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Abstract

This paper is concerned with constructing, for each expression in a given
program text, a symbolic expression whose value is equal to the value of the
text expression for all executions of the program. A cover is a mapping from text
expressions to such symbolic expressions. Covers can be used for constant pro-
pagation, code motion, and a variety of other program optimizations. Covers
can also be used as an aid in symbolic program execution and for finding loop
invariants!for program verification. We describe a direct (non-iterative)
algorithm for computing a cover. The cover computed by an algorithm is
characterized as the minimum of a certain fixed point equation, and is in general
a better cover than might be computed by iteration methods (which can compute
fixed point covers which are not minimal). Our algorithm is efficient and applic-
able to all flow graphs. A variant of an algorithm is implemented by [KK] in
an optimizing compiler for Pascal. [R1l] extends our algorithm to symbolic

analysis of programs with records, such as LISP and PASCAL programs.
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1. INTRODUCTION

Let Il be a computer program to which we wish to apply various optimizations.

We begin by formulating a global flow model for Il as in [H] and [MS].

1.1 The Global Flow Model

All intraprogram control flow is reduced to a digraph indicating which blocks
of assignment statements may be reached from which others (but giving no information
about the conditions under which such branches might occur). The control flow graph
F=(N,A,s) is a flow graph whose nodes are called blocks (to distinguish it from
other graphs considered in our paper) and rooted at the start distinguished block
s EN. A control path is a path in F. Executions of the program correspond to
control paths beginning at the start blocks, although not every such path in this
graph need correspond to a possible execution of the program II.

The only statements in the programming language retained in the model are
assignment statements. An agsignment statement of Il is of the form X := &.

The left-hand side of the assignment is a program variable taken from the set
{x,Y,2,...}. The right-hand side is an expression & built from program variables
and fixed sets C of constant symbols and © of function symbols.

Each-node n€N contains a block of assignment statements. These blocks do
not contain conditional or branch statements; control information is specified by
the control flow graph as in [C]. A program variable occurring within only a
single block n€N is loecal to n. Let I be the set of program variables
occurring within I and not local to any block. For each program variable X€ZI
and block n€N-{s} we introduce as in [RT] the imput variable x"  to denote
the value of X on entry to block n. We use the symbol xs, considered to be a
constant symbol, to denote the value of X on entry to the program Il at the

start block s.
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let EXP be the set of expressions built from input variables, C, 6.
Thus, &€EXP is a finite expression consisting of either a constant symbol
c€C, ap input variable X " representing the value of program variable X" on
input to block n, or a k-adic function symbol 6 €0 prefixed to a k-tuple of
expressions in EXP. Thus & is a term in a first order language; it is an
expression containing no predicates and built from function symbols, constant

symbols, and variables on input to particular blocks of assignment statements.

For each X€I and node n€N where X is assigned to, let the output
expression &(X,n) be a (canonically chosen) expression in EXP for the vale of X onexit
from block n in terms of constants and input variables at block n. A text
expression t 1is an output expression or a subexpression of an output expression.
Note that each text expression t is a substitution instance of an expression on
the right hand side of an assignment statement of JI. Let TEXT € be the set of
text expressions for program II.

For example, let n be the block of code:

X:=X-1 ;
Y:=Y+4 ;
t=Xry |

Then ¢&(Z,n) = (X'-1)*(Y'+4) (or in the more proper prefix notation,
(v (-~ xn 1) (+ ¥ 4))) 1is the text expression associated with the string of text
"X *Y" at the last assignment statement of n.

aAn interpretation for the program Il is an ordered pair (U,I). The universe

U contains (among other things) a distinct value I{(c) for each constant symbol c€C.

For each k-adic function symbol 6€©, there is a unique k-adic operator 1(6)

which is a partial mapping from k-tuples in l.)k into U. We assume I(cl) #I(cz)
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for each distinct C) c2€<: (every value has at most one name). For example,
a program is in the arithmetic domain if it has the interpretation (z,1,)
where 2 is the set of integers and Iz maps symbols +, -, *, / to the
arithmetic operations addition, subtraction, multiplication, and integer
division.

An expression in EXP is put in reduced form by repeatedly substituting
for each subexpression of the form (6 cl...ck), that constant symbol ¢ such
that I(c)==I(6)(I(c1),...,I(ck)), until no further substitutions of this kind
can be made. We assume the blocks are reduced in the sense of Aho and Ullman
[AUl], so each text expression is a reduced expression. We also assume that
the output expressions & (X,n) are reduced (and thus uniquely determined).

A global flow system p is a quadruple (F,Z,U,I) where F is the
control flow graph of i, I is the set of program variables and (U,I) is

an interpretation. The next definitions deal with a fixed global flow system

p= (FIZlUII) .

1.2 Covers

The utility of the global flow model is that many program analysis and
improvement problems may be formulated as combinatorial problems on digraphs.
The fundamental program analysis problem of interest here is the discovery,
for each expression t in the text of the program, of a symbolic expression
& for the value of t which holds for all executions of the program.

Let & be an expression in EXP and let p be a control path. We give
a recursive definition for VALUE(é& ,p), the expression for the value of
in the context of a program execution on this control path p. VALUE(& ep)
is defined formally as follows:

i) if p=(s) then VALUE(&,p) is the reduced expression derived

from &.
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ii)} otherwise, if p=p'-(m,n) then VALUE(&,p) =VALUE(&' ,p') where
&' is the expression obtained from & by substituting the output expression
&(X,m) for each input variable Xn, and putting the result in reduced form.

We now define origin(#), where &€ EXP, which intuitively is the earliest
block at which all the quantities referred tc in & are defined. Let
N(®) = {n €N|the input variable X" occurs in &}. If N(#) is empty then
origin(€) is the start block s and otherwise or.gin(#) is the earliest
(i.e., closest to s) block in N(& relative to the dominator ordering
(see Appendix I). The origin need not exist for arbitrary expressions in EXP,
but will be well-defined in all the relevant cases (i.e., origin exists for all
text expressions and their covers). Note that if a text expression t contains
no input variables then origin(t) =s, and otherwise origin(t) is the block
in N where that assignment statement is located.

An expression &E€EXP covers a text expression t if VALUE (t,p) = VALUE (&,5)
for every control path p from s to origin(t). Hence, if & covers t
then & correctly represents the value of t on every execution of program II.
(See Figure 2).

A cover is a mapping ¢ from the text expressions TEXT to expressions in
EXP in reduced form such that for each text expression t, Y(t) covers t.

Note that the origin of any cover & of a text expression t is always
well defined since the elements of N(& will form a chain relative to the

dominator ordering.
LEMMA 1. If &€EXP covers text expression t then origin(§) dominates
origin(t).

Proof by contradiction. Suppose origin(#) does not dominate origin(t). Then
& must contain an input variable X" such that n is not a dominator of

origin(t). Hencc there - an n-avoiding control path p f£rom the start block
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s to origin(t) such that VALUE(&,p) contains X" but VALUE (t,p) does

not, so VALUE(&,p) # VALUE(t,p), contradicting the assumption that & covers t. O

We now define a partial ordering of covers. For each pair of covers wl
and wz, w1<“b iff oiigin(wl(t)) dominates origin(wz(t)) for all text
expressions t.

We wish to compute a cover minimal with respect to this partial ordering.
Unfortunately, Appendix II shows this is an undecidable problem. It follows that
we must look for heuristic methods for good, but not minimal covers. Subsection
1.4 defines a class of covers which are fixed points of an iterative process.

The minimal fixed point cover is efficiently computed by our direct algorithm

given in Section 2. The next subsection describes applications of covers to

program optimization.

1.3 Applications of Covers

We give below a number of program analysis problems and optimizations which
reduce to the problem of determining covers of text expressions. These examples
indicate that computing covers is of fundamental importance to program analysis.
[RL]) (which is a preliminary draft of this paper) and the recent paper of [RT]
were the first to consider the problem of computing covers. [KK] have made
practical application of our work in the implementation of an optimizing
computer for Pascal.

a) Comstant propagation (or folding) is the substitution of the appropriate
constant symbols for text expressions covered by constants (see [Ki].

b) More generally, a text expression t 1located at block n is redundant
if on all paths from the start block to n another text expression t' yields
a computation equivalent to that of t. Thus t may be replaced by a load
operation from a temporary address containing the result of some such equivalent

previous computation (see [C], [CAl, [E], [G], [FKU], [U]). Thus it would suffice

that each such t has the same cover as t.
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c) Code motion is the process of moving code as far as possible out of
cycles in the control flow graph (i.e., out of program loops). The birth point
of text expression t 1is the earliest block n in the control flow graph
(relative to the partial ordering of blocks by domination with the start block
first) where the computation of t is defined. Any block occurring between
(relative to this domination ordering) n and the original location of t
has a cover for t in terms of covers for the variables at n. This best
possible birth point for t is the origin of the minimal covering expression
for t. Hence code motion is fundamentally related to the computation of
covers. The earliest such block m, with the further property that the computa-
tion of t can induce no new errors at that block m, is called the safe point
of +t; the computation of t may safely be moved to any block between m and
loc(t). The text expression appropriate at the chosen block may not be
lexically identical to t, but is given by the cover of t in terms of the
variables on input to that block. Preliminary work on simple motions, primarily
emphasizing safety, but not considering birth points is given in [CA), [G] and [E].
[R2] gives a complete formulation of code motions considering birth points and
safepoints, also considering the movement as far as possible out of cycles, and
give an efficient algorithm for carrying out these code motion optimizations.

d) A cover for a variable in a program loop is a loop invariant (see
[FU] and [W]. The discovery of loop invariants is often crucial for proving
the correctness of a program; see for example [Ul], [KM] and [HK].

e) Symbolic execution of a program as described in [K2] and [CHT], and
a program transformation as described in [L] and [SHKN] generally requires a
powerful program simplifier. Domain specific simplifiers such as [NO] may
require the solution of logical decision problems which require much time and

space. The covers give domain independent simplifications of program text,
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which can be computed efficiently. A practical simplification system may use

a combination of these techniques.

1.4 A Compatible Class of Covers

In Appendix II we show that the problem of computing minimal covers over
arithmetic domains is unsolvable. Here we consider a class of covers that can
be characterized by fixed point equations. These covers can be computed in-
efficiently by an iterative algorithm (later in this paper we describe how to
efficiently compute them by our direct algorithm). To iteratively construct
this class of covers, we would first take a pass through the program and
construct a mapping wo from text expressions to EXP; wo may not be a cover
but has the property that for all text expressions ¢t,

VALUE (Y (t) ,p) = VALUE(t,p)
for some (rather than all) control paths p from s to origin(t). The
algorithm would then iteratively compare possible covering expressions of input
variables at particular blocks to the corresponding output expressions of
preceding blocks, and propagate the results to predecessor blocks. More
precisely, for any mapping { from text expressions to EXP, let Y¥(y) be the

. . n
mapping y' from text expressions to EXP such that for each input variable X ,

U)'(Xn) & if ‘&= Y(&(X,m)) for all blocks m immediately preceding

n in the control flow graph F,

n \
X, otherwise.

and Y'(t) is the reduced expression derived from text expression t after
substituting W'(Xn) for each input variable x" occurring in t. This
iterative algorithm then computes Wk(wo) for k=1,2,... until a fixed point
of Y is obtained. Note that Y maps covers to covers; but Y need not be

monotonic, i.e., for some cover Y and text expression t, it may not be that

Y() (t) SP(t).
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THEOREM 1. If Y <s a fixed point of ¥ than Y 1is a cover.

Proof. We must show VALUE(y(t),p) =VALUE(t,p) for all text expressions ¢t 4
and control paths p from s to the block where t is located. Let p be -]
3 the shortest control path from s to a block n where there is located a

.

text expression t such that ;

VALUE (Y (t) ,p) # VALUE(t,p)
Thus t must contain an input variable X" such that -
n n B
VALUE (Y(X),p) # VALUE(X ,p) . ,l
Clearly, \p(xn) #Xn. Let m be the next to last block in p, so p=p'-{(m,n).
By definition of VY, w(xn)==W($(X,m)). Since w(x“) contains no input
variables at n, ;j

VALUE (Y (x") ,p") 4

VALUE (y (X") ,p)

VALUE (y (&(X,m)) ,p'), since $(X") =P (E(X,m))

VALUE (&(X,m) ,p"') by the induction hypothesis,

VALUE (X", p) by definition of VALUE. . o 1

In Appendix III, we show that ¥ has a unique minimal fixed point Y*, f]

(See Figures 2 and 3 for examples of the minimal fixed point cover.). We then [ ]

show how to efficiently compute y*.

The overall plan of Section 2 is to introduce (in Section 2.1) a special
class of graphs called global value graphs which represent the flow of values i.
(rather than control) through the program II. We define, for each global

value graph GVG, a set rGVG of approximate covers associated with it.

o Appendix III shows PGVG is in each case a finite semilattice which thus has

a unique minimal element rGV , and which is efficiently calculated by the

G

algorithm presented in Sections 2.2-5. As we show in Appendix III, for a

3 particular choice of GVG, rGVG is actually y*, the minimal fixed point of  J

1

the functional V¥, so our general algorithm does indeed compute y*.
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n Y<«X

n

of X on input to m.

X+2

X, the value of X on input to n, covers xm, the value

This is discovered by our algorithm,

since it is true for the minimal fixed point cover. How-
ever, an iterative algorithm does not necessarily discover

this.
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1.5 Comparison with Previous Work

In order to compare our methods with others we must fix the relevant para-
meters of the program and control flow graph. Let n and a be the cardinality
of the node and edge sets, respectively, of the control flow graph. Let O be
the number of variables occurring within more than one block of the program (if
we built into the programming language a construct for the declaration of
variables local to a block, then the parameter O is the number of global
variables). Let & be the length of the program text. Our careful considera-
tion of the parameter Rf--avoiding, for example, redundant representations of
the same expression--is one of the novelties of our approach. Previous authors
have analyzed for program optimization algorithms primarily from the point of
view of the control flow graph parameters n and a.

Kildall [Ki] presents an iterative algorithm for computing approximate
solutions to various expression optimization problems. The discovery of constant
text expressions by Kildall's algorithm may require (0(2+a)) elementary steps
and §(Ca) operations on bit vectors of length O0(0f). (Q(£(x)) 1is a function

bounded from below by k-f(x) for some k. See Knuth [Kn2].) Kam and Ullman

[KU2] show that the Kildall algorithm discovers only a restricted class of text

expressions covered by constant symbols. (See Figure 4.) Neither of these
authors considered the more general problem of computing covers of text
expressions.

As described in Section 1.4 an iterative algorithm may also be used to
compute a certain class of covers, which we have characterized as fixed points
of an update functional Y mapping approximate covers to improved covers.

Fong, Kam, and Ullman [FKU] give another algorithm, using a direct (noniterative)
method which could be adapted to give covers, though these covers would be

weaker than those fixed point covers and their algorithms are restricted to
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by the constant 5 but is not discovered by Kildall's
algorithm.
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reducible flow graphs. We will assume these algorithms are executed on a
unit cost random access machine. The iterative algorithm requires Q(lnz)
elementary steps and Fong, Kam, and Ullman's algorithm requires §(La log(a))
elementary steps. One source of inefficiehcy of both of these algorithms is
in‘the representation of the covers. Directed acyclic graphs (dags) are used
to represent expressions, but separate dags are needed at each node of the
flow graph. Since a dag representing a cover may be of size §(R) the total
space cost may be §(n). Various operations on these dags, which are con-
sidered to be "extended" steps by Fong, Kam, and Ullman [FKU], cost Q(%)
elementary steps and cannot be implemented by any fixed number of bit vector
operations.' In general, any similar algorithm for computing a cover which
attempts to pool information separately at each node of the flow graph will
have time cost of §l(fa), since the pools on every pair of adjacent nodes must
be compared. Since £2n, such a time cost may be unacceptable for practical
applications.

Another problem with these previous methods is they do not necessarily
compute good covers. The iterative algorithm only computes a fixed point of
Y, but not necessarily its minimal fixed point (again, see Figure 3). Our

algorithm always gives the minimal fixed point. At any rate, this paper and

subsequent papers [R2], [TR] were the first in the literature directly concerned

with computing covers.

The global value graphs used in this paper contain dags of program blocks
as well as the use-def edges of [Sc] to represent the global flow of values
through the program. The use of a global value graph leads to our efficient
direct algorithm for computing covers which works for all flow graphs. The
method derives its efficiency by representing the covers with a single dag,
rather than a separate dag at each node. The glcbal value graph GVG0 is of

size O(Ca+ %), although the results of [RT] may be used to build a global

A, MacTecs i tcava_as B e oo
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value graph which in many cases is of size O(a+%) (see Section 3). 1In
elementary operations, the time cost of our algorithm for the discovery of
constants is linear in the size of GVG, and our algorithm for finding the

cover which is the minimal fixed point of V¥ requires time almost linear in
the size of the GVG. Thus our algorithm for symbolic evaluation takes worst
case time almost linear in 0Oa+% (a+% in many cases), as compared to the
iterative algorithm which may require Q(lnz) steps. Recently, Reif and
Tarjan [RT] give an algorithm which computes simple covers (weaker than minimal
fixed points of V¥) in time almost linear in £ +n+a. This algorithm also
uses a single dag for representing the simple cover and works for all flow

graphs.

2. AN EFFICIENT ALGORITHM FOR COMPUTING A COVER*

2.1 Dags and Global Value Graphs

A labeled dag D= (V,E,L) is a labeled, acyclic, oriented digraph with a
node set V, an edge list E giving the order of edges departing from nodes,
and a labeling L of the nodes in V. A rooted labeled dag (D,r) represents
an expression & if & is the parenthesized listing of the labels of the sub-
graph of D rooted at r in topological order from r to the leaves and from
left to right. Where D is fixed, we simply say r represents &€ if (D,r)

so represents &. (See Figure 5.)

The dag D is minimal if each node r €V represents a distinct expression.

Any expression or set of expressions may be represented, with no redundancy, by
a minimal dag D(n) to represent efficiently the set of text expressions
located at block n. We have assumed that each block is reduced, so each node

in D(n) corresponds to a unique text expression. [AUl) describe the use of
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dags for representing computations within blocks. [Ki] and [FKU) have applied
dags to various global flow problems.

We now come to the central definition. To model the flow of values
through a program II, we introduce a class of labeled digraphs called global
value graphs. These are derived by combining the dags of all the blocks in N
and adding a set of edges called use-def edges (which pair nodes labeled with
input variables to other nodes). More precisely, a global value graph is a
possibly cyclic, labeled, oriented digraph GVG= (V,E,L) such that:

(1) the node set V is the union of the node sets of the dags of N,

(2) E is an edge list containing (a) the edge list of each D(n) and
(b) a set of pairs in V2 (use-def edges) such that (i) the first node of each
use-def edge is labeled with an input variable and (ii) for each V€V
labeled with an input variable x", and control path p from s to n, there
is some use-def edge depa: .ing from v and entering a node located at a block
in p and distinct from n.

(3) L is a labeling of V identical to the vertex labeling of each D(n).

Note that for each vE€V, if v represents a constant symbol ¢ then v

is labeled with ¢ and has no departing edges; if v represents a function

.application (0 tl...tk) then v is labeled with the k-adic function symbol

6 and ul,...,uk are the immediate successors of v in GVG representing

t.,...,t , respectively; if v represents an input variable X" then v is

1 k
labeled with X" and all the edges departing from v are use-def edges. For
each node vE€V, let 1loc(v) be the block in N where the text expression
which v represents is located.

We assume here, as in Section 1, that the set of text expressions of each
block n €N includes all input variables at n. This may require adding dummy

assignments of the form X :=X to satisfy this assumption. Let rGVG be the

set of mappings § from V to EXP such that for all vEVv,
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(1) if L(v) 4is a constant symbol ¢ then Y(v) =c, or

{(2) if L(v) 1is a function symbol 6 and v has immediate successors
LR (in this order) then ¥(v) is the reduced expression derived from
o W(ul)...W(uk)), or

(3) if L(v) 1is an input variable then either (a) VY(v) =L(v) or
(b) Y(v) =yY(u) for all use-def edges (v,u) departing from v.

Note that for any node v satisfying (2), Y(v) is determined from the
input variables occurring in the text expression which v represents. Hence
any werGVG is uniquely specified by the set of input variables satisfying

nliz]

case (3a), so T has at most 2 elements.

GVG

In Appendix III we show that FGVG is a finite semilattice, and hence
has a minimal element.

Let GVG, be the standard global value graph containing only the use-def
edges {(v,u)lv represents input variable X" and u represents the output
expression &(X,m) for each program variable X€I and edge (m,n) €A of the
control flow graph F}. (See Figure 6.) Note that while there are in the worst
case An possible use-def edges GVG* contains at most £0 use-def edges.

Let Y* be the minimal fixed point of V¥, the functional defined in Section 1.4.
Appendix III shows WY* identical to be the minimal element of [ applied to the
standard global value graph GVGO. (Also, in Section 3 we define a global value

graph GVG, with the same property, but which often is of size linear in f£+a.)

1

2.2 Detection of Constants

Let GVG= (V,E,L) be an arbitrary global value graph. Let V
be a minimal element of rGVG' We wish to compute a new labeling L' of V
such that for each vE€V, if Y(v) is a constant sign then L'(v)=c and
otherwise L'(v) =L(v). Nodes thus relabeled with constants may be discovered

by propagating possible constants through GVG, starting from nodes originally
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labeled with constants, and then testing for conflicts. This leads to an

algorithm for constant propagation with time cost linear in the size of the GVG.
Recall that a spanning tree of the control flow graph F= (N,A,s) is a

tree rooted at s, with node set N, and edge set contained in A. A pre-

ordering of a tree orders fathers before sons. Let < be a preordering of

some spanning tree of F. For each v€V, let loc(v) be the node in N at which the

text expression associated with V is located. We construct an acyclic subgraph of

GVG by deleting the set of use-def edges E=1{(v,u) |loc(v) <loc(v)}. Observe that

(V,E—E) _is acyclic. We shall propagate constants .n a topological order (see
Appendix I for definition) of (V,E-E), from leaves to roots. (See Figure 7).
Our algorithm for computing the new labeling L' is given below.
ALGORITHM A
INPUT global value graphs GVG= (V,E,L) and control flow graph F.

OUTPUT L'.

begin
declare L' to be an array of length |V|;

Let < be a preordering of a spanning tree of F;
Q :=E := the empty set {};
for all use-def edges (v,u) €E such that 1loc(v) < loc(u)
do add (v,u) to E;
comment propagate constants; _
10:for each VvE€V in topological order of (V,E-E)
from leaves to roots do
if L(v) is a constant sign c¢ then Ll: L'(v) := ¢;
else if L(v) is a k-adic function symbol 0,
ujs...,ux are the immediate successors of v in
GVG, and (6 L'(uj)...L'(u)) reduces to a
constant ¢ then L2: L'(v) := c;
else if L(v) is an input variable and there
is a constant ¢ such that L'(u) =c
for all use-def edges (v,u) departing from v
then L3: L'(v) := c;
else begin add v to Q;L'(v) := L(v) end;
end;
comment test for conflicts;
L4:for each vEV labeled with an input variable do
if v has a departing use-def edge (v,u) such that
L'(v) ¥L'(u) then add v to Q;
till Q=the empty set {} do

P a o Ao e L o T
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begin
delete some node v from Q;
if L'(v) is a constant use-def then
L5: begin
L'(v) := L(v);
add all immediate predecessors of v in GVG to Q;
end;

LEMMA 2.1. If W(v) s a constant then L'(v) 1is set to Y(v) at L1, L2,

¢
or L3.
Proof, by induction on the topological order of (V,E—E).
Basis Step. Suppose v is a leaf of (V,E-E). Then L(v) is a constant
sign and so L'(v) is set to L(v) =y(v) at Ll.

Induction Step. Suppose v is in the interior of (V,E-E) and L'(u) has

been set to Y(u) for all u occurring before v in the topological order
where Y(u) 1is a constant. Then v represents either a function application

or an input variable.
CASE 1. Suppose L(v) is a k-adi¢ function sign € and wu.,...,u_ are the

1 k

immediate successors of v in (V,E-E). If V¥(v) is a constant c then by
definition of T, W(ul),....w(uk) are constants cl,...,ck, respectively
and (6 Cl"'ck) reduces to c¢. By the induction hypothesis L'(ul),...,L'(uk)

eeesC and so L'(v) is set to WY(v) =c at L2.

have been previously set to ¢ X

1'

CASE 2. Otherwise, L(v) 1is a.. input variable Xn. If yY(v) 1is a constant

symbol ¢ then Y(v) #xn so by definition of T , c=Y(u) for all use-def

GVG

edges (v,u) departing from v. By the induction hypothesis, L'(u) has been

set to c=y(u) for each use-def edge (v,u) €E-E. Now we must show v has

some departing value edge (v,u) €E-E. Let T be the spanning tree of F
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with preorder <. Consider the path p in T from the start block s to
n. By definition of GVG, there is a use-def edge (v,u} such that loc(u)
is distinct from n and is contained in p. Hence (v,u) €E-E and L(v)

is set to ¢ at L3. o

Let 6 be the value of Q just after L4. Then VvEV is eventually
added to Q@ and L'(v) reset to L(v) iff some element of 6 is reachable

in GV@ from v. If vE€V is labeled by L' with a constant at L4, then

we show

LEMMA 2.2. Y(v) <& not a constant iff some element of Q 1is reachable in

GVG from v.

Procf. IF. Suppose Y(v) 1is not a constant, but no element of Q is
reachable from v. Then let \T) be the mapping from V to EXP such that
for each u€V, YP(u) is the reduced expression derived from UJ(u)A after
substituting Y (w) for each input variable represented by a node w (i.e.,
w is the unique node labeled with that input variable) from which an elen: o
of O is reachable. Then V€ TGVG but origin(yiv)) =s origin(Y(v}),
contradicting the assumption that Y is the minimal element of FGVG'

ONLY IF. Suppose some element of 5 is reachable from v 1in GVG.

Clearly if v€§, then Y(v) is not a constant. Assume for some k>0, if

there is a path of length less than k in GVG from some u€V to an element

of é, then VY(u) is not a constant sign. Suppose there is a path

(v=w_,w ,...,wk) of length k from v to wkEQ. 1f k=1, then w1€5,

01
and otherwise if k> 1, then (wl....,wk) is a path of length k-1. By the

induction hypothesis, W(wl) is not a constant. But (v,wl) €E and by the

definition of T . P(v) 1is not a constant. o]

GVG
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THEOREM 2.1. Algorithm A is correct and has time cost linear in the size of

the GVG.

Proof. The correctness of Algorithm A follows directly from Lemmas 2.1 and

2.2.

In addition we must show Algorithm A has time cost linear in lv|-+|E|.
The initialization costs time linear in IVl. The preordering < may be
computed in time linear in |Nl-+lA| by the depth first search algorithm of
[T1l). The time to process each v€V at steps LO and L4 is
0(1 + outdegree(v)). Step L5 can be reached at most |[V| times and the time
cost to process each node v at step L5 is O(1l + indegree(v)). Thus, the

total time cost is linear in |V|-+|E|. o

In some cases, we may improve the power of Algorithm A for particular
interpretations by applying algebraic identities to reduce expressions in
EXP more often to constant symbols. For example, in the arithmetic domain
we can use the fact that O is the identity element under integer multi-
plication to modify Algorithm A so that if node v is labeled by L with
the multiplication symbol and a successor of v in GVG is covered by O,
then at step L3 we may set L'(v) to the constant 0.

From the new labeling L' and GVG= (V,E,L), we construct a reduced
global value graph GVG' = (V,E',L') with labeling L' and with edge set
E' derived from E by deleting all edges departing from nodes labeled by
L' with constant symbols. This corresponds to substituting constant
symbols for constant text expressions in the program Il. We assume through-

out the next three sections that GVG 1is so reduced.
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2.3 A Partial Characterization of ¢, the Minimal Element of TGVG

Let GVG= (V,E,L) be a reduced global value graph as constructed by
Algorithm A of the last section. Let { be the minimal element of FGVG'
let \’} be the set of nodes in V nodes labeled with constant and function

symbols. Observe that FGV characterized exactly the values of any such

G
Y over nodes in V in terms of the values of Yy over the nodes in V-Q,
i.e., ih terms of the nodes labeled with input variables. The following
Theorem characterizes V{ over V-V in terms of Y over 5.

We require first a few additional definitions. A use-def path is a
path p in GVG traversing only nodes linked by use-def edges. A use-def
path is maximal if the last node of p has no departing value edges. For
any node vE€V labeled with an input variable, let H(v) be the set of
nodes in V 1lying at the end of a maximal use-def path frcem v. Note that

H(v) is a subset of V. Call two paths disjoint if they have only their

initial node in common.

THEOREM 2.2. If v 1s labeled with an input variable, then either
(a) Y(v) =yY(u) for all uwu€H(v), or
(b) Y(v) =L(u), where u <8 the unique node such that
(i) u lies on all maximal use-def paths from v but
(ii) there are disjoint maximal use-def pathe from v to nodes

ul,uZEH(v) such that w(ul) #w(uz). (See Figure 8).

Proof. Suppose Y(v) is not an input variable, so there exists a maximal
use-def path p from v to some u1€H(v) such that Y(v) =U)(u1) . Assume

there exists another maximal use-def path p' from v to some u2€H(v)

such that Y (v) #\P(uz). Let 2z be the first element of p' such that
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P(z) #P(u) and let 2' be the immediate predecessor of z in p', so

ki
:
-1
-

Y(z') =y(v). Then by definition of T Y(v) =Y(z') =L(z') 1is an input

GVG'

variable contradiction.

Suppose Y(v) is an input variable, so Y(v) =L(u) for some u€V.

For any maximal use-def path p from v, let 2z be the first element of
p such that Y(z) #L(u) and let 2' be the immediate predecessor of =z
in p. Then by definition of PGVG' Y(z') =L(z') =L(u) so =z'=u is
contained on p. Now suppose that there is a node w€V distinct from u

]
3
rl
and contained on all maximal use-def paths from wu. j
B
1
b
r

Consider any control path q from the start block s to block 1loc(u).

By Lemma 2.3, we can construct a maximal use-def path (u==w1,...,wk) such

Coe 1. ..
kA PR TEPO S

that loc(wl),...,loc(wk) are distinct blocks in gq. Hence, loc{w)

: properly dominates 1loc(u).

Ei Let ¥' be the mapping from V to EXP such that for all v'E€V,

é! P'(v') is derived from Y(v') by substituting L(w) for each input ii
: -4
:f variable labeling a node from which all maximal use-def paths contain w. ';

Then ' €TGVG' But origin(y'(v)) = loc(w) properly dominates loc(u) = ;
origin(Y(v)), contradicting our assumption that V is minimal over T o i

GVG’

Theorem 2.2 suggests a procedure for calculating Y, but there is an

LBAR Srain o ian SENE © o con asie
. . AL
- a5

implicit circularity since the calculation (using Theorem 2.2) of y(v) for

; v EV-V requires the determination (using the definition of FGVG) of Y(u)

;f for u€H(v); but since 1J€6, the calculation of Y (u) may require the

- ~

=2 determination of Y(w) for some other w€V-V. The way out is by the rank

;! decomposition discussed in the next section. There will remain the problem

t of finding disjoint paths, which we consider in Section 2.5. This allows us

- |
[ to apply Theorem 2.2 without circularity. )
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2.4 Rank Decomposition of a Reduced GVG

This section describes a decomposition of the nodes of a reduced
GVG = (V,E,L) into sets for which we may completely characterize the minimal
UJETGVG. This leads to an algorithm for the construction of .

Fong, Kam, and Ullman [FKU] describe the rank decomposition of a dag;
this provides a topological ordering of a dag from leaves to roots over
which the dag may be efficiently reduced. Here we generalize the rank
decomposition to a possibly cyclic GVG; this provides us a method of
partitioning V into sets of text expressions over which { may have the
same value; it also allows us to apply Theorem 2.2 without circularity,

characterizing completely the minimal q;EI}“,. In Section 2.5 we apply

G
the rank decomposition to implement our direct method for symbolic
evaluation.

The rank of a node v€V is defined:

0O if v is labeled with a constant symbol

rank (v)

1 +MaX{rank(u) | (v,u) €EE} for v 1labeled

with a function symbol

MIN{rank(u) |[u€H(v)} for v labeled with an
input variable.
(See Figure 9.)

Observe that in the very simple case where Il contains only a single
block of code, at the start block s, then GVG consists of the dag D(s).
Hence the rank of a node Vv€V is the length of a maximal path from v to
a leaf of the dag D(s); inducing a topological ordering of the dag D(s)

from leaves to roots.

LEMMA 2.3. yY(v) =y(v') <implies rank(v) =rank(v').
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Proof. We proceed by induction on rank of v.

Basis Step. Suppose v is of rank 0, so VY(v) =Yy(v') 1is a constant

symbol c. But since  GVG is reduced, L(v')=c and v' is also of rank O.

Inductive Step. Suppose for some r >0, rank(w)=rank(w') for all w,w' €V

such that rank(w) <r and Y(w) ={Y(w'). Consider some v,v'€V such that

rank(v) =r.

CASE a. Suppose Y(v) =¥(v') is the function application (eé’l...é‘k). Then
by Theorem 2.2, Y(v) =¢Y(u) for all uw€H(v), and similarly, Y(v') =¥ (u')
for all u' €H(v'). Fix some u€H(v) and u'€H(u'). By definition of

T .» L{u)=L(u') =60 and if w

GvG soee oW are the immediate successors of u

1 k

and w!,...,w’'

1 L are the immediate successors of u', then é’i=UJ(wi) =‘1J(w13_)

for i=1,...,k. By the induction hypothesis, rank (wi) = rank (wi) for

i=1,...,k. Hence,

rank (v) rank (u)
= 1+ MaX{rank (wl) pees ,rank(wk) }
= 1 + MAX{rank (wi) s++.,vank (w;()}

= rank(u')

= rank(v').

CASE b. Suppose Y(v)=y(v') is an input variable. By Theorem 2.2,
P(v) =y(v') =L(u) for some u€V contained on all value paths from v and

v'. Hence, rank(v) =rank(v') =rank(u). =]

To compute the rank of all nodes in GVG we use a modified version of
the depth first search developed by Tarjan [Tl). Because the search proceeds
backwards, we require reverse adjacency lists to store edges in E. Note that
the RANK(v) 1is used in two different ways; first to store the number of

successors of node v which have not been visited, and later RANK(v) is

L W W Ve s N - i imlia: o m m e s
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set to rank(v). Let Vr, Gr be the nodes in V, v of rank r.

We

initially compute V., and on the r'-th execution of the main loop we compute

0

Vr'-Vr and Vr+l°

ALGORITHM B

INPUT GVG= (V,E,L)

OUTPUT RANK

begin
declare RANK := an array of integers of length IVI;
for all vE€V do
RANK(v) := - outdegree (v);
r:=0;
Q' :={v|L(v) is a constant symboll};
until Q' =the empty set {} do
begin
Q:=0Q'; Q' :=the empty set {};
comment Q=Gr;
L: until Q=the empty set {} do
begin
delete v from Q;
for each immediate predecessor u of v do
if L(v) is a function symbol then
if RANK(u) =-1 then
begin R
comment u€V,,q;
RANK (u) :=r+l;
add u to Q'
end
else RANK (u) := RANK(u) +1;
else if RANK(u) <0 then

begin ~
comment u€V,=-Vy;
RANK (u) :=1r;
add u to Q

end;

end;
r:=r+1;
end;
end.

THEOREM 2.3. Algorithm B i8 correct and has time cost linear in

Proof by induction on «r.

[v| +|E].
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Basis Step. Initially, RANK(v) is set to -(outdegree of v) for each vEvV.
So if L(v) 1is labeled with a constant symbol then RANK(v) 1is set to O.

Also, Q is initially set to V just before label L.

0

Inductive Step. Suppose for some r >0, we have on entering the inner loop

at label 1L on the r'-th time:
(1 o=9,
(2) For each vVvEV, RANK(v) =rank(v) if rank(v) <r or VEGI, and
RANK (v) = - (numbexr of successors of v with rank>r) if
rank(v) >r or vE€vV V..
r r

In the inner loop we add to Q exactly the nodes Vr—§r= {VGV-Glsome element
of Gr is reachable by a use-def path from v}. For each such v€Vr-\7r
added to Q, RANK(v) 1is set to r. Also, for each VE{/, if rank(v) > r+l
then RANK(v) is incremented by 1 for each immediate successor of v of
rank r; if rank(v) =r+l then all immediate successors of v are of rank<r
so RANK(v) is set to r+l and v is added to Q. Thus, (1) and (2) are
satisfied entering the loop on the r+l time.

Now we show that Algorithm B may be implemented in linear time. For
each node vEV we keep a list (the reverse adjacency list), giving all

predecessors of v. To process any vE€Q' requires time O(1+ indegree(v)).

Since each node is added to Q' exactly once, the total time cost is linear

in |v|+]E|. o

This suffices for the construction of §; y(v) for v€\70, VO-GO'

A

\71, Vl-Vl,... may be determined by alternately applying the definition of
GVG and Theorem 2.2.
Using this method could be inefficient, since Theorem 2.2 could be

expensive to apply and the representations of the values could grow rapidly
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in size. The first problem is solved by reducing it to the problems of P-graph

completion and decomposition as described in the next subsection 2.5. The
second problem is solved by constructing a special labeled dag; the construction

of this dag and the final algorithm are given in Section 2.6.

2.5 P-Graph Coﬁpletion and Decomposition

Let, GVG= (V,E,L) be a reduced global value graph. This section presents
an efficient method for applying Theorem 2.2 to nodes in Vr-er (i.e., nodes

of rank r labeled with input variables). Now to compute Y*, the minimal

MMM /> A

element of FGV , it suffices to find the partitioning of V such that

G
Y*(v) =YP*(u) iff v, u are in the same component of the partition. To represent
such a partitioning, we distinguish one node of each component of the partitioning

to be the value source of all other nodes of that block. We require that if

0" BAMARBAAL T |

vEV-V (i.e., v is labeled with an input variable) then UY*(v) =L(v) iff v
1 is a value source. Let V* be the set of value sources and let VS be a
mapping from nodes in V to their value sources. Hence the fixed points of VS

.

are the value sources and Vs_l[V*] is a partitiocning of V. Note that, in

RIS /MBS

general, the definition of "value source" is not uniqguely determined, so the

D SN

definition of V* and VS depends on our particular choice of value sources.
[ We shall find value sources by reducing this problem to the problems of
é; P-graph completion and decomposition stated below.
} let G= (VG,EG) be any directed graph and let Sev, be a set of vertices
E ' of G such that for each vertex \IEVG there is some vertex u€S from which
E v 1is reachable.
}

oLy
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P-Graph Completion Problem. Find

+
S =8 U{VGVG | there are at least two paths from distinct elements

of S to v not containing any other element of S}.

This form of the problem is due to Karr [Ka], who shows that it is equivalent
to the original formulation due to Shapiro and Saint {SS]. (Actually, this form
is slightly more general than Karr's; Karr satisfies our restriction on S by
stipulating that there is a single r€s from which every v€vG is reachable.)

, +
Karr provés that for each vE€V_ there is one and only one element of S from

G
which v is reachable (and his proof extends directly to our slightly more

general problem).

s e . + .
P~Graph Decomposition Problem. Given G and S , find, for each VGVG,

+
the unique u€S from which v 1is reachable.

We first show these problems can be solved efficiently. Shapiro and Saint
give an O(IVG|Z) algorithm, while Karr gives a more complex O(IVG]lQQIVG|-+|EG|)
algorithm. Here we reduce these problems to the computation of a certain dominator
tree, for which there is an almost linear time algorithm as noted in Section 2.2.
(This construction was discovered independently by Tarjan [T2].)

Let h be a new node not in V_, and let G' be the rooted directed graph

G

(Vo U{n}, B U{(h,v) lves}-{,v|u€v,, ves},n)

Thus G' is derived from G by adding a new root h, linking h to every node
in S, and removing the edges of G which lead to nodes in S. Let T be the

dominator tree of G'.
LEMMA 2.4. The members of st are the sons of h in T.

+ . .
Proof. IF. let v€S . If v€S then h is a predecessor of v in G' so
+
h is the father of v in T. 1If \:€S+'-S then by definition of S there

are disjoint paths Py Py in G from distinct elements of S to v not

ntantentandasstenimmintatunsinstaniiamBunioaiantumimeds S LI e L. .
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containing any other element of S. Clearly pl and p, are also paths in G°
since they contain no edge entering a member of S. Then (h,pl) and (h,pz)
are paths from h to v in G' which have only their endpoints in common, so
v is asonof h in T.

ONLY IF. Suppose v is ason of h in T. If h is a predecessor of
v in G' then v€£5§S+. Otherwise there are in G' paths (h,pl) and (h,pz)
from h to v which have only their endpoints in common. Moreover, these paths

contain no element of S except for the first nodes of p., Py since no edge of

1
G' enters an element of S except from h. Hence Py, P, are disjoint paths

in G' from distinct members of S to Vv not containing any other element of

S, and hence v€S+. le]

THEOREM 2.4. For each vVEV,, the unique node in s* from which v 1is reachable
in G 18 the unique node which ie a som of h and an ancestor of
v wm T.

Proof. Let w be that ancestor of v which is a son of h in T. By Lemma

2.4, v7€s+, and clearly v 1is reachable from w in G since it is reachable from

w in T. Conversely, if v7€S+ is reachable from v in G tben w 1s a son

of h in T by Lemma 2.4, and w must be an ancestor of v since otherwise v

would be reachable from some other member of S+. o

Now we establish the relation of these problems to the problem of finding
V* and VS as stated above. Fix some V* and VS by choosing one node of
GVG for each value of ¥ on V consistent with our definition of value sources.
For each rank r, let Gr==(vr'Er)' where Vr is the set of all nodes of rank «r
of a reduced GVG as defined in Section 2.4 and Er is the edge set derived from
E by

(1) deleting all edges except use-def edges between nodes of rank r,

(2) for those remaining use-def edges (v,u) entering \JGGI, substituting

instead the edge (v,VS(u)),

o

r
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(3) finally reversing all edges.

Note that any edge of GVG departing from a member of Gr enters a node
of rank r-1. Let Sr be the set of all value sources of Gr plus all nodes
of rank r 1labeled with input variables which have a departing use-def edge
entering a node of rank greater than r. Note that for each node v of Gn’
there is a node in sr from which v is reachable in Gr' Finally, let s:

be defined from sr as in the statement of the P-graph completion problem.

+
LEMMA 2.5. The members of s, are the value sources of rank r.
+
Proof. IF. Suppose VEsr'

CASE 1. By definition, all elements of {VS(v)IvEZGr} are value sources.

Hence we need only consider the case where v 1is a node of rank r 1labled with
an input variable which has a departing use-def edge (v,2) entering a node z
of rank greater than r. Since Vv 1is of rank r, v must also have a departing
use-def edge (v,u) leading to a node of rank r. By Lemma 2.3, Y(2) #Y(u), so

by the definition of rGVG' Y(v) =L(v) and v is a value source.

CASE 2. Suppose there are in Gr disjoint paths (xl,xz,...,xj) and
(yl,yz,...,yk) in Gr from distinct xl,yj.ESr_ to v. By construction of
Gr' there exist distinct ;l,;'lEH(v) such that VS(;cl) =X, Vs (;'1) =Yy and
(x2,§1) and (y2,§1) are use-def edges, and so p1==(v=xj,xj_1,...,x2,§l)
and p2==(v=yk,yk_l,...,y2,§l) are disjoint paths. Now suppose v 1is ncot a
value source. Applying Theorem 2.2, there is a value source u (distinct from
v) such that Y(v) =¢(u) =L(u). Since P, and p, are disjoint they cannot
both contain u. Suppose, without loss of generality, that p1 avoids u.
Then all maximal use-def paths from ;1 contain u. Also, by definition of

s _, X, =X and there is a use-def edge (v,2) such that 2z is not of rank r.

r 1l 1l

Since any maximal use-def path from 2z must contain u, rank(z) =rank(u)

e
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implying that u is not of rank r. But, by hypothesis, all maximal use-def

on Sr’ we have

paths from v contain wu, so rank(v) =rank(u). This implies that v is not r*
of rank r, contradicting our assumptions. o -
By Karr's proof [K] of the uniqueness of the P-graph decomposition of Gr f?

'-l

THEOREM 2.5. For all nodes v€V of rank r and labeled with an input variaktle,

VS (v) 1is the unique value source contained on all use-def paths in

=
G, from elements of s, to wv. '
Thus the problem of computing VS reduces to the problem of decomposing

the reduced global value graph by rank and then constructing dominator trees. 'J
The former can be done in linear time by Algorithm B of Section 2.4, the latter 1
in almost linear time by [LT]. ;
‘ ,
2.6 Our Algorithm for Symbolic Program Analysis ::
g
In this section we pull together the various pieces developed in Sections ]
2.1-5 to give a unified presentation of our algorithm computing a minimal fixed p1
- 9
point case. Instead of using the GVG directly to represent V*, as suggested k
- in the beginning of Section 2.5, we more economically represent {* by a dag ]
Fi D* derived from GVG by collapsing nodes into their value sources; more '<
?‘ precisely D* = (V*,E*,L*) where E
E‘ v* = {Vs(v) |[vEV} = the set of value sources, f?
- .
& E* = {(VS(v) ,VS(w)]|(v,u) €E and L(v) is a function symbol, .i
{ L* is the restriction of L to V*. ‘;

:, Recall from Section 2.1 that rooted dags may be used to represent expressions in
o EXP. .
3 1
LEMMA 2.6. For each node v€vV, (D*,VS(v)) represents V(v). ;
s ]
X 3|
{ ]
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Proof. Note that by definition of VS, for each VvE€V

Call S PR A J— vy

Pr(VS(v)) =P*(v)

for each V€V, so we need only show for vEV*

(D*,v) represents UY*(v). R

Rl At bl gy
: -y
AR

~._ We proceed by induction on a topological ordering of D*, from leaves to roots.

) 2

Basis Step. If v is a leaf of D*, then (D*,v) represents the constant

symbol L(v) =y (v).

Induction'Step. Suppose v 1is in the interior of D* and (D*,u) represents
Y*(u) for all children u of v. Thus v must be labeled in L with a
function symbol 6 and have immediate successors ul,...,u2 in GVG. Then
Vs(ul),...,Vs(uk) are the children of v in D* and for i=1l,...,k by the

)
induction hypothesis (D*,Vs(ui)) represents w*(Vs(ui)) =¢Mui). Thus (D*,v) '
R LU = Y initi | . o
represents (69}(u1). Y (uk)) Y*(v) by definition of FGVG
Our algorithm is given below. As in Section 2.4, we compute Y* and VS

4

’

in the order of the rank of nodes in V. The array COLOR is used to discover - 4
nodes with the same y*. ]
1
ALGORITHM C ;

’

INPUT GVG = (V,E,L) »
OUTPUT VS and D*= (V*,E*,L*). s
begin .
initialize: a$
declare VS, COLOR := arrays of length |[V]|; ’
procedure COLLAPSE(S ,u) : b

for all v€S do
begin
VS(v) :=u;
if u#v then )

begin o
for each edge (w,v) entering v do .
substitute (w,v);
for each edge (v,w) departing from v do
substitute (u,w);
delete v from the edge set;
end;
end;

U RO SR
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Compute new labeling L' of V by Algorithm A
and reduce GVG as described in Section 2.2;
Compute rank of nodes in V by Algorithm B of Section 2.3;
for r:=0 to {MAX rank(v)|vE€V} do
begin . .
Let Vg, V, be the nodes in V, V of rank r;
for all v€V, do
if r=0 then COLOR(v} :=L'(v)
else COLOR(v) :=<L(v),uj,...,ux> where
Uj,...,ug are the current immediate successors of v;
radix sort nodes in V, Ly their COLOR;
for each maximal set SCV, containing nodes with the same COLOR do
begin
choose some ué€s;
comment u is made a value source;
COLLAPSE (S ,u) ;
end;
et h be some node not in Vyg:
Ey, := Sy, := the empty set {};
for all v€Vy do add VS(v) to S ;
for all vE€V,-v, do
for each node u which is currently an immediate successor of v do
if u is of rank r then add (u,v) to E.;
else add u to S,;
Let T, be the dominator tree of Gp= (VU {h},E U {(h,v) [veEs,},h);
for all sons u of h in T, do
begin
comment by Theorem 2.4 and Lemma 2.5, u is a value source;
COLLAPSE ({the descendants of u in Tr},u);
delete all edges departing from u;
end;

end;
Let V*, E* be the node set and edge list derived from V,E by the
above collapses;
for all v€V* do L*(v) :=L'(v);
end.
THEOREM 2.6. Algorithm C is correct and can be implemented in almost linear
time.
Proof. The correctness of Algorithm C follows directly from Theorems 2.4,
2.5 and Lemmas 2.5, 2.6.
In addition, we must show that Algorithm C can be implemented in almost
linear time. The storage cost of GVG is linear in |V| + |E|. The initializa-
tion of Algorithm C costs time linear in IN| + |a|. Algorithms A and B cost

linear time by Theorems 2.1 and 2.3, respectively. The time cost of the r'-th

execution of the main loop, exclusive of the computation of Tr' is linear in
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lvrl + IErI » Plus the sum of the outdegree of all v€Vr-‘7r. (Here we assume
that elements in the range of L' are representable in a fixed number of
machine words and that the number of argument-places of function signs is
bounded by a fixed constant, so a radix sort can be used to partition Gr by
COLOR.) The computation of the dominator tree Tr requires by [LT] time cost
almost linear in IVr|-+|Er|. Thus, the total time cost is almost linear in
v} +|E|. o
This completes the presentation of our algorithm for computing a minimal

fixed point case y*.

3. FURTHER WORK

3.1 Improving the Efficiency of Our Algorithm for Symbolic Program Analysis

The primary goal of this paper was to construct the minimal fixed point
Y* of the functional ¥. Actually, ¥ was defined relative to a program '
derived from the original program I by adding dummy assignments of the form
X :=X at every block where some program variable X€L is not assigned. This
does not change the semantics of the program but requires the addition of

0(|Z||N|) text expressions whose covers we are not actually concerned with.

In practice we need the covers given by ¥* only over the domain of the original

text expressions of II.

The algorithms of Section 2 allow us to construct, for any global value

graph GVG, the unique minimal element of rGVG in space linear in the size of

GVG and time almost linear in the size of GVG. Section 2.1 defines the

standard global value graph GVG, which has size O(|I||A| +£) and with the

property that Y* is the minimal element of rGVG - We describe here how we may

0

construct a global value graph GVG., of size O(d[A|-+H) where d is a parameter

1

of the program which is often of order 1 for block-structured programs but may grow
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to IZ]. The construction of GVGl can be done by a preprocessing stage
of [RT] costing a number of bit vector steps almost linear in |Al-+£.
Thus this preprocessing stage offers no theoretical advantage but in practice

may often lead to a global value graph of size linear in the program and flow

Blvaatsalantans

graph. The construction of GVG+ can be done by a preprocessing stage of
[RT) costing a number of bit vector steps almost linear in |A| +%. BAppendix
III shows GVG1 has the property that the minimal element of rGVG is the
minimal fixed point of the functional Y defined in Section 2.4. in contrast j

to the iterative method, which for a large class of programs has storage cost

o M

Q(2|N|) and time cost Q(QINIZ), our direct method has storage cost linear in
the size of GVGl and time cost almost linear in the size of GVGl. i
A path is m-avoiding if the path does not contain node m. Consider blocks

m, n in the control flow graph such that m dominates n. A program variable

X€L is definition-free between m and n, if (1) m=n or (2) m properly

R

dominates n and X 1is not assigned to on any m-avoiding control path from an
immediate successor of m to an immediate predecessor of n (otherwise X is

defined between m and n). We define a function W from text expressions j

g

which are input variables to blocks of the control flow graph. For each input

variable Xn, W(xn) =m, where m 1is the first block on the dominator chain of

YO

the control flow graph from the start block s to n such that X is
definition~free between m and n. An algorithm in [RT) computes W in a “1
number of bit vector steps almost linear in |N| +%.

It will be convenient to assume that for each text expression which is an

input variable X" such that w(xn)=11, X 1is assigned to at each block m

f{ immediately preceding n. We must add O(d|N|) dummy assignments to accomplish
this; 4 is often constant for block structured programs but may grow to [I].
Let GVG. = (V,E,L) be the standard global value graph defined in Section 2.1.

0
Let El be the set of pairs of vertices (u,v) €V2 such that
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(1) v is labeled with an input variable X
(2) t' represents an output expression &(X,m)

(3) either (a) W(X")=n and m is an immediate predecessor of n in

F, or (b) W(x")==m properly dominates n.

Note that E1 contains O(d|A] +%) edges. Let EUD be the use-def

0" Let GVGl be the global value graph with vertices V,

labeling L, and use-def edges EbEl -E
14

edges of GVG
uvp* et d=|E1|/|A| and observe
that d<|I|. fThen |, | =0(d]|a]) and so GVG, is of size 0(|Ell+2) =
o(a|al +1).

Appendix III proves FGVG has a minimal fixed point which contains in its
1

domain the minimal fixed point cover Y*. Thus our algorithm given in Section 2

can be used to construct Y* in time almost linear in the size of GVGl.

3.2 Improved Covers for Restricted Domains

We show in Appendix I that there is no finite algorithm for computing
minimal covers in the arithmetic domains. However, the minimal fixed point
covers computed by our algorithm in Section 2 can be improved by use of domain-
specific identities.

In [R1] our methods for computing covers are extended to programs which
operate on records in a language such as PASCAL or LISP 1.0. There we use the
domain specific fact that selections on (such as car or cdr is LISP) yield

subcomponents for which we can derive covering expressions.

S ——
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APPENDIX I

Graph Theoretic Notions

AR Yd ',‘,‘.‘..’.'.'JT.'.','.
el o e PR
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A digraph G= (V,E) consists of a set V of elements called nodes
! and a set E of ordered pairs of nodes called edges. The edge (u,v) departs .J
from u and enters v. We say u is an immediate predecessor of v and v
: is an immediate successor of u. The outdegree of a node v is the number of
i‘l immediate $uccessors of v and the indegree is the number of immediate pre- J
F decessors of wv.

A path from u to w in G is a sequence of nodes p= (u=v ,v2,...,vk=w)

1
v where (v, ,v, ,) €E for all i, 1€i<k. The length of the path p is k-l.

D N

The path p may be built by composing subpaths:

p= (vl""’vi).(vi""'vk) .

The path p is a cyele if u=w. A strongly connected component of

Y {

G is a maximal set of nodes such that each pair in the set are contained in a
N

LA

g L

common cycle.

A node u is reachable from a node v if either u=v or there is a

bl

path from u to wv.

We shall require various sorts of special digraphs. A rooted digraph
(V,E,x) 1is a triple such that (V,E) is a digraph and r is a distinguished R |
node in V, the root. A flow graph is a rooted digraph such that the root r 4
has no predecessors and every node is reachable from r. A digraph is labeled

if it is augmented with a mapping whose domain is the vertex set. An oriented T

digraph is a digraph augmented with an ordering of the edges departing from each
node. We shall allow any given edge of an oriented graph to appear more than

once in the edge list.
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A digraph G is acyelie if G contains no cycles, cyclic otherwise.

Let G be acyclic. If u is reachable from v, u is a descendant of v

ﬁ
and v is an ancestor of u (these relations are proper if u¥v). Nodes
with no proper ancestors are called roots and nodes with no proper descendants
are leaves. Immediate successors are called soms. Any total ordering con- r
sistent with either the descendant or the ancestor relation is a topological -
4
ordering of G.
A flow graph T is a tree if every node v other than the root has a T;
unique immediate predecessor, the father of v. A topological ordering of a 1

tree is a preordering if it proceeds from the root to the leaves and is a

postordering if it begins at the leaves and ends at the root. A spanmning tree

of a rooted digraph G= (V,E,r) is a tree with node set V, an edge set
contained in E, and a root r.

Let G=(V,E,r) be a flow graph. A node u dominates a node v if
every path from the root to v includes u (u properly dominates v if in
addition, u#v). It is easily shown that there is a unique tree TG’ called
the dominator tree of G, such that u dominates v in G iff u is an
ancestor of .v in TG. The father of a node in the dominator tree is the
immediate dominator of that node.

All of the above éroperties of digraphs may be computed very efficiently.

An algorithm has linear time cost if the algorithm runs in time O(n) on input

of length n and has almost linear time cost if the algorithm runs in time

LA AR e a4

Oo(na(n,n)) where o is the extremely slow growing function of [T3] (o is

Dad
Phad

E

related to a functional inverse of Ackermann's function). Using adjacency lists,

a digraph G=(V,E) may be represented in space O(|V|-+|E|). Knuth [Knl]

R PO AR A0 e

gives a linear time algorithm for computing a topological ordering of an
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Figure Al. A flow graph and its dominator tree




TS e Bt e S amait Jeat st Jan e e e St e v —TT T A ik T W W W T e e W e T =, -j
- R
- r
.. acyclic digraph. Lengauer and Tarjan [LT] present linear time algorithms for .
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APPENDIX I

Unsolvability of Various Code Improvements

The introduction listed a number of code improvements which are related
to the problem of determining minimal covers of text expressions. Here we show
that even constant propagation, the most fundamental of these improvements, is
recursively unsolvable for programs evaluated within the arithmetic domain.
This rules out the possibility of finding minimal covers even in simple domains.
Previously, Kam and Ullman {KU2] have shown related global flow problems to be

insolvable in an abstract, nonarithmetic domain.

THEOREM Al. In the arithmetic domain, it is an undecidable problem to discover

if a text expression is covered by a constant symbol.

Proof. The method of proof will be to reduce this problem to that of the dis-
covery of text expressions covered by consant symbols within the arithmetic
domain (Z,IZ).

Let {xo'xl'XZ""'xk} be a set of variables, where k>5. Matijasevic [M]
has shown that the problem of determining if a polynomial Q(xl,xz,.‘.,xk) has
a root in the natural numbers (Hilbert's ]10th problem) is recursively unsolvable.

Consider the flow graph FQ of Figure A2. Let t be the text expression
gxof/(l+Q(X1f,...,xkf)z)] located at block f. We show t 1is covered by a
constant symbol iff Q has 70 root in the natural numbers.

For any contrel path p from the start block s to the final block f
and for i=0,1,...,k let X (p)=I(VALUE(X f,p)) =the value of X, Jjust on
entry to f relative to p. Also, let X(p)==(x1(p),...,xk(p)). Observe that

for any k-tuple of natural numbers 2z, there is a control path p from s to

f such that z=X(p).
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IF. Suppose Q has no root in the natural numbers. Then for each
control path p from s to f, Q(Xl(p),...,xk(P)) #0, so VALUE(t,p) =0.
Thus, t 1is covered by the constant O.

ONLY IF. Suppose Q has a root 2z in the natural numbers. Then it is
possible to find execution paths p and g from s to f such that z=2X(p)
and X(p) =0. Hence VALUE(t,p) =0 and VALUE(t,q) =1, so t is not

covered by a constant symbol. o

COROLLARY Al. In the arithmetic domain, the following global flow problems are
unsolvable: discovery of minimal covers, birth and safe points of code motion,

redundant text expressions, and loop tnvariants.

Proof. It is easy to show that the problem of discovery of constant text
expressions reduces to each of these problems. Add the edge (f,nl) to the
control flow graph F of Figure 4, so t is contained as a cycle of F. Then
by Theorem 4, Q has 710 root in the natural numbers iff t is covered by O

iff s is the birth point of t

iff s is the safe point of t

iff t is redundant on entry to f

iff t is a constant loop invariant.
Thus, the problem of discovery of whether text expression t 1is covered by a
constant reduees to each of the above global flow problems. (Note that the
problem of safety of code motion is also hard for other reasons; if we add the
text expression t'= .1/Q(x1f,...,xkf), to block f then Q has no root in

the natural numbers iff t' is safe at £.) o
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APPENDIX III

Fixed Points of I‘GV

G
We define a partial mapping min: EXPZ-’EXP such that for all &,& €ExP,
&min & =& if origin(&) properly dominates origin(é&')
= &' if origin(&') properly dominates origin (&)
or if origin(&) = origin(&') and
(i) if &= &' then &min g ==&, or
(ii) if & is a constant symbol and &' is a function application,
then &min & =& miné = &, or
(iii) if &,8' are function applications (6 é’l...é’k), (6 Ji...é’l'()
respectively, and &i =¢3’i EP_&; is defined for i=1,...,k
then &min & = (6 él"'ék)' and otherwise, &min &' is undefined.
We extend min to the partial mapping from pairs of elements of TGV

G
to rGVG defined thus: for y, ' GFGVG' if for all veE€Ev,
Y(v) min Y’ (v) =ﬂ-/(v) is defined then VY min y' '=lIl and otherwise Y min Y'
is undefined.

Let GVG be as an arbitrary global value graph. We show that rGVG is
a semilattice. We require two technical lemmas:
LEMMA Al. For any v €V labeled with an input variable and any eontrol path
p from the start block s to 1loc(v), there ie a maximal use-def path q

from v such that all the nodee in q have distinet loc values in p.

Proof. We consider (t) to be a trivial use-def path. Suppose we have
constructed a use-def path (v= ul,. .. ,ui) such that loc(ui) ' loc(ui_l) P
loc(ul) are distinct blocks occurring in this order in p. 1If vy is not

labeled with an input variable (and thus has no departing value edges) then

LRGPP P

TN

-
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(t=ul,...,ui) is a maximal use-def path. Otherwise, let P, be the subpath
of p from s to the first occurrence of block loc(ui) and let (ui,ui+1)

be a use-def edge such that loc(ui+l) occurs strictly before loc(ui) in

P. Then (t=u1,... ,ui,ui+1) is a use~def path and loc(ui+1) is distinct
from blocks loc(ul) go oo ,1oc(ui) . The result thus follows from induction on

the length of p. o

LEMMA A2. ,For any \pEI'GVG and v€V, origin(y(v)) dominates loc(v).

Proof by contradiction. Suppose for some vE€V, origin(y{v}) does not
dominate 1loc(v).
Hence, there must be an input variable x" occurring in WY(v) such that n j
does not dominate 1loc(v), and so there is an n-avoiding path p from the
start block s to 1loc(v). Also, there must exist some u€V 1labeled with ‘
an input variable and also located at block n, such that yY(u) =x". By Lemma {
Al, we can construct a maximal use-def path (u=ul,... ,uk) such that ,
loc(ul) gooe ,loc(uk) are distinct blocks in p. Let j be the maximal integer 1
€k such that w(ul) = eee =1,')(uj). If L(uj) is an input variable, then l
w(ul) =L(uj) =Xn, so loc(uj) =n is contained in p, contradicting the .
assumption that p contains n. Otherwise, if L(uj) is not an input

variable then neither is Y (v) =11J(uj) , a contradiction with the assumption that r

Y (u) =x". o

THEOREM A2. FGVG 18 a semilattice.

1

Y
[ Proof. It is sufficient to show min is well defined over rGVG' We proceed !
f

by induction. suppose for ¢, ¥ EFGVG and some & in the domain of VY,

.

e Y(u) min P'(u) is defined for all u€V such that Y(u) is a proper subex-

pression of &. Consider some text expression v such that yY(v) = & By
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Lemma 2.2, both origin{(y(v)) and origin(y'(v)) are contained on all control
paths from the start block s to 1loc(v), so we may assume without loss of
generality that origin(y(v)) dominates origin(y'(v)). Observe that

Y(v) min ¢*'(v) =¢(v) if origin(y(v)) properly dominates origin(Y'(v}) so

we further assume that origin(y(v)) =origin(y:*(v)).

CASE 1. If L(v) is a constant symbol ¢ then Y(v)=y'(v)=¢c so

V(v) =min y'(v) =c.

CASE 2. Suppose L(v) 4is a function symbol 6 and v has immediate successors
LIRERTRL N By the induction hypothesis é’i =w(ui) min ¥’ (ui) is defined for
i=1,...,k. Hence VY(v) min Y'(v) is the reduced expression derived from

(0 gi. . .é"}':) .

CASE 3. Otherwise, suppose L(v) 1is an input variable. Let p be a control
path from the start block s to 1loc(v). ?y Lemma 2.1, we can construct a
maximal use-def path (v=ul,... ,uk) such that for i=1,...,k each loc(ui)

is contained in p. Let j be the maximal integer such that lb(ul) = ... =w(uj).
CASE 3a. If Y'(v) =1p(ul) =... =w(ui) #FY' (ui+1) for some i, 1€i<j, then

by the definition of rGVG' Ylv) =y (ui) = L(ui) . Hence origin(y'(v)) =n, ¥

nj =origin(YP(v}), contradicting our assumption that origin(y'(v)) =origin(P(v)).
CASE 3b. Otherwise, suppose VY'(v) =y’ (ul) =... =y (uj) so we have Y (v) =W(uj)
and Y'(v) =w'(uj). Applying Cases 1 and 2, V(v) min Y'(v) =1P(uj) min W'(uj)

is defined if L(uj) is either a constant symbol or function symbol, so we
assume L(uj) is an input variable. Since 3j is maximal, Y(v) =(p(uj) =L(uj).
If YP'(v) =y (uj) =L(uj) then Y(v) min Y'(v) =L(uj) . Otherwise, suppose

P (uj) fL(uj). For each use-def edge (uj V'), by the definition of rGVG’

P'(u,) =y'(v') and by Lemma 2.2, origin{(y'(v')) dominates loc(v'). Hence

3
origin(Y'(v)) = origin (Y’ (uj)) is distinct from origin(y(v)), contradicting

our assumption that origin(yY'(v)) =origin(Y(v)). o
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Theorem A2 immediately implies that:

3 4 . 3 -4
COROLLARY A2. T... has an unique minimal element min Teve:
;
Let GVGo be the standard global value graph defined in Section 2.1. We I
have shown that rGVG is a finite semilattice and hence has a minimal 4
(6]

element. We now show that this minimal element is the unique minimal fixed .

point of VY.

THEOREM A3. Y*, the minimal fixed point of Y, is identical to the unique 1
minimal element of TGVGO. 3
1

Proof. Observe that any fixed point of ¥ is an element of rGVG . By
1
~ ~ q
Corollary 2.1, T has a unique minimal element ¢ =min T . Suppose Y
GVG,, — "6vG 4
is not a fixed point of Y. Observe that since $€I‘GVG , for each input
0

variable xn, if V(XM #X® then ‘l’@) x™ =@(xn). Hence there is an input

variable X  such that U(x") =X" but Y(J)(x") =& where &=&W(X,m))
for all blocks m immediately preceding block n in the control flow graph F.

We are going to construct a mapping werGVG distinct from @ such
0

that w<ﬂ3. This will contradict our assumption that lT) is the minimal ele-

ment of FGVG . For each text expression t, let Y(t) be derived from $(t)
0

by substituting & for each occurrence of x“, and then reducing the resulting
L]
expression. We now show WEI'GVG . Consider any input variable Y,

~ ' ' t ’ [
CASE a. Suppose O(Y" )=Y" . 1f Y" #Xx" then Y(¥" )=¥" . Othervise, if

L}

' o= (X,n) then for each block m immediately preceding block n'=n,
] A ]
\p(‘ln ) = Y(&Y,m)) =&, and since x" is not contained in &, \p(Yn ) =

Y(8(Y,m)) =&.

A '
CASE b. 1If !,P(Yn )#Yn then for each block m immediately preceding n' in

F, @(Yn') =$(8(Y,m)) 50 w(Yn') =y(&(Y,m)). Thus WEFGVG . For each block
0

m immediately preceding n in F, 8=W(xn)'¢(8(x,m)) s0
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origin (Y (X") = origin (¥ (£(X,m)))
dominates loc(&(X,m)), by Lemma A2
=m,

and hence origin(w(xn)) properly dominates origin(@(xn)). This implies that

, a contradiction. o
(0]

y is not the minimal element of rGVG

.

Let GVG1 be the global value graph defined in Section 3.1. Let w+ be

the minimal fixed point of r . By Theorem A3, P* is the minimal fixed

1

point of FGVG . As in Section 3.1, we assume that for each text expression
0

which is input variable X" such that W(x”), then X is assigned to at each

GVG

. . . + .
block immediately preceding n. Thus V¥ and Y* have the same domain.
+
THEOREM A4. Y =y*.

+
Proof. Clearly V erGVG . Suppose, however, that w+¢w=‘. Then since Y*
0

is the unique minimal fixed point of rGVG , there is some v such that

0 .
- . . . +

origin(Y*(v)) properly dominates origin(y (v)). Choose Vv so that w+(v)

has minimal rank and origin(w+(v)) is also minimal with respect to

domination ordering. Now v is certainly not a constant. If v is of

+ .
the form (ul,...,uk) then w*(ui) # v (ui) for some i, such that

rank(ui) < rank(v) a contradiction with the assumption that v has

minimal rank. Otherwise, suppose v is an input variable x". Since

< s +
origin(w+(v)) is also minimal, we can assume that § (v) =v. Then X cannot
be definition-free from origin(y*(v)) to n, and there must be use-def edges

(v,ul), (v,uz) such that w+(u1)¥dﬁ1u2). But this implies also that

y*(v) =v, a contradiction. o
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