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I INTRODUCTION

The central theme of our research is the recovery of information2

about the three-dimensional structure and physical characteristics of

the surfaces depicted in an image--their shapes, locations, and

photometric properties. The main obstacle to the recovery of such

information is that images are inherently ambiguous representations of

the scenes they depict. They are two-dimensional views of three-

dimensional space, single slices in time of ongoing physical and

semantic processes, and the light waves from which images are

constructed carry limited information about the surfaces from which

these waves are reflected. Consequently, interpretation cannot be based

strictly on information contained in the image; it must also involve

some combination of a priori models, constraints, and assumptions.

Our approach has been to identify and model physically meaningful

information that can be used to constrain the interpretation process.

The models we have developed fall into two categories: those that can be

used to reconstruct and label scene content directly (e.g., models

relating surface geometry and the physical structure of edges to the

intensity variations visible in the image), and those models that

identify the scene context and the conditions under which the image was

produced (e.g., camera and illumination models, and models of the

semantic content of the scene). The second class of models is more

global in nature and is used primarily to constrain and control the

application of the lower-level models in the first class. I..

. .. ., . - , . . • . -. -. •.
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The research personnel involved in this program include

M. A. Fischler, J. M. Tenenbaum*, H. G. Barrow,* A. P. Witkin,*

M. R. Lowry, G. Smith and A. P. Pentland.

II RESEARCH ACCOMPLISHMENTS

Much of our early work addressed the issue of recovering surface

geometry (e.g., orientation and depth) and reflectance from the assumed

continuity of the surfaces, knowledge of the nature of the edges

bounding the surfaces, and the intensity variations measured in the

image. Surface perception plays a fundamental role in early visual

processing, both in humans and in machines. An explicit representation

of surface structure is necessary for many low-level visual functions

involved in such applications as terrain modeling, remote sensing,

navigation, manipulation, and obstacle avoidance. It is also a

prerequisite for general-purpose vision systems capable of human-level

performance in such tasks as object recognition and scene description.

References [1] and [2] describe our work on surface modeling.

Our efforts in the later stages of this project were concerned with

the issues of edge modeling (i.e., edge classification), illumination

and intensity modeling (i.e., the relationship between surface

reflectance and image intensity), and modeling of the geometric

% Now employed at Fairchild Camera and Instrument Corporation, Palo

Alto, California.

2



constraints introduced by the imaging process (camera model and

vanishing points).

We have made significant progress in the following problem areas:

(A description of this work is presented in references [3] through [6]

and Appendices A through C.)

(1) The ability to identify the physical nature of an edge
(e.g., occlusion edge, shadow edge, etc.) solely
according to its photometric appearance in a black-and-
white image. This capability is necessary for recovering
surface orientation and shape from a single image on the
basis of shading and texture variations [Ref 3].

(2) The ability to quickly locate straight parallel edges
characteristic of man-made structures (e.g., the edges of
buildings) [Ref 3].

(3) The ability to recover absolute scene intensity
information without calibration data (such as a step
wedge exposed on the image) based on knowing the identity i
of the material composition of the surfaces at a few
points in the image. This capability is necessary for
partitioning the image into labeled regions of a given
material type [Ref 3].

(4) The ability to identify the skyline in an image on the
basis of simple models of the relationship among land,
sky, and cloud brightness and texture [Appendix C].

In Appendices A and B we provide new results concerning the

question of how to recover the shape of a surface from its appearance in "*

~van image.

The relationship between image intensity and the orientation of the

surface responsible for that image is usually expressed in terms of the

image irradiance equation. This equation requires that the

3"f"



characteristics of the scene illumination and the surface material be

known. The shape-from-shading task (recovering surface orientation from

image irradiance) has amounted to solving this equation. Of the various

methods that might be used to solve this equation, relaxation-style

algorithms seem to offer the greatest potential when we are working with

natural imagery. To recover surface orientation, relaxation-style

algorithms based on the image-irradiance equation employ additional

constraints. These constraints, which are needed to supplement the

inderdetermined image-irradiance equation, usually capture the concept

of smoothness. While smoothness superficially determines the

relationship between image irradiance and surface orientation, we have

found that smoothness is too weak a concept to propagate boundary ...•

conditions and is thus equally ineffectual as a means of recovering the

required solution. J",v

In Appendix A we derive a new formulation for the shape-from-

shading task; we have traded the need to know the explicit form of the

scene-radiance function for the assumption that material scatters light

isotropically. This model is applicable to natural scenery without

additional assumptions about illumination conditions or the albedo of

the surface material (the model also demonstrates some competence even

when the scattering is not isotropic).

In Appendix B we address the question: What constraints on surface w

shape are imposed by local image data from a single image? We show that

a local analysis of image shading, with no other knowledge about the .

4
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viewed scene, may be used to estimate surface shape. Specifically, we

prove that, given a single image, the following conditions obtain:

(1) Surface orientation may be determined exactly at
umbilical points (points with equal principal curvatures)
on a Lambertian surface through a local analysis of the
image without knowledge of illumination, surface
curvature, albedo, or boundary conditions. Recovery of
surface orientation allows local determination of
illuminant direction, surface curvature, and the product
of illuminant intensity and surface albedo.

(2) The image intensity, together with its first and second
derivatives at each image point, are identical to those
of an imaged Lambertian umbilical point with unique
orientation, curvature, (overhead) illumination and
product of albedo times illumination intensity. This
implies that it is impossible for any local analysis to
determine whether or not (a) a surface is Lambertian, and
(b) the principal curvatures are equal.

When a person views a scene, he has an appreciation of where he is

relative to the scene, which way is up, the general geometric

configuration of the surfaces (especially the support and barrier

surfaces), and the overall semantic context of the scene. The research

results we have described can provide similar information to constrain

the more detailed interpretation requirements of machine vision (e.g.,

such tasks as stereo compilation and image matching).

4V
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ABSTRACT

Local analysis of image shadiL in the absence of prior knowledge about the viewed
scene, may be used to provide informnation about the scene. The following has been proved.

Every image point has the same image intensity and first and second derivatives as
the image of an umbilical point (a point with equal principal curvatures) on a Lambertian
surface; there is exactly one combination of surface orientation, curvature, (overhead)
illumination direction and albedo times illumination intensity that will produce a particular
set of image intensity and first and second derivatives. A solution for the unique combination
of surface orientation, etc., at umbilical points is presented

This solution has been extended by using general position and regional constraints to
obtain estimates of the following:

*Surface orientation at each image point
*Whether the surface is planar, singly or doubly curved at each point

6 * The mean illuminant direction within a region
* * Whether a region is convex, concave, or is a saddle surface.

Algorithms to recover illuminant direction, identify discontinuities, and estimate sur-
face orientation have been evaluated on both natural and synthesized images, and have been
found to produce useful information about the scene.

A0



* PENTLAND LOCAL SHADING ANALYSIS4

1. Introduction

Aspatially restricted analysis of an image is logically the first stage of any visual .,

system. This initial stage of analysis is especially important because it determines what 0.V
information will be available to the remainder of the visual system; if a rich description
of the world can be computed locally, there is a smaller computational load placed on the

remainder of the system. It is, therefore, important to acertain as much about the world as

possible at this first stage of processing.2
Biological visual systems conform to this principal. There is overwhelming evidence

that they devote a large percentage of their neurons to an initial local analysis of the image.

Thus, assessment of the limits and potential uses of a local analysis can be expected to

provide insight into both machine and biological vision problems.
What information is available locally? When we examine a small neighborhood around
an image point, we often find only small changes in shading (changes in image intensity1 ). It -

is unusual to find a contour passing through an image point. Thus, if we are to learn about
scene characteristics from local examination of an image, we must concern ourselves with
shading2 The main question posed in this paper will therefore be: What information can, or
cannot, be recovered from an unfamiliar image through a local analysis of shading? In the
following sections I shall first discuss the limitations that are inherent in any local analysis
of image shading, and then show how information about the scene can be determined by -

means of additional constraints derived from general position and the distribution of data
* within homogeneous image regions. Proofs of the various propositions are presented in the

appendix.

Previous work. Horn and his colleagues [21, [31 have analyzed the process of image forma-
tion and have developed several numerical integration schemes for using image intensity to

* solve for object shape. These shape-from-shading techniques, however, require considerable
* a priori knowledge of the scene, and they function by propagating constraint from boundary

conditions (such as those provided by smooth occluding contours) over the surface whose
* shape is to be estimated. These techniques, therefore, cannot be applied to an unfamiliar,
* unanalyzed scene and do not perform the purely local analysis I wish to consider here.

Bruss [4] has addressed the question of whether shape can be derived from shading
using a purely local analysis (again with a considerable a priori knowledge of the scene
assumed). She proved that no shape-from-shading technique can yield a unique solution

* without additional constraints which, in certain restricted cases (most importantly electron

ITO avoid contusion, the term "image intensity" will be used throughout this document, rather than the
technically more correct "image irradiance," both for the flux per unit area failing on the image plane

* and for the measured image irradiance. The two may be assumed to be numerically equal; and thus the
distinction has little significance for the task at hand.
2 For the purposes of this paper we shall restrict our attention to shading, because the problem ot estimating
shape from local texture information has already received much attention, e.g., 1171 and (181.
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Normal N

Viewer V

Figure 1. A simnple model of Image generation. N is the surface normal, L the illumination
direction, V the viewer's direction. If X is the flux emitted toward the surface, p the average reflectance of
the surface, and we assume distant light source and a Lambertian reflectance function for the surface, then
the image intensity I is given by I -pX(N -L).

micrographs), may be provided by the bounding contour of the surface. Bruss, however,
dealt mostly with the question of what cannot be obtained from an analysis of shading;
the question of what can be accomplished with a local analysis of shading was not fully
explored. It is this, consequently, that we discussed below.

A. Image Formation

Before we can make quantitative statements about the limitations or usefulness of
a local analysis of shading, we must first develop a mathematical model of the image
generation process. Figure 1 shows a simple model of image generation: a distant point-.
source illuminant at direction L, a patch of surface with surface normal N, and a viewer
in direction' V. We will assume orthographic projection; note, however, because the model

4 is purely local orthographic and perspective projection are identical except at points of
discontinuity.

The surface normal N, the viewer's direction V and the illuminant direction L areF* unit vectors in Cartesian three-space. As they are unit vectors, two parameters suffice to
specify them, the third being determined by the constraint that they have unit magnitude.
Two parameters that are often chosen are the slant or and the tilt r. The tilt of a surface
is the image-plane component of surface orientation and is equal to tan'(YN/XN), where
XN and VN are the z and V components of the surface normal. The slant of the surface is
the depth component of surface orientation and is equal to cos 1 I(zN), where ZN is the z
3AII boldface variables (e.g., N, L, p etc.) represent three- dimensional vectors (z, y, z), all other variables
are scalars. The (z, y) plane is taken parallel to the image plane, so that V -(0, 0, 1).
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component of the surface normal.

The image intensity I is in general given by

I= pX(N . L)R(N,L,VXN -

where p, the albedo, is the portion of incident light that is reflected, X is the amount of light

incident upon the surface and R(N,L,V) is the reflectance function, which describes how
much of the reflected light leaves in each direction. The amount of incident light reflected in
the viewer's direction V is a function of the illuminant direction L and the surface normal
N. The term (N .L) describes the amount of light incident upon the surface, while the term
(N V)- 1 describes the foreshortening that occurs during projection into the image4 . A
Lambertian reflectance function, an idealization of rough, matte surfaces, is defined as

R(N,L,V) == N-V

which is proportional to the reciprocal of the foreshortening caused by the projection term.
Thus, for a Lambertian surface the reflectance function and the effect of projection cancel
each other, and the equation for image intensity becomes

I == pX(N-L) (1)

Thus, the assumption of a Lambertian reflectance function is equivalent to the assumption
that the scattering of incident light is isotropic. We shall assume a Lambertian reflectance
function.

Generality of the assumptions. The assumption of a distant point-source illuminant
and a Lambertian reflectance function is not as restrictive as it might at first seem. We
note, for instance, that for a Lambertian surface any constant distribution of illumination
is equivalent to a single distant point-source illuminant; this follows from application of the
mean value theorem. Because we are concerned only with local analysis, the requirement
that the distribution of illumination be constant is almost trivially met6 . Therefore, local '
inferences derived with this single-illuminant/ Lambertian model will generally be valid
whenever the surface scatters incident light in an isotropic manner, regardless of the actual
distribution of illumination.

B. The Derivatives Of Image Intensity w

The image intensity I and the surface normal N are different at each point (z, V) in
the image, and thus are perhaps better written l(z, y) and N(z, y). However, when they are
discussed at a particular point P, they will be written as simply I and N. Similarly, we
shall write dl and dN to designate the first derivative of image intensity and the surface

* normal, respectively, at a point P in the direction (dx, dy). The partials of I, N, and other

variables will be denoted by subscripts, i.e., I = 81/z and N. = aN/y. -7
41n other terminology, N - L is equal to the cosine of the incident angle, and N . V is equal to the cosine
of the exitent angle.

'Only illumination near the 'horizon" of the surface patch causes a problem; in this case there is some

self-occlusion and thus somewhat different illumination at neighboring points.

4
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If we are examining a small, homogeneous region of an image, it is reasonable to
assume that the illumination and albedo of the surface change very little, and so we may
treat L, p, and X as constants. If we also assume a Lambertian reflectance function, so that
Equation (1) applies, then

dI- d(p(N. L))= p(dN. L)+ pX(N-dL)= p),(dN. L) (2)

The term (N -dL) is zero because L was assumed constant. Similarly, the second derivative 2
of image intensity is

d2 1 d(pX(dN- L)) pX(d 2N • L) + pX(dN • dL) --pX(d2 N • L) (3)

Thus, the second derivative of image intensity depends upon the second derivative of the
surface normal, just as the first derivative depended upon the first derivative of the surface
normal.

U. Local Shading Information: Limitations And Potential

Before we can know what is possible to accomplish with local shading information, it
is important to characterize what cannot be done. The following proposition describes the
fundamental limitation which is inherent to any local analysis of image shading:

Proposition 1. The image of a Lambertian umbilical point (a point with
equal principal curvatures) can produce any combination of image intensity I
and derivatives I., IV, I.., Iv and I.

This proposition says that when we view a point on a surface, regardless of what the
actual surface curvatures are or what the actual surface reflectance function is, the resulting
image point always looks like an umbilical point on a Lambertian surface. This proposition
implies, therefore, that it is impossible for a local analysis of the image to determine
unambiguously whether a surface is Lambertian and whether the principal curvatures are
equal; there will always be the possibility that the observed point is an umbilical point on a
Lambertian surface. We cannot resolve these ambiguities by resorting to higher derivatives
of image intensity because, although more measurements are obtained by measuring the
higher derivatives, each additional derivative brings in more unknowns than measurements.

We can see by the following argument that this proposition is likely to be true.
Consider that at each point in an image we can measure the intensity, and its first and
second derivatives to obtain six independent measurements, which are I, I,, IV, I,., IY,
and ],,. To specify the image intensity of an umbilical point on a Lambertian surfaces

requires six independent parameters: r the surface tilt 7 , o the surface slant s R the radius
of curvature, (Ll, 12, /i - _2- 122) the illuminant direction, and pX the surface albedo times
illuminant intensity. Solving for these six unknowns requires at least one measurement for

eThe set of all possible images of umbilical points is obtained by considering surfaces or the form z(x, i) -

VR 2 
- Z2 - V2 for particular values of R > 0, R > z>x -R, R > V -R.

7 Tilt is the image-plane component of surface orientation.

aSlant is the depth-component of surface orientation. W
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each unknown; thus, the measurement of intensity, first and second derivatives can at most
establish the six parameters required to specify a Lambertian umbilical point. No additional

7. measurements are available to determine whether the surface curvatures are unequal or
whether the reflectance function is Lambertian.

Proposition I leaves open the possibility that there may be a great many combinations
of surface orientation, curvature, etc., corresponding to each combination of image intensity
and its derivatives. If the equations for image intensity were linear, there would be exactly
one combination of the six parameters that would correspond to the observed measurements.
Although the equations are not linear, the following proposition shows that there are only
two possible combinations of these factors that will yield a particular combination of image
intensity and derivatives.

Proposition 2. Given the image of an umbilical point on a Lambertian
surface with image intensity I and derivatives I., Iy, I,,, Ijy and I,y there are
two possible combinations of surface orientation, curvature, illuminant direction
and surface albedo times illuminant intensity, one with the illuminant direction
above the line of sight, the other exactly opposite surface tilt and illuminant
tilt.

Thus, the ambiguity present in local image shading is not much greater than was
evident from the first proposition; there is only the additional ambiguity that arises from
a symmetry involving the illuminant direction and the tilt of the surface. This symmetry
results in the interrelation of the direction of illumination and the convexity of the surface;
if the illuminant direction is taken to have the opposite tilt (e.g., from above the line of
sight to below it) the convexity of the surface will reverse. Therefore, one cannot determine
the convexity of the surface unless something is known about the illuminant direction [II, lim

Using propositions 1 and 2, we can produce an exhaustive characterization of the
limitations of any local analysis of shading. A local analysis of shading cannot

*Determine the sign and magnitude of the surface curvatures9 e.g., whether the
surface is convex, concave or a saddle-shaped and whether or not the curvatures
are uncqual.

*Determine the surface reflectance function.
*Separate the surface albedo from illuminant intensity.

4A. Solving For Image Formation Parameters At An Umbilical Point W

The amount of information we can extract from a local analysis of shading (given that
we are viewing the image of a Lambertian umbilical point) is surprising. For such image
points we can solve for every parameter in the image formation process. This seems to
indicate that there is approximately two degrees of freedom left undetermined by the local

4 shading information when we view a point within a homogeneous region of an image: the
ratio of the surface curvatures and the degree to which the surface is non-Lambertian.

The umbilical-point case is the most complex situation in which all of the image
formation parameters may be recovered locally. The fact that there are only relatively

QWith the additional constraint provided by general position, we can determine when the curvatures are
zero. This is shown in the following section.
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*:94

Figure 2. The manner In which Image curvature 'spreads' Indicates the tilt of the
surface. This may be understood by imagining that we could observe the lines of curvature on a surface
directly. They would look just like the lines drawn in this figure. If we were looking straight down on the
surface of a sphere, the lines of curvature would appear perpendicular, as in (a). As we tilted the surface to
*,ne side, the lines of curvature would appear progressively more spread, as in (b) and (c). Different directions

of tilt cause spreading in different directions, as demonstrated in (d). The amount of spread depends on the
slant of the surface.

few additional parameters required to obtain a reasonably general model suggests that the
umbilical-point solution may provide us with a useful (albeit simplified) model of how the
various portions of the image formation process evidence themselves in the image, and may
also prove useful as a tool for analyzing image points. The umbilical-point solution for

0 surface orientation, for example, is instructive to examine. H-ow can surface orientation be
determined from local shading information?

Imagine that we could observe the lines of curvature on a surface directly. They would

look like the lines drawn in Figure 2. If we were looking straight down on the surface of aK sphere, the lines of curvature would appear perpendicular, as in Figure 2 (a). As we tilted
4the surface to one side, the lines of curvature would appear progressively more spread, as in
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Figures 2 (b) and (c). Different directions of tilt would cause spreading in different directions,
as demonstrated in (d).

We cannot observe lines of curvature on the surface directly, of course, but we can
observe the interaction of surface curvature with the illuminant in the second derivatives fo
of image intensity. The second derivative of image intensity has three components: I,, and
I.. the "curvature" of image intensity along the x and y axes, respectively, and I-, the
"spread" of those curvatures. Just as with the spread of the lines of curvature, the direction
in which the spread term is greatest is also the direction of the surface tilt. The direction in
which this spread is greatest also turns out to be the direction along which dJJ is greatest, -
and hence the following proposition:

Proposition 3. Given the image of an umbilical point on a Lambertian
surface, the tilt of the surface r is the image direction in which the second
derivative of image intensity d21 is greatest.

Thus, for Lambertian umbilical points the tilt may be determined from the second
derivative of image intensity directly, without a priori knowledge. This leaves only the
surface slant to be determined.

In Figure 2 the direction of the spread indicated the tilt of the surface. Similarly,
the amount of the spread indicates the slant (depth) component of the surface orientation.

* Measuring the magnitude of this spread relative to the total curvature (as measured by
the Laplacian) provides an indicator of the surface slant, as described in the following
proposition.

Proposition 4. Given the image of an umbilical point of a Lambertian
surface, the surface slant or is given by

=Cos k V2I +(k2 +1)I~

where k = tan- r.
The slant and the tilt propositions together determine surface orientation exactly. Note

that neither the slant nor the tilt estimate requires any knowledge of illuminant direction,
surface albedo, curvature, or illuminant intensity.

B. Unlikely Umbilical-Point Solutions: Constraint From General Position

* Although the umbilical-point solution 'will always provide us with an interpretation
that is consistent with the local image data, it sometimes yields an interpretation of an
image point that strikes us as unlikely because the umbilical-point solution requires an
unlikeiy configuration of orientation, illumination, or viewer direction.

When we observe an image point for which the umbilical-point solution requires an
*unlikely configuration, we have available the additional constraint provided by general

position to help us interpret the image data. This additional constraint allows us to reject
the umbilical-point solution and infer that something special has occurred in the image
formation process -- something that may permit further analysis.

Zero second derivative. One such case arises when one or both of the second derivatives
* are zero. When one of the second derivatives is zero, the umbilical-point solution is a
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Figure 3. Surface types. Surfaces may be classified into- five types: planar, cylindrical, convex, concave,
or saddle surface. The classification of a surface depends on whether the two principal curvatures c,, and
IV2 are positive, negative, or zero.

surface patch whose orientation is exactly perpendicular to the line of sight. When both
of the second derivatives are zero, the umbilical-point solution requires that the illuminant
direction be exactly in the image plane. These interpretations of the image point are unlikely
because precise alignment of surface orientation or of illuminant direction is necessary, i.e.,
this interpretation of the image point presupposes a violation of general position. The -"
more likely inference when a zero second derivative is observed is that one of the surface
curvatures is zero. The fact that this inference is valid (shown in the appendix) allows us
to partially classify the surface type. -.

Surface points may be classified into five types: planar, cylindrical, convex, concave,
or saddle surface. These five types are shown in figure 3. The classification of a surface
depends on whether the two principal curvatures ic1 and C2 are positive, negative, or zero: ....

9
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plane Oct 0 2 = 0

cylinder ct 79 0 r-2 = 0
convex 0c, < 0 IC2 < 0
concave X, >0 K2 > 0

saddle surface 1c > 0 K 2 < 0

One important step in identifying the type of surface is determining when the principal
curvatures are zero, as this allows us to classify the surface as planar, cylindrical, or doubly
curved.

When one of the principal curvatures is zero, the surface normal does not change as
we travel along the surface in the direction of that principal curvature. Because the surface
normal N does not change along that direction (let us specify the direction by (dx, dy)), we
know that 0 dN 0 along (dx, dy). Since

dI pXdN L (2)

we see that dl mist also be zero along (dx, dy). Unfortunately, the reverse inference is not
generally true, because dl is zero along some direction for every image point. Therefore,
we cannot infer that dN = 0 in direction (dx, dy) just because dl = 0 along that direction.

That problem does not occur when we observe dI = 0 along a direction {dx, dy).
When the surface normal does not change along a direction (dz, dy), then d2N = 0 along
(dx, dy). Since

d2 1- p\d 2N. L (3)

we see that, when d'N = 0 along (dx, dy), then d-I must also be zero along (dx, dy). For the
second derivative, the reverse inference - that d2N = 0 because d2I = 0 -- is generally
valid, for when we observe that d21 = 0 along direction (dx,dy), we can conclude that
either (1) d-N is perpendicular to L or (2) that d2N - 0. As it is unlikely that d2N
is perpendicular to L for any distance, we may legitimately conclude that, if we observe
that d21 = 0 for some distance along direction (dx, dy/), then dPN =-- 0. This implies that ,.
dN is constant along (dz, dy), and, if dN remains constant for some distance, we may use

the constraint of general position to conclude that N is also constant (this is shown in the
appendix).

We can now begin to classify the surface. If we observe that d2I = 0 along a line in the
image, then N does not change along that locus and we have a surface that is cylindrical
along that line. If we observe that d2I = 0 along a direction (dx, dy) throughout some
region in the image, then the surface is a cylinder with an axis whose projection points in
the (dz, dy) direction. Similarly, if we observe that d' =-- 0 along two orthogonal directions,
then N does not change along either direction and thus the surface is planar. Finally, if
fed10 in all directions, then the surface must be doubly curved, i.e., it is convex, concave,
or a saddle surface. We can not distinguish among these alternatives on the basis of local
shading information alone - a consequence of the previous propositions. Thus, we have
the following proposition:

1°Here the '0' in 'dN 0 0' is the zero vector.

10
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Proposition 5. The surface type at a point is partially determined by the
number of directions in which dI = 0.

d21' = 0 in no directions convex/concave/eaddle sur face

d2I = 0 in one direction cylinder

d21 == 0 in all directions plane

It is interesting to note that linear intensity gradients do not invalidate this classification
scheme.

The detection of lines along which a surface is cylindrical is of considerable importance
because it is only at such cylindrical lines that changes occur in the surface type (e.g., change
from a convex to a saddle surface). As the surface changes from one type to another, the
sign of at least one of the principal curvatures changes from positive to negative, or vice
versa. In the course of a sign change the curvature is briefly zero, and so the surface is
cylindrical along the locus where the surface changes type'1I Thus, lines along which d2I=
o are places where the surface is undergoing a change of type, and the set of such lines
divides the surface into regions that are of the same surface type.

EM. Generalization Of The Results: Regional Constraints :M

In real images, relatively few points are umbilical and relatively few surfaces are
Lambertian. Therefore, we must find some additional constraints in order to obtain
generally applicable formulas for surface orientation, illuminant direction, and so forth.
Unfortunately, the thrust of the preceding propositions is that there is no point-wise local
assumption that will generally be true; there will always be at least a two-parameter family
of possible solutions.

One way we can obtain additional constraint is to expand our view: to consider regions
* rather than single points only. Once we allow discussion of regions, we find that there are

many possibilities for obtaining a good estimate of the mean value of particular parameters
within the region, by using inferences about the range or distribution of image data within

* the region. Having obtained an estimate for the mean value of a parameter, we can then solve
for other parameters by assuming the already estimated value - i.e., by bootstrapping.

The mean value of a parameter within a region may be used either to comment upon

'0' the average properties of the region, or we may assume that the parameter is constant
0 throughout the region and thus obtain point-by-point estimates. If we comment only about

average properties, then the validity of our deductions depends solely on the accuracy of
the initial estimate. If we desire point-by-point estimates, the validity of our inferences is
also conditional upon the intraregional variance of the estimated parameter.

In the remainder of this paper I shall discuss results obtained by estimating the mean
value of one parameter within a region and then using this estimate as an assumption toW
infer other properties of the scene. Examples of both regional and point-by-point inference
will be presented. Estimates of average properties of a region, such as illumination direc-
tion and surface type (e.g., convex, concave, saddle, etc.), have been made by using the

IIf the change takes place over an extended area, both curvatures will be zero and so the surface will be
planar instead of cylindric.
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maximum-likelihood estimate of change in surface normal. Point-by-point estimates of sur-
face orientation have been made by using an estimate of the curvature within the region.

A. Finding The Illuminant Direction
. o

Estimating the illuminant direction is difficult because image data are determined by
both the surface normal and the illuminant direction. Since evidence relating to illuminant
direction is confounded with the unknown direction of the surface normal, estimating the .i
direction of illumination seems to require making some assumption about surface orientation
or its derivatives.

One useful assumption is that change in surface orientation (dN) is distributed isotropi-
cally within each image region. It is true that dN is isotropically distributed when considered
over all scenes; furthermore, there is a large class of common image regions for which dN is
isotropically distributed. This class of image regions includes all images of convex objects
bounded entirely by a gradual occluding contour12 , such as the image of a smooth pebble.

Given the assumption that changes in surface orientation are isotropically distributed,
we can devise a procedure for estimating the illuminant direction L by looking for the
regular biasing effect of the illuminant direction on d7, the mean value of dl, along various
image directions (dx, dy). The effect of the illuminant direction is to make d7, vary according
to

d7- pXdN*- L
pX(dZNZL + dRNYL + d2NZL)

where d (d2N,dPN,dN) is the mean change in dN measured in image direction
(dx, dy), and L = (XL, tL, ZL) is the illuminant direction. Under the assumption that change lop
in surface normal is distributed isotropically within a region, then, along any one image
direction (dx, dy) we find that dTN is proportional to dx, the x-component of the image
direction, that dRN is proportional to dv, the y-component of the image direction, and that
d N is zero. (see [51) Therefore,

dI = k(XLdx + VLdt) (4)

where k is a constant determined by the albedo, illuminant strength, and the variance of
the distribution of dN within the region.

Using (4), we can set up a linear regression that employs the mean of dI as measured
along various image directions to obtain a maximum-likelihood estimate of the ratio of the
unknowns XL and YL. This ratio is the tilt of the illuminant direction, which we shall
use in identifying surface type. The constant k (and from this the values of XL, YL and
ZL) can be estimated from the mean and variance of the distribution of dl along various
image directions. In this procedure, most of the information about the illuminant direction
comes from image points where there are large changes in image intensity, e.g., edges and
specularities. This seems to agree with our introspective impression as to how we determine
12This may be proved by noting that the surface normals on such an object are perpendicular to V at the
image boundary of such an object, and tbus (given that the object is strictly convex) we may form a 1-1

onto map between the surface normals of the object and the Gaussian sphere, whicu has sum dN equal to
zero.

12
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the illuminant direction. Note that this estimation procedure establishes the tilt of the
illuminant direction to within ±7r/2, leaving an ambiguity regarding illuminant position
that is identical to the human perceptual ambiguity that obtains in the absence of cast

*shadow information. 0.

* Evaluation of the illuminant direction estimator. This illuminant estimation pro-
cedure has been compared with the answers given by fifteen human observers on a series of
digitized pictures of natural objects, such as rocks and logs. The photographs of these ob-
jects were made in natural illumination, so that the imaged scenes do not have a Lambertian
reflectance function or true point-source illumination. Digitized versions of the pictures were
shown to the human subjects, so that both they and the computer procedure would receive

* exactly the same image information.
Figures 4 (a) and (b) show a comparison of human and computer estimates of illuminant

* direction. Previous experiments have documented that the fifteen subjects' mean estimates
exhibit a standard error of ten degrees in this experimental condition. Thus, the human
and computer estimates shown in Figure 4 concur to within experimental error.

Other evidence concerning the equivalence of human and computer estimates comes
* from the variance of the two estimates. The illuminant direction estimator generates a

41 confidence statistic for each image, along with its estimate. This confidence statistic is
proportional to the variance of the estimate for that image (given the assumptions of the
procedure). We can compare the variance of human estimates for a particular picture with
the variance of the m aximum-likeli hood estimate (as predicted by the confidence statistic).
This comparison is shown in Figure 4 (c). There is a correlation of 0.63 between the
variance of the two sets of estimates, significant at the p == 0.05 level. The linear regression
line relating the human and maximum-likelihood variance is shown as a dashed line; the
coefficients of the regression are significantly different from zero at the p = 0.01 level. The
significant relationship between the variance of the two estimation procedures (human and
computer) shows that, when one of them finds enough information in the image to make a
low-variance estimate, so does its counterpart.

One of the images employed is of particular importance, because it is an example of
incorrect estimation by humans of the illuminant direction. When the image of the rock
shown in Figure 4 (d) was presented to human subjects, they misestimated the illuminant
direction by about 120 degrees (it is actually illuminated from top left, not top right as all but
two of the fifteen subjects reported). The computer generated estimate, interestingly, agrees
with the human ones - even though in both cases the estimates are objectively wrong. This
image must violate the assumptions on which the human estimates of illuminant direction
are based, because the human estimate is objectively wrong. The special significance of this
case is that it also violates the assumptions of the computer estimation procedure in such
a manner that it produces exactly the same estimate as the human subjects. This is strong

S evidence that the algorithm people employ to estimate illuminant direction is similar to the
one described above.

B. Using The Illuminant Direction To Type The Surface

* Once we have an estimate of L for a region, we can use this estimate as a basis for

13
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Figure 4. A comparison of human and computer estimates of Illuminant direction In
Images of natural objects. Part (a) shows the comparison for the tilt component of the illuminant
direction, and (b) shows the comparison for the slant component of the illuminant direction. Part (c) shows
the relationship between the variance of human estimates of illuminant direction and the variance of the
c,,mputer's estimate of illuminant direction. There is a correlation of 0.63 between the variances of the two
sets of estimates, significant at the p < 0.05 level. The dashed line is the linear regression line relating the
variance of the two estimation procedures. Part (d) is a picture of a rock for which both human estimates
of illuminant direction and the maximum likelihood estimate agreed, but were objectively wrong. Actual
illumination direction is top right, not top left as reported by all but two of the fifteen human subjects.

acquiring further information about the image formation process. One important use of L

is to provide sufficient constraint to identify the surface as convex, concave or saddle - thus
completing the typing of the surface.

Figure 5 contains an example of the "crater illusion." In this image, the shadow
information is not prominent enough to determine the illuminant direction; consequently,

14
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Figure B. Estimation of surface type. (a) For a convex surface, dN measured along image direction
(dz, dy) typically points in the direction (dx, dy, 0), so that, if the image direction (dx, dy) is toward the light
source, then dl = pXdN . L is positive. For a concave surface, dN measured along image direction (dz, dy)
typically points in the direction (-dx, -dy, 0), so that dl - pXdN . L is negative. Thus, the sign of dl
in relation to the illminant direction gives an estimate of the surface convexity along that direction. (b)
The illuminant direction may be used to provide sufficient constraint to determine the qualitative type of
surface. Each type of surface has a generic appearance, which may be characterized by the angle between
ro, the direction in which dl - 0, and rL,, the illuminant direction. The distribution of ro - rL is shown
for each surface type, assuming that the change in surface normal is isotropically distributed, and taking
dl > 0 to the right of ro. It can be seen that the appearance of the different types does not overlap much,
so that a good identification of the surface type within the region may be made from this angle.

Whether dl is positive or negative along a particular direction depends upon whether
dN points toward or away from the illuminant direction L. This is illustrated in Figure 6 _
(a).

If we assume that change in surface orientation is isotropically distributed within an
image region, then, for a convex surface, dl measured in the image direction (dZ, dy) will
typically be positive if (dx, dy) is toward L. The sign of dl is positive because, for a convex W

16
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surface, dN measured along image direction (dz, dy) points on the average in the direction
(dx, dy, 0), so that dl -- pXdN L is positive. In contrast, if the surface is concave dl will
typically be negative because, for a concave surface, dN measured along image direction
(dx, dy) points on the average in the direction (-dx, -dy, 0), so that dl = pXdN- L is
negative. Thus, the sign of dl as we measure toward and away from the light source gives
us an estimate of the convexity of the surface in that direction.

Unfortunately, dN measured along (dx, dy) does not usually point precisely along either
the direction (dx, dy, 0) or (-dx, -dy, 0). Thus, even if we are given L and N, there remain
too many unknown factors to establish the surface type with certainty. Each surface type,
however, does have a typical or generic appearance. Therefore, given the tilt of L and the
assumption that change in surface orientation is distributed isotropically within a region,
we can estimate the surface type by observing the sign of dl measured toward and away
from the illuminant.

Sufficient information for estimating the surface type is provided by the angle between
ro, the direction along which dl = 0, and rL, the tilt of the illuminant direction, as the
sign of dl is positive on one side of ro, negative on the other. Thus, knowing T0 and TL
enables us to estimate the surface type. Figure 6 (B) shows the probability distribution of
r0 for each surface type given rL, the tilt of the illuminant direction 4 , and the assumption
that surface orientation is isotropically distributed within the region. As can be seen by
comparing the overlap between these probability distributions, the likelyhood of a correct
identification is quite good.

Note that the ambiguity of ±Lr/2 in the estimation of illuminant direction tilt leads
to a global convexity/concavity ambiguity. Thus, just as with human perception, when a
scene is sufficiently simple as to make L uncertain, the direction of illumination may be
"switched" by ir/2, which causes all the convexity/concavity determinations to change, as
in Figure 5.

C. Estimation Of Surface Orientation

Although in real images relatively few points are umbilical and relatively few surfaces
are Lambertian, the solution for surface tilt turns out to be fairly robust. The slant equation,
however, depends critically on equal surface curvatures and on exact knowledge of the
surface tilt. We must look further to find an estimator of surface slant that will be generally
serviceable.

When a patch of surface is slanted away from the viewer, projection foreshortening
occurs along the direction in which the surface tilts, causing an apparent increase in the
surface curvature along that direction. This results in an increase in image curvature, i.e.,
the second derivative of the image intensities. Thus, for umbilical points (where the surface
curvature is constant), the direction in which the second derivative of image intensity is
greatest turns out to be the tilt of the surface. The slant of the surface can be measured
by the amount of increase in image curvature.

The fact that increasing the surface slant results (all else being constant) in increased
image curvature suggests that a measure of image curvature might be a good estimator of
14These distributions were determined by means of a Monte Carlo simulation.
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slant. Image curvature, however, also depends on surface albedo, strength of illumination,
surface curvature, and other factors. Still, if we investigate a homogeneous, uniformly lit
region of a natural image we find that there is a good correlation between the values of a
measure of image curvature such as the Laplacian (V 2 1) and the surface slant. If the surface
albedo or the illumination changes, however, there will be large changes in the Laplacian
that have nothing to do with the surface slant - because the Laplacian values are directly
dependent upon the surface albedo p and the illuminantion strength X.

If we divide the Laplacian values by the image intensity values, we can remove the
dependence on p and X, thus eliminating two of the most important confounding factors 0
(see Equations (2) and (3)). The division of V2 1 by I also introduces a factor that is
dependent upon the illuminant direction; however, this dependency does not seem to affect
performance seriously - especially in natural imagery where there is a large amount of
diffuse and reflected light. Thus, the division ofiV21 by I yields a measure that depends
primarily upon the surface curvature and surface slant. Thus, we are led to the following
estimator of surface slant, which is analyzed in the appendix.

Proposition 6. Given the image of an umbilical point on a Lambertian
surface and R, the radius of surface curvature, the following is an estimate of
ZN, the z component of the surface normal, equal to the arccosine of the surface
slant:

ZN me-R-1~ / -2 R-2)

This estimate of surface slant turns out to be much more robust than the umbilical-
point solution for surface slant, degrading slowly as the surface curvatures become progres-
sively more unequal or as the reflectance function becomes non-Lambertian.

Estimation of R. To use this estimator, the constant R must be determined. A good
estimate of the mean R within an image region can be made by applying the constraint that
the resulting ZN must satisfy the inequality 0 > ZN _! -1 - i.e., visible surfaces must be
facing the viewer. We can determine a likely value for R by using this constraint and the
equation for ZN in light of the range of values of V 21/I within a region.

We can then assume that the estimated value of R holds throughout the region, and
thus obtain an estimate of intraregional slant. If the variance of R is small we will obtain a
good estimate of surface orientation. It can happen, however, that the value of R will vary S
considerably from point to point - unless we can place bounds on the range of R so that
its variance is reduced to an acceptable level.

Using the values of d2 I to identify planar and near-planar regions (as discussed in the

previously), we can place a bound on the minimum value of R. We can also place a bound
on the largest value of R by blurring image of the region in which slant is to be estimated 15  w
Such blurring also has the effect of removing highlights, specularities, marks, textures, and
the like, thus making the imaged surface more homogeneous and Lambertian. By bounding

"6 Noting that 1 0 G - pX(N . L) 0 G - p)\((N ®D G) • L) - pX(R • L) where G is a two-dimensional
Gaussian and 0 designates convolution, we see that a smoothed version of I may be considered the image
of a surface with normal N = N 0G = (N ®G, N, DG, N, OG), i.e., a smoothed version of the original
surface.

18
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R the variance can apparently be reduced to acceptable levels' 6 , so that one may expect
to obtain a useful estimate of surface shape within a homogeneous area.

Estimating tilt from the slant estimates. The umbilical-point solution for the surface
tilt is the direction in which dI attains its maximum. To calculate the maximum, therefore,
we require either the values of d2I along many different orientations, or quite accurate values
of" I. , Iy, and I,,. This is a fair number of image convolutions; besides, biological visual
systems seem to manage with only V21-like convolutions. It is, therefore, worth inquiring
whether there exists a method of determining d~l along a particular direction from the
values of V21.

Let us examine the convolution filters required to calculate d2I and V21, the differential
quantities used to define the tilt and slant estimates, respectively. We can calculate the
second derivative d2I in the z direction by convolving the image with d2G(z, y, a)/dz 2 , where
G(z,y,oa) is a two-dimensional Gaussian in the variables (z,y) with variance o. Similarly,
we can calculate the Laplacian V2 1 by convolving V2G(z, V, o,) with the image"8 These two
filters are closely related: if we sum d2G(z, V,o)/dz 2 and its 900 rotation, d2 G(z, V, )/dy2,

we obtain V2 G(z, y, a). We can obtain an approximation to the second-derivative filter
d2G(z, y, a)/dz 2 by using a weighted sum of several Laplacians along a straight line in the
perpendicular V direction, e.g.,

d2G(x, y, a)/dX2  E G(f, )V2G(xo, yo + c,a)

where G((,a) is a one-dimensional Gaussian, and G(zo, o,o) designates a Gaussian
centered about the point (xo, yo). In this manner we can obtain a close approximation to
d2G(z, y, iy)/dz 2 from V2 G(z, y) filters (see [151, [161). Applying this result we see that if we
were to sum the quantity V2 I/I (the input data for the slant estimator) along a straight line,
we would obtain an approximation to d2I/I. This approximation allows us to compute the

direction of maximum d2I from the slant estimation data without additional convolutions;
we need only find the orientation along which the sum of V 2I/I is a maximum.

In practice this approximation to d2l results in slightly better performance than using
the filter that corresponds exactly to d2I. The difference arises primarily in low-slant regions
where the slant estimator (and thus its gradient and this approximation) is more stable than
the straightforward tilt estimator.

Evaluation of the surface orientation estimate with an analytic model. To
ascertain how well the slant and tilt estimators might be expected to perform under ideal

"SAlthough we can reduce the variance of R, we cannot remove systematic bias. Thus, for example, if
our viewpoint and the surface shape such that the surface curvature varies inversely with the surface slant
(e.g., a parabolic solid viewed point-on), we will obtain a poor estimate of slant. It is worth noting that
people also perform poorly under such conditions. Luckily, such arrangements are unusual in natural scenes
because surface slant depends on viewpoint, unlike surface curvature; thus, the two are rarely inversely
related.
7 Possession of these three values allows analytic solution for the direction of maximum dl; the solution
is shown in the appendix.

I These convolutions may be regarded as calculating the exact values for a blurred version of the image;
or, as mentioned earlier, the blurred image may be regarded as an exact image of a smoothed version of

o the original scene.
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conditions, a computer program was written that used the analytic formulas to calculate
the derivatives for images of a wide range of ellipsoidal solids. A Lambertian reflectance
function was assumed and a wide range of illumination directions used. Three sets of solid
shapes were utilized. The first set consisted only of spheres, so as to test the validity of the 0
program. The second set consisted of ellipsoidal solids with a ratio of principal curvatures
which ranged from 2:1 through 1:1 to 1:2. The third set consisted of ellipsoidal solids with
a ratio of principal curvatures which ranged from 10:1 through 1:1 to 1:10. Thus, the third
set of solids encompassed shapes ranging from almost completely cylindrical to spherical.
Points were then sampled evenly from across the entire imaged surface and error statistics - E
computed.

A summary of results for the tilt estimator over the three sets of solids, Kc, = K2

(a sphere), KI/I2 = 2:1 (shapes between elongated eggs and spheres, i.e., common non-
cylindrical shapes) and KI/K 2 -- 10:1 (shapes between cylinders and spheres, i.e., virtually
all ratios of curvatures) is shown in Table 1. The direction of surface tilt was computed by
using the approximation to the direction of maximum d-I discussed in the appendix. All
error figures are given in radians.

Table 1. Tilt estimator over all surface slants

Ratio Of Curvatures Error: Bias, Variance Correlation
KI K2  0.00, 0.052 0.891
K I/) 2  2:1 0.00, 0.097 0.786

. K 2 = 10:1 0.00, 0.114 0.742

Although the tilt estimator of Proposition 3 performs perfectly on spheres, the ap-
proximation used here shows some small errors. This loss of accuracy is offset by the greater
stability that the approximation exhibits in low-slant regions. This table shows that as
the range of curvatures increases the performance of the estimator degrades considerably.
lowever, it is only in high-slant regions that errors in the tilt cause serious miscalculations in
determining the surface shape; therefore, if the tilt estimator performs well in these regions
the resulting shape estimate will still be accurate. Table 2 summarzes the tilt estimator's
performance in the critical high-slant regions.

S Table 2. Tilt estimator over surface slants greater than 300 "

Ratio Of Curvatures Error: Bias, Variance Correlation
_ I K2  0.00, 0.020 0.950

6 /_1K2 = -2:1 0.00, 0.066 0.835
___ _,] K2 = 10:1 0.00, 0.070 0.816

Table 2 describes the performance of the tilt estimator when the surface slant is greater
than 30*. It can be seen that the tilt estimates remain quite reasonable for both the 2:1
and the 10:1 range of curvatures. Thus, the tilt estimator makes most of its errors in
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low-slant regions, where such errors are relatively unimportant. Furthermore, if the slant
estimator provides consistent estimates, we should be able to use it to distinguish between
mo-e reliable and less reliable tilt estimates.

Table 3. The slant estimator

RaiOuvaue Error: Bias, Variance Correlation
K1  K2_ ___0.201, 0.012 0.024

V K/K=2: -0.182, 0.034 0.843[ L K/X 2 _=10:1 0.137, 0.101 0.674

Table 3 shows that the slant estimator, although biased, performs quite well on spheres.
As the range of curvatures increases, the performance of the estimator degrades - but, even
for the 10:1 range of curvatures, it is still good. For all these cases one estimate or R was
used; therefore, in all except the case of spheres the estimated R? is actually in error-

in some instances by a factor of 10. This seems to indicate that the slant estimator is
remarkably robust.

Table 4. The unbiased slant estimator

Ratio of Curvatures Error: Bias, Variance Correlation

_K1 _=_K2 0.00, 0.004 0.967
__ 2:1 0.00, 0.006 0.948

KlLr-2_ 10:1 0.00, 0.028 0.798

The bias of the slant estimator that appears in Table 3 also shows up in the equations
discussed in the appendix; where it is also explained how the bias may be removed. When
the slant estimator is made unbiased, its accuracy becomes even better, as shown in Table .

4. It turns out that the performance of the slant estimator is approximately as good for
regions of low slant as for those of higher slant. Therefore, the slant estimate produced by
this estimator is useful in assessing the tilt estimator's reliability.

Evaluation on natural images. The surface orientation estimator (the "shape algo-
rithm") has been tested on several natural images, and four such examples will be presented
here. The shape algorithm produces estimates of the surface orientation; it was found,
however, that displays of the estimated surface orientation do not allow an observer to
evaluate the performance of the algorithm adequately. Therefore, for purposes of exhibit-
ing the performance of the algorithm, the shape algorithm's estimates of surface orientation

4were integrated to produce a relief map of the surface. As these relief maps were found to

give observers an adequate impression of the estimated surface shape, they constitute the
output shown for the examples presented in this paper even though integration is not partK of the shape algorithm per e.

Figure 7 (a) shows the image of a log, together with the relief map generated from
the shape algorithm's estimates of surface orientation. Figure 7 (b) shows the image of a
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Figure 0. 'flaekerm..'s Ravine. (a) The digitized image of Tuckerman's ravine and (b) a relief map
showing a side view of the surface estimated for this image. Comparing a topographic map of the area with
the estimated surface shape, we find that the roll-off at the top of (b) and the steepness of the estimated
surface are correct for this surface. However, the relief of the lower right-hand portion of the image is
somewhat underestimated. The underestimation of relief is similar to human perception of this image.

correctly: they also underestimate the relief of the lower right portion of this image .

Evaluation On An Electron Microscope image. In addition to natural images,
the electron microscope (EM) image shown in Figure 10 (a) was selected from the book

Magnifications by D. Scharf [6]. People can use the shading information in EM images
to perceive shape, as Figure 10 (a) confirms. This is surprising because these images have
a reflectance function not found in natural scenes. This image, therefore, provides a criti-
cal test of the similarity between the human use of shading and this estimator of surface
orientation.

Ikeuchi and lorn [3] measured the reflectance function for this image and found that
the image intensities may be reasonably well described by

I- k(N "V)--

where k is approximately 0.8. If we carry out the required computations, we see that the
tilt is still the direction along which d21 is greatest, and that the z-component of the surface
normal is approximately proportional to V 2I/I, as in normal images. We can thus expect to
20 However, when people are able to view the original higher-resolution image or the entire image they

perceive the surface correctly.
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of scene characteristics or boundary conditions is used. Thus, the techniques are applicable
to "raw" images. Because no a priori information is assumed, however, the recovery of
information about the scene is necessarily imprecise.

One major problem which is inherent in obtaining shape from shading under general 0
viewing conditions is that the measured image intensities are not equal to the image ir-
radiance. Film, video camera, and other image transcription methods produce image inten-
sity measurements which are (generally) non-linear transformations of the image irradiance.
It is, therefore, surprising to note that humans have no problem in utilizing the shading in
such transformed images even though the relationship between the transformed image and "
the original image irradiance is unknown. Thus, any shape-from-shading technique which
will be as generally useful as the human capacity must function despite such transformations
of the data.

The shape-from-shading techniques described in this paper are relatively unaffected
by smooth, monotonic transformations of the image data - in marked contrast to previous S

methods of inferring shape from shading. This robustness is achived by dividing the
Laplacian of the image intensities by the intensities themselves, thus removing the primary
effects of any multiplicative terms in the image irradiance equation. The division also
removes the effocts of any linear scaling of the image intensity. Thus, division of the
Laplacian by the intensity compensates for any transformation of the image irradiance which "
is locally approximately linear.

What is the use of a reasonably accurate, but certainly not infallible, local estimate

of scene properties? Several potential applications spring to mind: to provide an initial
"guess" for a more global shading analysis [20], to constrain stereo matching by providing
a qualitative estimate of shape, or to help in the estimation of albedo. One other use that I
have begun examining is classification of the type of imaged contours. This serves as a good
demonstration of the potential usefulness of a reasonably accurate local estimate of surface
orientation.

Once we are given the location of a contour we should be able to use our local estimate
of surface orientation to acertain whether a contour is a smooth occluding contour (i.e., S
a contour formed by the surface curving smoothly out of sight, such as is found at the
edge of an image of a sphere) by checking whether our estimates of surface orientation are
appropriatc for that contour. If the surface adjoining one side of a contour has a large slaw
and a tilt perpendicular to the contour, then it is likely a smooth occluding contour. On
the other hand, if the estimated slant is small, or if the tilt is not perpendicular, then it is S
quite probably not a smooth occluding contour.

Figure 11 shows the results of applying this typing strategy to the contours extracted
from two natural images. Part (a) of this figure shows the Moore sculpture image, and
part (d) the Tuckerman's ravine ii: age. Parts (b) and (e) depict the discontinuity contours
found in these images. Parts (c) and (f) of this figure show the contours that were adjoined w
by regions whose estimated surface orientation was r"?'sistent with the contours' being a
smooth occluding contour. When we compare the cont identified as smoothly occluding
with the original images, we find that this criterion is qu._. apt in identifying the smooth
occluding contours in these images.

Biological Vision Systems. The shape-from-local-shading theory presented in this paper
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It is also well established [12], [13], [14] that many (perhaps most) cortical neurons in
the primary visual cortex have oriented receptive fields whose responses characteristics are
closely modeled by the filter deG(x, y,o,)dzX2 . Moreover, there is very strong evidence [15], _ 4

[16] that these cortical neurons are constructed by summing the center-surround receptive
fields described by Equation (5), just as was done here. Thus, not only does it seem that
the image data required by the tilt estimator is present in the mammalian primary visual
cortex, but the information is apparently derived from the image by means of the same
steps that have been employed here.

{I Acknowledgments. I would like to thank my fellow graduate students, including Dr.
Andy Witkin, Donald ltoffman, Joseph Scheuhammer and Dr. Eric Grimson, who helped
in the refinement and development of this work.
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V. Appendix

In this section the previous five propositions will be proved. The strategy of proof
will be to start with the six values for I, I., ly, Iy, ly4 and I,, and then solve for surface
orientation, curvature, illuminant direction and albedo times illuminant intensity under the
assumption that the point is an umbilical point on a Lambertian surface. This solution will,
at the same time, prove Propositions 1, 2, and 4. Some additional calculations using the
results of this solution will then prove Propositions 3, 5 and 6.

A. Solution For Umbilical Points 0

Consider the surface of a sphere of radius R:

Z(,y) = VR 2 - X2 - 1

This equation, with R > 0 R > z > -R and R > y ? -R, describes the set of all
umbilical points. From this equation we see that Z, = -xT - '/2 and Z. = -t - '/2 where
T - R 2 - X2 - y 2. Assume that the illuminant is unknown, so that we must consider all
illumination directions L = (11, 12,13). Then, if the surface is Lambertian, we have

I(x,y) = pXN.L = pX(Zz,, -1) (11 ,12 ,13 ) pX (-1 1 -Y1 2 -1 3 T 1 /2 ) (1)Z 2 + Z2--/ -- R[ -1T ! 2

V z .R

where p is the surface albedo and X is the illuminant intensity at the surface. The first and
second derivatives are then

- R ~ + zl 3
1 12 )()px4 = -(-11 + X13 T1 1 2 ) (2)

IV Rf P(-12 +} yl3T - / )  (3)

R
l, ( - T -, T 1 / 2 + y 2 13 T- 3 / 2 ) (5)

1.y = --R (XY13T 31) (6) "

Assume that the values of I, I, Iy, I,, I,, and I4y are known; we may now solve for
surface orientation, curvature, iluminant direction and albedo times illuminant intensity.
Solution

Using Equation (8) to solve for R we obtain

*pX h-- IT 3 / 2  (7)

R Zli3

Using Equations (7) and (4) we obtain
_ I ,r /2 T 2

I, -(13T
-1/2 + Z213T

- 3/2)X -(13T-1/2 + z213T - 3 -2)  - (T+-)l.y (8)

R XY13 zy
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and using Equation (7) with Equation (5) we obtain

3 PX 2 -T 3 2 +-(T y
S= +(3T 13T R = (13T + y T ),, (9) -

Using Equations (8) and (9) we see that

S2 - (10),y I,, "V

Using Equations (9) and (10) we see that

, =- ( )T+l

_, . 2 + y2

i,3 -- +
y z

I

Letting k = we see that Equation (11) is a quadratic in k, which we can solve to obtain

--(13 - Iy) 4- /(Iz, - Y,) 2 + 412 t

k I (12)21 y .... -...

From this we may obtain the surface tilt r - tan' k Thus the tilt of the sphere's surface
may be determined without knowledge of the illuminant direction, the illuminant strength,
the surface albedo or the surface curvature. To prove Proposition 3, which stated that the
tilt of the surface is in the direction of maximum d21, it remains only to show that this
solution for the surface tilt is the direction of maximum d2l. The remainder of the proof
will be presented in the following subsection.

Is this solution unique? Equation (12) yields two possible solutions:

k ..VI k :V2
Zl X2

Note that we may also solve Equation (12) for k-'; this yields

k-1 = -(I-- - Iy) + ( -4 IV) 2 + 4r, (3
k -  -.-- (13)-21zy

Equation (13) also gives two solutions, k3 and k 4 ,

-1 12k3 =kj'-1 k4 =k
Yi Y2

As the left-hand side or Equation (12) is the negative of the I't-hand side of Equation (13)
we find that either k3 = -ki "1, which leads to a contradiction, or k3 -k2'. Thus

k S -k -1= Z2
X1 2 V2
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This proves that the two solutions of Equation (12) are perpendicular. We shall see later that
this allows us to discard one of the solutions, because it results in an illuminant direction
that is behind the observed object.

Once the tilt r is known, the only remaining component of surface orientation is a,
the slant of the surface, which is equal to the arccosine of the z component of the surface
normal, ZN. Noting that

-\1 X2 y2

ZN R
S/Z, + Z2+ I-1

we find that we can use Equation (10) to determine the surface slant. We may average the
two expressions for T in Equation (10) to obtain

T = R 2  X2 -2 + IYY) 2 (z+ Y2) = zyV 21 (z2 + y2 ) (14)
2Iy 2 21zy 2

If we add z 2 + y2 to both sides of Equation (14) we then obtain

R _ ____
1  (z2+ fy2) (5

I2 XyVVJ + 2)21., +  2 (5

Thus, from Equations (14) and (15):

z2 =2 2

N R

--yV21 + (82+12)
21., 2 (16)

zitV 2 I - (z2 + y2)z,

zyV 21 + (z2 + I2)Iy

kV 2l - (k2 + 1)I,, g

kV 2I +(k2 + 1)1"

From ZN we can obtain the surface slant or cos - 1 V6N This concludes the proof of
Proposition 4. Note that there is only one solution for the surface slant, al 0 > ZN > -1.

AF With both the slant and tilt determined, we now know the surface orientation. Once again,

this has been accomplished without prior knowledge of illuminant direction, illuminant
strength, surface curvature, or surface albedo.

We may now proceed to solve for the remaining unknowns. Because we know the

surface orientation, we can compute X = x/R and -1 = y/R.

X =cos rsino y=sin r sin o,

The quantities X and -y may be thought of as the z and y coordinates normalized to the
unit sphere. Using X and -t, we may define I', a unit sphere analogue to T

T
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Going back to Equation (7) we now know all of the terms on the left-hand side except 13,
thus, let us write

p~3  _ , 3/2 
_1 73 /2pXl3 - V i,, O .V R

R zy X11"-0

and so
=- 13 1 2312R2  (17)

x It
We may then subsitute this equation into Equations (2) and (3) to give

pXl 1 --- - I R (18)

and
pXt2 I-- yR 2  tR (10)

x

If we now convert Equation (1) to the variables X, -f and F, we may substitute Equations
(17), (18) and (19) into (1) to obtain a quadratic in R:

*I A -(-zll - y12 - T 1/ 2 13 )

- pX(-xi - -y12 - r 1/ 2 13 )
-- 'r R2  IR 'r R2  ) Ir 2 R 2  (20)

7y x xI

- Xs+ -yI 1)R - " .. IX7

We may solve this for R to obtain

) ({Xlz + yz,) • '.x!: + ;I,)2  4 ,, ] 2+ X'
R 2 1 rR2 (21)

Because L is a unit vector, we may now use Equations (17), (18) and (19) to determine (p\)2:

S(PX)2 = (pXl 1 )f + (pXl 2 )2 + (p\)d3)
- IzF 3  2 +(vR 3  2 1  (I32R2) 2  (22)

,,R _I) + ,,r v)' + ,r R) ,
7 x X y

As pX > 0, we may discard the negative root of V01, so that pX is uniquely determined.
Using this value of pX, we may now substitute into Equations (17), (18) and (19) to obtain
11, 12 and 13.

Note that the signs of 11, 12 and 13 depend on the signs of X and -y. Thus, in solving
Equation (12) one of the two solutions will make Xv negative making 13 negative - which
corresponds to an illuminant behind the observed surface. Therefore, only one of the two

* solutions of (12) is physically possible.
32

* w



PENTLAND LOCAL SHADING ANALYSIS

Because Equation (12) gives only the solution for y/z, there are two possible pairs
(X,11), (X2,v2) such that k = yl/xl = Y2/X2. These two solutions are each other's
negative, i.e., x, = -X 2 , Yt = -y2; consequently, the surface tilts for these two solutions
are 1800 apart so that one corresponds to a convex surface, the other to a concave surface.
Because it is the signs of X and -y that determine the signs of I and 12, choosing one of the
(x,y) pairs results in an illuminant direction that is overhead (i.e., L . (0, 1,0) > 0), while
picking the other results in an illuminant direction that is below the viewing line. Thus, if
we specify an illuminant direction which must be overhead and in front of the illuminated
object, there is only one possible solution to Equation (12). The symmetry between the -.
signs of x, y and 11, (2 is commonly familiar as the crater illusion, in which the convexity of
the surface changes as the perceived illuminant direction shifts from overhead to below the
viewing line.

We have now solved for each of the unknown quantities, and, by so doing have shown
that to each set of measurements 1, 1=, 4y, 1.1, 1,, and Iy there corresponds exactly one

combination of surface orientation, curvature, (overhead) illuminant direction, and factor
pX for a Lambertian umbilical point. This concludes the proofs of Propositions 1 and 2.

B. Proposition 3

In the preceding subsection it was shown that U

r =tan-' k tan- Y
z

where
- I) I - 1)2 + 4I.y

k - 21 (12)

It remains to show that this solution is equivalent to the proposition that the tilt is the
image direction in which d2I is greatest.

We know that, given I,, 4yy and 1_y we may obtain these quantitites in any other

image plane coordinate system (x*, y*) that is a rotation of (x, y) by the angle f. First we
note that

I dz l dy dx + Vdy
+I= 1.-+I-

d*dx dy

The standard rotation transformation is

z --"Zcc + ItSf

S=-x84 + ec

where 8( and cc are the sine and cosine of the angle . The inverse of this rotation
transformation is • - 0

yI-- z s f + Y-0 cc

Thus,
dx dy dz dy=- cc- W( - - ----s = -8c -- e=

dz X0 dy 0 V

33



PENTLAND LOCAL SHADING ANALYSIS

and so l -- Ic ~ ,

I, ---cc + Ief

Similarly,
_- d(1-) dx d(15.) dy

dz dz dY dx"

d(l. ) dx d(Il") dy

dx dy dy d"j

d(1,.) dx d(1,.) dy
dx dy* d dy

resulting in

= fiz + Ivy8c Izec

• l'. o = -If 3 ~cc + I 1.se + I - s ) 8C

To find the direction for which d21 attains its maximum, we find the angle C for which I,,-
attains a maximum over all rotations of the image plane coordinate system. As l-.- is
equal to

=Z z C + Iyyg 2 + 21yscC

the maximum of I.-*- occurs at

o0= d(I,. 8.) ":

-(Iy - J,,)2sec( + 2,,(c2 8

(Iv - 408~2C + 2I.,yC2C

which was obtained by using the relations sin 2f = 2 sin f cos f and cos 2f - cos2 C - sin 2 f.

Solving this for we see that the angle for which d2I attains its maximum satisfies

21y
tan 2C = -

IXX - IFY

Using Equations (4), (5) and (6), we see that for a sphere

-2, 2(xVlaT - /2 ) = 2z
tzxy - I (x213T-3/2 - y213T-3/2) T2 - y 2

However, noting that for a sphere tan r = /x and that tan 2r - tan r_- we have

tan2r= 2 tan r 2xy

1 - tan2 r X2 _ 2

Thus, { - r and so Proposition 3 is proved.

34

L . .. . .



PENTLAND LOCAL SHADING ANALYSIS

C. Proposition 5

Let us assume that we have observed that d2 1 = d2 N .L = 0 in the direction (dx, dy),
and that this situation continues for some distance along (dx, dy). In this situation, either
(1) d2N is perpendicular to L or (2) the magnitude of d2N is zero. It is unlikely that d2N
is perpendicular to the illuminant over any distance; thus, if we see that d2I = 0 it must
be the case that the magnitude of d2N is zero. Therefore, dN is some constant vector as
we take a step along (dx, dy).

If the magnitude of dN along (dx, dy) is zero, then at least one of the surface curvatures .
is zero, i.e., the surface is cylindrical or planar. If the magnitude of dN is not zero, then,
when we take a step in the direction (dx, dy) there is some change in surface orientation. In
this case, either the amount of forshortening that occurs with each infinitesimal step along
(dx, dy) will change or N wit. be constant, contrary to the assumption that dN was not zero.
If there is change in the foreshortening and yet dN remains constant, the surface orientation
relative to the viewer and the intrinsic surface curvature are in an exactly reciprocally
relation, which is a violation of general position.

Thus, when d21 = 0 for some distance along a direction (dx, dy), the surface is either
cylindric or planar. If it is planar, d21 = 0 in all directions. The converse - that if we also
observe d-I = 0 along the direction orthogonal to (dx, d1/) the surface is then planar - is
also true. From the previous reasoning, dI1 = 0 implies that dN is zero along that direction
(if general position is assumed). If dN is zero in two directions, the surface is planar.

D. Proposition 6

Proposition 6 suggests that the following equation is a useful estimator of zN, the z
component of the surface normal, equal to the arccosine of the surface slant:

N = c I-c2)

where c is a constant related to the surface curvature. 6
We may examine this estimator in the context of the calculations presented so far.

First we use Equations (4) and (5) to find that

V2I = I,,, + lyj (213 T- -/2 + (X2 + Y2)13T- 3 /2 )R ~

Thus, S
-V21 __ e(213T-I/2 + (T2 + y2 )13T- 3 / 2 ) (23)

I ',f(-x1j - V2 - 13TI/ 2 )

If we assume that -x1l - y/Is is zero (as is true on the average, although not neccessarily
true for any one image point) Equation (23) becomes

I-1 2T-' + (X2 + y2)7'-2

2R 2 - 2 _ 2 (24)

(R 2 _ X2 - y2)2

R2 + T
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To show how this estimator might work, let us first take c = T - 1 /2

(R2 - X2 _ 2)-1/2; we then find that, in fact,

!V21 21/ 1/2R 2 +T 1 '/_-01- ,_c)-I -_T-,/R T  T) - 1 -+

_2 - -

_VR2 R2 ZN

The problem with actually using this choice of c is that it requires prior knowledge of
the surface slant. We must find a constant for our choice of c. If we take c 1/R, then we
find that

-¢(l V1lC2)-1/2=_ R2-z2-y2- (25)

where
T R24z7 2  (8

eff R2 T) R(N (26)

Because i is a term in zN1 the estimated surface slant will be larger than the actual one,
introducing a bias into our estimate. This bias can be removed, however, as follows. Let
a = e=lV I- C2) - 1/ 2 be the estimated surface slant. Then, combining Equations (25) and
(26), we have

a2 _ T

R2 -R2(4 - 2 )

Then
#2(l- +Z 2) T =2

so that we obtain a quadratic in z .-IP

(1+s2ZN -S222- (27)

Equation (27) can then be solved to obtain an unbiased estimate of ZN

2 + ;482 + 584

ZN = - 2+2.2

(There is only one solution as 0 > ZN _ -1.) This concludes the proof of Proposition 5.
This estimate of ZN, while unbiased, is not exact because it was necessary to assume

that -zli - 1112 = 0. If we examine the conditions under which this factor causes significant
error, we see that there will be large errors only when all of the following conditions occur
simultaneously:

(1) The surface slant is relatively large
(2) The z-component of the illuminant direction, 13, is small
(3) The surface faces closely toward or away from the illuminant.
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L= (6.8, 6.0, 1.6) L=(0.3, 6.6, 6.95) L=(9.6, 6.0, 0.8) L=(9.9, 6., 0.44)

Figure 12. Bias due to Mlluminant directlon. This figure shows the image intensity profile, the
profile of the true surface shape (a sphere) and the profile of the reconstructed surface for four illumination
conditions. In each case the profile is taken along the image line which goes through the center of the sphere ft.
and directly toward the illuminant. This is the direction along which the estimation errors are largest. The
distributions of illumination are extended sources, such as would occur if the imaged sphere were placed on
a desktop which was near a window. The leftmost distribution shown is centered directly behind the viewer
at (0.0,0.0,1.0), the next (proceeding left to right) is centered at (0.3,0.0,0.954), the next at (0.6,0.0,0.8),
and the rightmost at (0.9,0.0,0.436).

Figure 12 shows the bias due to illuminant direction which occurs during the estimation
of surface orientation for the image of a sphere. This figure shows the image intensity
profile, the profile of the true surface shape (a spLere) and the profile of the reconstructed
surface for four illumination conditions. In each case the profile is taken along the image
line which goes through the center of the sphere and directly toward the illuminant. This
is the direction along which the estimation errors are largest.

The distributions of illumination are extended sources, such as would occur if the
imaged sphere were placed on a desktop which was near a window. The leftmost distribution
shown is centered directly behind the viewer at (0.0,0.0, 1.0), the next (proceeding left
to right) is centered at (0.3,0.0,0.954), the next at (0.6,0.0,0.8), and the rightmost at
(0.9,0.0,0.436). Note that the rightmost distribution of illumination results in an almost
linear gradient across the image. Thus, these examples approximately span the range of
illumination directions found in natural scenes.

Comparing the true surface shape, shown across the bottom of Figure 12, to the
reconstructed surface shape21 shown across the middle of Figure 12, we see that the bias
due to illuminant direction does not cause large errors

21As obtained by integrating the estimated surface orientation.
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FROM IMAGE IRRADIANCE TO SURFACE ORIENTATION.

Grahame B. Smith

Artificial Intelligence Center, SRI International
Menlo Park, California 04025

ABSTRACT

The image irradiance equation constrains the relationship between surface orientation
in a scene and the irradiance of its image. This equation requires detailed knowledge of
both the scene illumination and the reflectance of the surface material. For this equation
to be used to recover surface orientation from image irradiance, additional constraints are
necessary. The constraints usually employed require that the recovered surface be smooth.-

* We demonstrate that smoothness is not sufficient for this task.
A new formulation of shape from shading is presented in which surface orientation is

related to image irradiance without requiring detailed knowledge of the scene illumination, or
of the albedo of the surface material. This formulation, which assumes isotropic scattering,
provides some interesting performance parallels to those exhibited by the human visual :
system.

1 INTRODUCTION

Most previous work [1-81 on the problem of recovering surface shape from image shading
h as been based on solving the image irradiance equation, which relates the radiance of a
scene to the irradiance of its image [1,21.1 This formulation of the relationship between
scene radliance and image irradiance is embodied in a first-order partial differential equation
expressing scene depth as a function of image coordinates. Such a formulation requires

6di Rpecific knowledge of not only the reflectance characteristics of the surfaces in the scene,
but also the position and strength of illumination sources. The approaches to solving
this differential equation have generally been either by direct integration [1] or through
an iterative algorithm that attempts to reduce the difference between the predicted image
irradiance and the measured value [5-71. Our interest is in the iterative approach because
the alternative to it - direct integration - requires specific boundary conditions that are
generally unknown (in natural scenes), and its behavior when applied to noisy pictures, is
uncertain.

As the image irradiance equation is a single equation relating image irradiance and two
independent variables (specifying surface orientation), it does not uniquely determine the
two independent variables for a given value of image irradiance. Consequently, when this
equation is used to recover surface shape additional constraints are necessary. These may

'Image irradiance is the light flux per unit area failing on the image, i.e., incident flux density. Scene
radiance is the light flux per unit projected area per unit solid angle emitted from the scene, i.e., emitted
flux density per unit solid angle.
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be imposed by boundary conditions, by restrictions on the type of surface to be recovered,
or by a combination of the two. For some images, when we can determine important
featuires (such as the fact that an edge is an occlusion boundary caused by a surface turning
smoot hly away from the viewing direction), we can use boundary conditions to constrain the 0

solution; in large portions of the image, however, we can say something only about the type
of surface we would like to recover. To date surface smoothness is the weakest additional
assumption that has allowed surface shape to be recovered. Smoothness normally signifies
that the surface is continuous and that it is once or twice differentiable. Smoothness, as the
additional assumption, has had to play the role of propagator of boundary conditions and 6
!4elector of the surface to be recovered. Is smoothness capable of these tasks in general or is
its usefulness limited to special cases?

In the first part of this paper we describe the various formulations that have employed
smoothnesi, including a relaxation procedure of our own that resembles its counterpart
in engineering; we then present results of our experiments with these iterative procedures. •
Assessing the usefulness of smoothness in this context, we conjecture as to its utility in other
shape-from-shading formulations.

Not all authors have used smoothness as their additional constraint; some have
employed assumptions about surface shape instead. The assumption that the surface is
locally spherical, i.e., that its curvature is independent of direction, is strong enough to " lw

allow but a single interpretation for the surface orientation, and at the same time, it is also
one that enables recovery of the surface orientation by purely local computation [8]. In
adition, this shape constraint eliminates the need to know such parameters as illuminant
direction and surface albedo.2 Assumptions about shape are being traded for assumptions
about re"lectance behavior. Can we formulate the shape-from-shading problem without " -
having to know the details of the surface reflectance and without making any assumptions
about the shape of the surface we wish to recover?

In the new formulation presented in the second part of the paper, we assume that. scene
inaterial% scatter light. isotropically. We make no assumptions about surface shape and we
do not need to know the parameters specifying illuminant direction, illuminant strength, 7a

and surface albedo. Our assumptions are about the properties of reflection in the world;
these alone are sufficient to relate surface orientation to image irradiance. In situations
in which the assumption of isotropic scattering is invalid, the formulation provides some
interes.ting parallels to human vision.

2 ITERATIVE FORMULATIONS FOR SURFACE RECOVERY

The image irradiance equation as presented by hforn [2]. is

I(z,y) = R(p,q)

where I(x, y) is the image irradiance as a function of the image coordinates x and y, and
R(p, q) is the surface radiance as a function of p and q, the derivatives of depth with respect

S2.Surface albedo is the material rellectance, i.e., the ratio of scene radiance to scene irradiance. 1P]

2
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to the image coordinates. To derive this equation orthographic projection is assumed; while
orthographic projection is inadequate to describe image formation it is a good approximation
when the scene objects are small compared to the viewing distance. In the shape-from-
shading approach, it is generally assumed that R(p, q) is known for all p and q (that is, the "
reflectance map is specified). The iterative approach applies this equation on a pixel-by-pixel
basis, that is, for pixel (i, j)

---- R~p j, qi, ),

where Iij is the image irradiance for (i, j)th pixel and Pi,j, qij is the surface orientation of
the surface patch that is imaged at pixel (i,j). For convenience we use the notation

Rij -. R(pi,j, qij)

If, at some stage of the iterative procedure, we have assigned particular Pi,j,qij as the
surface orientation of the (i,j)th pixel, then the residual expression

,'jr = (lij - Rij

specifies the error caused by our assignment of surface orientation. 3 Ir this were our only
constraint, we could select pij,qij so that &j R = 0. This would guarantee that the
image irradiance equation is satisfied pixel by pixel, but, because there are infinitely many
solutions, we need further constraints to reduce the number of possible solutions.

Smoothness is usually introduced by specifying a relationship that we would like to
have hold between the surface orientation of the (i, j)th pixel and its neighbors. The various
iterative approaches [5-7] differ in the way this relationship is specified. Of course, at a
),rticular stage of the iterative process this relationship between a pixel and its neighbors '9

will not be exact. Once again we can specify a residual equation for the error in the
smoothness relation.

ijs = [fQPi.j, qi,j, pi- ,j, qi- ,j, Pi+ li,j, qi+i,j-i,j- ,j--i, Pij+1, qi,j+lI ...)]2

where f is the relationship between the surface orientation at (i,j) and its neighbors. An
example of the type of relationship is the difference between the surface orientation of pixel
(i.j) and the mean value of the surface orientations of its four-neighbors.

We have two constraints that need to be satisfied simultaneously, - one from image
irradiance and one from surface smoothness. At each stage of the iterative process, the total
residual error for pixel (i,j) can be described by 0

RI

Gli = XGJ + Gj s

where X is a weighting factor that can adjust the influence of the error in image irradiance
to the error in smoothness.' For the image, the total residual error is

i,.

'The form of the error need not be quadratic - the goals of such a choice include simple final expressions.
4 Since the error in image irradiance is not necessarily commensurate with that in surface smoothness, some
form of normalization is required.
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The allocation of surface orientations to all pixels should minimize this total error, that is,

apij -411

__ =0 :J
aqi~j

Differentiating with respect to pj and also with respect to qi,j gives two equations for

each pixel in the image. While complicated forms of the relationship between pij,qij and
their neighboring pixels will generally occur, we choose our smoothness relation so that we
can arrange the equations in open form

Pi,j F(pij,q j,and p'a and q's of neighboring pixels)

qi,j F2(pi,j, qij, and p'a and q's of neighboring pixels)

where Fi, and F2 are functions.
We therefore have an iterative scheme that, given some ini. ,ial solution, we improve by

reducing the residual error in image irradiance and surface smoothness. We need to ask the
following questions of such a scheme: Under what conditions will it converge to a solution?
Is that solution unique? Does smoothness, as defined by our relation, give us the type of
surface we want?

* 3 SURFACE ORIENTATION -

There are many equivalent parameterizations of surface orientation. Mentioned pre-
viously were the parameters p and q, the derivatives of depth with respect to image coor-
dinates. Some authors prefer using slant and tilt to specify surface orientation. Slant is the
angle between the surface normal and the viewing direction, while tilt is the angle between
the image x axis and the projection of the surface normal onto the image plane. Other -

parameterizations 171 have been used when particular properties of the parameterization
are to be exploited. The parameters we use are I and m:5

i= sinacosr

m sinasinr ,

where a is the surface slant and r its tilt, I is the component of the surface normal in the
direction of the x axis, and m is the component in the V direction. We select this particular
parameterization, as I and m are bounded

0< 12 +m 2 1

For surfaces that we can see,

0 <2

'I:,nd m are related to p and q, I - -P-- ,m = -94P

' 2



0<r<27r

Consequently I and m specify the surface normal of an imaged surface without ambiguity.

4 FORMULATIONS USED FOR SURFACE RECOVERY

To explore the issues of convergence, propagation of boundary conditions, and the

type of surface promoted by smoothness, we formulate the problem in two ways: one
that parallells the technique previously described and, alternatively, one that resembles the
relaxation method used to solve structural engineering problems.

The function for scene radiance, used to create synthetic images for the experiment and
employed by the shape recovery algorithms, is

S1 + /.4 - 12 - m 2 )+M [.
R(1, m) =) + Maz0.4437f1 - r- - m 2 + 0.31371 + 0.3137m, 0].

This function is appropriate for a scene that exhibits Lambertian reflectance and is il-
luminated by both a collimated source and a uniform hemispherical source. This illumina-
tion was selected because it is typical of the illumination of outdoor scenes. The particular
numerical constants specify the light direction and intensity, and the surface albedo.

The first formulation is similar to that described previously; we shall call this the
'conventional' formulation. From the image irradiance equation we have the error term

= (Ii - Rij

The smoothness constraint is the requirement that lij be the average of its four-

neighbors, and that mij be the average of its four-neighbors. The error term for smoothness

( li - li1j + li+1,j + 1i,-1 + lij+1 )2.

4
mi- m i + mi+,J + mij- I+ m. + 1J+l )2  .'

4

Note that this constraint is exact for a surface that is spherical.
Minimizing E - Y*j Xi,* + ,js by differentiating with respect to lij, and with

respect to mij, and then setting each result equal to zero, we obtain the expressions

lij = 0.4(li-1 ,.+ li+ Ij + ij- I + lij+1) -

0.l(Ii-l1j-I + li+ ,j+I + /i-1,j+I + I+,j- ) -

O.05(i-2,j + li+2,j + 'ij-2 + 1ij+2) +

0.8X(I,. - Rij) OR

mj 0 0.4(mi- ,j + mi+l,j + mij-I + mi,+1) -

O.l(mi-t 1 'j- I + mi+Ij+I + mi-I,+t + mi+ 1'j-.) -

0.05(Mi- 2 ,. + mi+2j, + mi-2 + M,j+2) +

0.8X(l , - Ri . O .

5
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We use these (together with the expression for R(I,m)) as our iterative scheme to improve
on an intial solution.

The other formulation we use, the 'engineering' formulation, creates error terms from
the image irradiance equation and the smoothness constraints, but does not combine these "r
into one term.

s ,,j (Ii, - Rij)

S l - 1i-j, + mi+ , + ,,, + "j+ I)

4

Ve view the 's as residuals and apply the relaxation approach, i.e., reduction of the largest
residuals. If ci,3 s1 or ij s ' is selected for reduction we choose to reduce both, as each is
independent of the other. When &,jR is chosen for reduction, we do the reduction in two
stages -- one stage altering li,j and the other mij. Of course we can scale the residuals,
reduce them from, say, the image irradiance equation to a certain level before introducing
smootL,- ss, vary the amount of correction we apply, (e.g., we can overrelax) and the like.

In fact, we can experiment with various relaxation approaches. In this formulation major
changes in the relaxation scheme generally require minor programming changes.

5 EXPERIMENTAL RESULTS

The test image shown in Figure 1 is that of a hemisphere placed on a plane, i.e., a
synthetic image generated by the reflectance function previously described. The collimated
light source is at slant ! and tilt - which means that it is at the upper right as we
view the image. We purposely avoided the case in which the collimated source is at the
same position as the viewer, since the resulting symmetric reflectance map might bias the

algorithm to return a symmetric surface. A synthetic image of a sphere was selected as
the test image because both the image irradiance equation and the smoothness relationship
we use hold exactly.8 The performance of the algorithm to recover the surface shape could
be assessed without the complications involved in using inexact models for reflectance and
smoothness.

We need initial solutions to start our iterative/relaxation procedures. We used four sets
of initial conditions: (1) a plane perpendicular to the viewing direction; (2) a plane slanted 4

to the viewing direction; (3) a cone with its axis along the viewing direction; (4) the correct
solution perturbed by small random errors.

Previous work has used boundary conditions to constrain the recovered surface.
Investigating this approach, we constrained the surface in various ways: at the edge of the
hemisphere, at a closed curve lying on the sphere's surface, or at individual points on the
sphere's surface. We also used the algorithms without any boundary conditions whatsoever.

Since we wished to investigate the extent to which smoothness could propagate bound-
ary conditions, we used various image quantizations, namely 16 X 16, 32 X 32, and 64 X 64.

'The smoothness relationship does not hold at the edge of the hemisphere where it joins the plane.

6
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The findings can be characterized as follows:

* B~oth techniques - the engineering and the conventional method - gave essentially tbe

same results.

* The engineering technique converged much faster than the conventional technique.

*Smoothness propagates boundary conditions by no more than a few pixels

*The initial solution largely predetermines the final one.

Figures 3-11 display examples of the results we achieved with the conventional iterative
scheme; the engineering scheme gave essentially the same results. In each of these figures
the top left picture shows the profile of the recovered surface (viewed from the bottom
left corner) , while at the top right we find an image that is the sine of the surface slant,
with black representing 0 and white 1. The bottom left is the cosine and the bottom right
the sine of the surface tilt, with black representing -1, gray 0, and white +1. The results
are presented in this manner so that the performance of the algorithms can be evaluated.
The profile can on occasion appear more accurate than the individual surface orientations
(as might be expected of an integration procedure); at other times, however, errors in the
surface orientation (sometimes just from the image quantization) of highly slanted surfaces
cause the integration routine that produces the surface shape for profiling to overstate the
error. Figure 2 shows the results that should be obtained if the shape recovery algorithms -

recovered the surface exactly.

Figures 3-6 illustrate the effects of various boundary conditions. The errors at the edge
of the sphere where it joins the plane are expected, as smoothness does not hold there. Each
figure is the result of 320 iterations, this being five times the linear dimension of the picture
used. The boundary condition at a point affects an area of approximately 10 pixels in radius.
Onliy for Figure 6, where a random five percent of pixels were set to their correct values, is
the surface shape recovered correctly. Smoothness as a propagator affects but a small area.
Figures 4, 7, and 8 illustrate this point further. Here various image sizes are used. Observe
that, as the image size increases, the boundary conditions diminish in their effect and the
solution becomes progressively worse. Figures 4, 9, and 10 reveal the dominant influence of
t le initial solution. Figure I1I is included to show the effect of smoothness wben X = 0 -

namely, when image irradiance does not affect the solution at all. This figure, obtained after
320 iterations, demonstrates what smoothness alone can achieve, even when the definition
of smoothness is exact for the viewed scene (a sphere).

-*Smoothness is a poor selector of surface shape and a poor propagator of boundarylop
information when it is used to tie the surface orientation of a particular surface point to those
of its neighbors. Generally, in engineering, problems solved wit~h relaxation techniques are
formuvlat ions that. relate a given property at one point to that same property at neighboring
po in ts by means of differential relations. It is the derivative that propagates boundary

* information and selects a particular solution to be recovered. We present such a formulation
9 below in an attempt to relieve smoothness of its role as propagator and selector.

6 SURFACE RADIANCE AND ISOTROPIC SCATTERING

*Our formulation of the relationship between image irradiance and scene radiance is

7



I.

l(x, y) _R(i, m),

where I(x, y) is the image irradiance at image point z,y and R(1, m) is the scene radiance
for a surface normal we represent by 1,m. R? is a function of the components of the -.
surface normal and they, in turn, are functions of image coordinates. R(1,m) specifies
the relationship between surface radiance and surface orientation, while 1(z,y) and rn(z,y)
specify the relationship between surface orientation and image coordinates. R(1, fi) embodies
knowledge of the nature of surface reflection, while 1(z, y) and m(x, y) embody the surface
shape.

To provide the additional constraints we need for relating surface orientation to image
irradiance, we introduce constraints that relate properties of R(1, m), - that is, constraints
that specify the relationship between surface radiance and surface orientation. Such con-
straints are

(1 - 12 )RuI = (1I- m 2 )Rmm ,

(Rit - Rmm)lm = (12 - n 2 )Rim

where 11 is the second partial derivative of R with respect to 1, Rmm is the second partial
derivative of R with respect to m, and Rim is the second partial cross-derivative of R with
respect to I and tn.

These two partial differential equations embody the assumption of isotropic scattering
(Lambertian reflectance). For isotropic scattering R(,m) has the form

R(I,m)=al+bm+cV ii- 2 -m2+d

where a, b,c, and d are constants, their values depending on illumination conditions and V
surface albedo. Note that 1,m, and V1 - 12 - in2 are the components of the unit surface
normal in the directions z,y, and depth. R(I, m) can be viewed as the dot product of
the surface normal vector (I. i, 1 - 12 - M 2 ) and a vector (a, b,c) denoting illumination
conditions. As the value of a dot product is rotationally independent of the coordinate
sy stem, the scene radiance is independent of the viewing direction -- which is the definition
of isotropic scattering.

It is easily seen that R(1, rn) = at + bm + c /l - 12 - 2 + d satisfies the pair of partial
differential equations given above. In the appendix we show that R(1, m) = at + bm +
r,/I - 12 M 2 + d is the solution of the pair of partial differential equations. These partial
differential equations are an alternative definition of isotropic scattering.

It is worthy of note that R(1, m) = a! + bm + cVl/- 12 - T12 + d includes radiance
functions for multiple and extended illumination sources, including that for a hemispherical
uniform source such as the sky. The assumption of isotropic scattering restricts the class
of material surfaces being considered, not the illumination conditions.

7 EQUATIONS RELATING SURFACE ORIENTATION TO IMAGE
IRRADIANCE

Differentiating
x(z, v) = R(I, m)

F 8



with respect to x and y, we obtain

I. = R11, + Rmm ,

I = R t y + Rmmj,

I.. --= R1. 2 + Rmmmz 2 + 2 Rm.Izmz + Rd12 . + Rmmzz

Y RigIy2 + Rmmm 2 + 2RImlym + Rly + Rmmyy ,

1 , = RlIly + Rmmmzmy + Rm(zfmy + Im.) + R11y + Rmmzy,

where subscripted variables denote partial differentation with respect to the subscript(s).

From the constraints for isotropic scattering, we derive the relationships

1 - m
Im2

Rg= -i Rim
1 -12

Rmm = -- Rim

Substituting these relationships for Rig and Rmm in the expressions for 42 ,I1 1 ,and l.,"
we obtain

1 2(1 22 1 12
)I+2( Mm)m _T_) + 21mz]Rim =Iz - Rlzz - Rmmz,

[1V2 1 A 1 m 2)r + my2 (1m12 ) + 21,m]Rim = I - Rilytir - Rmm, ,
Ii lm2 1 _m1

[ I m ( ) + mzmy( )+ lzm, + lymz]Ram t= Iy - Rll2 - Rmmyz.

By removing Rim and substituting the expressions for R, and Rm, defined by the
expressions for I_ and I., we produce two partial differential equations relating surface
orientation to image irradiance:

altz, + 00m..- - a-YIV - Gym, = X0lZZ - X1 ha,
a~ll, + flm,, - a61' - #6m 1 =- XO1lY - X6 1z ,

where
0 - Imy - Imz,

IVI 1--ll - -ty

-- 12(l - M 2 ) + m, 2(1 _ 12) + 21,mlm ,

6 = I2(1 -m 2 ) + mV 2 (1 -1 2 ) + 21,mVim , .

0 = IlY(1 - m2 ) + m.my(l - 12) + (imV + 1,mI lm

=- I= mV - I mz

These equations relate surface orientation to image irradiance by parameter-free ex-
pressions. They involve the derivatives of image irradiance, but not the image irradiance
itself - an important feature if we conjecture such a model for the human visual system.

9



8 RECOVERY OF SURFACE SHAPE - A SPECIAL CASE:
A SPHERICAL SURFACE

It is difficult to solve the equations relating surface orientation to image irradiance, and

thus to recover surface shape from observed image irradiance. Two types of approaches are

possible. The two differential equations can be integrated in a step-by-step manner or, given
some initial solution, a relaxation procedure may be employed. The difficulties that arise

are two-fold, numerical errors and multiple solutions.
Solutions of the equation X = 0 (the developable surfaces, e.g., a cylinder) are also

solutions of the equations relating surface orientation to image irradiance. If the images

intensities were known in analytic form then analytic solution of the equations could employ
boundary conditions to select the appropiate solution. However since the analytic form

for the image intensities is unknown, numerical procedures must be employed. Numerical

procedures to integrate the equations inevidently introduces small errors. Instability of the

numerical scheme seems responsible for such errors eventually dominating the recovered
solution.

The alternative, a relaxation procedure to solve the equations, has its own difficulties.
The difficulties experienced in the shape-from-shading methods discussed in the first part
of this paper dictate caution. The importance of a good initial solution for a relaxation
method cannot be overemphasized. Simplfying the two partial differential equations (using
additional assumptions) provides a method for obtaining an good initial solution.

The spherical approximation assumes that we are on a spherical surface. This implies
iy = 0, n, = 0, 1, y namely, constant curvature independent of direction. For this
case the partial differential equations become relationships between the second derivatives
of image irradiance and the components of the surface normal-.

1 -n 2  Iz

I - P Iy
Im I5-

These results for the spherical approximation are equivalent to those Pentland was able
to obtain 18] through local analysis of the surface. In addition to providing a mechanism
for obtaining an initial solution for a relaxation-style algorithm, their direct application
estimates the surface orientation by local computation (81.

We are actively engaged in the development of a relaxation procedure to transform the
initial solution (given by the spherical approximation) into a solution the satifies the full
equations.

9 THE INFLUENCE OF BELIEF ON THE PERFORMANCE OF
A VISUAL SYSTEM

The constraints derived for isotropic scattering do not have to be true embodiments of
the physical iaws of nature; rather, they can represent the beliefs a visual system possesses

0 regarding those laws. In circumstances in which such beliefs do not hold, the visual system W

10
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will err in predicting the world's true nature. Of course, if the model is not a good
approximation of the physical laws of nature, the visual system embodying it is useless.

The two constraints specifying isotropic scattering,

(I 12 )RI= (- m 2 )Rmm,

(R11 - Rmm)lm = (12 -
2 )Rlm,

obviously both hold when the scattering is isotropic, but what is the situation for other

forms of scattering?-
The images produced by a scanning electron microscope constitute an intriguing situa-

tion. The appropiate expression for scene radiance [7] is

1
R(1,m) = a(l +

1-/- 2  "-w

where a is a constant. This expression is quite unlike those for natural scenery, yet the

human visual system 'sees' an image. Note that the second constraint for the isotropic
scattering case is satisfied by this radiance function, but not the first. The second constraint
is about surface tilt, as - - 2 -, where r is the surface tilt; the first constraint

introduces slant. In using the equations relating surface orientation to image irradiance to

recover surface orientation, one might expect them to predict tilt correctly for surfaces in
electron microscope images, but to err in predicting slant.

For other forms of the scene radiance expressions, neither constraint holds. Specular
reflectance has been approximated [2] by

R(1,m)- a[b(1 -1 2 -M 2 ) + clv - 12 - m 2 + dm fl - 12 - m 2]"

where n is a constant, usually having a value between I and 10 that determines the

'sharpness' of the specular peak.

For the maria of the moon, the form of stone radiance normally used [2] is

a(6l + cm)
R(1, m) =

l--rn
2

The constants a, b, c, and d iL the above expressions are associated with the strength and

posit ion of the light source, as well as with the surface albedo.
The constraints do not hold in either of the preceding cases. We would expect a visual

system embodying them to make errors under these circumstances. Nevertheless this should
not induce us to immediately begin searching for new visual beliefs. After all the human
visual system is imperfect under conditions of specular reflection; moreover, people observed
the moon throughout history without concluding that it was spherical.

If these constraints are incorporated in the human visual system, the predictions based
on them - i.e., when the visual system will return ostensibly 'correct' and 'incorrect'

information - could be tested by psychophysical experiments. Such predictions together

* with their verification or refutation are being investigated.
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10 CONCLUSION

The shape-from-shading task (recovering surface orientation from image irradiance),
has meant finding a solution to the image irradiance equation. This formulation requires
that the characteristics of the scene illumination and the surface material be known. While
these requirements are difficult to satisify,knowing them makes it possible to apply the image
irradiance equation to any scene material for which the scene radiance function is known.
Such application, however, is not without difficulty, appropiate boundary conditions are
needed and the effect of image noise is uncertain.

To recover surface orientation, relaxation-style algorithms based on the image irradiance
equation employ additional constraints. These constraints, which are needed to supplement
the underdetermined image irradiance equation, capture the concept of smoothness. While
smoothness superficially determines the relationship between image irradiance and surface
orientation, it is too weak a concept to propagate boundary conditions and thus equally
ineffectual as a means of recovering the required solution.

In presenting a new formulation for the shape-from-shading task, we have traded the
need to know the explicit form of the scene radiance function for the assumption that
material scatters light isotropically. This model is applicable to natural scenery without
additional assumptions about illumination conditions or the albedo of the surface material.
The model also demonstrates some competence even when the scattering is not isotropic.
Such a model poses the question: does the human visual system embody a particular belief
about the laws of scattering that it applies even when these laws are inexact!

Effective numerical procedures based on this new formulation of the shape-from- shad-
ing task remain unknown and, are subjects for further development. g
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APPENDIX

We show that the solution of the system of partial differential equations,

(I - 12 )Rit = (- rn 2 )Rmm,

(Rit - Rmm)lm t (12 _ m 2 )Rim

where Rtt is the second partial derivative of R with respect to 1, Rmm is the second partial

derivative of R with respect to m, and Rim is the second partial cross derivative of R with

respect to I and m, is

R(l,m)=al+bm+c/ 1-1 2 -rn 2 +d

where a, b, c, and d are constants.

Proof: Rearranging
(1 -)Ru ---- (1 - 12 )Rm, m

(RI, - Rmm)lm = (12 - m2 )Rim ,

we obtain
Im

R m 1-

ImRim= 1 ----Rmm

t Integrating R '-,-,Ru with respect to 1, that is,
InteJrating ldl,,, -- m IRRdI

Rity dl M2 1 IR11 dl,

gives m
Rm - (IR - R) + F1(m)

where F1 (m) is an arbitary function of m. Similarly, integrating Rim -j2Irnm with

respect to m gives
*I

SR1 -- (rnR,, -R) + F2()
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where F2(1) is an arbitary function of 1. Rearranging these two equations, we get a system
of two first order partial differential equations

(1 12- m2 )RI + IR = lmF3 (m) + (1- m 2 )F4(i) ,

(1 - !2 - m2 )Rm + mR -- InF4 (I) + (1 - 12 )F3(m)

where F3(mn) (1 - m2 )F1 (m), and F4(1) = (1 - 12)F2(!). Multiplying both equations by
the integrating factor (1 -2 m2) - 1n , we obtain

a 1- j2 
- m 2 -R] = (1 - 2 - m2)- [ImFa(m) + (1- n2)F 4(1)] -.

_ [(a- _1 2-= 1 2 2 + (I-
192M 2 (] _ m2)-- 1 [ImF 4() +1 12 )F3 (m)]

Before carrying out the integration, we can find the form of F3(m), and F4(1) by
differentiating the first equation with respect to m and the second with respect to 1:

i- -- m 2)-R] (1 - 2- m2)- [1(1 -/2 + 2m 2 )Fa(m) + m(1 - m2 + 212)F4(I}

+ Im( - 12 - m2)F'(m)l
(92 12 _ 2-21 2-A 2 M 212F4j

1 -_m 2 _1R] +(1 - - m2 - [1(1 - 2 +2m 2 )Fs(m)+im(1 -m 2 +21 2 )F(I)

+ m(l - 12 - m2 )F(1)],
where F'(k) indicates differentiation with respect to the independent variable k. Hence,

Fa(m) = F'(1)

F'3 (m) is a function of m and F4 (1) is a function of 1; this implies that

F'(m)= d

F ' ( 1 ) -d ,

where d is a constant. Therefore,
F3(m) =dm + b
F4(1) =dl +a

where a, and b are constants. Returning to the integration step, we now have the expressions
1 M2)- ] (1 12 M2)- +d)+ ( -M2)]

- 2 - - m2-R] = (1-12 - M2)-[m(al + d) + b(1 -/2)]

Integrating the first equation with respect to I and the second with respect to m, we obtain
( 12 _ M -2)-) - _ +(12 -122)-1 +a1(1 _ M2)- i + FS(m) ,

(1 2 _ m 2)- R = (at + d)(I 12 i 2  + bM( _ 12 _ M2)-  + F6(1)

where F.,(m), and F6(1) are arbitary functions of m and 1, respectively. We have two
expressions for R:

R =a +bm + F5 (mX I - 12 - M 2 )1+d ,

R=at+bnm+F(1)(1-1-m 2 )"+d

which are compatible if
Fs(m) = F6(1)= c

where c is a constant. The solution for R is

R=al+bm+evi - -m 2 +d
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Appendix C

DETECTION OF THE VISIBLE SKYLINE IN URBAN SCENES AND NATURAL TERRAIN
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I INTRODUCTION

Although not always a well defined problem, delineation of the sky-

land boundary pi-ovides important constraining information for futher -

analysis of the image. Its very existence in an image tells us

something about the location of the camera relative to the scene (i.e.

that the scene is being viewed at a high-oblique angle), allows us to

estimate visibility, i.e., how far we can see (both as a function of

atmospheric viewing conditions, and as a function of the scene content),

provides a source of good landmarks for (autonomous) navigation, and

defines the boundary beyond which the image no longer depicts portions

of the scene having fixed geometric structure.

The objective of this project was to identify the middle-to-far

skyline in urban scenes and natural terrain. These two domains span

most of the problems encountered in skyline delineation. The principal

difficulty is in distinguishing bright clouds from bright objects on the

skyline and dark clouds from textureless dark objects on the skyline.

Since one of the objectives of identifying the skyline is to constrain

further semantic interpretation, the use of detailed semantic models was

excluded in this project. Rather the skyline was identified using

physical models and assumptions valid for any scene.

One possible use of skyline detection is in landiaark

identification. Landmark identification has potential use in passive
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autonomous navigation and in cross reference and compilation between

maps and photographs. Another use is to provide a semantic constraint

on further image interpretation. The skyline detection algorithm

described in this report is conservative. For images without confusing

factors the skyline is identified unambiguously, while in difficult

images the picture might be broken up into a sky region, a land region,

and a region of amibguity. Even in these difficult images the algorithm

serves to constrain further image interpretation.

Section 2 of this report discusses physical models of sky, cloud,

and land luminance and previous work on skyline delineation. Section 3

documents the algorithm developed for skyline delineation: at the core

is a region segmentation technique well matched to the physical

constraints of the problem. Results are given in Section 4, and the

factors influencing the robustness of the algorithm are identified.

Section 5 presents our conclusions.

II PHYSICAL MODELS OF SKY, CLOUD, AND LAND LUMINANCE

Different physical mechanisms give rise to the luminance of sky,

clouds, and land surfaces. Sky luminance is the result of sunlight

scattered by the atmosphere. Cloud luminance is either sunlight

attenuated by transmission through a relatively thin cloud or sunlight

reflerted from a thick cloud. Land and water surfaces reflect sunlight

:ind amLient light.
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A. Cloud Free Sk Luminance--Basic Mechanisms

Atmospheric scattering of sunlight occurs through a combination of

molecular scattering and aerosol scattering. Molecular scattering, also 2
termed Rayleigh scattering, occurs when the gaseous molecules of the

atmosphere interact as dipoles with incident light. The scattering is

proportional to the fourth power of the frequency of the incident light.

It is the higher scattering of shorter wavelenghts which gives the sky

its characteristically blue color, and the sun its complementary

yellowish tinge. An equal amount of light is scattered forward and

backwards along the direction of the incident light. This implies that .. -,

the sky is equally bright sunside and antisunside.

In contrast to molecular scattering, aerosol scattering is

wavelength independent. Aerosol scattering, also termed Mie scattering

or large particle scattering, arises from internal refractions and

reflection of light that has entered a large particle. Since aerosols

scatter all wavelenghts equally, the scattered light is white. Thus as

the sky gets hazier, it appears whiter. In aerosol scattering there is

a much larger forward scattering component than backward scattering

component. As a result, on a hazy dpy the sky is very bright sunside

but dark antisunside.

Another key concept in understanding sky luminance is the length of

the optical path through the scattering medium from an observer to the

effective edge of the atmosphere. Since the density of air decreases by

3
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a factor of 10 for every 15 kilometers of altitude, the scattering

properties of the atmosphere effectively terminate at 30-60 kilometers

of altitude. As an observer moves his line of sight from the vertical

towards the horizon the optical path increases dramatically. Since the

optical path passes through proportionally more scattering medium, the

sky usually appears brighter towards the horizon. This effect is

enhanced because the atmospheric scattering mediun near the earth's

surface is also being illuminated by light reflected from the land. The

exception to this limb effect is when the haze is so dense that the

increase in scattering mass is offset by the attenuation of the light

q passing through the dense aerosol.

The relevant parameters for cloud-free sky luminance are the

position of the sun (azimuth and elevation), the aerosol content of the V

atmosphere, the luminosity of the land, and the line of sight.

Quantitative predictions for cloud-free sky luminance were derived

through computer simulation by J.V. Dave at IBM Palo Alto [Dave 80].

Five different atmospheric models were used, including aerosol free,

aerosol content typical over a land mass, and aerosol content typical

over a water mass. Predictions from this study include the following:

(1) The luminosity of the sky varies gradually and
continuously. For an aerosol-free sky the total
variation is about 10:1. For an average amount of
aerosols there is a strong increase in brightness towards

* the sun and high noon.

(2) The clear sky is blue, but becomes whiter with greater
aerosol content in the atmosphere.
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(3) An aerosol-free sky is brighter and whiter towards the
horizon because of the limb effect. This enhances the
contrast at the horizon. However the horizon contrast is
attenuated under hazy conditions, particularly for the
distant skyline. The horizon contrast is a function of
the scattering versus the attenuation properties of the
atmosphere.

B. Cloud Luminance--Cumulus and Stratus

The principal difficulty in skyline delineation is distinguishing

clouds from land features. Since clouds form a much more limited class

than land features, the approach taken in this project has been to use

qualitative models of clouds. Good quantitative models of cloud

luminosity do not exist. Qualitative predictions can be made from basic

theoretical ,siderations and empirical observations. The basic

physical mechanism governing cloud luminosity is aerosol scattering of

incident sunlight. For a thin cloud, secondary scattering can be

ignored, so the basic mechanism is attenuation of sunlight passing

through the cloud. This attenuation obeys Bier's law of transmission--a

decaying exponential function of the optical density of the cloud. For

the range of optical densities for which secondary scattering can be

ignored, the exponential is approximately linear; thus the attenuation

is approximately a linear function of the thickness of the cloud. For a

thick cloud, the effects of secondary scattering predominate so the

cloud is essentially a lambertian surface with 80% reflectivity (hence

20% transmission--there is no adsorption - light in the visible range

by water particles). As sunlight passes deeper into a cloud,
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successively more and more of the light is scattered in all directions.

At some point all the light is scattered, and the illumination is

isotropic. Thiis 20% of the original illumination is the equilibrium

value for isotropic scattering. This lack of directionality in

illumination occurs in dense ground fogs and when flying through clouds.

Since the sunlit portion of a cumulus cloud acts as a lambertian

surface, its shape can be determined from its shading using the same

shape-from-shading algorithms used for other lambertian surfaces. In

contrast, those cloud surfaces whose luminance is due to transmitted

light do not obey the normal surface shape-to-shading relationship.

Thick clouds with large vertical extent are cumulus clouds created

by local weather conditions. Local updrafts carry water vapor into the

iipper atmosphere where it condenses into water droplets. A local

downdraft is created by the updraft, providing a natural separation

between cumulus clouds. For a cumulus cloud, the top is bright and

reflective, the sides not in shadow are similarily bright, and the

bottom is dark. Because of the separation between clouds, it is usualiy

possible to see some bright reflective surface. The term "cloudy skies"

usually refers to the prescence of cumulus clouds.

Stratus clouds are created by larger weather systems, such as low-

pressure systems. They have large horizontal extent and comparatively

W small vertical extent. Consequently from the ground the line of sight

is only to the bott i of the cloud, and the luminance is solely from

light transmitted through the cloud. Overcast skies are due to stratus

clouds.
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C. Other Atmospheric Phenomena-Refraction ± Reflection,± Polarization

The oblique angle of the sun relative to the atmosp~here at dawn and

dusk causes refra--t~ion of incident sunlight according to Snell's laws.

The result is a temporal separation of colors as the sun moves towards

the horizon. Spr-ctacular atmospheric effects can also be caused by

alignment of a large group of refracting or reflecting particles. For

example, rainbows are caused by billions of raindrops acting as

identical prisms aligned through gravity and the effects of aerodynamic

drag. Similarly, ice crystals aligned in a high cloud can act as a

gigantic mirror when viewed from an airplane. The effects of refraction

and reflection were not incorporated into the implicit assumptions made

by the skyline delineation algorithm.

Polarizaition of the clear sky is due to the interaction of V

molecular dipoles with incident sunlight. The sun's radiation can be

modeled as plane wave oriented perpendicular to the direction of

prop -Igat.i on. Within thc plane there is no preferred direction of 0

polarization, this isotropy can be represented as a circle in the plane.

Incident sunlight causes a molecule to vibrate in sympathy; the light.

* emitted when the molecule vibrates is the scattered light. The

vibration of the molecule can be modeled as a circular motion in the

pL:ine perpendicular to the sun's rays, since the incident sunlight has

* no preferred polarization. When this motion is viewed by an observer

not directly in line with the sun and the molecule, the motion appears

to be tracing out an ellipse. The difference between the major and
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minor axis of the ellipse is the degree of polarization. Along any

given line of sight, the polarization of the molecular vibration is the

same, since the sun is effecitvely a source of parallel light. In the

presence of clouds or haze, polarization is virtually absent since

aerosol scattering occurs through refraction and reflection as opposed

to the vibration of a molecular dipole. Since it is under conditions of

cloud and haze that skyline delineation becomes difficult, polarization

is not a disambiguating feature.

D. Use of Color and a World Model in the Recognition of Natural

Outdoor Scenes

The doctoral dissertation of Kenneth Sloan was on the use of color

and a world model in the recognition of natural outdoor scenes. He used

color pictures of wilderness scenes roughly oriented towards the

horizon. His obje:-tkve was to identify regions such as sky, mountains,

hills, trees, lakes, and snow patches. The first step in his program

was to segment the digitized color picture into regions of homogenous 0

color. The regions of homogenous color were then given semantic labels

such as "sky" and merged with nearby regions under control of an

6 extended production system. The productions used contextual and color 0

cues, to assign semantic labels and merge regions. The initial goal of

the production system was to identify the skyline as a context for

4 further processing. V
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The opponent process theory of color perception [Hurvich70]

[Sloan75] was used to provide color descriptions compatible with human

perception. The resulting color descriptions correspond to color names

in human language, thereby facilitating extension of the system to man-

machine interaction through natural language. The opponent process

theory can explain phenomena of human color perception such as color

desaturation at low and high intensity, and the effect of surrounding

regions on color perception. However these phenomena rely upon the non-

linear processing of the initial red/blue/green description. For

reasons of computational speed, Sloan implemented the opponent process

theory as a simple linear transformation from the initial red/green/blue

color space into a yellow-blue/red-green/white-black color space. Thus

the only advantage of his implemented opponent process theory was in

color description, which was acheived by quantizing each of the three

transformed color dimensions into +, -, and 0. This yielded 27

different colors that correspond well to color names in human language.
S

The initial region segmentation w3s done by a FORTRAN program which

took a seed for each region and recursively found all pixels with 8-

neighbor connectivity that were the same color as the inital seed to

within a small tolerance. Because of the 8-neighbor connectivity,

regicns could be very interlocked, as in a jig saw puzzle. Regions were

described by area, color of initial seed, bounding rectangle, shape, and

texture. Shape and texture were optional descriptions computed at the

request of higher-level routines. Shape was described by the distance
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from the center of the bounding rectangle to the furthest pixel in each

of eight directions. Texture was described by the "busyness" of an area

as indicated by the region boundaries.

High-level processing was under the control of an extended .
production system, which used the contents of Short-Term Memory to focus

attention, storing assertions not in current focus under tags in Long-

q Term Memory. The initial goal was to process the regions in order of

decreasing size until some region could be identified as either land or

sky. When this was done, the production system was recursively called

*with a new set of rules for the context established by the

identification of the initial region. Regions near the initial region

were examined to see if they could be merged into the initial region, or

used to establish a new context. For example, if a dark region was

found while examining neighbors for a region identified as a patch of

sky, then the dark region would be used to establish a context for land

and skyline.

The semantic content of the rules used for identification and

merging of regions were fairly simple. For example the initial sky

* region was identified by being near the top of the picture and bright.

Tree trunks were identified by being brown and vertically elongated. A

nearby region of similar texture and color was merged into a

* semantically identified region. If one region was above and bluer thanw

an identified region, then it was judged to be further away because of

the blue-shift for distant objects. Similar use was made of texture

10



discontinuties. Dark blue regions were identified as water, while dark

blue-green regions are identified as mountains. White regions near a

ground patch were identified as snow.

Dr. Sloan's system did not identify the complete skylir, in his

pictures. Rather it identified fragments of the skyline and depth

discontinuities in the land, such as ridgelines, which he called

generalized skylines. lie used three pictures for the development of his .

system, and 3 pictures to test the system. His system failed on the

picture of Mount Rainier, partially because the glacier was confused

with a bank of clouds and partially because the initial region

segmentation included regions consisting of both sky and ice. In

another picture, of the desolation wilderness, the sky is too dark to be

identified as such, but the mountain peaks are identified as depth

discontinuties, i.e., as part of the generalized skyline. Other errors

include such things as confusing mountain peaks with tree tops and poor

identification of bodies of water.
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III CURRENT SYSTEM I-

thtis, regions in the scene that can be confidently identified. The

sky seed is classified as being clear, overcast, or cloudy. This

information is then used to extend the initial seeds when it can be done

with high confidence. The final result is a picture broken into a sky

region, a land region, and a possibly empty unknown region.

The picture is assumed to be right side up with the sky dominating

the top of the picture and the land filling the entire last row in the

bottom of the picture. The current system will almost always find the

skyline under conditions of clear sky or under cloudy conditions when

the clouds do not touch the skyline nor form an unbroken chain across

the sky. This performance is achieved because, for any reasonably sized

picture, the luminosity gradient within the sky is always less than the

smallest integer-valued threshold possible for region segmentation.

Thus the initial sky seed is in fact the entire sky under clear

conditions. In conditions of an overcast sky or when cumulus clouds

* to11(h the horizon, the system usually finds a bounded region in which

the skyline will appear.

The initial region segmentation is done by setting a gray-level

contrast threshold and then grouping pixels into 4-neighbor connected

regions enclosed by a boundary. The contrast across the boundary
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everywhere exceeds the gray-level contrast threshold. This segmentation

is accomplished through a one pass scan over the entire picture. A

region map is produced, isomorphic to the original picture, with each

pixel assigned a region number. Adjaceut pixels are given the same

region number if their contrast is less than the threshold contrast;

otherwise they are assigned different region numbers. During the scan

adjacent pixels might be assigned to different regions based upon a

local boundary that does not become a closed contour. In this case the

two regions are merged; otherwise the algorithm is completely

straightforward.

The basic concept behind this method of region segmentation is to

combine region-based and edge-based descriptions since edges generally

do not form closed contours. An alternative to the approach we employed

is to use some edge operator that implicitly computes edge data and

region data. The Laplacian operator has been used to derive edge data

from zero-crossing contours, it can also be viewed as breaking a picture

lip into positive and negative regions. However it was empirically

determined that the zero-crossing contour correponding to the skyline

was almost inevitably broken at several points, causing the sky region

to bleed1 into the land region. These breaks were usually associated

with high-contrast objects near the skyline, and could be quite large in

extent. The largcr the DOG (difference of Gaussian) operator, the more

likely that large objects near the skyline would fall within the same

window as the skyline, causing a break in the skyline contour. Smaller

13

* i



DOG operators were extremely noisy, with many small contours appearing

within the sky in addition to the skyline.

Finding region boundaries using gray-level difference thresholds

corresponds to edge detection using gradients. Two problems arose, the

first being noise causing locally high gradients and the second being

large-scale changes escaping detection because of a low gradient. A

somewhat less frequent problem was noise acting as a stepping stone

between regions and causing them to merge. These problems had a uniform

solution: reduce the picture by averaging each NxN square of pixels into

one pixel on a coarser grid. This cancels high-frequency noise because

the averaging acts as a low-pass filter. The reduction in size causes

large-scale changes to be reduced to changes on the scale of pixel

neighbors. Very large-scale changes, such as the gradual change of

luminosity over the sky, remain undetected. This is an advantage over

region-segmentation techniques that look for regions of constant

intensity (or constant color), given that the sky becomes whiter towards

the horizon. An added advantage of reducing the picture is that the

computation time is reduced by a factor of NxN.

A 4-by-4 picture reduction was choosen arbitrarily. Empirical

investigation showed that the region-segmentation technique was fairly

robust over a wide range of reduction factors. The constraints are that

the reduction average a sufficient number of pixels to cancel out noise

and sharpen a hazy skyline.
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The skyline-detection algori 'ha uses a hierarchy of region

segmentations. The hierarchy is fcrmed by using five different gray-

level difference thresholds for segmentation: 2, 4, 8, 16, .32. Any

region found using a threshold of 2 is necessarily a subregion of a

region *found using a threshold of 4. In general, if T1 and T2 are

thresholds such that T1 < T2, then regions segmented using Tl are

subregions of regions segmented using T2. A threshold of 2 is the

* lowest threshold that does not require regions to be of constant

intensity. The doubling of thresholds is an arbitrary choice, which

provides coverage of edge strenghths from 2 to N with only log (2) N

segmentations. It was empirically determined that an upper threshold of

32 was sufficient for a maximum gray-level value of 255.

The initial sky seed is determined with the region segmentation of

threshold 2; the region with the largest number of pixels in the top 8%

of a picture is choosen as the sky seed. The assumption being made is

that some subregion of the true sky is larger than any land subregion in

* the top 8% of the picture.

The initial land seed is found using the assumption that the

0 highest-contrast continuous boundary spanning the entire horizontal

extent of the picture is at or below the skyline. This assumption had

only one minor exception in a corpus of 15 pictures used for system

40 development. A bright cumulus cloud on the horizon formed a higher-

contrast boundary with the clear sky above it than with the bright rock

below it in the picture labeled "Bishop". The method used to find the
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initial land seed using this assumption was to grow the initial sky seed

until it touched the bottom of the picture. The growth was accomplished

by using successively higher thresholds for finding region boundaries.

Since the sky is assumed not to touch the bottom of the picture, it is

necessary to back off the threshold once the sky region touches the

bottom of the picture, this is done by halving the threshold by a factor

of 2. The initial land seed is found by finding the transitive closure

of all regions connected to the bottom of the picture through

neighboring nonsky regions.

The initial sky seed is classified as clear, cloudy, or overcast

according to the following criteria. If large regions are enclosed

within the initial sky region, the sky is assumed to be cloudy. These

large regions usually correspond to bright cumulus clouds, which form

high-contrast boundaries. Sometimes the initial sky seed will be a

cloud, in which case the interior regions (holes) would be patches of

clear sky. A clear sky is approximated well by a linear intensity

function over small solid angles. Except for pictures taken with

extremely wide-angle lenses, the assumption of a small solid angle is

valid. Theoretically the picture should also lie entirely within one

quadrant of the sky with respect to the position of the sun, since there

is usually an inflection point in the luminosity of the sky at the

azimuth and elevation of the sun. In practice the latter criteria does

not, make a difference, so the intensity of the clear sky is well modeled

as a linear function of the x and y coordinates. An overcast sky is
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illuminated by sunlight transmitted through layers of clouds. The

optical thickness of the clouds determines the luminosity. The optical

thickness is usually not well approximated by a linear function over the

viewing angle of the picture. The initial sky seed is classified as

clear if the mean sqaure error of the least squares linear approximation

is less than the mean pixel noise. The pixel noise was computed

assuming that the gray-level differences between adjacent pixels in the

picture were predominantly due to noise. A histogram was made of

adjacent pixel gray-level differences, and the 66% percentile was

assumed to represent the standard deviation in an underlying gaussian

distribution. This gives a good upper bound when noise is due to the

digitization process.

IV RESULTS

The skyline delineation algorithm was tested on a corpus of 15

pictures. These pictures were deliberately selected at the beginning of

the project to present difficulties to any mechanical system. The

corpus can be classified as follows: 0

Clear Sky :2
Haze :2
Cloudy : 6
Overcast :5 0

17
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A. Confusing Factors

In four pictures there is contrast reversal at the horizon, that is

objects on the horizon are brighter than the sky above them. In seven

of the pictures there are portions of the sky with lower intensity

values than some objects on the horizon. In five of the pictures some

boundaries within the sky form a higher contrast than the skyline

boundary.

B. Performance of Skyline Delineation Algorithm

Clear Sky: In these cases the program found the skyline with no

ambiguity. The region segmentation is well matched to the gradual

change of intensity over the clear sky, and the brightening of the sky

'U
at the horizon increases the skyline contrast, usually making it the

highest-contrast boundary in the picture.

Haze: In one case the initial sky seed found in the picture was

identical to the sky, while about half the land was declared ambiguous.

In the other case the program mistakenly identified the near skyline as

the real skyline. The picture was taken from the top of a mountain with

Vancouver Bay in the background of a ridgeline. The bay, and the

peninsula beyond, are so hazy that the program misidentifies them as a

cloud (as do most humans). In many hazy pictures the horizon is so

indistinct that the best any interpreter could do, mechanical or human,

would be to identify some region of ambiguity in which the skyline must

fall.

1 U
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Cloud!: In none of these pictues is the skyline found

unambiguously. In three of these six pictures the sky portion and the

land portion of the picture touch at some points. In one of these

pictures a small error is made where a cumulus cloud is included as part

of the land seed. The cumulus cloud has a very similar intensity to the

bright rock beneath it, as opposed to the darker sky above it. In one

of these pictures a cloud/snow boundary has no contrast.

Overcast: In one of the overcast pictures, the skyline was

identified without ambiguity. In the remaining four pictures, the

ambiguous region extended over various portions of the picture. With an

overcast picture the land seed is apt to cover most of the actual land

in the picture, while the sky is broken at horizontal layers. Thus, in

mt-st of the pictures, the ambiguous portion is largely within the sky

region

V CONCLUSIONS

The p~rincipal difficulty in image understanding is to translate a

given interpretation problem into one of identifying observable features

of an image. This requires an analysis of the underlying physical

mechanisms governing the visual properties of the objects of interest.

and the image-acquisition process. The analysis yields constraints for

translating from observable features back into semantic objects. When



the problem is completely constrained the translation is unambiguous,

otherwise ambiguity remains.

This analysis was carried out for the problem of differentiating

sky from land. The analysis principally focused on the question of how -

to extend a point identified as sky into as large a portion of the true

sky without misidentifying some portion of land as part of the sky. The

principal observable due to physical mechanisms of sky luminance is

gradual change. Unlike other problems where geometric structure is

transformed into observables through the imaging process, the sky has no

geometric structure and there is no fixed model of the geonetric

structure in the land. The geometric structure which is assumed is that

the picture is taken right side up with the sky dominating the top of

the picture and not touching the bottom of the picture. This

presuppostion is equivalent to requiring the question of skyline

delineation to be me, -:gful for the images analyzed.

An algorithm (a region-based segmentation process that splits

regions at discontinuities) based upon these constraints was constructed

and tested. The algorithm incorporates sufficient constraints to find

4 the skyline unambiguously in easy cases, while delineating an ambiguous

region in more difficult cases. The only major mistakes it made were in

cases of extreme haze, where humans would also make mistakes.
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