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WELCOME AND REVIEW OF AGENDA

(AL ALBRECHT)

GOOD MORNING.

1T IS MY PLEASURE TO WELCOME EACH OF YOU TO THE THIRD IN OUR SERIES OF
TECHNICAL CONFERENCES ON THE TRAFFIC ALERT AND COLLISION AVOIDANCE SYSTEM, OR ;
TCAS. THESE MEETINGS CONTINUE OUR TRADITION OF SEEKING THE PARTICIPATION OF '
THE FULL SPECTRUM OF THE AVIATION COMMUNITY IN DEVELOPING A VIABLE INDEPENDENT 1
AIRBORNE SEPARATION ASSURANCE CAPABILITY TO BACKUP THE CONVENTIONAL AIR
TRAFFIC CONTROL SYSTEM. THE OBJECTIVE OF THIS CONFERENCE 1S TO DISTRIBUTE
TECHNICAL AND OPERATIONAL PERFORMANCE INFORMATION THAT HAS BEEN DEVELOPED L
SINCE OUR LAST MEETING.

THE PRINCIPAL FOCUS OF THE TCAS PROGRAM IS ON THE ACTIVITIES OF THE RADIO ‘
TECHNICAL COMMISSION FOR AERONAUTICS SPECIAL COMMITEE 147. THIS COMMITTEE IS j
DEVELOPING MINIMUM OPERATIONAL PERFORMANCE STANDARDS (or MOPS) FOR MINIMUM

"TCAS II AS WELL AS GUIDELINES FOR TCAS 1. WE ARE EXTREMELY PLEASED THAT THIS J
COMMITTEE HAS BEEN ABLE TO COMPLETE A COMPREHENSIVE DRAFT OF THE MOPS. THE
INFORMATION PRESENTED OVER THE NEXT TWO DAYS SHOULD AID SC-147 IN COMPLETING

THEIR WORK IN THE NEAR TERM.

WHILE MUCH OF THIS CONFERENCE IS DIRECTED TOWARD THE MOPS FOR MINIMUM TCAS II,
THERE HAVE BEEN PROMISING DEVELOPMENTS IN THE TCAS 1 AND ENHANCED TCAS 1I

AREAS AS WELL. WE ARE ANXIOUS THAT YOU, THE COMMUNITY THAT WILL IMPLEMENT
TCAS, HAVE EARLY ACCESS TO THESE RESULTS.

OUR LAST MEETING, IN JANUARY, WAS HEAVILY CONCENTRATED ON ENGINEERING DATA.
WHILE ENGINEERING TOPICS PREDOMINATE AT THIS CONFERENCE AS WELL, YOU WILL
RECOGNIZE THAT THE EMPHASIS IS MOVING FROM TECHNICAL RESULTS TOWARD
OPERATIONAL DOCTRINE AND CONCEPTS.




WE HAVE A FULL AGENDA. AFTER AN OVERVIEW OF THE STATUS OF TCAS PROVIDED BY
MARTY POZESKY, KEN HUNT, DIRECTOR OF THE OFFICE OF FLIGHT OPERATIONS, WILL
DESCRIBE WHAT WE HAVE LEARNED FROM OPERATIONAL EVALUATION ACTIVITIES, AND WHAT
REMAINS TO BE DONE IN THIS AREA. THIS WILL BE FOLLOWED BY AN OVERVIEW OF TCAS
PROGRAM ACTIVITIES WHICH DISCUSSES ACTIVITIES RECENTLY COMPLETED AND THOSE
THAT ARE PLANNED FOR THE FUTURE. TCAS CONTINUES TO BE ONE OF THE HIGHEST
PRIORITY PROGRAMS IN THE AGENCY. YOU WILL SEE THAT THE SCOPE OF OUR PROGRAM
CONTINUES TO GROW,

THE AGENCY'S PROGRAM TO IMPLEMENT MODE S GROUND STATIONS AND ASSOCIATED DATA
LINK SERVICES IS THE NEXT ITEM ON OUR AGENDA. WE RECOGNIZE THAT PLANS FOR
MODE S AIR-GROUND DATA LINK ARE A PRINCIPAL FACTOR IN COMMUNITY ACCEPTANCE OF
THE TCAS 1 CONCEPT. WE ALSO KNOW THAT THE AIR CARRIER COMMUNITY IS INTERESTED
IN THESE PLANS, BOTH FROM THE STANDPOINT OF SERVICES THAT WILL BE PROVIDED AND
FROM THE STANDPOINT OF IMPLICATIONS FOR AVIONICS ARCHITECTURES FOR DATA LINK.

THE TALK ON OPERATIONAL DOCTRINE FOR MINIMUM TCAS II 1S INTENDED TO SET THE
STAGE FOR MUCH OF WHAT FOLLOWS. MINIMUM TCAS 1I IS NOW WELL DEFINED, AND WE
ARE VERY CLOSE TO A FULL UNDERSTANDING QF LTS CAPABILITIES AND ITS
LIMITATIONS. THE OPERATIONAL USE OF TCAS I1 MUST BE CONSISTENT WITH THE
TECHNICAL CHARACTERISTICS OF THE SYSTEM AND THE ENVIRONMENT IN WHICH IT
OPERATES. WE HAVE DEVELOPED SUCH AN OPERATIONAL DOCTRINE AS THE BASIS FOR OUR
NEAR TERM OPERATIONAL EVALUATION ACTIVITIES WITH THE EXPECTATION THAT WE WILL
EMBELLISH AND EXTENT THIS CONCEPT AS WE GAIN OPERATIONAL EXPERIENCE.

THE TCAS 1 PRESENTATION WILL REMIND YOU THAT OUR EARLY IDEAS FOR THE
TRANSPONDER DETECTOR FUNCTION WERE FOCUSED ON PASSIVE LISTENING TECHNIQUES.
THESE TECHNIQUES HAD THE ADVANTAGE THAT THEY INTRODUCED NO NEW INTERFERENCE IN
THE ENVIRONMENT. UNFORTUNATELY, WE WERE UNABLE TO INVENT PASSIVE TECHNIQUES
THAT PROMISED A TRULY HIGH QUALITY TRAFFIC ALERTING CAPABILITY. WE
SUBSEQUENTLY RECOGNIZED THAT LOW POWER INTERROGATIONS FROM TCAS I AIRCRAFT
COULD SUPPORT A QUALITY TRAFFIC ADVISORY SERVICE WITHOUT SIGNIFICANTLY
DEGRADING THE ENVIRONMENT. OUR ASSESSMENT THAT THIS ACTIVE MODE TCAS 1 MAY BE
NO MORE EXPENSIVE THAN A PASSIVE MODE TCAS I LEADS US TO BELIEVE THAT WE HAVE f
IN HAND A PROMISING NEW CAPABILITY FOR THE GENERAL AVIATION COMMUNITY.




WE HAVE OWED YOU A VALIDATION OF THE TRAFFIC DENSITY FORECASTS UPON WHICH

TCAS II SURVEILLANCE REQUIREMENTS ARE BASED. WHEN WE FIRST DISCUSSED TCAS
WITH YOU, WE SAID THAT WE ANTICIPATED DENSITIES AS HIGH AS 0.3 AIRCRAFT PER
SQUARE MILE THROUGH 1990 WITH THE PROSPECT THAT DENSITIES COULD BECOME AS HIGH
AS 0.4 AIRCRAFT PER SQUARE NAUTICAL MILE BY THE YEAR 2000. THESE DENSITIES
WERE ESTIMATED AS THE PEAK DENSITIES THAT WOULD EXIST OVER SMALL REGIONS OF
TERMINAL AIRSPACE WITHIN WHICH TCAS 11 MAY BE RESOLVING ENCOUNTERS WITH

500 KNOT INTRUDERS (THAT 1S, PEAK DENSITIES OVER REGIONS WITH A RADIUS OF

5 NMI). WE HAVE COLLECTED NEW DATA AND MADE NEW PROJECTIONS. OUR TALK ON
THIS SUBJECT WILL TELL YOU THAT OUR PROJECTIONS HAVE NOT CHANGED.

THE NEXT THREE TALKS ON THE AGENDA DISCUSS THE STATUS OF THE TCAS II
SURVEILLANCE DESIGNS. WE CONTINUE TO EVALUATE THE MINIMUM TCAS II HIGH
DENSITY DESIGN DESCRIBED IN THE MOPS. AS WE SEE MORE DATA, WE ARE
INCREASINGLY CONFIDENT. MOREOVER, WE HAVE COMPLETED A COMPREHENSIVE ANALYSI1S
‘OF THE FEASIBILITY OF HORIZONTAL RESOLUTION GIVEN THE CHARACTERISTICS OF THE
ENHANCED TCAS II SURVEILLANCE DESIGN, THESE RESULTS ARE ALSO ENCOURAGING.

TOMORROW MORNING BEGINS WTH AN OVERVIEW OF THE MINIMUM TCAS II THREAT
DETECTION AND RESOLUTION LOGIC. THESE TALKS WILL BE FOLLOWED BY A DESCRIPTION
OF THE MINIMUM TCAS 11 UNIT THAT WE EXPECT TO USE AS THE BASIS FOR OUR FIRST
FULLY OPERATIONAL EVALUATION IN THE AIR CARRIER ENVIRONMENT., THIS UNIT
IMPLEMENTS THE TRAFFIC ADVISORY FUNCTION OF TCAS II.

THE FINAL TWO TALKS DN OUR AGENDA DESCRIBE THE DISPLAYS AND ALERTING FEATURES
ENVISIONED FOR MINIMUM TCAS II IN THE AIR CARRIER COCKPIT AS WELL AS THE WAYS
IN WHICH FLIGHT CREWS UTILIZE TRAFFIC ADVISORY INFORMATION.

WE CONCLUDE TOMORROW AFTERNOON WITH A PANEL OF SPEAKERS THAT WILL BE ANXIOUS
TO DISCUSS ANY RELEVANT TOPIC WITH YOU. WE REGRET THAT TIME PERMITS ONLY A
FEW MINUTES OF DISCUSSION FOLLOWING EACH TALK. THE COFFEES DOWNSTAIRS AND THE
CASH BAR AT THE HOLIDAY INN THIS EVENING WILL GIVE US AN OPPORTUNITY FOR
ADDITIONAL DISCUSSIONS.




BEFORE I STEP DOWN, 1 WANT TO THANK YOU AGAIN FOR YOUR PARTICIPATION IN THIS
CONFERENCE. TCAS IS DOING WELL. THIS SUCCESS HAS BEEN POSSIBLE BECAUSE THE
COMMUNITY HAS SUPPORTED THE PROGRAM IN PURSUIT OF OUR COMMON GOAL.

IT IS MY PLEASURE NOW TO INTRODUCE MARTY POZESKY, DIRECTOR OF THE PROGRAM
ENGINEERING AND MAINTENANCE SERVICE. MARTY WILL PROVIDE AN OVERVIEW OF THE
STATUS OF TCAS.




STATUS OF TCAS

(MARTY POZESKY)

THANK YOU, AL.

GOOD MORNING LADIES AND GENTLEMEN. WELCOME TO OUR CONFERENCE. AL HAS MADE
THE POINT THAL TCAS CAN SUCCEED ONLY TO THE EXTENT THAT YOU, THE COMMUNITY,
SUPPORT IT. YOUR PARTICIPATION IS ESSENTIAL. THANK YOU FOR COMING.

OUR DEVELOPMENT AND EVALUATION ACIIVITIES SINCE THE LAST CONFERENCE HAVE LEAD
US TO SOME CONCLUSIONS AND HAVE ENCOURAGED US TO UNDERTAKE SOME NEW
INITIATIVES. MY PURPOSE IS TO DESCRIBE THESE iTEMS TO YOU. 1 ALSO WANT TO
MAKE A FEW REMARKS ABOUT THE ARINC CHARACTERISTIC FOR MINIMUM TCAS II.

AS A RESULT OF OUR IN-SERVICE EVALUATION ON PIEDMONT AIRLINES, IT IS NOW EASY
FOR US TO ENVISION THAT A RESOLUTION ADVISORY MAY BE DISPLAYED IN AN AIR
CARRIER COCKPIT WHEN THE CREW HAS OTHER INFORMATION WHICH TELLS THEM THAT
COMPLIANCE WITH THE ADVISORY IS UNNCESSARY. FOR EXAMPLE, THE CREW MAY HAVE
VISUALLY ACQUIRED THE INTRUDING AILRCRAFT AND MAY BE MAINTAINING VISUAL
SEPARATION WITH CONCURRENCE FROM ATC. UNDER SUCH CONDITIONS OF INTENTIONAL
PROXIMITY, TCAS MAY GENERATE RESOLUTION ADVISORIES THAT CREWS WILL NOT FOLLOW.

OUR EXPERIENCE WITH ENCOUNTERS OF THIS TYPE HAS LEAD US TO TWO CONCLUSONS.
OUR FIRST CONCLUSION IS THAT WE WILL DROP THE "ABOVE/BELOW" INDICATION IN THE
CROSS-LINK TO TCAS I. WHEN TCAS II IS IN CONFLICT WITH TCAS I, TCAS II
CROSS-LINKS A TRAFFIC ADVISORY TO TCAS I THAT REFLECTS THE POSITION OF TCAS II
AS VIEWED FROM TCAS I. UNTIL RECENTLY, THE CROSS-LINK MESSAGE ALSO REFLECTED
THE RESOLUTION ADVISORY DISPLAYED IN THE TCAS I1 COCKPIT. FOR EXAMPLE, IF
TCAS 11 SELECTED "CLIMB", IT WOULD NOTIFY TCAS I THAT IT INTENDED TO PASE
ABOVE. IF THE PILOT OF TCAS II VISUALLY ACQUIRED TCAS 1 AND USED THIS
INFORMATION TO PASS BELOW, THE CROSS-LINK MESSAGE COULD EASILY MISLEAD THE
PILOT OF THE TCAS I AIRCRAFT. THEREFORE, TCAS 1I WILL CONTINUE TO ALERT THE
TCAS I AIRCRAFT WITH TRAFFIC ADVISORY INFORMATION, BUT THE "ABOVE/BELOW"
MANEUVER INTENTION INDICATION WILL BE DROPPED.
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OUR SECOND CONCLUSION IS THAT THE TRAFFIC ADVISORY FEATURE OF TCAS I 1S
ENORMOUSLY IMPORTANT. IT IS THE MEANS BY WHICH THE PILOT KNOWS THAT HIS
DISCUSSION WITH ATC AND THE TCAS RESOLUTION ADVISORY ARE BOTH CONCERNED WITH
THE SAME TRAFFIC, AND THE MEANS BY WHICH THE PILOT KNOWS THAT THE DISPLAYED
RESOLUTION ADVISORY PERTAINS TO THE AIRCRAFT ON WHICH HE IS MAINTAINING VISUAL
SEPARATION. WE WILL HAVE MORE TO SAY ON THIS TOPIC EARLY THIS AFTERNOON, THE
POINT IS THAT THE TRAFFIC ADVISORY PROVIDES THE LINK BETWEEN THE TCAS
RESOLUTION ADVISORY AND CONVENTIONAL SEPARATION ASSURANCE TECHNIQUES BASED ON
ATC AND SEE-AND-AVOID. IT IS DIFFICULT TO PERCEIVE THE EFFECTIVENESS OF THE
RESOULTION ADVISORY WITHOUT THIS LINK.

MINIMUM TCAS II IS CONVERGING QUICKLY. THE MOPS CAN BE FINISHED IN THE NEAR
FUTURE, AND WE EXPECT TO HAVE FULLY OPERATIONAL EVALUATIONS UNDERWAY IN FAA
AND PIEDMONT AIRCRAFT BEGINNING IN APRIL OF NEXT YEAR. WE SEEM TO BE CLOSE TO
AN OPERATIONAL, INDEPENDENT AIRBORNE SEPARATION ASSURANCE CAPABILITY. ALL OF
US ARE ANXIOUS TO ENSURE THAT THE WIDESPREAD IMPLEMENTATION OF MINIMUM TCAS 11
IS BASED ON A SOUND BACKGROUND OF SAFETY ANALYSIS AND OPERATIONAL EXPERIENCE.
fHE DEVELOPMENT PROGRAM HAS PROVIDED MUCH OF THIS FOUNDATION, AND THE RTCA
ACTIVITIES TO DEVELOP THE MOPS HAVE CONTRIBUTED SUBSTANTIALLY. WE PROPOSE TO
AUGMENT THIS BACKGROUND WITH TWO ADDITIONAL ACTIVITIES.

FIRST, WE HAVE LAUNCHED A COMPREHENSIVE SYSTEM SAFETY STUDY OF TCAS II. THIS
STUDY WILL DEAL WITH THE EFFECTS OF INTRUDER MANEUVERS, SURVEILLANCE ERRORS TO
INCLUDE ALTIMETRY ERRORS, AND UNDETECTED EQUIPMENT FAILURES, BOTH IN THE TCAS
UNIT AND IN THE AUTOMATIC ALTITUDE REPORTING EQUIPMENT IN INTRUDING AIRCRAFT.
OUR OBJECTIVE IS TO ENSURE THAT THE OPERATIONAL PROCEDURES THAT WE APPLY TO
TCAS ARE CONSISTENT WITH TCAS TECHNICAL CHARACTERISTICS AND THE
CHARACTERISTICS OF THE ENVIRONMENT IN WHICH TCAS WILL OPERATE. THIS STUDY WILL
BE ACCOMPLISHED IN THE NEAR TERM USING EXISTING DATA BASES. WE VIEW COMMUNITY
PARTICIPATION IN THIS STUDY AS ESSENTIAL.




THE SECOND ACTIVITY STEMS FROM THE REAL1ZATION THAT OPERATIONAL EXPERIENCE
WITH TCAS IS HARD TO ACCUMULATE. IN 928 HOURS OF OPERATION IN PIEDMONT, WE
EXPERIENCED ONLY 25 RESOLUTION ADVISORIES AGAINST AIRBORNE INTRUDERS. TRAFFIC
ADVISORIES APPEARED ONLY ONCE IN EVERY 5 HOURS OR SO. SOME OBSERVERS RODE IN
THE JUMP SEAT AND WATCHED THE DISPLAYS ALL DAY WITHOUT SEEING A THING. IF WE
EXPECT TO ACCUMULATE A QUANTITY OF OPERATIONAL EXPERIENCE IN TdE AIR CARRIER
FLEET, WE NEED TO HAVE MORE UNITS FLYING THAN WE HAD BEEN PLANNING. WE HAVE
DISCUSSED THIS MATTER WITH THE ADMINISTRATOR AND HE HAS DIRECTED US TO
UNDERTAKE A LIMITED OPERATIONAL DEPLOYMENT OF MINIMUM TCAS II. AS NOW
ENVISIONED, THE PROGRAM WILL PROVIDE A TQTAL OF FROM 10 TO 18 UNITS
DISTRIBUTED AMONG 2 OR 3 AIRLINES. IT IS CLEAR THAT INTERESTING WORK IS IN
STORE FOR MANY OF US,

ALTIMETRY IS A CURRENT TOPIC. IT IS IMPORTANT FOR TCAS , IT IS IMPORTANT TO
OUR EFFORT TO REDUCE VERTICAL SEPARATION ABOVE FL-290 TO 1000 FEET, AND IT IS
IMPORTANT 1F WE ARE TO IMPROVE CONTROLLER PRODUCTIVITY THROUGH THE APPLICATION
OF AUTOMATION TO ROUTINE ATC FUNCTIONS. AT LEAST THREE COMMUNITY COMMITTEES
ARE CURRENTLY WORKING ON VARIOUS ASPECTS OF ALTIMETRY, TWO COMMITTEES IN RTCA
AND ONE SAE COMMITTEE. THE FAA 1S INITIATING A COMPREHENSIVE REVIEW OF
ALTIMETRY STANDARDS AND PRACTICES WITH THE OBJECTIVE OF IDENTIFYING
OPPORTUNITLES FOR IMPROVING SYSTEM PERFORMANCE. WE EXPECT TO FOCUS INITIALLY
ON AIRMAN EDUCATION PROGRAMS DESIGNED TO INCREASE AWARENESS OF SOUND ALTIMETRY
PRACTICES. DATA COLLECTION PROGRAMS WILL BE INITIATED TO DEVELOP A BETTER
UNDERSTANDING OF ALTIMETRY SYSTEM PERFORMANCE. IN ADDITION, WE WILL WANT TO
WORK WITH THE COMMUNITY TO IDENTIFY OPPORTUNITIES FOR IMPROVED PERFORMANCE,
BOTH OVER THE NEAR TERM AND OVER THE MORE DISTANT FUTURE. WE DO NOT INTEND TO
PROPOSE NEW RULES NOR ARE WE SUGGESTING RADICAL DEPARTURES FROM THE STANDARDS
AND PRACTICES THAT HAVE SERVED US UP TO NOW. HOWEVER, AS WE MODERNIZE THE
AIRSPACE AND SEEK IMPROVEMENTS THROUGR AUTOMATION, IT IS TIMELY TO REVIEW
ALTIMETRY AND TO SEEK IMPROVEMENTS WHERE THEY ARE WARRANTED. BEFORE 1 LEAVE
THIS TOPIC, AND BEFORE SOMEONE ASKS THE QUESTION, I WILL SAY PLAINLY THAT WE
DO NOT VIEW ALTIMETRY IMPROVEMENTS AS A PREREQUISITE FOR THE IMPLEMENTATION OF
TCAS II.
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FINALLY, I WANT TO MENTION THE ARINC CHARACTERISTIC FOR MINIMUM TCAS I1I. WE
ARE AWARE THAT THE AIRLINES ELECTRONIC ENGINEERING COMMITTEE HAS DRAFTED
CHARACTERISTICS FOR TCAS 11, AND THAT A PRINCIPAL ITEM OF BUSINESS AT THE AEEC
GENERAL SESSION IN NOVEMBER IS THE ADOPTION QF AN ARINC CHARACTERISTIC. WE
BELIEVE THAT ADOPTING A CHARACTERISTIC NOW IS IN THE BEST INTERESTS OF OUR
COMMUNITY. THE MINIMUM TCAS II IS VERY NEARLY READY TO GO, AND THE LACK OF A
CHARACTERISTIC WILL IMPEDE AN IMPLEMENTATION. MOREOVER, THE FAA WOULD LIKE TO
HAVE AN ADOPTED CHARACTERISTIC TO USE IN OUR PROCUREMENT OF AVIONICS UNITS FOR
THE LIMITED DEPLOYMENT PROGRAM.

1 WILL MAKE WAY NOW FOR KEN HUNT WHO WILL DISCUSS THE STATUS OF OUR
OPERATIONAL EVALUATION ACTIVITIES AS VIEWED FROM THE OFFICE OF FLIGHT
OPERATIONS.

THANK YOU FOR YOUR ATTENTION.
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IT IS A PLEASURE TO HAVE THE OPPORTUNITY TD SAY A FEW WORDS ABOUT TCAS 11
AND TO DISCUSS THE CONTINUING OPERATIONAL EVALUATION ACTIVITY ASSOCIATED
WITH THIS EQUIPMENT.

IT HAS NOT BEEN EASY TO GET WHERE WE ARE TODAY, AND I WOULD LIKE TO
COMPLIMENT THE MANY DEDICATED PEOPLE FROM THE ENGINEERING SIDE OF FAA,

MIT LINCOLN LABORATORY, MITRE CORPORATION, AND INDUSTRY WHO, THROUGH RTCA,
AEEC, AND OTHER DEVELOPMENTAL ACTIVITIES, HAVE PUT FORTH A TREMENDOUS
EFFORT IN THE TECHNICAL DEVELOPMENT OF TCAS Il. ALTHOUGH THIS EFFORT IS
NOT COMPLETE, WE ARE ENCOURAGED BY WHAT WE HAVE SEEN TO DATE AND BELIEVE
THAT TCAS IS A SYSTEM THAT HAS THE POTENTIAL TO PERFORM AN EFFECTIVE ROLE
AS A BACKUP TO THE ATC SYSTEM.

AS THE TECHNICAL DEVELOPMENT NEARS COMPLETION, I THINK IT WOULD BE
WORTHWHILE TO MAKE SOME GENERAL COMMENTS REFLECTING OQUR VIEW OF TODAY'S
TCAS II AND HOW THIS SYSTEM MIGHT BE OPERATIONALLY USED.

FROM OUR EXPERIENCE TO DATE IN THE OPERATIONAL EVALUATION EFFORT, AND
PARTICULARLY FROM THE PIEDMONT AIRLINES DATA, I BELIEVE IT IS EVIDENT THAT
TCAS DOES HAVE THE POTENTIAL TO PERFORM AN IMPORTANT ROLE IN THE EVOLVING
NATIONAL AIRSPACE SYSTEM. THERE IS CERTAINLY SOME ADDITIONAL WORK TO BE
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DONE, BUT OVERALL WE BELIEVE THAT TCAS 11 1S CAPABLE OF PROVIDING ADDED
SEPARATION ASSURANCE BENEFITS WITHOUT SIGNIFICANTLY DISRUPTING EITHER THE
COCKPIT OR THE ATC SYSTEM.

AL ALBRECHT MENTIONED A COMPREHENSIVE SYSTEM SAFETY STUDY TO ADDRESS
ABRUPT INTRUDER MANEUVERS, ALTIMETRY ERRORS, AND UNDETECTED EQUIPMENT
FAILURES. THESE ITEMS ARE OF CONCERN TO US SINCE WE DO NOT KNOW IF, OR
HOW OFTEN, INCORRECT RESOLUTION COMMANDS COULD BE DISPLAYED. BECAUSE OF
THESE CONCERNS WE DO NOT BELIEVE THAT TCAS 11 CAN BE IMMEDIATELY USEL AS A
PURE "FOLLOW THE ARROW” OR “EXECUTIVE" SYSTEM IN ALL WEATHER CONDITIONS.
WE ARE CONFIDENT, HOWEVER, THAT THE SYSTEM WILL DEVELOP TO THE POINT WHERE
THIS WILL BE POSSIBLE.

IT WAS MENTIONED EARLIER THAT A PILOT MAY NOT WISH TO FOLLOW A RESOLUTION
ADVISORY BECAUSE OF OTHER INFORMATION THAT TELLS HIM THAT A MANEUVER IS
UNNECESSARY. I THINK IT IS APPARENT FROM THE ADVISORIES WE HAVE SEEN THAT
IN MANY CASES, TCAS WILL CALL FOR A MANEUVER THAT, ALTHOUGH CORRECT, IS
INAPPROPRIATE OR UNNECESSARY GIVEN THE PILOT'S VISUAL UNDERSTANDING OF THE
SITUATION.

WHERE DOES THIS TAKE US PROCEDURALLY? FOR THE REMAINING AIR CARRIER
EVALUATION WORK, IT IS OUR INTENT TO TAKE A VERY CONSERVATIVE APPROUACH
UNTIL MORE DATA IS COLLECTED AND THE FULL POTENTIAL OF TCAS IS CLEARLY
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UNDERSTOOD. THE INITIAL PROCEDURES MOST PROBABLY WILL CALL FOR THE PILOT
TO FOLLOW A RESOLUTION ADVISORY ONLY IF HE HAS A VISUAL ACQUISITION
CONFIRMING THAT THE MANEUVER 1S CORRECT AND APPROPRIATE. THE NEXT STEP
WILL BE BASED ON WHAT WE LEARN ABOUT TCAS IN AN OPERATIONAL ENVIRONMENT
WHILE USING THESE RESTRICTIVE PROCEDURES. WHILE WE NEED TO BE PRUDENT IN
OUR TESTS, WE INTEND TO AGGRESSIVELY MOVE FORWARD TAKING FULL ADVANTAGE OF
THE FOLL COLLISION AVOIDANCE POTENTIAL OF TCAS IN AN EVOLUTIONARY MANNER.

] WOULD LIKE TO REVIEW QUICKLY WHAT HAS BEEN ACCOMPLISHED DURING THE
OPERATIONAL EVALUATION EFFORT AND WHAT WE SEE AS THE MAJOR REMAINING
TASKS. PLEASE BEAR IN MIND THAT AS THESE TESTS PROCEED WE AKE WORKING
TOWARDS THE DEVELOPMENT OF A CANDIDATE TCAS Il SYSTEM TO DEMONSTRATE THE
CAPARILITIES OF THE SYSTEM IN A REALISTIC AIR CARRIER ENVIRONMENT.

A YEAR AGO SEVERAL OPERATIONAL ISSUES WERE IDENTIFIED THAT MUST BE
ANSWERED PRIOR TO THE IMPLEMENTATION OF TCAS. THESE ISSUES WERE:

IDENTIFICATION OF MINIMUM RESOLUTION ADVISORY DISPLAY ELEMENTS.

UTILITY OF BEARING/PROXIMITY INFORMATION.

RESOLUTION OF COCKPIT WORKLOAD ISSUES.

ESTABLISHING OPERATIONAL PROCEDURES.
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- DEMONSTRATION OF SATISFACTORY DESENSITIZATION SCHEMES.

- DEMONSTRATION OF SATISFACTORY OPERATIONAL PERFORMANCE.

RESOLUTION ADVISORY DISPLAY ELEMENTS

AT THE DEVELOPMENTAL SIMULATION AT BOEING, THREE METHODS OF PRESENTING
RESOLUTION ADVISORIES WERE INVESTIGATED.

1. A MODIFIED VERTICAL SPEED INDICATOR;

2. A LIGHT EMITTING DIODE (LED) DISPLAY WITH GRAPHICS AND
ALPHANUMERICS; AND

3. A VOICE ONLY FORMAT.

BASED ON THIS WORK AND OTHER TEST EXPERIENCE, WE HAVE DECIDED TO USE THE
MODIFIED VERTICAL SPEED INDICATOR FOR THE REMAINING TESTS. THIS
INSTRUMENT HAS THE ADVANTAGE OF ALLOWING THE PILOT TO INTEGRATE THE
VERTICAL GUIDANCE FROM TCAS WITH THE VERTICAL SPEED OF THE RIRCRAFT
THROUGH THE USE OF ONE CONVENTIONAL INSTRUMENT. AS MOST OF YOU KNOW, THE
MODIFICATION TO THIS INSTRUMENT IS THE ADDITION OF VERTICAL ARROWS FOR
CLIMB/DESCENT ADVISORIES AND EYEBROW LIGHTS FOR NEGATIVE (I.E., DO NOT
CLIMB/DIVE) AND LIMIT ADVISORIES.

e
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OUR USE OF THIS INSTRUMENT HAS SHOWN THAT PILOTS EASILY UNDERSTAND THE
INFORMATION PRESENTED AND THAT SIMPLE STRAIGHTFORWARD PROCEDURES ARE
POSSIBLE USING THE ARROWS AND EYEBROW LIGHTS. THERE ARE CERTAINLY OTHER
METHODS OF DISPLAYING RESOLUTION ADVISORIES THAT MAY BE EFFECTIVE, BUT FOR
THE REMAINING TESTS WE INTEND TO STAY WITH THE MODIFIED VERTICAL SPEED
INDICATOR AND DO NOT ANTICIPATE ANY SIGNIFICANT CHANGES TO THE CURRENT
FORMAT.

BEARING/PROXIMITY INFORMATION

AS THE OPERATION/EVALUATION CONTINUES, WE ARE ATTACHING MORE AND MORE
IMPORTANCE TO THE TRAFFIC ADVISORY FEATURE OF TCAS II. WE ARE FINDING
THAT THIS INFORMATION PROVIDES A VITAL INTERFACE BETWEEN TCAS AND ATC AND
SERVES TO PREPARE THE PILOT FOR A POSSIBLE RESOLUTION ADVISORY. [T ALSO
ALLOWS A PILOT TO QUICKLY AND EASILY CORRELATE TCAS INFORMATIUN WITH HIS
VISUAL PICTURE.

THE DISPLAY OF TRANSPONDER-EQUIPPED AIRCRAFT WITHOUT THE ALTITUDE
REPORTING CAPABILITY (NON-MODE C), WHEN CERTAIN RANGE CRITERIA ARE MET, IS
ANOTHER IMPORTANT CAPABILITY AVAILABLE THROUGH THE TRAFFIC ADVISORY
FUNCTION. SINCE THIS APPEARS TO BE THE ONLY WAY TO ACHIEVE ANY USEABLE
MEASURE OF PROTECTION AGAINST NON-MODE C AIRCRAFT, WE BELIEVE IT IS A VERY
IMPORTANT FEATURE. ALTHOUGH OUR WORK WITH NON-MODE C ADVISORIES HAS BEEN
LIMITED, WE ARE VERY ENCOURAGED BY THE INITIAL RESULTS.
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AGAIN, SEVERAL DIFFERENT DISPLAY FORMATS AND INFORMATIONAL ELEMENTS HAVE
BEEN EVALUATED AT BOEING AND IN OTHER TESTS. PILOT PREFERENCE HAS POINTED
TOWARDS THE SIMPLE GRAPHICAL DISPLAY WE ARE USING WITH THE CANDIDATE
SYSTEM. TO DATE, PILOTS HAVE FOUND THAT INFORMATION DISPLAYED IN THE
MANNER YOU WILL SEE AT THE LINCOLN LABORATORY EXHIBIT HAS BEEN EASY TO USE
AND INTERPRET.

THERE IS STILL SOME ADDITIONAL WORK TO BE DONE IN THIS AREA. CURRENTLY,
WE ARE PROVIDING PROXIMITY TRAFFIC, (+ 1,200 reev, 2 MILE RADIUS) TO THE
PILOT WHEN A THREAT TRIGGERS THE DISPLAY TO ENSURE THAT A
MIS-IDENTIFICATION DOES NOT OCCUR BETWEEN THE THREAT AND A PROXIMATE
AIRCRAFT. SOME OF THE QUESTIONS RELATED TO THIS FEATURE ARE: SHOULD THIS
PROXIMITY INFORMATION BE TRIGGERED OR DISPLAYED CONTINUOUSLY? ARE THE
VALUES WE ARE USING FOR DISPLAYING PROXIMITY AIRCRAFT CORRECT? WILL THE
PILOT BE ALLOWED TO RECEIVE PROXIMITY INFORMATION ON DEMAND OR SHOULD THIS
FUNCTION BE AUTOMATED? ONCE THESE QUESTIONS ARE ANSWERED, IT MUST THEN BE
DEMONSTRATED THAT THIS CAPABILITY WILL NOT BE MISUSED IN THE AIR CARRIER
COCKPIT.

WE WELCOME, OF COURSE, INDUSTRY VIEWS ON THIS APPROACH TO THE DISPLAY OF
RESOLUTION AND TRAFFIC ADVISORIES AND DO NOT, BY ANY MEANS, INPLY THAT WE
WILL REJECT OTHER DESIGNS FOR THE PRESENTATION OF TCAS INFORMATION. WE
WANT - AND ENCOURAGE - INNOVATION BY INDUSTRY.
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COCKPIT WORKLOAD ISSUES

THE WORKLOAD ISSUE MUST STILL BE RESOLVED. SIMULATOR WORK AT BOEING USING
A B-737 SIMULATOR IS DESIGNED TO STUDY THE IMPACT OF TCAS ON COCKPIT
DUTIES, AND WE WILL ALSO BE EVALUATING WORKLOAD DURING THE OTHER TESTS.

GIVEN‘THE FREQUENCY AND NATURE OF THE ADVISORIES EXPERIENCED IN PHASE I OF
THE PIEDMONT EVALUATION, WE DO NOT ANTICIPATE ANY MAJOR DIFFICULTIES WITH
THE INTRODUCTION OF TCAS INTO THE COCKPIT, BUT IT MUST BE DEMONSTRATED
THAT THIS IS TRUE. THE ALERTS AND WARNINGS ASSOCIATED WITH TCAS IS
ANOTHER EVALUATION AREA WHERE ADDITIONAL WORK IS REQUIRED. SOME EXCELLENT
PROGRESS WAS MADE AT BOEING FOR AN EXECUTIVE SYSTEM, AND WE MAY NEED TO
MODIFY. THESE RECOMMENDATIONS IN VIEW OF OUR CURRENT APPROACH TO THE
OPERATIONAL DEMONSTRATION.

OPERATIONAL PROCEDURES

BASED ON THE INFREQUENT OCCURRENCE OF TCAS ADVISORIES, WE KNOW THAT THE
OPERATIONAL PROCEDURES MUST BE STRAIGHTFORWARD AND SIMPLE. WE HAVE TAKEN
A FIRST CUT AT PROCEDURES FOR BOTH THE TRAFFIC AND RESOLUTION ADVISORIES,
AND ALTHOUGH OUR EXPERIENCE HAS BEEN LIMITED, WE HAVE PUT THEM TO USE
WITHOUT DIFFICULTY. WE BELIEVE THAT SIMULATION AND INPUT FROM THE
REMAINING TESTS WILL PROVIDE A USABLE SET OF PROCEDURES FOR USE IN THE AIR
CARRIER DEMONSTRATIONS.
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DESENSITIZATION

WE HAVE YET TO DEMONSTRATE A SATISFACTORY MEANS OF DESENSITIZING TCAS IN A
MANNER THAT WILL ELIMINATE UNWANTED GROUND TARGETS. A TECHNIQUE WHICH
COULD SUPPRESS AIRCRAFT ON THE GROUND HAS BEEN DEVELOPED BUT HAS NOT BEEN
OPERATIONALLY TESTED. FROM THE HIGH PERCENTAGE OF UNDESIRABLE RA’S AND
TA'S bURING THE PIEDMONT EVALUATION, IT IS APPARENT THAT PRIORITY MUST BE
GIVEN TO SOLVING THIS PROBLEM.

OPERATIONAL PERFORMANCE

IF WE ARE TO IMPLEMENT TCAS ON A WIDE SCALE, BROAD EXPERIENCE WITH THE
SYSTEM IN DAY TO DAY, REAL WORLD OPERATIONS IS IMPORTANT. IT IS APPARENT
FROM THE LIMITED DATA THAT WAS ACCUMULATED FROM OVER 900 HOURS OF FLIGHT
AT PIEDMONT THAT OPERATIONAL EXPERIENCE ACCUMULATES SLOWLY. WITH THE
INCREASED NUMBER OF UNITS THAT WILL NOW BE PLACED ON SEVERAL DIFFERENT
AIRLINES, 1 BELIEVE WE WILL RAPIDLY GAIN THE MORE EXTENSIVE BACKGROUND WE
ALL NEED TO TRULY JUDGE THE OPERATIONAL EFFECTIVENESS OF TCAS II.

IN SUMMARY, A SUBSTANTIAL AMOUNT OF PROGRESS HAS BEEN MADE OVER THE LAST
YEAR, MUCH OF WHICH IS A DIRECT RESULT OF COMMUNITY INVOLVEMENT IN THE
DEVELOPMENT PROCESS. AS THE TECHNICAL DEVELOPMENT NEARS COMPLETION, WE
HAVE REACHED A POINT THAT WILL REQUIRE EVEN GREATER INVOLVEMENT BY
OPERATORS, PILOT GROUPS, MANUFACTURERS, AND OTHERS IN INDUSTRY TO ASSURE
THE TCAS PROGRAM PROVIDES A DESIRABLE SYSTEM THAT WILL MEET THE
COMMUNITY’S NEEDS.
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WE ARE CLOSE TO HAVING A CANDIDATE TCAS Il SYSTEM IN HAND AND HAVE
i MODIFIED THE PROGRAM TO ENLARGE THE QUANTITY AND QUALITY OF OPERATIONAL
f EXPERIENCE. AS WE PROCEED FROM THIS POINT, INPUT AND EXPERTISE FROM THE

THANK YOU.

COMMUNITY IS ESSENTIAL IN DETERMINING THE PROPER ROLE FOR TCAS INM THE NAS.
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Dr. Clyde A. Miller
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Program Engineering and Maintenance Service
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Before describing TCAS program activities, it is useful to take a moment to
review the concept. The essence of the TCAS concept is the provision of a
separation assurance capability that is able to operate throughout the airspace
without reliance on ground equipments. TCAS, like it's predecessor BCAS (Beacon
Collision Avoidance System), is based on the interchange of beacon, or secondary
surveillance radar, signals among aircraft. The TCAS concept envisions a range
of capabilities to include TCAS I, a low cost alternative, and TCAS II which is
intended to provide a comprehensive level of separation assurance in all
airspace.

TCAS II

TCAS II is further distinguished as either the Minimum TCAS II or the Enhanced
TCAS II. Minimum TCAS II is capable of providing resolution advisories in the
vertical plane (climb, descend) in airspace densities up to 0.3 aircraft per
square nautical mile (or approximately 24 aircraft within S nautical miles of 1
the TCAS II aircraft). Traffic advisories on nearby aircraft include the clock
position, or bearing, of the intruding aircraft. The Minimum TCAS II uses the ‘ j
Mode S data link to transmit advisories to nearby TCAs I aircraft. These cross- ‘;
linked advisories provide the position of the TCAS II aircraft as seen from the

TCAS I aircraft. The Mode S air-to-air data link is also used to coordinate a
escape maneuvers among TCAS II aircraft that are in conflict.

It is important to ensure that the secondary surveillance radar signals trans-
mitted by TCAS II avionics do not degrade the ability of ground-based ATC radars
to.sense traffic. 1In particular, the National Standard for TCAS II includes
interference limiting algorithms that are designed to ensure that the ability of
ground secondary surveillance radars to receive replys in response to interroga-
tions is reduced by no more than 2 percent as a result of TCAS II operation.

The phrase "Enhanced TCAS II"” denotes the use of more accurate intruder bearing
data for the reduction of unnecessary alarms through miss distance filtering and
for generating horizontal resolution advisories {(turn right, turn left).

TCAS I

As a minimum, TCAS I has the ability to receive and display the traffic advi- }
sories crosslinked by TCAS II and has the ability to sense the presence of
nearby aircraft by detecting their secondary surveillance radar transmissions
(replies) at 1090 MHz. The replies detected may have been elicited by ground
station interrogations (passive TCAS I) or may have resulted from low power
interrogations from TCAS I (active TCAS I). Enhancements of TCAS I can take
many forms to include the use of on board direction finding antennas to enhance
the information obtained through listening for transponder replys. p




Both TCAS . and TCAS II nave integral transponders capable of operating on Modes
A, C, and S (ie., Mode S transponders). These transponders not only support air-
to-air Mode S data link operations necessary for TCAS but also provide an air-to-
ground Mode S data link capability.

Program Activity Areas

For purposes of the discussion that follows, TCAS program activities are divided
into the categories listed here.

Surveillance Techniques

Minimum TCAS II incorporates signal processing techniques whereby intruder air-
craft can be tracked in high traffic densities. A principal technique is the
use of directional antennas to transmit interrogations in relatively limited
azimuth sectors thereby reducing the number of aircraft replying to each
interrogation.

Direction finding antennas are under development at two levels. At Lincoln
Laboratory and Dalmo Victor, relatively simple antennas have been developed and
cested to provide intruder bearing for the traffic advisory function of Minimum
TCAS II. A more sophisticated antenna appropriate for Enhanced TCAS II is under
development at Bendix Corporation.

A final report describing transponder detection techniques, both passive and
active, has been publiched.

Logic Development

The TCAS II threat detection and resolution logic is the set of computer algo-
rithms which declare proximace aircraft to be collision threats or nonthreats,
and which select the TCAS II avoidance maneuver advisories (resolution adviso-
ries) for those intruders declared collision threats. This logic also provides
the rules whereby proximate aircraft are selected for the traffic advisory
display.

The Minimum TCAS II logic is highly refined as a result of several years of
intensive development. CQurrent efforts to complete the development are focused
on fully understanding it's performance capabilities (through simulation, flight
test, and operational evaluation) and on adapting logic parameters to the
environment in which TCAS will operate. The principal areas related to logic
adaptation are assuring that adequate provisions are made for aircraft climb
limitations and for altimetry errors that may be encountered in the airspace.

System Safety Study

The Minimum TCAS II surveillance and logic designs are now well established. We
are very close to a full understanding of the capabilities and limitations of
Minimum TCAS II to include limitations which are imposed by the environment in




o T 77 S N Doy o Y eV =

S

| e e e A< M R AL o TN

which the system will operate. The system safety study will analyze the opera-
tion of TCAS in the environment to assess the performance of candidate flight
operations procedures.

Engineering Model Fabrication and Test

Several engineering models of TCAS Il equipments have been fabricated and tested,
and more are coming. The ULincoln Laboratory Basic Experimental Unit (BEU) was
tested throughout calendar year 1980 with excellent results. The tests included
engineering evaluationzs of technical performance, collision resolution capabili-
ties in intentional close encounters and limited operational evaluations in
tours of the domestic airspace. Results were reported at our January 1981 BCAS
Conference and are described in project reports,

The Dalmo Victor Omni TCAS units are modeled after the Lincoln Laboratory BEU
design. The implementation is realized in a package substantially smaller than
the BEU and includes a number of Dalmo Victor design innovations. These units
were validated at the FAA Technical Center during 1981 and were installed in
Piedmont Airlines aircraft for an evaluation of TCAS in the air carrier environ-
ment. The Dalmo Victor display units were not visible to the Piedmont crews.
Display outputs were evaluated by observers riding in the jump seat.

The Lincoln Laboratory BEU has been modified to include the traffic advisory
function of Minimum TCAS II. Engineering flight tests to assess the technical
performance of this modification have been completed on both a Cessna 421 and
the FAA Boeing 727 test aircraft.

One Dalmo Victor Omni TCAS unit has been modified by fitting an antenna that has
a directional interrogation capability. The technical evaluation of this urit
is scheduled for completion in November.

Dalmo Victor will deliver a fully functional Minimum TCAS II unit later t-.:=
month. The unit incorporates essentially all of the features of Minimum TCAS 711
described in the draft Minimum Operational Performance Standards and is expected
to be highly reliable. It has the capability to drive the cockpit traffic and
resolution advisory displays currently envisioned for an air carrier. The latest
version of the collision avoidance logic will be implemented in the unit along
with the capability to generate traffic advisories on transponder equipped
intruders that do not report altitude in their Mode C replies. The Dalmo Victor
Minimum TCAS II unit will be used for the Phase II Piedmont in-service
evaluation.

An BEnhanced TCAS II engineering model based on the high performance antenna men-
tioned earlier is being designed and fabricated at Bendix for test and evaluation
beginning in November 1982.

2




Opaerational Evaluation

As mentioned earlier, tne Dalmo Victor Omni TCAS units were evaluated on in-
service Piedmont air carrier aircraft. Our objective here was to assess the
rate at which alarms occur in this environment, the air traffic circumstances
which cause these alarms and the probable consequences of these alarms for
normal air carrier operations.

We are also conducting cockpit simulations at Boeing Commercial Airplane Company.
Phase I of this activity was oriented toward evaluating information display and
alerting techniques in a developmental simulator. Phasgse II is focused on vali-
dating pilot procedures in a fully operational air carrier simulator.

The Lincoln Laboratory evaluations provide an opportunity to assess pilot inter-
actions with TCAS II in the VMC environment. A Cessna 421 has been used as the
test aircraft in order to reduce costs. Phase I evaluated pilot responses to
several TCAS II alerting and display configurations. Phase II is focusing on
pilot procedures in VMC.

The TCAS II validation in the FAA Boeing 727 aircraft will use the Dalmo Victor
Minimum TCAS II unit with the pilot display configuration and procedures derived
from the Boeing and Lincoln lLaboratory evaluations. This activity is intended
to validate and demonstrate the Minimum TCAS IT concept in the operational air
carrier context.

The Phase II Piedmont in-service evaluation will adapt the configuration veli-

dated in the FAA Boeing 727 aircraft to the Piedmont flight environment. Dis-
plays will be in operational use in accordance with the established procedures.

Limited Deployment

The FAA intends to support a limited operational deployment of Minimum TCAS IX
in order to provide the air carrier community operational experience with the

use of the system. It i3 anticipated that 10 to 18 units will be procured and
that two or more airlines will be equipped with these units.

Standards
This slide shows the schedule for generating standards related to TCAS I and
TCAS II.

Conclusions
It i3 clear that a great deal of effort is being devoted to the development,
evaluation, and demonstration of TCAS. We are confident that TCAS will provide

an effective back-up separation assurance capability and expect user implemen-
tation in the United States to begin in 1984.
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PICTORIAL

ON SEPTEMBER 28 APPROVAL WAS GRANTED TO PROCEED WITH MODE S IMPLEMENTATION.

FOR THOSE OF YOU NOT FAMILIAR WITH MODE S, IT IS AN EVOLUTIONARY UPGRADING
OF OUR PRESENT AIR TRAFFIC CONTROL RADAR BEACON SYSTEM OR ATCRBS. 1T WILL
PROVIDE IMPROVED AIRCRAFT POSITION AND INTERFERENCE FREE IDENTIFICATION
AND ALTITUDE DATA, AND A NEW CAPABILITY TO COMMUNICATE DIGITALLY WITH THE
AIRCRAFT VIA A DATA LINK. THE DATA LINK IS BOTH GROUND-TO-AIR AND
AIR-TO-GROUND AND IS AN INTEGRAL PART OF THE SURVEILLANCE FUNCTION. MANY
ATC AUTOMATION ENHANCEMENTS ARE POSSIBLE WITH THE DATA LINK CAPABILITY AS
WELL AS OTHER SERVICES THAT I WILL DESCRIBE.

TWO CONTRACTS ARE PLANNED IN ACCORDANCE WITH THE NATIONAL AIRSPACE SYSTEM
PLAN, THE FIRST FOR 137 SYSTEMS THAT WILL PROVIDE SURVEILLANCE AND DATA
LINK COVERAGE ABOVE 12,500 FEET AND AT ALL MAJOR TERMINALS. THE SECOND
FOLLOW-ON CONTRACT WILL PROCURE AN ADDITIONAL 60 SYSTEMS TO LOWER THE

- COVERAGE TO 6000 FEET.

SYSTEM CONCEPT

THE USE OF MODE S TO SERVE ATC AND PROVIDE OTHER DATA LINK FUNCTIONS SUCH
AS WEATHER DATA WILL BE CONFIGURED AS SHOWN ON THIS SLIDE. THE
SURVEILLANCE FUNCTION OF COURSE IS A PRIMARY ATC REQUIREMENT AND NEEDS NO
EXPLANATION, HOWEVER, THE ADDITION OF DATA LINK WILL PROVIDE ATC WITH A
NEW CAPABILITY TO ENHANCE PRODUCTIVITY AND SAFETY. WE HAVE IDENTIFIED
TWO AREAS WHERE BOTH PRODUCTIVITY AND SAFETY CAN BE GREATLY ENHANCED WITH
THE INTRODUCTION OF MODE §. THEY ARE AUTOMATING SECTOR TO SECTOR HANDOFFS
AND PROVIDING A BACK-UP TO VOICE CLEARANCES WITH VISUAL PRESENTATION VIA
THE DATA LINK. ALSO SOME CLEARANCES MAY BE SUITABLE FOR DIRECT DELIVERY
BY DATA LINK IN LIEU OF VOICE, RELIEVING CONTROLLERS FROM THESE ROUTINE
TASKS SUCH AS PREDEPARTURE, FLIGHT PLAN AND TAKEOFF CLEARANCES.

INITIAL SERVICES OTHER THAN ATC FUNCTIONS ARE PLANNED SUCH AS MAKING
WEATHER DATA AVAILABLE DIRECTLY TO THE PILOT IN THE COCKPIT UPON REQUEST.

A —




THE INITIAL WEATHER PRODUCT LIST WILL INCLUDE SUCH ITEMS AS SURFACE
OBSERVATIONS, TERMINAL FORECASTS AND WINDS ALOFT FORECASTS. THESE WILL BE
AVAILABLE FROM THE FLIGHT SERVICE DATA PROCESSING SYSTEM AND CENTRAL
WEATHER PROCESSOR IN THE SAME TIME FRAME AS THE FIRST STAGE OF MODE S
IMPLEMENTATION. TYPICALLY, A PILOT WOULD INITIATE VIA A COMM B, A
DOWNLINK REQUEST FOR WEATHER WHICH WOULD BE "READ'" BY THE MODE S SITE
HAVING SURVEILLANCE RESPONSIBILITY AND SENT VIA THE NATIONAL AIRSPACE DATA
INTERCHANGE NETWORK TO THE APPROPRIATE FSDPS HAVING THE PARTICULAR WEATHER
PRODUCTS REQUESTED. THIS NADIN NETWORK ALLOWS THE PILOT TO REQUEST
WEATHER ANYWHERE IN THE U.S. AND ONCE THE PRODUCTS ARE LOCATED, WOULD BE

SENT BACK OVER NADIN TO THE REQUESTING SENSOR FOR DELIVERY TO THE AIRCRAFT.

ORGANIZATION

THE SERVICES THAT I JUST DESCRIBED WERE PLANNED AS PART OF THE NATIONAL
AIRSPACE SYSTEM PLAN. AN INTERSERVICE WORKING GROUP FOR DATA LINK HAS
BEEN ESTABISHED TO EVALUATE BENEFITS AND PRIORITIES FOR OTHER USES OF THE

- DATA LINK. THIS GROUP COMPOSED OF REPRESENTATIVES FROM THE AIR TRAFFIC

SERVICE, THE NEW PROGRAM ENGINEERING SERVICE, NATIONAL AVIATION STANDARDS
AND THE TECHNICAL CENTER WILL BE REVIEWING EACH CANDIDATE SERVICE AND
DETERMINE IF THERE IS A DIRECT BENEFIT THAT EXCEEDS COST EITHER IN TERMS
OF PRODUCTIVITY GAINS'FOR ATC OR SAFETY OR BOTH. WHILE IT WOULD BE QUITE
UNMANGEABLE TO INVITE EACH OF THE USER GROUPS AND AVIATION COMMUNITY
REPRESENTATIVES TO PARTICIPATE DIRECTLY IN THE WORKING GROUP,AWE Do
WELCOME YOUR INPUTS. TO GET YOUR VIEWS CONSIDERED, I WILL BE YOUR FOCAL
POINT AND REPESENTATIVE. PLEASE FEEL FREE TO SUBMIT ANY COMMENTS YOU HAVE
DIRECTLY TO ME IN THE MODE S PROGRAM OFFICE.

—




4 - ADDITIONAL SERVICES

OTHER SERVICES BEING REVIEWED BY THE WORKING GROUP IN ADDITION TO THOSE I
MENTIONED EARLIER HAVE BEEN IDENTIFIED AS POSSIBLE DATA LINK CANDIDATES. 1
THESE INCLUDE SUCH SERVICES AS; MORE WEATHER PRODUCTS AS THEY BECOME
AVAILABLE THROUGH WEATHER IMPROVEMENT PROGRAMS SUCH AS NEXRAD, DIGITAL
TERMINAL INFORMATION SERVICES AND MINIMUM SAFE ALTITUDE WARNINGS.

THE AIRSPACE AND TRAFFIC ADVISORY SERVICE WAS MENTIONED IN THE NATIONAL
AIRSPACE SYSTEMS PLAN AS A POSSIBLE CANDIDATE FOR EARLY IMPLEMENTATION.
THIS SERVICE IS CURRENTLY BEING REVIEWED WITHIN THE FAA AND A
RECOMMENDATION WILL BE MADE TO THE ADMINISTRATOR IN THE VERY NEAR FUTURE.

IF THE DECISION IS TO IMPLEMENT ATAS, IT WILL BE AVAILABLE AS SOON AS THE 4

SENSORS ARE INSTALLED AS THIS SERVICE HAS ALREADY BEEN DEVELOPED AND CAN

BE IMPLEMENTED WITH MODE S GROUND STATIONS. ‘
4 g i

ATAS PROVIDES THE CAPABILITY TO ALERT PILOTS OF PROXIMITY TO SPECIAL USE

- AIRSPACE SUCH AS A RESTRICTED AREA AND PROVIDES UP TO 4 TRAFFIC ADVISORIES
FOR COCKPIT DISPLAY. THE TRAFFIC ADVISORIES ARE SIMILAR IN CONTENT TO
THOSE CURRENTLY PROVIDED TODAY BY THE CONTROLLER ON A WORKLOAD PERMITIING
BASIS. THE ADVISORIES WILL BE UPLINKED IN PRIORITY ORDER. THAT IS, THE
CLOSEST TRAFFIC IN TIME OR DISTANCE TO OWN AIRCRAFT WILL BE UPLINKED
FIRST. A "CLEAR ADVISORY" WILL BE UPLINKED WHEN TARGET AIRCRAFT IS AT
LEAST 2 NAUTICAL MILES FROM OWN AIRCRAFT OR CLEAR OF THE AIRSPACE. THE
AVIONICS AND COCKPIT DISPLAYS FOR ATAS AND TCAS I ARE COMPATIBLE. THE
ONLY DIFFERENCES ARE ATAS USES DIFFERENT DATA LINK FORMATS AND CONTAINS
MORE INFORMATION THAN TCAS I. THEREFORE, A PILOT EQUIPPING WITH EITHER
TCAS 1 OR ATAS CAN EQUIP WITH THE OTHER AT MINIMAL INCREASE IN AVIONICS
COST.

i

o




5 - DATA LINK SCHEDULE

OUR CURRENT DATA LINK SERVICE IMPLEMENTATION SCHEDULE IS BASED ON THE
DEPLOYMENT SCHEDULE FOR MODE S. A FINAL BASIC NATIONAL AVIATION STANDARD
WILL BE PUBLISHED IN 1984, FOLLOWING A DRAFT IN EARLY 1983, WITH RTCA
ACTIVITY STARTING IN 1983, A MOPS COULD BE AVAILABLE IN LATE 1984 AND A
TSO IN 1985 ALLOWING MANUFACTURERS ADEQUATE TIME TO PROVIDE AVIONICS FOR A
FIRST PACKAGE IMPLEMENTATION IN LATE 1987. AN ANNEX FOR THE FIRST SERVICE
PACKAGE WOULD PROBABLY BE ISSUED WITH THE BASIC STANDARD. ANEXES WOULD
THEREAFTER BE ISSUED AS NEEDED. IMPLEMENTATION OF PACKAGE II (WEATHER) IS
CURRENTLY SCHEDULED FOR LATE 1988.

6 - TCAS

AS THIS IS THE THIRD TCAS SYMPOSIUM, YOU ARE WELL AWARE THAT TCAS IS USING
THE MODE S DATA LINK FORMATS FOR CROSS-LINK COMMUNICATIONS BETWEEN TCAS
EQUIPPED AIRCRAFT. THESE FORMATS ARE IN THE FINAL STAGE OF COORDINATION
"AND WILL SOON BE PUBLISHED IN THE MODE S NATIONAL AVIATION STANDARD AND
FURTHER DETAILED AS TO THE CONTENT IN THE APPROPRIATE TCAS STANDARDS.

IN GENERAL, THERE WILL BE BOTH A SHORT SPECIAL SURVEILLANCE OF 56 BITS AND
A LONG SPECIAL SURVEILLANCE OF 112 BITS FOR BOTH INTERROGATION AND REPLY.
THE SHORT MESSAGES ARE INTENDED FOR USE WITH MINIMUM MODE S TRANSPONDERS
AND, THE LONG MESSAGES PROVIDING MORE INFORMATION OF COURSE TO
APPROPRIATELY EQUIPPED TCAS USERS. ALL MODE S AND MINIMUM TCAS UNITS WILL
TRANSMIT A "SQUITTER" OR SHORT REPLY MESSAGE AT 1 SECOND INTERVALS. THIS
IS USED AS YOU KNOW FOR TCAS ACQUISITION.

THATS THE EXTENT OF MODE S INVOLVEMENT IN TCAS.

At | |ﬁ‘ " L
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TCAS II Operational Doctrine ]

Dr. Clyde A. Miller
October 12, 1982

-y,

Program Engineering and Maintenance Service
Federal Aviation Administration
Washington, D.C. 20591




We have accumulated a certain amount of operational experience with TCAS 1I
from airspace tours in FAA test aircraft, subject pilot testing at Lincoln
Laboratory and the Phase I Piedmont in-service evaluation. These results lead
to certain conclusions with respect to the role of traffic advisories in air-
borne collision avoidance systems and with respect to flight crew response to
resolution advisories. Our conclusions are not irrevocable but they are
influencing our program plans.

Role of Traffic Advisories in TCAS II

Traffic advisories (TA's) are normally displayed 15 seconds (a logic parameter)
prior to the display of resolution advisories (RA's). An early rationale for
traffic advisories was to permit a flight crew to resolve an encounter conven-
tionally prior to the time the RA is displayed. Conventional resolution can
be achieved either through coordination with ATC or through see-and-avoid.

More recently, we have come to recognize that traffic advisories provide a
critical link between conventional separation assurance techniques and the
TCAS resolution advisory. Examples of this are discussed on the next few
slides. The point is that the pilot may be discussing traffic with ATC or may
have traffic in sight when TCAS displays a resolution advisory. Normally, it
is important for the crew to know whether or not TCAS and the conventional
information are concerned with the same traffic. If TCAS cannot display the
range, altitude, and bearing of the traffic that generated the resolution
advisory, correlation may be impossible.

Finally, intruder maneuvers, surveillance (e.g. altimetry) errors, and unde-
tected failures in avionics (TCAS and intruder automatic altitude reporting
equipment) all can degrade resolution performance. Where possible, it is
important for the crew to visually confirm the resolution of the conflict, and
the traffic advisory tells them where to look for the intruding aircraft.

A later talk by John Andrews will discuss the extent to which pilots appear to
require traffic information for the reasons outlined above, the extent to which
TCAS traffic advisories can provide the information needed and the extent to
which pilots can »e persuaded not to misuse the traffic information. The

three examples that follow provide only an intuitive feeling for the role of
the TA.

Alert in Visual Conditions

This encounter is similar to two that occurred during the Piedmont in-service
evaluation. The illustration envisions that ATC has advised the TCAS crew of
the intruder, the crew has acknowledged sighting the intruder, and ATC has
permitted the crew to continue their climb when clear of the traffic. TCAS,
of course, unaware of the agreement reached between ATC and the flight crew,
senses the encounter and generates a "descend" advisory. Clearly the crew
does not want to follow such an advisory with respect to the sighted aircraft.
The only way to correlate the "descend” advisory with the visually acquired
aircraft is through an appropriate TCAS traffic advisory.

kg




Alert on Fanal Approach

A different type of encounter is also sugyested by our Piedmont experience.
In this case, ATC has called the traffic to include its altitude. The crew of
the TCAS aircraft is searching for the traffic but has not found it. As the
aircraft close, TCAS displays the traffic. Later, TCAS displays a "Do Not
Descend" resolution advisory that permits own aircraft to level above the
intruder and then resumes the approach. Wnile the RA alone would have
: resolved the encounter, the TA reassured the crew that the RA pertained to the
traffic called by ATC. Without the TA, the crew might be concerned that the
RA pertained to a second intruder causing them to visually search for two
aircraft while responding to the RA.

Alert Due to Maneuvering Intruder

The maneuvering intruder is perhaps the greatest limitation to the
effectiveness of the resolutinn advisory. As illustrated, the intruder has
been cleared to 16,000 feet but descends with a high wvertical rate through
16,500 feet, overshoots his cleared altitude by 500 feet and finally reaches
his assigned altitude. As the intruder descended through 16,500 feet, TCAS
sengsed the conflict, projected the intruder to pass below and issued a "climb"”
advigory. Five seconds prior to the closest point of approach in range (CPA),
TCAS recognized that the climb advisory wculd not carry TCAS above the intruder
and indicated that the RA was "Not NK." The example asgumes that the TCAS
pilot does not see the intruder and continues his 1500 fpm climb passing 200
feet below the intruder.

If the TCAS aircraft hag a traffic advigory capability, this information will
tell the crew where to look for the intruder in order to visually verify the
resolution of the encounter.

While disucssing the effects of intruder maneuvers, it should be pointed out
that such maneuvers are a factor in both the vertical and the horizontal
planes. Hence a TCAS II with a horizontal resolution capability is not immune
to this limitation.

Significance of Minimum TCAS II Advisories

The second part of this talk discusses the development of a doctrine for crew
regsponge to resolution advisories. It is important to recognize that TCAS
advisorieas do not mean that the crew is about to experience a midair collision.
In the Piedmont evaluation, we flew through 25 RA's without a close encounter
or system error. A TCAS RA means that traffic is close by and indicates a
maneuver that should increase separation. Hence, it is possible to ignore RA's
without catastrophic results. 1In fact, if one applies the alert rate from our
Piedmont evaluation (1 RA in 37 hours) to the accumulated hours flown by
domestic air carriers since the San Diego midair collision in September 1978,

a fully equipped air carrier fleet would have experienced 500,000 RA's over
the time period. This simple statistic suggests that the probability of a
collision, given that an RA is displayed, is less than 1 in 500,000.




Doctrine Options For Response to Resolution Advisories

There are three principal options:
(1) Always follow the Ra,

(2) Follow unless other information (e.g., visual) indicates that
response is unnecessary or inappropriate,

(3) Use option (2) except sometimes an RA may be ignored altogether.
In suggesting that some RA's may be ignored, it is recognized that the option

is somewhat unattractive from a human factors point of view. Nonetheless, as
pointed out earlier, an RA does not mean that a collision is about to occur.

Respone Versus No Response: Altimetry Errors

The following examples illustrate the relative risks inherent in either
responding or not responding to displayed resolution advisories. The examples
are based on an analysis of altimetry errors which can induce wrong way
avoidance maneuvers as illustrated in this slide. The pressure altitude data
available to TCAS from its own air data sources, and the Mode C reports from
the intruder, indicate that the intruder is “seen”™ in close vertical proximity
at CPA and passing slightly above TCAS. 1In order to increase vertical
separation, TCAS selects a "descend" advisory. However, due to the effects of
altimetry errors, the intruder seen to be passing above is actually passing
below TCAS. As a result, the descend maneuver may decrease vertical
separation at the closest point of approach in range (CPA) as opposed to
increasing it. That is, it might have been better to not follow the RA.
Notice, however, that not following the RA accepts the risk of close vertical
proximity at CPA implicit in the "seen" position of the intruder.

Magnitudes of Altimetry Errors

In order to quantify the relative risks in responding and not responding in
the presence of altimetry errors, some notion of the magnitudes of these
errors is required. The air carrier performance tabulated here is thought to
be representative of ARINC quality equipment installed as primary air data
systems in the majority of U.S. air carrier aircraft (i.e., ARINC Character-
istic 545 equipment). The general aviation performance shown is implied by
Federal Aviation Requlations and a survey of static source performance based
on pilot handbooks. The improved general aviation performance is extrapolated
from the general aviation data by assuming better static source performance
and a better correspondence between static system pressure and Mode C reported
altitude.




Regponse Versus No Response Given Positive Advisory

The experiment is now as follows. Any intruder that is seen as arriving within
plus or minus ALIM of the TCAS altitude at CPA will generate a positive
advisory (“climb"™ or "descend™). If TCAS does not follow the advisory, there
is some probability that the intruder will pass within 100 feet or less
vertically at CPA. rhis probability depends upon ALIM and the magnitude of

the altimetry errors (which are taken as Gaussian). ALIM is tabulated below.

Current ALIM Design

TCAS Altitude ALIM
(£t) £ty
Sea Level - 10,000 340
10,000 - 18,000 440
18,000 - 29,000 640 !
Above 29,000 740 '

If TCAS does follow the advisory, there is a probability that the advisory
will be in the wrong direction and the resulting vertical separation is again
100 feet or less. This second probability is a function of ALIM, the maneuver
vertical displacement, D, and the magnitude of the altimetry errors. Since
the proximity warning time, TAU, is a function of altitude, the maneuver
displacement also varies with altitude. The current design, based on 5
seconds pilot delay, a maneuver acceleration from level flight of 8 feet per
second squared, and a sustained vertical escape rate of 1500 fpm, is listed

below.

Current Maneuver Vertical Displacement Design

TCAS Altitude TAU Displacement, D
(ft) - (ft)
Sea lLevel - 2,500 20 335
2,500 - 10,000 25 460
10,000 - 40,000 30 585
Above 40,000 35 710

It is assumed that TCAS has air carrier quality altimetry on board and
intruders are equally likely to appear at all altitudes over plus or minus
ALIM. The probabilities of close vertical proximity based on response and no
response to the RA are shown on the slide as a function of the quality of
altimetry equipment in the intruding aircraft.

At sea level, a positive advisory from a general aviation intruder indicates
that, if neither aircraft maneuvers, the vertical proximity at CPA will be 100
feet or less 3 cases in 10. Following the RA reduces this risk by a factor of
approximately 100. At 15,000 feet following the RA reduces this risk by a
factor of 1000. PFor air carrier intruders, following the RA is even more
effective. It reduces the risk of close vertical proximity at CPA by factors
ranging from 100 to almost 1,000,000.

4—-ih----h--------IlllIIlllllllllllllllllllllllll.‘




Probability of Wrong Way Advisory

The previous example of the effects of alimetry errors shows that on the
average following the RA is vastly better than not following the RA. A second
example is useful to ensure an undevrstanding of the possible effects of
altimetry errors. Here intruders are shown at various altitudes below TCAS,

A wrong way advisory will occur if the combined altimetry errors in TCAS and
the intruder cause the intruder to appear to be above TCAS. The probabilities
of this outcome are tabulated on the slide.

Where intruders are below TCAS by an amount similar to the maneuver displace-
ment, D, a wrong way advisory could result in close vertical proximity at
CPA. For the example shown, the probabilities of wrong way advisories when
TCAS and the intruder are initially separated by the maneuver displacement, D,
range from 1 in 200 for a general aviation intruder to 1 in 10,000 for an air
carrier intruder.

It should be recognized that the wrong way advisory is a reality in any
separation assurance system that displays resolution advisories. Wrong way
advisories resulting from altimetry errors are a factor in vertical resolution
(whether the system be TCAS, BCAS, ACAS, or ATARS). Horizontal resolution is
also susceptible to wrong way advisories though the associated surveillance
error mechanisms are different. A rssolution advisory means that traffic is
nearby. From this alone, it is clear that a maneuver could either improve or
degrade separation at a time when there may _e little separation to spare.
The RA indicates a direction to move to increase the estimated separation.
The RA may be wrong, but the chances of this (associated with altimetry
errors) are small, ranging between 1 in 100 and 1 in 1,000,000.

Observations on TCAS Resolution Advisories

Some conclusions can be reached with respect to resolution advisories:

(1) Their occurrence in the cockpit means that separation is predicted to be
small (in some sense) in the immediate future. They do not mean that a
collision is about to occur.

(2) They indicate a direction to move to increase estimated future separa-
tion. They are not infallible. 1Intruder maneuvers, surveillance errors, and
equipment failures all degrade the separation assurance that can be provided.

(3) In certain cases, pilots will not follow resolution advisories. The
pilot may have visual information that tells him response is unnecessary.
Alternately, he may be in an environment where he is comfortable with the
conventional separation service and concerned about encountering a second
intruder, one with no transponder.

e e
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TCAS Program Directions

We propose to take advantage of what has been learned in structuring future
TCAS program activities. 1In particular, we believe that a simple resolution
advisory may be inadequate as information to be utilized in the air carrier
cockpit for separation assurance. There is no means for interfacing such an
advisory with conventional separation assurance information and the advisory,
by itself, cannot be infallible. We believe that traffic advisory information
is required both to link the resolution advisory to conventional information
and to permit the crew to resolve encounters conventionally prior to the time
the advisory is displayed. In addition, the traffic advisory tells the crew
where to look to visually acquire the intruder as a means for confirming
encounter resolution.

In the immediate future, we do not intend to follow resolution advisories in
instrument meterological conditions (IMC) where three i{s no opportunity for
the crew either to directly confirm resolution by visually tracking the
intruder or to visually clear the airspace that TCAS is entering. Response to
resolution advisories in IMC will be the subject of a comprehensive system
safety analysis to be accomplished over the next six months.

Finally, in recognition of the fact that the TCAS crew may not follow the RA
for any of several reasons, the maneuver intention message will be delated
from the crosslink to TCAS II. We will retain the traffic advisory. As
before, this traffic advisory gives the position of TCAS II as seen by TCAS I
and coveys the notion that the TCAS I crew should attempt visual acquisition
while avoiding unnecessary abrupt maneuvers that could contradict a TCAS II
avoidance maneuver.

TCAS Operational Use

While rgstrain;s'will be applied to the use of TCAS during near term operational
eva}uat}On activities, the long term objective is to respord to TCAS resolution
advisories under all weather conditions. It seems clear, nonetheless, that

1t’:;affic advisories will continue to play a major role in the ways summarized
re.

The FAA TCAS program plan is to evolve operational i

. ' _ procedures over a period of
time, starting with the baseline sumarized on the previous vugraph, gﬁd exterding
to the long term objective stated above. This evolution will be based on system
safety studies and experience gained in-flight.
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Slide 1
TCAS 1 TRANSPONDER DETECTOR OVERVIEW

The purpose of this talk is to give the results of a study .~ he
transponder detector function of the TCAS I.

The talk begins with a definition of the functions of TCAS I. This will
be followed by a description of the passive and active transponder detector
techniques studied, along with measured flight test performance for each.
Results of a cost comparison of the passive and active detectors will be
described along with an indication of the basis for the cost estimation.

The talk will conclude with a summary of the key points.

Slide 2

TCAS 1 FUNCTIONS AND COMPONENTS
é There are three main characteristics of TCAS I.

l. TCAS I is able to respond with encoded altitude to interrogations
from the air traffic control system on the ground and from airborne
TCAS II units. Thus it includes a transponder and an encoding
altimeter.

2. TCAS I has a means for displaying the traffic advisory received from
TCAS I1. This information is crosslinked from TCAS II :o0 the
transponder in the TCAS I aircraft. Thus, the transponder must be a
Mode S transponder with an associated pilot display.

3. TCAS I has the capability of detecting transmissions from nearby
transponders and alerting the pilot when the characteristics of any
transmission indicate that it might be a threat.

Slide 3
TCAS I BLOCK DIAGRAM: PASSIVE DETECTOR

Tﬁe Pagssive Detector TCAS I functions are shown in block diagram form on
the slide. Note that:

l. The passive detector must work with both ATCRBS and Mode §
transmissions.

2. Mode S aircraft will be detected by their squitter transmissions in

regions where there is no ground interrogator, but ATCR3S aircraft
will not be detected in these regions.

3. Some form of suppression is needed to integrate the passive detector
with the TCAS 1 Mode S transponder since both operate on the same
frequency.

N
e b o




Slide 4
SIMPLE PASSIVE FILTER CRITERIA STUDIED

The purpose of the passive filter is to cause pilot alerts only on
transmissions received from potentially threatening aircraft, that is,
aircraft that are close in both range and altitude. There are only a limited
number of characteristics of a passively received reply that can be used as
filter criteria. The most useful appear to be:

l. Received power level: The received power level compared to a fixed
threshold can be used to reject transmissions from aircraft at long
range. Power may also be tracked to determine how range is changing
as a function of time.

2. Aircraft altitude: Transmissions from off-altitude aircraft may be
rejected in two ways. First, by the inherent off-altitude rejection
available through the aircraft antenna patterns. Secoad, by
detecting the altitude code and comparing the received altitude to
own altitude.

3. Time-after-interrogation: If an aircraft is close to and in the same
ground interrogator beam as the TCAS I aircraft, its transmissions
will be detected in the interval following the TCAS I transponder
reply.

Of the techniques studied, received power level thresholding and altitude
code filtering proved to be the most effective. These techniques were
incorporated in a candidate passive detector used for in-flight performance
measurements.,

Slide 5
PASSIVE DETECTOR CHARACTERISTICS

A functional block diagram of the candidate TCAS I passive transponder
detector is shewn in the slide. A 1090 MHz receiver converts the RF
transponder reply pulses into video pulses. These are passed to an amplitude
comparator that is used to establish a detection threshold. This comparator
can also be used to desensitize the detector each time the transponder on the
TCAS I aircraft transmits so that the detector does not alarm on its own
transponder replies. The detector should remain suppressed for an additional
40 microseconds to avoid triggering the detector on reflections from these
replies.

e st e it




Pulses that pass the detection threshold are then passed to ATCRBS and
Mode S reply detectors that look for a valid pulse sequence and, if a valid
sequence is detected, extract the altitude code from the reply. The altitude
code is then compared to own aircraft's code. If the reply altitude is
outside a * 1500 foot altitude band or if it is an invalid altitude code, the
reply is rejected. If the reply is in the band, or if the reply comes from a
transponder that is not equipped with an encoding altimeter, the reply is
accepted and an alarm is triggered if one Mode S reply or more than two ATCRBS
replies are received in a two second interval,

The ALARM LOGIC controls the triggering and duration of the alarm. Once
triggered, the alarm rewmains active for five seconds.

Slide 6
POWER THRESHOLDING ACQUISITION PERFORMANCE

In-flight measurements were made using the Airborne Measurement Facill.ty
to emulate the operation of the candidate passive detector. Once per second,
active interrogations were generated to measure the range of nearby targets.
A comparison of the passive and active data provided an indication of the
performance of the power threshold filter.

The slide shows a histogram of initial acquisition range for the power
threshold filter. As expected, the variation in received power across the
population of nearby aircraft caused the acquisition range to vary from less
than one to over 10 nautical miles., If the MIL were raised to eliminate the
aircraft at long range, some aircraft at short range would not be detected.

Slide 7
PASSIVE DETECTOR ALERT RATE: ENROUTE AT 8500 FEET

The inability of the power threshold technique to reliably reject replies
from long range aircraft can lead to high alert rates in moderately dense
airspace.

Pagsive detector alert performance for a flight from Boston to Washington
at 8500 feet is shown on the slide. Note the high percentage "ON" time over
New York and on entry to Washington National Airport.

Slide 8
PASSIVE DETECTOR ALERT PERFORMANCE: ENROUTE AT 12,500 FEET

Alert rate performance for a second flight from Boston to Washington, at
12,500 feet, shows a somewhat lower alert rate over New York but about the
same performance on entry to Washington National. The difference in alert
rate performance may be partially attributed to the lower traffic density at
the higher altitude.




Slide 9

TCAS I BLOCK DIAGRAM: ACTIVE DETECTOR

The performance limitations observed with the simple passive detector led
to an investigation of a low power active transponder detector. The slide
shows the block diagram of TCAS I with this type of detector. Note that:

1. The active detector transmits a standard ATCRBS Mode C interrogation
and thus receives ATCRBS replies from ATCRBS and Mode S transponders.

2. Protection is provided against both ATCRBS and Mode S aircraft in
regions where there is no ground interrogator.

3. Mutual suppression is required since both transponder and detector
operate on both beacon frequencies.

Slide 10
ACTIVE TCAS I INTERFERENCE CONSIDERATIONS

An active detector approach is feasible only if a transmitted power that
causes a negligible increase in signal interference also gives a useful

detection range.

To answer this question, an analysis was conducted to determine the power
level that could be employed by all aircraft in the highest predicted
Los Angeles traffic density and that would cause no more than 10% of the
signal interference generated by TCAS Il operation. The result was a
time—-power product equivalent to ome 2,5-watt Mode C interrogation every
second (i.e., one 2.5-watt interrogation per second, one 5.0-watt
interrogation every 2 seconds, etc.).

ECAC is currently conducting a detailed simulation to verify the accuracy
of this analysis.,

Slide 11

ACTIVE TCAS I TRACKING PROBABILITY

Calculated values of tracking probability for several peak powers are
shown in the slide. The performance at 4 watts is also shown since in-flight
data were available at that power level. Note that the calculated pertormance
for a 10-watt Mode C interrogation (every 4 seconds) yields good detector
performance out to 2 nautical miles.

The performance predection assumes no loss in detection due to
synchronous garble and is therefore only applicabla to dengities where only
one aircraft (on average) is within garble range. This single-aircraft
density is shown for each of the ranges calculated.

The density of 0.024 aircraft/nmi? for a 2-mile range is equivalent to
the current density outside of the TCA in the Boston and Washington areas.




Slide 12
VALIDATION OF CALCULATED ACTIVE TCAS I PERFORMANCE

A comparison of calculated and measured performance for the 4-watt case
is shown on the slide. The airborne measurements are seen to be in good
agreement with the calculated performance.

Slide 13
ACTIVE DETECTOR CHARACTERISTICS

A functional block diagram of a possible TCAS I active transponder
detector is shown on the slide. A single l10-watt Mode C interrogation is
generated once every four seconds. This standard ATCRBS interrogation (i.e.,
no P, pulse) elicits ATCRBS replies from both ATCRBS and Mode S aircraft. The
interrogation is followed by a listening interval of approximately
70 useconds, which is sufficient to receive replies from aircraft up to three
nautical miles away. Received replies are tracked in order to eliminate
fruit.

In addition to active surveillance, the detector shown also includes
altitude code filtering. The alarm logic for the active detector can track
range to derive range rate. This makes it possible to base alerts on the same
Tau criterion used for the TCAS II, and should therefore lead to a very low
false alarm rate.

Slide 14
ACTIVE TCAS 1 PERFORMANCE MEASUREMENTS

An example of the performance of a 4-watt active interrogator is shown on
the slide. The lines represent the location of proximate aircraft as
determined by an experimental TCAS Il unit operating at full power. The dots
indicate regions where the 4-watt interrogator elicited replies.

Slide 15
IMPLEMENTATION REQUIREMENTS

A second requirement for active TCAS I feasibility was that it did not
appreciably increase the cost of the TCAS I equipped with a simple passive
detector. This issue was addressed by comparing differences in the
implementation requirements of the passive versus the active approach.

Every TCAS I, whether active or passive, incorporates a Mode S
transponder (shown top center on the slide). For a TCAS I with a passive
trangponder detector, a second receiver and full-time logic must be added, as
shown.




The use of an active transponder detector requires, in effect, another
transponder complete with receiver, transmitter, and logic but operating on
the opposite beacon frequencles. However, this "inverted"” transponder is
active for less than 100 pseconds every four seconds., It thus appears
practical to time share the Mode S receiver and transmitter between the
transponder and active detector tasks.

Details of the passive and active configurations are given in the
following slides.

Slide 16
TCAS 1 PASSIVE TRANSPONDER DETECTOR

Individual building blocks for the transponder are shown in the upper
half of the slide and their equivalents for the TCAS [ passive detector are
shown below. The double-bordered items are those that must be added to the
TCAS [ installation, either in a separate box or incorporated in the
transponder enclosure. Some items may be less expensive than their equivalent
in the transponder because the detector receiver needs about 20 dB less
sensitivity than the transponder receiver.

Slide 17
TCAS T ACTIVE TRANSPONDER DETECTOR

This implementation of a TCAS I active transponder detector uses the
existing transponder in a time~sharing mode. Switches effect the
reconfiguration and frequency change. Note that there is no need for extrenme
speed or efficiency in the reconfiguration switches since: (1) time is
available for switching, (2) insertion loss in RF energy switching is not
critical since both sensitivity and RF power output are about 20 dB 1*ss, (3)
Local Oscillator and Master Uscillator frequency switching can be done at the
DC level, and (4) decoder switching is strictly a logic function.

Slide 1§
PASSIVE VS ACTIVE DETECTOR RELATIVE COST
The items that must be added to a Mode S transponder to achieve a TCAS I
passive or active detector capability are shown on the slide. A cost (in

terms of the percentage of a Mode S transponder) is shown for each item along
with the cost of the equivalent transponder item. The breakdown of Mode S

transponder costs was derived from the ARINC-Research-FAA Cost Study, modified

to include a solid state transmitter.

Only differences between the two approaches were counted in the costing.
For example, data processing and display costs were not included since they
were assumed to be the same for either approach. Thus the total for the
passive detector additions is only significant in comparison to the value
calculated for the active detector.

-



Slide 19
SUMMARY

Measurements indicate that the low power active approach provides more

reliable detection of nearby aircraft and a lower alert rate than any of the
simple passive techniques considered. The activc approach also provides
protection for both ATCRBS and Mode S aircraft in reglons where there is no
gruuand interrogator. In this environment the passive mode can detect Mode S
aircraft only, through reception of the 'lode S squitter transmissions,

This cost study indicates that the active TCAS [ will cost approximately
the same as a passive TCAS 1., This result is due to the very low duty cycle

of the active mode which makes it possible to time share the transponder
transmitter and receiver elements. The passive uode cost is driven by the
requirement for a separate receiver since both are required to listen full

time: the transponder on 1930 Mz, and the detector on 1090 MMHz,
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PASSIVE DETECTOR

1030 MHZ INTERROGATION

—_— o= MOQDE S
GROUND ATC/ TRANSPONDER TCAS I ADVISORY DISPLAY
1GAS O 1090 MHz REPLY 1] TRANSPONDER DETECTOR
-~z _ _‘ DISPLAY AND CONTROL

I MUTUAL ’
i SUPPRESSION \
1

oetecTen | 1090 MHz REPLY f
—_— L h—
AIRCRAFT 1 -
ATCRBS OR MODE S

PASSIVE
DETECTOR

TCAS I AIRCRAFT

N

r SLIDE 4

SIMPLE PASSIVE FILTER CRITERIA STUDIED

* RECEIVED POWER LEVEL

- THRESHOLD
- TRACKING

e ALTITUDE
~ ANTENNA PATTERN
- ALTITUDE CODE

e TIME-AFTER-INTERROGATION




prm——— -

r SLIDE 5 x

TCAS | PASSIVE TRANSPONDER DETECTOR FUNCTIONAL BLOCK DIAGRAM
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ACTIVE TCAS | INTERFERENCE CONSIDERATIONS

CONSTRAINTS

e UNLIMITED IMPLEMENTATION IN ANY AIRSPACE

o NEGLIGIBLE INTERFERENCE TO GROUND AND TCAS Il
ENVIRONMENT
RESULTS

e TIME - POWER PRODUCT EQUAL TO ONE, 2.5 WATT MODE C 1
INTERROGATION /SEC
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CALCULATED VALUES OF TRACKING PROBABILITY

FOR A LOW POWER TCAS I DETECTOR

[OPERATIONAL
aange | 'NTERROGATOR POWER (AT ANTENNA) DENSITY
(NM)) 25 3 5 10 2
WATTS | WATTS | WATTS | WATTS AC/NMI
1 084 0.90 0.93 0.97 0.047
2 0.56 0.67 0.72 0.84 0.024
3 0.36 0.47 0.53 0.69 0.015
4 0.23 0.33 0.38 0.56 0.010

——-
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ACTIVE TCAS PERFORMANCE AS A FUNCTION OF RANGE

PROBABILITY OF SUCCESS," P(S)

100%

50% -

CALCULATED PERFORMANCE

AIRBORNE MEASUREMENTS

RANGE (NMY)

% PERCENT OF AIRCRAFT FROM WHICH REPLIES ARE
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AIRCRAFT WITHIN + 10° IN ELEVATION ANGLE
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IMPLEMENTATION REQUIREMENTS

MODE S TRANSPONDER

1030 RECEIVER

1030
LOGIC w—o
TRANSMITTER
1090 1090

BOTTOM

== \

TOP

| TOP
ANTENNA / | ANTENNA \

1
| T 1090 | | RECEIVER l
1090
RECEIVER | !
1090—% o { i
LOGIC |— | i
| N L_|transmitten
| 1030 1030
|
i
1

PASSIVE TCAS | ACTIVE TCAS |

- J
ﬁsunz 16 \

TCAS | PASSIVE TRANSPONDER DETECTOR IMPLEMENTATION DETAILS
TRANSPONDER
_——— ATCRBS ALTITUDE
4 BITS INPUT
LOGIC
1030 —’DER (FuLL
TIME) INTERFACE 1
MODE S *
112 BITS ‘
L.0. FOR
1030 MH: POWER SUPPLY
FOR RECEIVER
BOTTOM AND LOGIC
ANTENNA
TRANS MODULATOR
1000
M.0. FOR POWER FOR
1080 MHz TRANSMITTER
TO0P TCAS | PASSIVE DETECTOR
ANTENNA ATCRBS
V 14 8ITS
PROTECTION
1000 MMz/ LOGIC b
1080 MHz I MIXER — (FuLL
TIME)
T L MODE S
- $6 AITS —"
1090 MHe L.O. FOR
FILTER 10680 MHz




fsuos 17 )
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RELATIVE COST ESTIMATE - TCAS 1 PASSIVE vs ACTIVE DETECTOR
(IN PERCENTAGE OF MODE S TRANSPONDER COSTS)

ITEM TRANSPONDER (%) | PASSIVE (%) | ACTIVE (%)

FRONT END 3

MASTER OSC 2.5
LOCAL OSC 25
RECEIVER IF 8.5
DEMODULATOR 3.5
POWER SUPPLY 5.5
MECHANICAL 120




SUMMARY

ACTIVE vs PASSIVE TRANSPONDER DETECTOR

* PERFORMANCE
MEASUREMENTS INDICATE THAT A LOW POWER ACTIVE TCAS 1
WILL PROVIDE BETTER PERFORMANCE THAN THE SIMPLE
PASSIVE TECHNIQUES EVALUATED

« COST

TIME SHARING TRANSPONDER TRANSMITTER AND RECEIVER
ELEMENTS MAKES THE COST OF THE ACTIVE APPROACH
EQUIVALENT TO THE PASSIVE APPROACH

o
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Slide 1
TOPICS TO BE DISCUSSED

This talk and the one that follows update one of the talks given at the
last TCAS Symposium that presented techniques to achieve air-to-air
surveillance in high density airspace. These techniques can be thought of as
improvements to the baseline omnidirectional TCAS system covered in the first
part of the RTCA MOPS.

I will start with a review of the surveillance requirements for TCAS II
and then focus separately on Mode S and ATCRBS surveillance. Discussion of
interference limiting and a summary of the TCAS II design as now envisioned
will follow.

The following presentation will describe the efforts to validate these
techniques.

Slide 2
TCAS I1 SURVEILILANCE REQUIREMENTS

The surveillance requirements for TCAS II are defined in detail in the
RTCA MOPS for TCAS II. The slide shows part of a table from that document.
It indicates that 90% of the time minimum TCAS II equipment should be able to
detect and track a target closing at a speed of 1200 kt early enough to
provide a timely warning to the pilot in a traffic density of 0.06 (about 19
aircraft within a 10-mile radius). As the traffic density increases, the
surveillance range is reduced such that at a density of 0.3 (about 94 aircraft
in a 10 mile radius), it has a 90% probability of establishing a timely track
on an alrcraft closing at 500 kt. These requirements assume that at least 257%
of the 94 aircraft are Mode S equipped, that all ATCRBS targets have MIL's
within specification limits, that all antenna gains are within 3 dB of
nominal, and that the number of other TCAS II aircraft within range does not
exceed that given in the right-hand column of the table.

The requirements in the table are minimum requirements for both ATCRBS
and Mode S aircraft. Balanced against these detection requirements are
limitations on false alarms. The false track rate for Mode S targets is
always zero because of the parity protection on the Mode S link. The
allowable ATCRBS false track rate is 0.2%. This rate has been achieved in low
density operation with omnidirectional TCAS Il equipment. It is necessary to
control false tracks so that this rate is never exceeded in any traffic
density.

Another requirement on TCAS 1l equipment is the generation of bearing
estimates on target aircraft and the transfer of own bearing to conflicting
aircraft equipped with TCAS I. This bearing determination should be accurate
enough to allow a pilot to locate another aircraft visually. The bearing
estimates should thus be accurate to about one clock position. This 1is
consistent with an rms error of about 10 degrees. Experience with
experimental bearing estimation equipment indicates that an rms error of 8
degrees 1is feasible.




r

If the bearing estimates are used to provide proximity warnings to the
pilot of the TCAS aircraft as well as for crosslinking data to TCAS I
aircraft, it is recommended that TCAS LI also include a capability for
tracking aircraft that do not have encoding altimeters. The presence of these
aircraft can then be announced to the pilot on a plan-position indicator.

A final requirement of TCAS II is that it accomplish all of the above
with a minimum of transmissions. Regardless of the number of aircraft or
TCAS II units in an area, all of the TCAS II equipments together should never
result in more than a 2-percent reduction in the ability of nearby
transponders to reply to ground-based interrogators. This interference
limiting requirement is one of the more challenging constraints on TCAS [] in
dense environments.,

Slide 3
MODE S SURVEILLANCE

Since TCAS tracks Mode S aircraft by transmitting individual
interrogations to each aircraft of interest, it is important that TCAS II
perform Mode S surveillance as efficiently as possible. TCAS II initially
detects the presence and the discrete address of a Mode S transponder by
listening to the replies generated by that transponder in response to other
interrogations. If it has not replied within the last second, the transponder
generates a spontaneous reply known as a squitter., These replies also contain
the altitude code of the aircraft. If the squittering aircraft is far away in
altitude, TCAS II need never interrogate. Mode S aircraft well above or below
the TCAS II aircraft are tracked simply by passively monitoring their
replies.

If a Mode S target is near in altitude, TCAS II must interrogate it at
least once to determine 1its range. If the aircraft is not an immediate
threat, TCAS II can withold its next interrogation until the target could
possibly come close enough to become a threat. Such a target is called
"dormant”. When a target comes close enough in range and altitude, it is
regularly interrogated. If one of these roll call interrogation: fails to
elicit a reply, it may be repeated to assure continuous tracking.

Slide 4
MODE S SURVEILLANCE IMPROVEMENTS IN HIGH DENSITY

Several steps can be taken to increase the efficlency of Mode $
surveillance in dense airspace. The interrogation rate is reduced by
decreasing the sensitivity of the TCAS II receiver during squitter listening
periods. This reduces _he number of detected squitters and is consistent with
the target speed reduction inherent in higher traffic densities. Mode S
replies are occasionally corrupted during transmission in such a way that
TCAS II 1s led to believe that there are more Mode S transponders in the
vicinity than really exist. This results in wasted interrogations to
non-existent transponders. Recent studies indicate that this can be a major
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problem in high density airspace. To reduce this problem, TCAS waits to
receive two replies from the same address within a fixed correlation time
before it interrogates that address. It also helps to carefully "filter" each
reply tu assure that it conforms to the proper format. A short correlation
time and a narrow altitude band also reduce the number of wasted
interrogations. Unfortunately, the most common error is a one-bit change in
the reply; so duplicate erroneous addresses still occur after all these fixes,
This problem would be completely eliminated by using what is known as the "all
call” format for squitters. In the all call, the transponder address is
protected by parity such that errors can both be detected and corrected. This
solution is currently being investigated.

Additional information can be used to reduce the interrogation rate for
dormant targets. The low-density BCAS design used only the maximum airspeed
capability of the two aircraft to derive a dormancy time. The more
information there is available about the position and relative motion of a
dormant target, the longer TCAS LI can walt beween range measurements.

Finally, the number of interrogations needed for roll-call tracking can
be reduced by accounting for the speed raductions in high density and reducing
the roll-call range and interrogation power. The reinterrogation rate for
roll call targets can also be reduced by error correction.

Slide 5
GARBLE REDUCTION TECHNIQUES - HIGH DENSITY

When TCAS II operates in higher traffic densities, the ATCRBS synchronous
garble problem increases. The main techaniques for combating ATCRBS
synchronous garble in high densities are directional interrogations and finer
whisper-shout levels. Minimum TCAS II employs a four-beam anteanna that
transmits sidelobe suppression pulses from a control pattern to reduce the
effective beamwidth. The whisper-shout sequence transmitted differs for the
forward, aft, and side beams. Higher power and more whisper-shout steps are
transmitted in the forward direction where the detection range must be greater
to handle higher closing speeds. The combination of sidelobe control
transmissions (which rely on the control of pulse amplitude ratios) and
whisper-shout transmissions (which cause transponders to reply only to
interrogations received near the transponder minimum triggering level) has
uncovered some unexpected effects that required minor surveillance
modifications to TCAS II. The consequence of these new effects will be one
of the major topics discussed in the next talk.

Slide 6
TRACKING ALTITUDE-UNKNOWN TARGETS
As noted earlier, it 1s important to account for ATCRBS transponders that
are not equipped with encoding altimeters if TCAS II is used to provide a

traffic advisory service analogous to the service currently provided by air
traffic controllers.
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When altitude-reporting ATCRBS aircraft are tracked, the altitude code is
used for reply correlation. When there is no altitude code, TCAS II must rely
solely on range. For nearby targets, the accuracy of a range-only tracker can
be improved if the tracker takes advantage of the fact that for
non-accelerating encounters, the square of the target slant range is a
quadratic function of time with a well-behaved first derivative, whereas
linear range rate exhibits strong apparent accelerations. Thus it is
recommended that minimum TCAS II track all short-range altitude-unknown
targets in R? with a parabolic least-squares tracker.

Slide 7
INTERFERENCE LIMITING ALGORITHM

At the previous TCAS Symposium a set of four inequalities were presented
as the means for assuring that no transponder is turned off by TCAS II
activity for more than 2 percent of the time and for assuring that TCAS II
does not contribute to an unacceptably high fruit rate. It is necessary for
each TCAS II unit to account for other TCAS II aircraft in 1its vicinity when
limiting its own transmissions. As the number of TCAS Il aircraft increases,
the interrogation allocation for each of them must decrease. Thus, every
TCAS II unit must monitor the number of other TCAS II units (NT) within
detection range. This information is then used along with the knowledge of
own interrogation rates and powers (LP) and own mutual suppression rates (IM)
to determine the maximum allowable power and sensitivity for ATCRBS and Mode S
interrogations within the next surveillance update interval.

Since this process involves a feedback loop whose characteristics are
determined by the dynamics and spatial distribution of a large number of
aircraft, one must be concerned with potential instabilities. The stability
and performance of this control loop is being investigated in a comprehensive
simulation performed by the Electromagnetic Compatibility Analysis Center of
Annapolis, MD.

Slide 8
INTERFERENCE LIMITING CHANGES

Several changes have been made to interference limiting since the last
TCAS Symposium. The waveform used to monitor the TCAS II population is now
received via the transponder. Originally, this was done by monltoring a
special code in the transponder replies transmitted from other TCAS II
alrcraft. However, since the detection range for transponder replies varies
with the ATCRBS fruit rate, it was also necessary to monitor the ATCRBS fruit
rate to correct the count of detectable TCAS Il aircraft. The result was a
crude estimate of the TCAS II count. To improve the accuracy of the TCAS II
count in dense airspace, a change was made to require each TCAS II unit to
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periodically announce itself via a spontaneous TCAS I1I broadcast
interrogation. Other TCAS Il units detect these broadcast interrogations by
monitoring messages received by their on-board Mode S transponders.

It has also been determined that one of the 4 original inequalities which
was intended to limit Mode S fruit was redundant because Mode S fruit is
automatically limited by the inequality that limits the air-to-air suppression
rate due to Mode S interrogations. Finally, a number of detailed changes have
been made in the time constants, smoothing procedures, and hysteresis
parameters of the limiting algorithms to improve the stability of this
feedback process.,

Slide 9

MINIMUM TCAS T1I DESIGN

The current minimum TCAS 11 design is summarized in this table. TCAS II
employs a 4-beam directional antenna on top of the aircraft. Transmit
sidelobe suppression 1s used to control the effective interrogation beamwidth.
The angle-of-arrival of the detected aircraft is determined by means of an
omnidirectional bearing estimation technique. The role of the bottom antenna
is limited in the TCAS II design to minimize multipath-generated false
targets. A high-resolution whisper-shout sequence is used. Although a total
of 83 interrogations are transmitted each second, the interference limits are
satisfied by transmitting most of these interrogations at very low power. The
peak power in the sidebeams is 4 dB below the peak power transmitted in the
forward direction. The peak power aft is 9 dB below the forward power.

Mode S surveillance is accomplished by listening to squitters alternately
on the top and bottom antennas. The current design splits the listening time
equally between top and bottom. The consequences of biasing listening in
favor of the top antenna are under active consideration.

At the previous TCAS Symposium it was noted that the tendency for TCAS
interrogations to reflect back and interrogate the transponder on board the
TCAS II aircraft might require a speclally designed Mode § transponder for all
minimum TCAS II installations. It has since been determined that the duration
of the backscatter reception is sufficiently short that blanking can safely be
used to prevent the on-board transponder from replying to TCAS II
interrogations. The blanking pulses can be kept short enough so that the
total blanked time in the transponder never exceeds the bounds established by
the interference limiting inequalities.
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Surveillance Techniques For Minimum TCAS [I

J.D.Welch, M.L.T. Lincoin Laboratory
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Topics To Be Discussed

* TCAS 1 surveillance requirements
« MODE S surveillance in high density +

. ATCRBS surveillance in high density
« Interference limiting )

« Current TCAS 1l design

N ) N
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TCAS 1 Surveillance Requirements

e TCAS 11 will meet or exceed the following:

CLOSING SPEED MAX TRAFFIC DENSITY FOR MAX NO. OF OTHER 1
WHICH SUCCESS PROB. = 90% TCAS T WITHIN 30 NMI
1200 KT 0.06 AIRCRAFT/NMI2 13
500 KT 0.30 AIRCRAFT/NMI2 67

¢ TCAS 11 will limit false ATCRBS tracks to less than 1 in 500
track-seconds

* TCAS 1 will provide target bearing estimation with 8° rms
accuracy or better

+ TCAS Il will degrade ground surveillance by no more than 2%
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MODE S Surveillance

Altitude
/)
1 Squitter
{\ Roll éall
1
R j Dormancy
\
) Squitter
= Range

N J
(SLIDE 4 \

MODE S Surveillance Improvements In High Density

SQUITTER IMPROVEMENTS-

RAISE RECEIVER THRESHOLD
FILTER SQUITTERS
Altitude REDUCE ALTITUDE BAND
Y REDUCE CORRELATION TIMES
USE PROTECTED SQUITTER (?)
Y —= Range

DORMANCY IMPROVEMENTS~
USE TARGET: BEARING
RANGE RATE
ROLL CALL TRACKING IMPROVEMENTS-

Squitter

k\
REDUCE INTERROGATION POWER
USE REPLY ERROR CORRECTION

: . ! USE OWN: AIRSPEED
1. Squitter HEADING
e R TURN CAPABILITY
‘ T
Sy Roncan
> | ’
\ REDUCE ROLL CALL RANGE
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GARBLE REDUCTION TECHNIQUES - HIGH DENSITY
Finer Whisper-Shout Levels

Directional interrogation

100%
CUMULATIVE
DISTRIBUTION
OF
TRANSPONDER
SENSITIVITY

Ll

\

N

ﬂ'“ 6 Tracking Altitude-Unknown Targets

Unavailability of altitude code reduces reply correlation accuracy

t=0Owhenr=d
X =Vt

INTRUDER
(MOVING AT SPEED "V°)

r2= v242, 42

A COORDINATE SYSTEM CENTERED
AT BCAS AIRCRAFT

BCAS AIRCRAFT

Parabolic , least-squares tracking of r2 improves predictions
at closest approach and allows reliable tracking when altitude
correlation is available

For non-accelerating encounters, square of range is quadratic in time
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Interference Limiting Algorithm
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Interference Limiting Changes
TRANSMITTER |
<:> RECEIVER ‘%’> SURVEILLANCE
[72]
e q
Z
4
w
—
Z
<
| TRANSPONDER power 4
+ MTL
CONTROL

RATE)

MODE S FRUIT LIMITING INEQUALITY —=
DELETED (MODE S FRUIT CONTROLLED
ALONG WITH AIR-AIR SUPPRESSION

AN

TCAS BROADCAST INTERROGATION — NT
MONITORED TO OBTAIN TCAS COUNT
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r SLIDE 9

TOP ANTENNA

BOTTOM ANTENNA

WHISPER/SHOUT

SQUITTER RECEPTION

MUTUAL SUPPRESSION

Minimum TCAS 1l Design

4 Beams, 90°, Transmit SLS,
Omni AQA on reception

Omni monopole

Top-Forward 24 Levels

Top-Right 20 Levels
Top-Left 20 Levels
Top-Aft 15 Levels
Bottom 4 Levels

COVERAGE IN AZIMUM Side beams -4 dB, Aft beam -9 dB

1 Receiver time shared between top
& bottom

Ordinary interrogation decoder, 70 us
MODE C top, 90 us MODE C bottom,
60 us MODE S

~
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Slide |
TCAS 11 SURVEILLANCE - VALIDATIUN ACTIVITIES

When the TCAS [l high density techniques were described at the January
Conference, it was pointed out that further work would be needed in a number
of areas before these techniques could be considered to be validated. Plans
were presented for this further work, including airborne measurements in sowme
areas and simulation work in others. The following is a report v’ the
progress of that work during the intervening nine months.

The slide outlines the development activities. The most prominent issues
are Mode C directional interrogation and whisper-shout, which are the main
techniques for avoiding svnchronous garble in high density airspace.

This work is being followed by the construction of a real-time TCAS 1I
unit, which will give the opportunity to test the techniques all together and
in real-time.

Slide 2
PHANTOM MODE A INTERROGATION

The work to assess directional interrogation is based primarily on
airborne measurements. To make this possible an experimental directional
interrogator was built. Since the initial analytical work had indicated that
four beams would be sufficient, a four beam design was undertaken, and was
built by Dalmo Victor. The equipment includes an antenna that can transmit in
four directional patterns, along with a P2 control pattern accompanying each
beam, and an omnidirectional pattern for comparisons with omni whisper-shout.
The unit also includes: a transmitter having provisions to switch among the
different beams; an improved whisper-shout attenuator, so that whisper-shout
and directional interrogation can be tested together, and a magnetic tape
recording capability enabling a detailed study of all replies triggered by
these interrogations.

As airborne data became available, one of the first things observed was a
problem with unwanted replies occurring at a shorter range relative to the
correct replies from certain aircraft. It was soon realized thLat this effect
was due to a phantom Mode A interrogation, illustrated in the slide.

Evidently the transponder will intermittently detect the combination of Sl and
P2, which are 8 us apart (in the initial experimentation), and will reply in
Mode A. This effect had not been anticipated; to first order, a transponder
would detect both or neither of the two suppression pulses S! and S2, which
are of equal power. When they are received near threshold, however, it
becomes possible to intermittently detect S! and not S2. Whenever this
happens the transponder does not suppress, and continues to search for a pulse
to completa an interrogation. When outside of the mainbeam, as in this
example, P2 is large and readily furnishes the second part of a Mode A
interrogation,
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In considering possible changes to avoid this problem, a single-pulse
suppression seems particularly appropriate., The single pulse suppression
waveform is a way of implementing whisper-shout using just one suppression
pulse spaced 2 us before Pl., This approach eliminates the phantom Mode A
problem and reduces by one the total number of interrogation pulses
transmitted.

The single pulse suppression waveform was implemented and tested at
Lincoln Laboratory using an omnidirectional rooftop antenna. Using a
technique of rapidly switching back and forth between 2-pulse suppression and
l-pulse suppression, it was found that the new technique works well.

This change has subsequently been implemented in the Dalmo Victor
equipment. 1In airborne testing the whisper-shout suppression performance of
this waveform seems satisfactory, and the phantom Mode A problem has been
eliminated.

Slide 3 {
BEAM LIMITING NEAR THRESHOLD

In understanding the mechanism of directional whisper-shout, a second
important discovery conceruns the sidelobe suppression, or beam limiting action
for receptions near transponder threshold. Previous plans allowed for a 9 dB
SLS ratio. That is, the interrogator design allowed for the possibility that
some transponders do not reply when P2 is received nearly 9 dB below Pl, thus
it was planned to transmit P2 at a power level low enough to insure that P2 <
Pl- 9 dB everywhere in the mainbeam.

More recently it was realized that for receptions near threshold as {is
the important case when whisper-shout is used, reply is very likely even when
P2 is just a few dB below Pl. It was therfore concluded that the transmitted
P2 power should be increased. The experimental equipment has since been
changed, increasing P2 power to the maximum value readily achievable with this
equipment, namely P2 = Pl as transmitted. Higher levels of P2 are worth
considering as well.

It follows that the uniformity of reply beamwidths is improved relative
to what was originally expected. The effective reply beamwidth has been
recalculated under the new conditions, based on the antenna patterns of the
experimental four beam antenna, giving the results:

Effective reply beamwidth = 122°

Degarbling factor = 360°/122° = 2.9




Slide 4
LATE MODE C REPLIES

Further examination of airborne data revealed another unexpected problem,
characterized by unwanted replies appearing at slightly longer range than the
correct replies from certain transponders. The range difference is 0.16 nmi
which corresponds to 2 .s. After some study, it became apparent that the
reply mechanism (illustrated in the slide) is due to a Mode C detection
triggered by the combination of P2 and P4. This occurs intermittantly when
the pulses are received near threshold and when the target is outside of the
mainbeam.

It was concluded that this effect could be eliminated by incorporating a
filter for these late replies in the surveillance processor. Thus these
unwanted replies will be present in the collection of all replies and will
contribute to synchronous garble and will therefore reduce the degarbling
effectiveness of the directional interrogation technique. An initial estimate
of the incidence of these unwanted replies is an increase in the total reply
count by 15%. Thus the performance of the directional transmit technique is
not significantly degraded.

Slide 5
DIRECTIONAL INTERROGATION -- AIRBORNE DATA

Here is an example of the data recorded by the Dalmo Victor equipment
while airborne. This target flew by from front-to-back, passing to the left,
at ' a slightly lower altitude. The results in the slide show that the target
replied appropriately first to the front beam, then to the left beam, and
finally to the back beam. In the transitions from beam-to-beam, there is a
small amount of overlap, with the result that the sequence of replies
continues unbroken through these transitions.

Thus the spatial partitioning expected from directional interrogation is
evident, at least qualitatively, in the data. A quantitative assessment of
the degarbling is in progress.

Slide 6
DIRECTIONAL INTERROGATION - SUMMARY

The airborne measurements to date have led to the discovery of several
important mechanisms and have indicated the need for some changes to the
TCAS II design. Furthermore, airborne results have demonstrated that spatial
partitioning is achieved, and these observations tend to increase the level of
confidence that directional whisper-shout will be effective.




Slide 7
WHISPER-SHOUT SEQUENCES

The whisper-shout technique by itself has also been under study. This
illustration shows the 4-level form of whisper-shout used in BCAS, 1in
comparison with the more capable 24-level form of whisper-shout proposed for
TCAS [I. The most significant attribute of a whisper-shout interrogation is
its bin width, which is the dB difference between the interrogation and the
assoclated suppression. It is to be expected that if bin width is decreased,
the average number of aircraft that reply to the one interrogation will be
decreased, which is the desired alleviation of synchronous garble. The bin
width in the BCAS sequence was 9 dB, whereas in the TCAS Il sequence it
alternates between 3 dB and 2 dB.

Slide 8
WHISPER-SHOUT DATA

Airborne measurements using several values of bin width were undertaken,
to assess the effectiveness of decreasing bin widths. The experiment
included a set of 1-dB bins, a set of 2~dB bins, a set of 3-dB bins, and a set
of 9-dB bins. All were transmitted in each l-second period. The results
plotted here confirm the general expectation of a substantial improvement as
bin width 1s decreased.

Slide 9
WHISPER-SHOUT COMPARISON

This performance comparison betwee.. the two whisper-shout sequences was
obtained by operating with both sequences simultaneously, that is, alternating
rapidly between the two sequences so that both types of data are collected in
each l-second period. 1In this typical example, a significant improvement is
evident, particularly in regions where several aircraft exist at nearly the
same range.

Slide 10
SURVEILLANCE FALSE ALARMS

At the time of the BCAS Conference in January [981, there had been no
instances in which a false track caused a false alarm or modified a real
alarm. This was encouraging since the airborne testing had accumulated
several hundred hours of experience by that time. Even so, it was realized
that false tracks do occur and that therefore some false alarms would
eventually occur. In the time since then, the airborne experience has
increased by many more hundreds of hours, and now several instances of false
and modified alarms have been observed. The Piedmont data, for example,
includes about 900 hours, and in this data there is one instance of a modified
alarm and no instances of isolated false alarms. 1In addition, a considerable
amount of testing has been done by the FAA Technical Center on the East Coast
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and in the Chicago area, and by Lincoln Laboratory in the Boston area. In
this additional data there have been 8 instances of false alarms.

These false alarms have been studied individually and categorized
according to the mechanism causing the false track., It was found that the
largest single source of false alarms was multipath. That is, for a real
aircraft target producing a real track, a reflection from the ground or water
gave rise to a second track.

Since multipath induced false tracks are mainly associated with the
TCAS II bottom antenna, it became appropriate to consider reducing the role of
the bottom antenna. By reprocessing the recorded data from all the instances
of multipath false alarms, it was found that 4 of the 5 occurrences would have
been eliminated by deleting the 3 highest power bottom interrogations (that
is, by reducing bottom antenna interrogation power by 18 dB).

Slide 11
ROLE OF BOTTOM ANTENNA

In considering a reduction of the role of the bottom antenna to reduce
false tracks, it is necessary to know what the effect would be on the
reliability of tracking real aircraft.

An experiment was set up to gather airborne data for a performance
comparison between a design using top and bottom antennas equally and a design
that reduces the role of the bottom antenna. The interrogation sequences to
be- compared were selected to have the same total number of interrogations and
the same power-sum (both of which are quantities constrained by interference
limiting). The results of several measurements showed that the reduced-bottom
design performs nearly as well as the equal-use design, having surveillance
reliability that is less by only about 2 or 3 percent. In the example shown
in the slide, the reduced-bottom design is the whisper--shout sequence
proposed for TCAS II, and here the performance difference is just 2.3 percent
(of track seconds for aircraft within * 10° in elevation angle).

Since the reduced-bottom design achieves a significant reduction in false
tracks while tracking real aircraft almost as well, it has been concluded
that this is a worthwhile feature to be included in TCAS II.

Slide 12
PERFORMANCE WITH REDUCED POWER

In very high density airspace, closing speeds are reduced and thus the
range requirements of TCAS Il are reduced. Under these conditions it should
be possible to reduce the interrogation power level. Indeed, to conform with
the interference limiting standards, it will be necessary for such a power
reduction. The infitial design of TCAS II presented at the FAA Conference this
past January was based on estimates of survelllance reliability at reduced
range with reduced power. These initial estimates were analytically derived
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(ref., "Effects of RF Power Deviations on BCAS Link Reliability”, M.I.T.
Lincoln Laboratory, ATC-76, 7 June 1977). The plan at that time was to
conduct alrborne measurements to validate or refine these early estimates.,

This airborne data has since been obtained by reprocessing whisper-shout
data already recorded, omitting the higher power levels. The alrborne results
for a 6-dB power reduction are summarized in this slide, together with
calculated results representative of the early estimates. The agreement
between calculation and measurement is sufficiently good to provide assurance
that the basis for the original design was reasonably good. The data shows
that when interrogation power is reduced by 6 dB, it is still possible to
achieve effective surveillance at ranges up to 5 nmi.

Slide 13
ALTITUDE UNKNOWN

The TCAS II function that tracks altitude-unknown targets was added to
the real-time equipment at Lincoln Laboratory about 2 months ago, and so we
are beginning to accumulate some experience with its performance. It appears
to be working quite well., Here is an example in which three targets are in
track, one of which is of unknown altitude.

Slide 14
MODE C PERFORMANCE ESTIMATES

. An overall performance estimate will serve to summarize the current
understanding of the performance mechanisms in Mode C. This estimation brings
together the things learned from the separate studies of directional
interrogation, whisper-shout, reduced role of bottom antenna, and effects of
power reduction.

This assessment begins by reviewing the performance of omnidirectional
surveillance using the basic 4-level whisper-shout on both top and bottom
antennas. The data in the slide was taken from BCAS airborne measurements
(reported at the January 1981 BCAS Conference).

The next case is omnidirectional, but uses

® 24-level whisper-shout, top antenna
® /-level whisper-shout, 18 dBm down, bottom antenna

To acco. : for the more capable form of whisper-shout, the slope of the
performa .ce curve has been reduced by the factor 4.5 (which is the ratio of
the bin widths, 9 dB and 2 dB). To account for the reduced role of the bottom
antenna, the performance curve has been shifted downward by a constant 2.5%.
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The next step is to add directional transmission using four beams. To
represent this improvement, the slope of the performance curve was further
reduced by the factor

The first factor accounts for the reduction of replies due to sgpatial
partitioning, and the factor of 1.15 accounts for the unwanted increase in
replies due to late Mode C interrogation detections.

Slide 15
CONCLUSION

The foregoing summarizes the development actvities in progress for
alr-to-air surveillance in Mode C. Work is proceeding in parallel to develop
Mode S surveillance and interference limiting. Altogether, these development
activities are quite extensive in the sense that they cover many areas. Much
has been learned in all of these areas, and so the confidence level for
successfully achieving the TCAS objectives has improved considerably over the
past nine months.

Some key measurements and other tasks, however, have yet to be
accomplished., The figure summarizes the plans, including airborne
measurements in some cases and simulation work in others, for completing this
development program. When completed, this work will be followed by the
fabrication of real-time TCAS Il equipment and airborne testing of it in high
density airspace.
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TCAS I Surveillance - Validation Activities
W.H. Harman, M.LT. Lincoin Laboratory

Mode C Surveillance
* Directional interrogation
* Whisper-shout
* False alarms
* Role of bottom antenna
* Power reduction
* Altitude unknown

Mode S Surveillance
* Algorithm improvements
* Address detection
Interference Limiting
* Limiting algorithm
e Limiting standard

\ s Self suppression
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Directional Interrogation
PHANTOM MODE A INTERROGATION
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Directional Interrogation

BEAM LIMITING NEAR THRESHOLD

P1 P3 P4 SPECIFICATION
81 3 al
3 T (ATCRBS NAT. STD.):
THRESHOLD oy 9B ' REPLY OPTIONAL
:H:L L] | IN ACTUALITY :
-2 0 2 21 23

REPLY LIKELY

Conclusions - (1) Increase transmitted P2 power
(2) Uniformity of reply beamwidth is improved
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Directional Interrogation
LATE MODE C REPLIES

P1 THRESHOLD P3 P4
R < X o ] ACTUAL REACTION - LATE

-2 0 2 21 23

Conclusions — (1) Incorporate a filter for these in
the surveillance tracker

(2) Degarbling effectiveness is reduced

LATE MODE C
MODE ¢ SCENARIO - TARGET OUT
OF MAIMBEAM
P2
j DESIRED REACTION - NO REPLY

. A =9
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Directional Interrogation

SUMMARY
PROGRESS ‘
* Airborne measurements begun
* Phantom Mode A
* 1 - pulse suppression
* Beam limiting near MTL
e Late Mode C
PLANS

* Finish debugging .
« Airborne meas. in high density
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Whisper — Shout Comparison
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Role of Bottom Antenna - Airborne Data

COMPARISON

(BASELINE)
A

TOP 14 24

VS.
BOTTOM 14 4

DATA
New York area, 40 min., 13 August 1982

RESULTS

Decreasing role of bottom antenna :
decrease in tracking of real aircraft by 2.3%

CONCLUSION
Adopt 24/4 for TCAS I
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SLIBE 1 (Cover)

You may remember from the FAA TCAS Symposium held in January of
1982 that a description of the Bendix plan of attack to develop
the Enhanced TCAS [l was presented. | would like today to bring
you up to date on our engineering accomplishments since that time
and to describe the very encouraging results we have obtained in
some vital areas.

Bendix has been motivated by the challange of developing an
operationally acceptable CAS. We feel that this acceptability
criteria will probably be satisfied in operational situations on
a pilot by pilot basis when and 1if he finds through normal
observation of his CAS system when he is using visual and radio
clues to guide his actions, that the CAS resolution is not in
conflict with his own decisions. He may find it even more
acceptable if the CAS somehow extends his own abilities by pro-
viding him information that he would not otherwise have. Toward
this goal the Bendix approach has been to apply advanced tech-
nology 1in three main areas, optimized system design, antenna
technology and adaptive control.

SLIDE 2

This viewgraph is an attempt to capture the essence of the
Enhanced TCAS-II which is characterized by accurate bearing,
“narrow sectorized interrogation control and tailored system
parameters. With these system qualities the possibility of
horizontal resolution of confict situations becomes available to
extend system performance capability and reduce the incidence of
unnecessary evasive maneuvering, The ability of this system to
provide traffic advisories with relative motion (that 1is the
indication of the position of the potential threat relative to
own aircraft tnroughout an encounter) reinforces the pilots
visualization of the three dimensional situation.

The ability of the Enhanced TCAS-Il1 to intelligently utilize
narrow sector interrogations together with receive sidelobe
supression, accurate angular location of other aircraft and a few
levels of whisper-shout permits operation in the most extreme
traffic density projected. The narrow sactor interrogation and
power contouring also reduces the amount of interference caused
by Enhanced TCAS-I] interrogations.

SLIDE 3

This viewgraph highlights Bendix accomplishments on the Enhanced
TCAS-I1 contract thus far, First a system concept was created
having all of the features I have just discussed. This concept is
embodied in an Engineering Model Design Specification,




Secondly a complete computerized simulation has been developed
and uysed to validate the «concept. This simulation emulates
traffic and consequent elecromagnetic signal environments on a
pulse by pulse basis. The basis for the traffic environment is
the FAA's Los Angeles Standard Traffic Model <containing 743
aircraft, sometimes referred to as the "aluminum cloud". Against
this environment the computer program logic has been tested for
use in the actual Flight Test Equipment.

Thirdly, an accurate directional antenna has been developed and
tested.

And finally we have designed, constructed and are in the final
stages of testing of two complete Engineering Model A Enhanced
TCAS-I1 systems which will be flown and tested extensively in FAA
727 aircraft. We expect to deliver the first of these to the FAA
Technical Center for installation in November 1982. (The Model A
system you may recall has all of the features of the Enhanced
TCAS [l except for the horizontal maneuver logic.) These will
subsequently be upgraded to Model B equipments when the horizan-
tal logic which is being developed by MITRE becomes available
and, together with other associated computer program changes 1is
incorporated in the equipment.

SLIDE 4

. This illustration shows the organization of the simulation test
bed. The area labeled “Environment" incorporates code which pre-
cisely represents the LAX Traffic Model with 743 aircraft and the
corresponding Radio Frequency Electromagnetic Environment
(1abeled R.F.E.) which results when that number of aircraft are
being interrogated by the ground based ATC Radar Beacon System
located in the LAX vicinity together with an aircraft based TCAS
population, I want to emphasize that the simulation is not
limited to the LAX or. any other scenario. Any distribution of
traffic can be entered or any special situation placed in the
model for study. The RF interference environment is that seen at
own aircraft. [In addition the location of all aircraft relative
to own for each 50 millisecond period is calculated and stored in
the Flight Profile File so that appropriate replies can be gen-
erated in response to own interrogations.

The operational program algorithms are contained in the Design
Simulator which generates commands to the synthesized hardware in
the center section telling it what to do and when to do it. The
resulting signalling is emulated in this center block and the
equivalent replies are returned to the Design Simulator where
they are processed as they would be in a real time system. AsS
with the environmental simulator, any TCAS I! model <could be
simulated, however only the Enhanced TCAS-II Model A has been
simulated in our FAA contract activity.




A1l data passed between software modules can be captured and
stored for further study if desired. The results of the simula-
tion are displayed for quick Tlook results and to provide an
operational overview. Post processing can provide detailed
and/or statistically summarized results.

SLIDE §

This formidible array of traffic is a typical example of the
simulator's display of traffic being tracked within 10 nautical
miles of own aircraft at 30 seconds into Scenario S5S-8 of the LAX
simulation, In this particular situation there are 80 aircraft
under track. 35 are ATCRBS equipped and 45 are Mode S equipped
of which 25 are being tracked beyond the displayed area. The
ATCRBS tracks are identified by trianiles at the aircraft posi-
tion while the Mode S tracks are identified by squares, The
vector length and direction gives an indication of predicted
motion for the next 25 seconds based on the past history of that
target and own aircraft's current position and heading, A
"Descend" command has been issued by the MITRE vertical separa-
tion CAS logic as the result of a conflict it has found with
target #101. In this simulator own aircraft can be any of the
743 possible aircraft or any other aircraft at any location,
altitude, altitude rate, heading or velocity one might choose to
insert, The display used in this simulation is not intended to
apply to an operational cockpit display. It seems clear that a
-pitot could not effectively use such a display.

SLIDE 6

Based on the previous example the simutation results are
summarized 1in this viewgraph with the boundaries of the
surveillance area as well as the protected area overlaid on the
10 NM range plot. The average density in this situation is 0.3
Aircraft per square Nautical Mile. It shows that all threats were
detected and tracked and all intruders entering the protected
space were located as required. It shows that the surveillance
range of the actual hardware (inciuding all hardware gains and
losses) is adequate to provide an effective system,

[t should be noted that no ATCRBS targets are being tracked
outside of the surveillance volume while Mode S targets are being
tracked out to 25 NM, This is the result of tailoring of the
active resource of the system to the threat. Reply processing
beyond the surveillance range is terminated except for Mode S
where tracking is maintained to prevent repeated track initiation
on squitter, The shape and extent of the 45 second protected
volume within the surveillance volume takes into consideration
own aircraft's speed and the maximum speed that other aircraft
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can operate at that altitude according to Federal Air Regula-
tions, The surveillance logic controls interrogations and reply
processing so that ATCRBS targets operating at that velocity will
be detected and a track established before they enter the CAS
protected region,

Although no threats were missed during the performance simula-
tions some targets were observed to enter the protected volume
betsre being acquired due to the presence of intense synchronous
garble. In this particular run three targets which are shown by E
asterisks at approximately 8 NM with bearings of 320 degrees, 358
degrees and 18 degrees penetrated the protected volume where the 1
local traffic density 1is approximately 1 Aircraft per square
Nautical! Mile,

No false threats were declared on any of the many simulation {
runs, This 1is because the possibility of false tracking is -
virtually eliminated through the use of accurate angle informa- )

tion in the tracking process. Even in the situation where two
targets crossed at identical positions (#598 and #549 located at
5.2 NM at a bearing of 160 degrees) the use of three dimensional
position information permitted unambiguous tracking of each with-
out any confusion,.

The ability of the system to deal with pop-ups (a pop-up is a
target which enters own coverage inside of the outer range timit,
for example by climbing up from below) was demonstrated by
- turning on the Enhanced TCAS-II equipment in the midst of other
targets. After starting the system with 79 ATCRBS targets at
less than 10 NM and 55 Mode S targets at less than 25 NM, it
successfully acquired targets within the surveiliance volume.

Threat Detection and Resolution was demonstrated as shown by the
“Descend” command on the previous viewgraph. All of the Test
scenarios currently stated in section 2.4 of the draft MOPS for
TCAS [I being prepared by RTCA SC 147 .were also successfully
handled by the simulated TCAS. ;

SLIDE 7 |

Prior to actually flying the Model A equipment the computer
programs will be tested against the simulation test bed traffic
and signal environment using the arrangement shown in this view-
graph, This capability offers several important benefits: it
reduces flight test time and cost, permits stressful situations
to be tested under controlled conditions and safely extends the
scope of possible evaluation. It permits any special situations
observed in real world flight testing to be duplicated in the
laboratory and studied in much greater detail than is possible in
actual flight. For example various "what if" conditions can be 1
tried to optimize the system design.
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SLIDE 8

As [ mentioned earlier, Bendix considers the antenna the techno-
logical key to an operationally acceptable TCAS II. This is a
photograph of the Engineering Model antenna which has been tested
and is currently being integrated with other system components.

SLIDE 9

The Enhanced TCAS II antenna subsystem provides for time and
pattern control of interrogation transmissions to constrain the
interrogated sector to a fraction of the angle which we normally
associate with a given antenna aperture. Using pictorial repre-
sentations of the actual measured directional patterns, this
viewgraph shows how the Pl and P3 pulses are transmitted on a sum
beam while the P2 pulse is transmitted on a difference beam,
ATCRBS equipped aircraft located within the effective beamwidth
limits (shown by the dotted lines) would reply while those out-
side of this region would be suppressed.

SLIDE 10

The role of the Enhanced TCAS Il antenna subsystem in the recep-
tion of replies is to measure the angle of arrival of the signal,
This is accomplished using monopulse techniques within the

-effective angular region shown in this viewgraph. Replies as

well as fruit arriving at angles outside of this sector are
rejected using the receiver sidelobe suppression technique.

SLIDE 11

For the antenna experts present this strip chart shows actual
measured patterns of the Enhanced TCAS II antenna subsystem.

SLIDE 12

The elements listed in this viewgraph all contribute to the
Enhanced TCAS Il systems horizontal resolution performance.
Measured antenna patterns and measured circuit accuracy provide a
factual basis. The Geometric Theory of Diffraction (GTD), which
has been refined at Ohio State University, provides a computer
model of the perturbations caused by reflection and diffraction
of an airframe structure. Performance estimates derived from the
use of these elements provide a basis for optimism. GTD error
estimates will be checked during the actual flight tests by
verifying system performance in the presence of airframe effects.




An Alpha-Beta tracker with 1its gain optimized to the rate at
which the data is taken is used to predict future target posi-
tion. When a particular target approaches the point where it is
a threat, the minimum data rate is set at one measurement per
second. Error contributions from all sources are statistically
summed to obtain a three sigma error prediction.

s

SLIDE 13

When an aircraft is under track using the error elements just
described, an estimate of the maneuver needed to assure a miss
with 99 percent confidence is shown in this illustration,

rY

SLIDE 14 i

It is shown that an acceleration of 15 feet per second per second
produces a displacement equivalent to the three sigma error that
results from an intruder closing at 1,000 Knots when he is 35
seconds from the closest point of approach.

SLIDE 15

This required acceleration is achieved at a bank angle of 25 {
degrees, Under these conditions the passenger feels a ten per-
cent increase in seat weight. Such a maneuver can be made as the

“result of an early traffic advisory with no discomfort to the
passenger (e.g. no coffee is spiiled) and little or no effect on
the ATC or aircraft control control systems.

SLIDE 16

I really do not expect you to read the printing on this block
diagram of the Enhanced TCAS II Engineering Model System. How-
ever, it does indicate its eight subsystems. Directional antennas
are installed on both the top and bottom of the 727 test air-
craft. The interrogator is a modified production TRA-65 ATCRBS
Transponder built by Bendix. The modification essentially inverts
the operating frequencies. The Interrogator Processor has been
specially designed to provide degarbling of up to four overlapped
targets, A microprocessor within this unit controls the activi-
ties of the antenna, interrogator and signal processing units.

The computer executes the algorithms designed into the computer
program and interfaces the system to the GFE displays, the moni-
tor and controls and the Mode S transponder.

ve




SLIDE 17

This drawing shows how the Engineering Model will be physically
arranged in the 727 aircraft to facilitate the engineering test
program. Commercial equipments were purchased wherever possible
to minimize cost. The man-machine interface is facilitated by the
various equipments provided which are spread over three racks in
addition to the rack containing the basic equipment, In any sub-
sequent production version of this system the the three aft racks
of test equipment would be eliminated. The basic Enhanced TCAS
Il equipment shown on the first rack would be consolodated in a
single ARINC standard package. The antenna steering circuitry
would be integrally packaged with each antenna aperture and
configured in a more suitable aerodynamic form.

SLIDE 18
In summary the berefits of the Enhanced TCAS II System include:

* A capability to resolve conflicts in the horizontal
plane.

* The use of angular information to reduce unnecessary
alerts.

* Tracking accuracy capable of supporting the display of
traffic advisories with relative motion that corre-
lates with the pilots visual clues.

* Qualities which permit effective protection in high
density traffic environments (sector interrogation,
receive sidelobe suppression, degarbling, data filter-
ing, high data corrolation accuracy, etc.).

* The ability to tailor parameters to minimize inter-
ference without loss of protection,
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TCAS-II SIMULATION TEST BED CONFIGURATION

(SLIDE 4)
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SIMULATION TEST RESULTS
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INTERROGATE MODE OF OPERATION

(SLIDE 9)
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ACTUAL TCAS ANTENNA PATTERNS
(SLIDE 11)
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ELEMENTS OF PERFORMANCE ESTIMATE
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HORIZONTAL MANEUVER TO MISS
(SLIDE 13)
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HORIZONTAL MANEUVER ACCELERATION AS
A FUNCTION OF BANK ANGLE
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TCAS-II ENGINEERING MODEL INSTALLATION
ro-va-ma FLYING TEST BED

S e e {SLIDE 17)
CARLE NG AV (Y XOQO) 0T 85Tttt
/ 344 BPID #OW asusnt lini €
L ad OIIVEOIE Qs PR (/OO ® SO SEPOI-S00v )

§

ADVANTAGES OF ACCURATE DIRECTIONAL DESIGN
(SLIDE 18)
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Example of Testing Depth

Horizontal Track Crossing

/

\\ //
\\ ///
TCAS N\ ¥
AN
/ AN
/ \\
// N\

Vertical Track Crossing/ s

Horizontal Maneuvering
~

Vertical Maneuvering

Vary Rot < ~
y \/5// ////
/ Approach Azimuth -—
TCAS ¥ Track Crossing TCAS - Vary g
Angle
P||annell Vary Time Relative
Horizontal Separation to CPA
at CPA
N Vary Planned
Additional Controls: Varticr:l Separation . d
— Pilot Response Delay _ PR P
— Aircraft Response Rate TCAS - s
— % of Surveillance Replies > Phd
Passed to Threat Logic -

-t
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Case Study 1: Impact of Equal
Treatment for TCAS Intruders

Previous Logic - 2 Negative Commands Would Generate
Sufficient Separation

e Positive Command Only if Both Current and Projected :
Vertical Separation is Less Than 440 Feet {

¢ Prevented Excessive Vertical Maneuvering %
Possible Problem With Late or No Response *

New Logic - If Projected Separation is Less Than 440 Feet,
Positive Command Regardless of Equippage

TCAS 2 Descending
Receives
“’Do Not Descend’’
ﬁ
TCAS 1 Level Receives
Do Not Climb’’

Question: What is Magnitude of Induced Vertical
Displacement of Level Flight TCAS?

e —————— N , d




Case Study 1

Descending TCAS Receives
“CLIMB”’

o
Level Flight TCAS Now Receives
““DESCEND"’

Results for 521 Encounters - High Altitude
Parameters

Displacement < 300’
80 Percent of Time

T

T

T T

Alarm Periods Shorter

o
T

| | - 1

1 1 i | ]
0 200 400 600 800 Feet

Probability Vertical Displacement
Exceeds X Feet
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Case Study 2: Piedmont Flight Tape #9
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Tracked Vertical Rate (FPS)

Case Study 2:

Lincoln Lab Filter Added to Test Credibility of Implied
Acceleration in Surveillance Reported Mode-C Aititude.
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SLIDE 1

At our last conference we discussed in detail the objectives of our TCAS
Operational Evaluation Program. We identified the areas that must be examined
before we can implement the system with the degree of confidence we feel is
necessary for an airborne colligion avoidance device. We have undertaken a
series of efforts intended to bring the Federal Aviation Administration (FAA)

and the aviation community to this degree of understanding.

A two-part cockpit simulation with the Boeing Aircraft Company is underway
which will evaluate the display media and use of the TCAS information under
workload, principally in IMC conditions. The first part of that effort was
completed in March of this year. We are conducting a parallel, limited effort
at Lincoln Laboratory with available displays to advance the knowledge of
participants 1in operational problems. principally in VMC conditions, while
conducting the Boeing simulations. An initial (Phase 1) effort with Piedmont
Airlines. intended to build a large data base with TCAS II in actual line
. bperations, was completed in March. We intend then to combine our knowledge
from the simulations, the Lincoln Laboratory flights and the initial Piedmont
flights into a series of tests in the FAA Technical Center B-727. We propose
to follow this with a Phase Il test in Piedmont aircraft for a further

confirmation of TCAS operational performance.
SLIDE 2

At Boeing, methods for alerting the crew to TCAS information were evaluated
congistant with alerting methodology developed jointly by the Boeing, Lockheed
and Douglas aircraft companies under a master caution and warning study. The
key factor was the time to gain the pilot's attention, given other on-going
duties. Several methods of presenting resolution advisory (RA) information
were considered, including the modified Instantaneous Vertical Speed (IVSI)
Instrument, Light Emitting Diode (LED) panel. and voice. For traffic
advisories (TAs) a simple light, and several configurations on a Cathode Ray
Tube (CRT) were considered.




SLIDE 3

A report on the results of the Boeing Developmental Limitation will be
available this November. In general. the results indicated that for best
performance the next tests should use an IVSI to display RAs, coupled with an
audio tone alerter, and supported by a voice confirmation. The TA information
should be identified by an audio tone, and information provided on a plan-view
type of CRT,

SLIDE &

We have completed the first part of our tests at Lincoln Laboratory in a

C-421 aircraft to gain experience with the use of traffic advisory information

in visual meteorological (VMC) conditions. This test configuration used the

modified IVSI, and Bendix weather radar display for traffic information. A

traffic advisory precursor was provided either by a 5 sec. precursor voice
alert, or a 15 sec. Tau precursor on the CRT with an audio tone. Traffic

" within 3 nmi and + 1500 feet was shown at all times A limited number of

pilots have flown, but those had some experience with TCAS.
SLIDE 5

The CRT displey provided information in this form: own altitude (10,500'),
traffic 500 feet above at approximately two o'clock (+ 05), and at seven
o'clock, 400 feet below ( 04). A two mile range ring was used continuously.

The other information was for test purposes.

Another configuration used on the CRT display listed in tabular form the

range, relative altitude and bearing.
SLIDE 6
Pilots consistantly find the tabular display difficult to use, because of

continuing need to read and interpret the information. With each update, a
nev interpretation is required.
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¥ A precursor alert appeared to be successful in gaining the pilot's attention,
but rather than preparing him for the RA, it was used to initiate a visual

search for the intruder.

When the pilots were given an RA with instructions to follow the command, they

were distracted from most duties until he located the threatening aircraft.

Providing the bearing of the threat produced a significant improvement in

visual acquisition.
While pilots suggested that additional information would be useful, it was

found that any more than the simplest, quick reference information was not

useful.

In vertical encounters pilots have a reluctance to cross-altitudes, and

requested knowledge of the threats vertical direction. (Note: this is
consistant with the same pilot reaction observed in-flights in the B-727 at
the FAA Technical Center).

SLIDE 7

The first phase of the Piedmont Airlines tests was completed in March of this
year. The test program was conducted for the FAA by ARINC Research Inc. The
project manager was Mr. Thomas Berry, who will join the panel for questions
and answers at the end of the session. During this project, the management
and staff of Piedmont Airlines were exceptionally helpful in their cooperation

with this evaluation.

The display equipment was installed at the observers position. The observers
were asked to report on the conditions accompanying each one of the alerts.
The two B-727s flew a total of 928 hours with the equipment on board, 131
hours of which had one or more observers. To deal with the desensitization
question (i.e., adaption of threat volume and alerting to the environment)
concerning alerts for aircraft on the ground, all RAs were inhibited below

500 feet above the ground (by radio altimeter).




SLIDE 8

A standard modified IVSI provided RA information. This dieplay wae small,
with a three-inch CRT. The display was threat-based, i.e., it was not
activated until a threat with a 15 second longer Tau than the RA activated the
display. Only traffic satisfying the closing threat criteria was displayed.

A two—mile range ring was used, and when traffic was inside the two-mile ring,
the ring doubled in size.

SLIDE 9

Despite the RA inhibiting at 500 feet, the TCAS still generated a number of
advisories for traffic on the ground. Filtering the gf33§3-based traffic,
RAs were generated once in 37 hours of flying, and TAs once in 5.1 hours.
Half of the TAs were below 2000 feet, including seven that occurred in one
holding pattern going into Chicago. Most of the encounters occurred in the
'forvard direction. The Vertical Speed Minimums (VSMg) did not appear to be a
' factor. Most of the RAs were Vertical Speed Limives or negatives. Almost
half of the RAs would not have required deviastion fruz curremt flight path,
these being classed as preventive RAs. For all of the observed FAs the crew

was able to make visual confirmation.
SLIDE 10
We plan to provide a better way of eliminating ground advisories.

When more than one aircraft was in the area in which a TCAS alert was given,

the identification of the threat was difficult.

Traffic advisories were useful in cases where no ATC advisory was given, but
where the pilot was interested in the information. The advisories provided
acceptable augmentation to ATC advisories. Pilots expressed a desire to be

able to see traffic on the TCAS display when ATC traffic was called.

The RAs were found to be appropriate, but sowe questions were raised as to
whether a less severe maneuver would be satisfactory, e.g., where s "don't
climb" would be sppropriate instead of "descend".




SLIDE 11

Example Encounters

SLIDE 12
From the results of these tests, we are concluding the following:

The alert rate experience seems to be at an acceptable level. The Tau values
selected for RAs and TAs, and the changes in those levels at 10,000 feet and
2,500 feet seem adequate. The aircraft on the ground will be eliminated in
the next tests by comparing the aircraft's altitude with own aircraft's radio

altimeter.

There appears to be a need to examine the utility of displaying proximate
traffic other than the threat, includng non-Mode C traffic to avoid
misidentification problems when a threat has been presented. Also, it appears
. that there is a need to examine the utility of the pilot being able to
“call-up” the display to identify traffic on an intermittant basis in support
of his visual acquisition responsibility. Additionally, Piedmont Airlines has

raised the possibility of the use of TCAS in non-radar areas.

SLIDE 13

For the next tests we will use the following:

= An IVSI for RA information

= A CRT that is shared with the Weather Radar, operating for TCAS only
when fequired.

- The TCAS will activate the display similarly to the Dalmo Victor
display in Phase I, that is with 1) a Mode C aircraft meeting the
necessary closing range and altitude Tau criteria, 2) with a non-
Mode C sircraft meeting the necessary closing range criteria, or 3)

by a pilot request with a 15 second timeout.




SLIDE 14
Example display
SLIDE 15

This display shows a compendium of the display alphanumerics available for the
test. The upper left tabular listing provides a means for range and altitude
information on an intruder when bearing is lost. It may have limited use in
this particular test, but is included as a system capability. The upper right
symbol will allow an off-screen target to be displayed at the edge of the

display, if required.
SLIDE 16

This describes the proposed procedural philosophy to be used during the
.initial phase of the operational evaluation in Piedmont Airlines B-727. These
procedures are specifically for this evaluation and may or may not be the
procedures employed in later phases, or when TCAS is operationally
implemented. In this phase TCAS RAs will not be followed in IMC conditions.
If a maneuver is executed that requires violation of an ATC clearance, it will
be understood that a pilot is invoking his normal emergency authority in

response to the encounter situation and communication with ATC will be

required.

SLIDE 17

Our next effort in the Boeing B-737 simulator is planned to begin in

December.

The Lincoln Laboratory Phase II is underway now and will be conducted through
early December.

The vhole package will be integrated in the FAA Technical Center B-727, the {
performance confirmed in this aircraft and made available for the aviation
community to observe, and the final configuration for Piedmont Phase II shaken

down. This effort will begin in April.




——

Finally, we expect to move into the Piedmont Airlines aircraft about June.

We invite your interest and participation in the evaluation program outlined,
and look forward to your participation in preparing for the next phase of the

program as announced by the previous speakers.

~ Q‘
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Technical Approach
Boeing ’,‘.l:: : Piedmont TOFC:GU.
Dev. Oper,
Sim. Sim. | C421 | Ph1 Ph2 | B-727
Display Elements X X
Traf. Info X X X
Cockpit Workload X X X
Oper. Procedures X X X X
Desens. Scheme X X -
Oper. Perf. Demo. X X X
Pilot Train. Req. X
. #2
TCAS Display Options
® MASTER ALERTS
WARNING T_-“‘q’\‘;;.:
CAUTION Y[()Nﬂis‘
LIGHTS
SRESOLUTION ADVISORIES
) . e
&.:
VOICE MESSAGES
® TRAFFIC ADVISOL[§§
IS
TCAS ‘( /.; N ‘\
1 \
rercanon |2
Liaut ADVANCED
TABULAR DATA DISPLAYS
2200843




#3
BOE ING DEVELOPMENTAL SIMULATION RESULTS

INITIAL ALERTING

o DETECTION (DETECT ALERT CONDITION):
- FASTEST WITH L1GHT AND SOUND
- SLOWEST WITH MORE COMPLEXITY IN DISPLAY
o RESPONSE (BEGIN RESPONSE TO ALERT CONDITION):

- MOSTLY DEPENDENY ON DETECTION TIME
- MOST PILOTS USED TA TO ANTICIPATE
- VISUAL & VOICE 1S FASTEST. EASIEST TO FOLLOW

PILOT OPINIONS ON METHODS OF DISPLAY:

- TABULAR DISPLAY WAS RATED POORLY
- GRAPHIC DISPLAY FOR TA’S MORE USEFUL THAN ATC TFC ADV,
- VERTICAL MOVEMENT REQUESTED

RECOMMENDATIONS FOR RETROFIT AIRCRAFT:
- ADHERF T0 OUIET. DARK COCKPIT WHERE POSSIBLE (E.G.. MASTER
CAGTION/WARNING)
- RA:  IVSI. VOICE. SIREN *
- TA: " CRT. C-CHORD

#h

LINCOLN LAB C-421, PHASE |

¢ EQUIPMENT:

€-421
- LL TCAS OXP UNIT (TEU) WITH AQA ANTENNA
- IVSI. CRT (WX RADAR DJSPLAY)

® FLIGHTS: 60 PLANNED, 10 UNPLANNED ENCOUNTERS. TERMINAL APPROACHES

- 3 EXPERIENCED PILOTS (FAA, NASA)

o INFORMATION:  1VSI CRT

CLIMB/DESCEND TABULAR: RANGE. RELATIVE ALTITUDE. BEARING
DON’T CLIMB/DESCEND PP1: RANGE

LINIT/MAINTAIN RATE BEARING (CLOCK PSN.)
RELATIVE ALTITUDE .
OWN ALTITUDE (ABSOL.) !

RANGE RING

AUDIO CONF IGURATION

AUDIO TONE 1VSI W/5 SEC. VOICE PRECURSOR
VOICE = "ALERT® TABULAR AND PP] WITH 15 SEC. TAU PRECURSUR: HROX
8 3NMI, ¢ 1500 FEET




#5 a

=N S~ 04116100

- OFF G

STBY
TEST HOLD TRACK 60

ON - o™ L]

1
Display Configuretion for 4
Paase ] lincolo laboretory Tests

LINCOLN LAB C-421, PHASE I
RESULTS (JULY 1982)

8 TABULAR DISPLAY UNDESIRABLE (HIGH WORKLOAD TO INTERPRET)

¢ 5 SEC. PRECURSOR USED FOR VISUAL SEARCH RATHER THAN ALERT PILOT
¢ PILOT DISTRACTION W/RA UNTIL VISUAL ACQUISITION
o BEARING INDICATION PRODUCED MARKED IMPROVEMENT IN VISUAL ACQUISITION

® ALL BUT SIMPLEST SET OF INFORMATION RESULTS IN PILOT RELUCTANCE TO .
USE ADVISORY INFORMATION

@ ADD VERTICAL RATE (DIRECTION) INDICATOR




0 EQIPENT:

¢ FRIGS:

€ INFORMATLON:

0 OPERATIONAL

CONF IGURAT ION:

PIEDMONT OPERATIONAL EVALUATION

PHASE |

- 2 PIIMNT B727's
- DALMD VICTOR TCAS W/ADA ANTENNA
- IVSI AND (RT AT OBSERVERS POSITION

- 928 HORS (131 HOURS WITN OBSERVERS)

- 24 TERMINAL AREAS

- 21 PILOT/0BSERVERS (REPUBLIC. AMERICAN. FAA. NASA.
PIEDMONT. DELTA. ALPA, US AIR)

1Sl BT

CL IMB/DESCEND O COLOR
DON'T CLIMB/DESCEND  THREAT ONLY AIRCRAFT. 15 SEC TAU PRECURSOR
LIMIT RATE TRALL
MAINTAIN RATE RELATIVE ALTITUDE
2 MILE RING. AUTOSCALE, FLASHING WHEN RA. AND
BEEPING TONE ALERT TONE WHEN TA

INHIBIT RA’s BELOW 500 FEET

IVEL, Delmo Victor Control & Digplay tmit
Pledmont Afrlines Evalustion

S




PASE 1 REGALTS

¢ RELLUTION ALVISEIES (RA.: /79 HOURS (1737 HOURS FOR AIRHORME A/D)
¢ TRAFFID AVISDNDn (TR 128 ARS (5.1 voms HR AIRBORNE A/0)
¢ RANE X ADVISORIES
502 TA's BELOW 2000 FRET. 202 ABOME 10.000 RET
- TRAFFIC FROM AL BEARINGS. B80T FROM FORWARD 180 DEGREES

- OF CSERVED TA's:  50% = AIR CARRIER
61 = G/&
32 = M7 JENTIFILD BY TYR

- NV (IsT apv.)

[

75% OF RAs = VSLs OR NEGATIVES, 24T = POSITIMVE
- OF OBSERVID RA's: AL HAD VISUAL CONFIRMATION. PROPER DIRECTIONS

=10

PIEDMINT OPERATIONS EVALLAT IO
ANALYSIS OF PHASE | OBGERVER DATA

9§ OBSERVERS STRESSED NEED TO £ IMINATE GROUND ADVISORIES

& PILOTS OFTEN EXFRESHT DCSIRE TO SEE TRAFFIC CALED BY AT WMICH
DID NOT APPEAR AS T4 (SPECIFIC COMMENTS WERE MADE WHEN MULTIPLE
SIGHTINGS OCCURREL AND IDEXTIFICATION OF TCAS TRAFFIC WAS DIFFICLT)

¢ TRAFFIC AVISORIES WERE GENERALLY REGARDED AS USEFUL WHEN NO
PRIOR ATC ADVISORY HAD BEEN 1SSUED

0 TRAFFIC ADVISORIES WERE GENERALLY FOUNT 10 BE ACCEPTARLF IN
ASTENTING AT ADVISORIES

@ RESOUUTION AL ISORIES WERE GENERALLY FOUND TO BE APPROFRIATE.
ALTHOUGH SEVERITY WAS OCCASICNALY QUESTIONED

P S———




1. Approact W Norfols (Do)
® ATC = ANMise: tratiac DC-7 at 3%00' advised to level at &X0
® TCAS a Traff.- 1 o'clesx, 5OC below, 5 atles
® TCAS » (Ut o € .} "Don't Lukcand'
@ fasSed Soe mile, WU below, behund
2. Departure frur Morfolk (Cluaming Ot

& ATC = Adised tratisc 1) o' clak, Y asies, L left gy, 4500°
@ ATC = Adviaed to level st &'
@ Visuai wontect
® TCAS = Trarfic 24 c'cltax, 2 miles, 200" above
® AT = Ragestsd visunl verlacstion
@ Passed coaltitude to left
3.  Departure fran Norfolk |Lewvel 8000
e ATC = Traffic 12 o'ciock, 3 miles, sautrboard, 85%0°
® TCAS = Traffic 1 o'tlock, 3 miles, SO0’ above, closing
® ATC = Advised "clear to ciimd when clear of traffic’
@ TCAS = (whiie climbing wath traffic in &ite) "Don't Clamb©
o Crossed alt:taxle, passec at .7 mule
4. Approach o Tampa (Descendung.
® ATC » Cleared to 4000°
® (No ATC traffic atvisoey)
® TCAS « Traffic & mules, the: Xmiles, 12 o'clock, 300° below
e TCAS = "Don 't Descerd’
e Visual acqusitian 12 o'ciock
¢ Fawsea shightly to lett &d besow

5. En Route to Chariutte (lavei at F1-260)
® (No ATC advicory)
e TCAS = Traffic 10 o'clock, beyond 4 miles, 1100’ atove, descerciing
® Visual acquusition
® TCAS = "Desceryl”, "Duri't Climb , "Descend’, "Don’t Climb"
® TCAS = Traff.c U asbove
e Fassad abcve ahexd .0 mle

#12

PLEDMONT OPERATIONA. EVALUATION

¢ AERT RATE NOT EXCESSIVE, CONTINJE WITH PRESENT RA AND TA TAU VALLES

0 DESENSITIZE CINHIBIT) ALL TRAFFIC ON GROUND BY USING RADIO ALTIMETER

§  NEED TO EXAMINE INCLUSION OF OTHER NEARBY TRAFFIC (WITHIN SPECIFIED
DISTANCE ) ON DISPLAY WHEN ACTIVATED BY THRLAT

0 NEED TO EXAMINE ADDITION OF CAPABILITY FOR FILOT TO ACTIVATE TRAFFIC
DISPLAY ON DEMAND




SELECTE TIS e INORWTION
FOR NEXTTCAS TESTS

H.
(W)
o

0 vl ‘
- STANGRL INFORMATION
0 AT (SHARED WX RADAR)
- TWREAT BASED ACTIVATION (15 SEC. TAU. PRECIRSOR TO RA). ACTIVATED BY:
o MO L TRAFFIC MEETING RANGE ANC ALTITUDE TAU CRITERIA
o NON-MUE [ TRAFFIC MEETING RANGE TAU CRITERIA (BELOW 14,000 FEET)
o FILOT SWITCH (15 SECOND TIMEOUT)
- INFORMATION PROVIDED
o THRELT TRAFEIC ACTIVATING DISPLAY (MODE C/NGh-MODE () = AMBER
o OTHER NOR-THREAT TRAFFIC WITHIN 2 NMI. + 1200 FEET = WHITE
o RE TRAFFIC (WITH IVS] ADVISORY) = RED
o VERTICA DIRECTION
0 AL
- RS TONE INITIALLY, REPEAT FOR EACH CORRECTIVE ADVISORY. REINFORCE WITH VDICE
Th: TONE INJTIALLY. TONE AGAIN IF NEW TA

#1L-A

Example Display #1
tincoln ladoratory Phase I

T iy — AT
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#16

PROPOSED PILOT PROCEDURAL PHILOSOPHY
FOR PIEDMONT PHASE 11

TYPE PROCEDURE
TRAFFIC ADVISORY 9 UNDERTAKE VISUAL SEARCH
COMM. W/ATC IF TRAFFIC STATUS IN QESTION
§  W/VISUAL ACQUISITION. NORMAL SEE-AND-AVDID APPLIES

RESOLUTION AVISRY
NEG/LIMIT RATE 0 MUST HAVE VISUAL ACQUISITION
@ IF IEVIATION FROM FLIGHT PATH INDICATED, MUST B ARLE
TO CLEAR AIRSPACE IN DIRECTION OF MOVEMENT
¢ CONTRQL VERTICAL RATE YO KEEP IVSI NEEDLE OUT OF
YELLOW ARC
¢ IF DEVIATION FROM ATC CLEARMCE. ADVISE ATC

CLIMB/TESCEND § MUST HAVE VISUAL ACQUISITION
O MUST BE ABLE TO CLEAR AIRSPACE IN DIRECTION COF
INDICATED MOVEMENT
0 MAELMER AIRCRAFT TO ACHIEVE 1500 FIM RATE. OR
CONTINUE PRESENT RATE IF GREATER THAN 1500 FPM
0 AVIE ATC

#17

NEXT OPERATIONAL EVALUATION EFFORTS

BOEING OPERATIONAL SIMULATION R

- INC PROCEDURES
- B737 TRAINING SIMULATOR

LINCOLN C-421, PHASE 11 e

- VMC PROCEDURES
- ENCOUNTERS AND TERMINAL AREAS

® FAP TECHNICAL CENTER B-727 Vs

- COMPLETE CONFIGURATION

- ENCOUNTERS & NAS TOUR

- TRAINING TECHNIQUES

- SHAKEDOWN FOR AIR CARRIER, PHASE 11

AIR CARRIER PHASE 11 (PIEDMONT) 63

- FULL CONFIGURATION
- PILOT USE

e —
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Stide
OVERVIEW

This presentation summaricses the rindings of FAA-sponscred evaluations of
the operational utility of TCAS II tratfic advisories. It begins by tracking
the history of previous test programs i-volving subject pilots and automated
traffic advisories. It then explains the operational context of the TCAS II
automated traffic advisory. Results of the testing done to date are
presented, Finally, some areas in which further testing and development will
be undertaken are outlined.

Slide 2

PRINCIPAL SUBJECT P1LOT TESTS OF AUTOMATED TRAFFIC ADVISORIES

Our current understanding of the utility of automated traffic advisories
owes much to the seven subject pirlot test programs listed here. These
programs have investigated the type of TA information required, methods of
information display, and the ability of pilots to use TA information. Ground
cockpit simulators have proven useful in their ability to simulate a wide
variety of encounter situaticns under highly controlled conditions. Flight
tests have proven valuable in understanding the very important effect of the
visual scene upon pilot response.

In addition to these tests, cther efforts not involving human subjects
have examined system alarm rates and resolution effectiveness. And studies of
historical mid-air collisions have helped define the types of missing
information that might have prevented these accidents.

It siiruld be cautioned that despite the impressive amount of test and
gimulation data, no answers are final until TCAS II proves itself in actual
operational use. All other test efforts are directed toward ensuring success
in the ultimate test of actual operation.

Slide 3
TCAS Il FLIGHT TEST OPERATIONS AT M.T1.T. LINCOLN LABORATORY

Many of the examples that will be used later in the presentation will be
drawn from the flight test experiences with TCAS II at Lincoln laboratory. In
these tests, a subject pilot flying a TCAS-equipped Cessna 421 experienced
planned intercepts with a Beech Bonanza. 1In addition to planned encounters,
TCAS experience was accumulated in unplanned encounters with non-test aircraft
(targete-of~opportunity) who happened by chance to pass close to the TCAS
aircraft.




Slide 4
TA INFORMATION CuUNTENT

As curreatly euvisioned, TCAS L1 will provide horizontal position,
altitude, ctimbing/descending starus, and TCAS urgency status for each
intruder that passes criteria for display.

slide 5
PPl DISPLAY FORMAT

Several display formats have been examined in testing. The most
promising uses a PP[ format on a color CRT.

Pilot utilization of TCAS II TA's is aided by the use of three urgency
levels associated with the colors red, amber, and white. The most urgent
level {s threat (red). This leve! corresponds to aircraft that have satisfied
the criteria for issuance of resolution advisories. The second most urgent
level is pre-threat (amber). This level signifies that a resolution advisory
will be generated within !5 seconds if clusing rates do not change. The
lowest urgency level is proaimity (white), This level corresponds to traffic
that is in close proximity, but is not urgent at the current tracked closing
rates.

Proxim.:y advisories difter from the other TA types in an important
respect: pilots are under no obiijation to monitor or use a proximity
advyisory unless they judge it to be of interest. Aural alerts must be sounded
when a pre-threat advisory anp:2ars. No aural alerts are required when a
proximity advisory appears.

Slide 6
USES OF TCAS LI TA'S

There are three principal uses of TCaS IT TA's. The first is to
stimulate the successful application of conventional separation assurance
techniques before the use of TCAS resolution advisories becomes necessary.
This helps guarantee the compatibility of TCAS with ATC. It also helps
guarantee that TCAS is employed only when the primary techniques (ATC
separation and “"see-—and-avoid") are incapable of resolving the situation.

The second major function is to allow correlation of TCAS resolution
advisories with visually sighted or ATC-calied traffic. The visual scene and
ATC-generated information often precvide the pilot with compelling and relevant
fuformation not available from TCAS. If this information is improperly
integrated iunto the pilot's picture of the encounter situation, then confusion
and inappropriate responses may resulr. TCAS TA's alert the pilot to
multi-aircraft situations and assist in pruper fdentification of intruders.




The third major fuuction is to allaw confirmation that successtul
resolution has been achieved. This function provides an important extra
margin of safety if TCAS is to be used against uncooperative intruders ot
intruders for which accurate altimetry cannot be guaraateed.

The following three slides provide examples which illustrate each of the
three principal uses.

Slide 7
STIMULATION OF CONVENTIONAL RESOLUTION

This slide depicts a subject pilot encounter which occurred on
19 August 1982. The intercept was planned to produce a turning encounter
while the TCAS aircraft was in a holding pattern. On the basis of his visual
sighting and the verification from TCAS that traffic was nearly co-altitude,
the pilot elected to delay his turn. He immediately called ATC and obtained
approval to extend the helding pattern for another mile. The use of TCAS
resolution advisories was avoided.

Slide 8
VISUAL/TA CORRELATION

In this encounter the visually sighted aircraft, which was the initial
object of crew concern was in reality not the most critical intruder. The
pllots used the resolution advisory to aveid the fast, long-range threat while
visually verifying adequate separation from the nearby slowly-closing
aircraft.

Slide 3
CONFIRMATION OF RESOLUTICN ADVISORIES

Because TCAS II traffic advisories indicate the position of the intruder
causing the resolution advisory, it Is possible for the pilot to visually
confirm that the resolution advisory is achieving safe separation. 1f the
resolution advisory is ineffective (e.g. due to bad altimetry), then the pilot
may select other means of maintaining separation,

The encounter depicted in the siide occurred between the Lincoln
Laboratory Cessna 421 and a target of opportunity during practice missions on
9 July !982. The Lincoln Laboratory test pilot chose to ignore the resolution
advisory and mz2intain visual separation from the intruder. Subsequent
analysis indicated that the cause of the altitude error was defective altitude
encoding by the futruder.

“
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Slide 10
ADDITIONAL FUHCTIONS OF TCAS Ta's

Saveral additicnal ‘unctions of TCAS TA's have been demonstrated during
testing. First, tne comparisen of TCAY TA's with visual sightings provides an
effective test of the operation of tne TCAS equipment. Secondly, TA's assist
the pilot in safely making a prompt return o course after RA's are cleared.
Thirdly, TA's assist the maintainance of visual contact (ATC provides no TA
updates after the pilot has acknowledged that the traffic is in sight).
Finally, TCAS advisories provide a temporary substitute for ATC traffic
advisories during ground radar outages or wheun flying outside radar coverage.

Slide 11
VISUAL ACQUISITION RANGES

In comparison to situations with no TA's, a.atouated traffic advisories
produce a dramatic increase in visual acquisition capability. This is because
they tell the pilot when and in what direction to look for traffic. The
resulting effect upon the range of visual acquisition can be seen in the
slide, The range at which visual acquisition occurred is shown as a function
of c¢losinyg rate for subjecrt pilot encounters in which the intruder approached
from the foward hemisphere. wo fundamental warning modes were tested. The
non-bearing mode provided the _ilot with a warning sound at a tau of 30
seconds, but did not indicate the bearing of approacn. The bearing mode
provided a TA with bearing at a tau valua of 40 seconds.

s5iide 12
vy 1SUAL SEPARATTION REGIMES

Four visual separation regimes car be 1dentified: 1) At extrewe range
visual acquisition is impossible. 2) At long rarge, visual acquisition is
possible, although it may not be obtained immediately. At this range, it is
not possible to evaluate the degree of hazard presented by an intruder nor to
ascertain the proper direction for an avoidance maneuver. At medium range, it
becomes easy to visually acquire and it is usually possible to perceive the
existing miss distance and thus infer the proper direction for an avoidance
maneuver. At close range, visual acquisition occurs almost instantly and the
threat evaluation is usually quite simple.

The time-before-coliision at which an intruder enters each regime is
dependent upon the closing rate. Tf the closing rate is such that an
avoidance maneuver must begin at long or extreme range, then visual separation
becomes highly questionable. One advantage of TCAS resolution advisories is
that they allow the pilot to begin the resolution process at these ranges.




Slide 13
TCAS-I1 AND ATC

In tests that simulated ATC interaction TA's from ATC tended to precede
TA's from TCAS by an average of approximately !5 seconds. TCAS TA's are not
generally received for aircraft et normal IFR spacings. However, alrcraft
passing at * 1000 foot altitude spacings did produce TCAS TA's. This traffic
is normally called by ATC in any event.

Pilots indicated that if they received a TA from traffic in an area which

they thought ATC was keeping clear for them, they would probably call ATC for
consultation.

ATC tended to treat aircraft responding toc TCAS RA's in a manner
analagous to contreolled aircratt maneuvering to avoid visually sighted
uncontrolled traffic. That is, the pilot was regarded as acting under his
emergency authority and ATC did not attempt to impose ATC control until
informed that the TCAS “emergency” had passed. Thus, during the period of
response, the TCAS aircraft, assumed complete responsibility for separation
from all traffic and TCAS TA enhancement of "see-and-avoid” was especially
important.

Slide 14
WORKLOADL IMPACT CF TA'S

One objective of recent tests has been to determine whether TCAS II TA's
can produce any undesirable increases in nilot workload. 1t appears that
insofar as TCAS advisories may direct pilot attention to traffic of which he
would otherwise be ignorant, they will produce an occasional increase in
workload. However, there have been nc indications that pilots consider this
to constitute an unacceptable or desirable workload element.

When the workload was far below capacity, pilots seemed to welcome any
and all TCAS TA's as potentially vecessary information which kept then "on
top” of the situation. As workload ilucreased, pilots tended to reduce their
use of the TA's to a minimum and to use them only when they could decrease
workload (e.g. by helping locate traffic that ATC had prompted them to search
for).

In most tests to date, the pilot at the controls was asked to both fly
the aircraft and use the TCAS display. This produced higher workloads than
would be required in an aircraft in which the responsibility for using the
TA's is shared among crew members. Study of shared workload procedures will
be included in upcoming test flights.




MANEUVERS BASED ON TA DISPLAY

TCAS [l is not designed t: siiow ucllision avoidance on the basis of TA
information alone. Pilot :aitiate. mdazuvers based solelyv apon a TA display
might be ineffective and, 1f vigorous, might invalidate subsequent resolution
by creating an accelerating eacounter. Hence, tests have carefully examined
any tendency of pilots to alter the flight paths of own aircraft in response
to the TA display.

Tn Cessna 421 flights, no tendency has been observed to initiate
horizontal avoidance on the basis of TA information alone. However, small
altitude changes (typically 200 fe=t) have been observed in response
to the display of approaching co-altitude intruders. These deviations appear
to be not so much in anticipation ot RA's as due to pilot uneasiness at having
less than 260 or 300 feet indicarted alticude separation from an approaching
intruder. Thus far, these altituds deviations have beea uniformly beneficial,
providing additional altitude separdcion at the time of RA issuance. Rates
have been quite modest and have never been yreat encugh to cause TCAS tracking
protlens,

In summary, TA-induced mancuevers have ol been found to be 4 problem,
But all such maneuvers should continue te be evaluated in subsequent
operational testing.
Slide 16
FUTURL TA TESTING
Additioral! work is planned re -omplete the operational evaluation of TCAS
® C(Crew procedures will be studied in grouad simulators and in actual

flight.

® Subject pilot flight tests in jet traasport cockpits will be
undertaken at the FAA Technical Center.

® Any necessary refinements to the TA logic or to the display design
will be incorporated into the design.

® The results of the early oparational use of the system by Piedmont
Airlines will be carefully scrutinized to verifv system performance in
actual use.

.
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Utility cf Traffic Advisory Information

J.W. Andrews, M.I.T. Lincoin Laboratory

Topics To Be Discussed

+ Automated TA's - Development History

* Role of TA's in TCAS I

+« Test Results

« Future Work

SLIDE 2
Principal Subject Pilot Tests
of Automated Traffic Advisories
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| SLIDE 3
| TCAS I Flight Test Operations |
] At M.L.T. Lincoln Laboratory '
i "
INTERCEPTOR TCAS t
BEECH BONANZA CESSNA 421
! CREW . 2 Test Pilots CREW : 1 Subject Pilot
i Y Test Pilot
L 1 Observer
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( SLIDE 6

Uses Of TCAS I TA's

« Stimulate Use of Conventional Separation Technigues

e Allow Correlation vi 1CAS Acvisuries With Visualiy
Sighted or ATC-Cailed Trafiic

o Allow Confirmation of Resctuticn Acdvisines
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Stimulation of Conventional Resolution

EXAMPLE . -- Path Actually Foliowed
Encounter in
Holding Pattern -~ ~ Path Originally

, Intended
19 Aug_u_st_1982 'NTRUDEB o

S

t TCAS

v

On basis of visudal and TA pilot deiayed turn.
ATC was notitiead and approved.

EXAMPLE @ Encounter on 2 Feb 1982

» Slowly closing aircraft visually acquired (without TA),
was object of crew concern.

« TCAS TA directed ciew attention to fast-closing intruder

e Crew realized first aircratt was non-beac: . (since it was

k well within proximity range with no TCAS TA)j

___,——//
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Confirmation of Resolution Advisories

EXAMPLE : Encounter with target of opportunity, 9 July 1982

Maintain Horizontal Separation
100 Ft Below

SIGHTED : ’

200 Ft. Above

!

| '
|
TCAS RA : "Climb" |
i
e L L e
i
\:;__/'_“—\; PILOT DECISION !
Maintain Altitude '
REPORTED : |
|
!
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Additional Functions of TCAS [I Traffic Advisories

+ Provide means for monitoring performance of equipment

|

|

1

|

i

|

t

|

_ |
« Assist recovery aiter resolution i
|

|

» Assist in maintaining visual contact with tratfic

» Substitute for ATC adv.sories where no ground radar
coverage
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Visua! Acquisition Ranges
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VISUAL SEPARATION REGIMES

EXTREME RANGE VISUAL THREAT
ACQUISITION EVALUATION

IMPOSSIBLE IMPOSSIBLE
POSSIBLE IMPOSSIBLE
EASY POSSIBLE




TCAS Il And ATC

ALTITUDE - SEPARATED
IFR

( SLIDE 13 \|
i
|
l
|
!
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HORIZONTALLY -

SEPARATED IFR
(—___'—"b T TR

LONG RANGE IN SIGHT"®

NO TCAS TA TRAFFIC CALLED |
BY ATC I 1cas Ta TCAS | 1
| W— | NO TCAS UPDATES ‘ 1
e o e e s e . . ——— . ———— o — — —
NO TCAS TA ) ‘

TCAS TA REGION
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Workload Impact of TCAS TA's |

WORKLOAD FACTORS

TA TYPE CREW RESPONSE AURAL ALERT ‘
PROXIMITY OPTIONAL NO ‘
PRE~-THREAT REQUIRED YES

THREAT REQUIRED YES

TEST EXPERIENCE

>

¢ DEPENDING ON SITUATION, TCAS 1 TA'S MAY INCREASE OR
DECREASE WORKLOAD

e SUBJECTS REPORT SLIGHT NET INCREASE IN WORKLOAD WITH
TA'S, BUT FORESEE NO UNACCEPTABLE WORKLOAD IMPACTS
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Maneuvers Based On TA Display

RELATIVE MOTION IS "NOISY*®

o MEASURED TEST CONCERN :
s~ POSITIONS

+ Pilots might attempt ineffective
MOTION avoidance maneuvers based upon
,NFERgED TA data alone.

FROM 4 DATA
POINTS

RESULTS:

* Pilots display no tendency to
maneuver horizontally on basis
of TA's.

¢ Small altitude deviations (~200 Ft.)
were observed. Thus far, all such
deviations were beneficial. ;

_ . ;
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MOTION OWNSHIP

Future TA Testing

e Crew Procedures

Jet Transport Test Flights (FAATC)

TA Logic Refinements
~ Criteria for issuance
- Parameters

¢ Analysis of Early Operational Results (Piedmont)
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1. INTRODUCTION

On June 23, 1981, Pederal Aviation Administrator J. Lynn Helms announced the
decision to proceed with the implementation of an sircraft separation assurance
concept called the Traffic Alert and Collision Avoidance System (TCAS). The
concept is based on agency and international development efforts in the areas
of beacon-based collision avoidance systems and air-to-air/air-to-ground
discrete address communications techniques utilizing Mode S message formats.

The objective of the TCAS approach is to provide a range of separation assur-
ance equipment alternatives that can provide collision protection for the full
spectrum of airspace users ranging from small general aviation aircraft to
large transport aircraft. TCAS equipments are capable of operating without
dependence on ground equipments and will have elements in production by mid-
1984.

2. CAPABILITY LEVELS

Various levels of separation assurance will be available from TCAS equipments.
The least expensive options, intended for installation in small general avia-
tion aircraft, will simply provide an alert to the pilot indicating that an
intruding aircraft is in the near vicinity. No indication of the position
(range, altitude, or bearing) of the intruding aircraft would necessarily be
given unless the intruder is equipped with TCAS II in which case the crosslink
traffic advisory would describe the position of TCAS II as seen from TCAS I.

A more sophisticated TCAS unit would be capable of not only providing an alert
that an aircraft is nearby but would also indicate the relative position of

the intruder by displaying a traffic advisory on an appropriate display in the
cockpit. The top-of-the-line TCAS equipments, intended for installation in
trangsport and high performance general aviation aircraft, would not only be
capable of providing alerts and traffic advisories but would alsoc compute reso-
lution advisories to indicate which direction the TCAS aircraft should maneuver
in order to avoid a collision. TCAS equipment will generate resolution adviso-
ries in the vertical plane (climb/descend) and may, depending upon the results
of agency development efforts, generate resolution advisories in the horizontal
plane (turn right/turn left).

TCAS equipment will generate alerts, traffic advisories and resolution advi~-
sories for other TCAS aircraft and for intruders equipped either with today's
conventional (ATCRBS) transponder or with a Mode § transponder. In order for
resolution advisories to be generated, the intruder must report his barometric
altitude through his transponder.

3. 7TCAS II

TCAS II is a high performance equipment intended for installation in air trans-
port and sophisticated general aviation aircraft. Periodic interrogations
transaitted from the TCAS II avionics are responded to by transponders onboard
other aircraft thereby permitting TCAS II to determine the positior e#1d direc-
tions of movement of these aircraft. The position information for or: :imate
aircraft can be displayed to the pilot of the TCAS II aircraft in the .om of
traffic advisories, and a resolution advisory can be generated when the
position and direction of movement of an intruding aircraft indicate that a
collision could occur.
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If intruding aircraft are not reporting altitude through their transpondasrs,
it is not possible to determine reliably which aircraft are potential colli-
sion threats and which are not. Therefore, for intruders not equipped with

altitude reporting transponders, TCAS II may gensrate traffic advisories but
will not generate resolution advisories.

If the intruding aircraft is equipped with TCAS I avionics, and TCAS II deter-
mines that a collision hazard exists, TCAS II will transmit advisory informa-
tion to the intruder vwhich includes the position of TCAS II with respect to
TCAS 1. PFor example, the advisory might convey the following information,
"Alert! You are in conflict with a TCAS II aircraft, range 2 nmi, 200 feet
below you in your 3 o'clock position.”

If the intruding aircraft is squipped with TCAS II, air-to-air communications
will ensure that resolution advisories selected in the two aircraft are compat-
ible. ror example, one aircraft will elect to climb while the other descends.

A TCAS II aircraft is equipped with the transmitter/receiver used for inter-
rogating nearby aircraft together with the associated computer and display
equipments required for threat detection, threat resolution and advisory
display. In addition, the aircraft carries an altitude reporting Mode 8
transponder that provides air-to-air communications with TCAS I and TCAS II
aircraft. It is anticipated that high performance avionics of this type would

‘cost $45,000 to $50,000 as an integrated unit.

4. TCAS I

TCAS I is a relatively low-performance equipment that permits a small general
aviation aircraft to be seen by nearby TCAS II aircraft and to receive limited
alert and advisory information about aircraft in its vicinity.

The first alert function inherent in TCAS I equipment is the ability to receive
advisory information from TCAS II aircraft as described above. The second
alert function is implemented by listening for aircraft transponder transmis-
sions (replies). The replies detected may have been elicited by ground station
interrogations (passive TCAS I) or may have resulted from low power interroga-
tions from TCAS I {active TCAS I).

As an option, TCAS I could provide an indication of the bearing of the trans-
ponder wvhose transmission was heard. PFor example, instead of generating an
alara that says, in effect, "Alert, you have traffic 2 nmi," the alarm says,
"Alert, you have traffic 2 nmi at 2 o'clock.”

A TCAS I aircraft is equipped with an altitude reporting Mode S§ transponder
that receives the advisory information from TCAS II aircraft and with a
receiver for detecting transponder transmissions from proximate aircraft.
Display equipments in the TCAS I aircraft would reflect various levels of
sophistication appropriate to user needs. Integrated TCAS I avionics units
would have costs ranging ipwards from $2500.

Table 1 sumnariszes separation assurance functions available in TCAS aircraft
as a function of the equipments installed on intruder aircraft. RMunctions
shown in parentheses are options. The attachment provides formal descriptions
of TCAS I and TCAS I1I.
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Attachment

TCAS IIX

MINTMUN RBQUIREMENTS

l. Provide collision avoidance protection, independently from the ground ATC
system, using vertical maneuvers.

2. Ability to transmit to others (TCAS I and TCAS II equipped aircraft)
traffic advisory information (range, relative azimuth, relative bearing where
available, differential altitude).

3. Have an integral scanning antenna, or equivalent, with direction-finding
accuracy sufficient to present an o'clock display within the TCAS II (own)
aircraft, and sufficient accuracy to transmit north-reference relative azimuth
advisory information to TCAS I equipped aircraft to present an o'clock display.

The own aircraft display must be altitude-filtered for Mode C-equipped
targets, and must display threatening aircraft within designated display
range, on a display of the user's choice.

Antenna azimuth receive capability improvements are being developed, in order
to achieve unwanted alert reduction and the capability for horizontal
maneuvers.

4. TCAS II must provide alert and traffic advisory information to aircraft
equipped only with TCAS I, while in the case of two aircraft equipped with
TCAS II, coordinated maneuvers will be provided.

5. Ability to operate, with acceptable duty cycle impact on the ground
system, in a projected aircraft density environment of 0.30 aircraft per
square nautical mile. It is anticipated that TCAS II must be able to operate
in an environment of 0.4 aircraft per square nautical mile by the year 2000.

6. The false alarm rate and the missed alarm rate must be acceptable to pilots
in everyday operations. 1In addition, FAA standardized threat detection and
resolution logic, or its equivalent, must be used.

7. 1like TCAS I, it will have an integral transponder capable of operating on
Modes A, C, and 8 (with surveillance and Comm A, B, and C format capabilities
to permit working compatibly with the current and evolving ATC system using
Node 8 signal formats).

8. A sensitivity adjustment must be provided, independent of the ground ATC
system, and must automatically reset to an appropriate level {4 the event of
power interruption.

Mote: The sy te . design is based on the requirement that TCAS operation must
not cause deg rac tion of ground system performance (round reliability) by more
than 2 percent. This will require an adaptive interrogation scheme or
equivalent to reduce interfersnce with the ground systeam.
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MININUM REQUIREMENTS

1. -An integral transponder capable of operating on Modes, A, C, and 8 (with
surveillance and Comm A, B, and C format capabilities to permit working

compatibly with the current and evolving ground ATC system using Mode S signal’

formats).
2. Periodic Mode S squitter transmissions on 1090 MH=z.

3. Ability to receive and display traffic advisory information (range,
relative azimuth vwhich can be converted to relative bearing, relative bearing
if available, differential altitude) from TCAS II equipped aircraft.

4. Ability to receive sensitivity-dependent, non-altitude-filtered proximity
information from ATCRBS transponders within ATCRBS or SSR Mode 8 ground
station coverage.

S. Ability to receive sensitivity-dependent, altitude-filtered proximity
information from Mode S8 transmissions gene-ated by other TCAS I and Mode 8
transponders in all airspace.

6. Manual sensitivity adjustment must be provided, independent of the ground
ATC system, and must automatically reset to an appropriate level in the event
of power interruption.

ADDITIONAL CAPABILITIES

1. Ability to altitude sort sensitivity-dependent inforrition on ATCRBS
transponder-equipped aircraft within ATCRBS or Mode S ground station coverage.

2. A direction finding antenna to provide simple clock position of threats
(accuracy on the orxder of +8 degrees).
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INTRODUCTION

On November 4, 1981, the first of two developmental models of a Traffic Alert
and Collision Avoidance System (ICAS) was approved by the FAA Southern Region
for operation aboard Piedmont Airlines Boeing 727 aircraft during normai
passenger carrying operations. This approval was in the form of a
Supplemental Type Certificate issued with the restriction that the system was
to be used for collection of data on the operational performance of the TCAS

and not to be used by the flight cr.ws.

Over the tollowing five months data was c¢.-.lected by ARINC Research Corp., on
the operational performance of the TCAS during 928 hours of flight time. This
data was generated from two sources, (1) A data reccrding system aboard the
test aircraft that recorded quantitative data generated by the TCAS each time
the system detected a potential conflict and activated the system displays,
and (2) Qualitative comments on the system performance and utility of TCAS,

prepared by cockpit observers who were skilled in jet transport operations.

TEST DESCRIPTIONS

The system tested was developed by Dalmo Victor Operations of Bell Aerospace
Textron under contract to the Federal Aviation Administration (FAA). It
consisted of an RF/Processor unit installed in the aircraft electronics
compartment,

two direction finding antennas mounted on the top and bottom of the aircraft,
a control/display unit located in the flight observer area of the cockpit
(outside the view of the flight crew), and an instantaneous vertical speed
indicator (modified to display aircraft maneuver advisories) mounted ator the
control/display unit In addition, a time-of-day clock and digital tape
recorder were installed in the electronics compartment of the aircraft. These
two items were used as test instrumentation and would not be part of an

operational system.
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The Dalmo Victor system implemented the Lincoln Laboratory surveillance design
and the collision avoidance logic developed for the FAA by MITRE Corporation.
The logic examines the range, range rate, altitude, and altitude closure rate
to define a conflict situation. When a conflict is determined the logic
develops a vertical escape maneuver to resolve the conflict. The system has

no capability for computing horizontal escape maneuvers.

The aircraft flew a normal route and was indistinguishable from any other
Piedmont B-727 to air traffic controllers who handled the flights. The
aircraft was not locked into any specific routing and at some time flew every

segment of the Piedmont B-727 route structure.

While the first flight with TCAS aboard was made on November 4, 1981, the
majority of the data was recorded during January, February, and March, 1982.

Cockpit observers were aboard approximately one-third of the data flights.

RESULTS

During the 982 hours logged, 329 traffic advisories were experienced and

32 resolution advisories occurred. These events occurred during normal
airline operations and did not represent ATC system errors. Forty-five
percent (148) of the traffic advisories and twenty-two percent (7) of the
resolution advisories were generated by aircraft on the ground at the time of
the event. A technique to suppress these advisories against on-ground
aircraft has been developed and will be implemented for the Phase Il

evaluation.

Traffic advisories (with no subsequent resolution advisories) om airborne
aircraft averaged one each 5.13 flight hours. The majority of the observed
traffic advisories on airborne aircraft (29 of 50) were caused by other air
carrier aircraft. In 16 cases (322) the observers were unable to determine
the type of the other aircraft. Only 3 (62) of the 50 observed traffic
advisories were identified as general aviation type aircraft. The remaining

two incidents were caused by a helicopter and a commuter aircraft.




Resolution advisories on airborne aircraft averaged one each 37.15 hours. The
majority of the observed resolution advisories against airborne aircraft (4 of
8) were caused by general aviation aircraft. The majority of these conflicts
occurred near an airport with both aircraft operating in Visual Meterological
Conditions (VMC), with visual contact, and under control of the appropriate

ATC facility.

Most traffic advisories and resolution advisories against airborne aircraft
occurred below 10,000 feet Mean Sea Level (MSL). In 62% of the incidents, the
other aircraft was more than 500 feet and less than 1500 feet above or below
the test aircraft at the time the advisory was started. Only 21% of the
advisories were started with less than 500 feet vertical separation between
the two aircraft. Most of the advisories (81%) were caused by aircraft
forward (+ 90° relative bearing) of the TCAS aircraft at the time of

advisory. There were no recorded cases when an advisory was caused by another

aircraft overtaking the test aircraft.

No Vertical Speed Minimum (VSM) were recorded as the first advisory selected
by the TCAS. Seventy-five percent (75%) of the initial resolution advisories
against airborne aircraft were Vertical Speed Limits (VSL) or negative
advisories. Only 6 of the 25 resolution advisories generated against airborne

aircraft included positive advisories.

Of more interest is the frequency of corrective advisories, that is, those
requiring an alteration in flight path. Eight of the resolution advisories
would definitely have required deviation from the recorded flight path, while
7 of the resolution advisories might have required some change in flight path,
depending on the inteations of the pilot at the time of lhe advisory.

For example, if a "DO NOT CLIMB" advisory was displayed at a time when the
climb rate was decreasing in response to pilot initiation of a level-off,
there would be no requirement for the TCAS aircraft to deviate from its
planned flight path. Ten of the resolution advisories were clearly not
corrective i e., they did not require deviation from the current flight
path. Based on the data recorded during this evaluation, an average air

carrier flight might expect to see one corrective TCAS advisory per month.

el




The average resolution advisory sequence observed during the evaluation
congisted of approximately 14 seconds of precursor traffic advisory,

10 seconds of resolution advisory, and 26 seconds of post resolution advisory

traffic information. These are statistical averages and vary considerably

form incident to incident. They are based on data collected with no response

by the TCAS aircraft and will change when the aircraft initiates response
action to resolution advisories.

The cockpit observers felt that improvements to the desensitization gcheme
were required to eliminate advisories from aircraft that were on the ground.
With this exception, they felt that the TCAS performed its task with no other

unacceptable impact on flight operations. The cockpit observers were not

unanimous in their endorsement of traffic advisory information. The majority

of the observers felt that traffic position information provided desirable
information to the flight crew that would be useful in evaluating the conflict

situation and moderating the response maneuver. The comments of the observers

indicate that advisory rates against airborme aircraft appear to be well
within the acceptable rauge.
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SUBJ: Summary of Dalmo Victor and Lincoln Laboratory
PW1 Bearing Performance

This paper summarizes the results of bearing accuracy and tracking tests
performed using the Lincoln Laboratory TCAS Experimental Unit (TEU) and the
Dalmo Victor omni directional TCAS. The TEU data which is presented was
obtained from Lincoln Laboratory flight tests in the Boston area. The TEU
bearing tests were also conducted at the FAA Technical Center and are being

analyzed and these results will be available in December 1982.

Dalmo Victor omni directional TCAS bearing data was obtained from anechoic
chamber tests at Dalmo Victor; static tests at FAA Technical Center, and
flight tests at FAA Technical Center. Additionally, a bearing track from a
Piedmont flight during which a resolution advisory occurred is also shown.

LINCOLN LABORATORY TEU BEARING PERFORMANCE

There are two distinct types of errors that affect the accuracy of the
airborne direction finding system: systematic or repeatable errors and random
or unpredictable errors. Three types of systematic errors have been
identified. Bias errors occur due to inaccurate initial calibration or to
differential variations in the insertion phase of phase-matched transmission
lines or other components., With sufficient care, these errors can be kept
insignificant relative to the other systematic errors. A second source of
systematic error is the inherent ripple in the phase transfer function
resulting from the use of discrete antenna elements. This error component
increases due to geometrical distoration as the elevation angle of the reply
emmitter is increase. For small elevation angles, the ripple is roughly
sinusoidal with a peak deviation of about 10°,
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The most significant source of systematic error is scatterirg from the surface
of the TCAS aircraft. The magnitude of the angle error due to airframe
scattering can be estimated from antenna pattern measurements. Scattering
effects on small aircraft will result in peak bearing errors as large as 20°
in the forward direction and 40° in the aft direction. The peak errors for
angle-of-arrival antennas installed on larger air carrier aircraft should be

less than half these values.

Random errors arise from receiver noise, fruit, and multipath. The maximum
visual range for a target is about 3 or 4 miles. A reply from an aircraft at
this range results in a nominal signal to thermal noise ratio of about 40 dB.
The resulting contribution to the phase error for a single pulse is about

1°. This is further reduced by averaging and tracking. In low-density
airspace the effects of fruit are about the same as receiver noise. Multipath
signals are the most significant sources of random errors. A multipath echo
received just below MIL will cause 6° RMS errors in the angle estimates for
single pulses. For ATCRBS replies most multipath echoes received above MIL
will be detected by the garble sensing algorichms in the ATCRBS reply
processor and rejected. Another significant source of random error in the
experimental system is the automatic diversity antenna'switching in the TCAS
unit. This converts the bias differences between two antennas to apparent
abrupt measurement errors. This error source does not exist if a single AOA

antenna is mounted on top of the aircraft.

The flight test results obtained with the Lincoln Laboratory TEU are
sumnarized in Table 1. The data shows that the average bearing error was

about 10°: PWI bearing tracks for an ATCRBS and Mode S target, are shown in
Figures 1 and 2, respectively.

DALMO VICTOR OMNI TCAS BEARING PERFORMANCE

The Dalmo Victor omni directional TCAS unit has been extensively tested at
Dalmo Victor, the FAA Technical Center, and on two Piedmont B-727 aircraft
during revenue flights. A comparison of the data from each source has been
performed and provides an indication of the effect that aircraft structure has
on bearing accuracy and tracking performance.




At the FAA Technical Center static ground tests were performed with the
antenna mounted on the aircraft, followed by flight tests with target
aircraft. During the flight, the relative in-flight geometry was varied in
order to provide an evaluation of composite performance at different azimuth
and elevation angles.

ANECHOIC CHAMBER TESTS

The data taken during anechoic chamber tests at Dalmo Victor are shown

in Figures 3, 4, and 5 for elevation angeles of 09, 15°, and -159,
respectively. The RMS bearing error, as a function of azimuth angle, is
presented in Table 2. The anechoic chamber data shows a large error lobe with
an RMS of 13.41° centered at about 320° (i.e., 40° left of the forward
position). When the elevation angle of the target is below the ground plane,
the overall bearing error increases significantly. In the forward quadrant
(i.e., 22.50° on either side of the nose) the RMS error increases from

6.26° at zero degrees elevations to 21.3° at ~15° elevation. The RMS

anechoic chamber data for the 0° elevation case is also shown in Figure 6.

STATIC TEST DATA

Static test data was obtained at the FAA Technical Center using a mobile van
with & transponder mounted on a mast. The van was placed at several azimuth
points and bearing measurements were made with either a ATCRBS or Mode S
transponder as a target. The results of the static test are shown in Table 2
and Figure 6. A comparison of the anechoic chamber data and the ATCRBS static
test data revesls that the errors are about the same magnitude and follow the
same trend. Another interesting observation is that there is no detectable
correlation between the bearing error and the azimuth position of the aircraft

wind and tail structures.

FLIGHT TEST DATA

Flight tests were conducted with flight profiles which were selected to
determine the effect of azimuth and elevation angles on bearing accuracy. The
true relative position of the TCAS and target aircraft was obtained using the
FAA Technical Center Nike tracking network.
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The flight sequence which provides data of particular interest was the azimuth
orbit flights. The RMS error for this flight profile was computed separately
for the top and bottom antennas and is shown in Table 2. The elevation angle
which the target was at during the test ii slso listed and shows that negative
elevation angles result in larger errors due to the aircraft structure. The
RMS error for the top antenna is also plotted in Figure 6 and indicates that
the bearing errors during the flight test are larger than those seen during
both anechoic chamber and static tests.

An RMS error of 14.2° occurs in the forward region, which is larger than
expected. It has been concluded that the negative elevation angle (i.e.,
-50°) of the target when it was in the forward sector is responsible for the
large error. This conclusion is further substantiated by comparing the
anechoic chamber errors at elevation angles below the ground plane (i.e.,
21.39 RMS). The flight data also shows that in the tail sector the RMS
error also increased (17.6° RMS). Since the target was at +3° in the tail
sector the aircraft structure caused the RMS error of the bottom antenna to
also be larger (i.e., 19.39).

PIEDMONT BEARING TRACK

The bearing track of an intruder which was observed during a Piedmont Airlines
flight with omni TCAS is shown in Figure 7. The bearing track for this
encounter is similar to those obtained during flight tests with the Lincoln

Laboratory unit (i.e., Figure 1).
CONCLUSION

The objective of the bearing tests which were performed with the Lincoln
Laboratory and Dalwo Victor TCAS units was to determine if the bearing
accuracy and beari.ng track performance was sufficient to support a PWI
function. The overall accuracy obtained using all the FAA Technical Center
flight test data (i.e., all profiles) shows that the RMS error is 15° or
less. Since o'clock accuracy has been the guidelines for PWI performance of
both the Dalmo Victor and Lincoln Laboratory TCAS units support the PWI
functions.

e,
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