serves to organize the flow of control "
through the entire LP matrix generation process, ob-
taining the attributes of each menu in turn, and gen-
erating all the required LP data for that menu.

3-46

i-p

CAA-D-82-4

Called by: EXEC

Calling sequence: CALL MATGEN

Parameters: none

Calls: GACC, GBOUND, GEND, GFOCST, GFTCAL, GLCOST, GNUTR,
GSTART, GSTRUC, MGET, UGET, UPUT, MGET, UGET, UPUT

Files: 6 (output)

Common blocks: UDATA

Included text: none

(27) Name. MGET (subroutine)

Purpose: This routine gets menu attribute data from the menu
attribute data file.

Called by: MATGEN

Calling sequence: CALL MGET(MEAL,MENNUMMENACC,MENRFC,MENLC,
MENNUT,EOMEN)

Output parameters: MEAL - meal number (integer)
MENNUM - menu number (Character*8)
MENACC - menu acceptability (real)
MENRFC - menu food cost (real)
MENLC - menu labor cost (real)
MENNUT - array of menu nutrient contents (real), di-
mensioned (10)
EOMEN - end of file indicator (logical)

Calls: none

Files: 14 (input)

Common blocks: none

Included text: none

(28) Name. PRIORS (subroutine)

Purpose: This subroutine will allow the user to change the
order in which the four attributes are prioritized.
The new priority ordering is displayed to the user
and the appropriate objective and constraint row data
for by'the XMP goal programing algorithm are written
to unit 19.

3-47
6

CAA-D-82-4

Called by: EXEC (main program)

Calling sequence: CALL PRIORS

Parameters: none

Calls: none

Files: Input: 5
Output: 6, 19.

Common blocks: none

Included text: none

(29) Name, RAC (function)

Purpose: This function provides the name of the constraint

row for acceptability for a specified meal.

Called by: GACC, GDEVS, GROWS

Calling sequence: RAC(M)

Parameters: N - meal number (integer)

Calls: none

Files: none

Common blocks: none

Included text: none

(30) Name. RFAT (function)

Purpose: This function provides the name of the constraint
row for the fat/calorie ratio goal for a specified
meal.

Called by: GDEVS, GFTCAL, GROWS

Calling sequence: RFAT(M)

Parameters: 1 - meal number (integer)

Calls: none

Files: none

3-48

V .- __

CAA-D-82-4

Common blocks: none

Included text: none

(31) Name. RFC (function)

Purpose: This function provides the name of the constraint
row for food cost for a specified meal.

Called by: GDEVS, GFCOST, GROWS

Calling sequence: RFC(M)

Parameters: M - meal number (integer)

Calls: none

Files: none

Common blocks: none

Included text: none

(32) Name. RLC (function)

Purpose: This function provides the name of the constraint
row for labor cost for a specified meal.

Called by: GDEVS, GLCOST, GROWS

Calling sequence: RLC(M)

Parameters: M - meal number (integer)

Calls: none

Files: none

Common blocks: none

Included text: none

(33) Name. RNTOTM (function)

Purpose: This routine provides the row name for the total
nutritional goal for a specified meal and nutrient.

Called by: GNTOT

34

3-49

.11

CAA-D412-4

Calling sequene: RNTOT(,j).

Parameters: I - meal number (integer)
J - nutrient number (integer)

Calls: none

4Files: none

Common blocks: none

Included text: none

(34) Name. RNUT (function)

Purpose: This function provides the name of the constraint row
for the total nutrition supplied by a specifted nu-
tri ent.

Called by: GDEVS, GNTOT, GNUTR, GROWS

Calling sequence: RNUT(I)

Parameters: I - nutrient-number (integer)

Calls: none

Files: none

Common blocks: none

Included text: none

(35) Name. RNUTM (function)

*Purpose: This function provides the name of the constraint
row for the nutritional goal for a specified meal and
nutrient.

Called by: GNTOT

Calling sequence: RNUTM(IhJ)

Parameters: I - meal number*(integer)
J - nutrient number (integer)

- ~Calls: none

Files: none

3-50

CAA-D-82-4

Common blocks: none

Included text: none

(36) Name. RST (function)

Purpose: This function provides the name of the constraint
row for the structural goal for a specified meal.

Called by: GDEVS, GROWS, GSTRUC

Calling sequence: RST(N)

Parameters: M - meal number (integer)

Calls: none

Files: none

Common blocks: none

Included text: none

(37) Name. UDATA (common block)

Purpose: This common block contains the upper limits on menus
for each meal.

Variables: LIMITS - (real) the array of upper limits, dimen-

sioned (4)

" Used in: MATGEN, UGET, UPUT

(38) Name. UGET (subroutine)

Purpose: This routine queries the user for upper bounds on 1;
the number of times any menu may be used for each
meal.

A Called by: MATGEN

Calling sequence: CALL UGET

Parameters: none

Calls: none

Files: 5 (input)

3-51

. : .: -. :... . : : . : . :. . - .:.:: . - -' : . .

CAA-D-82-4

Common blocks: UDATA

Included text: none

(39) Name. UPUT (subroutine)

Purpose: This routine echoes the upper bounds supplied by the
user (via subroutine UGET).

Called by: MATGEN

Calling sequence: CALL UPUT

Parameters: none

Calls: none

Files: 6 (output)

Common blocks: UDATA

Included text: none

3-4. SOLUTION MODULE. The solution module consists of input routines,
a solution algorithm (XMP), and a postprocessor. The XMP subprograms
will not be discussed in this chapter. Instead, an introduction to XMP
is included in Appendix B. The input routines provide an interface be-
tween those files produced by the parameterization module and XMP. The
postprocessor displays information regarding solutions in a series of
five reports. Files associated with the solution module are discussed
below. Some of the files, as indicated, are defined for output to the
remote terminal and printer.

a. Files

(1) Unit 6

(a) Name. Printer.

(b) Purpose. Solution module produces reports that are too long
to be displayed at the terminal and therefore, they are queued to the
printer.

(c) Description. Messages, diagnostics, and solution reports.

(d) File Statement. FILE 6 (KIND="PRINTER",MAXRECSIZE=22)

(2) Unit 8

(a) Name. Not applicable.

3-52

CAA-D-82-4

(b) Purpose. Output file for XMP.

(c) Description. Contains XMP output, including diagnostic and
error messages. Solutions for each priority level are listed.

(d) File Statement.
FILE 8(STATUS="NEW",MYUSE="IO",UPDATEFILE="TRUE")

(3) Unit 9

(a) Name. Not applicable.

(b) Purpose. Scratch file for natural-merge sorts.

(c) Description. If natural merge sort routine is used in place
of a FORTRAN callable system sort, this is one of two scratch files
used.

(d) File Statement.
FILE 9 (STATUS="NEW",MYUSE="IO,UPDATEFILE="TRUE")

(4) Unit 10. See para 3-2a(2).

(5) Unit 12. See para 3-2a(4).

(6) Unit 14. See para 3-2a(6).

(7) Unit 16. See para 3-3a(3).

(8) Unit 17. See para 3-3a(4).

(9) Unit 18. See para 3-3a(5).

(10) Unit 19. See para 3-3a(6).

(11) Unit 25

(a) Name. Not applicable.

(b) Purpose. Scratch file for postprocessor.

(c) Description. Contains name, status, and value of deviation
variable.

(d) File Statement.FILE 25(STATUS="NEW",MYUSE="I0", UPDATEFILE="TRUE")

(12) Unit 26

(a) Name. Not applicable.

3-53

P

CAA-D -82-4

(b) Purpose. Scratch file for postprocessor.

(c) Description. Contains menu number, status and value for
those menus in the solution.

(d) File Statement.

FILE 26(STATrUS="NEW",MYUSE="IO", UPDATEFILE="TRUE")

(13) Unit 27

(a) Name. Not applicable.

(b) Purpose. Scratch file for postprocessor.

(c) Description. Contains, for each menu in the solution, menu
number, number of recipes in the menu, and recipe number of each recipe
in the menu.

(d) File Statement.

FILE 27(STATUS="NEW",MYUSE="IO",UPDATEFILE="TRUE")

(14) Unit 29

(a) Name. Not applicable.

(b) Purpose. Scratch file for postprocessor.

(c) Description. Contains, for each menu in the solution, ac-
ceptability, food cost, labor cost, and nutritional value.

(d) File Statement.
FILE 28(STATUS="NEW" ,MYUSE="IO,UPDATEFILE="TRUE")

(15) Unit 29

(a) Name. Not applicable.

(b) Purpose. Scratch file for cross reference.

(c) Description. Contains, for each menu in the solution, menu
number, value, and recipe numbers of recipes in that menu.

(d) File Statement.

FILE 29(STATUS="NEWII,MYUSE="IO",UPDATEFILE="TRUE")

(16) Unit 30

(a) Name. Not applicable.

(b) Purpose. Scratch file for natural merge sort.

3-54

PIP

CAA-D -82-4

(c) Description, If natural merge sort routine is use in place
of a FORTRAN Callable system sort, this is one of two scratch files
used.

(d) File Statement.
FILE 30(STATUS="NEW" MYUSE="IO",UPDATEFILE="TRUE")

b. Subprogram Descriptions. The material presented in this section

is intended to provide the programer with a description of each subpro-
gram or included text in the solution module. The purpose of the rou-
tine is provided along with the names of the routines from which the
subprogram is called and the names of the routines called from the sub-
programs. Names of common blocks, included text, and associated FORTRAN
1/0 units are also provided. Calling arguments are listed as parame-
ters. Other variables are normally documented within the source code
listing.

(1) Name. CROSRF (subroutine)

Purpose: This subroutine will produce a cross reference list-
ing of the recipes and the menus in which they appear
for those menus in the solution.

Called by: POSTPR

Calling sequence: CALL CROSRF

Parameters: none

Calls: GETMEN, LSTXRF, SORTX

Files: Input: 26
Output: 29

Common blocks: none

Included text: none

3-55

CAA-D-82-4

(2) Name. DIBNDS (subroutine)

Purpose: This routine processes the 'BOUNDS' section of the
XMP linear programing data. As each BOUNDS card is
processed, DIBNDS retrieves the current bounds on the
column via a call to the XMP routine XGETUB, adjusts
the bounds accordingly, and transfers the revised
bounds back to XMP via a call to the routine XADDUB.
It should be noted that this routine is capable of
processing lower bounds, upper bounds, and fixed
bounds, but not 'free' variables. The reason for
this restriction is that XMP is incapable (or ilmost
so) of working with free variables. If it should be-
come necessary to handle a free variable, the com-
mended response is to replace it with the di4 ^ence
of two non-negative variables in the problem "ini-
tion.

Called by: DINPUT

Calling sequence: CALL DIBNDS(BNDTYP, IOERR, LENMA, LENMY, MAPA,
MEMORY)

Input parameters: BNDTYP - XMP bound type indicator
IOERR - file number for XMP error messages
LENMA - dimension of the mapa array
LENMY - dimension of the memory array
MAPA - XMP array
MEMORY - XMP array

Calls: DIERR, DISYM, FINDH, XADDUB, XGETUB

Files: none

Common blocks: see DIPROC

Included text: DIPROC

3-56

or

CAA-D-82-4

(3) Name. DICOLS (subroutine)

Purpose: This routine processes the 'COLUMNS' section of the
XMP linear programing data. As each column is pro-
cessed, DICOLS records the column name in the column
name dictionary (so the column name can be converted
to a column index afterward) and in the column name
array (so the column index can be converted to a col-
umn name). DICOLS also sets the initial bounds on
each column to be from zero to infinity and collects
the non-zero coefficients in the column for a call to
XADDAJ, which records the coefficients in the XMP
data structures.

Called by: DINPUT

Calling sequence: CALL DICOLS (COLMAX, LENMA, LENMY, MAPA, MEMORY,
BNDTYP, BIG, IOERR, COLA, COLI, MAXA, MAXN, NSTRUC)

Input parameters: COLMAX - max number of non-zero coefficients in any
column
LENMA - dimension of the MAPA array
LENMY - dimension of the MEMORY array
MAPA - XMP array
MEMORY - XMP array
BNDTYP - XMP bounds type
BIG - what XMP considers a biq number
IOERR - number of XMP error file
COLA - used to hold vector of non-zero coefficients
COLI - used to hold associated vector of ruw numbers
MAXA - max number of non-zero coefficients
MAXN - max number of variables (columns)

Output parameters: NSTRUC - number of columns (structural variables)

Calls: DIERR, DISYM, FINDH, PUTH, STARTH, XADDAJ, XADDUB

Files: none

Common blocks: see DIPROC

Included text: DIPROC

(4) Name. DIERR (subroutine)

Purpose: The XMP data input routines use this routine to issue
error messages. The calling routine identifies the
error message by a number, which DIERR uses to index
into a table of canned error messages. After writing
the message, DIERR executes a STOP instruction.

3-57

qP

CAA-D-82-4

Called by: DIBNDS, DICOLS, DINPUT, DIRHS, DIROWS

Calling sequence: CALL DIERR(IMSG)

Input parameters: IMSG - error message number

Calls: none

Files: none

Common blocks: see DIPROC

Included text: DIPROC

(5) Name. DINPUT (subroutine)

Purpose: This routine controls the reading of linear program-
ing problem data (in the format used by the UNIVAC
FMPS system) for use by XMP linear programing rou-
tines. In addition to organizing the flow of con-
trol, DINPUT enforces the rules that the input must
start with a NAME card, followed by a ROWS section, a
COLUMNS section, a RHS section, an optional BOUNDS
section, and an ENDATA card, in that order.

Called by: XMAIN

Calling sequence: CALL DINPUT (B, BIG, BNDTYP, COLA, COLI, COLMAX,
IOERR, lOIN, LENMA, LENMY, M, MAPA, MAXA, MAXM, MAXN,
MEMORY, NSTRUC, ROWTYP)

Input parameters: lOIN - input file number
MAXA - max number of non-zero coefficients
MAXM - max number of constraints
MAXN - max number of variables
COLMAX - max number of non-zero coefficients in a row
LENMA - dimension of the mapa array
LENMY - dimension of the memory array
MAPA - XMP array
MEMORY - XMP array
BNDTYP - type of bounds
BIG - what XMP considers a big number
IOERR - file number for XMP error messages
COLA - array for use as a work area
COLI - array for use as a work area

Output parameters: M - the number of constraints
NSTRUC - the number of structural variables
ROWTYP - array of row types
B - the right-hand side

3-58

CAA-D -82-4

Calls: DIBNDS, DICOLS, DIERR, DIRHS, DIROWS, DISYM

Files: none

Common blocks: see DIPROC

Included text: DIPROC

(6) Name. DIPROC (included text)

Purpose: DIPROC serves to organize the common blocks used by
the XMP data input routines for ease of reference.
The common blocks--DIDATC, DIDATI, DDAT2C, DDAT2I,
DDAT3C, and DDAT3I--are described below.

Common block
DIDATC: This block contains CHARACTER type variables related

to the contents of a single data card.

Variables: SYM - (Character*8) set to 'DATA' if the card is a
data card. Otherwise, c contains the card type,
i.e., 'ROWS', 'COLUMNS', 'BOUNDS', 'RHS', or
'ENDATA'.
CODE - (Character*2) contains the code field of the
card
NAMEI - (Character*8) contains the first name field
of the card
NAME2 - (Character*8) contains the second name field
of the card

Common block
DIDATI: This block contains non-CHARACTER type variables

related to the contents of a single data card.

Variables: INFILE - (integer) the FORTRAN unit number of the
input file
NCARD - (integer) the sequence number of the card
being processed

A VALUE - (real) the numeric value field of a data card

Common block
DDAT2C: This block contains the character-type arrays used to

store the row and column names in their dictionaries
(one for rows, one for columns), implemented as hash
tables.

Variables: RKEY - (Character*8) the row name key HASH table,
dimensioned (0:198)
CKEY - (Character*8) the column name key HASH table,
dimensioned (0:996)

3-59

i

CAA-D-82-4

Common block
DDAT2I: This block contains the noncharacter data used in the

row and column name dictionaries.

Variables: RBIGN - (integer) the size of the row name HASH
table. It is critical that the upper dimension of
the RKEY and RVAL arrays be one less than RBIGN. It
is also advisable for best performance, but not nec-
essary for correct performance, that RBIGN be a prime
number
RVAL - (integer) the array used to store the row in-
dexes associated with the row names, dimensioned
(0:198)
CBIGN - (integer) the size of the column name HASH
table. It is critical that the upper dimension of
the CKEY and CVAL arrays be one less than CBIGN. It
is also advisable for best performance, but not nec-
essary for correct performance, that CBIGN be a prime
number

Common block
DDAT3C: This block contains row name and column name arrays

used to convert from a row or column index to the as-
sociated name.

Variables: ROWNM - (Character*8) the row name array, dimensioned
(199)
COLNM - (Character*8) the column name array, dimen-
sioned (977)

Common block
DDAT31: This block contains noncharacter type data associated

with the row and column name arrays in DDAT3C.

Variables: NROWNM - (integer) the number of entries used in the
ROWNM array
NCOLNM - (integer) the number of entries used in the
COLNM array

(7) Name. DIRHS (subroutine)

Purpose: This routine processes the 'RHS' section of the XMP
linear programing data. The RHS coefficient of each
row is recorded in the XMP array B, with the coeffi-
cient defaulting to zero if the row does not appear
in the RHS data.

Called by: DINPUT

3-60

' U" - "1
-

- i - - • im I

I

CAA-D -82-4

Calling sequence: CALL DIRHS(M, B, MAXM)

Input parameters: M - the number of rows
MAXN - the dimension of the B array

Output parameters: B - the right-hand side array

Calls: DIERR, DISYM, FINDH

Files: none

Common blocks: see DIPROC

Included text: DIPROC

(8) Name. DIROWS (subroutine)

Purpose: This routine processes the 'ROWS' section of the XMP
linear programing input data. Each row name is re-
corded in the row name dictionary via a call to PUTH,
and the row type (N, G, L, or E) is converted to the
appropriate XMP numeric code and stored in the XMP
ROWTYP array.

Called by: DINPUT

Calling sequence: CALL DIROWS(MAXM, M, ROWTYP)

Input parameters: MAXM - max number :of constraints

Output parameters: M - the number of constraints
ROWTYP - array of row types

Calls: DIERR, DISYM, FINDH, PUTH, STARTH

Files: none

Common blocks: see DIPROC p

Included text: DIPROC

3-612 .4

_____-_

CAA-D-82-4

(9) Name. DISYM (subroutine)

Purpose: This routine reads each XMP linear programing data
card. If the card is a comment card (i.e., has a '*'
in column 1), it is ignored. DISYM sets the global
variable SYM to 'DATA' if the card is a data card;
otherwise, SYM is set to the card type ('NAME',
'ROWS', 'COLUMNS', 'RHS', 'BOUNDS', or 'ENDATA').
Data cards include a code field, two name fields, and
a numeric value field; DISYM stores the contents of
these fields in the global variables CODE, NAME1,
NAME2, and VALUE.

Called by: DIBNDS, DICOLS, DINPUT, DIRHS, DIROWS

Calling sequence: CALL DISYM

Parameters: none

Calls: none

Files: Reads data from the FORTRAN unit number specified by
INFILE, a variable in common block DIDATI.

Common blocks: see DIPROC

Included text: DIPROC

(10) Name. FINDH (subroutine)

Purpose: This routine finds a key and its associated value in
a HASH table. Its use within the XMP data input rou-
tines is to convert a row or column name to its asso-
ciated row or column index, once PUTH has been used
to record the name and index in a HASH table. (Sepa-
rate HASH tables are used for rows and columns).

Called by: XMAIN, DIBNDS, DICOLS, DIRHS, DIROWS

Calling sequence: CALL FINDH (K, V, FOUND, BIGN, TKEY, TVALUE)

Input parameters: K - the key to be searched for (defined as
character*8)
BIGN - the size of the HASH table (should be a prime
number for optimum performance)
TKEY - the HASH table, i.e. an array to store the
keys in, dimensioned (O:bign-1)
TVALUE - an array to store the associated values in,
also dimensioned (O:bign-1)

3-62

CAA-D-82-4

Output parameters: FOUND - ,TRUE. if the item is found
V - the value associated with the key (integer)

Calls: PROBE

Files: none

Common blocks: none

Included text: none

(11) Name. GETMEN (subroutine)

. Purpose: This subroutne retrieves data from the menu component
file.

Called by: CROSRF, LSMNRC, SMENAT

Calling sequence: CALL GETMEN(MENNUM, NUMREC, RECNUM)

Parameters: MENNUM: Menu number (Character*10)
NUMREC: Number of recipes (integer)
RECNUM: Array of up to 30 recipe numbers
(Character*1O)

Calls: HASHM VA

Files: Input: 12
Output: 6

Common blocks: none

Included text: none

(12) Name. GETREC (subroutine)

Purpose: This subroutine retrieves recipe data from the recipe
attribute file.

Called by: LSMNRC, LSTXRF

Calling sequence: CALL GETREC(RECNUM, NAME, KIND, RECRFC, RECLC,
RECACC, RECNUT)

4p

3-63

r

CAA-D -82-4

Parameters: RECNUM: Recipe number (Character*10)
NAME: Recipe name (Character*30)
KIND: Recipe kind (Character*3)
RECRFC: Recipe food cost (real
RECLC: Recipe labor cost (real
RECACC: Recipe acceptability (real)
RECNUT: Array of 10 nutrients (Real)

Calls: HASHR

Files: Input: 10
Output: 6

Common blocks: none

Included text: none

(13) Name. GETSOL (subroutine)

Purpose: This subroutine will read the solution from unit 8
(XMP output file) and writes two output files to be
used by subsequently called subroutines. The first
output file is unit 25 on which are written the de-
viation variables and values. The second output file
is unit 26 on which are written the decision vari-
ables and values.

Called by: POSTPR

Calling sequence: CALL GETSOL(KT, IOLOG)

Parameters: KT - Counter corresponding to the number of priority
levels solved by the GP algorithm
IOLOG - FORTRAN unit number corresponding to the XMP
output file (unit 8)

Calls: none

Files: Input: 8 (IOLOG)
Output: 25, 26

Common blocks: none

Included text: none

L3-64
F t.: .II.; I . I.-.L i ..i, , . . _

CAA-D-82-4

(14) Name. HASHA (integer function)

Purpose: This function "hashes" a 10-character string Into an r
integer, which is returned as the value of the func-
tion. The method used is to first divide the first
eight characters of the input string into two strings
of four characters each. (The final two characters
of the input string do not enter into the calculation
at all. However, in this application the final two
characters are blanks.) These two strings are then
treated as binary data, in their internal representa-
tion, and combined into a single four-character
string via a bit-by-bit exclusive-or (also known as a
binary add without carry). To further scramble the
data, this string is split into two strings of two
characters each, treated as binary integers. These
integers are then multiplied together, yielding the
final result.

Called by: HASHM, HASHR

Calling sequence: HASHA(NUMBER)

Input parameters: NUMBER - a recipe or menu 'number', defined as
Character*1O

Calls: none

Files: none

Common blocks: none

Included text: none

(15) Name. HASHM (subroutine)

Purpose: Determines the address on the menu component data
file for any menu number.

Called by: GETMEN

Calling sequence: CALL HASHM(NUMBER, RBA, STOP)

Parameters: NUMBER: Menu number (Character*10)
RBA: Address on the menu component file for any re-
cipe number (integer)
STOP: Address beyond which no searching will be done
(integer)

K7
3-65

P1

CAA-D -82-4

Cal1 s: HASHA

Fi I es: none

Common blocks: none

Included text: none

(16) Name. HASHR (subroutine)

Purpose: Determines the address on the recipe attribute data
file for any recipe number.

Called by: GETREC

Calling sequence: CALL HASHR(NUMBER, RBA, STOP)

Parameters: NUMBER: Recipe number (Character*1O)
RBA: Address on the recipe attribute file for any re-
cipe number (integer)
STOP: Address beyond which no searching will be done
(integer)

Calls: HASHA

Files: none

Z'ommon blocks: none

Included text: none

(17) Name. LSGOAL (subroutine)

Purpose: This routine displays the values of the goals, devia-
tions, and levels of achievement.

Called by: POSTPR

Calling sequence: CALL LSGOAL

Parameters: none

Calls: none

Files: Input: 18 (goals), 25 (deviation variable values)
Output: 6

3-66

CAA-D-82-4

Common blocks: none

Included text: none

(18) Name. LSMEN (subroutine)

Purpose: This subroutine will display the list of menus se-
lected for inclusion in the solution along with their
frequency of selection.

Called by: POSTPR

Calling sequence: CALL LSMEN

Parameters: none

Calls: none

Files: Input: 26
Output: 6

Common blocks: none

Included text: none

(19) Name. LSMNRC (subroutine)

Purpose: This subroutine will produce a listing of menus and
associated recipes form an XMP solution.

Called by:. POSTPR

Calling sequence: CALL LSMNRC

Parameters: none

Cal,ls: GETMEN, GETREC

Files: Input: 8
Output: 6

Common blocks: none

Included text: none

(20) Name. LSTHDR (subroutine)

Purpose: This subroutine will display the solution report
header.

3-67

I • •

CAA-D-82-4

Cal led by: XMAIN

Calling sequence: CALL LSTHDR

Parameters: none

Calls: none

Files: Output: 6

Common blocks: none

Included text: none

(21) Name. LSTOBJ (subroutine)

Purpose: This subroutine will display to the user the menu at-
tribute associated with the current objective in the
goal programing algorithm. This results in a display
of the priority ordering associated with a particular
solution.

Called by: XMAIN

Calling sequence: CALL LSTOBJ(OBJROW)

Parameters: OBJRUW - Name of current objective row (Character*8)

Calls: none

Files: Output 6

Common blocks: none

Included text: none

(22) Name. LSTXRF (subroutine)

Purpose: This subroutine will display the cross reference list
for those menus that were selected for inclusion in
the solution. The total number of times that each
recipe is to be served during the menu cycle will
also be displayed.

Called by: CROSRF

Calling sequence: CALL LSTXRF

Parameters: none

3-68

V7

• 77

1

CAA-D-82-4

Calls: GETREC

Files: Input: 29
Output: 6

Common blocks: none

Included text: none

(23) Name. MEMCON (common block)

Purpose: This common block was inserted in several of the XMP
subroutines in order to overcome the argument check-
ing errors generated by the Burroughs FORTRAN 77 com-
piles. It contains the integer fields of the real
MEMORY array.

Variables: IMEM = corresponds to the main storage array (MEMORY)
and is held in common for the purpose of addressing
integer portions of that array. The dimension of
IMEM is equal to LENMY, the same as MEMORY, but is
listed as a constant; therefore if LENMY changes,
each occurrence of IMEM must be redimensioned.

Used in: XMAIN, XADDAJ, XADDUB, XBTRAN, XFACT, XFEAS, XFTRAN,

XPHAS2, XUPDAT

(24) Name. POSTPR (subroutine)

Purpose: This subroutine is called by the solution algorithm
after completing the solution to the final priority.
This subroutine then calls the subroutines which will
read the final solution and display the following
five reports:

o List of selected menus

o Summary of the menu attributes for selected
menus

o Menu planning goals and levels of achievement

o List of selected menus with associated recipe
names

o Cross reference list of recipes and menus in
which they appear

Called by: XMAIN

3-69

K

KT .CAA-D-82-4

Calling sequence: CALL POSTPR(IOLOG)

Parameters: IOLOG - FORTRAN unit number for XMP output

Calls: CROSRF, GETSOL, LSGOAL, LSMEN, LSMNRC, SMENAT,
SUMMRY, TRMCOD

Files: none

Common blocks: none

Included text: none

(25) Name. PROBE (subroutine)

Purpose: This routine probes a HASH table for a 'key' (a
character string). As a result of the probe, the
user of the subroutine is told (1) whether the key is
in the table; (2) if so, its location; (3) if not,
the location where it should go (unless the table is
full); and (4) whether the table is full. The HASH
table is organized in the following manner: Given an
eight-character key, the key is split into two four-
character strings which are treated as binary data
and crunched into a single four-character string via
the exclusive-or function (also known as a binary add
without carry). The resulting string is then treated
as a binary integer and reduced module the size of
the HASH table, yielding an integer in the range from
0 to BIGN-1, where BIGN is the size of the HASH
table. This integer is used for the initial probe
into the table. In the case of a collision (i.e.,
when the slot for the initial probe is already occu-
pied with another key), quadratic probing is used to
continue the process, i.e., successive probes are at
H+1, H+4, H+9, etc., where H is the initial probe.
To the reader not familiar with HASH table tech-
niques, this may seem to be a lot of uneccessary ri-
gamarole; however, the point of all this machination
is that keys can be located very rapidly on the aver-
age (faster than by binary search, for example), and
the programing is not all that complex. Several com-
puter science texts describe HASH tables, among them
Algorithms + Data Structures = Programs, by N. Wirth.

Called by: FINDH, PUTH

Calling sequence: CALL PROBE (K, FOUND, FULL, H, BIGN, TKEY)

3-70

m.

S:

CAA-D-82-4

Input parameters: K- the key to be located (defined as Character*8)
BIGN - the size of the HASH table (this number should
be a prime number for optimum performance)
TKEY - the HASH table, i.e., an array to store the
keys in, dimensioned (O:bign-1)

Output parameters: FOUND - .TRUE. if the key is found in the table. In
this case, H = the index of the key. If the key is
not found, then H = the index where it should be ad-

ded.
FULL - .TRUE. if the table Is full (i.e., this key
cannot be added)

Calls: none

Files: none

Common blocks: none

Included text: none

(26) Name. PUTH (subroutine)

Purpose: This routine records a character string 'key' and an
associated integer value in a HASH table. Its use
within the XMP input data routines is to record row
or column names and their associated row or column
indicies. Once a key has been recorded, its asso-
ciated index may be retrieved via a call to FINDH.

Called by: DICOLS, DIROWS

Calling sequence: CALL PUTH (K, V, FULL, BIGN, TKEY, TVALUE)

Input parameters: K - the key of this item (defined as Character*8)
V - the associated value (integer)
BIGN - the size of the HASH table (should be 4 prime
number for optimum performance)
TKEY - the HASH table, i.e. an array to store the
keys in, dimensioned (O:bign-1)
TVALUE - an array to store the associated values in,
also dimensioned (O:bign-1).

Output parameters: FULL - .TRUE. if the HASH table is full, i.e., this
item can't be added

Calls: PROBE

Files: none

3-71

m i • -' m " ' " p

W

CAA-D -82-4

Common blocks: none

Included text: none

(27) Name. SMENAT (subroutine)

Purpose: This subroutine will read the solution of selected
menus from unit 26, and write two files for use by
subsequently called subroutines. The first of these
files is written to unit 27 and consists of a listing
of the menus and their associated recipes. The sec-
ond file is written to unit 28 and consists of the
menus and their associated attributes.

Called by: POSTPR

Calling sequence: CALL SMENAT

Parameters: none

Calls: GETMEN

Files: Input: 14, 26
Output: 27, 28

Common blocks: none

Included text: none

(28) Name. STARTH (subroutine)

Purpose: This routine initializes a hash table to its initial
lempty' state. STARTH must be called before any
other use of the hash table, i.e., calls to PUTH,
FINDH, or PROBE.

Called by: DICOLS, DIROWS

Calling sequence: CALL STARTH (BIGN, TKEY)

Input parameters: BIGN - the size of the hash table
TKEY - the array of keys, defined as character*8 and
dimensioned (O:bign-1)

Calls: none

Files: none

3-72

CAA-D-82-4

Common blocks: none

Included text: none

(29) Name. SUMNRY (subroutine)

Purpose: This subroutine will display a summary of a portion
of the menu attribute file for those menus selected
for inclusion in the solution.

Called by: POSTPR

Calling sequence: CALL SUMMRY

Parameters: none

Calls: none

Files: Input: 28
Output: 6

Common blocks: none

Included text: none

(30) Name. TRMCOD (subroutine)

Purpose: This subroutine will count the termination codes in
the solution file and check for infeasible or un-
bounded solutions.

Called by: POSTPR

Calling sequence: CALL TRMCOD(KOUNT, IERRT, IOLOG)

Parameters: KOUNT - Counter for feasible terminations

IERRT - Error flag
IOLOG - FORTRAN file nimber for XMP output

Calls: none

Files: Input: 8
Output: 6

* Common blocks: none

Included text: none

37

3-73

ep

CAA-D -82-4

(31) Name. XGOAL (subroutine)

Purpose: This routine performs one iteration of the sequential
linear goal programing algorithm. XGOAL accomplishes
this in four steps. First, the routine changes the
objective function to the new objective row. Second,
it changes the old objective row, and a list of rows
associated with the new objective function, from
nonconstraining to equality type constraints. Third,
it sets the right hand side of the old objective row
equal to the optimal objective function value from
the previous linear programing problem. And finally,
it invokes XMP to solve the new linear programing
problem, starting with the existing basis from the
previous problem.

Called by: XMAIN

Calling sequence: CALL XGOAL (B, BASCB, BASIS, BASLB, BASUB, BLOW,
BNDTYP, BOUND, CAND, CANDA, CANDCJ, CANDI, CANDL,
COLA, COLI, COLMAX, FACTOR, IEROW, IOERR, IOLOG,
ITERI, ITER2, LENMA, LENMI, LENMY, LEROW, LOOK, M,
MAPA, MAPI, MAXM, MAXN, MEMORY, MINMAX, N, NEROW,
NEWOBJ, NSTRUC, NTYPE2, OLDOBJ, PICK, PRINT, ROWTYP,
STATUS, TERMIN, UNBDDQ, UZERO, XBZERO, YQ, Z)

Input parameters: B - the right-hand side array
BLOW - contains the lower limit for each two-sided
constraint
BNDTYP - bound type indicator
BOUND - is the common upper bound when BNDTYP=2
COLMAX - the max number of non-zeros in any matrix
column
FACTOR - the refactorization frequency
IEROW - an array of indexes of rows which should be
changed to equality constraints
IOERR - the 10 unit for error messages
IOLOG - the 10 unit for log information
LENMA - the length of the MAPA array
LENMA -the length of the MAPI array
LENMY - the length of the MEMORY array
LEROW - the length of the IEROW array
LOOK - the number of columns to be considered during
construction of the candidate list
M - the number of constraints
MAPA - XMP data map array
MAPI - XMP data map array
MAXM - the maximum number of constraints
MAXN - the maximum number of variables
MEMORY - the main storage array

3-74

CAA-D -82-4

MINMAX - +1 to maximize, -1 to minimize
NEROW - the number of entries in the IEROW array
NEWOBJ - the index of the row for the new objective
function
NSTRUC - the number of structural variables
NTYPE2 - number of upper bounded constraints, if
bndtyp=2
OLDOBJ - the index of the row of the old objective
function
PICK - the size of the candidate list
PRINT - specifies the level of printing desired
ROWTYP - array of row types
Z - the value of the old objective function

Output parameters: ITER1 - number of phase 1 SIMPLEX iterations
ITER2 - number of phase 2 SIMPLEX iterati ns
N - the total number of variables (including slacks,
artificials)
STATUS - array of variable statuses
TERMIN - SIMPLEX algorithm termination c e
UNBDDQ - if the problem is unbounded, th index of
the variable about to enter the basis |
UZERO -array of dual variable values
XBZERO - array of basic variable values
Z - the value of the objective function

Parameters that are used as work areas:
Arrays: BASCB, BASIS, BASLB, BASUB, CAND, CANDA,
CANDCJ, CANDI, CANDL, COLA, COLI

Calls: XADDUB, XPRIML, XSETC, XSTART

Files: none

Common blocks: none

Included text: none

(33) Name. XMAIN (main program)

Purpose: This is the main program for the solution algorithm.
It controls the logical flow of operations and in-itializes parameters. This program was modified from

the original XMP demonstration program to incorporate
an algorithm for sequential linear goal programing.
The programer should refer to Appendix B for a com-
plete description of variables.

Called by: Not applicable.

3-75

CAA-D-82-4

Calling sequence: Not applicable.

Parameters: none

Calls: DINPUT, FINDH, LSTHDR, LSTOBJ, POSTPR, XGOAL, XMAPS,
XPRIML, XPRINT, XSETC, XSLACK

Files: Input: 5, 19
Output: 8

Common blocks: see DIPROC

Included text: DIPROC

(33) Name. XPRINT (subroutine)

Purpose: This routine prints out the current basic solution
and the objective function value for the XMP linear
programing problem. XPRINT is one of the original
XMP routines written by Roy E. Marsten of the Univer-
sity of Arizona, but has been modified to print col-
umn names as they appear in the input data rather
than XMP variable numbers.

Called by: XMAIN, XPHASE2

Calling sequence: CALL XPRINT(BASIS,BNDTYP,BOUND, IOERRIOLOG,
LENMA,LENMY,M,MAPA,MAXM,MAXN,MEMORY,N,NTYPE2,
STATUS,XBZERO,Z)

Input parameters: BASIS is the list of basic variables
BNDTYP - 1 means lower bound=O, upper bound = +infin-

ity for every non-free variable; 2 means lower
bound = 0, upper bound = bound for every non-free
structural variable; 3 means lower bound = 0 for
every non-free variable; 4 means both bounds are
general.

BOUND is the common upper bound when BNDTYP = 2.
IOERR is the i/o unit where error messages are to be
written.

IOLOG is the i/o unit where log information is to be
written, if requested.

LENMA is the length of the MAPA array.
LENMY is the length of the MEMORY array.
M is the number of constraints.
MAPA is a map of the data structure for the original

problem data, consisting of pointers into the mem-
__ ory array.

MAXM is the maximum number of constraints that will
be encountered during the current run; it is used
to set array sizes.

3-76

--

CAA-D-82-4

MAXN is the maximum number of variables that will be
encountered during the current run; it is used to
set array sizes.

MEMORY is the main storage array; it contains all of
the arrays for the problem data and the basis in-
verse.

N is the number of variables (total, including slacksand artificials).

NTYPE2: if BNDTYP=2, then each variable 1, 2,
NTYPE2 must either share the common upper bound
or else be a free variable; each of the remaining
variables NTYPE2+1, ... , n must either have lower
bound zero and upper bound +infinity or else be a
free variable.
STATUS: an indicator for each variable: 0 means
the variable is out at its lower bound; k means
that this is the k-th basic variable; -1 means that
this variable is out at its upper bound; -2 means
that this is a free variable; once in the basis it
never leaves; -3 means that this is an artificial
variable; once it leaves the basis it never re-en-
ters; -4 means the variable is locked out of the
basis at its lower bound; -5 means the variable is
locked out of the basis at its upper bound. NOTE:
free and artificial variables always have status -2
or -3 respectively, they do not get a positive sta-
tus when they are in the basis. NOTE: super-basic
variables have positive status greater than m.

XBZERO is the array containing the values of the
basic variables and the super-basic variables.

Z is the value of the objective function.

Calls: XGETUB

Files: none

Common blocks: DIDAT3 (see DIPROC)

Included text: none

(34) Name. XSETC (subroutine)

Purpose: This routine sets the objective function of the XMP
linear programing problem equal to a (nonconstrain-
ing) row of the LP problem matrix. This is done by
retrieving each column of the matrix in turn and lo-
cating the coefficient of the specified row. (It may
be that the row is not found in the list of coeffi-
cients for a column, which means that the coefficient
in this column is zero.) XSETC then calls XSETCJ to
set the objective coefficient for that column.

3-77

U -

CAA-D-82-4

Called by: XMAIN, XGOAL

Calling sequence: CALL XSETC (COLA, COLI, COLMAX, IROW, IOERR, +LENMA,
LENMY, MAPA, MAXN, MEMORY, MINMAX, NSTRUC)

Input parameters: COLMAX - the maximum number of non-zero coefficients
in a column (and the length of the COLA and COLI ar-
rays)
IROW - the index of the row to become the objective
function
IOERR - 10 unit for error messages
LENMA - length of the MAPA array
LENNY - length of the MEMORY array
MAPA - XMP map array
MAXN - the maximum number of variables
MEMORY - the main XMP array
MINMAX - +1 if maximizing, -1 if minimizing
NSTRUC - the number of structural variables

Parameters used as work areas:
Arrays: COLA and COLI

Calls: XGETAJ, XSETCJ

Files: none

Common blocks: none

Included text: none

(35) Name. XSETCJ (subroutine)

Purpose: Given a column of the XMP linear programing problem
matrix, this routine sets the objective function co-
efficient in that column equal to a value specified
by the user.

Called by: XSETC

Calling sequence: CALL XSETCJ (CJ, IOERR, J, MAXN, PROFIT)

Input parameters: CJ - the new objective function coefficient
IOERR - io unit for error messages
J - the index of the column involved
MAXN - length of the profit array
PROFIT - the array holding the objective function
coefficients

Calls: none

3-78

CAA-D-82-4

Fi 1 es: none

Common blocks: none

Included text: none

3-5. SUMMARY. The information presented in this chapter was intended
to give the knowledgeable programer the necessary information to main-
tain, and ultimately, modify the model. The information in this chapter
should be used in conjunction with the discussion of the model structure
presented in the previous chapter and the documented source code list-
ings.

rr

3-79

P

CAA-D-82-4

APPENDIX A

STUDY CONTRIBUTORS

1. STUDY TEAM

a. Study Director

CPT(P) August C. Manguso, Analysis Support Directorate

b. Team Members

Mr. John Warren, OR Analyst
Dr. Dong Kim, Mathematician

c. Other Contributors

Ms Pat Fleming

2. EXTERNAL CONTRIBUTORS

SFC William J. Morris, US Army Logistics Management Center,
FT Lee, VA

A

iii

~A-I

-1

j

CAA-D-82-4

APPENDIX B

INTRODUCTION TO XMP

The following XMP documentation is reprinted in its entirety by permis-
sion of the author, Professor Roy E. Marsten.

Date last modified: July 20, 1981

XMP is a structured library of subroutines for experimental mathematical

programming. Development of the original version of the XMP library was
supported by the National Science Foundation under grants MCS76-01311
and MSC76-01311 A01 (1976-1978) to the Center for Computational Research
in Economics and Management Science at the Massachusetts Institute of
Technology. (At the time of the initial grant the Center was part of
the National Bureau for Economic Research, Inc.) The principal investi-
gator was Roy Marsten.

XMP is now being distributed to universities and government agencies by
the Department of Management Information Systems at the University of
Arizona and to corporations by the XMP Optimization Software Co.

A thorough introduction to XMP is contained in: The Design of the XMP

Library, Transactions on Mathematical Software, to appear December 1981.

Inquiries concerning XMP should be directed to:

Prof. Roy E. Marsten
Department of Management Information Systems
College of Business and Public Administration
University of Arizona
Tucson, Arizona 85721

Phone: (602) 626-3116

The current version of XMP uses the LA05 routines from the Harwell Li-
brary to manage an LIJ factorization of the basis matrix. The LA05 rou-
tines were written by John K. Reid. Inquiries concerning the Harwell
Library should be directed to:

Computer Science and Systems Division
AERE Harwell
Oxfordshi re, England

Reference: FORTRAN Subroutines for Handling Sparse Linear Program-
ming Bases, John K. Reid, Report AERE-R8269, January 1976.

B-1

W

CAA-D-82-4

The standard XMP tape contains three files.

File 1 System documentation and the data for a small test
problem in the form that can be read by the sample
user program.

File 2 Three different versions of the XMAPS routine and
three different versions of the six Harwell routines
(LAO5A, LAO5B, LA05C, LAO5E, MC2OA, MC2OB). The
three versions are suitable for DEC, IBM, and CDC
computers. These three versions have sufficed for
all of the computers that have been encountered so
far.

File 3 The sample user program and the 39 routines that make
up the standard XMP library.

To use the XMP library on your computer you must select one of the three
standard versions: DEC, IBM, or CDC. These versions differ in the
types of variable and array declarations that they use. These are:

DEC Double precision
Real
Integer

IBM Double precision
Real
Integer
Integer*2

CDC Real
Integer

(For example, use the CDC version on a Burroughs computer, the DEC ver-
sion on a UNIVAC computer.)

Copy the desired version of the routines in File 2, and then edit File 3
as follows.

DEC No editing is required

IBM Locate each of the 31 occurrences of the line:

The next statement should specify half-words if
possible.

Immedlately following each of these lines is an integer dec-
laration that should be changed to INTEGER*2.
NOTE: You may use the DEC version on an IBM computer but
switching to INTEGER*2 array declarations will save consid-
erable main memory space for large problems.

B-2

CAA-D-82-4

CDC Make the following global substitutions:

From To

DOUBLE PRECISION REAL
DABS ABS
D1 El
LAO5AD LAO5A
LAO5BD LAO5B
LAO5CD LA05C

NOTE: The D1 to El substitution is for format codes. The double preci-
sion versions of the LA05 routines have a D appended to their director
of the subroutines in the library. Date last modified: June 8, 1981.

There are six categories of subroutines in the XMP Library:

1) Subroutines that implement the logic of the SIMPLEX method.

2) Subroutines that serve as an interface between the SIMPLEX method
and the data structure for the problem data.

3) Subroutines that serve as an interface between the SIMPLEX method
and the data structure for the basis inverse representation.

4) Subroutines that manage the data structure for the problem data.

5) Subroutines that manage the data structure for the basis inverse
representation.

6) Subroutines that provide miscellaneous support services.

Category 1. Subroutines that implement the logic of the SIMPLEX method.

-

XBCOMP Computes the current values of the basic variables
and the current value of the objective function.

XBREDU Reduces the right-hand-side to account for the non-
basic variables which are at non-zero bounds.

XCAND Constructs the candidate list. This is the list of
attractive non-basic variables that are eligible to
enter the basis during the subsequent series of minor
iterations.

p

B-3

op

CAA-D- 82-4

XCHECK Checks the accuracy of the current primal and dual
solutions.

XCHURZR Determines the variable to leave the basis for a pri-
mal SIMPLEX pivot.

XDCHQ Determines the variable to enter the basis for a dual
SIMPLEX pivot.

XOCHR Determines the variable to leave the basis for a dual
SIMPLEX pivot.

NDOT Computes the inner product between a row vector and a
packed matrix column.

XDPH2 Executes Phase 2 for the dual SIMPLEX method.

XDUAL Top level routine for the dual SIMPLEX method.

XFEAS Starts from any given basis and finds a primal feasi-
ble basis, if one exists. This routine is used as a
Phase 1 for the primal SIMPLEX method.

XPHAS2 Executes Phase 2 of the primal SIMPLEX method.

XPIVOT Pivots the chosen entering variable into the basis
(primal SIMPLEX method).

XPRIML Top level routine for the primal SIMPLEX method.

XPTIE Resolves ties that arise during the ratio test for
the primal SIMPLEX method (XCHUZR).

XSLACK Sets up a starting basis with a slack variable for
each less-than-or-equal constraint, a surplus vari-
able for each greater-than-or-equal constraint, an
artificial variable (with both bounds zero) for each

46 equation, and a free variable for each free row. To
* be used with XPRIML (which call XFEAS) or XDUAL.

MSART Used to start the primal or dual SIMPLEX method from
any given basis.2

XUPDX Updates the primal solution andI the objective func-
* tion value.

XZCOMP Computes the current value of objective function.

U]

B- 4

L

CAA-D-82-4

FCAND The fast version of XCAND: accesses the problem data
structure directly.

FDCHQ The fast version of XDCHQ: accesses the problem data
structure directly.

Category 2. Subroutines that serve as an interface between the SIMPLEX

method and the data structure for the problem data.

-- -------

XADDAJ Adds a single column to the existing linear program
(calls XDATA1).

XADDUB Adds bounds for a single variable (calls XDATA 3).

XGETAJ Gets a single column from the existing linear program
(calls XDATA2).

XGETUB Gets the bounds for a single variable (calls XDATA4).

Category 3 Subroutines that serve as an interface between the
SIMPLEX method and the data structure for the basis
inverse representation. W

XBTRAN Performs the "backward transformation," i.e., row
vector * basis inverse (calls LAO5B).

XFACT Re-factors (or re-inverts) the current basis (calls
LAO5A).

XFTRAN Performs the "forward transformation,' i.e., basis
inverse * column vector (calls LAO5B).

XUPDAT Updates the current factorization (or inverse) of the
basis (calls LA05C).

Category 4 Subroutines that manage the data structure for the
problem data.

B-5

CAA-D-82-4

XDATAI Adds a single column to the problem data structure
(called by XADDAJ).

XDATA2 Retrieves a single column from the problem data
structure (called by XGETAJ).

XDATA3 Adds bounds for a single variable to the problem data
structure (called by XADDUB).

XDATA4 Retrieves the bounds for a single variable from the
problem data structure (called by XGETUB).

Category 5. Subroutines that manage the basis inverse representation.

NOTE: In this version of XMP the basis inverse is managed by the LAOS
routines written by John K. Reid at Harwell.

LAO5A Factors the basis into L and U factors (called by
XFACT).

LAO5B Performs both the "backward transformation" and "for-
ward transformation" operations (called by XBTRAN and
XFTRAN).

LA05C Updates the factorization of the basis after a column
exchange (called by XUPDAT).

/LAO5D/ A labelled common area for numerical constants.

LAO5E A list compressor (called by LAO5A and LA05C).

MC20A A sorting program (called by LAO5A).

XLAO5X An extra routine for interfacing the LAOSA routine
with XMP (called by XFACT).

Category 6. Subroutines that provide miscellaneous support services.

B- 6

CAA-D-82-4

XCONSA Sets constants in the data structure for the problem
data (called by XMAPS).

XCONSI Sets constants in the data structure for the basis
inverse representation (called by XMAPS).

XLOG Prints log information after each pivot, if re- 2
quested.

XMAPS Sets up the map of the data structure for the problem
data (MAPA) and the map of the data structure for the
basis inverse representation. (NOTE: this must be
the first XMP routine called by the user program.)

/XMPCOM/ A labelled common area for numerical constants.

XPRINT Prints the current basic solution and objective func-
tion value.

XSTOP Provides for centralized handling of all fatal er-
rors.

WRITING A USER PROGRAM

To use XMP you must write a driver program of your own. Refer to the
sample user program, XDEMO (this is XMAIN in the menu planning model),
while reading these instructions. XDEMO may be modified and expanded to
meet your particular needs.

The user program must do the following:

1) Set MAXM, MAXN, MAXA, COLMAX, PICK, and LENMY to suitable values.
These values fix the sizes of the necessary arrays. The setting of
LENMY will be explained in the DETERMINING MAIN MEMORY REQUIREMENTS
section below. p

MAXM is the maximum number of constraints that will be encountered
during the current run.

MAXN is the maximum number of variables that will be encountered dur-
ing the current run.

MAXA is the maximum number of non-zeros that will be encountered in
the whole constraint matrix during the current run.

p

B-7

CAA-D-82-4

COLMAX is the maximum number of non-zeros that will be encountered in

any single matrix column during the current run.

PICK is the size of the candidate list used for multiple printing.

LENMY is the length of the memory array.

MEMORY is the main storage array . . . it contains all of the arrays

for the problem data and the basis inverse representation.

When setting MAXN and MAXA, be sure to allow the logical (slack, sur-
plus, artificial, or free) variable that will be generated by XSLACK for
each constraint. That means MAXM extra variables and MAXM extra non-ze-
ros. Set PICK to the largest value that will be used during the current
run.

2) Declare and dimension all of the necessary XMP arrays. The actual
dimensions used must correspond to the settings in 1) above.

See the XMP dictionary for the definitions of these arrays.

Double precision arrays (or real, as appropriate):

Array Number of entries

B MAXM
BASCB MAXM
BASLB MAXM
BASUB MAXM
BETAR MAXM (needed for dual SIMPLEX method)
BLOW MAXM (needed for two-sided constraints)
CANDA COLMAX, PICK
CANDCJ PICK
COLA COLMAX
MEMORY LENMY
UZERO MAXM
XBZERO MAXM
YQ MAXM

Integer arrays:

Array Number of entries

MAPA 20
MAPI 20

B-8

CAA-D-82-4

INTEGER*2 arrays (or INTEGER, as appropriate):

Array Number of entries

BASIS MAXM
CAND PICKCANDI COLMAX, PICK
CANDL PICK
COLI COLMAX
ROWTYP MAXM
STATUS MAXN

3) Set IOERR, IOLOG, PRINT, FACTOR, and LOOK to appropriate values

(these values may be changed at any time desired).

IOERR is the I/O unit where error messages are to be written.

IOLOG is the I/O unit where log information is to be written, if re-
quested.

PRINT specifies the level of printing desired:

1 means termination condition messages (optimal solution, un-
bounded, infeasible);

2 means print the objective function value after every basis re-
factorization;

3 means log information at every iteration.

FACTOR LOOK is the number of matrix columns to be scanned during
construction of the candidate list . . . controls partial pricing.

4) Call XMAPS to set the pointers in MAPA and MAPI. These are the maps
of the problem data structure and the basis inverse data structure,
respectively.

5) You are now ready to use the remaining XMP routines. A typical se-

quence, as in XDEMO, would be:

XADDAJ - to add the columns of the linear program,

XADDUB - to add upper and lower bounds on the variables,

XSLACK - to set up a starting basis,

XPRIML - to solve the LP by the primal SIMPLEX method,

XPRINT - to print out the solution.

B-9

CAA-D-82-4

NOTE: The convention in XMP is to maximize the objective function. If
you want to minimize CX, the fact that MIN CX = - MAX (-C)X, that
is, enter the negative of each objective function coefficient.
Then, after the optimal solution has been found, just take the
negative of the objective function value and the negative of each
dual variable (see XDEMO or XMAIN in menu planning model).

NOTE: The execution speed of XMP for any given problem will be strongly
affected by the values you choose by LENMY, LOOK, and PICK.
LENMY determines how much space is available for the factors of
the basis. If LENMY is too small, then the basis factors will
have to be compressed too often, which slows down execution.
LENMY should be chosen to give a growth factor (computed and
printed out by XMAPS) of about 7.0. LOOK is the number of col-
umns priced out in order to set up a candidate list of attractive
non-basic variables. LOOK should be between 50 and 150, depend-
ing on the size of the problem. PICK is the number of attractive
non-basics that are placed in the candidate list. PICK should be
between 3 and 8 for most applications. Execution speed and sta-
bility are also effected by the value you choose for FACTOR, the
re-factorization fequency. FACTOR = 50 is reasonable for most
problems.

NOTE: Individual matrix columns are passed to XMP through the XADDAJ
routine. What is actually passed is the number of non-zero en-
tries, a list of the non-zero entries, and a list of the corre-
sponding row numbers. The non-zeros do not have to be in order,
i.e., the row numbers do not have to be increasing.

NOTE: XSLACK will add one logical (slack, surplus, artificial, or free)
variable for each constraint. You do not have to provide these
logical variables yourself. You do have to set the ROWTYP and
STATUS arrays before calling XSLACK. The right-hand-side ele-
ments do not have to be non-negative.

NOTE: If your model contains two-sided contraints (ROWTYP = 2) (BLOW <
- AX < = B), then you must provide an extra array, BLOW(MAXM),
which is dimensioned the same as the usual right-hand-side,
B(MAXM). You must also use BNDTYP = 3 or 4.

NOTE: If your model contains free variables (lower bound = -infinity,
upper bound = +infinity), other than those introduced by XSLACK
for free rows (ROWTYP = 2), then you must pivot them into the ba-
sis yourself. You may use XPIVOT to do this. A safer procedure,
however, would be to replace each of your free variables by a
difference of two non-negative variables (see any standard LP
text).

B-10

CAA-D-82-4

DETERMINING MAIN MEMORY REQUIREMENTS A 8

On a control data machine, where everything is in terms of whole words,

the amount of array storage used is given by:

CDCLEN = LENMY + 9*MAXM + MAXN + 2*COLMAX + 2*COLMAX*PICK + 3*PICK + 40
r

In words, where LENMY is expressed in words (not including BETAR or
BLOW).

On an IBM machine with double words and half words as well as whole
words available, the amount of storage used is given by:

IBMLEN = 8*LENMY + 68*MAXM + 2*MAXM + 10*COLMAX + 10*COLMAX*PICK +
12*PICK + 160

In bytes, where LENMY is expressed in double words (not including BETAR
or BLOW)

On a machine such as the DEC, with double words (,r single words for real
numbers but without INTEGER*2, we have:

DECLEN = (1/2)*LENMY + 16*MAXM + MAXN + 3*COLMAX + 3*COLMAX*PICK +
4*PICK + 40

In words, where LENMY is expressed in double words (not including BETAR
or BLOW)

Setting LENMY: The MEMORY array will hold the data structure for the
problem data and the data structure for the basis inverse representa-
tion. In the current version of XMP, these data structures are as fol-
lows:

Problem data

* Array Type No. of entries

LOWERB REAL MAXN if BNDTYP = 4;
0 otherwise

UPPERB REAL MAXN if BNDTYP = 3 or 4;
0 otherwise

* PROFIT REAL MAXN
ACOEFF REAL MAXA
COLPNT INTEGER MAXN + 1
ROWNOS INTEGER*2 MAXA
MAXA INTEGER I
MAXN INTEGER 1
MAXM INTEGER I

B-11

4p

CAA-D-82-4

Basis inverse (J. K. Reid)

Array Type No. of entries

G DOUBLE PRECISION 1
U DOUBLE PRECISION I
A DOUBLE PRECISION 1A
W DOUBLE PRECISION MAXM
IP INTEGER MAXM,2
IND INTEGER*2 IA,2
1W INTEGER*2 MAXM,8
IA INTEGER 1

(DOUBLE PRECISION is replaced by REAL and INTEGER*2 by INTEGER, as ap-
propriate.)

Note that the original problem data (LOWERB, UPPERB, PROFIT, and ACOEFF)
are held in single precision even if the computations are to be done in
double precision. This is almost always adequate.

Reid uses the A and IND arrays to hold the factors of the current basis.
The maximum amount of space that will be needed for these factors is un-
predictable. The user should make LENMY as large as possible. The
XMAPS routine will compute the amount of space required for all of the
fixed length arrays and then set IA so as to allocate all of the remain-
ing space to the A and IND arrays. As a rule of thumb, LENMY should be
large enough so that we get

IA > = 4*DENSE*MAXM**2

where DENSE = MAXA / (MAXM*MAXN) is an estimate of the density of the
average basis.

Therefore, on a Control Data machine, we should take (assuming BNDTYP =

1 or 2):

L NMY > = 11*MAXM + 2*MAXN + 2 MAXA + 12 DENSE*MAXM**2

*e where LENMY is in words (add MAXN words if BNDTYP = 3 or 2*MAXN words if
BNDTYP = 4).

On an IBM machine we should take (assuming BNDTYP = 1 or 2):

LENMY > = MAXN + (3/4)*MAXA + 4*MAXM + (3/2)*(4*DENSE*MAXM**2)

B-120"

CAA-D-82-4

where LENMY is in double words. (NOTE: in the IBM version XMAPS rounds
MAXA, MAXM, nad MAXN up, If necessary, so that they are multiples of 4.)
(Add MAXN/2 double words if BNDTYPE = 3 or MAXN double words if BNDTYP =

4.)

For the DEC we should take (assuming BNDTYP = I or 2):

LENMY > = 6*MAX + (3/2)*MAXN + MAXA + 8*DENSE*MAXM**2

where LENMY is in double words. (Add MAX/2 double words if BNDTYPE = 3
or MAX double words if BNDTYP = 4.)

Rather than using the formula for LENMY, you may just guess a value.
The XMAPS routine will compute and print out a growth factor, which es-
timates how much growth in the basis factors there is room for, given
the specified value of LENMY. If this growth factor is less than 3.0,
then the run will be terminated and you may increase LENMY and try
again. If the growth factor is greater than 15.0, then LENMY is proba-
bly unnecessarily large and may be reduced. A growth factor of about
7.0 is usually about right.

Dictionary of Variable and Array Names used in XMP
(date last modified: June 8, 1981)

ACOEFF is part of the problem data structure. It
contains the non-zero coefficients

B is the right-hand-side array

BASCB is an array containing the objective function
coefficients of the basic variables

BASIS is the list of basic variables

BASLB is an array containing the lower bounds on
the basic variables

BASUB is an array containing the upper bounds
on the basic variables

BETAR is used to hold row R of the basis inverse
where R is the position of the variable BASIS(R)
that is leaving the basis

BLOW contains the lower limit for each two-sided
contraint (upper limit is in R)

B-13

P

CAA-D-82-4

BNDTYP 1 means lower bound = 0, upper bound = +infinity
for every non-free variable;

2 means lower bound = 0, upper bound = BOUND
for every non-free structural variable;

3 means lower bound = 0 for every non-free
variable

4 means both bounds are general

BOUND is the common upper bound when BNDTYP = 2

CAND is the candidate list; it contains the non-basic
variables that are eligible to enter the basis
during a series of minor iterations

CANDA is a table containing the non-zero coefficients
of the columns that belong to the candidate
list

CANDCJ is a list containing the objective coefficient
for each column that belongs to the candidate list

CANDI is a table containing the two numbers corresponding
to the non-zeros of the columns that
belong to the candidate list

CANDL is a list containing the number of non-zeros
in each column that belongs to the candidate list

CJ is used to hold one objective function coefficient

COLA is used to hold the non-zero coefficients of
a matrix problem

COLI is used to hold the row numbers corresponding
to the non-zeros of a matrix column

COLLEN is used to hold the number of non-zeros in a
matrix column

COLMAX is the maximum number of non-zeros in any
matrix column.

COLPNT is part of the problem data structure.
It contains a pointer to the beginning of
the section for each column in the ACOEFF
and ROWNOS arrays

DERROR Output by XCHECK: the absolute value

of the maximum dual residual

B-14

I.

CAA-D-82-4

DFEASQ If a dual infeasible column is detected, during
the dual SIMPLEX method, then DFEASQ
is the index of the corresponding
primal variable

DINDEX Output by XCHECK: the index of the column where the
maximum dual residual occurs

DOK Output by XCHECK: .TRUE. means current solution passes
the dual accuracy test; .FALSE. means it fails

DQ is the relative profit or reduced profit of the
entering variable

DTERM is the termination code for the dual SIMPLEX
method:
1 means optimal solution found;
2 means the dual is unbounded;
3 means dual feasibility lost;
4 means the presumed optimal solution

does not satisfy the accuracy check;
5 means that it was not possible to make
a dual feasible start

DTOLER Input for XCHECK: the tolerance for the dual
accuracy check

DUNBR If the dual problem is unbounded, then
DUNBR is the row in which the unbounded
condition was detected

FACTIT is the number of iterations performed since
the last factorization

FACTOR is the re-factorization frequency

FCODE is a return code for XFACT:
1 means everything OK;
2 means some artificial variables have been

inserted into the basis;
3 means storage overflow

FEAS .TRUE. if a feasible solution of the original
problem has been found; .FALSE. otherwise

INTYP +1 means the entering variable is increasing
from its lower bound

-1 means the entering variable is decreasing
from its upper bound

B-15
]

CAA-D-82-4

IOERR is the I/O unit where error messages are to
be written

IOLOG is the I/O unit where log information is to

be written, if requested

J is used to hold the index of a single variable

LAMBDA is the winning ratio from the dual ratio test

LEAVE is the index of the variable that leaves
the basis when variable Q enters,
LEAVE = Q if OUTTYP = 0, otherwise
LEAVE = BASIS(R)

LENMA is the length of the MAPA array

LENMI is the length of the MAPI array

LENMY is the length of the MEMORY array

LOOK is the number of matrix columns to be
considered during construction of the
candidate list

LOWERB is part of the problem data structure.
It contains the lower bounds on the variables
when BNDTYP = 4

LJ is used to hold the lower bound on a single

variable

LQ is the lower bound on the entering variable

M is the number of constraints

MAPA is a map of the data structure for the original
problem data, consisting of pointers into the
memory array

MAPI is a map of the data structure for the basis
inverse representation, consisting of pointers
into the memory array

MAXA is the maximum number of non-zeros that
will be encountered in the whole constraint
matrix during the current run

B-16

CAA-D-82-4

MAXM is the maximum number of constraints that
will be encountered during the current run;
it is used to set array sizes

MAXN is the maximum number of variables that will be
encountered during the current run; it is
used to set array sizes

MEMORY is the main storage array; it contains all of the
arrays for the problem data and the basis inverse
representation

N is the number of variables (total, including
slacks dnd artificials)

NTYPE2 If BNDTYP = 2, then each variable
1,2,...NTYPE2 must either share the common
upper bound or else be a free variable.
Each of the remaining variables
NTYPE2+1,...N must either have lower
bound zero and upper bound +infinity
or else be a free variable

NREJ The number of entries in the reject list
sent to XDCHR (see reject definition)

OUTTYP +1 means the leaving variable is going to its
lower bound;
-1 means the leaving variable is going to its
upper bound;
0 means the entering and leaving variables are
the same

PCODE A return code for XPIVOT. PCODE = -1
if the PIVOT column has been rejected
because the PIVOT element is too small;
otherwise PCODE is set equal to the value
of UCODE returned by XUPDAT

PERROR Output by XCHECK: the absolute value of the
maximum primal residual

PHASE is the phase, I or 2

PICK is the size of the candidate list used
for multiple pricing

B-17

B-17

CAA-D-82-4

PINDEX Output by XCHECK: the index of the row where

the maximum primal residual occurs

PIVOT is the pivot element, PIVOT = YQ(R)

POK Output by XCHECK: ,TRUE. means the current
solution passes the primal accuracy test;
,FALSE. means it fails

PPRIME is the number of attractive non-basic
variables actually placed in the candidate list;
PPRIME less than or equal to P

PRINT specifies the level of printing desired:
0 means error messages only
1 means termination condition messages;
2 means print objective function value after
each basis refactorization;

3 means log information at every iteration

PROFIT is part of the problem data structure.
It contains the objective function

PTOLER Input for XCHECK: the tolerance for the primal
accuracy check

Q The index of the entering variable

R The position of the leaving variable, i.e.,
the index of the variable leaving the basis
is BASIS(R)

REJECT A list of rows that may not be chosen as the
pivot row. This is an argument to XDCHR
and is part of the PIVOT rejection p
mechanism for the dual SIMPLEX method

ROWNOS is part of the problem data structure.
It contains the row numbers corresponding
to the non-zeros in the ACOEFF array

ROWTYP is the array of row types:
+2 means a two-sided constraint;
+1 means less than or equal to;
0 means equation;
-1 means greater than or equal to;
-2 means a free row (functional)

B-18

CAA-D-82-4

SCODE is a return code for XSTART:
1 means everything OK;
2 means the given basis was singular

STARTI is the starting column for the partial pricing
procedure

START2 is the last column considered by the partial
pricing procedure

STATUS An indicator for each variable
0 means the variable is out at its lower bound;
K means that this is the Kth basic variable;
-1 means that this variable is out at its upper

bound;
-2 means that this is a free variable--once in

the basis it never leaves;
-3 means that this is an artificial variable--

once it leaves the basis it never re-enters
-4 means the variable is locked out of the

basis at its lower bound;
-5 means the variable is locked out of the
basis at its upper bound
NOTE: Free and artificial variables always have
status -2 or -3, respectively; they do not get a
positive status when they are in the basis

TERMIN is the termination code for the primal SIMPLEX
method:
I means optimal solution found;
2 means problem is unbounded;
3 means the problem is infeasible;
4 means the presumed optimal solution does

not satisfy the accuracy check

THETA is the amount of change in the variable
entering the basis, i.e., the value of the
winning ratio from the primal ratio test

UCODE is a return code for XUPDAT:
1 means everything is OK;
2 means refactorization suggested because the
number of non-zeros has doubled;

3 means the current basis is singular;
4 means storage overflow
Refactorization is imperative if UCODE is 3 or 4.
(The current version of XUPDAT will return
UCODE = I or stop with an error message)

B-19

4p

CAA-D-82-4

UPPERB is part of the problem data structure.
It contains the upper bounds on the variables
when BNDTYP = 3 or 4

UJ is used to hold the upper bound on a single

variable

UQ is the upper bound for the entering variable

UZERO The array containing the values of the dual
variables

XBZERO The array containing the values of the basic
variables

YQ is used to hold the unpacked column that is about
to enter the basis

Z is the value of the objective function

ZNB is the objective contribution of the
non-basic variables

B 2

B-20'

CAA-D-82-4

Hierarchical Structure of XMP
(date last modified: August 27, 1980)

Subroutine Calls

XADDAJ XOATA1

XADDUB XDATA3

XBCOMP XBREDUJ, XFTRAN, XSTOP

XBREDU XGETAJ, XGETUB, XSTOP

XBTRAN LAO5B, XSTOP

XCAND XGETAJ, XDOT

XCHECK XBREDU, XGETAJ

XCHUZR XPTIE, XSTOP

XCONSA NO OTHER ROUTINE

XCONSI NO OTHER ROUTINE

XDATA1 XSTOP

XDATA2 XSTOPr

XDATA3 XSTOP

XDATA4 XSTOP

XDCHQ XGETAJ, XDOT, XSTOP

XDCHR XSTOP

MDOT NO OTHER ROUTINE

XDPH2 XDCHR, XDCHQ (or FDCHQ), XGETAJ, XFTRAN,
XUPDAT, XGETUB, XUPDX, XLOG,
XFACT, XBCOMP, XBTRAN

XDUAL XGETAJ, XDOT, XGETUB, XBCOMP, XDPH2,
XFACT, XBTRAN, XCHECK, XSTOP

XFACT XGETAJ, XLA05X, LAO5A, XSTOP

B- 21

r - :71

CAA-D-82-4

XFEAS XCAND(or FCN) DT XGE TUB, PVT
XBTRAN, XFACT, XBCOMP, XLOG, XSTOP

XFTRAN LAO5B, XSTOP

XGETAJ XDATA2

XGETUB XOATA4

XLA05X XSTOP

XLOG NO OTHER ROUTINE

XMAPS XCONSA, XCONSI, XSTOP

XPHAS2 XCAND (or FCAND), XDOT, XGETUB, XPIVOT,
1-0 .XBTRAN, XFACT, XBCOMP, XLOG, XSTOP

XPIVOT XFTRAN, XCHUZR, XUPDAT, XUPDX

XPRIML XFEAS, XZCOMP, XBTRAN, XPHAS2,
XFACT, XBCOMP, XCHECK, XSTOP

XPRINT XGETUB

XPTIE NO OTHER ROUTINE

XSLACK XADDAJ, XAOOUB, XFACT, XBCOMPS
XSTOP

XSTART XGETAJ, XGETUB, XFACT, XBCOMP. XBTRAN,
XSTOP

XSTOP NO OTHER ROUTINE

0XUPDAT LA05C ' XSTOP

XUPDX NO OTHER ROUTINE

XZCOMP XGETAJ, XGETUB, XSTOP

SFCAND XGETAJ

FDCHQ XSTOP

B-22

CAA-D-82-4

Calling Sequences for the XMP Subroutines
(date last modifiled: June 8, 1981)

CALL XADDAJ (CJ,COLACOLI,COLLEN,COLMAX, IOERR,J,LENMA,
LENMY SMAPA .MEMORY,N) 12 Arguments

CALL XADDUB (BNDTYP, IOERR,J ,LENMA,LENMY ,LJMAPAMEMORY,
UJ) 9 Arguments

CALL XBCOMP (B ,BASCB,BNDTYP,BOUND,
COLACOLICOLMAX,
IOERR,LENMA,LENMI ,LENMY,M,MAPAMAPI,
S MAXM,MAXN,MEMORY,N,
STATUS,XBZERO,Z) 21 Arguments

CALL XBREDU (B,BNDTYPIIBOUND,
COLA,COLICOLMAXI,
IOERRLENMALENMY ,MMAPA,
MAXM ,MAXN,MEMORY,N,STATUSWORK,
XBZERO,ZNB) 19 Arguments

CALL XBTRAN (IOERR,LENMI,LENMY,M,MAPI,
MEOYRW 8 Arguments

CALL XCAND (BASIS,CAND,CANDA,CANDCJ,CANDI,CANDL,
COLACOL ICOLMAXI
IOERR,LENM,LENMY,
LOOK,M,MAPA,MAXMMAXN,MEMORY,N,
PICK,PHASE ,PPRIME,STARTI,START2,
STATUSUZERO) 26 Arguments

CALL XCHECK (B,BASIS,BNDTYP,BOUND,
COLA ,COLICOLMAX,
nERROR,DINDEX,DOK,DTOLER,
PERROR,P INDEX,POK,PTOLER,

STATSUEROWORKXBZRO)28 Arguments

CALL XCHUZR (BASIS,BASLBBASUB,
INTYP, IOERR,LQ,M,MAXM,MAXN,N,OUTTYP,
PIVOT,Q,R ,STATUS,THETA,UNBDD,UQ,
XBZERO,YQ) 19 Arguments

CALL XDCHQ (BETAR,COLA,COLICOLMAX,
OFEAS,INTYP,IOERR,LAMBDA,
LENMA ,LENMY ,MAPA,MAXM,MAXN,MEMORY,N,

4 OUTTYP,P IVOT,Q,STATtJS,DUNBDD,
IJZERO) 21 Arguments

8-23

CAA--82-4

CALL XDCHR (BASLB,BASUB,GRIOERR,MMAXM,
NREJ ,OUTTYP,R ,REJECT,XBZERO) 11 Arguments

CALL XDOT (COLA,COLI ,COLLENCOLMAX,
*MAXM,ROWZDOT) 7 Arguments Fl

CALL XDPH2 (B ,BASCBBASIS ,BASLB ,BASUB,
BETAR ,BNDTYP ,BOUND,
COLA,COLICOLMAX,
DFEASQ,DTERMDUNBRO
FACTIT,FACTOR,IOERR,IOLOG, ITER,
LENMALENMI ,MMAPAMAPI,
MAXM,MAKNMEMORY ,N,tTYPE2,PRINT, 3 ruet
STATUSUZERO,XBZERO,YQ,Z) 3 ruet

CALL XDUAL (B,BASCBBASISIBASLBBASUB,
BETAR ,BNDTYP ,BOUND,
COLA ,COLI ,COLMAX,
DFEASQ,DTERM,DUNBR,
FACTOR ,IOERR,1010G. ITER,
LENMALENMI SLENMY,
M ,MAPAMAP1I,M4AXM ,M4AXN ,MEMORY,
N,NTYPE2,PRINT,STATUS,
UZERO ,XBZERO,YQZ) 35 Arguments

CALL XFACT (BASCB ,BASIS,BASLB ,BASUBI
COLA ,COL I,*COLMAX ,FCODE,
IOERR,LENMA,LENMI ,LENMY,MMAPAMAPI ,MAXM,
MEMORY) 17 Arguments

CALL XFEAS (B ,BASCB ,BASI S,BASLB ,BASUB,
BNDTYP,BOUND
CAND ,CANDA,CANDCJ ,CAND I, CANDL,
COLACOLICOLMAX,
FACTIT,FACTOR,FEASIOERR IOLOGITER,

1 LENMALENMI ,LENMY,LOOK,MMAPA,MAPI, ~
MAXMMAXNMEMORY,N,NTYPE2,P ICK,PRINT,STATUS,
UZERO,XBZERO,YQ,Z) 40 Arguments

CALL XFTRAN (COLUMN,IOERR,LENMILENMYMM1API,
MAXM,MEMORY) 8 Arguments

CALL XGETAJ (CJ ,COLA,COLICOLLENCOLMAXO
IOERRJ3,LET4MA,LEt4Y SMAPABMEMORY) 11 Arguments

CALL XGETUB (BNDTYP, IOERR,J ,LENMA,LENMY,
LJ,MAPAMEMORY,UJ) 9 Arguments

CALL XLOG (DQINTYP,IOLOGITER,LEAVEOUTTYP,
PIVOT,Q,R,THETA,Z) 11 Arguments

B-24

CAA-D-82-4

CALL Xt4APS (BNDTYP,*IOERR,LENMA,LEN4I LENMY *
MAPA,MAPI,MAXA,MAXM,MAXN,MEMORY) 11 Arguments

* CALL XPHAS2 (BBASCB,BASIS,BASLB,BASUB,

BNDTYP BOUND,

* CAND,CANDA,CANDCJ ,CANDI ,CANDL,4
COLA,COLI ,COLMAX,
FACTIT,FACTOR,IOERR,IOLOG,ITER,
LENMA,LENMI ,LENMY,LOOK,M,MAPAMAPI,
MAXM,MAXNMEMORY,N,NTYPE2,PICK,PRINT,STATUS,
TERMIN,UNBDDQUZERO,XBZEROYQ,Z) 41 Arguments

CALL XPIVOT (BASIS,BASLB,BASUB,
DQ,INTYP,IOERRLEAVE,
LENMI,LENMYLQ,M,MAPIMAXMMAXN,MEMORY,N,
OUTTYP,PCODE,PIVOT,QR,STATUS,THETA,UNBDD,UQ,
XB3ZERO,YQ,Z) 28 Arguments

CALL XPRIML (B,BASCB,BASIS,BASLBBASUB,
BNDTYP,BOND,

* CAND,CANDA,ICANDCJ,CANDI ,CANDL,
COLA,COLI ,COLMAX,
FACTOR,IOERR,IOLOG,ITER1,ITER2,
LENMA,LENMI ,LENMY,LOOK,
M,MAPAAPI,MAXM,MAXN,MEMORY,N,NTYPE2,PICK,PRINT,
STATUS ,TERMIN,UNBDDQ,
UZERO,XBZERO,YQ,Z) 41 Arguments

CALL XPRINT (BASIS,BNDTYPIIBOUNDS
IOERR,IOLOG,
LENMA SLENMY ,M,MAPA,MAXM,MAXN,MEMORY,N ,NTYPE2,
STATUSXBZEROZ) 17 Arguments

CALL XPTIE (CPIVOT,IPIVOT,IWIN) 3 Arguments

CALL XSLACK (B,BASCBBASIS,BASLB,BASUB,BLOW,
B NDTY P ,BOUND,
COLA,COLI ,COLMAX,
IOERR,LENMA,LENMY,LENMY,M,MAPA,MAPI,
MAXM ,MAXN,MEMORY,N,
ROWTYP ,STATUS,
UZERO,XBZERO,Z) 27 Arguments

4p
CALL XSTART (B,BASCB,BASIS,BASLB,BASUB,
BNDTYP ,BOUND,
COLA ,COLI ,COL14AX, IOERR,
LENMA,LENMI ,LENMY,M,MAPA,MAPI ,MAXM,MAXN,
MEMORY ,N ,NTYPE2, SCODE ,STATUS,

4UZERO,XBZERO,Z) 27 Arguments

B- 25

CAA-D-82-4

CALL XUPDAT (IOERR,LENMI ,LENt4Y,M,t4API,I4EtORY,
R SUCODE) 8 Arguments

CALL XUPDX (BASIS,BASLB,BASUB,
DQI NTYPLQ,
M,MAXI4,IAXN,I,OUTTYP,Q,R,
STATUS,THETA,UQXBZERO,YQ,Z) 1 19 Arguments

CALL XZCOMP (BASCB,BNDTYP,BOUND
* COLA,COLI ,COLMAX,

IOERRgLENMA.LENMY ,M,MAPA,MAXM,MAXN!4EMORY,N.
STATUS,XBZERO,Z) 18 Arguments

A.4

B-26

CAA-D-82-4

APPENDIX C

UNIVAC RUNSTREANS

In general, the information contained in this manual pertains to the
version of the menu planning model that was placed into operation on the2
Burroughs B6800 computer at FT Lee, Virginia. Another version of themodel, developed at the US Army Concepts Analysis Agency, is in opera-

* tion on a UNIVAC 1100/82. The two versions are substantially the same,
although some differences were incorporated for system compatibility.
The following runstreams pertain to the UNIVAC version.

1. DATA HANDLING MODULE

a. Program file: 75DATA400.

b. Data files: 75RECIPEDAT//AUGUST. (Unit 10)
7 5ME NUDAT/ /AUGUST. (Unit 12)
75MENATTDAT. (Unit 14)
75TSARECDAT. (Unit 21)
75WRKRECDAT. (Unit 22)
75TSANODUPS. (Unit 23)
75WRKMENDAT. (Unit 24)

c. Program collection:

@MAP,E ,750DATAMOD.EXEC
IN 75DATAMOD.EXEC
IN 75DATAMOD.RECIPE
IN 75DATA4OD. INSREC
IN 75DATAMOD.LSTREC
IN 75DATAMOD.LOCREC
IN 75DATAMOD.DELREC
IN 75DATAMOD.MODREC
IN 75DATAMOD.LODREC
IN 75DATAI4OD.INITR
IN 75DATA!40D.LDTSAR
IN 75DATAMOD.LDWRKR

IN 75DATAMOD.MENU
IN 75DATAMOD.INS?4EN
IN 75DATAMOD.LSTMEN
IN 75DATA4OD. LOCMEN
IN 75DATAMOD.DELMEN
IN 75DATAMOD.MODMEN
IN 75DATAMOD.LODMEN7i

IN 75DATAMOD.INITM
IN 75DATAMODALDTSAM
IN 75DATAMWOD.LDWRKM

* IN 75DATAMOD.HASHM~

C-i

CAA-D-82-4

IN 75DATAMOD.HASHR
IN 75DATAMOD.SORTR
IN 75DATAMOD.SORTh
IN 75DATAMOD.NENATT

* IN 75DATAMOD.GETMEN
IN 75I3ATAI4OD. GETREC

IN 75DATAIIOD.PREP

IN 75DATA4OD.XREF
I75DATAMOD.LSTXRF
I75DATAMOD.SORTX

IN 75DATAMOD.NMSORT
IN 75DATAMOD.PF
LIB LIB$*FTN1O.
LIB LIB$*SORT13.
END

d. Program execution:

@ASGA 75RECIPEDAT//AUGUST.
@USE 1O,75RECIPEDAT
@ASG,A 75MENUDAT//AUGUST.
@UJSE 12,15MENUDAT
@ASG,A 75MENATTDAT.
@USE 14,75MENATTDAT.
@ASG,A 75TSARECDAT.
@USE 21,75TSARECDAT
@ASG, A 75WRKRECDAT.
@UJSE 22,75WRKRECDAT
@ASG,A 75TSANODUPS.
@USE 23,75TSANODUPS.
@AS&,,A 75WRKMENDAT.
@UJSE 24,75WRKMENDAT
@XQT 75DATAMOD.EXEC

2. PARAM4ETERIZATION MODULE

a. Program file: 75PARAMOD.

b. Data files: 75NENATTDAT. (Unit 14)
75GPDATA. (Unit 16)V7590UNDS. (Unit 17)
75XRS. (Unit18

75XP~ORS.(Unit 19)

C-2

CAA-D-82-4

c. Program collection:

@MAP,E ,75PARAM;).E.,%EC
IN 75PARAf4OD.EXF:.

IN 75PARAMOD.h'Aii.EN
IN 75PARAMOD.U
IN 75PARN400.MGET
IN 75PARN400.G i
IN 75PARAI4OD.R
IN 75PARAMOD.F

IN 75PARAMOD. BOUNDS
IN 75PARAJ4OD.GOAL
IN 75PARAI4OD.PRIORS

LIB LIB$*FTN1O.
END

d. Program execution:

@ASG,A 75MENATTDAT.
* @USE 14,75MENATTDAT

@ASGA 75GPDATA.
@UJSE 16,75GPDATA
@ASG,A 75BOUNDS.
@UJSE 17,75BOUNDS
@ASGA 75RHS.
@USE 18,75R1IS
@ASG,,A 75XPRIORS.
@USE 19,75XPRIORS
@XQT 75PARAMOD.EXEC

3. SOLUTION MODULE

a. Program file: 75S0LLflOD. w

b. Data files: 7 5RECI PEDAT/ /AUGUST. (Unit 10)
75MENUDAT//AUGUST. (Unit 12)
75MENATTDAT. Unit 14)
75GPDATA. Unit 16)
75BOUNDS. Unit 17)
75RNS. Unit 18)
75XPRIORS. Unit 19)
Temporary Unit 9)
Temporary Unit 25)
Temporary Unit 26)
Temporary (Unit 27)
Temporary (Unit 28)
Temporary (Unit 30)

C-3

CAA-D-82-4

c. Program collection:r

@PREP 75SOLNMOD.
@MAP,E 715SOLNMOD.XMAIN
IN 75S0LWO4D.XMAIN
IN 15S01140D.POSTPR,.TRMCOD,.GETSOL,.SMENAT
IN 75SOLWO4D.HASHf,.SUMMRY.LStEN,.LSGOAL FIN 75S0L1IIOD.LSMNRC, .GEThEN,.GETREC, .HASHR

* IN 75S0LWO4D.CROSRF, .SORTX,.LSTXRF
IN 75S0LWO4D.LSTHDR,.LSTOBJ
LIB 15S011140D.
1IB LIB$*FTN1O.
LIB LIB$*SORT13.
END

d. Program execution:

@ASG ,A 75RECIPEDAT//AUGUST.
@USE 10,75RECIPEDAT
L@ASGA 75MENUDAT//AUGUST.
@UJSE 12,75MENUDAT
@ASG,A 75MENATTDAT.
@UJSE 14,75MENATTDAT
@ASG,A 75GPDATA.
@UJSE 16,75GPDATA
@ASG,A M5OUNDS.
@USE 17,75BOUNDS
@ASG,A 75RHS.
@UJSE 18,75RHS
@ASG,A 75XPRIORS.
@UJSE 19,75XPRIORS
@ASG,T 9.
taASG,T 25.
@ASG,,T 26.
@ASG,T 27.
@ASG,T 28.

*@ASG,T 30.
@XQT 75SOLMtOD. XMAIN

C-4

*l

CAA-D-82-4

APPENDIX D

BIBL !'GRAPHY

DEPARTMENT OF THE ARMY

US Army Concepts Analysis Agency (CAA)

Econometric Model for Optimizing Troop Dining Facility Operations
(The Army Army Master Menu Study), CAA-SR-82-10, November 1982

MISCELLANEOUS

Knuth, Donald E., The Art of Computer Programing, Vol 3, Addison-
Wesley, 1973

Wirth, Niklaus, Algorithms + Data Structures = Programs, Prentiss-
Hall, Inc., Englewood Cliffs, NJ, 1976

D-1

I

I

I

