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LIST OF SYMBOLS . .

(x,y,z) Cartesian coordinates

(rO,z) Cylindrical polar coordinates

(R,6 c) Spherical polar coordinates

G(R,R) Three-dimensional Green's function
-- 0

GF(R,R) Three-dimensional free-space Green's function S -

=G (x,y,zXoYoz o ) in Cartesian coordinates

=GF(r,O,z,r, ozo) in cylindrical polar coordinates

F 0 0=G F(R,6, ,RoOo, o0) in spherical polar coordinates 4P0-

GF(r,r) Two-dimensional free-space Green's function

=GF(x,y,x oy) in Cartesian coordinates

=GF(r, ,r ,o) in polar coordinatinates . -

GF(x,x) One-dimensional free-space Green's function

S(R-R ) Three-dimensional Dirac delta function

6(x-x o) One-dimensional Dirac delata function

J Bessel function of the first kind, order nn•

H Hankel function of the first kind, order n, H (x)=J (x)+iY (x)n n n n

K Bessel function of imaginary argument, order n
n

Spherical Bessel function of the first kind, order n -,. -, -*-. ..

P Legendre function of the first kind, degree n
n

pm Associated Legendre function of the first kind of degree n
n

and order m. Note Pm m =O, m>n.
n. -(n+l)' m"

ee =1; en=2, n-1,2,3,en n ' ." . :-:';-

k (=u./c) wavenumber

z-z~ (z-zo)sgn(z-zo)

I R-go( j[(Xxo) 2+ (y-yo)2+ (ZZo) 21 ..) "' .

=J [r2+r2 - 2rrocos(o- )+(z-z) 2] " -0 0 0 0 . .•

=f [R2+R2 -2R Rcos(*)] , cos(W)= cose cOSe + sine sine cos(J-o)
o 0o 00

r -ro (X-xo) 2+(y-y ) 2 ]

r 2 +r 2 -2rr cos(0-4o).
0 0 0-
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INTRODUCTION

The Green's functions of the reduced wave equation are defined as the
solutions of the inhomogeneous equation

(V2+k 2)G(R,Ro) = -4w6(R-R) (1.1)

which satisfy the appropriate linear boundary conditions. In the absence of
boundaries the solution is the free-space Green's function, GF(R,R), which
takes the particularly simple form F -

G (R,R) x~kRR1!RR (1.2)

for outgoing waves in three-dimensions. The time dependence factor, exp(-iwt),
which is assumed throughout, is omitted from all equations. It is evident
that this Green's function is the outgoing wave solution of the reduced wave
equation when the excitation is a point source. It is also evident that
reciprocity applies, viz GF is unaltered when the positions of the source and
the observer are interchanged.

The reduced wave-equation with general source distribution F(R) inside a

volume V

(V2 +k2 )p(R) - -4wF(R) (1.3)

is easily solved by the principle of superposition when the Green's function is
known. The solution is

p(E) = F(R')G(R,R')d 3R' (1.4)

,' The determination of a Green's function usually proceeds by assuming that
it is the sum of the free-space Green's function, GF, and a scattering term -'

which satisfies the homogeneous equation and whose amplitude is determined by
the boundary conditions. In this case the homogeneous form of equation (1.1)
is usually solved by the method of separation of variables, which results in
the scattering term being represented by integral/series transforms. There is
therefore a requirement to expand the free-space Green's function, GF, in a
similar form in order to find the amplitud of the scattered wave. F

The expansions of the free-space Green's function in the various coordinate
systems are developed in texts too numerous to reference here. It is the
purpose of this memorandum to obtain the expansions in a simple way, without
being especially rigorous. It is hoped that the expansions will be of V

. particular interest to researchers who are using Green's function techniques
for perhaps the first time, or to those who would find a collection of free-
space Green's function representations to be useful. For reference, the
Appendix summarizes the representations derived herein.

-5-



2. PR BLEM. FORMULATION

The free-space Green's function considered here is the outgoing wave
solution of equation (1.1), which is expressed in Cartesian, cylindrical
and spherical coordinate systems respectively, Figure 1, as .

" 2/3x2+a2/y2+a2/DZ2+k21G(RR ) =-4n6(x-x )6(y-y )6(z-z) (2.1)

~2ax+2/y+aA 2+ 2 G(, 0)0 0 0

[a2/ar2+(l/r)/3r+(l/r 2 )a2 /9024. 2 /Zz2 k2] (R,R)

= -4n6(r-r )6(*-0 )6(z-z )/r (2.2)
0 0 0

[ a2 /aR2+(2/R)a/aR+(l/R 2)32/ae2+(cot O/R2 )3/3O

+(l/R 2 sin 2 6)32/a42+k21G(RR )

= -41r6(R-R )6(6-0 )eo 00 )/R2sine (2.3)
0 o 0

The evaluation of the three-dimensional free-space Green's function in
each coordinate system proceeds as follows. First, the differential
equation (1.1) is solved by the method of separation of variables
which leads to a general integral/series transform representation of
the Green's function. Secondly, this transform representation is
evaluated to obtain the Green's function in a form appropriate to
outgoingwaves. Thirdly, the transform representation is evaluated to
recover the Green's function in its simple form, equation (1.2).
Finally the particular cases of the two-dimensional and one-dimensional
free-space Green's function are analysed.

3. CARTESIAN COORDINATES

3.1 Fourier Transform Solution
The three-dimensional Fourier integral transform representation

GF(R,R) = (1/8W3) GF(a,O,c,R )exp [iax+igy+iczJdadd (3.1)

and its inverse

GF(caOo R G(RR)exp [-iax-iOy-ierijdxdydz (3.2)

are used to obtain a general solution of the reduced wave equation (2.1),
with point source excitation, in Cartesian coordinates as

CO

F(R') (l12 2JJexp [ia(x-x) + i (y-y) + ie(z-z)Idadd (3.3)

F -2+o2+2k2"-
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The Green's function GF and its Fourier transform GF are considered as
distributions in the sense of Schwartz [41 because consideration must bc
given to the choice of integration contours in their evaluation to ensure
that the outgoing wave solution alone is obtained.

3.2 Plane Boundary, z=constant

In many cases of interest there are plane boundaries, perpendicular to
the z-axis, say, on which boundary conditions must be satisfied. In such
cases it is advantageous to carry out the e-integration. This integration
may be accomplished by choosing a contour which depends on the sign of
z-z ,viz for z-z 0O the contour is closed in the upper half plane, while
for z-z < 0 the contour is closed in the lower half plane. These
contours are shown in Figure 2.

When k2> a2 + 02 the integrand has poles on the real axis and the portion
of the contour along the real axis must be indented to avoid passing
through them. The integral representation of the Green's function,
equation (3.3), is a general solution which is arbitrary with respect to
a solution of the homogeneous wave equation corresponding to incoming
free-waves generated at infinity. It is necessary to indent the contour
so that outgoing waves only are present. This 'radiation condition' may be
simulated mathematically by allowing for energy dissipation in the medium
by setting k-k+ik', corresponding to a complex sound velocity c-c-ic', so
that any disturbance originating at infinity is negligible in any finite
region of interest. The 'real' poles are thus forced off the real axis to
allow an unambiguous evaluation of the integral by the residue theorem.
The dissipation term is then allowed to tend to zero to show that this
k'-prescription is equivalent to indenting the contour above and below the
negative and positive poles respectively. The following integrals are .._
obtained

GF(R,Ro) = (i/27) (/y)exp [ia(x-x) + is(y-yo) + iy(z-z)dadO

z>X

0, 

-. 
( 3 .4 )

GF(R,Ro) - (i/2w) (i/y)exp [ ia(x-xo) + iB(y-y o ) - iy(z-zo)Jdad;

z (3.5)
0OO "cc-

or more generally f ,

GF(R,R) - (i/2r) (l/y)exp [ia(x-x) + io(y-y o) + iy!z-zoj]dad.
F -0 0 0

-- -® (3.6)

for all z, where

Y = W(k- 2 -B 2 ), IM(y)>O, Re(y)>o
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tan.'.. ---.- -..--....

3.3 Reduction to Standard Form

The standard form of the Green's function equation (1.2) may be
obtained by evaluating the double integral in equation (3.6).
This is accomplished by first transforming the variables to polar -
coordinate systems, via the substitutions

a = s.cos 6 B - s.sin e dad$ = sds de

x-x 0 t.cos Y-yo t.sin

The identity [2]

*. , -t

exp [ its.cos(e-o)]d 2TwJ 0 (ts)

is then used to reduce the resulting double integral to the single
integral

Jo(ts)exp [-]z-z ° [(s
2-k2)] sds

GF (R,Ro) - (3.7)
- -o J it(s2-k)

0

The integrand has a branch point at sik, and the contour must be
indented to avoid it. The inclusion of a dissipation term, as in "
the case with a plane boundary, allows the branch point to be lifted above
the real axis. In the limiting case of no dissipation this is equivalent
to indenting the contour below the branch point, Figure 3. With this
choice of contour for the integration, ensuring that the outgoing wave
solution alone is obtained, equation (3.7) is a standard integral [i1
which reduces to

exp [ik( (x-x )2 + (y-y )2 + (Z-Z )2}J
GF(_, Ro) 0 0 0

[ (x-xo) 2 + (y-yo) 2 + (Z-zo) 2] 1

which is the simple form of the free-space Green's function in Cartesian
cuirdinates

4. CYLINDRICAL COORDINATES

4.1 Transform Solution

The Green's function is represented by a Fourier series transform in
the angle 0, a Fourier integral transform in the axial coordinate z,
and a Hankel transform in the radial coordinate r, viz

GF(R,Ro) - (1/2Z) exp(ino)!j J GF( 'n'axRo)Jn( r)exp(iaz)d~da- -

- o (4.1)

__8



* where the inverse transform is

(F2,nr,)o) J ((,R)J(;r)exp(/in)-iz)rdrddz (4.2)

-F 00

The above transform representations are used to obtain a general solution
of the reduced wave equation (2.2), with point source excitation. After
simplification, using the differential equation satisfied by the Bessel
function, this general solution is "

0r)J (r)exp [ia(z-zo)]Edda ' -

GF(R,R = (1/n) E exp [in(-o)] -
-~~ -nE=o 2_ (k 2 _ a2 )

-00 0

(4.3)

4.2 Cylindrical Boundary r-constant

In many cases of interest in this geometry there are cylindrical
boundaries present, defined by r=constant, on which boundary conditions
must be satisfied. In such cases it is advantageous to carry out the
&-integration. The integrand has a pole on the real axis for k2> 2,
and the contour must be indented to avoid it. Introducing a dissipation
factor, as before, to obtain the outgoing wave solution only, allows the
pole to be lifted above the real axis or equivalently the contour to be -

" indented below the pole. The standard integral [1]

r (iri/2)J (yr )H (yr) r > r >O

J(Er r(r)&dt n on 0

J2_(2 (ni/2)Jn(r)Hn(yro) r 0 > r >0

with Im(y-,r(k 2- 2 ))>O, then enables the free-space Green's function to be
represented as

GF(_,Ro) - (i/2) E exp [in(O-0o)] J (Yr )H(yr)exp [ia(z-zo)] d

Go r > r >0 (4.4)
G(RR) , exp i

GF(,R )_ -(i/2) -- ep[i(#-#)] n(yr)Hn(yr°)exp [ ict(z-z°)]Jda . ;.:":"':.
F --o MM-D0 I~

r -r ">0 (4.5)

with y-(k 2- a2) and with Im(y)X, Re(y)O.
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4.3 Source or Observer on z-axis

In the special case of the source being positioned on the z-axis, it is
evident that the Green's function must be axisymmetric. Hence, the n-Oterm alone contributes to the field which is obtained from equation (4.3) ir ....$

as

GF(R,Ro) = (I J J J (Cr)exp [ia(z-zo)Id~da (4.6)

I2 I E 2

The E-integration is facilitated by extending the range of integration
to the entire real axis by the use of the formula

J0 (r) = (1/2) [Ho(Er)-Ho(-Cr)] (4.7)

to give

H (&r)exp [icx(z-zF]d dcd (4.8)
GF(R,Ro) 0 (/2i)

-0 -2

Figure 3 shows the contour used to evaluate the E-integral. The
indentation at the origin is necessary because of the branch point of
the function H (er). The contribution from this indentation can easily0
be shown to be zero when the small argument expansion of the Hankel
function, viz Ho(x)f(2i/r)tn(x), is used in its evaluation. The
integrand also has poles on the real axis when y2>0. The required
indentations are again chosen by the inclusion of a small dissipation
term, k-k+ik+, to give, on applying the residue theorem,

GF(R,Ro)= (i/2) H (yr)exp [ia(Z-Zo )Ida (4.9)
F 00

a result which is identical to equation (4.4), in the special case of ro=O.
S

In the case of the observer being positioned on the z-axis the analysis
is identical, as would be expected by reciprocity, and yields

GF(R,R 0 (i/2) H (yr )exp [ia(Z-Z )]da (4.10)

Equations (4.4) and (4.5) are therefore valid for all values of r and r
0such that r and r are not both zero.

- 10 -



4.4 Plane Boundary z=constant
In cases where a plane boundary perpendicular to the z-axis is present,

on which boundary conditions must be satisfied, it is advantageous to
perform the a-integration in equation (4.3). The contours used for
this are identical to those used for the c-integration in Section 3,
and give the result

0J(Ir)J exp [ijz-z .- ..2--2'-E
GF(R,R) = i . exp [in( - 0>] ( r°)e

n=- 0 f(k 2 _ E 2 ) . -, :

(4.11l) ....

4.5 Reduction to Standard Form (4.'1)

Equations (4.4) and (4.5) can be reduced to standard form, equation (1.2),
by making use of one of the Bessel function addition theorems [31, viz,

exp [in(O-0o)]Hn (yr)J (yr) r > r>0-

00 n" 0 n"0

Ln=-

to give

GF(R,Ro ) = (i/2) Ho(yr,)exp [ia(z-z )Ida (4.12)

where "e

r r2 + r2 - 2r r cos ( A-)] =,[(x-xo) 2 + (y-yo) 2]

This standard integral [2,p.7101 reduces to the simple form of the
free-space Green's function for outgoing waves, equation (1.2).

5. SPHERICAL COORDINATES '-'

5.1 Transform Solution

The Green's function is represented by a Fourier Series transform in the
angle 0, an associated Legendre Series transform in the angle e, and a
spherical Hankel transform in the radial coordinate r, viz

GF(R,R) Z Z exp(im.) E ?m(cos 8) GF(,nmR (JR)E/2d•
M-w n=-= 51

0



s n) -).

where the inverse transform is

G F(En,m,R) (2n+l)(n-m)!1/2/(4r2(n+m)!).

2w 7r

((RR )exp(-imO)j (R)Pm(cos 0)R2sine dRd~d4 (5.2)GF (R'0o ep(i)Jn n

0 0 0
The above transform representations are used to obtain a general solution
of the reduced wave equation (2.3) in spherical coor.inates which, after
simplification using the differential equation satisfied by the spherical
Bessel function, is

00
In I + I (2n+l) (n-m)! Pm(cos Opm(c8 s 0°)exp[im(O-O)]GF(R,Ro. = (1/7) En n 0F- -0

Jn (Ro) Jn (R) 2d (5.3)

5.2 Spherical Boundary

In cases of interest in this geometry there are spherical boundaries
* present, defined by R=constant, on which boundary conditions must be

satisfied. In such cases it is advantageous to carry out the E-integration
in equation (5.3). The identity

-(ER__ )j ER,2 (tR )Ji 2 (~)
2  2r (RR22 (5.4)

10 0

enables this integration to be accomplished by the methods of Section 4 to
give the outgoing wave representation for O<R <R

0

GF(R,Ro) = [,i/4J(RRo)] (2n+l)Jn+ /2(kRo) Hn+,/2 (kR).

Inl+l (n-m).Pn(cos O)Pm 0 )exp I im(-s )] (5.5)
n n c 0

m= -InJ-1 (n+m)!

while for O<R<R it is only necessary to interchange R and R . The above
00

equation may be simplified to

12



GF(R,R) = [ /2v(RR)1 E e n(2n+l)J n+1/2 (kR)H +/2 (kR ).
n =o

n (n-m)!Pm(cos O)P m (cos eo) cos [mO-4o)] (5.6)

mo (n+m)!

5.3 Source or Observer at the Origin

In the special case of the source being positioned at the origin it is
evident that the Green's function is spherically symmetric. Hence the
(n=O, m=O) and (n=-l, m=O) terms alone contribute to the field which is

obtained from equation (5.3) as

GF(R,R) = (2/Tr) jo(&R)C 2 d (5.7)

o k2

This integral is of standard form when the spherical Bessel function is

replaced by a Bessel function of order one-half and the contour is
indented below the pole at =k. It is [2, p.687]

GF (R,R) = f(-2ik/TR)Kl/l(-ikR)

which can be expressed [2, p.967] as

GF(R,Ro) = exp(ikR)/R (5.8)

In the separate case of the observer being positioned at the origin, the
analysis is identical and gives the result expected by reciprocity, viz

equation (5.8) with R and R interchanged.
0

- 5.4 Reduction to Standard Form

Equation (5.6) can be reduced to the standard form of the Green's function
equation (1.2) by making use of the addition theorems [2, p.1013 and p.980]
for the Legendre and spherical Bessel functions, viz

n e (n-m)!pm(cos 0)P m(cos )cos [m(O-o)] (5.9)
P(Cos) Z n n n o
n

mo (n+m)!

exp(ikIR-Ro )/IR-R 0 [Tri/2,/(RR ) Z (2n+l)Jn+1/2 (kR )H n+/2(kRP n(Cos p)

n=o

• R > R (5.10)
0

where cos p = cos 0 cos 0 + sin 0 sin 0 cos - o )

is the cosine of the angle between the source and observer.

- 13-



%i 6. ONE AND TWO DIMENSIONAL REPRESENTATTONS

6.1 General

The analysis necessary to obtain the expansions of the one and two
dimensional free-space Green's functions, and their subsequent reduction
to the simple standard forms follows the same procedure as that used to
solve the three-dimensional problem. This section therefore contains a
minimum of analytical detail.

6.2 Cartesian Coordinates: (xy)

The two-dimensional Fourier transform and its inverse are used to obtain
the general representation of the free-space Green's function in two-
dimensions as

G(rr o)  (1/w) exp jia(x-x )+io(y-yo) dad$ (6.1)fa2+02-k2

In the presence of the plane boundary y-constant, the $-integration is
performed to give the free-space Green's function as

,1* $

exp [ia(x-x0 ) + iJ(k2-c 2 ) ]y-y 0 J da (6.2)
GF(r -

F -0

This integral may be written as

G~r~r) - 2Cos Ici(x-x )Jexpt-Iy-y jf(i2 + (-ik)2 )idct
f(a2 + (-ik)2 )

10
which is of standard form [2, p.4981 when damping in the system is

considered, and gives

G ( ,r ) - 2K (-ik [ (X X )2  +(y-y )2] 1/2)

which reduces to the free-space Green's function in its simple form, viz

GF rrro ) (k (XoXk [ (y-yo)21 1/2)(63

" wil (klr-ro) (6.4)

- 14 -



'1!

6.3 Polar Coordinates: (r,O)

The Fourier series and Hankel transforms in the angle and the radius
r, respectively, and their inverses are used to obtain the general
representation of the free-space Green's function in two dimensions asCo

Jn( r)Jn (Ero) dE (6.5) i'.

GF(r,ro) = 2 Z exp [in( -) [n 5
Sn=_co 0 2_k2--

0

In the presence of a circular boundary, tne C-integration is performed as

o

G (r,ro) 7ri exp i in(- o)]H (kr)J (kro) r > r 0 rO
F--a o n n 0

(6.6)

G (r,ro ) ii E exp [ in(o-4o)J Hn (kro)J (kr) r°  r 0 r *0

F 0 n 0n

(6.7)

a result which reduces immediately, via a Bessel function summation theorem
[ 3] , to the simple form of the two-dimensional free-space Green's function
equation (6.4).

6.4 One-Dimensional Representation

The one-dimensional Fourier transform and its inverse are used to obtain

the general representation of the free-space Green's function in
one-dimension as

GF(X,X) = 2 exp [ia((x-x)/(a2 k2)d, (6.8)

-00

which is immediately integrable to the standard and simple form of the one-
dimensional free-space Green's function, viz

GF(x,x) = (21ri/k)exp [ik(x-xo)] x > xo  (6.9)

GF(Xx o) ff (2i/k)exp [ik(xo-x)J x < x0  (6.10)

E A Skelton (SO)
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APPENDIX

GREEN' S FUNCTIONS IN THREE DINENSIONS

General Form

G F (,R) 0 exp(ik.IR-R 0 1)/IR-RI0

GF(,R=(127 2) [1 expI ic(-x) + iB(y-y) + ie(z-z A dad~de

JJ) a2+ 82+£2 -k2

GFRR)=(1/7r) Ex Jn( r)J,(& r0)exp t ia(zmz )1 &d~da

F- 0

J -2 -k 2  a2
0

*~~~ (B,R ) = (i2IT [ (l/Y)exP m c(Cosx0 ) i(Cos 0  + iyz)ex dcm(d

0 0

Cyarteia Coordinates -Plndra Boundary ( rnconstant)

G(i, /2) E -Yexp [i aJ(yr0 +H o(y-ex + il(-z dad

G F( -0 0w 02

(i/2) E ex coin( - ) f J(yr )H (yr)exp[ ia (z-z) dci

_ -19-



with y-if(k 2-a2), for r>r >O, r*O. Interchange r and r when r 0 r>O, r 0O.

Cylindrical Coordinates - Plane Boundary (z-constant)

JiJ expJ (nEr-$ox] i(z-z°),,r(k2-E2)] d

0

n =-= f(k2-E 2 )

G F (RR) 0

i I (En(r- ) [i(z-zo)J(k2-a2)]-$E

n=o 0(k2-E2)

0

for (z-z )-O. Interchange z and z when (z-zo)4 0.

Spherical coordinates - Spherical Boundary (R=constant)

(ni/4,f(RRo) E (2n +1 J n+/(kR)n+/ko)
0nm -/

Inj~l m Ij(~m!0
E (n-m)! P (cos e)Pn (cos e )exp [ im(O-0o)]/(n+m)m-i

GF (R,Ro =
(wi/2(RR)) e (2n+l)J 1 (kR)H (kR

n o  n (n+l ( oR)/n+1/2 (kRo)"_ n .n)PZ.0)mo cos.
rnm O n n00

for O<R<R 0 Interchange R and R when O<R <R.

GREEN!S FUNCTIONS IN TWO DIMENSIONS

General Form

GF(_,_) - wi Ho(klr-ro)

exp [ia(x-x ) + is(y-y )ldad8-
GF(r,Eo) (1/7r) '

F -O 2 +82-k2

GF(r,r) = 2 Z exp[in(0-*o) n n 0
F j0

no 0 E 2t.



Cartesian Coordinates - Plane Boundary (y-constant)

G ri exp ia (x-x°) + i (Y-Y°)(k2-a2)ldo,i ~~ F (r'ro) 
":•"-

l(k2- 2)

for y>Yo" Interchange y and y0  when y <Yo"

Polar Coordinates - Circular Boundary (r=constant)

00

Tri E exp [in(p-0 )] Hn(kr)Jn (kro)
n" -co

GF(r,r) =

7r i e cos [n(O-))] H (kr)J (kr )
n=o

for r>r 0 Interchange r and r0 when r<r 0-'"00 0

GREEN'S FUNCTION IN ONE DIMENSION

General Form

G.(xXo) - (27ri/k)exp(iklx-x01)

SGF(XXo) = 2 exp [ia(x-xo)]da

F 0

a2-k
2
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