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ARO rant DAAG 29-79-C-0046

Caxton C. Foster
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INTRODUCTION

The work on tnis prant has fallen into four citLi..Lt phases. First or

all, we constructed a smal 1 (320-wtrd) Content Addrossable Memorv (CAN) fr, i
commercially available components. Second, we selected a number of problems

intended to span the spectrum of CAM applications and programmed these on ol:r

small machine. Third, we analyzed the strengths and weaknesses of our small

machine as displayed in the solution of these problems. Finally, we designed,
but have not vet constructed, a full-scale CAM that retained the strengths of

our small machine and incorporaLcU ieatures intended to over_,me its weaknesses.

In parallel with the above work, in an attempt to aid in the selection of
representative problems for study, we have spent a considerable amount of

effort investigating the theoretical capabilities of CAMs.

Phase One: Construction

When we initially applied for this grant, we intended to construct a

modest-sized CAM from standard TTL chips. We soon discovered that Semionics

Associates was building what they called a Recognition Memory (REM) card that

was not too far from what we wanted. In the interest of saving time and money

and energy, we decided to go with the REM cards even though we knew that they

were not ideal.

Each REM card contains 16 content addressable cells of 256 bytes (2048 bits)

each. We purchased twenty of these cards giving us 320 memory cells. These

were connected to a Cro,". , microcomputer with a Decwriter and two disks and

assorted other peripherals. Each REM card outputs a single bit that is zero

if no words are responders and one if one or more words are responders. We

connected these SOME/-N= bits to a priority encoder so that in one instruction

time we could identify which REM card was the "first" one containing a responder.

To then locate which word on the card was the first responder required a slow

cell by cell scan of the sixteen cells on the card.

The other operation that was missing from the REM cards was the "count

responders" instruction. To perform this we had to write the tag bits into an
unused memory bit (we called the FLAG), and then in serial fashion go through
each word and count the number of FLAGs equal to one.

The REM cards have many bits per word and only a few words per card. In
a very real sense, each word of a CAM behaves like a processor and obviously
one can not achieve more parallelism than there are processors. In our machine,



if we wanted to be able to content address more than 320 items, we had t,"
conceptually divide our long (256 byte) words in half (or in thirds or
quarters) and store two or more items in each word. Then, when we wanted
to do a search we would have to "search the first set of items", then "SC.:: lh
the second set", and so on, repeating the search as many times as required to
examine all the items packed into each word.

While this repe ted search was perfectly acceptable for an exploratory
svstem, it led to an N-Iold reduction in the potential speed up which would
be absolutely devastating in a real-world application.

Consequently, our strongest conclusion as a result of thi study is that
"two shorter words are more valuable than one longer word." -- provided, of
course, that they don't get too short or that thero exists a way to couple tw(
or more short wor(l. to-ether when one really needs ,:., word. Two other
conclusions mav be drawn on the basis of our experience with the REM cards.
The first is that the hardware must provide a convenient and rapid means of
discovering whether or not any words are "responders". That is, there must be
a SOME/-0NE line that continuously reflects the OR of all the tag bits and an
instruction that can do a conditional branch on the state of that line.

The other major recommendt! .i Is that there must exist a convenient non-
sequential method of counting responders. A count of responders is very useful
for guiding the higher levels of a search where you might choose to employ one
strategy if there are only ten responders, and an entirely different one if
there are one thousand. But, while this count of responders is very useful, it
is not used with anything like the frequency that "branch on zero responders"
is used. Consequently, the count responder operation may be considerably slower
than the branch on zero responders.

Phase 21: Selection of Test Programs

There exist no widely recognized kernels of parallel programs that every
CAM should execute rapidly. A person desiring to exercise a CAM must fall back
on his or her own intuition and select test programs that meet one or more of
the following criteria:

1. The "heart" of the problem is "obviously" one of great
general interest and widespread applicability.

2. The problem is an abstraction of a real problem which
is strongly compute-bound in a von-Neumann machine.

3. The problem can conceivably be completed in one semester.

4. The problem has inherent interests of its own.

Attached to this report there is a list of published and unpublished
studies that we have done on this grant, and copies of all the papers.

Speaking generally, the availability of a CAM enables one to approach the
solution of a problem in ways that would be rejected out of hand in a von-
Neumann organization. Take for example, the solution of simple substitution
cyphers reported in (4). There is no great trick to solving such puzzles; they
are published in most daily newspapers and provide an enjoyable half-hour
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diversion for the afficionado, You make some guesses about the value some
ciphertext symbol might have, substitute it throughout the crvptogr1m and
make further guesses on the bas is of the emerging pattern about further
letters. But this "guessing" process is highly directed by an excellent
pattern-matching comliuter behind your eyes, and this approach is classical lv
very hard to implement on a computer. Storing and searching a ditioiarv
of several thousand common Ernglish words, Wall found that thL CDC - ., might
take tip to several hburs to solve a single cryptogram. 'lite ame apprtach
implemented on a (simulated) CAM could solve the same crvpt,,am in approxi-
mately half a secoond. Suddenly, an "obvious" approach that '' d b, en cnmplete I'
impractical becomes very attractive.

Consider also the identification of postage stamps. This is a troblem
that is represent.itive of many database query sys' --.. The tuser appr, ches
the machine with a ,;tamp in hand hoping to identilv il. I, cue. readilv
observe its size, ,;hape, denomination, major color. ountrv *i origil, and
perhaps give some description of the scene depicted on the st.imp. What he
wants is the Scott's number which uniquely identifies this stamp trom all
others. In a conventional machine, one would have to store lists of all "blue"
stamps, all "red" stamps, all "two-penny" stamps, etc., etc., and, as the user
entered descriptive information, cross-correlate these lists soarching for

intersections. In the (AM all these subsidiary lists disappear and a straight
content search is carried out for all the stamps meeting the given descriptions.

But this is not all. Once a search of the database has been carried out
in a CAM, we can count responders and tell the user immediately how many stamps
meet his criteria of search so he can decide when to terminate his search.
Further still, because the data is stored in a CAM, we can examine the unspeci-
fied criteria to determine which ones will most rapidly narrow down the list
of responders and suggest to the user that he enter information about these
criteria. Thus, the CAM enables us to help the user help the CAM to help the
user in a most advantageous manner. But this is still not all. By storing
key descriptive words in the CAM, we can let the user enter information in
very nearly normal English, pick out the key words he uses, and do an incre-
mental search while he is still inputting his description.

Consider the problem of garbage collection in LISP (1). One of the
problems that inhibits the use of LISP for real-time applications is that of
the unpredictable and arbitrarily long delays that occur when main memory
becomes full. One sees 'I. ar "naps" occurring on personal computers when
string space is all used and the operating system has to clean out old strings
that are no longer referenced.

A typical LISP cell in a CAM might contain three fields (at least) called
"garbage" (one bit long), "left" (CAR), and "right" (CDR). When a free cell
is needed, we search for a cell whose garbage bit is "I". Before we can use
this cell, we must discover if it is the only cell in memory now pointing to
the cell named in the "left" field (call it TARGET). In a CAM we can ask if
there exist any cells which point to TARGET in either their CAR or CDR. If
there are none, then TARGET is also a garbage cell and we set its garbage bit.
A similar search must be done for the cell pointed at by the "right" field.
Once these four searches have been done and garbage bits set if required, we
can take and use the original cell we found. This takes only four exact
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match searches and for fifteen bit fields could easily be accomplished in
under ten microseconds. Thus LISP becomes available for real-time Use where
arbitrary delays might be fatal.

Weems (9) h.-s studied Conway's game of Life, in which the survival or
death of a cell depends on the state of the eight immediate neighbors. What
Weems does is to send a "counter" on a path which encircles its ho' celIl
(north, west, south, south, east, east, north, north, west, south), and at
each neighboring cell adds one to the counter if the cell it is currently
occupying is alive, and adds zero to the counter if the current host is dead.
When the counter eventually returns to its home cell it contains the count
of how many live neighbors the home cell has. This is Lhe number which
determines the state of the home cell on the next generation. Everv cell
does its neighborhonod search at the same time.

But the count of live neighbors is only a spec~il case of a convo&Jt-on
in a 3 x 3 window, and is easy to generalize if the "add" is replaced by a
more complicated operation. Local, window-type convolutions are very common
in programs which process visual images and in many other areas of applica-
tion. Indeed much of the interest in Fast Fourier Transforms is because
once the transform has been carried out a simple multiplication followed by
an inverse transform can be used to perform a convolution. In a CAM we can
perform a simple convolution in about one hundred microseconds directly on
the image in question without having to perform the transform and its inverse.

In the analysis of images taken by a moving camera one tries to identify
"interesting points". Successive positions of an "Interesting" point estab-
lish a "flow-vector" for that point and a set of such flow-vectors, when
projected, can be used to identify the FOE (focus of expansion) which is the
point toward which the camera Is moving. vie to noise in the images and
inherent digitization noise, the set of flow-vectors will not all intersect
at a single point. Taken pairwise, the flow-vectors will intersect in a set
of points and the center of mass of these intersection points is a good
estimate of the FOE. Such a center of mass can be found in a CAM in under a
millisecond (7), or roughly 1400 times faster than a conventional machine.
What this means is that this simple-minded approach to motion analysis is
useful in a CAM and useless in a conventional machine.

Phases .3 and 4: Analysis- and Design

Our analysis of the REM and design for a large scale CAM are reported in
5. Two major reasons may be deduced for the failure and expensive cost over-
runs of many past innovative architectures. First of all, they tripped over
technology and, second, onecc they were completed they sat in a corner because
nobody wanted to expend the energy and money required to use them.

Our chip design is very conservative. It does not push the current VLSI

technology at all. It can readily be fabricated using 2 1/2 micron technology
on a chip less than 6mm square. Using optimized dynamic memory, the size of
the chip could be reduced by perhaps a third.

We have designed for a memory that is 512 x 512 cells, but the chip de-
sign is such that any size memory from 8 x 8 cells up to 4096 x 4096, or even
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larger, can be accommodated. All size-dependent functions reside in "edge
cards" that must lie along the bottom edge of the memory for counting
responders.

In regards to the second noint, our department has active groups in

vision analysis, robotics, motion analysis, database management, and
others who are eagerly awaiting the arrival of the Titanic so that the.
can use it to speed up their heavily compute-bound problems.

Published Papers
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Ori gi n s

Starting in the Summer of 19.'9, aftr--r- -.cquiring a small

Content Addressable Memory (CAM), we conducted an extensive

exploration of applications of content addressability and

parallelism. During the ensuing three years some tairty

applicaticns have been developed with over a dozen being

programmed to completion. All have been analyzed with an

eye toward the design of more useful hardware. Application

areas have included data base retrieval, LISP garbage

collection, text-to-speech synthesis, and image convolution.

Some of the results of this work are presented here as a

rationale for some of our architectural design decisions.

More Cells With Less Memory

One of our major findings is somewhat counterintuitive.

Normally, CAM designers give a large amount of memory to

each cell of the CAM. This is so that each cell may hold a

large record of logically associated data. Such a design

attempts to maximize the benefits of the CAM's

associativity. We have found, however, that a majority of

interesting CAM applications require only one to sixteen

bytes of memory in each cell, and that these applications

benefit much more from the added parallelism of having more

cells. Further, we have found that those applications which

require more memory in each cell will work adequately if an

efficient means of moving data between cells is provided.

Thus, we conclude that the resources required to construct

large cell memories would be far better spent in
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constructing more celis with les. memory.

Need Past Some/None and Finc First

A common means of controllin' , loop execution in CAM

algorithms is to continue processing until none or only one

of the CA,''s tag bits are turned on. It is thus essential

that we have a fast means of determining this. The simplest

way of doing this is to test whether any tags are on; if

so, then we select one and turn it off, then repeat the

some/none test. The find first operation is also used

frequently when a search finds several data elements with

the same key value. It then provides a way to select one of

these for processing. These cases combine to emphasize the

need for fast some/none and find first operations.

Slower Response Count is Acceptable

Many CAM designs devote much complex and expensive

hardware to increasing the speed of the operation which

counts the tag bits that are turned on. We have found,

however, that the count of responding tags is used primarily

as a way of gathering statistics for use at much higher

levels of processing control to direct the strategic

application of the CAM. It is thus rather infrequently

applied as compared to operations such as comparisons and

some/none tests. We thus feel that slower, simpler, less

expensive response count hardware is quite acceptable.

Further, we have designed a very simple response count

system which runs only about an order of magnitude slower
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than mud} tore complex dsigns.

Convenient Additions

CAMs typica1ly have only one tag Li. p-r cell. We have

found, however, that most algorithms need two to four, tags.

Usually this is simulated by storing tag bits in the memory,

howcvcr this becomes a major inconvenience when the cells

have small memories. It is thus convenient to have multiple

tag bits in each cell. Although any CAM with bit select arid

multi-write can perform bit-serial addition (and,

incidentally, is thus called a Content Addressable Parallel

Processor -- CAPP -- see Foster [1) , it is far more

corvenient and several times faster to perform additions if

each cell contains a full adder. Finally, we have also

found it quite convenient if each cell is provided with a

way of logically combining stored tag bits. When a CAPP is

provided with these capabilities at the individual cell

level, the result is a Single Instruction Multiple Data

(SIMXD) parallel processor of considerable power.

An Image Processing CAPP

By the Winter of 1981 we had begun to examine

application of a CAPP to image processing. We soon found

that we were dealing with two kinds of problem solutions.

One kind worked independently of where pixel values were

placed in the CAPP. An example of this truly associative

type of solution is histogram directed feature extraction.

The other kind required that pixel data be combined and it
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was thus necessary to use inter-cell communication links to

accomplish this. Although we had already considered a

linear cell interconnect (as a way to simulate cells with

larger memories), we were now faced with problems that

required a rectangular interconnect (hexagonal and

triangular interconnects were not considerec because

digitized images do not map well onto them). An example of

this is contrast enhancing image convolution. We also

discovered that the edges of an image require special

processing. Our solution to this problem was to provide a

four-way (N, S, E, W,) cell inerconnect network with three

different edge treatments. The simplest edge treatment is

(ilead-edging, that is making the edges of the grid act like a

frame of inactive cells. Another treatment is

circular-wrap. In this case each edge cell is logically

connected back around to its counterpart on the opposite

edge. The most complex treatment is spiral-wrap in which

each edge cell is logically connected to a cell on the

opposite edge that is offset by one row or column. This

last treatment provides a way to turn an essentially

rectangular CAPP into a linear structure and thus make it

more general.

Some practical aspects of designing an image processing

CAPP include the need to be able to load the memory with an

image in one video frametime (1/30 second). This may seem

like a long time, but remember that a 512x512 image contains

262,144 pixels. For sixteen-bit pixels this means a data

transfer rate of about sixteen million bytes per second. We
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have )Is. considered types of se, ,ndary ,o age that will be

needed to keep up with such transfer rates. Hardware

test ing and debugging have also b.!en major" concerns sirply

because of tne large number of components involved.

Titanic

In the Summer of 1981 we started work on the design of

a VLSI-based CAPP for image processing. Our intent was to

produce a conservative design which would be simple enough

for us to construct with reasonable confidence of success

but which would also provide a significant advance in

processing power. From ti-e hrginning we imposed a number of

constraints on the design. For example, the CAPP would have

to consist of no more than one hundred circuit boards and

each board should have a maximum of one hundred off-board

connections. As another example, the VLSI chips we designed

would be restricted to no more that 40,000 devices, have a

pin-out of no more than forty pins, and dissipate less that

two watts.

We also set a number of goals which we hoped to

achieve. It was decided that the CAPP should contain

262,1411 cells arranged as a rectangular 512x512 array to

facilitate image processing. Each cell would contain at

Least thirty-two bits of memory, multiple tags, and some bit

serial processing power. One hundred nanoseconds was set as

a goal for the minor clock cycle time. We also planned to

meet as many of the design recommendations established by

our CAM research as we could. Finally, it was decided that
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the CAP:' wculd be built to bt, driven by another machine,

such as a Digital Equipment Corpuo ation VAX. Once the goals

And constraints were set, work ,n the design got under way

and, for obscure reasons, the project was given the name

"Titanic"

Titanic and Its Eniironment

The Titanic is divided into two main parts: the

central control and the parallel processor. The central

control is a simple, fast, fetch-aheid pipelined processor

which will be built from MSI devices. It issues

instructions to the para lIol -ricessor, controls loading and

unloadinr of data in the parallel processor, serves as an

interface to the VAX or other host computer and to other

data sources and secondary storage devices. The central

controller contains a ROM with a set of micro-coded

subroutines for performing commonly needed higher level CAPP

operations, and a writeable control store which allows users

to add their own special microcoded instructions. Also

'!ontaind i.n the central controller is a small program

memory into which subroutines or entire programs may be

loaded. The writeable control store and program memory are

loaded directly by the VAX. Once these memories are loaded,

the VAX can issue commands to the central controller which

tell it to execute routines stored in the program memory, to

single step through a stored routine, or to execute a single

instruction passed as a literal 1y the VAX. Figure I shows

Titanic and its environment.
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The Parallel _P;ocesso.

The Titanic parallel process._,r consists of an 8x8 array

of processing circuit boards and a set of special purpose

boards which control how the edje. of th(. CAPP are treated,

buffer broadcast signals, and perform other functions such

,s ccllccting the some/none signals to a single line. The

parallel processor receives data and instructions broadcast

to it by the central controller. Each parallel processor

instruction operates in exactly one minor cycle time. Some

operations do require multiple clock cycles, but these are

taken care of by having the central control rebroadcast the

instruction as many times as necessary. Figure 2 shows the

structure of the parallel processor.

Each processor board consists of an 8x8 array of

special CAPP integrated circuits plus some random buffer

logic. A list of the sixty-three I/O lines on each board is

given in Table 1. Our current design calls for all

sixty-four processor circuit boards to be placed in four

card racks (sixteen per rack) and interconnected by a

broadcast backplane and ribbon cables.

The Titanicm' IC

The heart of the Titanic desi.gn is a special purpose

nMOS VLSI CAPP integrated circuit. Each of these chips

contains sixty-four CAPP cells, an instruction decoder, and

other miscellaneous logic. The design of this IC is

actually much further along than the rest of the project

(this being mainly due to test chip fabrication time
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constrainrs). To compensate for- this :jof',ewhat bottom-up

develupment we have designeJI  the ..i, u with as much

generality as possible, knowing t:,-it sul., generality need

not be fully used I ,ter on.

The Communications Interconnect

One of our biggest problems in designing Titanic was

how to handle the rectangular interconnection of the cells.

The number of wire. required for such a network, even for

bit serial communications, is staggering. This became most

evident when we tried to design the IC communications

interface. For sixty-four cells, the arrangement which

gives the minimum number of external connections is an BxB

grid. With a four-way N,S,E,W interconnect there are then

only thirty-two neighboring cells to connect to. (We

considered an eight-way N,S,E,W,NW,NE,SW,SE interconnect,

but were forced to abandon it due to the wiring complexity.)

By the time control, power, and clock signals were added to

the thirty-two neighbor lines, we found that a sixty-four

pin package would be required to hold the IC. Further

examination also revealed that a full interconnect would

require that each processor board have 256 ribbon cable

communication lines -- in other words, a two foot wide swath

of ribbon cable running between each pair of boards!

Because this violated two of our main design constraints, we

had to simplify the interconnect.
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By 1:1 multiplexing the communicat~ions net as it

crossed chip boundaries, we were able .,) reduce the IC pin

count to twenty-two pins and the t~otal board wire count to

sixty-three (of which only thirty-two need to be run in

ribbon cable) . By going from sixty-four pin to twenty-two

pin packages, the board size was also reduced significantly.

Unfortunately, all of these benefits were paid for in a loss

of speed. The new interconnect takes 0.8 microseconds to

transfer one bit between cells (25.6 microseconds for

thirty-two bits) . We should also note here that the Titanic

instruction set makes this multiplexing transparent to the

user.

Some/None Logic

On-chip the Some/None signal is determined by feeding

the output of the main tag bit into a sixty-four-way NOR

with an inverter between its output, and the Some/None pad

driver. Once the signal goes off-chip, it passes through a

four-level OR tree before reaching the central controller.

Count Responders

The count responders operation requires only three

changes to be made to the CAPP circuitry to be feasible.

Firstly, it must be possible to connect all of the response

bits into a circular shift register. This is easily

accomplished because the neighbor communication network 4

already provides most of the necessary links. Secondly, the

South multiplex register must be modified to include a
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counter and a full adder. Fin,! Iy, ti c;:rds that control

the top-bottom edge treatment mus2, be ii.,-ified to include

column summing registers and a fi:,al sum register.

The algorithm used to count responders is given in

Figure 3. This method is reasonably fast (about twenLy-six

microseconds), inexpensive, and most importantly it can be

used with any size of array without having to modify the IC

-- only the bottom row circuit board needs to be changed.

Device Floorplan

Figure 4 shows the Titanic IC's floorplan. The unit

cells are arranged in two columns of thirty-two. This

arrangement was chosen because we found that the best

compaction would be obtained if we could share control and

memory select lines among as many cells as possible. Each

cell is thus very long and narrow. A column of thirty-two

cells is almost covered by a river of metal control and

select lines which run vertically over it. These lines are

simply duplicated and mirrored fcr the two columns. Control

is generated by a PLA with no feedback loops while select

signals are generated by a simple decoder. Communications

multiplex and responder count hardware is provided by a

small block of random logic. The overall size estimate of

the active chip area (excluding pads and drivers) is

2400x2400 lambda. Thus if lambda is three microns, the

central portion of the die would be roughly 285 mils on a

side. This is somewhat large, but not unreasonable. Power

dissipation is estimated at 1.5 watts, which is low enough
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to al lo. f orced- air cool ing . Table 2 lists the pin

functions of the Titanic IC.

The Unit Ctlls

A unit cell consists of thirty-two bits of fully static

memory, four one-bit static tag "registers" called A, B, X,

and Y, and a static carry bit "register" called 'Z. Each

cell also contains an ALU which continuously generates X

nand Y, X nor Y, and X + Y + Z. Finally, each cell contains

logic for selecting some source of data (a register, memory,

an ALU function, broadcast data, or a neighbor cell),

possibly inverting the selected signal and storing it in a

destination (memory or register). Neighbor communiation

lines run vertically in a channel that divides the cell.

The Z register is special in that it is not available for

selection as a data source. It can be copied directly to

the X register and can be loaded from the output of the

selector. It also is loaded with the carry from X + Y + Z

whenever that function is selected.

The X register is special in that its output is

connected to the some/none logic and the neighbor

communication network. In some sense it is the "main" tag

bit.

The A register is also special. It controls whether

the cell is active. If a cell is not active, it ignores all

instructions broadcast by the central controller except a

special few.
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The ,register is intended to be used for storing a

second set of tag bits which may eventually be combined with

other sets through the logical operations provided by the

ALU.

The B register is intended as temporary storage f~r a

second set of activity bits, essentially providing a single

level of "subroutine call" or an alternative activity

"screen".

Figure 5 shows the logical arrangement of a unit cell

while Figure 6 shows its silicon floorplan.

Titanic IC Instruction Set

Table 3 lists the instruction set of the Titanic IC.

Each instruction executes in one minor clock cycle (100 n

s) . This was done to avoid feedback loops in the decode PLA

on the chip and to avoid special instruction states in the

central controller. This means that the central controller

must be programmed to re-issue some instructions several

times. For example, transferring data to neighbor cells

across chip boundaries requires eight individual transfers

because of the 8:1 multiplex. The central control must

therefore issue the shift instruction eight times in a row.

This, of course, is encoded as a single operation in the

controller's microcode ROM.

There are eight basic instructions recognized by the

chip. Of' these, six are memory transfer operations and use

a five-bit address value to select the bit to be read or

written. The other two instructions treat the address as a
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sub-operation specifier. For the most part these are

non-memory data source to register datb transfer operatio:,-

with one op code causing the data to be inverted before

storage and the other causing a direct transfer. There are

sixteen special sub-ops, however, which are reserveu ior

unusual operations such as transferring data through the

multiplexers or counting responders.

Some operations (those underlined in Table 3) are also

designated as "jam transfers". This me-ns that they re

performed regardless of whether the A register contains a

logic one. These provide a means of storing and retrieving

different activity patterns and of applying global

operations which ignore activity without the usual overhead

of having to save the current activity pattern, and retrieve

it later.

Current Status

As of this writing we have designed a sixteen-cell

(4xI) test chip, and are negotiating for fabrication. Using

a simple set of three micron design rules, we have succeeded

in fitting the circuitry onto a 180x180 mil body area with

considerable room to spare. The actual cell area occupies

only 130x106 mils. Estimated power dissipation is only 300

milliwatts.

We have already written a number of programs for the

Titanic and estimated their operation times by hand. For

example, one special purpose convolution of interest in

computer vision processing (a simple 3x3 mask) required only

L..- . ..........
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112 microseconds for the entire 51,x512 image. More complex

convolutions take longer, of course, but most of interest

can be performed in less than fivo milliseconds. We hav(

also examined motion analysis aind found the results to be

quite encouraging.

Further Research

Based on the results of our test chip experience, we

intend to proceed to full sixty-four- cell ICs and,

eventually, construction of the entire machine.

Architectural changes which we intend to pursue are

increasing the memory size to sixty-four bits per cell and

perhaps going to an 8:2 communications multiplex (with a

twenty-eight pin package) for a doubling in the data

transfer rate.

We also plan to program a statistics gathering Titanic

simulator which will allow us to experiment with software

development and optimization.

Our work thus far has indicated that a Content

Addressable Parallel Array Processor is extremely well

suited for image processing, vision, and motion analysis.

We intend to pursue further applications in these areas and

also in new areas such as tactile object recognition in

robotics.
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Conclusion

Rationale and a design have been presented for a

Content Addressable Parallel Processor suitable for both

general use and image processing applications. The

architecture of the processor is based in pra(:Llczl

experiei,.e and the hardware design has been con,'-ained to

make it possible to construct using existing techr logy and

with a high confidence of success. Despite tnese

constraints, simulations have shown that such a machine

would provide a significant increase in processing power

over what is presently available.
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List of Processor Board I/O Lines

Number
of Lines Function

8 Bidirectional North Neighbor Communications
8 Bidirectional South Neighbor Communications
8 Bidir-ctional East Neighbor Co.... -'4-tions
8 Bidirectional West Neighbor Commuriications
8 Chip Column Select
8 Chip Row Select
4 Op Code
5 Bit Address or Sub Op Code
1 Broadcast Comparand Data
1 Some/None Output

2 Clock phases
1 Power
1 Ground

Table 1
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List of Titanic iC Pin Assignments

Pin Function

1 West Neighbor Communications (Bidirectional)
2 Chip Select 1
3 South Neighbor Communications (Bidirectional)
4 Op Code 2it 1
5 Op Code Bit 2
6 Op Code Bit 3
7 Op Code Bit 4
8 Comparand in
9 Some/None out
10 Clock Phase 1
11 Ground
12 East Neighbor Communications (Bidirectional)
13 Chip Select 2
11 Spare (Trest)
15 Address Bit 5
16 Address Bit 4
17 Address Bit 3
18 Address Bit 2
19 Address Bit 1
20 North Neighbor Communications (Bidirectional)
21 Clock Phase 2
22 Power

Table 2

iA
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Titanic IC Instruction Set

Me mory OperJtions N = North neighbor data
= South neighbor data

'vWrite/Read E = East neighbor data
Op W = West neighbor data
Code 0 1 Z = Carry bit register

0 M :: A A :: M M = Memory bit specified by d*<es
1 M := B B := M A = A tag register

M := X X M B = B tag register
3 M := Y Y := M X = X tag register
4 M := C A M Y = Y tag register
5 M :B B :: M C = broadcast Comparand

Underline indicates jam transfer

Non-Memory to Register Operations

Op code 65D - Source transferred to destination
Op code 75D - Source inverted and transferred to destination

Source
Destination 0 1 2 3 4 5 6 7

0 A:=A A:=B A:=X A:=Y A:=X+Y A:=X^Y R:=N S
I IB:=A B:=B B:=X B:=Y B:=X+Y B:=X^Y R:=S P
2 'T-T=A X:=B X:=X X:=Y X:=X+- X:=rY : W 7 E E
3 Y:=A Y:=B Y:=X Y:=Y Y : =X+Y Y : =-Y R:=W C
4 A:=N A:=S A:=E A:=W A:=C A:=XvY Z:=C I
5 B:=N B:=S B:=E B:=W B:---f- B:=XvY A:=B A
6 X:=N X:=S X:=E X:=W X:=C X:=XvY A:=X L
7 Y:=N Y:=S Y:=E Y:=W Y:=C Y:=v-Y A:=Y

Special Operations
"Destination"

Op code 0 1 2 3 4 5 6 7

67 NM:=C SM:=C EM:=C WM:=C Z:=X CRCR SCR PANS
17 MBN MBS "3E MBW X:=Z NOP NOP NPO

NM = North Multiplexer buffer
SM = South Multiplexer buffer
EM = East Multiplexer buffer
WM = West Multiplexer buffer
MBN = Move Buffer North
MBS = Move Buffer South
MBE = Move Buffer East
MBW = Move Buffer West
CRCR = Clear Response Count Register
SCR = Shift and Count Responder
PANS = Piplined Add North to South
NOP = No Operation

Table 3
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Set all activity bits 0.
Clear Response Count Register (CRCR) O.lJS
For I:=l to 64 do 6 4wS

Shift and Count Responder (SCR)
Turn off all chip row select lines O.1IS
Turn on all chip column select lines 0.10S
For I:=l to 64 do

begin
Turn oit row select line I 12 .8 ijS
Pipeline Add North to South (PANS)

end
For I:= to 6 do (*Empty the pipeline*) 061S

Pipeline Add North to South (PANS)
For 1:=l to 64 do 6.4WS

Pipeline Add West to East on Bottom Row Board

Response count is now available on Bottom Row
Board 26.6pS

Pipeline Add North to South (PANS) takes the low order bit
from the response count register, adds it to a data bit input
on the North line and outputs the result on the South line.
The carry from the addition is stored in a temporary storage
cell and used in the next PANS. The input and output opera-
tions are buffered and appropriately clocked to allow true
pipelined operation. Row and column select lines are turned
on and off by setting and clearing bits in registers on the
edge control cards. Once a row is turned on, it remains on
until it is explicitly turned off and vice versa.

Fig. 3
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OP-CODE _/ji ADDRESS
N ur'y Opteratiuni F T V 1
OP ,qI FUNCTION - Iransfer ignores activity

0 0 N:-C A - Activity register
0 i A:'=1 B - riQcondary Activity register
1 0 ii: C - Cumparand
1 i B: -M - 1Ipimory
2 0 :=X X - Mai'n tag -register
2 =111 Y - !Secondary tag register
3 0 M:'Y Z - Cairry -register
3 i Y:.M N - Da.'ta from North
4 0 N-=A! E - Dijta from East
4 1 A:=Nf W - Dita from West
5 0 1,1:.I S - 0"ta from South
S I U =~

OP-CODE DEST SOURCE
Register Operat' 'o n OP CODE ., - NORMAL

D t OP CODE 7 - INVERT SOURCEDestinati (III

I L I 2 3

C) X : = 13 Y: =A

X:=X A:=X B:=X Y:=X
SX. =Y A: -Y B:=Y Y:=Y

4X =-+-Y A: =-X-Y B: Y X =--y
,.=X^Y A =X'Y l: =x 7 Y: =XTV
X:=XvY A =XvY .3: =XvY Y: =-XvkY

/ X -C A: -C B: -C Y:=C
X -cN A: -N : ;-N Y: =N
X = :- A:=E 13: =E Y:=E

lo X =W A W D:=W Y:=W
iI X:z= A:'-S B: "S Y:

,:'X: =N"' A: =C ! X: =CN'"! Z: =C

X:=E-! A:=B X: =CE'! (6)Z:=X
(7)X: =Z

14 X:=W! A:=X! X: CW"! (6)SCRR!
(7)CRCR!

X =.- ! A:'=Y ! X:=CS ! (6)SCRC!
( 7)P/ANS !

- Z7i zag shift with data transfer in and out of chip
SCRR Shift and colint responders by rows
CR.CR Clear -response count -register
PANS Pipelined add North to South
SCRC - Shift and count responders by columns

_ L , 1




