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ABSTRACT

A uniaxial, uncoupled constitutive model for predicting the

response of thermal and rate dependent elastic-plastic material be-

havior is presented. The model is based on an incremental classical

plasticity theory extended to account for thermal, creep, and tran-

sient temperature conditions. Revisions to the combined hardening

rule of the theory allow for better representation of cyclic phenomenon

including the high rate of strain hardening upon cyclic reyield and

cyclic saturation. Also, an alternative approach is taken to model

the q% e dependent inelastic deformation which involves hysteresis

W ad*tt eI relaxation tests at various temperatures. Evaluation

I fr e mo'dlY" rformed by comparison with experiments involving various

Wthermal a*b cal load histories on 5086 aluminum alloy, 304 stain-

" lesIhteel a stelloy X.
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CHAPTER I

j INTRODUCTION

Modern computational methods for the stress analysis of structures

are well established. For behavior that is linear and even geometric-

ally nonlinear, the finite element method has proven to be a very

capable tool for the structural engineer. However, nonlinear material

analysis is much more difficult and not yet as fully developed as proven

by the large amount of research done in this area in recent years. Of

particular interest to this research, the solution of thermal and rate

dependent elastic-plastic material behavior is quite difficult. Appli-

cations of this technology are needed in components such as nuclear

Ireactor pressure vessels and gas turbine blades.
Historically, the study of plasticity of metals began in 1864 with

the publishing by Tresca [1] of a preliminary account of experiments

on punching and extrusion. This led him to state that a metal yielded

plastically when the maximum shear stress attained a critical value.

Application of Tresca's yield criterion was investigated by Saint-Venant

1 [2] to determine stresses in cyclinders and tubes. He also recognized

that there was not a one-to-one relation between stress and total plas-

tic strain. Levy in 1871 proposed multiaxial relations between stress

and plastic strain [2].

I Advancement to a more satisfactory yield criterion was constructed

on the basis of purely mathematical considerations by von Mises (3]

I

This thesis follows the style and format of the Journal of Applied
Mechanics.
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in 1913. Further work was done in the 1920's by Prandtl [4], Nadai,

Lode, and von Karman [2]. It was in the early 1930's that two impor-

tant generalizations of the available theory were made. The first was

made by Reuss in 1930 [5j who allowed for the elastic component of

strain. The second was made by Schmidt (1932) and Odquist (1933) 121

who showed how to incorporate work hardening into the framework of the

Levy-Mises equitions. Thus by 1932 an elastic-plastic theory had been

constructed to model these properties of an isotropic metal at room

temperature [2].

Work in this area in the 1940's and beyond was done by several

prominent researchers like Hill [2], Drucker [6], Prager [7], and

Ziegler [8]. Recently, the basic trend has been to extend the rate

independent theories to include rate effects by adding on a creep term.

This leads to an uncoupled or partioned theory, and many are now in

use today in finite element structural analysis codes. Most recently

with the recognition that the rate independent and rate dependent in-

elastic deformations are not autonomous phenomenon, a number of "uni-

fied" constitutive models have been developed and are still undergoing

active development [9]. Present day efforts include the extension of

classical plasticity to predict rate dependent behavior and the modifi-

cation of linear viscoelasticity to model nonlinear material response

[10]. Many theories are available but none have shown clear superiority

over the others in modelling material behavior over wide ranges of

temperature and load.

-zThe purpose of this research is to extend the classical incremen-

tal theory of plasticity to develop and evaluate the uniaxial



constitutive relations necessary to model the nonlinear behavior of

crystalline materials experiencing thermoelastic-plastic-creep. Among

the requirements for a sound constitutive theory for the media mentton-

ed above are that it incorporate the ability to model transient tem-

perature response; cyclic behavior including cyclic saturation, the

change in strain hardening upon stress reversal, and the Bauschinger

effect; and rate dependence.

In fulfillment of these objectives, this thesis will proceed in

the following manner. First, a brief literature review of the avail-

able theories is presented along with a discussion of the details of

the constitutive model used in this research. Next, the development

of the model is accomplished by derivation of the uniaxial theory in-

cluding experimental data requirements and computational considerations.

Several theoretical examples are presented along with comparison to

experiments on several different metals at elevated temperature.
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CHAPTER II

BACKGROUND

Present Status of Constitutive Modelling

To characterize the structural response of any general three-di-

mensional body, one must satisfy mechanics (conservation of mass and

momentum, and kinematics), thermodynamics, and constitution. Since

mechanics and thermodynamics are well established for most continua,

it becomes the physical characteristics or constitution of a body that

determines whether one can successfully analyze its structural re-

sponse. Furthermore, because of the widely varying material proper-

ties and environments that structural media are subjected to, consti-

tutive modelling is usually restricted to specific types of media. An

all encompassing model that works equally well for all materials is

simply not feasible. One such category of material response, and the

one that this research will deal specifically with, is the elastic-

plastic-rate-dependent crystalline material at elevated temperature.

The major types of constitutive laws available to model the ma-

terial behavior discussed above can be grouped into three categories,

microphenomenological, nonlinear viscoelastic, and classical plastici-

ty. Also, there is an existing subdivision within the categories

labeled unified and uncoupled theories, where the two differ in their

approach to the treatment of rate independent and rate dependent in-

elastic deformation. The unified approach separates the total strain

as

E I T
C =E + E + E,
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where - represents the total strain and superscripts E, I, and T repre-

sent the elastic, inelastic, and thermal compnnents respectively. Al-

ternatively, the uncoupled theories partition the inelastic strain into

plastic and creep components. This can be expressed as

E P C T (2)

where superscripts P and C represent the rate independent "plasticity"

and rate dependent "creep" strain terms respectively. Researchers like

Walker [9] and Krieg [l1 question the partitioning as it has no under-

lying physical basis and does not account for creep and plasticity in-

teraction.

The uncoupling of inelastic behavior into rate independent and

rate dependent components is unsatisfactory to the material scientist

because it is not microphysically justified [111. Although many recent

unified theories have been proposed, they still are not yet proven to

be more successful overall than the uncoupled theories.

For example, Walker's theory [9] (considered one of the better

unified models) reproduces cyclic stress-strain behavior at elevated

temperatures very well. Unfortunately, the theoretical hysteresis loops

at smaller strain rates or lower temperatures are too square in compari-

son with the actual experimental loops. Thus, Walker's theory does

not characterize adequately the classical plasticity that is occurring

in this load-temperature range. Walker also proposes an extension to

include temperature dependence, but no attempt has been made to model

transient temperature response [10]. His theory is restricted in its
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use to an elevated temperature environment. The author does not want

to leave the impression that Walker's theory is an inferior one as it

is not. This discussion is simply to point out that the uncoupled

theories are not necessarily inferior to the unified ones.

As discussed below, present theories attempt to model these physi-

cal mechanisms in a variety of ways.

Microphenomenological theories. The mechanisms for micropheno-

menological theories are discussed in detail by Allen 1121. These

theories represent an element of material called a polycrystal as be-

ing composed of a large number of randomly oriented monocrystals.

Statistical averages of the properties of each monocrystal and their

interactions determine the behavior of the polycrystal [13]. These

crystalline materials form lattice structures that contain many im-

perfections called dislocations which vary in density and location de-

pending upon the processing used in manufacturing the material. Plas-

tic deformation occurs by slip on certain crystallographic planes and

is explained in terms of dislocation theory of plastic deformation.

For example, dislocation interaction explains how strain hardening can

occur in any crystal [14].

One example of a microphysically based constitutive law is an

elastic-viscoplastic theory based on two internal state variables by

Bodner, et al. [15]. The authors state the constitutive equations

ability to represent the principal features of cyclic loading behavior

including softening upon stress reversal, cyclic hardening or soften-

ing, cyclic saturation, cyclic relaxation, and cyclic creep. One

limitation of the formulation though is that the computed stress-strain
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curves are independent of the strain amplitude and therefore too "flat"

or "square".

Another example is in the paper by Miller [16] on modelling of

cyclic plasticity with unified constitutive equations. le also recog-

nizes the shortcoming of many theories in predicting hysteresis loops

which are "oversquare" in comparison to observed experimental behavior.

Improvement is accomplished by making the kinematic work-hardening

coefficient depend on the back stress and the sign of the nonelastic

strain term. Results compare favorably with that observed in 2024-T4

aluminum alloy. Miller states his approach appears consistent with an

existing physical explanation in terms of annihilation of previously-

generated dislocation loops upon reversals in the direction of dislo-

cation motion.

A theory that is similar in format to Miller's is by Krieg,

Swearengen, and Rohde [111. The model uses two internal state variables

to reflect current microstructure and is based upon models for dislo-

cation process in pure metals. It is an extension of an equation of

state theory originally attributed to Kocks [171 where the inelastic

flow rule is taken to be a power function incorporating a kinematic

and isotropic internal variable. They assume that all the net mechani-

cal effect of the complex dislocation processes can be contained by

one or two readily measurable macroscopic variables. The theory can-

not accurately model cyclic hardening or softening behavior and the

strain hardening behavior is necessarily "square" in nature because of

the power law assumption. Also, applications of the model over a wide

range of homologotts temperatures, or to alloys in general is not advised.
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Nonlinear viscoelastic theories. Nonlinear viscoelastic or ther-

modynamically based theories are usually distinguished by their single

integral or convoluted form. This type of constitutive model employs

the first and second laws of thermodynamics along with physical con-

straints to complete the formulation [121. A detailed review of sev-

eral existing theories is presented in both [10] and [18].

One of the more promising theories is credited to Walker [9,181.

It is a unified integral viscoplastic theory developed by modifying the

constitutive relation for a linear three parameter viscoelastic solid.

The theory contains clearly defined material parameters, a rate depen-

dent equilibrium stress, and a proposed multiaxial model. An impor-

tant shortcoming of Walker's theory is its failure to model transient

temperature conditions, but Allen and Milly [10] conclude that his

theory is the best presently available for predicting cyclic response

at elevated temperatures under isothermal conditions.

Other nonlinear viscoelastic theories discussed by Walker [18]

are by Cernochy and Krempl, Valanis, and Chaboche.

Classical plasticity theories. The type of constitutive law con-

sidered in this research is derived from classical incremental plas-

ticity. It is termed a macrophenomenological theory as it derives its

state variables purely from experimental results without direct

reference to the microstructure of the material. This type of consti-

tutive law can be defined as one that attempts to describe the elastic-

plastic behavior of a material based on properties obtained from a

single stress state and then use them to establish relationships be-

tween the general stress and strain tensors 113 . Most incremental
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plasticity theories have four major components: (1) a stress-elastic

strain relation, (2) a yield function describing the onset of plastic

deformation, (3) a hardening rule which prescribes the strain-hardening

of the material and the modification of the yield surface during plas-

tic flow, and (4) a flow rule which defines the component of strain

that is plastic or nonrecoverable [19].

Research in this area is voluminous. The inviscid plasticity is

well established while the extension to include rate and thermal ef-

fects is not. References [10,12] and [13] summarize some of the im-

portant research efforts in their field of study. Of the classical

plasticity theories reviewed in [10], the most promising ones belong

to Zienkiewicz and Cormeau, and Allen and Haisler. The former is a

rate dependent unified theory which allows for nonassociative plas-

ticl: and strain softening but does not model the Bauschinger effect

or temperature dependence. The latter is an extension of classical

plasticity to model both rate and thermal effects. It is a two state

variable uncoupled theory with clearly defined material parameters and

extension to multiaxial form. Still another example is a model pro-

posed by Popov and Petersson [20,21]. Excellent agreement with experi-

ment is shown in the isothermal, rate independent case. Snyder and

Bathe [22] have proposed a modification to classical plasticity which

does model both rate and thermal effects in the monotonic load case

but is restricted to a kinematic hardening rule. Allen [12] suggests

that the theory proposed by Yamada and Sakurai [23,241 may be the best

for modelling the type of behavior described herein. Temperature de-

pendence of material properties, a combined hardening rule, and an
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I uncoupled rate dependent creep term are all Included in the formulation,

but the mathematical consistency of the theory is questioned [12].

The one classical incremental plasticity theory surveyed that has

all the necessary components to model the thermoelastic-plastic-creep

material behavior is the one presented by Allen and Haisler [25].

Rate and thermal effects, the Bauschinger effect, a combined hardening

rule as well as an extension to multiaxial loadings are all included in

their formulation.

Objectives

The objective of this research is to model thermoelastic-plastic

creep behavior of metals at elevated temperatures using the theory

presented by Allen and Haisler with the addition of a revised hardening

rule. Their theory is an uncoupled, incremental, nonisothermal con-

stitutive model based on the classical theory of plasticity for the

analysis of crystalline materials. Special emphasis is placed on

modelling of cyclic thermomechanical load histories which includes tran-

sient temperature response, the Bauschinger effect, cyclic saturation,

different degrees of strain hardening, and rate effects. Evaluation of

the uniaxial theory is performed by comparison with experiment.



CHAPTER III

DEVELOPMENT OF THE MODEL

The author gives the following justifications for using the un-

coupled approach proposed by Allen and Haisler. One can partition

the total inelastic strain into components as long as their sum yields

the total nonrecoverable deformation without significant adverse ef-

fects [12]. The theory is able to model behavior over a wide range

of load and temperature up to at least one-half the melting point for

several metals. It is also one of only a few to address transient

temperature conditions. Also, with the revised hardening law pre-

sented herein, the rate independent inelastic deformation is modeled

as well as or better than the unified theories reviewed. Reasonable

experimental data requirements are another strong point of this theory.

Derivation of the Constitutive Equations

The constitutive equations of the Allen and Haisler model are de-

rived in a uniaxial incremental form relating the total stress incre-

ment to the total strain increment. Development of the theory in this

form is a logical approach as it lends itself to much simpler evalua-

tion without introducing unnecessary complications of a multiaxial

theory. Many components of the work required are much more easily done

in uniaxial form such as the computer code development and experi-

mental model verification.

As stated earlier, most classical plasticity theories have four

major components. First, there is a relation between stress and

elastic strain
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j = EcE  E(c-P. _c ), (3)

or in incremental form

pt Ct Tt
AO = E (.t-A PL.C- T ) + AE(c t- -C - ) (4)

where a is the uniaxial stress, E is the elastic modulus, and c is the

uniaxial strain. Superscripts P, C, and T denote plastic, creep, and

thermal components respectively while t denotes values at the start of

the load step, and t + At denotes values at the end of a load step.

Note that the elastic modulus is measured at the end of the step be-

cause the time step is finite rather than infinitesimal as described

by Allen [12]. A graphical decomposition of the total strain is shown

in Fig. 1. The term "zero time" denotes a loading input short enough

to negate any time dependent deformation but long enough to disregard

inertial effects (a few seconds for many metals) [12]. Conversely,

the long time curve characterizes the rate dependent deformation. Re-

call that there is no physical basis for uncoupling the inelastic de-

formation, but it is valid as long as coupling effects are insignifi-

cant or the uncoupling is done properly.

Secondly, a yield function describes the onset of plastic deforma-

tion. A possible functional form, supported by experiment, is given

by

=2 -P
F(u-a) = K2(fdt- - , T) (5)

where a and K represent the center and radius of the yield surface re-

spectively, Id - is the history of the equivalent uniaxial plastic
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"zerotime"

longtime

CE P EC EE

C E + C P+ C + E

Fig. 1 Total strain decomposition
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strain and T is the temperature. Note that microphysically a is a state

variable combining the effects of the back and drag stresses while

dE is a second state variable representing the dislocation arrange-

ment. This arrangement of dislocations and dislocation loops will be

discussed later as to their effect on reyield and strain hardening be-

havior upon reyield.

A hardening rule prescribes the strain hardening of the material

and the modification of the yield surface during plastic flow and can

be stated in a combined isotropic-kinematic form as

da = dp(o-a) (6)

where dw is a scalar. Lastly, if yielding does occur we need fur-

ther information concerning the rate of deformation to complete the

description of the material behavior. This information is provided by

the flow rule which defines the component of strain that is plastic or

nonrecoverable and can be written as

P
e= (7)

where dX is a scalar determined from material data. Equation (7)

is called an associated flow rule because it is the less general case

containing the partial derivative of the yield function rather than a

general plastic potential. It is also known as a normality condition

because it can be interpreted as requiring the normality of the plas-

tic strain increment "vector" to the yield surface in n stress di-

mensions 1261.
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Differentiation of (5) is the first step in deriving the consti-

tutive equations and will yield

F 3F K -P 2 K
-do - -L d = 2K-dC + 2K dT. (8)

30 30 -P aT

The above consistency condition requires that loading from a plastic

state must lead to another plastic state [27]. Substitution of (7)

into (4)

t+At ct T t  (9)
do = E t(d-dXL -dC-d) + dE(ct -E C T(9

and then (9) into (8) yields

3F -t+At- F CpTt C T

U {E (dE-dX- -dEC-dE
T) + dE(E

t - c -C - E )

I3F DK MK
-- da = 2K-  d P  + 2K dT. (10)

Solving for dX from above

dX ={ -L[E '(d-d -dC ) + dE(et-EP - C t- C T da

3KM 3F t+At3F(11)
-2 K:-- d c - 2M- dTl/(-c E -)

-P aT3o 3
ac

and substituting (11) into (4) yields

t+t 3 +t C Tpt Ct  Tt

do = E t+At{{dc-[-[ [Et+At(d -d .C-dE
T) + dE(c-c -C -C )]

-F - -P 3K -F t+AtaF 3F
- i-dc - 2K-, de - 2K- dT I/(Ca-E )

C T tPt Ct Tt

-dEc - dcT }+ dE(te -C c - ). (12)

Rearranging the last equation to obtain
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t+~t T tpt Ct  Tt
do = EtW t(d-dC-t -dcT ) + dE(L t- -E -E )

Et+.t IF 3F Et+At (dud C dc T

E t y-- 3F I E E dc-L C -E T)
4F t+At DF

da dc -E -t -E

_F Et+At tF

t At 3F ai c3T(3

3_F Et+At aF

Using the normality condition (7) one can write

-P
t+At ;F t+At d -

-E -E d (14)

Then equation (4) can be rewritten as

-P t t tt+At dE do t+At C T t P C T
-F T~-~ [Et (dc-dc-de) + dE(c -E -E -E

(15)

and equation (13) can alse be rewritten as

8 do = Et+At (dc-d-C-dT)e - t+At aF aF Et+At(ded C-d T
o 30

PdE(E_ E Ct  T - Et+At aF aF c tP C T(+dEc -c -- )-E --- E- -- ),

where

P
3K dT t+At 3F a 17F

0 = aod + 2 - + 2K- + (17)
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Rearrange above to obtain

Et+At aF aF Et+6t

do = [E 
t+ A t - 8 ] (de-dC-dcT)

Et+At aF 3FdE t t
+ [dE - 3-o t P C C0 E - (18)

Now make the assumption made by Hunsaker [28] that

(do - CdtP ) _Lo 0 (19)

which defines C as a scaling parameter requiring (do - Cdt ) to be

perpendicular to the yield surface outer normal. The verification of

this assumption is discussed by Allen [29]. Rewrite equation (8)

_F d F P 3K
do = da + 2K _ de + 2K- dT (20)To a aa E

and equate with (19) to obtain

Pdoa a F aK__ ax-

C Pd F do = -F - da + 2K3FP dit +2K dT. (21)o a a at KT

Also, substitute the normality condition (7) into (21) will give

aF 3F 3F aF A -P a
CdX A --=-do - + 2K-z- de + 2K dT (22)

aao ao (I aTt22

or

-P

aFaF 1 3F 3F da ax at M TC-+ Xood o od + 2K X aT d (23)
ac

Using the relations in (23), equation (17) can now be rewritten as
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C )F 3F + Et+.',t DF DF 4' T=Ch 3 3o To(h

where

F
_____ do

S3F FF (25
d,', d ' -

Applying (7), the above becomes

C = - (26)
dP

Physically, C is the slope of the uniaxial stress vs. equivalent

uniaxial plastic strain diagram during an isothermal load increment.

However, during a nonisothermal load step

-o P Do -P aodc =- dc + -_ dT = cdc + -G- dT (27)

or

= do + o dT H' + dT (28)
-P 3T -P aT -P
dc dF de

The above statement is required because the uniaxial stress is a func-

tion of both tOe plastic strain history and temperature during non-

isothermal loading.

Finally, substitute (24) and (28) into equation (18) to obtain

Et+At F 3F Et+At

do= [E t+ A t - o T)o ] (d:-d C_dc )

H' aF 3F + Et+At 3F 3Fac 30 -o5o
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t+Zt 3F DF
+ L E -Et~---dE t t t t~

7-a- (._t pt Ct  Tt

S, - ( -C -C -E )
H' 3F _F + Et+At 3F 3F

E t+At uF aF 3a

+ [0 T ] dT. (29)
H' _ F + Et+'t 3F 3F

.a Do 3D 3o

Now for the yield surface translation scalar, substitute (6) into

(8) and solve for d' as follows

3F d F K 
- o - - [dv±(a-c)] = 2K -K + 2K K dT (30)o-P - T (0

_? 3
3F 3F 3K -P K

dx- (a-a) o da- 2K- d - 2K -dT (31)
F -P 3T

3F 3 - 3Kd
-Fdo -2K - dTo - 2K -LdT

di = 3T (32)
3-F (o_)
aF

An outline for the uniaxial computer program utilizing the above

equations is contained in the Appendix.

Yield Function

The von Mises yield criterion is used herein an can be written in

terms of principal stresses a as

F(oi) - {(c 1 -o 2 )2 + (0203) + (a3-,) 2 = K2  (33)

where K represents the current yield surface size. It has been shown

to be in excellent agreement with experiment for many ductile metals,
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for example aluminum, cold-worked mild steel, medium carbon and alloy

steels [2]. The von Mises yield criterion can be written in uniaxial

form (with the use of a combined Isotropic-kinematic hardening Law) as

C-, 2 = K (34)

where x is the yield surface center.

Note that the assumed yield function is dependent only on the

second deviatoric stress invarient, i.e., independent of hydrostatic

stress and with the assumption of initially isotropic materials. Also,

the temperature dependence is handled through thermally dependent ma-

terial properties and is isotropic in nature, but there is no rate de-

pendence in this form of the yield function.

Hardening Rule

Laws governing the influence of plastic deformation on the yield

surface and strain hardening of a material are called hardening rules.

A significant amount of research has been done in this area, and there

are many different rules in use.

Consider Fig. 2 as a comparison of several hardening rules for a

given isothermal load history. Although isotropic hardening will

successfully model loading histories in which stress reversals do not

occur, it is not satisfactory to model the Bauschinger effect or cyclic

phenomenon. Conversely, kinematic hardening will model the Bauschinger

effect, but neither hardening rule predicts the increased strain hard-

ening upon reyield as their "square" hysteria loop predictions show.

Oak Ridge (ORNL) [30) and combined hardening rules predict overall
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response somewhat better. Hunsaker [13] suggests the mechanical sub-

layer model for loadings in which stress reversals may occur. Of all

the plasticity models displayed in Fig. 2, the multisurface approach

of Petersson and Popov (20,211 clearly gives the best theoretical re-

presentation of the experiment.

Thus, if one is interested in the exact stress-strain behavior

over the entire load history and not just an end result, a hardening

law which accounts for increased strain hardening upon reyield becomes

a necessity.

At temperatures below roughly one-half the melting point for many

metals, a change of loading direction in stress space plays a very im-

portant role. In many hardening rules emphasis is placed on how to

describe the evolution of the yield surface while little has been done

as to how the plastic modulus is affected by stress reversals in cyclic

loading [311. Above this temperature the stress-strain behavior is

controlled by rate dependent deformation and experimentally observed

hysteresis loops are relatively "square". Thus the simulation of the

strain hardening is not as critical.

Many authors mention the "oversquareness" of predicted hyteresis

loops. Among these are Miller [16], Dafalias and Popov [31], Walker

[91, and Popov and Petersson [20,21]. It seems that this phenomenon

is of some interest to the researchers in this field. Miller improves

his unified time-dependent constitutive equations by making the

kinematic work-hardening coefficient a function of the back stress and

the sign of the nonelastic strain rate and shows favorable agreement

with that observed in 2024-T4 aluminum alloy. Another approach by
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Dafalias and Popov which was extended by Petersson and Popov involves

enclosing the initial yield surface within a larger bounding surface.

Both surfaces are allowed to translate and deform in stress space,

and the proximity of the two determines the plastic moduli. Two other

hardening rules which provide for a high strain-hardening rate upon

reyielding are the Mroz and mechanical sublayer models [13].

Since Miller's theory [16] is microphenomenologically based, he

seeks to make his model consistent with existing microphysical explana-

tions. He states that dislocations moving in a given direction will

form dislocation loops by interaction with precipitate particles, and

when the direction of dislocation motion is reversed a dislocation can

annihilate a nearby loop which was previously left behind. A relative-

ly rapid change of strain in the nature of the stress field encountered

by the reversing dislocation would result and lead to a large value

of the slope do/de. As the strain continues to reverse, dislocations

will no longer be encountering such oppositely-signed loops and do/dE

will gradually decrease. Miller models this by associating the direc-

tionality of the dislocation debris with the back stress R and the

direction of current dislocation motion with the sign of the difference

o/E-R. A similar argument is given by Polakowski and Ripling [14].

Although the combined isotropic-kinematic hardening rule used by

Allen and Haisler [25] cannot represent the high rate of strain har-

dening accompanying stress reversals which cause yielding, it does

account for thermally dependent material properties and the Bauschinger

effect. Thus it was felt that with some modifications, all cyclic

characteristics could be modeled. To summarize, the two important
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shortcomings of their hardening law in representing cyclic behavior

are its failure to account for the high rate of strain hardening upon

revielding after a stress reversal and cyclic saturation.

In terms of actual modelling of the two shortcomings discussed

above, several revisiotns and improvements have been added to the model.

First as discussed Ln regards to experimental data requirements, ad-

ditional stress-strain input is required to characterize various strain

hardening rates. Metals like aluminum exhibit a similar strain harden-

ing behavior for reyicld after the initial yield. Conversely, stain-

less steel can exhibit two different forms of hardening behavior even

after several loading cycles. A program flag controls which input

stress-strain curve to use to generate hardening parameters depending

on the material being modeled and the yield (load) history. Secondly,

the hardening ratio was allowed to be a function of plastic strain and

in some cases the direction of loading. This allows modelling of cy-

clic saturation.

More specifically, the hardening rule revisions can be explained

in two different discussions. The first deals with strain hardening

upon reyield and the second with cyclic saturation.

Use of the combined hardening law in Allen and Haisler (25],

predicts cyclic behavior like that shown in Fig. 3. The hardening

ratio, a is the ratio of isotropic to kinematic hardening. Setting

t= constitutes a kinematic hardening law where the yield surface re-

tains it initial size, shape, and orientation thus simply translating

in principal stress space. Isotropic hardening, Bil, means that during

plastic flow the yield surface expands uniformly about the origin and
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never translates. Using a value for the hardening ratio such as

0 s 6 - 1 constitutes a combined hardening rule where the yield surface

is allowed to both expand and translate.

Notice in Fig. 3 that: the reyielded strain hardening behavior is

"squared-off" as discussed above. The revised model has the ability

to reproduce strain hardening behavior that is dependent on direction

or history of yielding. This is observed in experiment as the high

rate of strain hardening upon stress reversal in a cyclic load test.

In other words, the material demonstrates two distinct forms of beha-

vior as shown in Fig. 4. Initial strain hardening character is usual-

ly quite "sharp" in comparison with the rounded shape of the reverse

loading curve. Popov and Petersson [21] found it essential in dealing

with cyclic steel behavior to use two stress-strain curves as input.

The first is from a monotonic test on virgin material and the second is

from a hysteresis loop which develops after several loading cycles.

For a large number of common metals, a cyclic load history leads

to a limiting periodic response in which the stress-strain curve for

each consecutive cycle is the same. This is termed cyclic saturatiun

and is illustrated in Fig. 5 [32]. Capability to portray this pheno-

menon is not contained in many common hardening laws. With the addi-

tion of a hardening ratio that is a function of plastic strain and

in some cases direction of loading into the existing model, this

phenomenon can be modeled much more successfully than a combined har-

dening rule with a constant hardening ratio.
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Fig. 5 Mechanical response of typical ductile
metal exhibiting cyclic saturation in cyclic
loading
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l The reader is referred to the sections on experimental data re-

quirements and theoretical examples for more details concerning the

above discussion.

l Creep Strain Increment

IThe creep strain is defined as the uncoupled rate dependent in-

elastic deformation in the present theory. Several methods are avail-

able to characterize this strain component. Traditional characteriza-

tion has been based on the use of standard creep tests run at constant

stress and temperature. Creep strain (or creep strain rate) is writ-

ten as a function of time, stress, and temperature through the use of

power law functions, exponentials, hyperbolic functions, etc. obtained

by appropriate curve fitting techniques. Additional ad hoc creep

hardening rules have been devised to model rate dependent behavior

during reverse and cyclic loading. Oak Ridge Natio,al Laboratory

used such models for 304 stainless steel with some success (33]. In

many cases it is more expedient to use tabulated creep strain data as

opposed to curve fitted data; although this requires numerical inter-

polation between a set of isothermal, constant stress creep curves.

In the present research, an alternate approach has been taken

involving hysteresis loops and stress relaxation tests at various

temperatures. Fig. 6 shows a typical set of these tests and details

how the rate dependent deformation is extracted from them.

A reference temperature hysteresis loop is defined at a tempera-

ture below which the total strain consists essentially of elastic and

jrate independent plastic strains only. Above this temperature, the

1
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rate dependent inelastic strain (creep) dominates. Experimentally,

Bradley and Haisler (34,35] have shown for Hastelloy-X that such an

uncoupling appears feasible.

Micromechanical consLderations suggest a model for the rate de-

pendent inelastic strain of the form

= ) , (35)
0

where £ represents the rate dependent inelastic strain rate, R2is the

back stress, K is the drag stress, and n is a constant. The back0

stress, drag stress, and exponent n are generally functions of tempera-

ture and strain. However, for some materials a good assumption is

that the drag stress and n are constant at sufficiently high tempera-

tures.

At the tips of the hysteresis loops, the stress and back stress

have reached maximum values omax and fQmax respectively. If we let c

and o2 denote the maximum stress values at two different strain rates

[ and £29 then the value of n can be computed as

n = In(I/C 2  ) )/(0 2 -0max) (36)

where max is assumed to be constant between £I and 2" Similarly,

the constant K0can be determined by rewriting (35) in the form

Ko l-Smax) 1 (37)

It shotild be noted that a number of the unified models reviewed

In (hapte'r 11 (for example, Walker's (91) utilized similar functional
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forms and experimental characterizations of the inelastic strain com-

ponent compared to that used in this research for rate dependent in-

elastic strain. Although the functional forms used to model the uni-

fied inelastic strain give excellent agreement at high temperature

(where rate dependence dominates), they give overly square stress-

strain response at low temperature (where rate independent plasticity

dominates). This is due primarily to the failure of the present uni-

fied models to account properly for rate independent behavior. In

the present research, this difficulty is hopefully overcome by model-

ling the rate dependent inelastic and rate independent inelastic strain

more accurately with appropriate definition of a temperature range

where each is applicable.

Experimental Data Requirements

One of the requirements for a good constitutive model is that is

have reasonable experimental data requirements. Characterization of

model parameters should follow easily from standard tests.

All experimental data tests are performed at sufficient levels of

the primary variables (strain and temperature) in order to bracket

their magnitudes in the particular test of interest. Consideration

is also given to allow accurate linear interpolation between tempera-

tures.

The first set of tests rec iired is uniaxial isothermal single cy-

cle reverse loading tests like those shown in Fig. 7. These tests

are performed at fast enough strain rates so that the rate dependent

component of deformation is negligible. Characterization of both

I
I
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initial and subsequent strain hardening behavior is the reason for the

reverse loading tests. Piecewise linear representations of the data

obtained from experiment are input into the model with the number of

linear segments used depending on the accuracy desired.

For example as shown in Fig. 7 at T=T1, the initial elastic-

plastic behavior is characterized by curve ABC. Similarly the subse-

quent elastic-plastic behavior is characterized by curve DE. The

piecwise linear representations become curve ABC and D'E' where D'E'

was obtained by shifting curve DE to the yield point B. A similar

procedure is performed for all other temperatures as required. Note

that if the difference in strain hardening behavior is not considered

critical, (the difference between curves ABC and DE is insignificant)

only curves ABC and AFG would be required input.

If the hardening ratio is constant with respect to plastic strain,

it can also be determined from the above tests using the relation

"r - (2ay-11 0

) 9 (38)

where stress values are defined in Fig. 8 for each temperature. If

B is a function of plastic strain as well as temperature, several

cycles of stress-strain data would be required to characterize this

parameter. Typical input curves for the hardening ratio are also

shown in Fig. 8.

A piecewise linear description of the temperature dependence of

the coefficient of thermal expansion is also required if it varies

significantly for the temperature range of interest.

I
I
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Experimental characterization of the rate dependent terms is the

same as for Walker's model [9). Steady state hysteresis loops at dif-

ferent strain rates under fully reversed strain controlled conditions

as shown previously in Fig. 6 (p. 30) are required. These are all per-

formed until saturated values are established. Also required are

stress drop creep and relaxation tests from initial point on a steady

state hysteresis loop. All constants are a function of temperature

and require the above tests to be performed at all temperatures of in-

terest unless interpolation is used.

For comparative purposes, a brief description of the experimental

data requirements for several other constitutive models is presented.

The first tests required by Krieg, et al. [11] are stress-drop

tests during steady state creep. This means that a fraction of the

applied stress is removed rapidly, and then this reduced stress is

held constant until the accrued strain is sufficient to permit the

strain rate immediately after the drop to be obtained by extrapolation.

The stress is then increased to its original value to re-establish

steady state creep. This procedure allows the response of a speciman

to drop tests of various magnitudes to be obtained from a single creep

stress. For full characterization, this test procedure must be re-

peated at several nominal creep stress levels and temperatures.

Steady state and primary creep data must also be utilized.

Miller [161 states that with a general purpose constitutive

equation a fairly wide variety of data is required. Calculation of

a complete set of material constants for an alloy on which hysteresis

loop data are available can be a very lengthy task with a substantial
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amount of experimentation required for his model.

The characterization of model parameters for the theory of Bodner,

et al. [15] requires two monotomic stress-strain curves at different

steady strain rates. For cyclic loading an additional constant is

required, but determination of that constant is unclear in their pre-

sentation.

Construction of Yield Surface Size and Stress vs. Equivalent Uniaxial

Plastic Strain Diagrams

Calculation of the yield surface size and equivalent uniaxial

-P
stress is accomplished by constructing K and a vs. c diagrams and

_P
interpolating on these diagrams at known values of c and T. From a

piecewise linear representation of a "zero time" stress-strain curve,

the equivalent uniaxial plastic strain is given by

--p
E = - a /E (39)

The yield surface size and equivalent uniaxial stress are given by

Ki  + $(a -) (40)

I y y

o. = o(41)
1 xi

where a represents the yield stress.
y

For the revised hardening law, two each of the above diagrams are

required. The first diagrams for each case (K and a) will be labeled

base diagram and are simply the functions calculated from equations

(39) - (41) for the input stress-strain curves. These change only if
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the hardening ratio is a function of plastic strain. The second set

or global diagrams evolve throughout the solution process. They are

initialized to equal the base diagrams but are modified each time a

load reversal which causes yielding occurs. The modification process

consists of linking the base curves to the global curves at the values

-_P-of c , K and o corresponding to the yield stress of interest. Input-

ting two stress-strain curves at each temperature comes into play as

--p
their exists for example two K vs. E base diagrams at each input tem-

perature. Factors such as type of material and load history determine

which base curve is linked to the global diagram. All program inter-

polation for calculation of model parameters is done on the global

diagrams.

The above procedure is best explained by a figurative example.

-PUsing Fig. 7 (p. 33) as the input stress-strain curves, the K vs. C

base diagram for a constant hardening ratio is shown at the top of

Fig. 9. Recall that the "a" curves are the ones that result from re-

verse yielding while the "b" curves are from the virgin stress-strain

curves. Note that the Allen and Haisler model uses only the "b"

--p p
curves. A reverse yielding occurs at c = e causing the "b" curves0

to be linked to the global diagram as shown at the bottom of Fig. 9.

When another reverse yielding takes place, either the "a" or "b" curves

-Pare linked to the global diagram at that particular value of c . A

similar procedure is carried out for the global 0 vs. E diagram.

Computational Considerations

For completeness of the theoretical presentation, the gradients,

transition step, thermal strain increment, and elastic strain
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increment are all discussed below with regards to computational consi-

derations. They are also presented by Allen [36].

Gradients. Linear Interpolation is performed to compute values

between input temperatures. The yield surface temperature gradient

can be obtained by

%K K KL
= (42)

T TH -T L

where the subscripts H and L denote the values of a particular variable

for the temperatures above and below the current temperature T.

Similarly

o H L
3T T (43)T TH - L

-pwhere the stress values are obtained from the c vs. diagram. The

-pslope of the K vs. E diagram can be obtained by

K = ( ) (a K) ) (T -_) (44)

3CH DEH 'I

- -P
and the slope of the G vs. . diagram by

(T H -T)

H' = (H') - {(H') - (H') H (45)HHH)L}(T H TL

Transition st,2. Special treatment must be given to the transi-

tion step from elastic to elastic-plastic behavior. The portion of

the assumed elastic stress increment do which will cause yielding

is ldo and the strain increment to bring the total strain to the
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yield surface is rtdi:. Thus for the transition step, the stress and

strain status are modified to become

c , + 1do (46)

c - + ndE (47)

where

-B + B2-4AC (48)

A = dad;

B = 2(a-a)d2 (49)

C = (o-n)(a-a) (Kt )

t _ Et+At EtEt+At deE

The above equations are presented here for completeness of the theory.

A full derivation of them is given by Allen [12].

Thermal and elastic strain increments. The thermal strein incre-

ment is given by [36]

dET at+At (T - TR) - T(Tt - TR), (51)

T t2 1

where aT and aT are the coefficients of thermal expansion at the

beginning and end of a load step respectively, Tt and Tt are the

1 t2
temperatures at the beginning and end of a load step respectively,

and T R is the reference temperature for the unstrained state.
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The elastic strain increment is calculated by [361

1 1pt t t
E t+At t Pt C Td E {do-dE(:t- C - -c ) (52)

Extension to Multiaxial Theory

The approach used to derive the uniaxial constitutive equations

makes it very simple to extend them to the multiaxial case. For exam-

ple, equation (29) could be simplified considerably by, for instance,

dividing out terms like 3F/3a. This is not done, however, to retain

generality and ease of extension to the multiaxial case. To convert

equation (29) to a three dimensional form simply let uniaxial values

of stress and strain become the respective stress and strain tensors.

Recall the yield function is stated in terms of principal stresses in

equation (33). The general elastic constitutive matrix is then sub-

stituted for the elastic modulus.

Gradients are still determined from uniaxial input stress-strain

data, in fact the only additional experimental data required is

Poisson's ratio. The equivalent uniaxial plastic strain is

dc - d dc (53)3 ij ij

in tensor notation. In engineering notation this equation can be

written as

A full deriwati-in of tihe multiaxial theory is contained in

reference [121. II1111 CdT; - .....)
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CHAPTER IV

EVALUATION OF THE MODEL

Evaluation of the constitutive model detailed in this thesis is

now performed. A section on theoretical model capabilities is pre-

sented followed by evaluation against experiment.

Theoretical Model Capabilities

Several examples of the capabilities of the model proposed by

Allen and Haisler are given in references [36] for the uniaxial case

and [121 for the multiaxial case. The purpose of the following

examples is to demonstrate the improvements in the revised model by

using theoretical illustrations of experimentally observed behavior.

Example 1 - Change of strain hardening with stress reversal. The

revised model has the ability to reproduce strain hardening behavior

that is dependent on direction of yielding. Fig. 10 illustrates the

input stress-strain curves for a theoretical single cycle reverse

load test. The input can be taken from either first or saturated

cycle data. On the input diagram curve B represents the initial strain

hardening behavior while curve A represents the high rate of strain

hardening seen upon stress reversal. If a single cycle reverse load

test is performed with this theoretical data, the results will be

similar to those shown as output in Fig. 10. The revised model using

curves A and B is a much more realistic representation of actually

observed experimental behavior for many metals than the combined

hardening rule of Allen and Haisler. Even the revised model

ii . . , I l l
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representation using only curve B is an improvement over existing

hardening rules which "square-off" the behavior upon revield.

Example 2 - Cyclic saturation. A hypothetical fully reversed

cyclic strain historv of + 0.25% strain was considered using four

different values for the hardening ratio. The values used Are shown

in Fig. Ii following the discussion on hardening rules In Chapter Li.

An allowance for cyclic saturation is made by letting e be a function

of plastic strain. This corresponds physically to allowing the yield

surface to first translate and expand and then gradually saturate to

a constant size as observed in experiment. Input stress-strain data

is the same as the first one-quarter cycle input.

The results for isotropic and kinematic hardening are shown in

Fig. 12. Kinematic hardening will model the limiting periodic re-

sponse, but there is no cyclic hardening of the material in achieving

the saturated hysteresis loop. Conversely, isotropic hardening pre-

dicts that the material will eventually cycle to a limiting purely

elastic response as the yield surface expands without bound. This

same behavior is also predicted by a combined hardening law using a

constant hardening ratio. It takes somewhat longer to cycle to the

elastic response because of the component of kinematic hardening

present. This is shown in Fig. 13.

Successful modelling of cyclic saturation is accomplished by

letting the hardening ratio in the combined hardening law be a function

of plastic strain. For this example, the linear relationship shown in

Fig. 11 was assumed with results as shown in Fig. 13. Both the cyclic

hardening and limiting periodic responses are depicted.
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Example 3 - Cyclic thermomechanical loading. This example is

similar to one in reference 125] but is still applicable here to show

the increased capabilities of the revised model in predicting the

strain hardening behavior and also in reiterating its nonisothermal

aspects. Depicted in Fig. 14 are the input stress-strain curves and

thermomechanical load history for a hypothetical test. Note that

these curves do not include the capacity for variable hardening in

order to maintain clarity of the example. The hardening ratio is

a constant one-half.

Results from the constitutive model are shown in Fig. 15 where

ti in this figure corresponds to ti in Fig. 14. Modulus, strain har-

dening, and yield surface size changes with temperature are all shown.

It is also interesting to look at the resulting yield surface

size vs. plastic strain diagram for this example also shown in Fig. 15.

As discussed previously in construction of these diagrams, the curves

are modified everytime there is a stress reversal which causes yield.

This physically represents the rounded shape of the stress-strain curve

after reverse yielding seen in experiment. In terms of modelling, this

-P
corresponds to "linking" the original K vs. e curves onto the current

global diagram also explained in the section on construction of these

diagrams. The squares in Fig. 15 point out where this process takes

place each time. The curves at each temperature are modified for

linear interpolation purposes.
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Comparison with Experiment

As discussed earlier, characteristics of metals such as the high

rate of strain hardening upon yield reversal are much more pronounced

at high strain rates and temperatures below one-half the melting point.

Modelling of this phenomenon is less critical at more elevated tem-

peratures where plastic deformation is more fully rate controlled.

More importantly, there is an intermediate temperature range where

the coupling of plasticity and rate effects is the most critical test

of the constitutive model. To evaluate the models capabilities in all

of these environments, specific areas of testing are: (1) elevated

temperature tests that evaluate the rate independent capabilities of

the model, (2) cyclic load tests that evaluate the modelling of the

Bauschinger effect, the change in strain hardening upon stress reversal,

yield surface evolution, and cyclic saturation, (3) transient tempera-

tures tests that evaluate the modelling of thermally dependent material

properties, (4) high temperature tests that evaluate the rate dependent

capabilities of the model, and (5) thermoelastic-plastic-creep tests

that evaluate the capabilities in the intermediate temperature range.

The high temperature materials testing laboratory in the mechani-

cal engineering department of Texas A&M University was used to run all

tests. A Mechanical Testing Systems (MTS) machine along with an in-

duction heating coils and generator, optical and thermocouple type

temperature controllers, high temperature tension-compression grips,

a high temperature diametral strain extensometer, and constant stress

creep frames fully outfitted for high temperature testing are the main

conmponents ava flabic in this lab.
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Cyclic thermomechanical load test on 5086 aluminum alloy. The

first experimental evaluation is for a thermomechanical load history

applied to a 5086 aluminum alloy. This test is very similar to Exam-

ple 3. Fig. 16 shows the results of comparing the Allen and Haisler

model using several different constant hardening ratios to experiment.

One can observe both of the shortcomings of the model discussed earlier.

The theoretical strain hardening behavior upon reyield is much too

flat or square and the cyclic hardening predictions are inadequate.

By inputting a second stress strain curve to characterize the more

rounded strain hardening behavior and making the hardening ratio a

function of plastic strain as in the revised model, this experiment

can be modeled very well. The actual function of plastic strain used

for a is that 8=0.45 (constant) for the first quarter cycle and since

the isotropic component of the yield surface saturated very quickly

in the observed experimental results, the second quarter cycle was

treated as being kinematic in nature. These results are shown in

Fig. 17.

Cyclic loading of 304 stainless steel at 10000F. Several other

model features are demonstrated by this test. As seen in Fig. 18,

the compressive strain hardening behavior in the first cycle is more

rounded in shape than the tensile behavior. It is believed that the

same behavior would be seen on the first and second quarter cycles

if compression preceded tension. Unlike the previous test on aluminum,

this difference seems to alternate throughout all four cycles pre-

sented in Fig. 18. Thus one must alternate between first quarter and

second quarter cycle input stress-strain data to model this test well.
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One possible explanation for this alternating strain hardening behavior

could be that the Initial yield sets up an asymmetric microstructure.

This phenomenon could also be explained by reasoning that there is

less resistance to grain boundary sliding in tension as compared to

compression. It is clear that a similar test needs to be performed

with the initial yield in compression and then alternating tension and

compression.

Next, the ability to vary the hardening ratio between alternating

quarter cycles is demonstrated. In addition, Fig. 19 shows the results

of using fourth cycle data as input. Both Fig. 18 and Fig. 19 show

good correlation of the model with experiment. An interesting obser-

vation is that the elastic modulus during unloading decreases slight-

ly in the experimental results. This is not taken into account by

the constitutive model and is the reason for most of the discrepancy

between experiment and model predictions.

Cyclic saturation of hastelloy-X. In Chapter 3, there was a dis-

cussion concerning cyclic saturation. Recall that cyclic saturation

is the limiting periodic response in which the stress-strain curve for

each consecutive cycle is the same as shown in Fig. 5 (p. 28). Al-

though most materials show a gradual hardening during this saturation

process, some materials may cyclically soften. Microphysically this

corresponds to the movement of dislocations from a random orientation

into a cell structure which stabilizes their movement. This results

in the limiting response of the material. At more elevated tempera-

tures, the saturation effect naturally becomes faster as the mobility

of the dislocation increases with increasing temperature. Hastelloy-X
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displays cyclic saturation as shown in Figs. 20-25. These curves are

actual experimental results of load vs. diameter change from the MTS

machine. The abrupt drops in stress at various points are not due to

machine problems but are rather due to dynamic strain aging of the

material.

The center diagram in Fig. 20 shows the cyclic saturation dis-

cussed above. Uniaxial specimens were cycled under strain control

(diametral strain) between equal tension and compression strain ranges

until saturation occurred. In order to observe strain rate effects,

most tests were run at three rates corresponding to test times of 10,

30, and 300 seconds per quarter cycle. During the test the diameter

change rate was constant so that actual axial strain rate was variable

during the cycle; however, the above test times correspond to average

-3 -4 -axial strain rates of 1.1 X 10 , 3.67 X 10 , and 3.67 X 10 -

in/in/sec. These rates were chosen because they are typical of strain

rates seen under normal operating conditions of hot gas turbines. No-

tice that at room temperature, the rate dependent inelastic strain

is negligible as the hysteresis loops do not change with different

diameter change rates. Fig. 21 and Fig. 22 show the results for the

same strain history at 500*F and 900°F, respectively. To define the

rate dependent inelastic strain, a reference hysteresis loop is

utlized as was outlined in Chapter 3. Comparing Figs. 22 and 23,

it is seen that rate dependence of the saturated hysteresis loops is

insignificant below 900*F for the rates considered. Consequently,

the reference temperature is chosen as 900*F.
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An interesting phenomenon most clearly evident in Fig. 21 is the

discontinuities or serrations seen in the curves. This is known as dy-

namic strain aging and is associated with interactions between moving

dislocations and solute atoms [37]. Dynamic strain aging is both tem-

perature and strain rate dependent.

At 12000F, the rate dependent inelastic strain is no longer

negligible. Fig. 23 shows the somewhat faster saturation and more

"square" shape of the hysteresis loops. These effects are even more

pronounced at 1400*F and 1600*F as depicted in Fig. 24 and Fig. 25.

At these elevated temperatures the rate dependence dominates and can

be modelled very well with an equation like equation (35). The

hysteresis loops are quite square in nature, and a high rate of strain

hardening upon stress reversal is not seen. A critical test of a

constitutive theory would be in modelling the behavior in Fig. 23

where both rate independent plasticity and rate dependent creep are

important.

The1-etical modelling of cyclic saturation of hastelloy-X was

performed for the room temperature case. The results are shown in

Fig. 26. Experimental stress-strain data is shown only for the first

one-half cycle and the last (saturated) cycle. The model results

depict the gradual saturation response as well as the limiting re-

sponse. A hardening ratio of 8 = -0.375e + 0.075 was used in tension

and 8 = -0.5c- + 0.10 was used in compression. Notice that when the

model predictions approach saturation, some fluctuation is seen on the

compression side. This is thought to be due to increasing numerical

error at this point as no equilibrium interations are performed. Most
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of the difference in experiment and theory is due to difficulty in

modeling of the second quarter cycle, otherwise the model predictions

are quite good.
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CHAPTER V

CONCLUSIONS

An uncoupled, incremental constitutive model for elastic-plastic

behavior of metals at elevated temperatures has been presented. Revi-

sions to the combined kinematic-isotropic hardening rule allow for

much improved modelling of cyclic phenomenon. Also, an alternative ap-

proach to characterizing the rate dependent inelastic deformation has

been proposed.

Successful evaluation of the constitutive model against experi-

ment has been accomplished for a limited range of tests. The

Bauschinger effect, change in strain hardening upon stress reversal,

yield surface evolution, and cyclic saturation are all modeled well

for the isothermal, rate independent case at elevated temperature.

Unfortunately, no comparison of the theory to experiment have been

performed at this time for the load and temperature ranges where rate

dependence is a significant factor. The need to utilize an improved

model like that presented herein depends on the application. For

example, if the application is to life or fatigue predictions, then

the detailed modelling of saturation and strain hardening observed at

low temperatufes may not be of utmost importance. The saturated

hyateresis loop may be adequate to define long term fatigue response.

Conversely, for low cycle applications, many researchers in this field

are concerned with exact hysteresis loop predictions and the evolution

to saturation. In this case, the improved model has important
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applications. Finally, in regards to the rate dependence of the model,

experimental results seem to indicate that the uncoupling presented in

Chapter 3 gives acceptable predictions, but further tests are needed

to verify the model.

i.



71

REFERENCES

1. Tresca, H., "Notes oil Yield of Solid Bodies Under Strong Pressure,"
Comptes Rendus del' Academie des Sciences, Vol. 59, 1864, p. 754.

2. Hill, R., The Mathematical Theory of Plasticity, Oxford University
Press, London, 1950.

3. von Mises, R., "Mechanik der Fescen Koerper in Plastisch Deformablen
Zustant," Goettinger Nachr., Math-Phys. K1., 1913, pp. 582-92.

4. Prandtl, L., "Spannungsverteilurg in Plastischen Koerper," Proceed-
ings of the First International Congress on Applied Mechanics,
Delft, Technische Boekhandel en Druckerij, Jr. Waltman, Jr., 1925,
pp. 43-45.

5. Reuss, E., "Bereuchsichtigung der Elastischen Formaenderungen in
der Plastizitaetstherie," Zeitschrift fuer Angewandte Mathematic
und Mechanik, Vol. 10, 1930, pp. 266-274.

6. Drucker, D. C., "A Definition of Stable Inelastic Material,"
Journal of Applied Mechanics, Vol. XVII, 1959, pp. 55-65.

7. Prager, W., "The Theory of Plasticity: A Survey of Recent Achieve-
ments," Proceedings of the Institution of Mechanical Engineers,
London, Vol. 169, 1955, pp. 41-57.

8. Ziegler, H., "A Modification of Prager's Hardening Rule," Quarterly
of Applied Mechanics, Vol. XVII, 1959, pp. 55-65.

9. Walker, K. P., "Representation of Hastelloy-X Behavior at Elevated
Temperature with a Functional Theory of Viscoplasticity," presented
at ASME Pressure Vessels Conference, San Francisco, August 12,
1980.

10. Allen, David H., and Milly, Teresa M., "A Comparison of Constitutive
Models for Nonlinear Rate Dependent Material Behavior of Solids,"
Virginia Polytechnic Institute and State University Report No. VPI-
E-80.16, Blacksburg, Virginia, Sept. 1981.

11. Krieg, R. D., Swearengen, J. C., and Rohde, R. W., "A Physically-
Based Internal VAriable Model for Rate-Dependent Plasticity,"
Proceedings ASME/CSME PVP Conference, 1978, pp. 15-27.

12. Allen, David H., "A Model for Predicting Response of Nonlinear
Materials Subjected to Thermomechanical Loading," Dissertation,
Texas A&M University, Aug. 1980.

13. Hunsaker, B. Jr., "An Evaluation of Four Hardening Rules of the
Incremental Theory of Plasticity, " Tnesis, Texas A&M University
Dec. 1973.

I.

iii



72

14. Polakowski, N. H., and Ripling, E. J., Strength and Structure of
Engineering Materials, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1966.

15. Bodner, S. R., Partom, I., and Partom, Y., "Uniaxial Cyclic Load-
ing of Elastic-Viscoplastic Materials," Journal of Applied
Mechanics, Vol. 46, December 1979, pp. 805-810.

16. Miller, A. K., "Modelling of Cyclic Plasticity with Unified Con-
stitutive Equations: Improvements in Simulating Normal and
Anomalous Bauschinger Effects," Journal of Engineering Materials
and Technology, Vol. 102, April 1980, pp. 215-222.

17. Kocks, U. F., "Laws for Work-Hardening and Low-Temperature Creep,"
Journal of Engineering Materials and Technology, Vol. 98,
January 1976, pp. 76-85.

18. Walker, K. P., "Research and Development Program for Nonlinear
Structural Modelling with Advanced Time - Temperature Dependent
Constitutive Relationships," First Quarterly Technical Narrative,
Pratt & Whitney Aircraft Group Report No. PWA-5700-6, January 1980.

19. Allen, David H., "Course Notes for MM641 - Plasticity Theory,"
Texas A&M University, unpublished, Summer 1980.

20. Petersson, Hans, and Popov, Egor P., "Constitutive Relations
for Generalized Loadings," Journal of the Engineering Mechanics
Division, ASCE, Vol. 103, No. EK4, Aug. 1977, pp. 611-27.

21. Popov, Egor P., and Petersson, Hans, "Cyclic Metal Plasticity:
Experiment and Theory," Journal of the Engineering Mechanics
Division, ASCE, Vol. 104, Dec. 1978, pp. 1371-87.

22. Snyder, M. D., and Bathe, K. J., "Formulation and Numerical Solu-
tion of Thermo-Elastic-Plastic and Creed Problems," National
Technical Information Service, No. 82448-3, June 1977.

23. Yamada, Y., "Constitutive Modelling of Inelastic Behavior of
Numerical Solution of Nonlinear Problems by the Finite Element
Method," Computers and Structures, Vol. 8, 1978, pp. 533-43.

24. Yamada, Y., and Sakurai, T., "Basic Formulation and a Computer
Program for Large Deformation Analysis," Pressure Vessel Tech-
nology, Part I, ASME, 1977, pp. 341-52.

25. Allen, David H., and Haisler, Walter W., "A Theory for Analysis
of Thermoplastic Materials." Computers and Structures, Vol. 13,
1981, pp. 124-35.

26. Zienkiewicz, 0. C., The Finite Element Method, McGraw-Hill,
London, 1977.



73

27. Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1965.

28. Hunsaker, B. Jr., "The Application of Combined Kinematic-Isotropic
Hardening and the Mechanical Sublayer Model to Small Strain In-
elastic Structural Analysis by the Finite Element Method,"
Dissertation, Texas A&M University, August 1976.

29. Allen, David H., "A Note on the Combined Isotropic-Kinematic
Work Hardening Rule," International Journal for Numerical Methods
in Engineering, Vol. 15, 1980, pp. 1724-28.

30. Pugh, C. W., Corum, J. M., Lin, K. C., and Greenstreet, W. L.,
"Currently Recommended Constitutive Equations for Inelastic
Design Analysis of FFTF Components," ORNL TM-3602, Oak Ridge
National Laboratory, Oak Ridge, Tenn., Sept. 1972.

31. Dafalias, Y. F., and Popov, E. P., "Plastic Internal Variables
Formalism of Cyclic Plasticity," Journal of Applied Mechanics,
Vol. 43, Dec. 1976, pp. 645-51.

32. Caulk, D. A., and Naghdi, P. M., "On the Hardening Response in
Small Deformation of Metals," Journal of Applied Mechanics,
Vol. 45, December 1978, pp. 755-64.

33. Swindeman, R. W., and Pugh, C. E., "Creep Studies on Type 304
Stainless Steel (Heat 8043813) Under Constant and Varying Loads,"
ORNL-TM-4427, June 1974, Oak Ridge National Laboratory, Oak Ridge,
Tenn.

34. Haisler, W., "Application of an Uncoupled Elastic-Plastic Creep
Constitutive Model to Metals at High Temperatures," to be pre-
sented at the Symposium on Nonlinear Constitutive Relations for
High Temperature Applications, The University of Akron, Akron,
Ohio, May 19 and 20, 1982.

35. Bradley, W. L., "A New Uncoupled, Viscoplastic Constitutive
Model," to be presented at the Symposium on Nonlinear Constitutive
Relations for High Temperature Applications, The University of
Akron, Akron, Ohio, May 19 and 20, 1982.

36. Allen, David H., "Computational Aspects of the Nonisothermal
Classical Plasticity Theory," Virginia Polytechnic Institute and
State University Report No. VPI-E-80.29, Blacksburg, Virginia,
Oct, 1980.

37. Reed-Hill, Robert E., Physical Metallurgy Principles, D. van
Nostrand Company, New York, 1964.



74

APPENDIX

COMPUTER PROGRAM OUTLINE

The following out]ine describes a basic flowchart of the uniaxial

constitutive equations for a given total strain increment. Subincre-

mentation (forward integration) with no equilibrium iterations is the

solution technique used. Note that in the setup of any problem, the

yield surface size and equivalent uniaxial stress vs. plastic strain

diagrams are initialized using the first set of input stress-strain

curves.

A. Set up subincrementation on strain, temperature, and time incre-

ments.

B. Compute elastic modulus and the change in the elastic modulus due

to temperature increment. Linearlly interpolate between input

values if necessary.

C. Compute thermal strain increment. Linear interpolation may be

necessary to obtain thermal expansion coefficient. [equation (51)]

D. Compute creep strain increment based on stress at beginning of

step and temperature at end of step. [CHAPTER III - Creep

strain increment]

E. Compute trial stress increment assuming elastic behavior. Add

this to the stress at beginning of step to obtain total stress.

F. Check for yielding

I. Compute yield function. [equation (34)]

2. Compute yield surface size for current value of equivalent

1.
I,[. .. . . .. . .. .. .- , m m l -I ~ l l I I
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uniaxial plastic strain at temperatures at start and end of

load step.

3. Compare yield function value with current yield surface size.

a. If elastic, go to step N'.

b. If yielded and last step was elastic-plastic go to step J.

c. If yielded and last step was elastic, go to step C.

G. Update stress and strain to yielded portion for transition step.

[equations (46) and (47)]

1. Subtract assumed elastic stress increment from total since this

step is elastic-plastic.

2. Compute C and n factors. [equations (48) and (50)]

3. Update total strain, elastic strain, and creep strain to yield

surface.

H. Compute creep strain increment based on yield stress and tempera-

ture at end of step.
- -p

I. Modify global K and a vs. E diagrams. [CHAPTER III - Construc-
--p

tion of K and a vs. c diagrams]

1. If the hardening ratio is a function of plastic strain, re-

_ -P
compute the base K and a vs. e diagrams. [equations (39) -

(41)]

2. If this is the initial yield or yield has occurred without

a stress reversal, no modification is necessary. Go to

step J.

3. If reverse yielding his occurred, modify the global diagrams.

The particular material of interest determines whether the

first or second base curves are used.
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J. Experiencing elastic-plastic behavior.

-P
1. Compute 3F/To and the gradients H', ao/DT, AK/E, DK/DT

for the current value of plastic strain and temperature.

[equations (42) - (45))

K. Compute stress increment. [equation (29))

In transition step from elastic to elastic-plastic behavior, only

the leading term of equation (16) is used.

L. Compute strains and update totals.

1. Elastic strain. [equation (51)]

2. Plastic strain increment is the total minus the elastic,

thermal, and creep increments.

3. Equivalent uniaxial plastic strain is the absolute value of

the plastic strain increment for the uniaxial case.

M. Update yield surface center. In transition step the yield surface

translation scalar is calculated assuming isothermal behavior for

temperature at end of step.

1. Compute translation scalar. [equation (32)]

2. Compute change in yield surface center. [equation (6)]

3. Update yield surface center.

N. Update values to end of subincrement.

1. Stress.

2. Total strain.

3. Creep strain.

4. Thermal strain.

N'. Update values to end of load step for elastic case.

1. Stress.
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2. Total strain.

3. Elastic strain.

4. Creep strain.

5. Thermal strain.

0. Repeat above procedure for each subincrement.
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