
AD-A123 126 SEARCH PROCEOUR'ES FOR PE FEC INFORMATION TREES II

CONTAINING CHANCE NODES(U) DUKE UNIV DURHAM NC DEPT OF

COMPUTER SCIENCE B W BALLARD APR 82 CS-1982-8

UNLASSIFIED AFOSR-TR-82-1081 AFOSR-B1-0221 F/G 12/1 NLEIIEEIIEEIII
EIIIIIIIIII!IE
EEEIIIIIIIIII

L, Q8 12.5

1111

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDAROS-1963-A

_

i I I iFl

UNCLAqSTFTRD
4, SECURITY CLASSIFICATION OF THIS PAGE (Whmen Dese aEntered),

REPORT 00CUIAENTATION PAGEREDISUCONE RPBEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG ';UNDER

AFOSR-TR- 82-1081
4TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

SEARCH PROCEDURES FOR PERFECT INFORMATION TREES TECHNICAL
S. PERFORMING 01G. REPORT NUMBER

CONTAINING CHANCE NODES CS-1982-8

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(a)

Bruce W. Ballard AFOSR-81-0221

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Computer Science Department AREA & WORK UNIT NUMBERS

Duke University PE61102F; 2304/A2
Durham NC 27706

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate April 1982
Air Force Office of Scientific Research 13. NUMBER OF PAGES

Bolling AFB DC 20332 33
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 1S. SECURITY CLASS. (of thie report)

UNCLASSIFIED

1Sa. DECL ASSI FICATION/ DOWNGRADINGSCHEDULE

C'\ 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

T DTIC
,s SUPPLEMENTARY NOTES

Submitted for publication to Artificial Intelligence. JAN 0 7 1983

19. KEY WORDS (Contlnue on reveree aide If neeeeary and identify by block number)

Alpha-beta pruning; search strategies; search methodology; games with chance;
minimax trees.

A STRACT (Confinue on reverse side I neceeersy and Identify by block number)
An extension of the alpha-beta tree pruning strategy to game trees with 'proba-
bility' nodes, whose values are defined as the (possibly weighted) average of
their successors' values, is developed. These '*-minimax' trees pertain to
games involving chance but no concealed information. Casino blackjack, back-
gammon, some card games, and board games such as Monopoly are gmes of this
type. An initial left-to-right depth-first algorithm is developed and shown to

LA reduce the complexity of an exhaustive search strategy by 10 to 35 percent. An_J
*-- improved algorithm is then formulated for the class of 'regular' ,(CNTINUED)

DO 1473 gotiot al I NO0 SS IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W1het Data Entered)

i1CAq-IFIEDn
SSCURTY CLAWSFICATION OF THIS AZPE(Whum Doe gnt-md)

ITEM #20, CONTIW.IED: 4!ninimax trees. With random ordering of successor nodes,
this modified algorithm is shown to reduce search by more than 50 percent. With
optimal ordering, it is shown to reduce search complexity by an order'of magni-
tude. In particular, the number of leaves examined for a uniform 3-level
(2-pAP tree is reduced from N**3 to 1.7211 N**2. For a branching factor of
20, this means that a second ply can be attained by looking at about 34 times
as many leaves, a substantial improvement over the factor of 400 required by
the 'obvious' algorithm. This strategy can be adapted, as the ordinary alpha-
beta procedure has been, to take advantage of the special features of a
particular game.

Accession For

NTIS CRA&I4 D717 TAB

j 7j W-io~ Codes2

D * t 1 Spc a

SECURITY CLASSIFICATION OFPw PAG6(Yhof Date Ei'

AFOSR-TR- 8 2- 10 8 1

SEARCH PROCEDURES FOR PERFECT INFORNATON
TREES CONTAINING CHANCE NODES

CS-1982-8
April, 1982

This research has been oartially supported by AF OR, Air Force
Camand, ArOSR 81-0221. The author wishes to thank Dr. Donald
Loveland and Tos Truscott for reading an earlier draft of this
pacer.

8o 01 07r 021r datz- "

Abstract

An extention of the alpha-beta tree pruning strateqy to gine

trees with *probability' nodes, whose values are defined as the

(possibly weighted) average of their successors' values, is

developed. These **-minimaxO trees pertain to games involving

chance but no concealed information.

An initial left-to-right depth-first

algorithm is developed and shown to reduce the complexity of an

exhaustive search strategy by 10 to 35 percent. An improved

algorithm is then formulated for the class of *regular" *-minimax

trees. With random ordering of successor nodes, this modified

algorithm is shown to reduce search by more than 50 percent.

With optimal ordering, it is shown to reduce Vearch complexity by

an order of magnitude. In particular, the number of leaves

examined for a uniform 3-level (2-ply) tree is reduced from N**3

to 1.7211 W**2. For a branching factor of 20, this means that a

second ply can be attained by looking at about 34 times as many

leaves, a substantial improvement over the factor of 400 required

by the *obvious" algoritm. Our strategies can be adapted, as

the ordinary alpha-beta procedure has been, to take advantage of

the special features of a particular gume.

A I R FORCE OV_?T(' C)T
%MTI CE D' S TECDTTC FSSI- unlimited

,histc- n s Jpoe Ujmta

R d9) istributio

MATTlEN J. K.~
Chief, Technical Information Division

2*

Table of Contents

1. Introduction . . . 1

2. The *-MinimaxSearchProblem 3

3. A Strategy for Searching e-Minimax Trees 4

4. An Algorithm for Searching *-Minimax Trees . . . 8

5. A 'Better" Solution for "Regular" e-Minimax Trees 10

6. Analysis of e-Minimax Algorithms 14
6.1 Best-Case Analysis 17
6.1.1 Best-Case Analysis of the Starl Procedure 18
6.1.2 Best-Case Analysis of the Star2 Procedure . . q
6.2 Average-Case Analysis 20
6.2.1 ~pirical Average-Case i;d 21
6.2.2 Alqebraic Average-Case Analysis of Starl 24

7. Remaining Considerations . . . o 27
7.1 The Efficacy of Search 27
7.2 An Unusual Form of Cutoff 29
7.3 Differing Probabilities Below a * Node 30
7.4 Additional Modifications 31
7.5 Incorporating *-Minimax Search Into

A Complete Game Program 32

References . 33

1. Introduction

Many games involving chance events, such as the roll of dice

or the drawing of playing cards, can be modeled by introducing

'probability" nodes into standard minimax trees. In this paper,

we shall use the symbols + and - to denote maximizing and

minimizing nodes, respectively, and * (pronounced "star") to

denote a probability node. We define the value of a * node as

the weighted average of the values of its successors, which may

occur with differing probabilities. A sample **-minimax" tree,

as we shall call trees made up of +, -, and * nodes, appears in

Figure 1. Backed-up values for non-terminal nodes are shown in

parentheses. The value of the * node, whose successors have been

assumed to be equally likely, has been computed as (2 - 4) / 2 =

-1I.

+ (3)
*/ \

- (3) * (-1)
*/ \ / \

/ / \
4 3 -(2) -4/ \

2 3

Figure 1 - A Sample *-Minimax Tree

In this oaper we shall develop and analyze'a search strategy

for *-minimax trees. Our algorithm reduces to the familiar

" aloha-beta procedure (Knuth and Moore f21) for deqenerate *-UI

minimax trees, i.e. those with only + and - nodes. Readers

unfamiliar with ordinarv minimax trees should refer to Section 3

and perhaps consult Nilsson [11 or any of 12-51. To facilitate

analysis, we shall assume that all descendents of a * node are

equally likely. The algorithm we present can be extended, in a

direct way, to the more general case.

For the most part, *-minimax trees retain the vroperties of

ordinary minimax trees. In varticular, they vertain to 2-person,

O-sum, perfect information games. By "oerfect information" we

mean that neither player conceals information about the current

state of the qame, or possible future states, that could be

useful to the other player. Many dice qames (e.g. craps,

backgammon, and monopoly and similar board games) satisfy these

criteria, as do some card games (e.g. casino blackjack).

Unlike ordinary minimax trees, where + nodes always lead to

- nodes and vice versa, trees for *-minimax games exhibit many

forms. For instance, the top portion of a tree for casino

-blackjack, where the strategy of the dealer ("house") is

predetermined, thus eliminating branches beneath - nodes, is

given (in simalified form) in Figure 2.

Hit / \ Stand/\

/t \ I
/ I \I

loss + ... + */t \
/ I \

loss - ... win

Figure 2 - Portion of a Casino Blackjack Tree

Compare the structure of this tree fragment, with its notable

3

absence of alternation between + and - nodes, with the backgammon

tree fragment of Figure 3.-

+
/ \

Double / \ Roll/\

Accept / \ Decline / I \/ \/ I \
* win + + .+

Figure 3 - Portion of a Backgammon Tree

2. The *-Minimax Search Problem

Having defined and given examples of *-minimax trees, we now

consider the question of searching these trees. At the very

least, we want to retain the aloha-beta "cutoff" power of

ordinary minimax trees. However, the presence of * nodes

provides opportunities for additional forms of cutoffs. Our

strategy is based on the fact that lower and upper bounds on the

value of a * node can be derived by exploring one or more of its

children. Our search algorithm will (indirectly) associate such

lower and upper bounds with each * node. Since alpha and beta

values will have been passed into a * node, we can discontinue

search below it if the lower *-bound ever'exceeds beta, or if the

upper *-bound ever becomes less than alpha. In the former case,

the - player will have already found a path that holds his

opponent to less than the lower limit of the * node value. In

the latter case, + will have already found a way to do better

than the uoper limit of the * node value. Thus, optimal play by

both players will assure that the * node in question is never

reached, rendering further exploration beneath it futile.

As an example of a possible "* cutoff", suppose the (leaf)

values of a particular tree are integers between 0 and 10,

inclusive, and that a * node with 4 equally likely successors has

had 2 of its successors searched. This situation is shown in

Figure 4.

< 2---------- 2<= val <= 7

SI I I 1

5 3 ? ?

* Fiqure 4 - Interim Bounds on a * Node

Knowing the values of these 2 children, we can say that the

smallest value subsequent search can assign to the * node is

(5 + 3 + 0 + 0) / 4, or 2. Similarly, the greatest possible

value of the * node is (5 + 3 + 10 + 10) / 4, or 7. Thus, a

cutoff can occur if the alpha value passed to * is >= 7, or if

the beta value is <= 2. we shall formulate a search strategy to

take advantage of this form of potential cutoff. In addition,

*' our strategy will compute new alpha and beta values for use below

* nodes.

3. A Strategy for Searching *-Minimax Trees

Before looking at ways in which * cutoffs can occur, it will

be useful to recall the circumstance in which nodes of an

ordinary minimax tree can be pruned, without loss of accuracy.

At each + node, the + player will choose the successor with the

ohighest value, while at - nodes the - vlayer will choose the

successor with the smallest value. Consider Figure 5.

A .

+
a/ \ba b

4 x/ \yx \

3 ?

Figure 5 - A Conventional Cutoff

Having determined the value (either terminal or backed-up) of the

node below move a as 4, move b is Orefuted" by move x, which

establishes that the value of move b is no more than 3 (perhaps

less). Move y may be "cut off" since its value (indicated by

"?0) has no bearing on either the value of the root of the tree

or on decidinq the best move from the root. Since the node with

? as value could be the root of a sizable subtree, the searching

of many thousands of nodes may have been eliminated.

The standard method of having a search algorithm recognize

opportunities for cutoffs such as these is to associate so-called

"alpha" and "beta" values with each node n of the tree. The

aloha value tells how well + can do if node n is encountered

during optimal play by both players. Similarly, the beta value

tells how badly - can make + do, again assuming perfect play

reaches node n. If the value of a node is ever determined to

exceed its beta value, or to be less than its alpha value, this

must mean that optimal play will not lead to the* node in

question. Therefore, further searching is pointless. In fact,

subsequent nodes can be cut off if a successor value equals the

* aloha or beta value. In this case, one of the players will have

found another line of play, with at least as good a value for

6

him, which has already been searched. If a player has two or

more equally good moves, it doesn't matter which one is made.

Consider now the partially searched *-minimax tree of Figure

6, and assume that leaf values range from -10 to +10, inclusive.

/ \
4 -/ \

5 * < ----------------- <4 5>/ I\
2 I

- < ----------------- <0 ,10>/ \
3 * < -------------- <0 , 3>

-3

+ < -------------- <-7 , 10>
Figure 6 - A Partially Searched *-Minimax Tree

The alpha-beta values of 4 and 5 for the * node at deth 2

indicate that if the value of this node is determined to be <= 4,

or >- 5, search beneath it can be discontinued. Suppose now

that, as shown, there are 3 successors, the first of which has

been searched and found to have a value of 2. If -10 and +10 are

limits on leaf values, then the value of the'* node lies between

(2 - 10 - 10) / 3 and (2 + 10 + 10) / 3, i.e. between -6 and

7 1/3. Since -6 is not greater than 5, nor is 7 1/3 less than 4,

we must continue searching children of the * node. However,

before so doing, we ask ourselves, what values of the lower-level

* node to be searched will entail a cutoff at the * node? Denoting

this value by V, we want to know V for which

m..

7

(2 + V + 10) / 3 <- 4, i.e. V <- 0

or (2 + V - 10) / 3 >- 5, i.e. V >- 23

These values for V can now be used as alpha-beta values for the

lower-level node to be searched. Raving assumed 10 as an uooer

bound on game values, however, we will use 10 rather 23 as the

beta value. Thus, as indicated in Figure 6, 0 and 10 serve as

alDha-beta values for the - node at depth 3.

Suppose now that we search the first descendent of this -

node at depth 3 and find a value of 3. Since 3 is not less than

the 0 alpha value, we continue searching', and the next node to be

searched is the * node at depth 4. However, since 3 is less than

the current beta value of 10, we vass down 3 as the new beta

value for the * node, while the alpha value of 0 is unchanged.

Having reached the * node at depth 4, we can discontinue

searching if its value is found to be less than or equal to 0, or

greater than or equal to 3. In the latter ca-e, - will have

already found a way to hold his opponent to 3, and surely won't

give + the chance to achieve 3 or better at the * node. In the

former case, a cutoff below the * node will be followed

immediately by a cutoff at the parent - node, which will

immediately cause a cutoff at its parent * node, which in turn

will entail a cutoff below the top - node. This possibility for

two or more cutoffs to occur without intervening leaf searches is

without counterpart in conventional minimax trees.

8

By reasoning as above, we can determine, after seeinq the -3

successor of the * node at depth 5, that the * node value lies

between -7 2/3 and 5 2/3, and that -7 and 10 should serve as

alpha-beta values for the + node to be searched next.

4. An Algorithm for Searching *-Minimax Trees

We now formalize the reasoning presented above. Let L and UJ

denote lower and upper bounds on all possible game (leaf) values.

Let Vl, V2, ..., VN be the values of the N successors of a *

node, whose i-th successor is about to be searched. After

returning from the i-th node, a cutoff will occur if

(Vl + ... +Vi-l) + Vi + U (N - i)
<= aloha (la)

N

or if

(V + ... + Vi-l) + Vi + L * (N - i)
>= beta (lb)

N

Letting Ai represent the alpha value for the i-th successor, we

have

Ai = N * alpha - (V + ... + Vi-l) - U * (N - i) (2a)

where "alpha" denotes the alpha value of the present * node.

Similarly, letting Bi rearesent the new beta value, we have

i- N * beta - (V1 + ... + Vi-li - L * (N - i) (2b)

where "beta" is the beta of the * node.. In the actual

implementation, we will want to assure than all A's are >= L and

9

all D's are <- U. From the equations above we see that un-to-

date A and B values can be comouted efficiently if they are

initialized as

Al - N * (alpha - U) + U (3a)
Bl - N * (beta - L) + L (3b)

and updated by

An+l - An + U - Vn (4a)
Bn+l - Bn + L - Vn (4b)

Note that, when N - 1, Al and Bl take on the alpha-beta values

themselves.

From the above formulation we derive the following search

procedure for * nodes:

Starl(board, alpha, beta)I
local A, B, i, v, vstm, AX, BX, srij

determine the N successors sl, s2, ... , SN
if (N -- 0)

return(Term (board));

A - N * (alpha - U) + U;
B - N (beta - L) + L;
vsum - 01
for (i-1; i<=N; i++) f

AX - max(A, L);
BX - min(B, U);
v a Eval(s[iI, AX, BX);
if (v <- A)

return (alpha);
if (v >- 8)

return (beta);
vsum a vsum + V;
A -A + U -v;

B B + L -v;

return(vsum / N)i

10

This code makes use of (1) a Term procedure, to evaluate terminal

Positions, (2) an Eval procedure which, deoendinq on which player

is to move next, invokes either Max or Min; and (3) a procedure

. to generate the successors of a node.

5. A 'Better" Solution for "Regular" *-Minimax Trees

The strategy developed above assumes that each successor of

a * node could be either a - or a + node, independent of its

sister nodes. In many *-minimax games, however, most * nodes

S., fall into one of two classes: those with only + successors, and

those with only - successors. In these games, chance events are

-; used to determine legal moves (as in backgammon), or the outcome

.:,o of a move (as in blackjack), or both, but not to determine who is

to have the next move. (If chance is used to decide who makes

the very first move, this one-time event is unrelated to search

matters.) We shall refer to games such as these as reqular. *-

' minimax games. Trees corresponding to these games alternate

between + and - nodes, as do ordinary minimax trees, but with *

nodes interspersed. Thus, on a path from the root we encounter

node types of *, +, *, -, *, +, and so forth.

For the newly-defined class of regular *-minimax trees, we

can devise a "better" search procedure, to be called Star2, which

is later shown to be qreatly superior to the Starl procedure it

directly extends. The algorithm underlying Starl is based on a

strict depth-first control strategy. Thus, if X and Y are

successors of some * node, we cannot examine children of X,

susuend work with X to begin searching beneath Y, and then later

-,I I .

11

return to additional nodes beneath X. Consider a * node all of

whose children are - nodes. In this situation, the left-to-right

restriction imposed by a depth-first control strategy has two.

drawbacks. First, for a given * node, it forces us to look at

all N leaves beneath all but the last - node searched (unless

some leaf takes on the minimum value over all possible leaves).

Second, we assumed that unprocessed - nodes could have the

maximum possible qame value. Each of these problems is answered

by the following modification developed below.

If a * node being examined is worse than a previously

searched * node, a preliminary *probing" of just one child of

each - node can substantially reduce the number of nodes explored

before a cutoff occurs. If Wi denotes the value of some child of

the i-th - node, and as before Vi denotes the (true) value of the

i-th - node, we will obtain a cutoff below the * node if

(Vi + ... + Vi-1) + Vi + (Wi+l + ... + WN)
<= alpha (5)

N

which yields an Ai value of

Ai - aloha * W - (Vl + ... + Vi-1) - (Wi+l + ... + WN) (6)

which can be efficiently computed by initializing to

Al - alpha * N - (W2 + ... + WN) (7)

and updating by

An+l -An + Wn+l - Vn (8)

' " -... I .. I I " - it..-' a l

12

Since all W's are <a U, the values comouted for A in (6) are

never less than corresponding values in (2a).

If the * node being searched is not better than all

previously searched alternatives, so that a cutoff will occur,

then unless we are quite unlucky in selecting the Particular

children of - nodes to explore, these tiqhter bounds for A will

allow for an earlier cutoff than the formulas given earlier.

Since we cannot speak with confidence about how large the true

value of a - node might be without looking at all its successors,

no special use can be made of the B in (2b) during the

preliminary probing stage.

We formalize these ideas in the followinq Procedure. In

order to detect possible cutoffs during the Probing Phase, and to

avoid a subscript range error the last time through the second

loop, the calculations specified by (7) and (8) have been

'distributed" into disjoint places in the code of the new

procedure. In keeping with the discussion above, this code

pertains to a * node followed by - nodes. A related Procedure

*• for * nodes followed by + nodes will also be needed.
'I

S 2
I l -=,r' .. .', , ..

13

Star2Min(board, alpha, beta)I
local A, B, i, v, vsum, AX, BX, s[], w[l;

determine the N successors sl, s2, ... , sm' " if (N WS 0)
I' : return (Term (board));

A - N * (alpha - U) + U;
B- N* (beta -L) + L;
BX - min(B, U);

for (i-1; i<N; i++) {
AX - max(A, L);
will - Probe(s il, AX, BX);
if (w(il <- A)

return (aloha);
A A A + U - w[il;I

A = A -U;
vaum 0;
for (i-lit i<,N; i++)

A A + wi];
AX a max(A, L);
BX = min(B, U);
v = Min(s(iI, AX, BX);
if (v <= A)

return (alpha);
if (v >= B)

return (beta)
vsum "- vsum + V;
A -A v;
BB-A-v;i!~ B + L -v;

return(vsum / N) ;I

Here we have referred to a new procedure Probe(x,v,z) whose job

is to return Term(x), if x is a leaf, otherwise to choose some

successor s of x, either at random or by appeal to a static

evaluation function, and return Min(s,yz).

In the event that preliminary probing fails to obtain a

cutoff, the modified algorithm qiven above reverts to the

original algorithm, albeit with a tighter A bound and therefore

with an equal or better opportunity for an early cutoff. Rather

I

i . 14

than exhaustively searching - nodes one by one, however, a second

child of each - node might be explored. If a cutoff has still

, not occurred, a third successor of each - node would be

considered, and so forth. This "cyclic" strategy may require

more space for keeping track of which children of each - node

have been expanded, but the even tighter bounds available after

* looking at only 2N - node successors may more than make up for

. this in certain situations. In Section 7.4 we consider more

radical modifications of Star2.

6. Analysis of *-Minimax Algorithms

In analyzing the efficiency of a search procedure for a

class of game trees, one begins by specifying a subclass for

study. This involves deciding on (a) the overall structure of

trees; (b) a way of assigning values to leaves; and (c) the

criterion to be measured. We want our analysis of *-minimax

'-;. search to resemble that for ordinary alpha-beta wherever possible

(e.g. [2-51). Since virtually all study of aloha-beta has chosen

to count the number of leaves encountered as the efficiency

measure, we will do so as well. Furthermore, most analyses of

" ordinary alpha-beta have considered so-called "complete" N-arv

trees, where all leaves occur at a fixed depth D and all non-

terminal nodes have exactly N successors. We define the class of

.* *-complete N-ary trees by insertinq a * node above each node of a

" complete N-ary tree, and giving these * nodes N-i additional

, successor nodes of the same type. These trees satisfy the

definition of "regular" *-minimax trees as qivpn in the previous

, section. Corresponding to a complete N-ary tree of depth n,

..0

. o

15

which has N ** D leaves, is a *-complete N-ary tree of depth 2D

having N ** 2D leaves. The leftmost part of a *-complete 2-ply

binary tree appears in Figure 7. Incidentally, It makes sense,

for these trees, to speak of half-ply, i.e. chance events not yet

responded to.

/ \
/\

+ 4.
/ \

/\

/ \
/\

/ \
/\

Figure 7 - The Leftmost Portion of a 2-Ply *-Complete Binary Tree

We will investigate the efficiency of the *-minimax

algorithms on *-complete N-ary trees of depth 3, since they

correspond to minimax trees (of depth 2) allowing the simolest

cutoffs of standard alpha-beta (see Figure 5). From Figure 7 we

can see that no cutoff is possible at the topmost level, since

the root is a * node. (During actual play, the chance event will

have occurred by the time we are ready to select a move, so only

one + successor of the top * node will be searched anyway.) The

left + node however permits a cutoff below its second successor.

By the time this * node has been reached, an aloha value will be

available. We will consider this critical portion of the tree,

which is given in Figure 8.

d

16

+
/ \

.Figure 8 -Opportunities For a Cutoff
in a *-Complete 2-Ply Binary Tree

In an attempt to capture the sorts of leaf dependencies that

have been observed in practice, we follow Fuller, Gaschnig, and

Gillogly [31 by assigning distinct, uniformly spaced values to

the arcs below a node, and defining a leaf value as the sum of

the arc values on the path to it from the root. Since we want

our methods to apply to (perhaps differently shaped) trees where

leaves occur at various levels, we cannot use simply the values

of 1 through N as arc labels, as Fuller et al [31 did. To enable

all successors of a node to share the same a Priori Drobabilitv

of being best. we want the arc value from a + or - node to its

"best" successor to be 0, and the 'average" arc value out of a *

,.' node to be 0. Therefore, to the arcs of - nodes we assign values

of 0, 1, ... , N-1, an4 to the arcs of + nodes we assign values of

0, -1 ,..., -(N-h). ssuIing N is even, we assign to the arcs of

* nodes the values of -N/2, ... , -2, -1, 1, 2, ... , N/2.

Readers familiar with studies of the alpha-beta procedure

(Xnuth and Moore [21, Fuller et al [31, Newborn [4], Baudet [51)

&will appreciate the algebraic complexity involved in obtaining

precise closed-form Performance figures for even shallow trees

(e.g. depth 3). Accordingly, the following analysis, which

161

17

determines both asymptotic comDlexity and exact values for

various branching factors, combines simulation with analytic

techniques where appropriate.

6.1 lest-Case Analysis

We first establish the best case behavior of the Starl and

Star2 procedures on the class of *-complete trees just defined.

We will derive asymptotic values in closed form, then present

exact figures for various branching factors arrived at by

empirical means.

As in ordinary alpha-beta search, the first successor of the

+ node must be fully searched, and we will obtain the qreatest

number of cutoffs if the best node is searched first. Since this

value, which we have arranged to be 0, cannot be improved upon,

it will serve as alpha value for all the remaining * nodes, which

have backed-up values of -1, -2, ... , -(W-1) and can be searched

in any order without affecting search efficiency. Since the node

with -1 as value is almost best, it will take longest to search,

while the -(N-i) node will be dispensed with most quickly.

We will find the number of leaves searched for the

particular * node having backed-up value of w-N/2 (a value chosen

to simplify the algebra). From this result we add uo values as w

runs from -(U/2-1) to V/2-1 to obtain the overall search

efficiency under the + node in question.

18

6.1.1 Best-Case Analysis of the Starl Procedure

To obtain a cutoff below a * node, we will need to begin

exploring a j-th descendent of it for which

VI + V2 + ... + VJ + U * (N - 1) <= 0 (Q)

where Vi denotes the backed-up value of the i-th descendent of

the * node and 0 is the active aloha value. The values of the -

nodes beneath * range from w-N to w, excluding w-N/2. To

guarantee the earliest possible cutoff, we will want to look

first at the nodes with low values. If j > N/2, which we shall

see below is always true, then VI through Vj will take on the

values w-N through w-(N-j), excluding w-N/2. Letting k = N-j, we

can rewrite the equation above as

[k + (k+l) + ... + Ni - N/2 + (k-N) * w >= k * U (10)

But the summation is easily written in closed form, and U (the

maximum leaf value) is N/2 + (N-l), or 3N/2 - 1. After

cancelling the N/2 terms, we have

'RN- (k*k - k)
+ (k - N) * w >- k * (3N/2- 1) (11)

2

which can be written as a quadratic (in k) as

kek + (3N - 2w - 3) * k - (NON - 2%,1w) <= 0 (12)

from which the quadratic formula yields k as the floor of

1 + 2w - 3N + sqrt(13N*N - 20Nw - 18N + 4w*w + 12w + 9)
(131

2

19

which for large N becomes

(-3N + 2w + sqrt(134*N - 20Nw + 4w*w)) / 2 (14)

This formula reveals reduction in searching the worst, median,

and nearly-best * nodes of 44.9%, 30.3%, and 0%, respectively.

To determine the total number of nodes pruned, we add up the

above formula as w runs from -(N/2-1) to N/2-1. For large N,

this suw can be found by integration. Once again ignoring

lower-order terms, we obtain a fractional savings of 0.2789. We

can therefore state the following:

Result 1: The asymptotic best-case behavior of alqorithm Star1 on
the + node of a *-complete 2-ply N-ar tree is to
examine approximately 0.7211 N**3 of the N**3 leaves
beneath it.

Table I qives exact values for the best case performance of the

left-to-right Star orocedure for various values of N. Note the

convergence toward the region of 72 percent, as predicted by the

analysis above.

N 2 4 6 8 10 20 30 40

Number 5 40 138 336 670 5560 18990 45320
Percent 62.5 62.5 63.9 65.6 67.0 69.5 70.3 70.8

Table I - Best-Case Leaf Exploration of Star1
for Various *-Complete 2-Ply Trees

6.1.2 Best-Case Analysis of the Star2 Procedure

If the successors of - nodes are ootimallv ordered, so that

their first successors are minimal, then if a cutoff will occur

at all, it will occur during the preliminary processing phase.

20

This means that only one successor per - node will need to be

looked at by Star2, whereas all N of all but the last - node were

examined by Starl. As revealed above, an average of 72.11

percent of the N - nodes below each of the N * nodes, i.e.

0.7211 N*N nodes, will be examined for all but the best * node,

whose N*N leaves must all be considered. This gives us:

Result 2: The asymptotic best-case behavior of alqorithm Star2 on
the + node of a *-complete 2-olv N-ary tree is to
examine approximately 1.7211 t'**2 of the N**3 leaves
beneath it.

" This result is encouraging because, like the O(N**2) best case

. alpha-beta result for depth 3 trees (Knuth and Moore [31), it

shows that a wise algorithm can hope to reduce search comolexity

by a factor of N. For the most part, we achieved this reduction

without significantly increasing the conceptual complexity of the

" algorithm, its overhead, or the additional space needed (which

will in fact be only N*D cells for an N-ary tree of depth D).

Table II gives exact values for the best case performance of the

Star2 procedure for various values of N.

N 2 4 6 8 10 20 30 40

Number 5 25 58 105 166 677 1532 2732
Percent 62.5 39.1 26.9 20.5 16.6 8.5 5.7 4.3

Table II - Best-Case Leaf Exploration of Star2
for Various *-Complete 2-Ply Trees

6.2 Average-Case Analysis

Since average-case analysis is more difficult than best-case

analysis, we decided to investigate the exoecteO-case performance

of the Starl and Star2 procedures mainly by empirical means. To

-I

2'

do this, we coded the alqorithms in the "C" lanauaae to be run on

our PDP-11/70 system. Since the foreqoing alqebraic best-case

analysis ignores lower-order terms, and thus cannot yield

reliable values for small values of N, we preceded our averaqe-

case experimentation by running each algorithm on an ootimallv

ordered tree. The results of this exact analysis were given in

Tables I and II. Finally, after competing our empirical study,

we undertook a simplified algebraic analysis of average-case

Starl performance, which led to an iterative formula which will

be presented after describinq the results of the empirical study.

6.2.1 Empirical Average-Case Study

Using the UNIX pseudo-random number generator, we qenerated

and gathered statistics on 1000 *-complete trees for each of

several branching factors. In qeneratinq the successors of a

node, all N1 permutations of successor arcs were assumed to he

equally likely. We did this because (a) it is simole to

implement; (b) it corresponds to completelv "uninformed" static

evaluation capabilities, thus giving a conservative picture of

what to expect in practice; and (c) it has been assumed by

previous researchers, thus enabling a cdmparison of *-minimax

trees against ordinary minimax trees. In the event that

preliminary probing failed to result in a cutoff, the N leaves

seen were counted twice if subsequent search required a full

search of the - node above them. Thus, the results obtained

represent a conservative estimate of averaqe case analysis, which

is itself a conservative estimate of how well one can exrect to

do in oractice.

22

6.2.1.1 Average-Case Analysis of the Starl Procedure

Table III presents the average-case results for the initial.

left-to-right Starl procedure. It can be seen that the averaqe

case savings appears to be about 21 Percent, slightly less than

3/4 times the best-case savings of 28 percent.

N 2 4 6 8 10 20 30 40

Number 7.1 53.9 178 418 810 6389 21382 50425
Percent 88.8 84.1 82.5 81.6 81.1 79.9 79.2 78.8

Table III - Average-Case Leaf Exploration of Starl
for Various *-Complete 2-Ply Trees

6.2.1.2 Average-Case Analysis of the Star2 Procedure

We have seen that with optimal orderinq, the search

complexity of Star2 on regular *-complete trees can be reduced

from O(N**3) to O(N**2). This may lead us to expect a

significant improvement in its average-case behavior as well.

Table IV summarizes the results of Star2 performance. In

addition to simply counting leaf explorations, we decided to

gather information on how many *-node cutoffs were made during

the preliminary probing phases. An interesting result was that

roughly half the * nodes for which a cutoff occurred were cut off
durinq the probing Phase. Also, we see that for a branching

factor greater than about 20, Star2 looks at fewer than half the

leaves explored by Starl.

...

23

N 4 6 8 10 20 30 40

Cutoffs
Probing 1.3 2.0 2.8 3.5 8.1 12.6 17.4
Regular 0.7 1.5 2.5 3.5 8.4 13.4 18.3

Leaves Seen
Number 48 139 293 531 3341 10109 22390
Percent 75.4 64.5 57.3 53.1 41.8 37.4 35.0

Table IV - Average-Case Leaf Exploration of Star2
for Various *-Complete 2-Ply Trees

6.2.1.3 Discussion of hveraqe-Case Star2 Results

In the *-complete trees we have been considering, where each

non-terminal node has N succe --- , there will be N1 ways of

ordering the arcs below each node. In bbth the Starl and Star2

procedures, searching is left-to-right on the * nodes below the

root. In this case, each * node better than all its predecessors

must be fully searched. If each of the NI permutations is

equally likely, the expected number of such fully-searched *

nodes is the 'harmonic" function, given by

R(N) - 1 + 1/2 + ... + 1/N

This formula is easily verified by induction: given H(N-1),

adding an N-th node worse than all the others will have no effect

of the searching of the previous N-1 nodes, while the new node

will be fully searched only if it is placed first in the

permutation, which happens one time in N. Thus, the riumber of

leaf nodes searched beneath best-so-far * nodes is R*N*H(N). If

in Table IV we subtract from N the average number of cutoffs that

occurred, we observe perfect agreement with R(N) (within the 0.1

tolerance due to rounding). For instance, with N-40, we see that

-AM-

24

an average of 5 * nodes were found superior to previously

searched * nodes. This accounts for 5*40*40, or 8000, of the

leaves that were explored. The remaining 35 * nodes can be seen

to have had an average of (22390-8000)/35, or 411, of the 1600

leaves beneath them examined. The reader will recall that not

all the additional savings of Star2 is made oossible by

preliminary cutoffs, but also by the lower values assiqned for

the Aos. For instance, the 18.3 * nodes which led to a "regular"

cutoff did so after searching fewer than (22lq0-8000)/18.3, or

786, leaves. This fiqure represents about 2/3 the averaqe number

of (50425-8000)/35, or 1212, leaves examined bv Star! for the

corresponding * nodes.

Earlier we suggested looking at 2 leaves durinq preliminarv

probing, rather than just 1, below each - node. Experimentation

with this enhancement to Star2 revealed an average exploration of

(19529-8000)/35, or 329, leaves for these * nodes (a 20 percent

reduction).

6.2.2 Algebraic Average-Case Analysis of Starl

We have observed that the expected number of fully-searched

4 * nodes is qiven by the harmonic function H(N), so that the

number of leaves searched beneath them is

A() - N * N * H(N)

We will now determine B(N), the number of leaves searched beneath

the remaining * nodes, which we add to A(4) to find C(N), the

" total average number of leaves searched in an "N-arv *-comolete

25

2-ply trw.

Each of the N-H(N) * nodes not better than all Preceding *

nodes will be rejected when its value is determined to be less

than the value of the best * node seen so far. Recall that in

the *-comDlete trees we are considering, * nodes have backed-up

values of 0, -1, ... , -(N-1). Suvoose a given * node has a value

of n, and a is the value of the best * node seen so far, where

n < a. In addition to the * node of value m, any of the * nodes

with a value less than m (but not equal to n) can precede the n-

valued node. The number of ways this can occur is given by

N-M-2 N-M-2
D(M) - SUM () * (s+l) I * (N-s-2) 1 (15)

sm0 s

where t - Iml. A cutoff will occur below this n-valued * node

when we have searched a J-th successor for which

Vl + ... + Vj-l + Vj + U * (N -)
- - m (16)

N

But the values of the - nodes below the n-valued * node are n-

U/2, ..., n-1, n+l, ... , n+N/2, with an average value of n. For

large N, J becomes large as well, and the expected value of the

relative difference between (VI + ... + Vj) and Jn apprdaches 0.

Although the average expected value of a function is not in

general the .me as the expected value of the averaqe of the

function, in the present nearly-linear situation, it qives a good

approximation. Thus, using the "jn" value derived above as an

26

approximation, we obtain

jn + (3N/2- 1) * (N- j) <= mN (17)

whose high-order terms give

2jn + 3N*N - 3JN <- 2mn (18)

which reduces to give a value for j, which we denote by J(m,n),

of

3N - 2m
J(m,n) - ------- * N (19)

3N - 2n

This means that the average number of nodes searched beneath *

nodes that are not better than all preceding * nodes is

N-1 n-i
SUM SUM D(ml * J(-m,-n) * N
n-l m-0

B(N) = (20)
N!

By supplying the expressions for the D an J functions,

simplifying, and adding A(N), we find the total number of leaves

searched to be

C(N) N * N * H(N) +

N-i n-i 3N-2m N-m-2 (s+l)1 * (N-s-2)1 N-m-2
N *SUM SUM - * SUM *-PROD t (21)

n-l m-0 3N-2n soo N-I t=N-m-l-s
PROD x
x-N-s-l

Table V gives leaf exploration figures for sDecific values of N,

1.

ML

27

and compares the experimentally derived results against them.

Since simplifications were made in deriving B(N), asymptotic

agreement is not guaranteed. However, it can be seen that the

agreement is reasonably good (less than 2 percent deviation) for

larger values of N.

N 4 6 8 10 20 30 40

Algebraic 57 188 438 846 6557 21805 51174
Empirical 54 178 418 810 6389 21382 50425
Percent Difference 5.6 5.3 4.6 4.3 2.6 1.9 1.5

Table V - Algebraic Average-Case Analysis of Star
Compared with Empirical Findings

7. Remaining Considerations

We complete our presentation and analysis of the *-minimax

search problem, and our solution to it, by devoting brief

attention to some remaining topics.

7.1 The Efficacy of Search

In developing and examining alqorithms for *-minimax trees,

we have assumed that search proceeds until either a leaf is

encountered or an allowable form of cutoff occurs. In this case,

the move selected is guaranteed to be optimal, i.e. to have an

expected value at least as good as the alternatives. As we shall

observe in Section 7.5, however, it is seldom possible to carry

out a complete search, and so in practice the values- of many

non-terminal nodes must be determined by static evaluation.

When complete search is not possible, both intuition and

empirical observation suggest that deeper search will result in

better play. However, recent results by Nau 161 show that for

N

28

ordinary minimax trees, deeper search can in some situations

result in makinq worse moves. Despite the existence of such

"pathological" trees (the terminology of (611, it is probably

advantageous for most games of interest, including the *-minimax

games we have been considering, to search as deeply as possible

(at least as deeply as current technology permits).

Although play is likely to be better with deeDer search, no

general statement can be made as to how much better it can be

expected to be. For many games of chance, strategy appears to be

much more important than search, and in fact the currently too-

ranked backgammon proqram (BKG) does not carry out a tree search.

Although its author indicates that he selected backgammon for

study because he "wanted was a domain where it is possible

to ... make a judgment ... without having to worry

about ... exhaustive analysis" (erliner [71), he states

elsewhere that "the deeper one could look, the better tal proqram

would play" [81.

Perhaps one reason search has received so little attention

for games such as backgammon is that the O(N ** (2D-11)

complexity of the *obvious" search strategy appears infeasible.

For example, Berliner (91 observes that

the throw of. a pair of dice can produce 21 different
results, and each such throw can be played about 20
different ways in the average position. Thus a look-
ahead would have to acquiesce to a branching factor of
about 400 for each ply of look-ahead; an exponential
growth rate than could not be tolerated for very lonq.

In this paper, however, we have oresented an alqorithm which

.:.

~- - - - - - -

29

reduces this branching factor of 400 to 677/20, or about 34.

Since we have assumed equally likely chance outcomes (however,

see Section 7.3) and made other pedagogical assumptions, this

should be treated as only an approximate figure for a particular

game such as backgammon.

7.2 An Unusual Form of Cutoff

Knuth and Moore 121 have shown that whereas the alpha-beta

algoritm for minimax trees is more powerful than the more

obvious branch-and-bound strategy, there is no uniformly stronger

method. This assumesp however, that we must determine the

precise value of the root, not just the best move. Thus, if the

root node of a minimax tree has N successors, and the first N-1

of them have been searched and all found to have the lowest

possible game value (e.g. "forced loss"), alpha-beta will still

search the remaining node, even though this node is known to be

at least as good as any of of the alternativesi In the

degenerate case, this would mean searching a tree with only one

branch (denoting a *forced" move) from the root. Needless to

say, existing game-playing programs typically resoond without

search in these situations.

When searching the last successor of the root of a *-minimax

tree, a stronger form of cutoff can be made. In partfcular, we

can discontinue search, knowing that the rightmost node is

strictly better than the alternatives, even though we may not

know its exact value. This is because the value of a * node is

partially determined by the value of each of its successors,

- ------ ----

30

while a - node is fullv determined by one of its successors. We

imolement this form of cutoff by discontinuing search beneath the

riqhtmost * node when its lower *-value exceeds the aloha value

(rather than beta) passed into it. Being able to cut off below

the node corresponding to the best move, without knowing its

exact value, can be important in reducing search time for *-

minimax trees, especially with a narrow branching factor below +

and - nodes (e.g. in casino blackjack, with a branching factor of

2 beneath + nodes).

7.3 Differing Probabilities Below a * Node

Neither algorithm presented above considers the situation

where not all outcomes of the chance event are equallv likely.

If Pi denotes the probability with which the i-th successor of a

node occurs, then the left side of (la) is replaced by

(PlVl + ... + Pi-lVi-l) + PiVi + U*fl - P1 - ... - Pi) (22)

and (2a), (3a), and (4a) are modified accordingly.

In searching ordinary minimax trees, the static evaluation

function, or a similar "plausible move generAtor", is often used

to determine the order in which to consider successors of a node.

When the probabilities of outcomes differ in *-minimax trees, a

potentially useful strategy is to examine more likely successors

first, since their values will more strongly influence the * node

value. However, one must weigh against this the likelihood of a

useful (i.e. extreme) value, and also the probable number of

nodes to be pruned (i.e. below sister nodes) if a cutoff does

31

occur. In *-minimax trees, where cutoffs are harder to come by,

the typical tradeoff between the likelihood and benefit of a

cutoff is compounded in the case of differing probabilities.

Decisions as to which combination of strategies to adopt are best

made by considering the idiosyncrasies of the particular game

under consideration.

7.4 Additional Modifications

An interesting modification to the Starl procedure, which we

have not pursued in this paper, can be derived by relaxing the

left-to-right restriction on * nodes, rather than simply on the -

nodes beneath them as we did to develop Star2. In particular,

one or several - nodes beneath each * node would be examined in

an attempt to decide which * nodes appear best. Since cutoffs

below * nodes occur when the * node is found to be worse than

some preceding * node, it is useful to find the best * node, or a

good one, before carrying out exhaustive or nearly exhaustive

search beneath inferior * nodes.

Preliminary experimental results indicate that for leaf

dependencies of the sort defined in *Section 6, and for a

branching factor of 40, average-case search comolexity is reduced

from 3S percent to 30 percent when the best * node is considered

first, and from 35 percent to 31.Q percent when the third-best

(of the 40) * node is seen first. When the best * node is

considered first and 2-node cycling is performed beneath * nodes,

average-case search complexity is reduced to 26.3 percent.

•7732
7.5 Incorporating *-Minimax Search Into a Complete Game Prooram

In proqramuming actual minimax qames, adjustments are often

made to a cure alpha-beta search because of the overwhelminq size

of most search trees. In particular, a static evaluation

function is generally used to rank successor nodes in what

appears (before searching) to be best-to-worst order, hoping to

assure early cutoffs; a depth bound is often maintained in some

form to preclude searching prohibitivelv deeo nodes; forward

pruning is performed, meaning that some nodes which look

unpromising are not searched at all; a transposition table is

maintained to avoid searching the same position more than once if

it appears in several places ("transpositions") in the search

tree; and so forth. Tn practice, we would expect such

modifications to be made to the *-minimax procedures as well,

although the underlying algorithms need not be changed.

7;

33

References

1. Wilsson, N. 3. Principles of Artificial Intelli-ence. Tioqa
Publishing Company, Palo Alto, Ca. (1980).

2. Knuth, D. Z. and Moore, R. W. An analysis of alcha-beta
pruning. Artificial Intelligence 6 (1975) 293-326.

3. Puller, S. H.& Gaschnig, J. G. and GilloqlV, J. J. An
analysis of the alpha-beta pruning algorithm. Dept. of Com-
puter Science Report, Carnegie-Mellon University (July 1973).

4. Newborn, N. N. The efficiency of the alpha-beta search on
trees with branch-dependent terminal node scores. Artificial
Intelligence 8 (1977) 137-153.

5. Baudet, G. M. On the branching factor of the aloha-beta
pruning algorithm. Artificial Intelligence 10 (1978) 173-
199.

6. Nau, D. S. Quality of decision versus deoth of search on
game trees: a summary of results. First Annual National
Conference on Artificial Intelligence (August 1980).

7. Berliner, H. J. Computer backgammon. Scientific American
242 (1980) 64-72.

9. Berliner, R. 3. An examination of brute force intelligence.
International Joint Conference on Artificial Intelligence
(August 1981).

9. Berliner, H. J. Backgammon computer vroqram beats world
champion. Artificial Intelligence 14 (1980) 205-220.

I

SI

