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1. INTRODUCTION

Let 1I be a computer program to which we wish to apply various optimizations. r

We begin by formulating a global flow model for n as in [H] and [MS].

1.1 The Global Flow Model

All intraprogram control flow is reduced to a digraph indicating which blocks

of assignment statements may be reached from which others (but giving no information

about the conditions under which such branches might occur). The control flow grarph

F = (N,A,s) is a flow graph whose nodes are called blocks (to distinguish it from

other graphs considered in our paper) and rooted at the start distinguished block

s E N. A control path is a path in F. Executions of the program correspond to

control paths beginning at the start blocks, although not every such path in this

graph need correspond to a possible execution of the program H.

The only statements in the programming language retained in the model are

assignment statements. An assignment statement of R is of the form X : .

The left-hand side of the assignment is a program variable taken from the set

{x,Y,Z, ... }. The right-hand side is an expression 4 built from program variables

and fixed sets C of constant symbols and 6 of function symbols.

Each node nE N contains a block of assignment statements. These blocks do

not contain conditional or branch statements; control information is specified by

the control flow graph as in [C]. A program variable occurring within only a

single block n EN is local to n. Let Z be the set of program variables

occurring within H and not local to any block. For each program variable XEZ

n
and block nE N-{s} we introduce as in [RT] the input variable X to denote

the value of X on entry to block n. We use the symbol Xs , considered to be a

constant symbol, to denote the value of X on entry to the program I at the

start block s.
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Let EXP be the set of expressions built from input variables, C, e.

Thus, 4EEXP is a finite expression consisting of either a constant symbol

c C C, a input variable Xn  representing the value of program variable Xn on

input to block n, or a k-adic function symbol e EE prefixed to a k-tuple of

expressions in EXP. Thus 40 is a term in a first order language; it is an

expression containing no predicates and built from function symbols, constant

symbols, and variables on input to particular blocks of assignment statements.

For each XE Z and node n EN where X is assigned to, let the output

expression e(X,n) be a (canonically chosen) expression in EXP for the vale of X on exit

from block n in terms of constants and inpnt variables at block n. A text

expression t is an output expression or a subexpression of an output expression.

Note that each text expression t is a substitution instance of an expression on

the right hand side of an assignment statement of R. Let TEXT C be the set of

text expressions for program H.

For example, let n be the block of code:

X:X-I

Y :=Y+4

Z :=X*y

Then e(Z,n) (Xn-l)*(yn+ 4 ) (or in the more proper prefix notation,

( (-Xn 1) (+n 4))) is the text expression associated with the string of text

"X * Y" at the last assignment statement of n.

An interpretation for the program H is an ordered pair (U,I). The universe

U contains (among other things) a distinct value I(c) for each constant symbol cE C.

For each k-adic function symbol e PE, there is a unique k-adic operator 1(e)
which is a partial mapping from k-tuples in Uk into U. We assume I(c ) ?(I(c

2
mum a i i i i m m 'm .,. .- ~ in,, . .. ,- ,.- .,,, ,,,.- •_ . . ... .. .1 • , _ )
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for each distinct c1 , c 2 EC (every value has at most one name). For example,

a program is in the arithmetic domain if it has the interpretation (Z,IZ)

- . where Z is the set of integers and IZ maps symbols +, -, *, / to the

* arithmetic operations addition, subtraction, multiplication, and integer

division.

An expression in EXP is put in reduced form by repeatedly substituting

for each subexpression of the form (6 c,...ck), that constant symbol c such

that I(c) =I(O)(I(c ),....I(c k )), until no further substitutions of this kind
1k

can be made. We assume the blocks are reduced in the sense of Aho and Ullman

[AUI], so each text expression is a reduced expression. We also assume that

* the output expressions 9(X,n) are reduced (and thus uniquely determined).

A global flow system p is a quadruple (F,E,U,I) where F is the

control flow graph of ii, Z is the set of program variables and (U,I) is

an interpretation. The next definitions deal with a fixed global flow system

p = (F,Z,U,I).

1.2 Covers

The utility of the global flow model is that many program analysis and

improvement problems may be formulated as combinatorial problems on digraphs.

The fundamental program analysis problem of interest here is the discovery,

for each expression t in the text of the program, of a symbolic expression

4 for the value of t which holds for all executions of the program.

Let 4? be an expression in EXP and let p be a control path. We give
Ii

a recursive definition for VALUE(tf,p), the expression for the value of

in the context of a program execution on this control path p. VALUE(ip)

is defined formally as follows:

i) if p= (s) then VALUE(4f,p) is the reduced expression derived

from 4F.

P
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ii) otherwise, if p =p'-(m,n) then VALUE(9,p)=VALUE(t',p') where

J' is the expression obtained from 6 by substituting the output expression

6'(X,m) for each input variable Xn, and putting the result in reduced form.

We now define origin(C), where 4FEEXP, which intuitively is the earliest

block at which all the quantities referred to in g are defined. Let

N(9) ={n ENlthe input variable Xn  occurs in 6'. If N(49) is empty then

origin(6') is the start block s and otherwise or.gin(*) is the earliest

(i.e., closest to s) block in N(g) relative to the dominator ordering

(see Appendix I). The origin need not exist for arbitrary expressions in EXP,

but will be well-defined in all the relevant cases (i.e., origin exists for all

text expressions and their covers). Note that if a text expression t contains

no input variables then origin(t) =s, and otherwise origin(t) is the block

. in N where that assignment statement is located.

An expression ofEEXP covers a text expression t if VALUE(t,p)= VALUE(',p) r

for every control path p from s to origin(t). Hence, if og covers t

then 4? correctly represents the value of t on every execution of program R.

(See Fiqure 2).

A cover is a mapping i from the text expressions TEXT to expressions in

EXP in reduced form such that for each text expression t, i4(t) covers t.

Note that the origin of any cover 4F of a text expression t is always

well defined since the elements of N(9) will form a chain relative to the

dominator ordering.

LEMMA 1. If 9E EXP covers text expression t then origin(&) dominates

origin(t).

Proof by contradiction. Suppose origin(cf) does not dominate origin(t). Then

must contain an input variable Xn such that n is not a dominator of

origin(t). Henc there ° an n--avoiding control path p from the start block

* pI



-6-

s to origin(t) such that VALUE(&,p) contains Xn but VALUE(t,p) does

not, so VALUE(fp) yVALUE(t,p), contradicting the assumption that (r covers t. a

We now define a partial ordering of covers. For each pair of covers qi
1

and i2 i ( P2  iff origin( i (t)) dominates origin(P2 (t)) for all text2 1 21 22* expressions t.

We wish to compute a cover minimal with respect to this partial ordering.

*i Unfort'inately, Appendix II shows this is an undecidable problem. It follows that

we must look for heuristic methods for good, but not minimal covers. Subsection

1.4 defines a class of covers which are fixed points of an iterative process.

The minimal fixed point cover is efficiently computed by our direct algorithm

given in Section 2. The next subsection describes applications of covers to

program optimization.

1.3 Applications of Covers

We give below a number of program analysis problems and optimizations which

reduce to the problem of determining covers of text expressions. These examples

indicate that computing covers is of fundamental importance to program analysis.

IRLI (which is a preliminary draft of this paper) and the recent paper of [RT]

were the first to consider the problem of computing covers. [KK] have made

practical application of our work in the implementation of an optimizing

computer for Pascal.

a) Constant propagation (or folding) is the substitution of the appropriate

constant symbols for text expressions covered by constants (see [Ki].

b) More generally, a text expression t located at block n is redundant

if on all paths from the start block to n another text expression t' yields

a computation equivalent to that of t. Thus t may be replaced by a load

operation from a temporary address containing the result of some such equivalent

previous computation (see [C], [CA], [E], (G], IFKU], [U]). Thus it would suffice

that each such t has the same cover as t.

r . . -. L. .* . .-- . . L . .. . -
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c) Code motion is the process of moving code as far as possible out of

cycles in the control flow graph (i.e., out of program loops). The birth point

of text expression t is the earliest block n in the control flow graph

(relative to the partial ordering of blocks by domination with the start block

first) where the computation of t is defined. Any block occurring between

(relative to this domination ordering) n and the original location of t

has a cover for t in terms of covers for the variables at n. This best

possible birth point for t is the origin of the minimal covering expression

for t. Hence code motion is fundamentally related to the computation of

covers. The earliest such block m, with the further property that the computa-

tion of t can induce no new errors at that block m, is called the safe point

of t; the computation of t may safely be moved to any block between m and

loc(t). The text expression appropriate at the chosen block may not be

lexically identical to t, but is given by the cover of t in terms of the

r
variables on input to that block. Preliminary work on simple motions, primarily

emphasizing safety, but not considering birth points is given in [CA), [G] and [E].

[R2] gives a complete formulation of code motions considering birth points and

safepoints, also considering the movement as far as possible out of cycles, and

give an efficient algorithm for carrying out these code motion optimizations.

d) A cover for a variable in a program loop is a loop invariant (see

IFU] and [W]. The discovery of loop invariants is often crucial for proving

the correctness of a program; see for example [Ul], [KM] and [HK].

e) Symbolic execution of a program as described in [K2] and [CHT], and

a program trnsformation as described in [L] and [SHKN] generally requires a

powerful program simplifier. Domain specific simplifiers such as [NO] may

require the solution of logical decision problems which require much time and

space. The covers give domain independent simplifications of program text,

I.
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which can be computed efficiently. A practical simplification system may use

a combination of these techniques.

1.4 A Compatible Class of Covers

In Appendix II we show that the problem of computing minimal covers over

arithmetic domains is unsolvable. Here we consider a class of covers that can

be characterized by fixed point equations. These covers can be computed in-

efficiently by an iterative algorithm (later in this paper we describe how to

efficiently compute them by our direct algorithm). To iteratively construct

this class of covers, we would first take a pass through the program and

construct a mapping i0 from text expressions to EXP; may not be a cover

but has the property that for all text expressions t,

VALUE(0 (t),p) = VALUE(t,p)

for some (rather than aZZ) control paths p from s to origin(t). The

algorithm would then iteratively compare possible covering expressions of input

variables at particular blocks to the corresponding output expressions of

preceding blocks, and propagate the results to predecessor blocks. More

precisely, for any mapping 4 from text expressions to EXP, let f(l) be the

nn

mapping p' from text expressions to EXP such that for each input variable Xn

ip'(X = if '4= f(9(X,m)) for all blocks m immediately preceding

n in the control flow graph F,

= Xn, otherwise.

and W'(t) is the reduced expression derived from text expression t after*!

substituting 4'(X ) for each input variable Xn  occurring in t. This

k
iterative algorithm then computes T (t 0 for k=1,2,... until a fixed point

of T is obtained. Note that T maps covers to covers; but T need not be

monotonic, i.e., for some cover i and text expression t, it may not be that

(4)) W W
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THEOREM i. If TP is a fixed point of T tha n is a cover.

Proof. We must show VALUE((t) ,p)= VALUE(t,p) for all text expressions t

and control paths p from s to the block where t is located. Let p be

the shortest control path from s to a block n w~ere there is located a

text expression t such that

VALUE ('P (t) ,p) ? VALUE (t,p)

Thus t must contain an input variable Xn  such that

VALUE ( (Xn ) ,p) . VALUE(X n ,p)

n n
Clearly, i'(X X Let m be the next to last block in p, so p=p'-(m,n).

By definition of T, P(Xn) =p( (Xm)) Since p(Xn) contains no input

variables at n,

VALUE ((X n ) ,p) = VALUE ( (Xn ) ,p')

= VALUE((wf(X,m)),p'), since P(Xn) =4(g(Xm))

= VALUE(9(X,m),p') by the induction hypothesis,

n= VALUE(X ,p) by definition of VALUE. D

In Appendix III, we show that T has a unique minimal fixed point .

(See Figures 2 and 3 for examples of the minimal fixed point cover.). We then

show how to efficiently compute I*.

The overall plan of Section 2 is to introduce (in Section 2.1) a special

class of graphs called gZobaZ value graphs which represent the flow of values

(rather than control) through the program R. We define, for each global

value graph GVG, a set rGVG  of approximate covers associated with it.

Appendix III shows FGVG  is in each case a finite semilattice which thus has

a unique minimal element rGVG, and which is efficiently calculated by the

algorithm presented in Sections 2.2-5. As we show in Appendix III, for a

particular choice of GVG, rGVG  is actually 1*, the minimal fixed point of W

the functional T, so our general algorithm does indeed compute U*.



Z:

Figure 2. A minimal fixed point of T1 covers 4?(Z,n) with the expression

Xn*ym.
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Figure 3. Xn , the value of X on input to n, covers Xm , the value

of X on input to M. This is discovered by our algorithm,
since it is true for the minimal fixed point cover. How-
ever, an iterative algorithm does not necessarily discover
this.
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1.5 Comparison with Previous Work

In order to compare our methods with others we must fix the relevant para-

meters of the program and control flow graph. Let n and a be the cardinality

of the node and edge sets, respectively, of the control flow graph. Let a be

the number of variables occurring within more than one block of the program (if

we built into the programming language a construct for the declaration of

variables local to a block, then the parameter a is the number of global

variables). Let £ be the length of the program text. Our careful considera-

tion of the parameter i--avoiding, for example, redundant representations of

the same expression--is one of the novelties of our approach. Previous authors

have analyzed for program optimization algorithms primarily from the point of

view of the control flow graph parameters n and a.

Kildall [Ki] presents an iterative algorithm for computing approximate

solutions to various expression optimization problems. The discovery of constant

text expressions by Kildall's algorithm may require Q(G(Z+a)) elementary steps

and Q(Ga) operations on bit vectors of length O(Gk). (M(f(x)) is a function

bounded from beZow by k-f(x) for some k. See Knuth [Kn2].) Kam and Ullman

[KU2] show that the Kildall algorithm discovers only a restricted class of text

expressions covered by constant symbols. (See Figure 4.) Neither of these

authors considered the more general problem of computing covers of text

expressions.

As described in Section 1.4 an iterative algorithm may also be used to

compute a certain class of covers, which we have characterized as fixed points

of an update functional T mapping approximate covers to improved covers.

Fong, Kam, and Ullman [FKU] give another algorithm, using a direct (noniterative)

method which could be adapted to give covers, though these covers would be

weaker than those fixed point covers and their algorithms are restricted to



Y: 3

-' Figure 4. 6'F(Z,n) =i Y~ is a text expression which is covered
by the constant 5 but is not discovered by Kildall's
algorithm.

I 7
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reducible flow graphs. We will assume these algorithms are executed on a

unit cost random access machine. The iterative algorithm requires £ (kn2

elementary steps and Fong, Kam, and Ullman's algorithm requires Q(Za log(a))

elementary steps. One source of inefficiency of both of these algorithms is

in the representation of the covers. Directed acyclic graphs (dags) are used

to represent expressions, but separate dags are needed at each node of the

flow graph. Since a dag representing a cover may be of size (2) the total

space cost may be Q(kn). Various operations on these dags, which are con-

sidered to be "extended" steps by Fong, Kam, and Ullman [FKU], cost Q(Z)

elementary steps and cannot be implemented by any fixed number of bit vector

operations. In general, any similar algorithm for computing a cover which

attempts to pool information separately at each node of the flow graph will

have time cost of Q(Za), since the pools on every pair of adjacent nodes must

be compared. Since £ >n, such a time cost may be unacceptable for practical

applications.

Another problem with these previous methods is they do not necessarily

compute good covers. The iterative algorithm only computes a fixed point of

T, but not necessarily its minimal fixed point (again, see Figure 3). Our

algorithm always gives the minimal fixed point. At any rate, this paper and

subsequent papers JR2], [TRI were the first in the literature directly concerned

with computing covers.

The gZobaZ value graphs used in this paper contain dags of program blocks

as well as the use-def edges of [Sc] to represent the global flow of values

through the program. The use of a global value graph leads to our efficient

direct algorithm for computing covers which works for all flow graphs. The

method derives its efficiency by representing the covers with a single dag,

rather than a separate dag at each node. The global value graph GVG0 is of

size O(aa+94), although the results of [RT] may be used to build a global
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value graph which in many cases is of size O(a+t) (see Section 3). In

elementary operations, the time cost of our algorithm for the discovery of

constants is linear in the size of GVG, and our algorithm for finding the

cover which is the minimal fixed point of T requires time almost linear in

the size of the GVG. Thus our algorithm for symbolic evaluation takes worst

case time almost linear in Oa +k£ (a +R in many cases), as compared to the

iterative algorithm which may require Q(tn 2) steps. Recently, Reif and

Tarjan [RT] give an algorithm which computes simple covers (weaker than minimal

fixed points of T) in time almost linear in k +n +a. This algorithm also

uses a single dag for representing the simple cover and works for all flow

graphs.

2. AN EFFICIENT ALGORITHM FOR COMPUTING A COVER'

2.1 Dags and Global Value Graphs

A labeled dag D= (V,E,L) is a labeled, acyclic, oriented digraph with a

node set V, an edge list E giving the order of edges departing from nodes,

and a labeling L of the nodes in V. A rooted labeled dag (D,r) represents

an expression d if 49 is the parenthesized listing of the labels of the sub-

graph of D rooted at r in topological order from r to the leaves and from

left to right. Where D is fixed, we simply say r represents 9 if (D,r)

so represents 4. (See Figure 5.)

The dag D is minimal if each node r EV represents a distinct expression.

Any expression or set of expressions may be represented, with no redundancy, by

a minimal dag D(n) to represent efficiently the set of text expressions

located at block n. We have assumed that each block is reduced, so each node

in D(n) corresponds to a unique text expression. [AUl] describe the use of



I

i+

Figure 5. (D,r) represents (5+ (5*X ) (or more properly in
prefix notation (+ 5(* 5 Xn))) where D is the
above dag.
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dags for representing computations within blocks. [Ki] and [FKU] have applied

dags to various global flow problems.

We now come to the central definition. To model the flow of values

through a program n, we introduce a class of labeled digraphs called gZobal

value graphs. These are derived by combining the dags of all the blocks in N

and adding a set of edges called use-def edges (which pair nodes labeled with

input variables to other nodes). More precisely, a global value graph is a

possibly cyclic, labeled, oriented digraph GVG= (V,E,L) such that:

(1) the node set V is the union of the node sets of the dags of N,

(2) E is an edge list containing (a) the edge list of each D(n) and

2(b) a set of pairs in V (use-def edges) such that (i) the first node of each

use-def edge is labeled with an input variable and (ii) for each vEV

labeled with an input variable Xn, and control path p from s to n, there

is some use-def edge depai ing from v and entering a node located at a block

in p and distinct from n.
I-

(3) L is a labeling of V identical to the vertex labeling of each D(n).

Note that for each v EV, if v represents a constant symbol c then v

is labeled with c and has no departing edges; if v represents a function

application (6 t ... t k ) then v is labeled with the k-adic function symbol
1** k

e and ul,... ,uk  are the immediate successors of v in GVG representing

ti t .... tk' respectively; if v represents an input variable Xn  then v is V

labeled with X and all the edges departing from v are use-def edges. For

each node vEV, let loc(v) be the block in N where the text expression

which v represents is located.

We assume here, as in Section 1, that the set of text expressions of each

block n EN includes all input variables at n. This may require adding dummy

assignments of the form X : X to satisfy this assumption. Let rGVG be the "

set of mappings 4 from V to EXP such that for all vE V,

P
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(1) if L(v) is a constant symbol c then (v) = c, or

(2) if L(v) is a function symbol 0 and v has immediate successors

uI,... k (in this order) then 4(v) is the reduced expression derived from

(8 (u ).. . (u )), or
1 k

(3) if L(v) is an input variable then either (a) (v) =L(v) or

(b) l(v) = f(u) for all use-def edges (v,u) departing from v.

Note that for any node v satisfying (2), (v) is determined from the

input variables occurring in the text expression which v represents. Hence

any q Er GVG is uniquely specified by the set of input variables satisfying

case (3a), so r has at most 2 INI
IZ I elements.

GVG

In Appendix III we show that r is a finite semilattice, and hence
GVG

has a minimal element.
Let GVG be the standard global value graph containing only the use-def

0

edges {(v,u)Iv represents input variable Xn and u represents the output

expression F(X,m) for each program variable XEZ and edge (m,n) E A of the

control flow graph F}. (See Figure 6.) Note that while there are in the worst

case kn possible use-def edges GVG* contains at most to use-def edges.

Let 1 ,* be the minimal fixed point of T, the functional defined in Section 1.4.

Appendix III shows 4,* identical to be the minimal element of P applied to the

standard global value graph GVG0 . (Also, in Section 3 we define a global value
* 0

graph GVG1 with the same property, but which often is of size linear in k+a.)

2.2 Detection of Constants

Let GVG= (V,E,L) be an arbitrary global value graph. Let

be a minimal element of rV We wish to compute a new labeling L' of V
GVG*

such that for each vEV, if P(v) is a constant sign then L'(v) =c and

otherwise L' (v) = L(v). Nodes thus relabeled with constants may be discovered

by propagating possible constants through GVG, starting from nodes originally

LD
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labeled with constants, and then testing for conflicts. This leads to an

algorithm for constant propagation with time cost linear in the size of the GVG.

Recall that a spanning tree of the control flow graph F= (N,A,s) is a

tree rooted at s, with node set N, and edge set contained in A. A pre-

ordering of a tree orders fathers before sons. Let < be a preordering of

some spanning tree of F. For each vEV, let loc(v) be the node in N at which the

text expression associated with V is located. We construct an acyclic subgraph of

GVG by deleting the set of use-def edges E={(v,u)lloc(v) <loc(v)}. Observe that

(V,E-E) is acyclic. We shall propagate constants &n a topological order (see

Appendix I for definition) of (V,E-E) , from leaves to roots. (See Figure 7).

Our algorithm for computing the new labeling L' is given below.

ALGORITHM A

INPUT global value graphs GVG= (V,E,L) and control flow graph F.

OUTPUT L'.

* begin
declare L' to be an array of length lVi;
Let < be a preordering of a spanning tree of F;
Q :=E :=the empty set {;
for alluse-def edges (v,u) EE such that loc(v) < loc(u)

do add (v,u) to E;
comment propagate constants;

LO:for each vEV in topological order of (V,E-i)
from leaves to roots do

if L(v) is a constant sign c then Ll: L'(v) c;
else if L(v) is a k-adic function symbol e,

ul,...,u k  are the immediate successors of v in

GVG, and (e L'(ul ) ... L'(uk)) reduces to a
constant c then L2: L'(v) - c;
else if L(v) is an input variable and there

is a constant c such that L' (u) = c
for all use-def edges (v,u) departing from v
then L3: L'(v) := c;

else begin add v to Q;L' (v) := L(v) end;
end;

comment test for conflicts;
L4:for each vEV labeled with an input variable do

if v has a departing use-def adge (v,u) such that S
L' (v) vL' (u) then add v to Q;

till Q- the empty set 0 do

IvS
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delete some node v from Q;
if L' (v) is a constant use-def then

L5: begin
L'(v) := L(V);
add all immediate predecessors of v in GVG to Q;

end;
end;

end.

LEMMA 2.1. If ip(v) is a constant then L'(v) is set to (v) at Ll, L2,

or L3.

Proof, by induction on the topological order of (V,E-E).

Basis Step. Suppose v is a leaf of (V,E-E). Then L(v) is a constant

sign and so L' (v) is set to L(v) = O(v) at Ll.

Induction Step. Suppose v is in the interior of (V,E-E) and L' (u) has

been set to flu) for all u occurring before v in the topological order

where l(u) is a constant. Then v represents either a function application

or an input variable.

CASE 1. Suppose L(v) is a k-adic function sign 0 and uI ... ,uk  are the

immediate successors of v in (V,E-E). If 4(v) is a constant c then by

definition of r, u ) , ... , (uk) are constants Cl,...,ck, respectively

and ( cl... ck ) reduces to c. By the induction hypothesis L'(u I ),...,L'(u

have been previously set to cI ,.... ck and so L' (v) is set to IP(v)= c at L2.

CASE 2. Otherwise, L(v) is a. input variable Xn . If (v) is a constant

symbol c then *Cv) #X n  so by definition of rGVG' c=(u) for all use-def

edges (v,u) departing from v. By the induction hypothesis, L' (u) has been

set to c=flu) for each use-def edge (v,u) EE-i. Now we must show v has

some departing value edge (v,u) EE-E. Let T be the spanning tree of F
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with preorder <. Consider the path p in T from the start block s to

n. By definition of GVG, there is a use-def edge (v,u) such that loc(u)

is distinct from n and is contained in p. Hence (v,u) E E-E and L(v)

is set to c at L3.

Let Q be the value of Q just after L4. Then v EV is eventually

added to Q and L' (v) reset to L(v) iff some element of Q is reachable

in GVG from v. If vEV is labeled by L' with a constant at L4, then

we show

LEMMA 2.2. 1f(v) is not a constant iff some element of Q is reachable in

GVG from v.

Proof. IF. Suppose (v) is not a constant, but no element of Q is

reachable from v. Then let P be the mapping from V to EXP such that

for each uE V, T(u) is the reduced expression derived from 4(u) after

substituting f(w) for each input variable represented by a node w (i.e.,

w is the unique node labeled with that input variable) from whij .h n elannc

of Q is reachable. Then 4E rGVG but origin( v)) =s <origin(4(v,),
GVGG

contradicting the assumption that 14 is the minimal element of r GVG*
ONLY IF. Suppose some element of Q is reachable from v in GVG.

Clearly if vEQ, then f(v) is not a constant. Assume for some k>0, if

there is a path of length less than k in GVG from some u EV to an element

of Q, tlen f(u) is not a constant sign. Suppose there is a path

(v=w 0,w ...,wk) of length k from v to w . If k =i, then w I EQ ,

and otherwise if k >1, then (w ,... ,w k ) is a path of length k-l. By the

induction hypothesis, 4(w I ) is not a constant. But (v,wI) EE and by the

definition of fGVG, 4(v) is not a constant. 0
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THEOREM 2. 1. Algorithm A is correct and has time cost linear in the size of

. •~ the GVG.

Proof. The correctness of Algorithm A follows directly from Lemmas 2.1 and

2.2.

In addition we must show Algorithm A has time cost linear in lVi + jEj.

The initialization costs time linear in IVI. The preordering < may be

computed in time linear in INI + IAI by the depth first search algorithm of

[T1]. The time to process each v EV at steps LO and L4 is

O(i +outdegree(v)). Step L5 can be reached at most lvi times and the time

cost to process each node v at step L5 is O(l+indegree(v)). Thus, the

total time cost is linear in IVI + El. 0

In some cases, we may improve the power of Algorithm A for particular

interpretations by applying algebraic identities to reduce expressions in

EXP more often to constant symbols. For example, in the arithmetic domain

we can use the fact that 0 is the identity element under integer multi-

plication to modify Algorithm A so that if node v is labeled by L with

the multiplication symbol and a successor of v in GVG is covered by 0,

then at step L3 we may set L'(v) to the constant 0.

From the new labeling L' and GVG= (V,E,L), we construct a reduced

global value graph GVG' = (V,E',L') with labeling L' and with edge set

E' derived from E by deleting all edges departing from nodes labeled by

L' with constant symbols. This corresponds to substituting constant

symbols for constant text expressions in the program N. We assume through-

out the next three sections that GVG is so reduced.

-
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2.3 A Partial Characterization of ', the Minimal Element of FGVG

Let GVG= (V,E,L) be a reduced global value graph as constructed by

Algorithm A of the last section. Let ' be the minimal element of r GVG.

Let V be the set of nodes in V nodes labeled with constant and function

symbols. Observe that FGVG  characterized exactly the values of any such

'P over nodes in V in terms of the values of ' over the nodes in V-V,

i.e., in terms of the nodes labeled with input variables. The following

Theorem characterizes l over V-V in terms of P over V.

We require first a few additional definitions. A use-def path is a

path p in GVG traversing only nodes linked by use-def edges. A use-def

path is maximal if the last node of p has no departing value edges. For

any node v E V labeled with an input variable, let H(v) be the set of

nodes in V lying at the end of a maximal use-def path from v. Note that

H(v) is a subset of V. Call two paths disjoint if they have only their

initial node in common.

THEOREM 2.2. If v is labeled with an input variable, then either

(a) f(v) =ip(u) for all uE H(v), or

(b) *(v) = L(u)., where u is the unique node such that

(i) u lies on all maximal use-def paths from v but

(ii) there are disjoint maximal use-def paths from v to nodes

UU 2 EH(v) such that ip(u1 ) 7fP(u 2 ). (See Figure 8).

Proof. Suppose '(v) is not an input variable, so there exists a maximal

use-def path p from v to some u I EH(v) such that 1p(v) =l(u 1 ). Assume

there exists another maximal use-def path p' from v to some u EH(v) w
2

such that f(v) 3f(u2). Let z be the first element of p' such that I.
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Figure 8. Case (b) of Theorem 2.2: all maximal use-def paths from v

contain u and pl, P2 are disjoint maximal use-def paths

from u to u ,u f .(v).
1 2
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p(z) Mi(u) and let z' be the immediate predecessor of z in p', so

j(z') = (v). Then by definition of FGVG , f(v) =4(z') =L(z') is an input

variable contradiction.

Suppose 4(v) is an input variable, so P(v) L(u) for some uEV.

For any maximal use-def path p from v, let z be the first element of

p such that IP(z) #L(u) and let z' be the immediate predecessor of z

in p. Then by definition of rGVG , 1(z') =L(z') =L(u) so z' =u is

contained on p. Now suppose that there is a node w EV distinct from u

and contained on all maximal use-def paths from u.

Consider any control path q from the start block s to block loc(u).

By Lemma 2.3, we can construct a maximal use-def path (U=Wl,...,w ) such
1 k

that loc(w ) ...,loc(wk ) are distinct blocks in q. Hence, loc(w)

properly dominates loc(u).

Let P' be the mapping from V to EXP such that for all v' EV,

i'(v') is derived from f(v') by substituting L(w) for each input

variable labeling a node from which all maximal use-def paths contain w.

Then ' E EGV. But origin( ' (v))= loc(w) properly dominates loc(u) =
GVG*

origin(W(v)), contradicting our assumption that i is minimal over rG. 0 p

Theorem 2.2 suggests a procedure for calculating i, but there is an

implicit circularity since the calculation (using Theorem 2.2) of 4;(v) for

v EV-V requires the determination (using the definition of F ) of i(u)
GVG

for u EH(v); but since uE V, the calculation of W(u) may require the

determination of ip(w) for some other w EV-V. The way out is by the rank

decomposition discussed in the next section. There will remain the problem

of finding disjoint paths, which we consider in Section 2.5. This allows us
J

to apply Theorem 2.2 without circularity.
,t
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2.4 Rank Decomposition of a Reduced GVG

This section describes a decomposition of the nodes of a reduced

GVG= (V,E,L) into sets for which we may completely characterize the minimal

tE rGG. This leads to an algorithm for the construction of .

Fong, Kam, and Ullman [FKU] describe the rank decomposition of a dag;

this provides a topological ordering of a dag from leaves to roots over

which the dag may be efficiently reduced. Here we generalize the rank

decomposition to a possibly cyclic GVG; this provides us a method of

partitioning V into sets of text expressions over which i may have the

same value; it also allows us to apply Theorem 2.2 without circularity,

characterizing completely the minimal 1 E . In Section 2.5 we apply
GVG'

the rank decomposition to implement our direct method for symbolic

evaluation.

The rank of a node v EV is defined:

rank(v) = 0 if v is labeled with a constant symbol

= l+MAX{rank(u) I (v,u) EE} for v labeled

with a function symbol

= MIN{rank(u)lu EH(v)} for v labeled with an

input variable.

(See Figure 9.)

Observe that in the very simple case where U contains only a single

block of code, at the start block s, then GVG consists of the dag D(s).

Hence the rank of a node v EV is the length of a maximal path from v to

a leaf of the dag D(s); inducing a topological ordering of the dag D(s)

from leaves to roots.

LEMMA 2.3. i(v) -W(v') impliee rank(v) -rank(v').
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Proof. We proceed by induction on rank of v.

Basis Step. Suppose v is of rank 0, so V(v) =P(v') is a constant

symbol c. But since GVG is reduced, L(v') =c and v' is also of rank 0.

Inductive Step. Suppose for some r >0, rank(w) =rank(w') for all w,w' EV

such that rank(w) <r and (w) =4(w'). Consider some v,v' EV such that

rank(v) =r.

CASE a. Suppose f(v) = I(v') is the function application (69 ...4 ). Then
1 k

by Theorem 2.2, P(v) =i(u) for all uEH(v), and similarly, P(v') =(u')

for all u' EH(v'). Fix some uEH(v) and u' EH(u'). By definition of

SGVG , L(u) =L(u') =6 and if wl,... ,wk  are the immediate successors of u

and w ...,w' are the immediate successors of u', then 4?.f 1(w.) =*(w )

for i= 1,...,k. By the induction hypothesis, rank(w.) =rank(w!) for1 1

i=1,...,k. Hence,

rank(v) = rank(u)

= 1+MAX{rank(w ),...,rank(wk)

1+MAX{rank(w!),...,rank(w)}

rank(u')

= rank(v').

CASE b. Suppose f(v) ='(v') is an input variable. By Theorem 2.2,

4)(v) = (v')=L(u) for some uEV contained on all value paths from v and

v'. Hence, rank(v) =rank(v') =rank(u). 0

To compute the rank of all nodes in GVG we use a modified version of

the depth first search developed by Tarjan [T1]. Because the search proceeds

backwards, we require reverse adjacency lists to store edges in E. Note that

the RANK(v) is used in two different ways; first to store the number of

successors of node v which have not been visited, and later RANK(v) is

I I IqIl H/ i i i d --"id i "m:. . . . ... .. . .. .
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set to rank(v). Let Vr V be the nodes in V, V of rank r. We
r

initially compute V0  and on the r'-th execution of the main loop we compute

Vr r and Vr+l"

ALGORITHM B

INPUT GVG= (V,E,L)

OUTPUT RANK

begin
declare RANK := an array of integers of length AVI;

for all vEV do
RANK(v) outdegree(v);

r :=0;
Q' := {vIL(v) is a constant symbol};
until Q' =the empty set 0 do
begin

Q :-Q'; Q' :=the empty set {};
comment Q=Vr;

L: until Q=the empty set { do

delete v from Q;
for each immediate predecessor u of v do
if L(v) is a function symbol then

if RANK(u) =-1 then
begin

comment u E Vr+1 ;
RANK(u) :r+l;
add u to Q'

end
else RANK(u) :=RANK(u) + 1;

else if RANK(u) <0 then
begin

comment uEVr - Vr;
RANK(u) := r;
add u to Q

end;
end;

r .=r+l;
end;

end. r

THEOREM 2.3. Algorithm B is correct and has time cost linear in lVi + IEl.

Proof by induction on r.
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Basis Step. Initially, RANK(v) is set to -(outdegree of v) for each vEV.

So if L(v) is labeled with a constant symbol then RANK(v) is set to 0.

Also, Q is initially set to V0 just before label L.

Inductive Step. Suppose for some r >0, we have on entering the inner loop

at label L on the r'-th time:

(1) Q=Vr

(2) For each vEV, RANK(v)=rank(v) if rank(v) <r or vEV , andr

RANK(v) =-(number of successors of v with rank> r) if

rank(v) > r or vEV -V
r r

In the inner loop we add to Q exactly the nodes V -V ={vEV-VJsome elementr r

of V is reachable by a use-def path from v}. For each such vE V -Vr r r

added to Q, RANK(v) is set to r. Also, for each vEV, if rank(v) > r+l

then RANK(v) is incremented by 1 for each immediate successor of v of

rank r; if rank(v) = r+l then all immediate successors of v are of rank< r

so RANK(v) is set to r+l and v is added to Q. Thus, (1) and (2) are

satisfied entering the loop on the r+l time.

Now we show that Algorithm B may be implemented in linear time. For

each node vEV we keep a list (the reverse adjacency list), giving all

predecessors of v. To process any vEQ' requires time O(l+indegree(v)).

Since each node is added to Q' exactly once, the total time cost is linear

in IVI +IEI.

This suffices for the construction of ; i (v) for vEV 0 ,  0 Vo

V1, V1 -V1 ,... may be determined by alternately applying the definition of

GVG and Theorem 2.2.

Using this method could be inefficient, since Theorem 2.2 could be

expensive to apply and the representations of the values could grow rapidly
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in size. The first problem is solved by reducing it to the problems of P-graph

completion and decomposition as described in the next subsection 2.5. The

second problem is solved by constructing a special labeled dag; the construction

of this dag and the final algorithm are given in Section 2.6.

2.5 P-Graph Completion and Decomposition

Let, GVG= (V,E,L) be a reduced global value graph. This section presents

an efficient method for applying Theorem 2.2 to nodes in V -V (i.e., nodes
r r

of rank r labeled with input variables). Now to compute l*, the minimal

element of rGVG , it suffices to find the partitioning of V such that

W*(v) =J*(u) iff v, u are in the same component of the partition. To represent

such a partitioning, we distinguish one node of each component of the partitioning

to be the vaZue source of all other nodes of that block. We require that if

vEV-V (i.e., v is labeled with an input variable) then *(v) =L(v) iff v

is a value source. Let V* be the set of value sources and let VS be a

mapping from nodes in V to their value sources. Hence the fixed points of VS

are the value sources and VS- [V*] is a partitioning of V. Note that, in

general, the definition of "value source" is not uniquely determined, so the

definition of V* and VS depends on our particular choice of value sources.

We shall find value sources by reducing this problem to the problems of

P-graph completion and decomposition stated below.

Let G= (V G,E ) be any directed graph and let S CV G be a set of vertices

of G such that for each vertex V E VG there is some vertex u ES from which

v is reachable.

w
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-. P-Graph Completion Problem. Find

S= S U {v E VG I there are at least two paths from distinct elements

of S to v not containing any other element of S}.

This form of the problem is due to Karr [Ka], who shows that it is equivalent

to the original formulation due to Shapiro and Saint [SS]. (Actually, this form

is slightly more general than Karr's; Karr satisfies our restriction on S by

stipulating that there is a single r E S from which every v E V is reachable.)
G

+
Karr proveg that for each v EV there is one and only one element of S from

G

which v is reachable (and his proof extends directly to our slightly more

general problem).

P-Graph Decomposition Problem. Given G and S+, find, for each vEVG,

the unique u ES from which v is reachable.

We first show these problems can be solved efficiently. Shapiro and Saint

give an O(IVGIZ) algorithm, while Karr gives a more complex O(IVGIlOgV~i + IEGI)

algorithm. Here we reduce these problems to the computation of a certain dominator

tree, for which there is an almost linear time algorithm as noted in Section 2.2.

(This construction was discovered independently by Tarjan [T21.)

Let h be a new node not in VG , and let G' be the rooted directed graph

(V U{h, E GU{(h,v)IvES} -{(u,v)IuEV G , vES},h)

Thus G' is derived from G by adding a new root h, linking h to every node

in S, and removing the edges of G which lead to nodes in S. Let T be the

dominator tree of G'.

LEMMA 2.4. The members of s+  are the sons of h in T.

Proof. IF. Let vES +. If vES then h is a predecessor of v in G' so

h is the father of v in T. If vES + - S  then by definition of S+  there

are disjoint paths p.' p2  in G from distinct elements of S to v not

,n anu n l . . " t -- : 1 .. . . . . "- - ns " ~ nnndl ' da m m . . . "- .2
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containing any other element of S. Clearly p1  and p2  are also paths in G'

since they contain no edge entering a member of S. Then (h,p1 ) and (h,p2)

are paths from h to v in G' which have only their endpoints in common, so

v is a son of h in T.

ONLY IF. Suppose v is a son of h in T. If h is a predecessor of

v in G' then vEScS . Otherwise there are in G' paths (h,pI) and (h,p2)

from h to v which have only their endpoints in common. Moreover, these paths

contain no element of S except for the first nodes of plI p2, since no edge of

G' enters an element of S except from h. Hence pl, P2 are disjoint paths

in G' from distinct members of S to v not containing any other element of

S, and hence vES+. a

THEOREM 2.4. For each vE VG the unique node in s from which v is reachable

in G is the unique node which is a son of h and an anceetor of

v in T.

Proof. Let w be that ancestor of v which is a son of h in T. By Lemma

2.4, wES+ , and clearly v is reachable from w in G since it is reachable from

+
w in T. Conversely, if w ES is reachable from v in G then w is a son

of h in T by Lemma 2.4, and w must be an ancestor of v since otherwise v

+
would be reachable from some other member of S 0

Now we establish the relation of these problems to the problem of finding

V* and VS as stated above. Fix some V* and VS by choosing one node of

GVG for each value of 4 on V consistent with our definition of value sources.

For each rank r, let Gr =(VrEr), where Vr is the set of all nodes of rank r

of a reduced GVG as defined in Section 2.4 and E is the edge set derived from
r

E by

(1) deleting all edges except use-def edges between nodes of rank r,

(2) for those remaining use-def edges (v,u) entering uEVr, substituting

instead the edge (v,VS(u)),
S
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(3) finally reversing all edges.

Note that any edge of GVG departing from a member of V enters a noder

of rank r-l. Let S be the set of all value sources of V plus all nodes
r r

of rank r labeled with input variables which have a departing use-def edge

entering a node of rank greater than r. Note that for each node v of Gn ,

there is a node in S from which v is reachable in G . Finally, let S+
r r r

be defined from Sr as in the statement of the P-graph completion problem.

+LEMMA 2.5. She members of s are the vaZue sources of rank r.
r

Proof. IF. Suppose vES Sr -

CASE 1. By definition, all elements of {VS(v) IvEVr} are value sources.

Hence we need only consider the case where v is a node of rank r labled with

an input variable which has a departing use-def edge (v,z) entering a node z

of rank greater than r. Since v is of rank r, v must also have a departing

use-def edge (v,u) leading to a node of rank r. By Lemma 2.3, 4(z) 30(u), so

by the definition of rGVG, W(v) =L(v) and v is a value source.

CASE 2. Suppose there are in Gr disjoint paths (xl, .... ,xj) and

(y1 y2 '"'Yk) in Gr from distinct x1 YlES r to v. By construction of

G , there exist distinct X1 1y EH(v) such that VS(x l x1 VS(Y yl, and
r,

(x2 1x1 ) and (y 2 ,yl) are use-def edges, and so pl= (vx ,xj i1'..x2'xl)

and p2 = (vYk'Yk-l' ... Y2'Y 1 ) are disjoint paths. Now suppose v is not a

value source. Applying Theorem 2.2, there is a value source u (distinct from

v) such that i$(v)= IP(u) =L(u). Since p1  and p2  are disjoint they cannot

both contain u. Suppose, without loss of generality, that p1  avoids u.

Then all maximal use-def paths from x1  contain u. Also, by definition of

Sx =x 1  and there is a use-def edge (v,z) such that z is not of rank r.
Sr
Since any maximal use-def path from z must contain u, rank (z) = rank (u)
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implying that u is not of rank r. But, by hypothesis, all maximal use-def

paths from v contain u, so rank(v) =rank(u). This implies that v is not

of rank r, contradicting our assumptions. 0

By Karr's proof [K] of the uniqueness of the P-graph decomposition of G
r

on S , we haver

THEOREM 2.5. For all nodes vEV of rank r and labeled with an input variable,

VS (v) is the unique value source contained on all use-def paths in

Gr from elements of Sr  to v.

Thus the problem of computing VS reduces to the problem of decomposing

the reduced global value graph by rank and then constructing dominator trees.

The former can be done in linear time by Algorithm B of Section 2.4, the latter

in almost linear time by [LT].

2.6 Our Algorithm for Symbolic Program Analysis

In this section we pull together the various pieces developed in Sections

2.1-5 to give a unified presentation of our algorithm computing a minimal fixed

point case. Instead of using the GVG directly to represent 1*, as suggested

in the beginning of Section 2.5, we more economically represent * by a dag

D* derived from GVG by collapsing nodes into their value sources; more p

precisely D*= (V*,E*,L*) where

V* = {VS(v) Iv EV = the set of value sources,

E* = {(VS(v) ,VS(u)) I(v,u) EE and L(v) is a function symbol, p

L* is the restriction of L to V*.

Recall from Section 2.1 that rooted dags may be used to represent expressions in

EXP.

LEMMA 2.6. For each node vEV, (D*,VS(v)) represents iP(v).

-
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Proof. Note that by definition of VS, for each vE V

(VS (v))=* (v)

for each vEV, so we need only show for vEV*

(D*,v) represents IP*(v).

We proceed by induction on a topological ordering of D*, from leaves to roots.

Basis Step. If v is a leaf of D*, then (D*,v) represents the constant

symbol L(v) =b(v).

Induction Step. Suppose v is in the interior of D* and (D*,u) represents

q)*(u) for all children u of v. Thus v must be labeled in L with a

function symbol e and have immediate successors ul,... ,u2  in GVG. Then

VS(u 1 ...,VS(uk ) are the children of v in D* and for i =1,...,k by the

induction hypothesis (D*,VS(u.)) represents *(VS(u i)) =(u.) Thus (D*,v)

represents (6 O*(uI )...4*(u k ) ) =4*(v) by definition of rG. D
GVG-

Our algorithm is given below. As in Section 2.4, we compute I* and VS

in the order of the rank of nodes in V. The array COLOR is used to discover

nodes with the same p*.

ALGORITHM C

INPUT GVG= (V,E,L)

OUTPUT VS and D*= (V*,E*,L*).

begin
initialize:

declare VS, COLOR := arrays of length IVI;
procedure COLLAPSE(S,u):

for all vES do
begin

VS (v) :u;
if u #v then

begin
for each edge (w,v) entering v do
substitute (w,v);

for each edge (v,w) departing from v do
substitute (u,w);

delete v from the edge set;
end;

end;
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Compute new labeling L' of V by Algorithm A
and reduce GVG as described in Section 2.2;

Compute rank of nodes in V by Algorithm B of Section 2.3;
for r :=O to {MAX rank(v)IvEV) do

Let Vr, Vr be the nodes in V, of rank r;
for all vEVr do

if r=O then COLOR(v) :=L'(v)
else COLOR(v) := <L(v),ul,...,uk> where
Ul,...,uk are the current immediate successors of v;

radix sort nodes in Vr by their COLOR;
for each maximal set S CVr containing nodes with the same COLOR do
begin

choose some uES;
comment u is made a value source;
COLLAPSE (S,u);

end;
Let h be some node not in Vr:
Er :=Sr :=the empty set {;
for all vEVr do add VS(v) to Sr;
for all v E Vr-Vr do

for each node u which is currently an immediate successor of v do
if u is of rank r then add (u,v) to Er;
else add u to Sr;

Let Tr be the dominator tree of Gr (VrU{h},ErU{(h,v) IvESr},h);
for all sons u of h in Tr do
begin

comment by Theorem 2.4 and Lemma 2.5, u is a value source;
COLLAPSE({the descendants of u in Tr} ,u);
delete all edges departing from u;

end;
end;

Let V*, E* be the node set and edge list derived from V,E by the
above collapses;

for all vEV* do L*(v) :=L' (v);
end.

THEOREM 2.6. Algorithm C is correct and can be implemented in almost linear

time.

Proof. The correctness of Algorithm C follows directly from Theorems 2.4,

2.5 and Lemmas 2.5, 2.6.

In addition, we must show that Algorithm C can be implemented in almost

linear time. The storage cost of GVG is linear in IVI + IE. The initializa-

tion of Algorithm C costs time linear in INI + IAI. Algorithms A and B cost

linear time by Theorems 2.1 and 2.3, respectively. The time cost of the r'-th

execution of the main loop, exclusive of the computation of Tr , is linear in

S
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IVrI + IEr1, plus the sum of the outdegree of all vE V - V (Here we assume

that elements in the range of L' are representable in a fixed number of

machine words and that the number of argument-places of function signs is

bounded by a fixed constant, so a radix sort can be used to partition V by
r

COLOR.) The computation of the dominator tree T requires by [LT] time costr

almost linear in IVrI + IE1. Thus, the total time cost is almost linear in

IVI + JE).

This completes the presentation of our algorithm for computing a minimal

fixed point case *.

3. FURTHER WORK

3.1 Improving the Efficiency of Our Algorithm for Symbolic Program Analysis

The primary goal of this paper was to construct the minimal fixed point

p* of the functional T. Actually, T was defined relative to a program 17'

derived from the original program E by adding dummy assignments of the form

X := X at every block where some program variable X EE is not assigned. This

does not change the semantics of the program but requires the addition of

O(IEI NI) text expressions whose covers we are not actually concerned with.

In practice we need the covers given by * only over the domain of the original

text expressions of I.

The algorithms of Section 2 allow us to construct, for any global value

graph GVG, the unique minimal element of r in space linear in the size of
GVG

GVG and time almost linear in the size of GVG. Section 2.1 defines the P

standard global value graph GVG0 which has size O(IJIIA +k) and with the

property that * is the minimal element of r GVG. We describe here how we may
V 0 '

construct a global value graph GVG1 of size O(dIA +fl) where d is a parameter

of the program which is often of order I for block-structured programs but may grow

P
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to X. The construction of GVG can be done by a preprocessing stage

*of IRT] costing a number of bit vector steps almost linear in JAl +k.

Thus this preprocessing stage offers no theoretical advantage but in practice

may often lead to a global value graph of size linear in the program and flow

graph. The construction of GVG+ can be done by a preprocessing stage of

[RT] costing a number of bit vector steps almost linear in IAI +kR. Appendix

III shows GVG1  has the property that the minimal element of r is the
1 GVGJ

minimal fixed point of the functional Y defined in Section 2.4. In contrast
to the iterative method, which for a large class of programs has storage cost

Q(kINI) and time cost 0(.IN12 ), our direct method has storage cost linear in

the size of GVG and time cost almost linear in the size of GVG

A path is m-avoiding if the path does not contain node m. Consider blocks

m, n in the control flow graph such that m dominates n. A program variable

XEE is definition-free between m and n, if (1) m=n or (2) m properly

dominates n and X is not assigned to on any m-avoiding control path from an

* immediate successor of m to an immediate predecessor of n (otherwise X is

defined between m and n). We define a function W from text expressions

which are input variables to blocks of the control flow graph. For each input

variable Xn , W(xn ) =m, where m is the first block on the dominator chain of

the control flow graph from the start block s to n such that X is

definition-free between m and n. An algorithm in [RT] computes W in a

number of bit vector steps almost linear in INI +Z,.

It will be convenient to assume that for each text expression which is an

input variable Xn such that W(Xn) =n, X is assigned to at each block m

immediately preceding n. We must add O(dINI) dummy assignments to accomplish

this; d is often constant for block structured programs but may grow to IjI.

Let GVG0 = (V,E,L) be the standard global value graph defined in Section 2.1.
0v

*Let K1 be the set of pairs of vertices (u,v) V2 such that
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(1) v is labeled with an input variable Xn

* (2) t' represents an output expression 9(X,m)

(3) either (a) W(Xn) = n and m is an immediate predecessor of n in

F, or (b) W(Xn) =m properly dominates n.

Note that E1 contains O(dIA +k) edges. Let EUD be the use-def

edges of GVG0 . Let GVG 1 be the global value graph with vertices V,

labeling L, and use-def edges EUE- EuD. Let d= IE I/IAI and observe

that d <ZL. Then JElJ =O(dJAI) and so GVG is of size O(JE 1+i)=
1 1 1

O(dAI +k.

Appendix III proves r1 has a minimal fixed point which contains in its
GVG~

domain the minimal fixed point cover T*. Thus our algorithm given in Section 2

can be used to construct J* in time almost linear in the size of GVG1 .

3.2 Improved Covers for Restricted Domains

We show in Appendix I that there is no finite algorithm for computing

minimal covers in the arithmetic domains. However, the minimal fixed point

covers computed by our algorithm in Section 2 can be improved by use of domain-

specific identities.

In PJ1] our methods for computing covers are extended to programs which

operate on records in a language such as PASCAL or LISP 1.0. There we use the

domain specific fact that selections on (such as car or cdr is LISP) yield

subcomponents for which we can derive covering expressions.
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APPENDIX I

Graph Theoretic Notions

A digraph G= (VE) consists of a set V of elements called nodes

and a set E of ordered pairs of nodes called edges. The edge (u,v) departs

from u and enters v. We say u is an inediate predecessor of v and v

is an immediate successor of u. The outdegree of a node v is the number of

immediate successors of v and the indegree is the number of immediate pre-

decessors of v.

A path from u to w in G is a sequence of nodes p= (u=v ,V2 ... ,v k--w)

where (vi ,vi + ) )EE for all i, li <k. The length of the path p is k-l.

The path p may be built by composing subpaths:

p = (V ... V k

The path p is a cycle if u=w. A strongly connected component of

G is a maximal set of nodes such that each pair in the set are contained in a

common cycle.

A node u is reachable from a node v if either u=v or there is a

path from u to v.

We shall require various sorts of special digraphs. A rooted digraph

(V,E,r) is a triple such that (V,E) is a digraph and r is a distinguished

node in V, the root. A fZow graph is a rooted digraph such that the root r

has no predecessors and every node is reachable from r. A digraph is labeZed

if it is augmented with a mapping whose domain is the vertex set. An oriented

digraph is a digraph augmented with an ordering of the edges departing from each

node. We shall allow any given edge of an oriented graph to appear more than

once in the edge list.
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A digraph G is acycZic if G contains no cycles, cyclic otherwise.

* Let G be acyclic. If u is reachable from v, u is a descendant of v

and v is an ancestor of u (these relations are proper if ugev). Nodes

with no proper ancestors are called roots and nodes with no proper descendants

* are eaes. Immediate successors are called sons. Any total ordering con-

sistent with either the descendant or the ancestor relation is a topological

ordering of G.

A flow graph T is a tree if every node v other than the root has a

unique immediate predecessor, the father of v. A topological ordering of a

tree is a preordering if it proceeds from the root to the leaves and is a

postordering if it begins at the leaves and ends at the root. A spanning tree

of a rooted digraph G= (V,E,r) is a tree with node set V, an edge set

contained in E, and a root r.

Let G= (V,E,r) be a flow graph. A node u dominates a node v if

every path from the root to v includes u (u properly dominates v if in

addition, ugiv). It is easily shown that there is a unique tree TG , called

the dominator tree of G, such that u dominates v in G iff u is an

ancestor of v in T . The father of a node in the dominator tree is the

immediate dominator of that node.

All of the above properties of digraphs may be computed very efficiently.

An algorithm has linear time cost if the algorithm runs in time O(n) on input

of length n and has almost linear time cost if the algorithm runs in time

O(na(n,n)) where ct is the extremely slow growing function of [T3] (a is
p

related to a functional inverse of Ackermann's function). Using adjacency lists,

a digraph G= (V,E) may be represented in space O(IV + IEI). Knuth [Knl]

gives a linear time algorithm for computing a topological ordering of an
p
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Figure Al. A flow graph and its dominator tree
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acyclic digraph. Lengauer and Tarjan [LTJ present linear time algorithms for

computing the strongly connected components of a digraph and a spanning tree

and an almost linear timealgorithm for computing the dominator tree of a flow

graph.

A

I

• - 'U i r~d
U~l m m~l I J mu
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APPENDIX II

Unsolvability of Various Code Improvements

The introduction listed a number of code improvements which are related

to the problem of determining minimal covers of text expressions. Here we show

that even constant propagation, the most fundamental of these improvements, is

recursively unsolvable for programs evaluated within the arithmetic domain.

This rules out the possibility of finding minimal covers even in simple domains.

Previously, Kam and Ullman [KU2] have shown related global flow problems to be

insolvable in an abstract, nonarithmetic domain.

A THEOREM Al. In the arithmetic domain, it is an undecidable problem to discover

if a text expression is covered by a constant symbol.

Proof. The method of proof will be to reduce this problem to that of the dis-

covery of text expressions covered by consant symbols within the arithmetic

domain (Z,I .

Let {X 0,X ,X2 ... ,x k be a set of variables, where k>5. Matijasevic [M]

has shown that the problem of determining if a polynomial Q(XI,X2 ... ,Xk) has

a root in the natural numbers (Hilbert's ]0th problem) is recursively unsolvable.

Consider the flow graph FQ of Figure A2. Let t be the text expression

tX f/(l+Q (Xlf , kf)
0 1 ... ) j located at block f. We show t is covered by a

constant symbol iff Q has no root in the natural numbers.

For any control path p from the start block s to the final block f

and for i=0,1,...,k let Xi(p) =I(VALUE(Xif,p)) =the value of X. just on1 1 1

entry to f relative to p. Also, let X(p) = (Xl(p),...,Xk(p)). Observe that

for any k-tuple of natural numbers z, there is a control path p from s to

f such that z =X(p).
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IF. Suppose Q has no root in the natural numbers. Then for each

control path p from s to f, Q(Xl(P),...,Xk(p)) e0, so VALUE(t,p) =0.

Thus, t is covered b, the constant 0.

ONLY IF. Suppose Q has a root z in the natural numbers. Then it is

possible to find execution paths p and q from s to f such that z=X(p)

and X(p) =0. Hence VALUE(t,p) =0 and VALUE(t,q) = 1, so t is not

covered by a constant symbol. 0
I

COROLLARY Al. In the arithmetic domain, the following global flow problems are

unsolvable: discovery of minimal covers, birth and safe points of code motion,

redundant text expressions, and loop invariants.

Proof. It is easy to show that the problem of discovery of constant text

expressions reduces to each of these problems. Add the edge (f,nI) to the

control flow graph F of Figure 4, so t is contained as a cycle of F. Then

by Theorem 4, Q has no root in the natural numbers iff t is covered by 0

iff s is the birth point of t

iff s is the safe point of t

iff t is redundant on entry to f

iff t is a constant loop invariant.

Thus, the problem of discovery of whether text expression t is covered by a

constant reduces to each of the above global flow problems. (Note that the

problem of safety of code motion is also hard for other reasons; if we add the

text expression t' = l/Q(x f, ... X f)j to block f then Q has no root in

the natural numbers iff t' is safe at f.)

U p
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Figure A2. The control flow graph F
orQ
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APPENDIX III

Fixed Points of r

2We define a partial mapping min: EXP -*EXP such that for all ,9' EEXP,

Jramin A" = if origin(49) properly dominates origin(4')

= 6" if origin (6') properly dominates origin(6)

or if origin(') = origin(e") and

i) if 9= 9'' then 9min g' = 9'= 9', or

(ii) if 9 is a constant symbol and 9' is a function application,

then 9 min6" =9 ' min = 6 . or

(iii) if 9,9'1 are function applications (6 ' " 4 k)' 9e ..

respectively, and 9. =6 . min 9! is defined for i= l,...,k

then 9 min 6" = Ce dl.. .k) , and otherwise, 9min 9' is undefined.

We extend min to the partial mapping from pairs of elements of rGVG

to rGVG defined thus: for ,' EF GVG , if for all vEV,

(v) min 4'(v) -,(v) is defined then 4, min V1 4, and otherwise 4 min 4,'

is undefined.

Let GVG be as an arbitrary global value graph. We show that r is
GVG

a semilattice. We require two technical lemmas:

LEMMA Al. For any v Ev labeled with an input variable and any control path

p from the start block s to loclv), there is a maximal use-def path q

from v such that all th. nodes in q have distinct loc values in p.

-: Proof. We consider Ct) to be a trivial use-def path. Suppose we have

constructed a use-def path (v=u ,...,u i) such that loc(ui), loc(u i),

loc(u I) are distinct blocks occurring in this order in p. If u. is not

labeled with an input variable Cand thus has no departing value edges) then

*P



-A7-

(t =u, ..., u.) is a maximal use-def path. Otherwise, let p1  be the subpath

of p from s to the first occurrence of block loc(u) and let (ui,ui+ )

be a use-def edge such that loc(u+) occurs strictly before loc(u.) in
i+ 11

p. Then (t= u 1.... ui )i+I  is a use-def path and loc(u i+ ) is distinct

from blocks loc(uI ),...,loc(u.). The result thus follows from induction on

the length of p. 0

LEMMA A2. ,For any pErGVG and vEV, origin((v)) dominates loc(v).

Proof by contradiction. Suppose for some vEV, origin(tpv)) does not

dominate loc(v).

Hence, there must be an input variable Xn  occurring in *(v) such that n

does not dominate loc(v), and so there is an n-avoiding path p from the

start block s to loc(v). Also, there must exist some uEV labeled with

an input variable and also located at block n, such that (u) =X n . By Lemma

Al, we can construct a maximal use-def path (u =u I , .... uk) such that

loc(u ),...,loc(uk ) are distinct blocks in p. Let j be the maximal integer

<k such that l(u )...=(u.). If L(u.) is an input variable, then

4(u1 ) =L(u) =n', so loc(u.) =n is contained in p, contradicting the

assumption that p contains n. Otherwise, if L(u.) is not an input

variable then neither is j(v) =f(uj), a contradiction with the assumption that
(u)=

THEOREM A2. rGVG is a semilattice.

Proof. It is sufficient to show min is well defined over r GVG . We proceed

by induction. Suppose for , 4' E rGVG  and some 9 in the domain of T,

4(u) min V (u) is defined for all uEV such that P(u) is a proper subex-

pression of 4F. Consider some text expression v such that *(v) = d. By
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Lemma 2.2, both origin((v)) and origin('(v)) are contained on all control

a; °paths from the start block s to loc(v), so we may assume without loss of

generality that origin( (v)) dominates origin(t' (v)). Observe that

*(v) min 4' (v) =i (v) if origin (ip(v)) properly dominates origin(4' (v)) so

we further assume that origin(4 (v)) =origin( , (v)).

CASE 1. If L(v) is a constant symbol c then ip(v) = '(v) =c so

fl v) =min '(v) =c.

CASE 2. Suppose L(v) is a function symbol e and v has immediate successors

Ul,.... k. By the induction hypothesis f! =(u.) min '(u.) is defined for

i =1,...,k. Hence P(v) min '(v) is the reduced expression derived from

CASE 3. Otherwise, suppose L(v) is an input variable. Let p be a control

path from the start block s to loc(v). By Lemma 2.1, we can construct a

maximal use-def path (v=u,...,uk) such that for i=1,...,k each loc(u i)

is contained in p. Let j be the maximal integer such that i(u ) ... u.).
13

CASE 3a. If '(v) = (uI . (u (u for some i, li<j, then

by the definition of rGVG' (v) =W' (u) =L(u.). Hence origin('(v)) =n.

n. =origin(p(v)), contradicting our assumption that origin(jp'(v)) =origin(4)(v)).

CASE 3b. Otherwise, suppose V'(v) =i'(u )=.....'(u.) so we have (v) =P(u.)

and '(v) =q'(u.). Applying Cases 1 and 2, i(v) min *'(v) =V(u.) min V'(u.):3 :-3 :-3

is defined if L(u.) is either a constant symbol or function symbol, so we

assume L(u.) is an input variable. Since j is maximal, (v) = (u.) =L(u.).

If '(v) i$'(u.) =L(u.) then i(v) min '(v) =L(u.). Otherwise, suppose

41'(u.) #L(uj). For each use-def edge (u.,v'), by the definition of rGVG ,

* 4(u ) '(v') and by Lemma 2.2, origin(4P'(v')) dominates loc(v'). Hence

origin(W'(v)) =origin(i'(u)) is distinct from origin('(v)), contradicting

our assumption that origin(i'(v)) -origin(P(v)). 0

I p
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Theorem A2 immediately implies that:

COROLLARY A2. rGVG has an unique minimal element min rGVG.

Let GVG be the standard global value graph defined in Section 2.1. We
0

have shown that rGVG0 is a finite semilattice and hence has a minimal

element. We now show that this minimal element is the unique minimal fixed

point of T.

THEOREM A3. p*, the minimal fixed point of ', is identical to the unique

minimal element of rGVG
0

Proof. Observe that any fixed point of IF is an element of r GVG  By

0
Corollary 2.1, r GVG has a unique minimal element P=min GVG0. Suppose

0 0
is not a fixed point of T. Observe that since Er , for each input

GVG 
0

variable Xn, if J(0) ig n then T ( ) (Xn) (xn). Hence there is an input

variable Xn  such that X(xn) X but '(P)(Xn) =(r where 9=4(^P(Xm))

for all blocks m immediately preceding block n in the control flow graph F.

We are going to construct a mapping p distinct from P such
GVG

0
that IP4'. This will contradict our assumption that IP is the minimal ele-

ment of rG . For each text expression t, let W(t) be derived from P(t)

GVGQ

by substituting 9 for each occurrence of Xn, and then reducing the resulting

expression. We now show P Er GVG . Consider any input variable Y

CASE a. Suppose (Y n) =Yn'. If Yn' lX n  then )(Ynl) _yn'. Otherwise, if

y = (X,n) then for each block m immediately preceding block n' =n,

*P(¥n) = ip(J(Y,m)) =4?, and since Xn is not contained in 6, P(¥n) _

CASE b. If '(yn) y then for each block m immediately preceding n' in

F, g)(yn )='((Y,m)) so 'P(Yn) (4f((Ym)) Thus pErGVG For each block
0

m immediately preceding n in F, 6-4 (Xn ) -= (2(X,m)) so

"V ' " ' ' " " l ' - " - . ; .
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origin( (Xn = origin ((CX,m)))

dominates loc(t(X,m)), by Lemma A2

=M,

and hence originuP(Xn) properly dominates origin(t(n)). This implies that

4 is not the minimal element of rG , a contradiction. 0t GVGQ
Let GVG be the global value graph defined in Section 3.1. Let '+ be1

the minimal fixed point of rG . By Theorem A3, *" is the minimal fixedI GVG I
point of r G. As in Section 3.1, we assume that for each text expression

GVGQ

which is input variable Xn such that W(Xn ), then X is assigned to at each

block immediately preceding n. Thus t
+ and 1* have the same domain.

THEOREM A4. +  *

Proof. Clearly E r GVG . Suppose, however, that '+ riP'. Then since '"
0

is the unique minimal fixed point of there is some v such that

origin(tp*(v)) properly dominates origin( + (v)). Choose v so that (+ Cv)

has minimal rank and origin(C (v)) is also minimal with respect to

domination ordering. Now v is certainly not a constant. If v is of

the form (u u .... k. ) then '*(uu) ( '+(u.) for some i, such that

rank(u.) < rank(v) a contradictiQn with the assumption that v has

1nminimal rank. Otherwise, suppose v is an input variable X . Since

origin (4i v)) is also minimal, we can assume that +(v) = v. Then X cannot

be definition-free from origin(*(v)) to n, and there must be use-def edges

+1
(v'u1)  (vu 2) such that C+(u 1)9i +W2 But this implies also that

4)*(V) - v, a contradiction.

. ,


