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Abstract

A theory of analogy must describe how the meaning of an analogy
is derived ffom the meanings of its parts, In the
structure-mapping theory, the interpretation rules are
characterized as implicit rules for mapping knowledge about a
base domain into a target domain. Two important features of the
theory are (1) the rules depend only on syntactic properties of
the knowledge representation, and not on the specific content of
the domains; and (2) the theoretical framework allows analogies
to be distinguished cleanly from literal similarity statements,

applications of general laws, and other kinds of comparisons,

Two marping principles are described: (1) Relations between
objects, rather than attributes of objects, are mapped from base
to target; and (2) The particular relations mapped are determined

by systematicity. as defined by the existence of higher-order
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Structure-Mapping: A Theoretical Framework for Analogy

When people hear an analogy such as "An electric battery is
like a reservoir" how do they deri&e its meaning? We might
suppose that they simply apply their knowledge about reservoirs
to batteries; and that the greater the match, the better the
analogy. Such a "degree of overlap" approach seems reasonably
correct for literal similarity comparisons. 1In Tversky's (1977)
elegant contrast model, the similarity between A and B is greater
the greater the size of the intersection (A B) of their feature
sets and the 1less the size of the two complement sets
(A - B) and (B - A).2 However, although the degree-of-overlap
model appears to work well for literal similarity comparisons, it
does not provide a good account of analogy. The strength of an
analogical match does not seem to depend on the overall degree of
featural overlap; ﬁot all features are equally relevant to the
interpretation, Only certain kiﬁds of mismatches count for or
against analogies, For example, we could not support the
battery-reservoir analogy by remarking (even if true) that
batteries and reservoirs both tend to be cylindrical; nor does it
weaken the analogy to show that their shapes are different. The
essence of the analogy between batteries and reservoirs is that
both store potential energy. release that energy to provide power
for systems, etc., We can be quite satisfied with the analogy in

spite of the fact that the average battery differs from the

average reservoir in size, shape. color, and substance.
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As another example of the selectiveness of analogical
mapping, consider the simple arithmetic analogy 3:6::2:4. We do
not care how many features 3 has in common with 2. nor 6 with 4.
It is not the overall number of shared versus nonshared features
that counts here, but only the relationship "twice as great as”
that holds between 3 and 6 and also between 2 and 4. To
underscore the implicit selectiveness of the feature match. note
that we do not consider the analogy 3:6::2:4 better or more apt
than the analogy 3:6::200:400. even though by most accounts 3 has

more features in common with 2 than with 280.

A theory based on the mere relative numbers of shared and
non-shared predicates cannot provide an adequate account of
analogy, nor, therefore. a sufficient basis for a general account
of relatedness. In the structure-mapping theory. a simple but
powerful distinction is made among predicate types, that allows
us to -state which ones will be mapped. The basic intuition is
that an analogy is fundamentally an assertion that a relational
structure that normally applies in one domain can be applied in
another domain, Before 1laying out the theory. a few

preliminaries are necessary.

Prelimipnary Assumptiops and Points of Emphasis

1. Domains and situations are psychologically viewed as systems

of objects, object-attributes and relations between objects.
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Knowledge is reptesented here as propositional networks of
nodes and predicates (cf. Miller & Johnson-Laird, 1979;
Norman, Rumelhart, & the LNR Group, 1975; Rumelhart & Ortony.
1977; Schank & Abelson, 1977). The nodes represent concepts
treated as wholes; the predicates applied to the nodes

express propositions about the concepts.

Two essentially syntactic distinctions among predicate types
will be important. The first distinction is between object
attributes and relationships. This distinction can be made
explicit in the predicate structure: attributes are
predicates' taking one argument, and relaticns are predicates
taking two or more arguments. For example, iOLLIDE (x,y) |is

a relation, while LARGE (x) is an attribute.

The second important syntactic distinction is between first-
order predicates (taking objects as arguments) and . second-
and higher~order predicates (taking propositions as
arquments). For example, if COLLIDE (x,y) and STRIKE (y.z)
are first-order predicates, CAUSE ([COLLIDE(x,y), STRIKE

(y.2z)] is a second-order predicate.

These representations, including the distinctions between
different kinds of predicates, are intended to reflect the
way people construe a situation, rather than what is

5
logically possible.
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Structure-mapping: Interpretation Rules

The analogy "A T is (like) a B" conveys that aspects of the
hearer's knowledge about B can be applied to T. T will be called
the target., since it is the domain being explicated. B will be
called the base, since it 1is the (presumably more familiar)
domain that serves as the source of knowledge. Suppose that the
hearer's representation of the base domain B can be stated in

terms of object nodes b , b ,...,b and predicates such as A, R.
1

n

R'., The hearer knows, or is told, that the target domain has
6 .

object nodes t , t ....,t . In order to understand the analogy.

1 2 m
the hearer must map the object nodes of B onto the object nodes

of T:

M: b -->t
i i
Given these object correspondences. the hearer derives
inferences about T by applying predicates valid in the base
domain B, wusing the node substitutions dictated by the object
mapping:
M: [(R(b ,b )] -=> [R(t .t )]
i 3 i j
7
Here R(b ,b ) is a relation that holds in the base domain B,
i s

J
Higher-order relations, such as R'(R ., R ), can also be mapped:
1 2

M: [R'(R (b, b)), R(b, b)] ==
1 i j 2 k 1
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4 [R'(R(t,t)pk(t't)]
1 i j 2 k 1

Higher-order relations play an important role in analogy, as is

discussed below.

Finally. a distinguishing characteristic of analogy is that
attributes (one-place predicates) from B tend not to be mapped
into T: |

[A(b )] -#=> [A(t )].
i i

'Notice that this discussion has been purely structural; the
distinctions invoked rely only on the syntax of the knowledge
representation, not on the content. The content of the relations
may be static spatial information, as in UNDER(x,Y) ., or
FULL (CONTAINER. WATER) ; or constraint information, as in
PROPORTIONAL [ (PRESSURE(liquid, source, goal), FLOWRATE(liquid,
source, goal)l; or dynamic causal information, as in CAUSE {AND

[PUNCTURE (CONTAINER) , FULL(CONTAINER. WATER)], FLOW-FROM (WATER.

CONTAINER]) }.

Kinds of Domain Comparisons

In the structure-mapping framework, the interpretation rules
for analogy can be distinguished from those for other kinds of
domain comparisons. The syntactic type of the shared versus

nonshared predicates determines whether a given comparison is
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thought of as analogy, as 1literal similarity, or as the

application of a general law,

In this section, different kinds of domain comparisons are
described, using the solar system as a common theme. The top
half of Figure 1 shows a partial representation of what might be
a person's knowledge of our solar system. (The dotted lines
should be ignored for now.) Both object-attributes, such as
YELLOW (sun), and relations between objects, such as REVOLVE
AROUND (planet, sun) are shown. (The diagram 1is quite sparse;
most of us know much more than is shown here.) Assuming that the
hearer has the <correct object correspondences, the question is

which predicates will be mapped for each type of comparison.

e —— - w

(1) A literal similarity statement is a comparison in which a

large numbef of predicates 1is mapped from base to target,

' relative to the number of nonmapped predicates (e.qg.,
Tversky, 1977). The mapped predicates include both object- 1

attributes and relational predicates.

EXAMPLE(l): The X12 star system in the Andromeda nebula is 1like

our solar system.

! INTERPRETATICN: Intended inferences include both object T
characteristics--e.g., "The X12 star is YELLOW, MEDIUM-SIZED, i
etc., 1like our sun." and relational characteristics, such as g.i

"The X12 planets REVOLVE AROUND the X12 star, as in our system." ’

P g A
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In a literal similarity comparison, all or mést of the predicates’

shown would be mapped.

(2) An analogy 1is a comparison in which relational predicates,
but few or no object attributes, can be mapped from base to

target.

EXAMPLE(2): The hydrogen atom is 1like our solar system.
(Rutherford, 1996)

INTERPRETATION: Intended inferences concern chiefly the
relational structure: e.g., "The electron REVOLVES AROUND the
nucleus, just as the planets REVOLVE AROUND the sun." but not
"The nucleus is YELLOW, MASSIVE, etc., like the sun." The bottom
half of Figure 1 shows these mapped relations. If higher-order
relations are present in the base, they can be mapped as
well: e.dg., The hearer might map "The fact that the nucleus
ATTRACTS the electron CAUSES the electron to REVOLVE around the
nucleus.” from "The fact that the sun ATTRACTS the planets CAUSES
the planets to REVOLVE AROUND the sun.” (This relaticn is not

shown in Figure 1.)

(3) A general law is a comparison in which the base domain is an
abstract relational structure. Such a structure would
resemble Figure 1, except that the object nodes would be
generalized physical entities, rather than particular objects
like "sun" and "planet". Predicates from the abstract base
domain are mapped into the target domain; there are no

nonmapped predicates.
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Figure 1. Structure-mapping for the Rutherford analogy: "The
atom is like the solar system.” !
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EXAMPLE(3): The hydrogen atom is a central force system.

INTERPRETATION: Intended inferences include "The nucleus
ATTRACTS the electron."; "The electron REVOLVES AROUND the
nucleus." These are mapped from base propositions such as "The
central object ATTRACTS the peripheral object."; or "The 1less
massive object REVOLVES AROUND the more massive object." These
intended inferences resemble those for the analogy (Example 2).
The difference is that in the analogy there are other base
predicates that are not mapped, such as "The sun is YELLOW."

All three kinds of comparison involve substantial overlap in
relations, but, except for 1literal similarity, not in object
attributes. What happens if there is strong overlap in objects
but not in relations? Let us leave aside single-component
matches involving only one object out of many, and instead
consider comparisons in which all the objects are shared, but
relations between objects are not. The commonest case in which

this arises is chronology:

(4) A chronology is a comparison between two time-states of the
same domain, The objects at time 1 map onto the objects at
time 2. This is the only interesting case in which there are
shared objects but no shared relations. The two time-states
share object-attributes, but typically not relational

predicates.

10
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EXAMPLE(4): Two hydrogen atoms and an oxygen atom will combine

to form a water molecule.

INTERPRETATION: Although the same objects--two hydrogen atoms
and an oxygen atom--are present in both situations, neither
configurational relations nor dynamic relations of the initial

situation can be mapped into the final situation. Only the

independent qualities of the individual atoms (e.g., their atomic
weights) are preserved, Note that such overlap among component
objects is not sufficient to produce similarity between
systems: Two isolated hydrogen atoms and an oxygen atom do not
resemble water, either 1literally or analogically. Chronology

will not concern us further; it is included for completeness, as

¢ e mma e o Sm e

the 1limiting case of object overlap with no necessary relational

overlap.

Table 1 summarizes these distinctions. Overlap in relations

1 is necessary for any strong perception of similarity between two

domains, Overlap in both object attributes and inter-object
relationships is seen as 1literal similarity, and overlap in
Lelationships but not objects is seen as analogical relatedness.
Overlap in objects but not relationships may be seen as

chronology, but not as similarity. Finally, a comparison with

d——y

neither attribute overlap nor relational overlap is simply an

anomaly. if
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Table 1
L Kinds of Predicates Mapped in Different

Types of Domain Comparison

No. of No. of
attributes relations
mapped to mapped to
target target Example

Literal Similarity Many Many The K5 solar system

is like our solar

system.

B e <
Borevmein g

Analogy Few Many The atom is like ﬂ

our solar system.

T 2

ovo-—y

v ) Abstraction Few? Many The atom is a
B . central force
R system,
i
Anomaly Few Few Coffee is iike the ,
s i
# . solar system ]
2 Abstraction differs from analogy and the other comparisons J
in having few object-attributes in the base domain as well ‘

as few object-attributes in the target domain.

-
. ey e r———— - A ———— -
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" According to this analysis, the contrast between analogy and

literal similarity is a continuum, not a dichotomy. Given that

two domains overlap in relationships, .they are more literally

similar to the extent that their object-attributes also overlap.

A different sort of continuum applies between analogies and

general laws: 1In both cases, a relational structure is mapped

from base to target. If the base representation includes

concrete objects whose individual attributes must be left behind
in the mapping, the comparison is an analogy. As the object
nodes of the base domain become more abstract and variable-like,

the comparison is seen as a general law.

Metaphor

A number of different kinds of ccmparisons go under the term
"metaphor." Many (perhaps most) metaphors are predominantly
relational comparisons, and are thus essentially analogies. For
example, in A. E. Housman's comparison, "I could no more define
poetry than a terrier can define a rat.", the object
correspondences are terrier--poet and rat--pcetry. Clearly., the

intended inference 1is not that the poet is like a terrier, nor

[y

certainly that poetry is 1like a rat, but rather., that the -

]

relation between poet and poetry is like the relation between .
terrier and rat. Again, in Virginia Woolf's simile, "She allowed i
life to waste like a tap left running."” the intent seems to be

to convey the relational notion of a person wasting a resource [

13 [1

o’




- e e

———

Report No. 5192 Bolt Beranek and Newman Inc.

through neglect, rather than to convey that her life was like

running water.

However, not all metaphors are relationally focused; some
are predominantly attribute matches. These generally involve
shared attributes that are few but striking, and often more
salient in the base than in the target (Ortony, 1979): e.q.,
"She's a giraffe," used to convey that she is tall. Many such
metaphors involve conventional vehicles, such as "giraffe" above.
or conventional dimensional matches, such as "a deep/shallow
idea" (Glucksberé, Gildea & Bookin, 1982; Lakoff & Johnson,
1980). Moreover, metaphors can be mixtures of all of these.
Finally, for metaphors that a&are analyzable as analogies or
combinations of analogies, the mapping rules tend to be less

reqular (Gentner, 1982,a).
Higher-order predicates and systematicity

Relations have priority over object-attributes in analogical
match;ng. However, not all relations are equally likely to be
preserved in analogy. For example, in the Rutherford analogy
between solar system and atom, the relation MORE MASSIVE THAN

(sun, planet) is mapped across to the atom, but the formally

similar relation HOTTER THAN (sun, planet) is not. The goal of

this section is to characterize this analogical relevance

explicitly.

e ———
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‘Part of our understanding about analogy is that it conveys a
system of connected knowledge, not a mere assortment of
independent facts. Such a system can be represented by an
interconnected predicate structure in which higher-order
predicates enforce connections among lower-order predicates.8 To
reflect this tacit preference for coherence in analogy, I propose
the systematicity principle: A predicate that belongs tc a
mappable system of mutually interconnecting relationships is more
likely to be imported into the target than is an isclated

predicate.

In the Rutherford model, the set of predicates that forms a

mappable system includes the follecwing lower-crder relaticns:
(1) DISTANCE (sun, planet),
(2) ATTRACTIVE FORCE (sun, planet)
(3) REVOLVES AROUND (planet, sun), and

(4) MORE MASSIVE THAN (sun, planet).

One symptom of this systematicity is that changing one of
these relations affects the others. For example, suppose we
decrease the attraction between sun and planet; then the distance
between them will increase. all else being equal. Thus relations
(1) and (2) are interrelated. Again, suppose we reverse relation

(4), to state that the planet is more massive than the sun; then

v
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we must also reverse relation (3), for the sun would then revolve
9

around the planet. One way of expressing these dependencies

among the lower-order relations is as a set of simultaneous

constraint equations:

Gmnm
ps
F = = ma = ma
grav 2 PP s s
R
where F is the gravitational force. m is the mass of

grav . p
the planet, a is the radial acceleration of the planet (and

p

similarly m and a for the sun), R is the distance between
s s

planet and sun, and G is the gravitational constant.

The same interdependencies hold for the atom. if we make the

appropriate node substitutions:
(5) DISTANCE (nucleus, electron),
(6) ATTRACTIVE FORCE (nucleus, electron)
(7) REVOLVES AROUND (electron, nucleus), and

(8) MORE MASSIVE THAN (nucleus, electron).

The cor: :sponding equations for the atom are
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elec 2 e e nn

where F is the electromagnetic force. g is the charge
on the electrgi?cm is the mass of the electron, ae is the radial
acceleration of thz electron, R is the distance b:tween electron
and nucleus, (and similarly fore the nucleus), and -1 1is the

electromagnetic constant.

These equations embody higher-order relations that connect
the 1lower-order relations (1) through (4) into a mutually
constraining structure. By the systematicity principle, to the
extent that people recognize (however vaguely) that the system of
predicates connected with central forces is the deepest. most
interconnected mappable system for this analogy, they will favor
relations that belong to that system in their interpretations.lﬂ
This is why MORE MASSIVE THAN is preserved while HOTTER THAN is
not: Only MORE MASSIVE THAN participates in the central-force

system of predicates.

As a final demonstration of the operation of the
systematicity principle, consider the analogy "Heat is like
water," used to explain heat transfer from a warm house in colad
weather. Suppose the hearer's knowledge about water includes two

scenarios:

1. AND[CONTAIN(vessel, water), ON-TOP-OF(1lid, vessel)]

R —
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2, CAUSE ({AND {PUNCTURE(vessel), CONTAIN(vessel. water)], FLOW-
FROM (water, vessel)}.

These can be paraphrased roughly as follows: (1) The vessel
contains water and has a lid; (2) if a vessel that contains water
is punctured, water will flow out. Assuming that the hearer has
made the obvious object corresggndences (water --> heat,

vessel --> house and lid --> roof), which scenario will be

mapped?

Intuitively. the second scenario is more interesting than
the first: (1) conveys merely a static spatial descriﬁtion,
while (2) conveys a dynamic causal description. We would like
chain (2) to be favored over chain (1), so that dynamic causal
knowledge 1is 1likely to be present in the candidate set of
attempted predications (to use Ortony's (1979) term). We could
accomplish this by postulating that analogies select for dynamic
causal knowledge, or more generally, for appropriate
abstractions. Either of these would be a mistake: The former
course limits the scope of analogy unreasonably, and the latter
course is both vague, in that "appropriateness" is difficult to
define explicitly, and incorrect, in that analogies can also
convey inappropriate abstractions.12 We want our rules for
analogical interpretation to choose chain (2) over chain (1), but
we want them to operate, at least initially, without appeal to

specific content or appropriateness. The systematicity principle

offers a way to satisfy both requirements. Dynamic causal

18
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information [e.g., (2)] will usually be represented in a more
deeply embedded structure than simple stative information [e.g.,
(1)]. Thus, by promoting deeply nested relational chains, the
systematicity principle operates to promote predicates that
participate in causal chains and in other constraint relations.
It is a purely syntactic mechanism that guarantees that the set
cof candidate mappings will be as interesting--in the sense that a
mutually interconnected system of predicates is interesting--as

the knowledge base allows.

In the next section, empirical support for the structure-
mapping theory is briefly discussed. First, however. let us

review the performance of the theory against a set of a priori

theoretical criteria. The structure-mapping theory satisfies the
first requirement of a theory of analogy, that it describe the
rules by which the interpretation of an analogy is derived from
the meanings of its parts. Further, the rules are such as to
distinguish analogy from other kinds of domain comparisons, such
as abstraction or literal similarity. Finally, a third feature
of the structure-ﬁapping theory is that the interpretation rules -
are characterizable purely syntactically. That is, the

processing mechanism that selects the initial candidate set of

predicates to map attends only to the structure of the knowledge

representations for the two analogs, and not to the content. l

1s L

’
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Empirical support

There is research supporting the structure-mapping approach.
In one set of studies, subjects wrote out interpretations of
analogical comparisons such as "A cigarette is like a time bomb."

These interpretations were read to naive judges, who rated each

assertion as to whether it was an attribute or a relation. (For

AL AR e ot

a fuller description, see Gentner, 1980b). The results indicated
a strong focus on relational information in interpreting
analogies. Relational information predominates over

attributional information in analogy interpretations, but not in

object descriptions generated by the same subjects. Further, a

correlation of aptness ratings and relationality ratings revealed

————————— . - g

that subjects liked the analogies best for which they wrote the

greatest degree of relational information.

- . omo

Other experimental evidence for structure-mapping as part of

SN the psychological process of interpreting complex analogies has

! included developmental studies (Gentner, 1977a,b; 19886b) and
o studies of how people use analogies in learning science (Collins
« & Gentner, in preparation; Gentner, 1980a, 198l; Gentner &

Gentner, 1982),

Pt

- Related research

Complex explanatory analogies have until recently received

little attention in psychology, perhaps because such analogies

[ 280
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require fairly elaborate representations of meaning. Studies of
analogy in scientific learning and in reasoning have emphasized
the importance of shared complex representational structures
(Clement, 1981. 1982; Collins & Gentner, in preparation; Gentner,
1980; Gentner & Gentner, 1982; Hesse, 1966; Hobbs, 1979; Hoffman,
1980; Moore & Newell, 1973; Oppenheimer. 1955; Polya., 1973;
Riley, 1981; Rumelhart & Norman, 198l; Steels, 1981; Stevens,
Collins & Goldin, 1979; VanLehn & Brown, 1988). Although some of
this work has been empirically tested, most of it remains in the
area of interesting but unvalidated theory. 1In contrast, much of
the psychological experimentation on analogy and metaphor has
been either theory-neutral (e.g. Schustack & Anderscn, 1979;
Verbrugge & McCarrell, 1977) or based on rather simple
representations of meaning: e.g., feature-list representations
(e.g., Ortony, 1979) or multidimensional space representations
(e.g., Rumelhart & Abrahamson, 1973; Tourangeau & Sternberg,
1981). These kinds of representaticons can deal well with object
attributes, but are extremely limited in their ability to express

relations between objects, and especially higher-order relations.

Recent work in cognitive science has begun to explore more
powerful representational schemes. The Merlin system (Moore &
Newell, 1973) featured a mechanism for "viewing x as y" (see also
Steels, 1982) which involved explicit comparisons of the shared

and nonshared predicates of two situations. Winston (1980.

1981), using a propositional representation system. has simulated
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the process of matching a current situation with a previously
stored precedent and using the similarity match to justify
importing inferences from the precedent to the current situation.
Further, in recent work he has investigated importance-dominated

matching; here the match between o0l1d and new situations is

performed by counting only those predicates that occur in causal
chains. This requirement is somewhat more restrictive than the
structure-mabping principle that participation in any higher-
order chain results in preferential mapping. However. it has the
similar effect of focussing the matcher on systematic relational
structures rather than on haphazard resemblances between
situations. One valuable aspect of Winston's work is his
modelling of the process of abstracting general rules from the
analogical matches. Gick and Holyocak have also emphasized the
relationship between analogical matching and the formation of
general schemas in an interesting series of studies of transfer

in problem-solving (Gick and ﬁolyoak, 1980. in press; Holyoak, in

press),

Other researchers have explored specific instances of

[,

relational mapping. VanLehn & Brown (1980) have analyzed

analogical learning of procedural rules in arithmetic,

ey

postulating mapping rules compatible with the rules proposed i

i here. Clement (198l1. 1982) has proposed a four-stage serics of
processes of generating analogical c¢omparisons during problem- ﬁ
solving, Rumelhart & Norman (1981) have used a schema-based

I
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representational system to discuss analogical transfer.
Carbonell (1981) has characterized the comprehension of analogy;
his approach emphasizes common goals and subgoals as organizing
principles. In the main, these accounts are compatible with that
given by the structure-mapping theory in each of the problem
domains. Relations tend to be preserved across domains with
dissimilar object-attributes: e.g., the matching of like
procedures that apply to unlike sets of objects (VanLehn and

Brown, 1980).

Some of the distinctions made here may appear rather
academic. To illustrate their potential relevance. let us apply
these distinctions to the spontaneous comparisons kit petpie
make in the course of learning a domain. An informal observation
is that the earliest comparisons are chiefly literal-similarity
matches, followed by analogies, followed by general laws. For
example, Ken Forbus and I have observed a subject trying to
understand the behavior of water flowing through a constricted
pipe. His first comparisons were similarity matches, e.g., water
coming through a constricted hose. Later, he produced analogies
such as a train speeding up or slowing down, and balls banging
into the walls and transferring momentum. Finally, he arrived at
2 general statement of the Bernoulli principle, that velocity

increases and pressure decreases in a constriction.
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lThis sequence can be understood in terms of the kinds of
differences in predicate overlap discussed in this paper. In the
structure-mapping framework, we can suggest reasons that the
accessibility and the explanatory usefulness of a match may be
negatively related. Literal similarity matches are highly
accessible, since they can be indexed by object descriptions, by
relational structures, or by both. But they are not very useful
in deriving <causal principles, ‘precisely because there is too
much overlap to knew what is crucial. Potential analogies are
less 1likely to be noticed, since they require accessing the data
base via relational matches; object matches are of no use.
However, once found, an analogy should be more aseful in deriving
the key principles, since the shared data structure is sparse
enough to permit analysis. Moreover, if we assume the
systematicity principle, then the set of overlapping predicates
is likely to include higher-order relations such as CAUSE and
'IMPLIES. To state a general law requires anotﬁet step beyond
creating a temporary correspondence between unlike domains: the
person must create a new relational structure whose objects are
so lacking in specific attributes that the structure can be
applied across widely different domains. (See Gick & Bolyoak,
1980, in press). One speculation is that such general laws can
be discovered by comparing two or more analogies, so that the

common subparts of the relational structure can be isolated.
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summary

The structure-mapping theory describes the implicit
interpretation rules of analogy. The central claims of the
theory are that analogy is characterized by the mapping of
relations between objects, rather than attributes of objects from
base to target; and, further, that the particular relations
mapped are those that are dominated by higher-order relations
that belong to the mapping (the systematicity claim). These
rules have the desirable property that they depend only on
syntactic propertieé of the knowledge representation, and not on
the specific content of the domain. Further, this theoretical
framewcrk allows us to state the differences between analcgies
and 1literal similarity statements, abstractions and other kinds

of comparisons.

One implication of the theory is that no treatment of domain
relatedness can be complete without distinguishing between object
features and relational features: that 1is, between relatiocnal
predicates and one-place attributive predicates.: Careful
analysis of the predicate structure is central to modelling the

% inferences people make in different kinds of comparisons.
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research on which this paper is based, and Cindy Hunt for
preparing the manuscript.

2 .
According to Tversky (1977), the negative effects of the

two complement sets are not equal: for example, if we are asked
"How similar is A to B?", the set (B - A)--features of B not
shared by A--counts much more than the set (A - B).

3
These "objects" may be clear entities (e.g. "rabbit"),

component parts of a larger object (e.g. "rabbit's ear™) or even
coherent combinations of smaller units (e.g."herd of rabbits");
the important point is that they function as wholes at a given

level of organization.

4
One clarification is important here. Many attributive

3
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predicates implicitly invoke comparisons between the value of
their object and some standard value on the dimension., LARGE (x)
implicitly means "X is large for its class." For example, a
large star 1is of a different size than a large mouse. But if
LARGE (x) is implicitly interpreted as LARGER THAN (X, prototype-
X), then this suggests that many surface attributes are
implicitly two-place predicates. Does this invalidate the
attribute-relatién distinction? I will argue that it does
not: that only relations that apply within the domain of
discourse are psychologically stored and processed as true
relations. Thus, a relation such as LARGER THAN (sun, planet),
that applies between two objects in the base (or target) domain,
is processed as a relation; whereas an implicit attributive
comparison, such as LARGER THAN (sun, prototype- star), is
processed as an attribute.

5
Logically, a relation R(a,b,c,) can perfectly well be

represented as Q(x), where Q(x) is true just in case R(a.b,c) is
true, Psychologically, the representation must be chosen to
model the way people think.

6
Most explanatory analogies are l1l-1 mappings, in which m =

n. However, there are exceptions (Gentner, 1982,a).

7
The assumption that predicates are brought across as

identical matches is crucial to the clarity of this discussion.

The position that predicates need only be similar between the

33
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base and the domain (e.g., Hesse, 1966; Ortony, 1979) leads to a
problem of infinite regress, with similarity of surface concepts
defined in terms of similarity of components, etc,. I will
assume instead that similarity can be restated as identity among
some number of component predicates.

8
The order of a relation is determined by the order of its

arguments. A first-order relation takes objects as its
arguments. A second-érder relation has at least one first-order
relation among its arguments; and in general an nth order
relation has at least one (n-1l)th order argument.

9
This follows from the simultaneous equations below, The

radial acceleration of either object 1is given by the force
divided by its own mass; thus the lighter object has the greater
radial acceleration. To maintain separation, it must also have a
tangential velocity sufficient to keep it from falling into the
larger object.

10
I make the assumption here that partial knowledge of the

system is often sufficient to allow a person to gauge its
interconnectedness. In the present example, a person may
recognize that force, mass and motion are highly interrelated
without having full knowledge of the governing equations.

11
In this discussion I have made the simplifying assumption

that, in comprehension of analogy, the hearer starts with the

34
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object .correspondences and then maps across the relations. The
actual order of processing is clearly variable. If the object
assignment is left unspecified, the hearer can use knowledge
about matching relations to decide on the object correspondences.
Therefore, it is more accurate to replace the statement that the
object correspondences are decided before the relational mappings
begin with the weaker statement that the object correspondences
are decided before the relational mapéings are finished. This is
largely because in a complex analogy, the number of mappable
relations is large compared to the number of object
correspondences; indeed the number of mappable relations may have
no clear upper bound.

12
Unless we distinguish the structural rules for generating

the candidate set from other conceptua; criteria (such as
appropriateness, insightfulness, or correctness) that can be
applied to the candidate set, we rob analogy of its power to
convey new information. Just as we can perform a syntactic
analysis of what a sentence conveys, even when the information it
conveys 1is semantically novel or implausible (e.g. "Man bites
dog."), so we must be able to derive a structural analysis of an
analogy that does not depend on a priori conceptual plausibility.
Of course, our ultimate acceptance of the analogy will depend on
whether its candidate set of predicates is plausible; but this is

a separate matter.
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