May 1982

Report No, STAN-CS82-913

Also numbercd: HPP-82-10°

ADA122351

Reproduced From

Q000031245

Learning and inductive Iinference

by
Thomas G. Dictterich, lob London, Kenneth Clarkson, Geoff Dromey

A section of the Handbook of Artificial latelligence
edited by Paul R. Cohen and Edward A. Feigenbaum

Department of Computer Science

~ Stanford Uniyérsi(y
Stanford, CA 94305

Best Available Copy

® FLE COPY

Pad

iy
Ifur .
f dutn,_\mx, By

Ny a
et O
= .

A

UNCLASSIFIED

St

CURITY CLASSIFITATION OF THIS PAGE (When Dets Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCESSION NO

av- AI2235]|

3 RECIPIENT'S CATALOG NUMBER

TITLE tsna Subtitiel

Learning and Inductive Inference

T TYPE OF REPORT & PEA'GT COVERED
technical, July 1982

. AUTHORS

Thomas G. Dietterich e

(edited by Paul R. Cohen and Edward A. Feigenbaum)

6 PERFORMING URG. REPORT NUMEBER

8 CONTRACT OR GRANT NUMBERIs)

MDA 903-80-C-0107

PEAFORMING ORGANIZATIOMN NAME AND ADDRESS

Department of Computer Science
Stanford University
Stanford, California

94305 U.S.A.

10 PROGRAAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMSERS

1n

" CONTROL.ING OFFICE NAME AND ACDRESS

Defense Advanced Research Projects Ageucy
Information Processing Techniques Office
1400 Wilson Avenue, Arlington, VA 22209

V3. REPCAT DATE 13 NG. OF PAGES
July 1982 215

14

MONITORING AGENCY NAME & ADORESS (if o/ trom Controlling Office)”

Mr. Robin Simpson, Resident Representative
Office of Naval Research, Durand 165
Stanford University

15 SECURITY CLASS. {0f tnis report)
Unclassified

15¢. DECLASSIFICATION /DOWNGRADING
SCHEDULE

16

DISTRIBUTION STATEMENT (of ths report}t

Reproduction in whole or in part is permitted for any purpose

of the U.S. Government.

. DISTRIBUTION ST TEMENT (of the adsiract entered in Block 20, f g.tterent from report)

18

SUPPLEMENTARY NOTES

19

KEY WORDS (Continue On reverse s:ce tf necessary and 10entity by DIOCk Aumber)

20

ABSTRACT (Continue ONn reverse side +f recessary snd wentify Dy bBiock number)

(see reverse side)

DD,

EDITION OF 1 NCV 65 1S OBSOLETE

FORM
JAN 73

1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

This technical riport sarveys Artiticial Intellicence renearch in the aren of

Tearning and inductive intfererce, It was written as Chapter XUV ot Volume 111
(edited by Paul R, Cohen and Bdward Ao Feigenbaum) ot the Mindboon ‘[1.‘lrf_i};J}L§;1L
ntelligence. fhe madn results ot the report are: (a) a To sodel thiat
serves te k?nvra:v a taxonomy or learning systenms, (1) the ecxplication and clari-
some underastanding or
aolution:s),
have received

fication of rour methods of learning sintle concepts, (0)
the underlying causes of the credit~-assipnuent problem (and possible
and (d) some identification of open research problems and areas that
little attention,

Briefly, the sizmple model posits the existence of a Learning Elenent whose task
is to add or moedi{yv knowledge stored in a Ynowledpe Base so that the behavior of
the Ferformance Element is improved. Thoe key conniderations that senevate the
taxonony of learning systems include (a) the difference between the level at which
the Learning Element
Element can use that information and (b) the complexity of the performance task as
neasurad by the number of distinct concepts or rules needed and by the complexity
of the inference process that employs those concepts and rules.

The credit-assipnment problem is scen to arise in learning tasks where the
Performance Llement makes compesite interences, such as chaining topether several
preoduction rules, but where only a global source of feedback is available. rhe
classic case is where a game-playing program nust make several moves before beins
able to cvaluate how good those moves were. The credit-assicnment problem is the
rroblem of splitting up the global fecedback to apportion credit or blame to the
individual noves, ‘

fMeas in which further rvesearch is needed include (a) advice-taking; (b) learning
(¢) experiment planning and instance selection in order to test a

from analogies;
(d) learning to perform complex performance

hypothesis or remove some ambiguity;
tasks, which would require solving the credit-assipnment problem in some non-
trivial domain; and (e) learning without a fixed deseription lansuage.

The report is structured as a set of articles. Seven of the articles present
the main problems and issues in learning research, while the remaining fifteen

articles desceribe particular learning systems that have been developed.,

receives new information and the level at which the Performand

0, FORM B 1 D igack) »
o ¥ 1 JAN 73 W2) UNCLASSTFIED

EDITION OF 1 NOV 65 1S OBSOLETE SECURITY CLASWEICATION OF 110 PAGE GAYRen Data | ntrrre

[

Chapter XTIV

Learning and Inductive Inference

Accesston For
NTTS CRAaY
DTI: T3

Ui ~umene 2
Jaat (v
_&-n]

Ry _ . -
Digtoov o 2

\ ."x‘\"’ M K . :“":(“es

!
‘,_Dl‘.ot S,

=Y

324

-CHAPTER XIV: LEARNING AND
INDUCTIVE INFERENCE

A. Overview / 32
B. Rote learning / 335
1. Issues / 335 '
2. Rote learning in Samucl's Checkers Player / 339
C. Learning by taking advice / 345
1. Issues / 345
2. Moatow's operationalizer / 350
D. Learning from ezamples / 360
1. [ssues / 460
2. Learning in contro{ and pattern recognition systems / 373
3. Learning single concepts / 482
a. Version space / 385
b. Data-driven rule-space operators / 401
¢. Concept learning by jenerating and
testing plausible hypotheses / {11
d. Schema instantiation / {16
. Learning multiple concepts / {20
a. AQIL /483
b. Mcta-DENDRAL / {28
c. AM /438 «
5. Learning to perform m«~!tiple-step tasks / §52
a. Samuel’s Checkers Player / {57
4. Waterman's Poker Player / 465
¢. HACKER / 475
d. LEX / 484

¢. Grammatical inference / §94

-

PREFACIE

TS TECHNICAL REPORT surveys Artificial {ntelligenee researeh in the area
of earning and inductive inference. It was written as Chapter Xiv of Volume
tt of the Handbook of Artificial Intelligence. Since Al learning rescarch is still
in s infaney, this chapter does not present many well-understood research
results. lostead, we have attempted to provide a framework 1 viewing past
rescarch and a list of open problems for future research,

This survey is necessarily incomplete, and we apologize to those research-
ers whose work is not mentioned. In choosing which systems to include,
we considered several different criteria, such as historical importance (e.g.,
Samuel, Waterman, Winston), performance (c.g., CLS/ID3, Meta-DENDRAL,
Samuel), relevance to outstanding problems (e.g., LIEX), and demonstration of
unusual techniques (e.g., Lenat, Dictterieh and Michalski, Langley). We at-
tempted to sclect at least one representative program from cach of the various
learning methods and learning situations. In some cases, we have also taken
liberties in reeasting the terminology and representation of a system in order
to improve the uniformity of the chapter (e.g., Hayes-Rtoth, Sussmwan).

This chapter was a group effort. Bob London helped to outline the chapter
and wrote the articles on rote learniog and advice-taking. Kenneth Clarkson
contributed the article on grammatical inferenee, and Geoff Dromey wrote the
ariicle on adaptlive learning. The remainder of the chapter was written by
Tom Dictterich. Valuable criticisms were provided by our reviewers: James §.
Beunett, Bruee G, Buchanan, Ryszard 8. Michalski, Thomas M. Mitchell, Jack
Mostow, David Shur, and Paul Utgoll. In addition, the volume editor, Paul
R. Cohen, and the professional editor, Dianne Kanerva, helped immensely to
improve the form and cortent of the chapter. Thanks also to Jose L. Gonzales
for assisting in Lthe production of this technieal report.

We hope that this chapter will serve both as a useful reference for students
of lcarning and as a technical contribution to Al learning reseacch.

Tom Dictterich, chapter cditor

T —

L o S s 3 e i SR 0 b e T A e s o S w31 e o grie

ii Preface

This rescarch was supported by the Defense Advanced Research Projects
Ageney (ARPA Contract No. MDA 903-80-C-0107). The views and conctu-

- sions of this report should not be interpreted as necessarily representing the

official policies, ecither express or implied of the Delense Advanced Research
Projects Agency or the United States Government.

~ Copyright © 1982 by William Kaufmann, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, clectronie, mechanical, photocopying, recerding, or othee-

" wise, without the prior written permission of the publisher. How-

. ever, this work may be reproduced in whole or in part for the official
use of the U.S. Covern.nent on the condition that copyright notice
is inchuded with such official reproduction. For further information,
write to: Permissions, William Kaufmann, Inc., 85 Firs. Street,
Los Alilos, California 94022.

A. OVERVIEW

LEARNING is a very general term denoting the way in which pcople (and
computers) increase their knowledge and improve their skills. From the very
beginnings of Al, rescarchers have sought to understand the process of learning
and to create computer programs that can learn. '

There arc two fundamental reasons for studying learning. One is to
understand the process itself. By developing computer models ol lcarning,
psychologists have attempted to gain an understanding of the way humans
learn. Philosophers since Plato have also been interesied in learning research,
because it may help them understand what knowledge is and how it grows.

The second reason for conducting learning research is to provide com-
puters with the ability to learn. It has long been a goal of Al to develop
computer systems that could be taught rather than programmed. Many other
applications of computers, such as intelligent programs for 2ssisting scientists,
involve the acquisition of ncw knowledge. Thus, learning rescarch tias poten-
tial for extending the range of problems to which computers can be applied.

In this overview article, we [irst present a short history of Al research on
learning. This is followed Yy a review of Al perspectives on learning, from
which a simple model of learning is developed. This model allows us to discuss
some of the major lactors affccting the design of learning systems.

A Brief History of Al Research on Learning

Al research on lcarning has evolved through three stages. The first,
and mosi optimistic, stage of work ccntered on sell-organizing systems that
" nodified themsclves Lo adapt to their environments {see Yovils, Jacobi, and
Coldstein, 1962). The hope was that if a system were given a set of stimuli,
* a source of feedback, and enough degrees of freedom to modify its own orga-
nization, it would adapt itscil loward an oplimum organization. Attempts
were made, for example, to simulate evolution in the hope that intelligent peo-
grarus would rcsn‘lt from the processes of random mutatiop and natural selec-
tion (Friedberg, 1958; Friedberg, Dunham, and North, 1959; Fogel, Owens,
and Walsh, lv966). Various computational analogues of ncurons were devel-
oped and tested; foremost of these was the perceptron (Roscublact, 1957).
Unfortunately, mosi of these attempts iailed Lo produce systems of any com-
plexily ore intailigence (see Article X1V.D2 on adaptive learuning).
Theoretical limitations were discovered that dampened the optimism of
thesc early Al researchers (sce Minsky and Papert, 1969). In the 1960s, atten-
tion moved away [rom learning toward knowledge-based problem solving and

325

32 Learning and {nductive [nference Xiv

natur:xl-'lnngungc understanding (Minsky,\l%ﬂ). Thosc people who continued
to work with adaptive systems ceased to consider themselves Al rescarchers;
their rescarch branched oil to become a subarea of lincar systems theoey.
Adaptive-systems technigues are presently applied to problems in pattern
recognition and control theory.

The beginning of the 19708 saw a renewal of interest in learning with
the publication of Winston's (1970) inllucntial thesis. In this sccond stage of
learning research, workers adopted the view that learning is a complex and
dillicult process and that, consequently, a learning system cannot be expected
to learn high-level concepts by starting without any knowledge at all. This
view has led researchers. on the one hand, to study simple learning problemns
in depth (such as learning single concepts) and, on the oiher, to incorporate
large amounts of domain knowledge into learning systems (such as the Meta-
DENDRAL and AM programs discussed in Articles Xiv.bab and X1V.D4e) s0
that they could discover high-level concepts. :

A third stage of learning research, motivated by the need to acquire
knowledge for expert systems, is now under way. Unlike the first two phases of
learning research, which focused on rote learning and learning from examples,
the current work looks at all forms of learning, including advice-taking and
learning {rom analogies.

Four Peripectives on Learning

Herbert Simon (in press) defines learning as any process by which a
system improves tts performance. His definition assumes that the systemn has
a task that it is attempting to perform. [t may improve its performance by
applying new methods and knowledge or by improving existing methods and
knowledee to make them faster, more accurate, or more robust.

A more constrained view of learning, adopted by many people who work
on cxpert systems, is that learning is the aequisition of erplicit knowledyge.
Many expert systems ropresent their expertise as large collections of rules
that need to be acquired, organizeu, and cxtended. This view emphasizes
the importance of making the acquired knowledge explicit, so that it can be
easily verificd, moditied, and explained. Researchers are presently working
on knowlcdge-acquisition systems that discover new rules from examples or
accept ncw rules from experts and integrate them into the knowledge base of
the system. .

A thied view is that learning is skill gequisition. Dsychologisis have
pointed out that long after people are told how to do o task, such as touch
Lypiny, or computer programming, their peefoemance on that task continues
to improve through practice (Norman, 1980). It appears that although people
can casily understand verbal instructions on how to perform a task, much
work reinaing Lo be done to turn that verbal knowledge into efficient mental or
muscular operations. Researchers in Al and cognitive psychology have sought

A Overview 327

to understand the hinds of Knowledge that are needed to perform skillfully.
The proceren by whisent peaple acquire this knowledyge through practice are
Little underatond.

The collective enterprise of seirnce 13 usually conwidered w be one of the
et etfective woave that our calture learns about the world. Thua, a fourth
view of dearncns o thut v s theory formation, hypothests formation, and
i fuctive inference Work on theory tormation has centered on understanding
Low setentista bud'a theories to desertbe and explain complex phenomena. A
pecetary part of theory formation s hvpothesis formation -—the activity of
By one or more plavable hypotheses o explain a particular set of data
i the context of wmore geaerad theory Another aspeet of theory formation
Lounductive anderence -the process of inferring general laws from particular

examples,

A Seeple Vodel of Learming and {ts Implications

fos the Dexign of Learming Syatems
y Y

OF these foue views of learming, Simon's (in press) iz perhaps the most
encompasing ik his delinition as a starting point, we have developed
the simple model of learning systerrs shown in Figure A 1. Throughout
this chapter, we ase this sunple model to orgamize our discussion of learning
Systens,

L the model, the cireles denote declarative bodies of information (c.g., Mets
represented e prodicare caiculus or statements made by an expert), while the
Bover denote nrocedurea. The arrows show the predominant diceetion of data
Jow throvsh the learning system. The environment supplies some informa-
tion to the learminyg clement, the learning element uses this information to

nmake improvements oan explicit knowledge base, ard the performance cle-
ment uses the knowiedoe base to perform its tash. Finally, information gained
during attempts to perform the task ean serve as {eedback to the learning
element. This wodel s prioitive and omits many important functions. [t is
useful, however, tn that it allows us to elassily learning systems according to
how they “hil" these four functional units. in any particulae applicatioa, the
enverontent, the knowledege base, and the performance task determine the
natare of the particular learning probicm .nd, heace, the pacticular functions
thoet the dearning eicment must fulfifl. In the folowing three sections, we

i

Learning

Knowledge Performance

Favironment . - ‘
lement Base Element

~

Figire A -1 A simple model of learning syatemas,

328 Learning and Inductive Inference X

examine the role of each of these three functional units that surround the
learniny elcmnent.

The Environment

The most important factor alfecting the design of learning systems is the
kind of information supplied to the system by the envirecnment —particularly
the level and quality of this information.

The level of information refers to the degree of generality {or domain
of applicability) of the information relative to the needs of the performance
clement. High-levd information is abstract information that is relevant to a
broad class of problema. Low-level information is detailed information that is
relevant to a single problem. The task of the learning clement can be viewed
as the task of bridging the gap between the level at which the information is
provided by the environment and the level at which the performance element
can use the information to e y out its function. Thus, il the learning system
is given very abstract (high-level) advice about its performance task, it must
fill in the missing details, so that the performance clement can interpret
the information in particular situations. Correspondingly, if the system is
given very specitic {low-level} information about how to perform in particular
situations, the leacning eletnent must generalize this information --by ignoring
unimportant details—into a rule that can be used to guide the performance
element in a broader cliss of situations.

Since its kacwledge is imperfect, the learning element does not know in
advance exactly how to {ill in missing details or ignore unimportant details,
Consequently, it must guess- -that is, form hypotheses —about how the gap
between the levels should be bridged. After guessing, the system must receive
some {ecdback that allows it to evaluate its hypotheses and revise them if
necessary. It is in this way that a learning system learns: by trial and error.

The level of the information provided by the environment determines
the kinds of hypotheses that the systein must generate. Four basic learning
situastions can be discerned:

1. Rote learning, in which the environinent provides mformation exactly at
the level of the performance task and, thoe, no hypotheses are needed.

2. Learning by being toid in which the information provided by the environ.
ment is too absteact or goneral and, thus, the learning clement must
hypothesize the missing Cetails.

3. Learning from ezampies, in which the information provided by the envi-
romment is oo specifie and detaded and, thus, the learmng clement mast
hypothesize more general rules,

1. lLearning by analogy, in which the information provided by the environ-
ment is relevant only to an analogous performance task and, thus, the

A Overview 529

learning system must discover the Analogy and hypothesize analogous
rules for its present performance task.

Each of these learning situations is discussed in more de.ail below.

The quality of ir formation zan have a significant effect on the dificulty
of the learning task. laduction is casiest, for example, when the training
instances are sclected by a cooperative teacher who chooses “clean” exam-
ples, dassifies them, and presents them in good pedagogical order. Learning
by induction is particularly dillicelt when the traiming instances are made
up of noise-ridden, unclassified data that are “presented™ by nature in an

uncontrollable fashion. Sinularly, in advice-taking systems, information is -

of little use if it is provided by an unrehiable and inarticulate expert; rote
learning cannot succced with poor-quality, possibly coatradictory data; and
analogies are uascless if they are cluttered with ervors.

The Knowledge Base

The second factor affecting the design of learning systems is the knowledge
base, its form and content. We discuss tirst the form, or representational sys-
te:i, in which the knowledge base ‘9 expressed; it is a particularly importanc
design considuration (see Chap. 11, in Vol. 1, on representation of knowledge).
Most work in learning has used one of two basie representational forms—
feature vertors and predicate calculus ~ although other forins, such as prodie-
tion rules, grarmmars LISP functions, numcrical polynomials, semantic nets,
and [rames have also been used. These representatioral forms vary along
four important dimensicne: expressiveness, ease of inference, modifiability,
and extendabilily. '

Expressivaness of the representation. In any Al systemn it is impor-
tant to have a sepresentation in which the relevant knowledge cun be easily
expressed. Feature vectors, for example. are useful for describing objects that
lack internal structure. They desceribe objects in terms of a lixed set of fea-
tures (such as coloe, shape, and size) that take on a finite set of valucs {such
as rcd or green, circle or squa“e, and small or large). Predicate caleulus, on
the other hand. is useful for describing structured objects and situations. A
situation in which a red object is on top of a green one, for examnple, can be
expressed as 3z, y: RED(z) A GREEN(y) A ONTOP(z, y).

Ease of inference within the representaticn. The computational
cost of performing infcrence is another important property of a representa-
tional system. One type of inference freauently requieed in learning systems is
the comparison of two descriptions Lo determine whether they are cquivalent.
It is very cavy Lo Lest two (cature-veetors for cquivalence. The comparison of
two predicat -calculus expressiors is more costly. Since inany !earning systems
must search large spaces of possible descriptions, the cost of comparisoas can
severely limit the extent of these searches.

B

330 Learning and Inductive Inference X

Modifiability of the knowledge base. A lcarning system must, by its’
verv nature, modify sowe part of the knowledge base to store the knowledge it
is gaining. Consequently, most learning systems have enployed explicit, styl-
ited representations {such as feature vectors, predicate calcuins, and produc-
tion rules) w which it 18 easy to add knowledge to the knowledge base. Very
little attention has been given to the probiem of adding to knowledge bases in
which substantial revision and integration must be performed. These prob-
lems arise, for exampie, in systems that refer to time or state information
{e.g.. procedural representations) and in systems that make default assump-
tions that may later need to be retracted. :

Extendability of the representation. For a learning program to
manipuiate oxplicitly its acquired knowledge, there must be a meta-level
description within the program that tells how the representation is struc-
tured. This meta-level knowledge has usually been embadied in procedures
that manipulate the data structures of the representation. Of recent inter-
est in learning research, however, are representational systems in which this
meta-knowledgre is also made an explicit part of the knowledge base {sce Davis,
1976). The purposc is to allow the program to examine aad altee ita own
representation by addag vocabulary terms and represcntational structures.
This ability in turn provides the possibility of developing learning systems
that are open-ended —that is, that can learn successively more complex units
of knowicdge without limit. The outstanding example of an extendable rep-
resentation is Lenat's {1978) AM program (see Article XIV.D4e), which allows
new concepts to be defined in terms of ¢ld ones. Recent work on RLL (Greiner
and Lenat. 1980; Greiner, 1980) has pushed this idea much further toward
allowiniz a program to define new representations dynamically.

Now that we have examined issues relating to the form of the knowledge
base, we tu.n our attention to its content. A learning system does not gain
knowledge by starting “‘rom scratch,” that is, without any knowledge at all.
Some knowledge must be employed by every lcarning system to understand the
information provided by the environment, to form hypotheses, and tc test and
refline those hypotheses. Thus, it is more appropriate to view a learning system
as extending and improving an existing body of knowledge. Unfortunately,

_in most learning systems, the knowledge employed is not explicit; it is built

into the program by the designer. Throughout this chapter, we try to point
out the ways in which domain-specific knowledge has entered into existing
learning systems.

The Performance [lement

The performance element is the focus of the whole learning system, since
it is the actions of the performance element that the learning element is trying
to improve. Thare arc three important issucs related to ‘e performance
element: complexity, feedback, and transparency.

A Overview 31

First, the complezity of the task is important. Complex tasks require
more knowledge than simple tasks. For instance, a sunple task like binary
classification, in which objcets are classitied into one of two groups, requires
only a mingle classification rule. On the other hand, a program that can play a
reasonable poker game (Waterman, 1970} needs about 20 rules, and a medical-
diagnosis system like MYCIN (Shortlilfe, 1978) emplova several bur dred rules.

In learning from examples, three classes of performance tasks can be
distingumished according to their complexiy The aumplest performance task
i3 rlassification or prediction baged on a swingle concept or rule. ladeed, the
problem of learning single concepts I'r‘om‘ examoles has received more study
than any other problem in Al learning research. Slightly more complex are
tasks involving multiple concepts. An example is the problem of predicting
which bonds of an organic moiecule will be brokhen in the mass spectrometer;
the DENDRAL prediction program employs a st of eleavage rules to perform
this task. The most complex tasks for which learnicg systems have been
developed are cmall planning tasks in which a sct of rules must be applied in
seguence. Symbolic integration, for example, 15 a task that requires chaining
together several integeation rulea {o ubtain a solution. The artieles on fearning
from examples consider these Lh{roc classes of performance tasks and their
corresponding learming methods, '

As the performance task becomes more complex and the haowledge base
grows in size. the problems of infegrating new rrdes and dingnosing incorrect
rules become more complicated. The integration problem -that is, the prob-
lem of integrating a new rule into an existing sct of rules —iy diflicult, because
the learning system must consider poasible interactions between the new rule
and the previous rales. During ‘thc construction of the MYCIN system, for
example, there were several casesiin which 1 new rale caused existing rules to
be applied incorreetly of to cease being applied altogother {see Article viLgi).

The problem of diagnosing lincorrect rules- also known as the credit-
asaignment problom (Minsky, 1963) -~can be very ditlierit in systems that
petfoem a sequence of actions b&:-fore receiving any fee tback. Couasider, {or
example, the problem of learnin’g to play chess Ly lirst playing a complete
game, then determining who wou%and lost, and linally updating the knowledge
base accordingly. The credit-assignment problem ia the problem of assigning
credit or blame to the individual decisions that led to some overall result—in
this cas=, the individual chess moves that contributed most to the win or loss.

The scecond important issuc related to the perfnrmance task is the role of
the petformince eclement in providing feedback to the learning clement. All
learning systems mnst have some way of evaluating the hypotlieses that have
been proposed by the learning clement. Some programs have a separate body
ol knowledge for such evaluation. The AM program, for example, has many
hicuristic rules that assess the intercatingness of the new concepts developed by
the learning element. A morce lrequently used techmique, however, is to have
the environment, often a teacher, provide an cxternal performance standard.

302 Learning and [nd setive Inference xwv

~oo by obeerving how well the performance clement s dotng relative to this

standard, the <ystem can evaiuate its current store of hypotheses,

[n ~vatems that learn a single concept from training instances, the per-
fornrans e standard i3 the cortect classitieation of cach trauining instance (as to
whethier (L, of 3 not, aa mstance of the concept to be fearned). In most
sy«tens, the toammg nstances are preclassified by o reliable teacher. In the
Victas 0CUNDIRAL svstom (see Article XIV Db}, the peeformance standaed s
“heowtuan wasd pectinm produced when o molecule of known structure is
paced the nasa spreinameter

e third wssue regarding the performance tash 18 the transparency of the
serformance ciement. For the learming element to assign credit o blame to

sdre s enfes i the knowledse base, 1t useful Tor the learning elrment

EALHCIRELES N

tofrne weesa to the aternal actions of the performance element. Consider
vrun the problem of jearming how to play echess. Il the learning clement
v snven 4 trace of ail the moves that were conmidered by the performance
e'ement prather than oniy those moves that were actually chosen), the credit-

AassnTiment pruh‘.rm 14 easier to solve.

Merriew of the Chapter

©the provions section, we diacussed the interaction between the infor-
nation provided by the environment and the problems that are presented
‘o the learmng element. Prom this analvsis, four learning situations could
Be discerned. Inthis section, we disenss these four situations in detail and
ave an exampic of a learning probiem in each situation. The remainder of
rors chapter s organtzed around these four situations, with a separate set of
articies devoted to each.

Rote learning. The -umplest learning situation is one in which the
environment supplies knowledge in a4 form that can be used directly by the
pecformance efoment. The learmng system does not need to do any processing
to nuderstand or inteepret the mformation supplied by the environment. All
it must do i3 memorize the incoming information for fater use. This is a form
of rote learmmng —1f 1t w considered learning at all. Virtually every computer
svstem can be sad to do rote learning insofar as it stores instructions for
perfornnng o task. - .)

An unportant Af study of rote learning was undertaken by Samuel (1959,
17 He developed o checkers-plaving program that was able to nnprove
i pertosmance by memorizing every board position that it evaluated, The
procrn ared astandard animmax look-ahead search (see Chap. 1, in Vol. 1)
that evadmated potentid fataee bosaed positions, A simple polynomial cvalua-
tion Tunetion measurcd hoard pro, srues such as center control, Tork threats,
and posstble exchanges. In terms of our primitive learning-system maodel, the
look-ahead search portion of Samuel's program served as the “environinent.”

It supplied the learnmy clement with board positions and their backed-up

A Overview 333

minimax values. The learning element simply stored these board positions
and indexed them for rapid retrievel, Interestirgly, the look-ahead seacch
portion of Samuel’s program also served as par' of the performance element
that played a game of checkers against an op onent. It used the pereviously
memorized board poritions Lo imiprove the speed and depth of its look-ahead
scarch daring subsequent games,

Learaing by being told—Advice-taking. “When a system is given
vague, general-purpose knowledge or advice, it must transform this high-tevdd

knowledge into a form that can be used readily by the performance element.’

This teansformation is ealled operationalization. The system must understand
and interpret the high-level knowledge and reiate it to what it alrcady knows.
Operationalization s an active process that ean involve such activitics as
deducing the consequences of what it has been told, making assumptions and
“filling in the details.” and deciding when to ask fore tore advice. McCarthy's
(1958) proposal for an ‘advice taker” was the first description of a system that
could learn by being told. More recent woek in the area of learning by being
told incindes the TEIRESIAS program (Davis, 1976) and Mostow's program
FOO {Mostow and Hayes-Roth, 1979, Mostow, 1981).

FOO, for example, is told the rules of the game of Hearts and is given vague
strategic advice such as “Avoid tuking points.” It operationalizes this advice
into specific strategies such as “Play lower than the highest card so far in the
suit led.” This kind of operationalization is similar to the kind of processing
performed by ordinary language compilers that convert unexecutable high-
level languages into directly interpretable machine code. In the same trivial
-sense that cvery computer system can be said to do rote learning, every
system can also be said to learn by being told: Advice in the form of a high-
level language program is compiled and assembled into an executable object
program. .

L.earning from examples—Induction. One way to tcach a system
how to perform a task is to present it with examples of how it should behave.
The system must then generaiize these examples to tind highee level rules that
can be applied to guide the performance element. Examples can be viewed as
being picces of very specific knowledge thiat cannot be used efficiently by the
performance clement. These are transformed into more general, higher level
pieces of knowledge that can be used elfectively.

For example, consider the problem of teaching a program to recognize
poker hands that contain a pair. The program would be preseated with sample
hands that, it is told, contain pairs. Herc is such a training instance:

1 of clubs, § of spades, 5 of diamonds, 6§ of hearts, jack of diamonds.

This training example is a very specific picee of knowledge. If the program
merely memorized it (by rote learning), it would now know that the hand

4 of clubs, 4 of spades, 5 of diamonds, § of hearts, jack of diamonds

334 Learning and Inductive Inference xav

contains a pair. It would not know that the hand

4 o clubs, 1 of spades, 5 of diamonds, 6 of hearts, 8 of diamonds

also contains _-air, since the programn has not generalized its knowledge. To
recognize all pessible pair hands, the program needs to discover that the hand
raust contain two cards of the same rank and that the remaining cards are
irrclevant. The generalization of knowledge to make it apply to a broader
class of situations is the key inference process in learning from examples.

Learning by analogy. If a system has available to it a knowledge base
for a related perforiance task, it may be ible to improve its'own performance
by recognizing analogies and transferring the relevant knowledge from the
other knowledge base. Thus far, however, very little work has been done
in this area. Some of the open research questions are: What exactly is an
analogy? Ilow arc annlogies recognized? llow is the relevant knowledge
transferred from the analogous knowledge base and applied to accomplish
the desired tasks? : :

Suppose, for example, that a program has available to it a knowledge
base describing how to diagnose discases in human beings and somcone wants
to use the same program to diagnose computer-system failures. By finding
the proper analogies, the program can develop classes of computer failures
(“diseases™) and possible solutions (“therapies”). Diagnostic procedures can
be transferred as the analogy is developed (e.g., x-rays can be analogized to
core dumps). .

We do not include in this chapter any articles discussing learning by
analogy, since this area has not reccived much attention,

Conclusion

This introduction has surveyed Al research on luarning and presented a
simple model of Al learning systems. The model has been used to discuss the
factors that bear upon the design of the learning clement. These include the
Jlevel and quality of the information provided by the environment, the form
and content of the knowledge base, and the complexity and transparcncy of
the performance clement. Of these factors, the most important is the level of
the information provided by the environment. This has been used to develop
the simple taxonomy of four learning situations that provides an organization
for the remainder of this chapter.

References

Buchanan et al. (1977) survey several systems and present a general
modecl of learning systems. Scc also Lenat, Ilayes-Roth, and Klahe (1979)
and Dictterich and Michalski (1979).

B. ROTE LEARNING

B1. Issues

ROTE LEARNING is memorization; it is saving ncw knowledge so that when
it is needed again, the only problem will be retricval, rather than a repeated
compuiation, inference, or query. Two extreme perspectives on rote learning
are possible. One view says that memorization is such a basic necessity for any
intelligent program that it cannot be considered a separate learning process
at all. An alternate view regards memorization as a complex subject that
is vital to any eflcctive cognitive system and well worth study and modeling
on its own. This article takes a less cxtreme perspective, partly beeause the
former viewpoint leaves nothing to say about rote learning and the latter
would require more than is appropriate here. (See Chap. XI for a discussion
of Al investigations into human memory processes.)

Rote memorizaticn can be scen as an elementary learning process, not
powerful cnough to accomplish intelligent learning on its own (because not
everything that needs to be known in any noutrivial domain can be memo-
rized), but an inhcrent and itnportant part of any learning system. All learning
systems must remember the knowledge that they have acquired so that it can
be applied in the future. In a rote-learning system, the knowledge has already
been gained by somc method and is in a dircctly usable form. Other, more
sophisticated learning systems first acquire the knowledge from examiples o¢
from advice and then memorize it. Thus, all learning systems are built on
a rote-learning process that stores, maintains, and reirieves knowledge in a
knowledge base.

Rote learning works by taking problems that the performance element
has solved and memorizing the problem and its solution. Viewed abstractly,
the performance element can be thought of as some function, f, that takes an
input pattern (Xy, ..., X,) and computes an output value (Yy, ..., Y;). A rote
memory for f simply stores the associated pair [(Xy, ..., X,), (Y, ..., Y,,:?l in
memory. During subsequent computations of f(X,, ..., X,), the performance
element can simply retrieve (Y, ..., Y,) froin memory rather than recoém-
puting it. This simple model of rote learniug is depicted in Figure Bl-1.

Consider, for cxample, an automobile insurance progeam that determines
the cost of repairs for damaged automobiles. The input pattern is a deserip-
tion of the damaged automobile, including make and year, and a list of the
damaged portions of the car. The output value is the estimated cost of the
repairs, The system has only a rote memory. To estimate the cost of repairs,
it looks in its memory for a previous automobile of the same make, model,

335

338 Learning and inductive [nference xwv
! : store
(X1yeeer Xn) — (Y1i,...,Yp) = (X1 e Xa) (N, 35
Input Performance Qutput valne Associated
pattern function of computation pair

Figure B1-1. Si-mplc model of rote learning.

and damage description and retrieves the corresponding cost. If it cannot
find such an automobile, it uses a set of rules {published by a consortium
of insurance companies) to guess the cost of the rcpairs and then saves its
estimate for futurc use. This computed estimate, along with the deseription
of the damaged automobile, forms the associated pair that is memorized.
Lenat, layes-Roth, and Klahr (1979) provide an interesting perspective
on rote learning. They point out that rote learning (or “caching”) can be
viewed as the lowest level of a hierarchy of data reductions. The reductions

. are analogous to computer language compilation: The purpose is to refinc the

driginul information down to the essentials for performance. In rote learning,
we generally attempt to save the input/output details of some calculation and
so bypass a future need for the intermediate computation process. Thus, a
calculation task, if valuable and stable enough to be remembered, is reduced
to an access task (see Fig. B1-2, below).

t Just as calculavions can be reduced to retrievals by caching, so can other
mfcrentml proceases be reduced to simpler tasks. For instance, deductions can
be reduced to caleulations. The first time we are asked to solve a quadratic
cquation, for example, we must follow lengthy deductive chains to find the
quadratic formula. Subsequently, we can simply compute the roots of a -
quadratic equation directly from the formula. We have distilled the rosalts
df a deductive search and summarized them as an eflicient algorithm. Coing
dne step further, the process of induction can convert a huge body of training
instances into a single heuristic rule. Once again, the primary gain is in
efficiency: It is no longer neccssary to consult a huge body of examples to find
out how to behave in a new situation.

ACCESS ~—— CALCULATE ——— DEDUCE ~—— INDUCE

‘_/&_/‘&/

Cache Algorithm Heuristic
(Rote) or Theorem Rule

Figure BL-2. Spectrum of data reductions (from Lenat et al., 1979).

B1 . Issues ’ 337

Issues in the Desiyn of Rote-learning Systems

There arc three important issues relevant to rote-learning systems: mem-
ory organization, stability, and the store-versus-compute trade-off.

Memory organisation. Rote learning is uscful only if it takes less time
to retrieve the desired item than it does to recompute it. Retrieval can be
made very rapid by properly organizing memory. Consequently, indexing,
sorting, and hashing techniques have been thoroughly studied in the computer
science subficlds of data structures (Aho, Hoperoft, and Ullman, 1974) and
dalabase systems (Wiederhold, 1977; Date, 1977; Ullman, 1980).

Stability of the environment and the frame problem. Rote lcarn-
ing is not very helpful or efective in a rapidly changing envirornment. One
important assumption underlying rote learning is that information stored at
one time will still be valid tater. If, however, the information changes (re-
quently, this assumption can be violated. Consider, for example, information Vo
gathered about automobile repair costs during the carly 1950s. Such informa- K
tion would be of little value for cstimating autornobile repair costs in the 1980s
because the world has changed in critical ways: The makes and models of
cars prescntly manufactured did not exist in the 1950s; furtheemore, inflation
has made the direct comparison of dollar costs impossible. A rote-learning
system must be able to detect when the world has changed in such a way as
to make stored information invalid. This is an instance of the frame problem -
{sece Chap. 1it1, in Vol. 1).

Some solutions to this problem have been developed. Onc approach is to
monitor cvery change to the world and keep the stored information always
up to date. Thus, when an old model of automobile is discontinued, all
information about that model could be removed from the knowledge base. 7
This approach requires that the relevant aspeets of the world be continually
monitored.

A sceond approach to solving the frame problem is to check, when the
information is retricved for use, that it is still valid. Typically, this requires. \
storing, along with the information itself, somc additional data about the \

- state of the world at the tinie the information was memorized. When the L R
information is rctricved, the stored state can be compared to the current
state, and the system can deterinine whether oe not the information is still
valid. This approach requires that the relevant aspects of the world (such as
the current valus of the dollar) be anticipated and stored with the data.

Many other approaches are possible. [f the system can determine Aow
the world has changed (e.g., by knowing the inllation rate), it may be able
to make appropriate modilications to restore the validity of the memorized
information (e.g., by converting the 1950 prices into 1980 cquivalents). .

Store-versus-compute trade-off. Since the primary goal of rote learn- ‘
ing is to improve the overall performance of the system, it is important that
the rote-learning process itself docs not decrease the efficiency of the system.

———ia

3318 : Learning and Inductive Infcrence X1

It is conceivable, for instance, that the cost of storing and retrieving the
memorized information is greater than the cost of recomputing it. This is
certainly the case with the multiplication of two numbers; virtually all com-
‘puters recompute the product of two numbers rather than store a large mul-
tiplication table.

There are two basic approaches to resolving the store-versus-compute
trade-off. One is to decide at the time the information is first available
whether or not it should be stored for later use. A cost-benefit analysis
can be performed that weighs the amount of storage space consumed by
the information and the cost of recomputing it against the likelihood that
the information will be needed in the future. A second approach is to go
ahead and store the information and later decide whether or not to forget
it. This procedure, called selective forgetting, allows the system to determine
empirically which items of information are most frequently reused.

* One of the most cotnmon selective-forgetting techniyues is called the least
recently used (LRU) replacement algorithm. Each item stored in memory
is tagged with the time when it was last retrieved. Every time an item
is retrieved, its “time of last use” is updated. When a new itemn is to be
memorized, Lhe least recently used item is forgotten and replaced by the new
‘one. Variations on this scheme take into consideration the amount of storage
required for the item, the cost of recomputing the item, and so oa.

References’

Lenat, Hayes-Roth, and Klahr (1979) provide an execllent discussion of
various lcarning methods, including rote learning. Samuel (1959) remains the
best example of research into rote processes.

o

B2. Rote Learning in Samuel’s Checkers Player

SAMUEL conducted a series of studies (1959, 1987) on how to get a com-
puter to learn to play checkers. Among the carliest investigations of machine
learning, they reinain some of the most successful both in terms of improved
petformance (i.e., demonstrated improvements in the performance element)
and in terms of lessons for Al. His experiments with threc dilferent fearn-
ing racthods—rote learning, polynomial evaluation functions, and signature
tables—showed that significant improvement in playing checkers could be
obtained. This article focuses on his thorough analysis of the question of how
much rote learning alone can contribute Lo cxpertise and imnproved perfor-
mance. (Other aspects of Samucl’s work are discussed lates in Article XiV.D4a.

The Game of Checkers as a Performance Task

Checkers is a difficult game to play well. It is estimated that a full explo-
ration of all possible moves in che-kers would requirc roughly 10'® moves.
Samuel's program was provided with procedures for playing the game cor-
rectly; that is, th~ rules of checkers were incorporated into the program. He
sought to have the program learn to play well by having it memorize and
recall board positions that it had encountcred in previous games.

At each turn, Samuel’s program chose its move by conducting a minimaz
game-tree search (see Articles (1.B3 and 11.C5, in Vol. 1). In principle, of course,
_ a program could try all possible moves and all possible consequences of each
move and thereby search the entire checkers game-tree. Such a caleulation—
which is equivalent to playing every possible game of checkers—is not feasible
because the scarch space is Loo large. Every potential move by one player
generally leads to many possible countermoves, each of which has still more
possible responses. The resulting combinatorial explosion (sec Arclcle IIA in
Vol. 1) prevents any program from searching the whole tree.) e

Consequently, the standard approach to conducting a game-tree search is
to search only a few moves (and countermoves) into the future and then apply
a static evaluation funclion to cstimate which side is winning. The program
then chooses the move that leads to che best estimated position.

Suppose, for example, that at some board position, A, it is the program’s
turn to move (see Fig. B2-1). The program scarches ahcad thrce moves
by considering fiest all possible moves that it could make, then all possible
countcrmoves available to its opponent, and finally all possible replies to those
countermoves. At this point, the program applics a static cvaluation function
to estitnate its net advantage at each of the board positions shown on the
right in the figure. These values are then “backed up” by assuming that

339

340 Learning and Inductive Inference v xav
8 8
—— 2
-8
5 5

17 17
® '
8 8 (D)8
C
4
12 12
10

Figure B2-1. An example of a minimax game-tree search.

the opoonent will always take the move|that is worst for the computer (and
vice versa). Thus, the best move for the program is the one that leads to
position B. The program expects that the opponent will countermove to C,
to which the program can reply with D.| The static cvaluation function has
estimated the value of D to be 8, so this is the backed-up value of position A.

Improving the Performance of the Checkets Player

There are two basic ways lo improvd the performance of a game-tece
search. One mcthod is to scarch farther| into the future and thus better
approxiinate a full search of the tree. Thig is known as improving the look-
ahead power of the program. The other/method is to improve the static

B2 Rote Learning in Samuel’s Checkers Player 341

evaluation function, so that the estimated value of each board poaition is more
accurate. Samuel's rote-learning studies nimed at improving the lonk-ahead
power by memorizing the backed-up values of board positions. The techniquea
discussed in Asticle XTV.DSa address the problem of improving the evaluation
function.)

The rote-learning approach employed by Samue. saved every board pe ai-
tion encountered during play, along with its backed-up value. [n the situation
shown in Figure B2-1, for instance, Samuel's program would memorize the
description of board position 1 and its backed-up value of 8 as an associated
pair, [A,8]. When position A is cncountered in subsequent games, its evalua-
tion score is retrieved from memory rather than recomputed. This makes the
program more cilicient, because it does not have to compute the value for A
with the static evalution function.

There is a more important benefit of retrieving the backed-up value of
A from memory, however. The memorized value of A is more accurate than
the statie value of /A, because it is based on a look-ahead scarch. Thus,
the look-ahcad power of the program is improved. PFigure B2-2 shows an
example of this improvement. The program is considering which move to
make at position E. [t searches ahead threc moves and then applics the static
evaluation function. For position A, however, the program is able to retriave
the memorized value based on the previous search to position D,

This appro .zh improves the elfective search depth for £. As more and
more positions are memorized, the effective scarch depth improves from its

Figure B2-2. Improving look-ahead power by rote learning.

342 Learning and Inductive Inference X

original value of 3 moves, up to 8, then to 9, and so on. Rote learning is thus
used in Samucl’s program to save the results of previous partial game-tree
scarches, so that they can gradually be eaterded and deepened. Rote learning
converts a computation (tree search) into a retrieval {rom memory.

Memory Organization

Sis el employed several clever techniques to store the evaluated board
positions, ;o that they took up little space and could be retrieved rapidly. To
storc the positions compactly, Samucl took advaitage of several symmetries
(e.g., positions in whicua it was Red’s turn to move were converted into the
corresponding Black-to-move positions; king posilions are symmetric in two
ways). Lfficient retrieval was accomplished by indexing the boards .ccording
to many different characteristics (including the number of pieces on the boacd,
presence or absence of kings, and picce advantage) and writing them onto
a tape in the order they would most likely be nceded during a game. The
use of magnetic tape was nccessary because the program was running on a
relatively small IBM 704 computer, and only a few board positions could be
kept in the computer’s core memory. During rote learning, the program would
accumulate a number of board positions before reading, sorting, and rewriting
them onto the memory tape. ,

Samuel resolved the store-versus-compute trade-off with a variation of
least recently used (LRU) replaceinent. Each board position was given an age.
Whenever a position was retricved from memory, its aige was divided by 2.
When the memory tape was rewritten, the ages of all stored positions were
increased by 1, and very old positions were forgotten—that is, not written
back onto tape.

Results

The progrém was trained in several ways: by playing against itsclf, by

playing against people (including some checkers masters), and by following

published games between master players (so-cafled hook games). After train-
ing, the memory tape contained roughly 53,000 positions. As the program
learned more, it improved slowly hut steadily, becoming, in Samucl’s words, a
“rather better-than-average novice, but detinitely not ... an expert” (Samuel,
1959, p. 218). Success in learning varied mackedly depending on the phase of
the game. The program became capable of playing a very good opening game,
since the number of board varialions is relatively sl near the start of the
game. Performance during the midgame, with its far greater range of possible
configurations, did not greatly improve with rote learning. During the end
game, Lhe progratm hecame able to recognize winning and losing positions well
in advance, but it necded some improvement before it was able to force the
game to a successful conclusion (sce below).

P ' A AT S TR 2N

B2 Rote Learning in Samuel's Checkers Player 343

On the whele, Samuel’s experimments demonstrated that significant and
measurablc learning can result {rom rote processes alone, but that on its own,
rc'» learning is limited in several ways. The first and most obvious limitation
is in storage space and retricval. One question that interested Samuel is the
following: Il rote learning produces steady improvement of performance as
it gathers new positions (up to a limit determined by available space and
the efficiency of indexing algorithms), could it ever reach a performance level
considered expert before exceeding the storage and indexang Iimits? 1f so, how
much data would it need t» remember, and how long would it take to gather
+he data? :

Satnuel cstimated that his progrun would need to memorize abcut one
million positions to approximate a mastar level of checkers play. Unfortunately,
even a system with suflicient storage capacily and rapid retrieval methods
would require an impractical amount of machine playing in order to gather a
million useful positions. However, Samuel suggests that even this long acqui-

sition period would be shorter than the time taken by humans to improve
from completc beginners to masters.

The inability of the program usctually to cffect a win once it had a winning
position was a curicus problem. [t was causcd by the mesa effect {Minsky;
1963)—that is, once the program has found a winning position, all muves
look equally good, and Lhe progran. tends to wander airniessly. Samuel solved
the problem by storing, along with cach board position and value, the length
of the search path that was used to compute the board value. The move-
selection procedure was modified to seliet the best move that also had the
shortest associated search distance. This change gave the program a scnse of
direction, so that it was able to press forward to win the game (or stall as
much as possible to avoid losing a game).

Another intcresting problem arose when Samuel attempted to combine
rote lcarning with learning techniques that modified the static evaiuation fune-
tion. Unfortunately, changes to the cvaluation function tended to invalidate
previously memorized positions (sce Article XIV.B1, on the frame problem).
Samuel’s solution was to avoid this problem by postponing rote learning until
the evaluation function had been effectively learned.

Conclusion

Besides showing that real improvement of performance could be gained
by the conceptually simplest form of icarning—rote memorization—Samucl
identified and claborated several issues th..t need to be handled if rote is
to offer significant gains. In general, the value of rote learning is to gain
problem-solving power in the form of spced. By rulrieving the stored results
of extensive computations, the program can proceed deeper in its reasoning.
The price is storage space, access time, and effort in organizing the stored
knowledge.

344 Learning and Inductive Inference xav

Samuel found that for rote learning to be eflective, knowledge had to
be carefully organized for efficient retrieval, stabilized to avoid using values
whose mesnings had changed, augmented with scarch-depth information, and
selectiveiy forgotten so that only the most useful information would tend to
be saved. In the case of Samuel’s checkers player, rote learning may have had
enough power on its own to lead eventually to expert performance, but the
time and space required for that much improvement were beyond the available
resources.

References

Samuel (1959) describes the rote-learning rescarch in detail.

C. LEARNING BY TAKING ADVICE
C1. Issues

IN ONE of the carlicst Al papers on learning, McCarthy (1958) proposed the
creation of an advice-taking system that could acecept advice and make use
of it to plan and cxecute actions in the world. "Until the late 1970s, however,
there were very few attempts to write programs that could learn by taking
advice. The recent emphasis in Al on expert svatems has focused new attention
on the problem of converting expert advice into expert performance (see Barr,
Bennett, and Clancey, 1979).

Research on advice-taking systems has followed two major paths. One
approach has been to develop systems that acecept abstract, high-level advice
and convert it into rules that can cflectively guide the performance element.
This research secks to automate all phases of the advice-taking process. The
other approach has been to devclop sophisticated tools—such as knowledge-
base editing and debugging aids- -that make it casier for the expert to trans-
form his own abstract expertisc into detailed rules. In this second approach,
the expert is an integral part of the lcarning system, detecting and diagnosing
bugs and repairing and refining the knowledge base. The former approach
shows promise of eventually developing completely instructable systems, while
the latter approach has proved invaluable for creating knowledge-based expert
systems. This article describes both of these rescarch paths. We will discuss
the more highly automated approach first and retuen later to the research on
knowlcdge-b'\sc cditing and debugging aids.

Steps Jor Automatic Advice-taking

liayes-Roth, Klahr, and Mostow (1980, 1981) provide an outline of the
processes required to convert expert advice into program perforinance. This
outline can be sutnmarized as follows:
Request—request advice from expert,
Interpret—assimilate into internal reprebentation,
Operationalize - convert into usable form,
Integrate -integrate into knowledge base,

Ll ol o

Evaluate—evaluate resulting actions of pcrformance element.

Request. The first step is for the program ‘o request advice from the
cxpert. The request can be simple —just asking the expert to give some

345

348 Learning and Inductive Inference X1

Cgeneral advice —or it can be sophisticated --identifying 4 shortcomring in the
knowledie base and ashing the expert how to repar it Some systems are
completely passive and wunply wait for the expert to interrupt them and
provide advice, while others are very careful to focus the attention of the
expert on a particular probiem.

Interpret. The uext step in advice-taking i3 to aceept the advice and
represent it internally, McCarthy (1958) pownts ont that inorder for 4 program
to aceept advice, the program must have an »prtemowgreally adeguats repre-
sentation for the advice psee Article tian, i Vol £, that i3, a representation
that 13 capable of expressiog the advice without losing any nformation. This
interpretation step can be very diflicuit of the advice s @iven in a natural lan-
guage. The program must understand the natural linguage suificiently well
to convert it into an unambuguous internal representation. See Chapter 1V,
in Volume {, for a detatled survey of AL research wnto natural-language under-
standing.

Operationalize. Once the advice has been aceepted and interpreted into
an unambiguous representation, it stifl may not be direetly executable by the
performance element. The third step--operationalization —seeks to bridge the
gap between the level at which the advice i3 provided and the level at which
the performance element can apply it.

Mostow's (1981) program FOO, for example, aceepts adviee about how to
play the eard giune of Hearts, English-lanzuage advice. such as “Avoid taking
points,” is interpreted by FOO's hwunan user and given to the program as
the lambda-caleulus statement (AVOID (TAKE -G TS ME) (CURRENT TRICK)).
However, even though this advice has been interpreted into an wnambiguous
internal representation, it is atill not operational since FOO has no procedures
or methods to avoid taking points, FOO does have methods for selecting and
playing cards, however. Thus, the advice must be converted mnto a form, such
as [ACIHEVE (LOW {CARD OF ME))] (i.e., "Play a low card™), that requires only
these operations.

IFOO accomplishes this task by applying many ditferent operationalization
methods (see Acrticle XIv.C2). It tries to re-express the advice, using known
relationships, until it can recognize that one of its operationalization methods
is applicable. These methods then allow it to develop a procedure for earrying
out all or part of the advice. The steps of reformulating the advice and apply-
ing operationalization methods are repeated until the advice is completely
exccutable.

This process is similar to the approach taken by automatic-programming
systems that convert hizh-level program specifications into cilicient implemen-
tations (sce Chap. X, in Vol. 1). However, unlike those systems, which seek to
create provably correct programs, FOO i not foolprool. The gap between the
advice and the performance element is usually too wide. and the operationali-
zation methods are usually too weak, to permit error-lree operationalization.

C1 [ssues 347

For example, it is often necessary for FOO to make assumptions and approx-
imations in order to transform the advice. FOO cannot always successfully
“avoid taking points” in ITearts, since it is impossible for the program to know
the contents of its opponents’ hands. Instead, FOO applies heuristic methods
to reduce the likclihood that points will be taken. Its strategy of playing low
cards is, consequently, a tentative hypothesis about how to avoid taking points.
The tentative hypotheses developed by operationalization must be tested and
" debugged before they can be accepted. _

Integrate. When knowledge is added to the knowledge base, care must
be taken to see that it is properly integrated (see Article XIV.A). New advice
can result in new mistakes if it takes precedence over previous knowledge in
situations in which the old knowledge is still correct. Yet the new advice must
take precedence in the intended situations The learning program must know
enough about how the performance clement applics the knowlcdge to be able
to anticipate and avoid any bad side-cfTects that could result from adding the
knowledge to the knowledge base.

Two common problems of integration are (a) overlapping applicability
and (b) contradictory recommendations. Consider an expert system, such as
MYCIN, whose knowledge basc is represented as a set of production rules.
When a new rule is added, its lcft-hand side (or condition part) may be overly
general, causing it to trigger in situations in which some other rule is properly
applicable. One solution to this problem is to specialize the rules, so that this
overlap of applicability no longer oceurs. Another approach—the meta-rule
approach—is to add ordering rules (meta-rules) that explicitly indicate which
regular rules should be applied before others.

When the right-hand sides (or action parts) of two production rules recorn-
mend inconsistent actions in the same situation, the problem of contradictory
recommen< ations arises. Again, cither the right-hand sides - 1 be modificd
to remove the contradiction or a meta-rule can be added s indicate which
action should take precedence. There are many other integration problems
aside from these two typicai ones. ‘

Evaluate. Since the new knowledge received from the cxpert is only
tentative—that is, it is the result of interpretation, operationalization, and
integration—it must be evaluated somehow. The learning system may be able
to recognize some errors and inconsistencies in the advice when it integrates
the advice into the knowledge base. More f1equently, however, it is necessary
to test the advice empirically by actually employing it to perform some task
and then asscssing whether the system is working properly.

Evaluation requircs some performance standard against which the actual
behavior of the system can be compared. In some domains, Lhe performance
standard can be built into the program. Game-playing programs, for example,
can tell if the system is doing well by whether or not the system wins the game.
In other domains, however, the system needs to set up detailed expectations

348 Learning and Inductive Inference l X

about how the new knowledge will alfect the performance of the systern. These
expectations allow the¢ program to detect and locate bugs in the knowledge
base. :
Evaluation can naturally feed back into the request step (the first of
these five steps). When the program dctects that the performance element
i3 not functioning properly, it can announce this to the expert and request
additional advice. A more sophisticated approach is for the program to do

eredit. asssynment—that is, to determine which parts of the knowledge base

are incorrect. Once the bug has been located, the advice-taking system can
ask the expert to tell it how to repair the particular piece of knowledge that
is incorrect. .

Now that we have discussed the five basic steps in an advice-taking sys-
tem, we describe some systems that have been developed as aids for <reating,
modifying, and debugging large knowledge bases.

Atds for Knowledge-base Maintenance

Instead of fully automating. these five steps, many rescarchers working
on expert systems have built Lools for assisting in the development and main-
tenance of expert knowledge bases. EMYCIN (van Melle, 1980; Davis, 1976),
AGE (Nii and Aiello, 1979), and KAS (Rcboh, 1981), lor example, all provide
certain functions to assist a domain expert or knowledge engineer in carrying
out these five steps. Particular assistance has been provided for integrating
new knowledge into the knowledge base (intelligent cditors, llexible repre-
sentation languages) and for evaluating and debugging the knowledge base
{explanation and tracing facilities). This semiautomated approach to advice-
taking places the knowledpe engineer in the role of requesting, interpreting,
and operationalizing the <xpert’s advice.

To assist Lthe knowledge engineer, these systems must be able to com-
municate cifeclively. It is particularly important for the engincer to get good
{eedback from the system during testing and debugging. Thus, a great deal
of effort has been expended on the development of tracing and explanation
facilities for cxpert systems (see Article VILB, in Vol. 1f; Davis, 1976).

Conclusion

Research on advice-taking systems is still in its infancy, although impoe-
tant ideas and methods are available from the related areas of natural-language
understanding and automalic programming. Peesent vesearch is advancing
along two paths: the theoretical path of automatic operationalization of expert
advice and Lthe practical path of providing aids to help knowledge engineers
build and debug expert systems. The developmett of fully automatic systems
remains an active rescarch area.

c1 ' Issues 349

A few Al systems have been developed that perform somnc kind of advice-
taking. Mostow's FOO system is described in Article X1v.C2. The reader
is also directed to the articles on TEIRESIAS (Article VIL.B, in Vol. 1) and on
Waterman's poker player (Article XIV.DSb) for other examples of advice-tal ‘ng
systems. .

References

Davis's work (1978, 1978) deseribes pioneering efforts in interactive advice-

taking. Hayes-Roth, Klahr, and Mostow (1981) and Mostow and [layes-Roth’

(1979) present the most comprchensive analyses of advice-taking as a whole.

A

-

C2. Mostow’s Operationalizer

A GROUP of researchers at the Rand Corporation, Carnegic-Mellon University,
and Stanford University has recently been developing the machine-aided
heuristic prograrmiming methodology in which a computer would be instructed
to perform a new task in much the same way that a person is taught (see tlayes-
Roth, Klahr, Burge, and Mostow, 1978; Hayes-Roth, Klahr, and Mostow,
1981). A central effort in this project is understanding the problem of opera-
tionalization (see Article XIV.C1). Moslow’s program IFOO (First Operational
Operationalizer) is one of the first results of this. work. It investigates prin-
ciples, problems, and mctiiods involved in converting high-level advice into
effective, executable procedures.

Accepting Advice About the Game of Hearts

Mostow, in his research with FOO, has dealt primarily with operationaliza-
tion problems taken from the card game of Hearts. The game is played as a
scquence of tricks. In each trick, one player—who is said to have the lead—
starts the trick by playing a card and each of the other players continues the
trick by playing a eard during his (or her) turn. If he can, each player must
follow suit, that is, play a card of the same suit as the suit led. The player
who played the highest valued card in the suit led takes the trick and any
point cards contained in it. Every heart counts as onc point, and the queen
of spades is worth 13 points. The goal of the game is to aveid taking points.
Hayes-Roth et al. (1978) provide a more complete explanation of the game.

Hearts is 2 game of partial information, with no known algorithm for win-
ning. Although the possible situations in the game are extremely numerous,
beginning players oftcn hear general advice such as “Avoid taking points,”
“Don't lead -a high card in a suit in which an opponent is void,” and “If an
opponent has the queen of spades, try to flush it.” The task of the FOO
program is to take such genceral advice and render it directly applicable by a
performance program. This task can be viewed as a kind of planning task.
A piece of advice, such as “Avoid taking points,” can be viewed as a goal.
The operationalization program must develop an exceutable plan for achiev-
ing that goal. What makes this advice diflicult to operationalize, however,
is that the goal can be ill-delined and unattainable. It is impossible, for
example, always to avoid Laking points. Instead, the program must develop
approximate strategies, The advice-giver intends the goal to suggest, but not
spectfy, the desired behavioe.

FOO is not able to accomplish this advice-taking task unaided. First,
it does not perform the interpretation step at all but, instead, relics on the

350

Cc2 Mostow's Operationalizer 351

user to translate the English form of the advice into an unam guous lambda-
calculus representation. Second, FOO cannot perform the operationalization
step without human assistance. Although FOO has a large knowledge base
of transformation rules and an interpreter for applying those rules, it must
be told by the user which rules to apply. The user must operate FOO by
repeatedly selecling an appropriate rule and indicating which expression or
subexpression should be transformed. Finally, FOO does not integrate the
operational knowledge it develops into a knowledge base that could drive a
Hearts-playing program. No performance element has been developed that
could provide an empirical test of the operationalized knowledge. Despite
these shortcomings, Mostow’s work ou FOO provides an in-depth analysis. of
the techniques required to perform operationalization. ‘

The primary way in which advice i3 operationalized in FQO is b applying
operationalizution methods, such as heuristic search, the pigeouhole principle,
and finding necessary or sufficient conditions. Mostow claims that this is
preciscly what knowledge enginecers and Al researchers do when they are
faced with a new probicm to solve: They look in their bag of tricks [or
a mecthod, such as worst-case analysis, that allows them to construct an
effective, but ineflicient, program. This program c¢an then be further refined
by applying other knowledge and advice. Mostow's work ran thus be viewed
as formalizing the knowledge and techniques used by Al researchers to do
heuristic programming.

The most sophisticated of FOO's operationalization methods is the
heuristic-search method. When FOO needs to evaluate a predicate, such as
(TAKE-POINTS ME), over a sequence, such as the sequence of cards in a trick,
it is able to reformulate this problem as a heuristic search of the space of all
possible tricks. FOO starts with a basic generate-and-test algorithm (discussed
in Article 1LA, in Vol. 1) and rcfines it into a heuristic search by improving the
ways the algorithm (a) selects the next node to expand, {b) selects possible
expansions of the node to apply, (¢) pruncs nodes from the scarch tree, and
(d) prunes possible expansions prior to applying them. The overall effect of
these refinements is to move constraints from the test portion of the algorithm,
that is, the step that checks to sce whether the goal has been achieved, iato

~ the generate portion of the algorithm;-that-is, the stcn that chooses which

nodes to expand and how they should be expanded. Some rcfinements actu-

ally move constraints out of the search altogether by precompiling them into

tables or by modilying the algorithm to scarch a smaller space. .

In the “Avoid taking points” problem, for example, FOO starts with a
simple generate-and-test algorithm that generates all possible tricks and tests
to sce if M1 (IFOO's peeformance persona) takes any points. This is gradually
converted into a hicuristic search in which the only tricks considered are those
in which ME plays a card higher than any card played so far in the suit
led. Additional heuristics, such as generating Lricks that contain points frst
and pruning lricks in which the opponents play cards higher than ME, are

352 Learning and Inductive Inference xxv

extracted from the test and applied earlier in the search to order and prune
the scarch tree. '

Inderlying all of FOO’s operationalization methods is its basic ability to
reformulate an expression in many different ways. For example, in order to
evaluate (VOID P1 81) (i.e., player P, is void in suit §,), FOO must reformulate

VOID in terms of observable variables such as the number of cards already:

played in the suit §;. In order for I'OO to recognize that an operationaliza-
tion method is applicable, it must often do some reformulations. Then, in
order actually to apply the method, FOO may need to do some further refoe-
mulations. The heuristic search method, for instance, is applicable only to
a problem that is expressed as a scarch through some space. Conscquently,
in order to use heuristic scarch to operationalize the “Avoid taking points”
advice, FOO must first reformulate the advice as a predicate over the search
space of all possible tricks. The heuristic search can then search this space
for those tricks that do not contain points, ’

The reformulation and operationalization process is accomplished by ap-
proximately 200 transformation rulcs (Mostow, in prcss). These rules employ
analysis techniques and domain knowledge to successively reformulate the
advice into an operational form. In this article, we trace a portion of FOO's
operationalization of the “Avoid taking points” advice to show how these
refoemulation techniques are applied. Belore doing this, however, we describe
the knowledge that ¥ OO has initially and how it is represented.

FOO'’s Initial Knowledge Base

FOO's performance knowledge is made up of domain concepts, plus rules
and Aeuristics that are composed in terms of these concepts The advice
offered to the program likewise consists of domain concepts, plus composi-
tions of concepts. So as long as these compositions of basic concepts can
be deseribed in gencral ways, both the performance knowledge and the ad-
vice for building and improving it can be used and manipulated by domain-
independent methods (sce [layes-Roth ct al., 1981, for further discussion).

For example, in the domain of the card game Ilcarts, dasic concepts
include:

deck, hand, card, suit, spades, deal, round, trick, avoid, point,
player, play, take, lead, win, follow suit.

Examples of advice in the form of behavioral constraints include:

The lead of the first trick is by the player with the 2C.
Each player must follow suit il possible.

The player of the highest card in the suit led wins the trick.
The winner of a trick leads the next trick.

Advice in the form of hcuristics includes:

C2 Mostow’s Opecrationalizer 353

If the queen of spades has not been played, then Qush it out.

Take all the points in a round.

If you can’t take all the points in a round, then take as few
as pessible.

If neccssary, take a point to prevent someone clse from taking
them all. ‘

A constraint such as “The lead of the first trick is by the player with the 2C"
is represented as a composition, using domain-independent concepts like first
and with and domain-depcndent concepts like lead, trick, player, and 2C.

An I'zample: Operationalizing “Avotd Taking Points”

After advice has been i..terpreted into an internal representation that is
precise and unambiguous, it might be in an operational form, for example,
“Play a low card.” On the other hand, it may be far more general: “Avoid
taking points.” [Experienced Hearts players will recognize that the first,
specific piece of advice is a possible strategy for carrying out the latter, gencral
advice. But it is a rather simplistic strategy, more appropriate for the later
stages of a game than for the beginaing. Furthermore, repeated attempts
to play low cards will sometimes conflict with other advice. l'or purposes of
illustration, however, operationalizing even a quite simple goal can require a
wide range of knowledge and methods (see Mostow, 1981; [layes-Roth et al.,
1981). For the remainder of this article, several of the methods and problems
of operationalization will be illustrated by showing how advice such as this
can be converted into directly exccutable procedures.

First, vonsider how a person night handle advice such as “Avoid taking
points.” He might apply it to a specific situation by rensoning as foliows:

1. To avoid taking points in general, [should avoid taking any points in the

current trick (A single round in which one card is played by each player).

2. Thus, if the trick contains pornts (cither a heart or the quecen of spades),
[should try not to win it.

3. 1 can do this by trying not to play the winning card.

4. That can be done by my playing a card lower than some other card
nlayed in the suit led.

Each step above is an attempt to implement the previous statement as closely
as possible by restatement in successively more specific, operational terins.
Some restatements may fully preserve the truth or accuracy of the previous
one, while others may be very suppositional {i.c., valid given certain assump-
tions) or more restrictive {i.e., valid only in certain situations), The final
statement above is not a very sophisticated plan, but it is at least a reasonable
operationalization of the initial advice, and it represents a kind of process
that seems very common in human learning. A problem-reduction strategy is
employed until the advice can be applied directly in the given situation,

354 Learning and Inductive Inference XIv

Now that we have a sense of how a person might operationalize “Avoid

taking points,” we tri.e the methods applied by FOO to accomplish this task.
The following example is based on Derivation 6 in Mostow (1981) in which
he guided FOO to reformulate “Avoid taking points” as “Play a low card.”
This particular trace shows the use of several simple operationalization and
reformulation methods but does not show the application of the heuristic-
search method discussed above.

To begin with, the advice must be interpreted into a tractable repre-
sentational form, such as:

(avoid (take-points me) (trick))

That is, “Avoid the event in which ME takes points during the current trick.”
In FOO, ths is done manually by the advice-giver.

A uscful beginning in operationalization is to elaborate the original advice
by expanding definitions (first of “avoid” and then of “trick”). The point is to
unflold high-level terms s0 that th. expression can be more easily manipulated.
The results arc

(achieve (not (during (trick) (take-points me)))]

and
(achieve (not (during (scenario
(each p (players) (play-card p))
(take-trick {trick-winner))]
(take-pnints me)))).

The advice in this form is still not operational, since it depends on the
outcome of the trick, which is not generally knowable at the time ME needs
to choose an action in accordance with the advice. Thercfore, a case analysis
is done on the subexpression (during...). The idea is to reformulate a single
concept as several disjoint expressions that can be cvaluated separately. To
this end, the single (during...) exprcssion is split into two expressions that
depend on alternative assumptions. llere, taking points during the two-part
“scenario” above can be considered as cither of two possible cases: that taking

" 7 points occurs during (a) the playing of cards or (b) the taking of the trick.
The transformation results in:

(achieve (not (or [during (each p (players) (play-card p))
(take-points me)] :
{during (take-trick (trick-winner))
(take-points me)])}).

The next transformation climinates impossible cases. When expressions
cannot be achieved beeause of impossible conditions, the learnet should recog-
nize this and drop them from consideration. Here, the first case can be ignored
becausc-there s no way to take points during the play of the cards (it is

- »43:")!0 only after all players have played, when the trick is taken). FOO

recognizes this by an intersection search. It searches through the knowledge

—

C2 Mostow’s Operationalizer 355

base of defined concepts for a common subeveat of the Lwo cvents (each p
(players) (play-card p)) and (take-points me). Since no commnn subevent
is found for these two, FOO concludes that the situation is an impossible one
and climinates it. (For the second case, take-trick and take-points have a
common sub-event, take.) The advice now is:

(achieve (not [during (take~trick (trick-winner))
(take-points me)])).

The advice is still far from operational. One difficulty is that neither
take-trick nor trick-winner is immediately evaluable at the time a card must
be chosen for play. At this point, the problem can be reduced by reexpressing
different concepts in common terms. This is possible here by again elaborating
definitions and restructuring the subexpressions. Since take-points occurs
during take-trick, the expression can be reformulated as:

(achieve (not [exists cl (cards-played)
(exists ¢2 (point-cards)
(during (take (trick-winner) ci)
(take me c2)))1)).

This says, “Muke sure the situation does not happen where ML takes a point
card (c2) during the time that tiie winner of the trick takes the cards played.”

A orocess of partial matching recognizes that the two cvents in the during
subexpression are closely related and thus are candidates for simplification,
depending on the constraints of the during predicate. Using domain knowl-
edge of relationships among the concepts, the terms can be combined and the
subexpression made less complex. Instead of the complicated relation during,
the events become joined by the far simnpler predicates = and and. We now
have:

(achieve (not (exists ci (cards-played) .)
(exists c2 (point-cards) .
{and (= (trick-winner) me) (= ci c2)])))).

Further analysis at this point shows that simplification of somne forms is
possible. The central purpose of searching for simplifications is to restructure
expressions to make them more amenable to [urther analysis. Examples of
simplifying methods are deleting nuil clauses from a disjunction, transforming
an expression into a constant (by evaluation), applying logical transformations
(such as Dc Morgan's laws), or removing quantificrs when possible. The last
of these methods is appropriate here, since ¢1 and ¢2 denote the same object:
a point card. Thus with some reformulation cmploying domuin knowledge,
one variable can be replaced by the other, and the condition that they be
equal can be dropped. The expression is transformed into:

(achieve (not {and (= (trick-winner) me)
(exists c1 (cards-played)
(in ¢1 (point-cards)))])).

358 Learning and Inductive Inference Xxv

Another kind of pattern-matching can accomplish ancther kind of sirc-
plification: Py looking for canonical constructions, the operation.izer can
recognize known concepts. If the form of a lower level expression fits the
definition of a higher level concept, the former can be replaced by its simpler
equivalent. (Note that this is the inverse of the first transformation mentioned
above: expanding dcfinitions.) In this case, the last two lines of the above
expression match the definition of trick-has-points. This is analogous to the
psychological process of chunking. la addition to all the analytical advantages
gained by simplification, the recognition of known concepts can also cnable
the application of previously learned knowledge about them (e.g., ways to
predict the likelihood that a trick will have points ia 1t). Qur expression is
now reduced to not winning a trick that has points:

(achieve (not (and (= (trick-vinner) me) [trick-has-points]))).

The expression is still not operational, since trick-winner is not gunerally
knowable at the time of choosing which card to play. The concept of trick-
winner is further analyzed, and, in fact, it takes about 20 further teansforma-
tions to reformulate the above expression, “Try not to win a trick that has
points,” into “If you're following suit in a trick with points, try to play lower
than some other card played in the suit led.” Symbolically, this looks like:

(achieve (= [and (in-suit-led (card-of me))
(trick-has-poincs)]
(lower (card-~of me)
(find-element (carde-played-in-suit-led))))).

But this still is not operational, since in general the set cards~played-in-
suit-led is not fully known at the time that ME must choose a card. Since
Hearts is a game of imperfect information, this set cannot generally be known,
bat the data available (cards already played) can be used to approrimate the
result. ilere, the binary relation lower is approximated by the unary predicate
low. In other words, in the absence of complete inlormation for evalualing a

-comparative-predicale (lower x1 x2), use instead an estimating {unction [low

x') that may not be exact but can produce a result from the available data.
The approximation is:

(achieve (= (and (1n-suit-1;d (card-of me))
(trick-has-points))
(low (card-of me)])).

This is now very close to being operational. Low is an imprecise term but
can be trealed as a fu-zy predicate (sce Zadeh, 1979)--that is, it could be
used to order potcutial candidates for the choice variable, card-ot me.

The oniy remaining barrier to full operationality is the predicate (trick-
has-points). This tilso is not always knowable at the time of choosing a
card to play. However, further analysis leads to applicatisn of a rule that
formulates an assertion as possible {cflectively assuming it to be truc) in the

m— oy

Cc2 Mostow's Operationaliser 357

absence of any knowledge Lo the contrary. Even when a predicats p is not
evaluable, (possible 'p) will te.

Thus, the fully operational (though approximate) reformulation of the
original “Avoid taking points” is “If following suit in a trick that may have
points, play a low card.” Again, the result tnay not always be the most effective
action and may be in conflict with other advice. These are issues to be decided
by the evaluating module of the learning clemont and by the performance

element of the program. The symbolic form of the operationalized advice is:

(achieve (=> [and (in-suit-led (card-of me))
(possible (trick-has-pointa)]]
(low (card-oi me)])).
[.
i

Conclusion

The example given above is a uscful one because of the Jiversity of its
reformulations, not becnuse ol any completeness. Among the most useful
contributions of this research has been an introduction to the considerable
complexity of operationalizing advice. Of the 13 examples of operationalized
advice given in Mostow's thesis {1981), a couple required only a handful of
transformations (a minimum of 8), but several required over 100. About 10
domain-independent transformational rules were mentioned in the example
above, but over 200 such rules have been formulated and included in the sys-
tem. Mostow (1981) gives a taxonomy of operationalization methods accord-
ing to their purpose, scope, and accuracy. This taxonomy is outlined in
Figure C2-1; each cabegory is illustrated by one or more methods.

The greatest shortcoming of the work on FOO is the lack of a control
structure that could apply these operationalization melhods automatically.
The development of such a control regime may be quite difficult. Mostow
suggests using means-ends analysis (sce Article (1.D2, in Vol. 1) and describes
how his cxccution of rules often conformed to the loiiowing pattern:

. Reformulate an expression until it is possible to

recognize that the inethod is applicable and decide to apply it, so
reformulate the expression to match the method provlem statement and
fill in addivional in®ormation required by the method; then

oW

. refine tha instantiated method by applying additional domain knowledge.

A second shortcoming of FOO is that its mcthods are quite specific to the
game of licarts and similar tasks. The development of a gencral-purpose
operationalization program will require the explication of many more opera-
tionalization nethods. Still, these first steps in operationalization should
prove valuable cither for Lhe overall project of machine-aided heuristic pro-
gramming (see the beginning of this article) or for futurc efforts at unplemaent-
ing advice-taking systems. :

358 Learning and Inductive Inference xav

1. Methods for evaluating an expression

a. Procedures that always produce a result (assuming the'r inputs
are available)

“Pigeonhole principle”
“Ilistorical (easoning”
“Heuristic search”

b. Procedures that sometimes produce a result
“Check a necessary or sullicient condition”
“Make a simplifying assumption that restricts the scope
of applicability”

c. Procedures that produce an approximate result

“Apply formula for probability that randomly chosen
subsets overlap”

“Characterize a qurntity as an increasing or decreasing
function of sorne variable”

“Use an untested simplifying assumption”

“Predict others’ choices pessimistically”

2. Methods for achieving a goal

a. Sound methods (mtroducc no errors)—execution of plan (when

feasiblc) will achieve goal

“To empty a set, remove one element at a time"

“Find a sutficient cordition and achieve it”

“Restrict a choice Lo satisfy the goal”

“Modily a plan for one goal to achieve an additional goal”

“To achieve a goal with a future deadline, satisly it now
and then avoid violating it”

b.

Heuristie methods——execution of plan may not always
achieve goal
“Simplify the goal by arbitrarily choosing a value for
one of its variables”
“Find a neceszary condition and achieve it”
“Greder choice set with respect to goal”

Figure C2-1. Taxonomy of operationalization mcthods.

. N [P < VRS ry S WS S

'

C2 Mostow's Operationaliser - 359

-

References

Mostow (1981) is the most comprehensive description of FOO. The arti-
cles by Ilayes-Roth, Kiahr, and Mostow (1980, 1981) and by Hayes-Roth,
Klahe, Burge, and Mostow (1878) provide a good overview of the idea of
machinc-aided heuristi: programming. Mostow (in press) describes the work
on heuristic search.

 A—. A e L5 b ST PNS Bos 8 ot el 8 e i T b b e

ek (2 At~ AT e had 3 By mmn s ek e im0 aE e A e SNt s Ay e B T o

D. LEARNING FROM EXAMPLES

D1. Issues

THE PROSPECT of creating a program that can learn froin examples has
attracted the attention of Al researchers since the '1950s. MeCarthy (1958,
p- 78) said, “Our ultiinate objective is to make programs that learn from their
experience as effectively as humans do.” Of course, the attainment of this goal
still lies in the distant future. The area of learning from examples is, howcvcr,
the best understood aspect of learning.

> A program that learns from examples inust reason {rom specific instances
to general rules that can be uscd lo guide the actions of the performance
clem at. The learning element is presented with very low level information,
in the form of a specific situation and the appropriate behavior for the per-
formance element in that situation, and it is expected to generalize this infor-
mation to obtain general rules of behavior.

Consider, for cxample, a program that is learning to play checkers. One
way to train the program is to present it with particular checkers-board
situations and tell it what the best moves are. The program must generalize
from these particular moves to discover strategies for good play. Similarly, if
we are teaching a program the concept of a dog, for example, we might present
the program with various animals (and ‘other things) and tell it whether or
not they are dogs. The program must develop general rules for recognizing
dogs and distinguishing them from everything else in the world.

Simon and Lea (1974), in an important early paper on induction, deseribe
the problem of learning from examples as the problem of using training
insiances, selected from some space of possible instances, to guide a search for
general rules. They call the space of possible training instances the instance
space and the space of possible general rules the rule space. Furthermore,
Simon and Lea point out that .n intelligent program might sclect its own
training instances by actively scarching the instance space in order to resolve
some ambiguity about the rules in the rule space. Thus, if the program were
unsure whether all dogs have four legs, it might search the instance space for
animals with different numbers of legs Lo sec which ones arc dogs. Simon and
lica view a learning system as moving back and forth between an instance
space and a rule space until it has converged on the desired rule.

This two-space view of learning from examples as a simultancous, coopera-
tive search of the instance space and the rule space is a good perspective for
organizing this article. We will use the terms instance space and rule space
even in situations whaere the rule space dves not contain rules but, instead,

360

\
/
an
D1) [ssues 381 B e :
Experiment Planning
Instance Selection -
i

Interpretation

Figure D1-1. The two-space model of learning from examples.

contains some other high-level descriptions of the knowledge needed by the o
performance element. .

Figure D1-1 shows a schematic diagram of the two-space model of {earning
from examples. In addition to the instance space and the rule space, the
processes of interpretation and experiment planning are depicted. In some.
learning situations, the training instances are provided in a form far removed
from the form of the rules in the rule space. As a result, when the program
moves from the instance space to the rule space, spccial processes are needed o
to interpret the raw training instances so that they can guide the search of the T
rule space. Similarly, when the program needs to gather some new training
instances, special experiment-planning routines are needed so that the current
high-level hypotheses can guide the search of the instance space. _

As an example of the two-space model, consider the problem of teaching
a computer program the roncept of a flush in poker (i.e., a hand in which all
five cacds have the same suit). The instance space in this learning problem is
the space of all possible poker hands. We can represent an individual poiat
in this space as a set of five ordered pairs, for example, -

{(2,clubs), (3,cluds), (5,clubs), (jack,clubs), (king,cluba)}.

Each ordered pair specifies the rank and suit of one of the cfxrds in the hand. .
The entire instance space is the space of all such five-card sets. N
The rule space in this problem could be the space of all predicate calculus \\
cxpressions composcd of the predicates SUIT and RANK; t.hcgvariablcs ¢y, C2, \"’/
€3, ¢, ¢s5 f{or the cards; any neccssary free variables; the lconstant values ' s
of clubs, diamonds, hearts, spades, ace, 2, 3, 4, 5, 6, 7,18, 9, 10, jack, L
queen, and king; the conjunction operator (A); and the existential quantifier
(). This rule space includes concepts such as contains at least three cards of
the same rank: ’

362 Learning and Inductive [nference xav

3 ey, ¢3,¢3 : RANK(cy,) A RANK(cg, Z) A RANK(c3,2),
and also the desired ct;nccpt of a flush:

3 ¢y, €2, €3, €4, €5 : SUIT(cy, 2) A SUIT(c2, 2) A SUIT(e3,2) A
SUIT(cy, Z) A SUIT(c5, 2).

Note that this rule space does not contain the concept of a siraight.

A learning program for searching these two spaces might operate as
follows. First, the program selects a training instance from the instance
space and asks the teacher whether it is an instance of the desired concept.
This information (the instance and its classification) is converted by the
interpretation procedures into a form that can help guide the search of the

rule space. When some plausible zandidate concepts arc found in the rule

space, experiment-planning routines decide which training instances should
be examincd next. If the learning program works properly, it will eventually
choose, as its best candidate concept, the lush coucept shown above.

Learning systems that employ the two-space approach are making use
of the closed-world assumption, that is, the assumption that the rule space
contains the desired concept. The closed-world assumption allows programs
to locate the desired concept by progressively excluding candidate concepts
that are known to be incorrect.

This two-space view of learning from examples helps to elucidate many of
the design issues for learning systems. In this article, we follow this two-space
model [uil circle. We examine, in turn, the issues concerning the instance
space, the interpretation process, the rule space, and the experimcat-planning
process,

Instance Space

The first issuc involving the instance space is the guality of the train-
ing instances. [ligh-quality training instanccs are unambiguous and thus
provide reliable guidance to the search of the rule space. Low-quality train-
ing instances invite multiple, conflicting intcrpretations and, consequently,
provide only tentative guidance to the rule-space search.

Cousider again the problem of teaching a program the concept of a flush.
There are several sources of ambiguity that could make it difficult for the
program to discover the concept from training instances.

First, the instances may contain errors. If the descriptions of the in-
stances arc incorrect, for example, if a 2 of clubs is incorrectly observed to be
a 2 of spades, the crror is & measurement error. If, on the other hand, the
classification of the hand (as being a flush or not being a flush) is incorrect,
the crror is a classification error. Two kinds of classification errors can occur.
The program can be told that a sample hand is a flush when in fact it is

b 1 . [ssues 383

not-—a false positive instance—or that it is not a {lush when in fact it is—a
false negative instance.

A second source of ambiguity arises if the program must lcarn from -

" unclossified training instances. In these so-called unsupervised learning situa-
tions, the program is given heuristic information that it must use to classify
the training instances itsell, If this heuristic knowledge is weak and imper-
fect, the rule-space scarch must treat the resulting classifications as being
potentially incorrect,

A third factor relating to the quality of the training instances is the
order in which they are presented. A good training scquence sysiematically
varies the relevant features to determine which features are important. When
a pregram is selecting training instances, it attcmnpts to construct a good
training sequence for itself. The task of learning is made much casier if there
is a tcacher who car be counted on to perform Lhis function. In such cases,
a program can reason about a puzzling instance by trying to infer “what the
teacher was getting at” in preseating the example.

The main point, then, is that high-quality training instances are unam-
biguous. Under such favorable conditions, the program can be designed to
embody a whole set of constraining assumptions about the examples that
permit it to locate rapidly the appropriate high-level rule~ in the rule space.
Low-quality instances, again, are ambiguous, because the program must con-
sider a much larger space of hypotheses. Thus, if it ia possible that the training
instances contain errors, the program must consider the hypothesis that any
given instance is incorrect due to cither measurement error or classification
error. In general, the more constraints a program can assume about the data,
the more easily it can learn from them.

The second design issue concerning the instance space is the question of
how it should be scarched. This issue has not rcceived much attention in Al
rescarch, since most work has assumed either that the instances are presented
all at once or else that the program has no control over their selection. (See,
however, Rissland and Soloway, 1980, for recent work on instance selection.)
Programs that can update their hypotheses as additional training instances
are selected (or are made available by the environment) are said to perform
incremental learning. Programs that explicitly search the instance space are

“said to perform active instance seleztion.

Most methods of scarching the instance space make use of a set, H, of
hypotheses in the rule space that are currently believed by the program to be
most plausible. One approach is to try to discrimingte as much as possible
among the alternalives within A. A training instance can be chosen that
“splits I/ in half,” so that half of the hypotheses can be ruled out when
the new instance is obtained. Anothcr approach is to choose the most likely
hypothcesis in f/ and try to confirm it by checking additional training instances
(particularly instances with extreme characteristics). Using a confirmatory
strategy, the learning system can determine the limits of applicability of the

-

384 Learning and Inductive Inference v x1v

hypothesis under consideration. A third approach, called ezpectation-based
filtering, selects training instances that contradict the hypotheses in H (see
Lenat, Ilayes-Rsth, and Klahr, 1979). The hypotheses in H are used to
filter out those instances that are expected to be true (i.e., those that are
consistent with H), so that the learning program can focus its attention
on those instances in which its current hypotheses break down. Finally, an
important consideration may be the size of /, or other computational costs
associated with the learning process. In such cases, new instances may be
selected o minimize these computational costs. For example, the program
might try to rule out only one factor at a time in order to reduce the cost of

comparing a drastically different training instance with each hypothesis in H. -

Interpretation Processes

Once the training instances have been selected, they may need to be
transformed before they can be used to guide the search of the rule space. This
transformation process can be quite dillicult, especially in perceptual learning
tasks.. Suppose, for example, that we wish to train a computer to recog ‘ze
the concept of an arch constructed from toy blocks. The program wih be
presented with a line drawing of a scene involving a structure of blocks and
told whether or not the scene contains an arch. Winston’s (1970) program that
solves this learning task (see Article XIV.D3a) makes extensive use of “blocks-
world knowledge” to interpret the line drawing and extract a relational graph
structure that indicates which blocks are resting on top of which other blocks,
which blocks are touching, and so forth. These are the relations needed to
express the concept of an arch. .

Another lcarning program that performs extensive interpretation of the
training instances is Soloway's (1978) BASEBALL system. The raw training
instances are roughly 2,000 noise-free “snapshots” of a baseball game. The
snapshots give the locations of the nine players on the two teams {e.g., (aTP1
FIRST-BASE)), the location of the ball, and the state of the scorcboard. The
program is composed of a sequence of nine steps that employ various kinds of
knowledge to interpret and generalize the training instances. The first three
steps apply gencral knowledge about games to filter out periods of inactivity
and focus on cycles of high activity. The next three steps apply knowledge
about physics and about competition and cooperation to interpret these cycles
of activity as competitive or cooperative cpisodes. To identify these episodes,
the program must assign goals to the different players (e.g., (WANT-TQ-EXECUTE
(AT P1 FIRST-BASE))). [t also gucsses Lhat the overall goal of an episode is
that of the lust action taken by a player. The final threc steps seacch the
rulc space to discover gencralized episodes and episode goals such as Ait and
out. These concepts are far removed from the original training instances,
but because Lhe previous steps have properly interpreted the data in terms of
goals and actions, this rule-space scarch is easily accomplished.

AN

DT [ssues 3685

The basic purpose of interpreting the training instances is to extract
information that is useful for guiding the search of the rule space. This usually
involves converting the raw training instances into a representational form
that allows syntactic generalization to be easily accomplished (sce below).

Rule Space

Two main issues are related to the rule space of high-level knowledge:
What is the space, and how can it be searched? The rule space is usually
"defined by specifying the kinds of operators and terms that can be used to
represent a rule. The designer of a learning system seeks to chocse a rule
space that is easy to search and that contains the desired rule or rules. In the
sections that follow, we first discuss two lactors that influence the :hoice of a
representation language for the rule space: the kinds of infecence supported
by the representation and the single-representation trick. Then we survey
the four methods for searching the rule space. We conclude the discussion of

rule-space issues by examining problems that arise when the representation is

found to be inadcyuate for expressing the desired rule or rules,

Syntactic rules of inference. Both the expressiveness of a repre-
sentation and the case of searching the rule space depend on the kind and
complexity of the inferences supported by the representation. The most com-
mon inference process needed for learning from examples is generalization.
We say that one description, A, is more general than another description, B,
if A applies in all of the situations in which B applies and then some more.
Thus, the set of situations in which A is relevant is a superset of the set of
situations in which B is relevant. For example, the rule that All ravens are
black is more general than the rule that All one-eyed ravens are black, since
the set of all ravens strictly includes the set of one-eyed ravens. Often, a
description A is inore general than a description B because A places fewer
constraints on any relevant situations. The all ravens rule omits the one-eyed
constraint and, hence, is more general.

It is important to choose a representation for the rule space in whlch gen-
eralization can be accomplished by inexpensive syntactic operations. Predicate
calculus, for example, is quite amenable to certain kinds of syntactic gen-

_ eralization. Below are some examples of syntactic rules of inference that ...

accomplish generalization in predicate calculus. Some recent work in learning
(Larson, 1977; Larson and Michalski, 1977; Michalski, 1980) has sought to
idesify rules of inference that are particularly useful in learning systems. [t
is important to note that these rules of inference do not preserve truth-—the
rules are indv ive.

1. Turning constants to variables. Suppose we want a program to
discover the concept of a flush in poker. We might give some training
instances of the form;

388

Learning and Inductive Inference

Instance 1. SUIT(cy, clubs) A SUIT!¢3, eluds) A
SUIT({es, efubs) A SUIT(c4, cluds) A
' SUIT(Ci, elubc) = FLUS"(cl , €2, C3, C4q, cs) .

Instance 2. SUIT(c:, spades) A SUIT(c2, spades) A
SUIT{cy, spades) A ZUIT(c4, spades) A
SUIT(cs, spades) = FLUSH(cy,c2,c¢3,64,06).

From these, the program could hypothesizte the rule

Rule 1. SUIT{¢), z) A SUIT(c2, 2} A SUIT(es, 2) A SUIT{eq,z) A
SUIT(cs,2) = FLUSH{e1, ¢2,¢3,¢4,¢5).

by replacing the atomic constants of clubs and spades by the variable

{(where z stands for any suit).

2. Dropping conditions. Suppose again that we are teaching a program
the concept of a fush, but now we present instances of the form:

Instance 1. SUIT(cy, cluds) A RANK(e,3) A
SUIT(ca, elubs) A RANK(c2,5) A
SUIT{c3, clubs) A RANK(ca, 7) A
SUIT(cq, clubs) A RANK(c4, 10) A
SUIT(cs, clubs) A RANK(cs, king)
= FLUSH(ey, €2, ¢3, ¢4, c5).

.In order to discover rule 1, the program must not only turn constants

into variables, but it must also “forget” all of the RANK predicates, since
rank is irrelevant. This can be accomplished by dropping conditions. Any
conjunction can be generalized by dropping one of its conditions. We can
view a conjunctive condition as a constraint on the set of possible instances
that could satisfy the description. By dropping a condition, we are removing
a constraint and generalizing the rule.

3. Adding options. A [urther way to generalize a rule is to add another
option to the rule so that more instances may conceivably satisfy it. Suppose
we are trying to teach a program the concept of a face card (i.c., jack, queen,
or king). We might give examples of the form: -

Instance 1. RANK(c\,jack). = FACE(c1).
Instance 2. RANK(cy, queen) = FACE(e,).
Instance 3. RANK(’(:., king) = FACE(e).

The program can discover the rule by forming the disjunction of the pos-
sibilities: \‘
Rule 2. RANK(e1, jatk) V RANK(cy, queen) V RANK (e, king)
= FACE(e1). ’

Notice that this decision to add options is a less drastic generalization than
that of turning the jack, queen, and king constants.into a single variable to
get

Rule 3 (wrong). RANK(ci,y) = FACE(c,).

D1

[ssues 57

An alternative to ordinary disjunction is what Michalski (1980) terms ap
tnternal disjunction. If we allow sets and set membership in our repre-
sentation, we can express our instances as

Instance 1/. RANK(ct) € {jack} = FACE(c)).
Instance 2'. RANK{¢:) € {queen} = FACE(c1).
Instance 3'. RANK(e() € {king} = PFACE(c)).

The generalization can then be expressed as
Rule 2/. RANK({cy) € {jack, queen, king} = FACE(c)).

This latter representation is more compact.

Similar rules of generalization can be defined for numerical representa-

tiona that use a linear comnbination of features, as follows:

4, Curve fitting. Supposc a program i3 attempting to discover how the
output, 2, of a system is related to two inputs, z and y. The program s
provided with training instances in the form of (z,y, 2} triples that show
the output of the system for particular values of the inputs:

Instance 1. {0,2,7).
Instance 2. (6, —1, 10).
Instance 3. (—1, ~-5,~16).

By a curve-fitting technique, such as least-squares regression, the program
fits the line .

Rule 1. z2=2z+3y +1,

or, alternately, the ordered triple (z,y,2z + 3y + 1}, to these data. This
genceralizes the relationship, so that it holds for many more (z,y, :) triples
than just the thrce training instances. The program can now predict the z
output for any valucs of the r and y inputs. This process is analcgous to
the turning-constants-into-variables generalization rule.

5. Zeroing a coefficient. The program can further generalize this relation-
ship by zeroing the y coeflicicnt and fitting a plane to the three trairing
instances. In this case, it obtains

Rule 2. z = 2.56z — 3.99.

Alternately, the ordered triple is (z, ¥, 2.59z — 3.99). (The y coordinate can
be anything.) By giving y the coelficient of zcro, the program has dropped it
as a condition and reduced the ditnensionality of tne function z == [z, y) to
make it z == G(z). The program has decided that yis icrelevant to the value
of 2. The relationship now holds for an even larger sct ol {z,y, 2} triples.
This rule is analogous to the dropping-condition rule of generalization.

Notice that thcse rules of inference correspond to particular features of

the representation language. For example, the methad of turning constants

a

368 Lecarning and Inductive Infcrence xav

into variables makes usé¢ of free variables, the method of adding options uses v /
the disjunction operator, and the cocfficient-zeroing technique makes use of
the multiplication operator. To the extent that the representation language
has fewer of these fcatures, fewer inferencc rules will be applicable and, .
consequently, the scarch of the rule space will be easier to accomplish. But -
since each of these language fcatures contributes to the expressiveness of the .
vepresentation, the designer of a learning system faces a trade-off between the
increased cxpressiveness of the representation and the increased difliculty of o
searching the rule space. ’ i
The single-representation trick. Another lactor relating to the dif-
ficulty of searching the rule space {and the instance space) is the difference
between the representation used (or rules and the representation used for
the training instances. If the representations for the rule space and the
instance space are far removed {rom cach other, then the searches of the
two spaces must be coordinated by complex interpretation and experiment-
planning procedures. One trick commonly used to avoid this problem is to
choose the same representation for both spaces. Training instances are viewed ' /-"
literally as highly specific picces of acquired knowledge. Suppose, for example, T
that we are trying to teach a programn the concept of a pair in poker. We
waant the program to lcarn the rule

Rule 4. 3 cardy, card; : RANK(eardy, z) A RANK(cards,z) =5 PAIR.

(This is only an approximate definition of PAIR. An exact definition would

require a more complex representation involving equality.) : N
As wns shown above, specific hands could be represented “naturally” as ‘ :

sets of five ordered pairs—the rank and suit of cach of the cards. With such

a representation for the hand made up of the 2 of clubs, 3 of diamonds, 2 of

hearts, 6 of spades, and king of hearts, we would obtain .

Instance 1. {(2, clubs), (3, diamonds), (2, hearts), (6, spades), (king, hearts)}
= PAIR.
But this representation makes it difficult to discover the concept of a pair in
poker with the syntactic rules of inference described above. A less natural, but
more uscful, representation would deseribe the hand in predicate calculus— -
the sume representation that we will eventually riced {or the acquired concept
{rule 4). Thus, we would say of our hand

Instance 1'. 3 ey, ce,e3,¢4,65 1 RANK(c1,2) A SUIT{cy, eluds) A
RANK(e3,3) A SUIT(ca, diamonds) A
RANK(es, 2) A SUIT{ca, hearts) A
RANK(c4, 6} A SUIT(cy, spades) A
RANK(es, K) A SUIT(cg, hearts) = PAIR.

Now the process of gencralization merely involves dropping the SUIT condi-
tions and replacing the constant 2 by a variable z. Of course, there are many

other possible generalizations of instance 1/, and the scarch of the rule space) P |
Y
/
-
N

-
-
v
\
ytie
\

D1 Issues 369

would still be nontrivial. The advantage of using the single-representation
trick is that we have chosen a representation that allows this scarch to be
accomplished by simple syntactic processes.

The problems of interpretation and experiment planning are eased when
the single-representation trick is used. Many learning programs sidestep these
problems completely by assuming that the training instances are provided by
the environment in the same representation as used for the rule space. In
more practical situations, the interpretation and experiment-planning routines
serve to translate between the raw instances (us they are reccived [rom the
environment) and the derived instances (after they have been interpreted as
specific poinws in the rule space). v

Methods of searching the rule space. Now that we have discussed
the issue of how to represent the rule space, we can turn our attention to the
four main methods that have been used to scarch the rule space. All of these
methods maintain a set, H, of the currently most plausible rules. They differ
primarily in how they refine the set F/ so that it eventually includes the desired
points in the rule space. A useful classification of search metheds distinguishes
methods in which the prescntation of the training instances drives the search
(so-called data-driven methods) from those methods in which an a priori model
guides the search (so-called model-driven methods).

The first data-driven method is the version-space method (and several
related techniques). This approach uses the single-represcntation trick to
represent training instances as very specific points in the rule space. The
set H is initialized to contain all hypotheses consistent with the first positive
training instance. New training instances are examined one at a time and
pattern-matched against A to determine whether the hypotheses in H should
be generalized or specialized.

The second method, also a data-driven method, does not use the single-

- representation trick. [nstead, special procedures (or production rules) examine

the set of training instances ~nd decide how to refine the current set, H,
of hypotheses. The program can be viewed as having a set of Aypothesis-
refinement operators. In each cycle, it uses the data to choose one of these
operators and then applies it. Lenat’s (1976} AM system is an example of this
approach.

The third approach is model-driven generate and test. This method
repcatedly generates and tests hypolheses from the rule space against the
training instances. Model-based knowledge is used to constrain the hypothesis
generator to gencrate only plausible hypotheses. The Mcta-DENDRAL pro-
gram is the best example of this approach (see Buchanan and Mitchell, 1978).

Finally, the fourth approach is model-driven schema instantiation. It uses
a set of rule schemas to provide general constraints on the form of plausible
rules. The mcthod attempts to instantiate these schemas from the current
set of training instances. The instantiated scherna that best [its the training
instances is considered the most plausible rule. Dictterich’s SPARC program

370) ' Learning and Inductive Inference xXxv

{Dietterich, 1979; Dictterich and Michalski, in presa}, which discovers secret
tules in the card game Eleusis, applics the schema-instaatiation method.

Data-driven techniques generally have the advantage of supporting incre-
mental learning. A feature of the version space method, in particular, is
that the / set can easily be modified to account for new training instances
without any backtracking by the learning program. In contrast, model-driven
methods, which test and rcject hypotheses based on an examination of the
whole body of data, arc difficult to use in incremental learning situations.
When new training instances become available. model-driven mcthods must
either backtrack or scarch the rule space again, because the criteria by which
bypotheses were originaily tested {(or schemas instantiated) have changed.

A strength of model-driven methods, on the other hand, is that they
tend to have good noise immurity. When a set of hypotheses, /], is tested
against noisy training instances, the model-driven tncthods need not reject a
hypothesis on the basis of one or two counterexamples. Since the whole set of
training instances is available, the program can use statistical measures of how
well a proposed hypothesis accounts for the data. In data-driven methods, [f is
revised each time on the basis of the current training instance. Consequently,
a single erroucous instance can cause a large perturbation in # (from which
it may ncver recover). One approach that allows data-driven methods to
handle noise is to make very slight, conservative changes in H in response to
each training instance. This minimizes the cffect of any erroneous training
instances, but it causes the learning system to learn much more slowly.

The problem of new terms. lu some learning problems, the program
can assume that the desired rule or rules exist somewhere in the rule space.
Consequently, the secarch has a well-defined goal. In many situations, however,
there is no such guarantce, and the learning program must confront the
possibility that its representation of the rule space is inadequate nd should
be expanded. This is called the problem of new terms.

One approach to expanding the rule spacé is to add new terms to the
representation.” Conside: again the problein ot teaching a program the concept
of a pair in poker. In the section above, the program was able to represcent the
pair concept by using a predicate-calculus representation with the suit and
rank teems. Such a representation would not permit the program to discover

_the concept of a straight, however. One way to represent the straight concept

wouid be to create a new term called SUCC(z, y), which is true if and only if
z ==y + 1. Now the straight concept can be represented as:

RANK(c1, *1) A RANK(ca, ra) A RANK(c3, r3) A RANK(eq, 1) A RANK(c5, r5) A
SUCC(ry, T2} A SUCC(ra, r3) A SUCC(ry, 74} A SUCC(ry, 7).

The problem of defining new terma is quite difficult to solve. An advantage
of the hypothesis-refinement operator approach to searching the rule space is
that it is fairly easy to incorporate operators that create new terms. The

D1 - Isaues v ‘ 371

BACON (Langley, 198R) and AM progrims both have operators that create
new terms by combining and refining existing terms.

Ezperiment Planning

Once the learning element has searched the rule space and developed
a set, H, of plausible hypotheses, the programm may nced to gather more
training instances io test and refine them. When the instance space and the
rule space are reprcsented in very different wayvs, the process of determining
which training instances arc necded and how they can be obtained can be
quite involved. Suppose, for example, that a genctics learning program is
attempting to discover which portions of DNA are important. To test a high-
level hypothesis (or several hypotheses), it may be uecessary to plan a very
invelved experiment to synthesize a particular strand of DNA and insert it
into the appropriate bacterial cells to observe the resulting behavior of the
cells, o :
The AM program is an example of an Al learning program that performs
some experiment planning. After one of AM'’s refinement operatces creates
a new concept, AM must gather examples of Lhat concept to evuluate and
refine it. Scveral techniques arc used to generate good training instances,
for example, by symbolically instantiating the con.2pt definition or by inher-
iting examples from more general or more spccific concepts. AM has a spe-
cial body of heuristies for locating positive and negative boundary examples
(i.e., examples that barely succecd, or barely fail, to be instances of the con-
cept).

Tazonomy of Work in Learning from Ezamples

Now that we have described the two-space model, we present a rough
taxonomy of work in the area of learning from cxamples. Several subareas
of research have developed within this arca, ranging from philosophicaily
oriented inductive iearning to highly engincering-oriente! pattern-classification

work. These diflecrent areas can be characterized by two coinponents of the .

simple learning model presented in Article XIV.A: the representution used in
the knowledge base and the task that the jerformance elcment carries out.
In the remainder of this chapter, a separate article is devoted to each of these
subareas. .

Systems that use numerical representations. Researchers in electri-
cal engineering and systems theory have developed learning methods that
represent acquired knowledge in tlic form of polynomials and matrices. The
perfoemance clemente of these leurning systems, which are usually called adap-
tive systems, typically perform tasks such as pattern classification, adaptive
control, and adaptive filtering. The strengths of these adaptive methods are

that they can be used in noisy environments, in environments whose properties -

372 Learning and Inductive [nference xav

are chanyging rapidly, and in situations where analytic solutions based on clas-
sical systems theory Are unavailable. We inctude an article on this subject
because of its historieal relationship to Al and because ot the possibility that
useful hy brid systems may be constructed in the future.

Systems that use symbolic representations. Most Al work on learn-
ing has used symbolic representations such as feature vectors, first-order predi-
cate caleulus, and production rules to represent the knowledge acquired by the
learning efement. It is useful to clisify this work according to the complexity
of the task being performed by the learning system:

‘1. Learning stngie concepts. The simgplest performance task is to classify new
‘nstances according to whether they are instances of a sinele concept.
The problem ol lcarning single concepts hoy recetved a lou of attention
and is probably the best understood learning tusk in AL

2. Learning multinis concepts. Many performance tasks involve the use of
a set of concepts that operate independently. Disease diagnosis, for
example, i3 a task in which the program secks to assign one or rore
diseave clusses to a patient. The proble of learning a sct of concepts
has received some attention in AL The Meta-DENDRAL and AM systems,
for example, discover many coneepts in order to describe their training
instances and yuide the performance element.

3. lLearning to perform multiple-step tasks. The most complex performance
tasks for which learning techniques have been developed are relatively
simple planning tasks that requice the performance clement to apply
a sequence of operators to perform the task. Unlike the mulitiple, but
independent, concepts used in Mcta-DENDRAL and AM, the rules ia
these systems must be chained tog~ther into a scquence. Conscauently,
many dillicult problems of integration 1nd credit-assignment arise.

Rejerences

Simon and Lea (1971) describe the two-space model of rule induction.
Dietterich and Michalsk. (1981) provide some perspectives on systems that
learn from examples. See also Buchanan, Mitchell, Smith, ai:d Johnson {1977).

e e b At Sk b e+ e~

-

L i T L ‘ 2 =) M s i Kt

i

L

t

/
7f

‘D2. Learning in Control and Pattern Recognition Systems

THERE ARE many applications in engineering and science for which learning
systems have been developed. These systems, usually called adaptive systems,
are useful when classical systems techniques cannot be applied because of
insufficient knowledge about the und.rlying system. Such situntions often
arise in extremely noisy and rapidly changing environments.

Classical systems theory addresses itscif to problems in the design and
analysis of systems, where a system is viewed abstractly as an operator that
maps a vector of inputs, x, to a vector of outputs, y. Two important engineer-
ing problems for which learning systems have becen developed are control and
pattern recognition.

Consider the control problem shown in Figure D2-1. The system is an
automobile engine. The inputs—in this case, control inputs—are the amount
of gasoline and the setting of the spark-plug advance. The single output is
the speed of the engine. The control problem is to determine the settings
of the inputs over time, so that the output follows a particular curve. We
want the speed of the engine to track the desired speed as commanded by the
driver of the automobile. If we have a mathematical model of the engine—say,
as 3 set of differential equations relating z; and z3 to y—we can often solve
this control problem. To obtain the model, we can usually inspect the system
directly and apply the laws of physics. But in complex, time-varying systems,
such an approach may be impossible. Instead, it may be necessary to identify
the system—that is, construct a model by obscrving the system in operation
and finding an empirical relationship between the inputs and the outputs.

Pattern recognition—the other task for which adaptive learning is useful—
also can be vicwed as a system-identification problem. The pattern-classifi-
cation system shown in Figure D2-2 takes an input object—represented as
a vector, x, of features—and maps it into one of m pattern classes. The

s zy : Gas Flow
Desired = Automobi Actual
Speed | Controller i E‘:!gir::h}le y Speed of
y zg : Spark Advance Engine
M .
Eondge,-ln:f 1(31.32) =y

Figure D2-1. A simple control problem.

373

-

i
1

3

[}

374 Learning and Inductive Inference xv

X ‘ izer
Input Character Recognizer | y ?haracter Class
Image (person) vAB. ... 2.1.2,....9....}

‘Figure D2-2. A simple pattern-classification problem.

archetypal pattern-classification problem is optical character recognition, in
which the inputs arc images of handwritten or printed characters and the
output is a classification of cach image as one-of the letters, numerals, or
punctuation symbols. Suppose we want to build a computer system that can

recognize characters. We have available an unknown system—in this case, a .

person—that van perform the task reliably. [we can identify the system, we
will then have a comnputer model that can recognize handwritten charactera.

Figure D2-3 illustrates the gencral sctup for adaplive system identifica-
tion. The unknown system and the inodel are conligured in parallel. Their
outputs—the true output, y, and the estimated output, ¥y—are compared,
and the error, ¢, is fed back to the learning element, which then modifies the
model appropriately. In the terminology of our simple learning-systemn model,
the unknown system is the environment. It provides training instances, in the
form of (x,y) pairs, to the learning element. The learning element modifies
certain parts of the model (i.e., the knowledge basc), so that the model system
(i.e., Lhe performance clement) more accurately models the unknown system.

Coneeptually, therefore, adaptive system identification, adaptive control,
and pattern recognition are all problems of learning from examples. The

Unknown y
System

 J

£

Model /
System
L

{

Learning
Element

Figure D2-3. Adaptive system icentification.

T e et W & oL 4 ST ¢ e iy e e AT M s .
- - AT A e e

D2 . Learning in Coatrol and Pattern Recognition Systems 378

unknowan system provides the training instances and the performance stan-
dard (i.e., the true y*values). '

In this article, we discuss the methods that have been used to accomplish
this learning. We have divided the methods into four groups according to the
representations that are used to model the unknown system:

1. Statistical algorithms, which employ probability density functions to create
a Bayesian decision procedure;

2. Parameter learning, which uses a vector of parameters and a linear model;

3. Automata learning, which uses stochastic and fussy automata (discussed
below) to model the unknown system; and

4. Structural learning, which uses pattern grammars and graphs to represent
classes of objects for pattern classification.

Statistical Learning Algorithms

In pattern recognition (and sometimes in coatrol), it is possible to view
the unknown system as making a deccision to assign the input, x, to one
class, y, out of m classes. By defining a loss function that penalizes incorrect
decisions (i.e., decisions in which § differs from y), a minimum-average-loss
Bayes classifier can be uscd to model the unknown system. The problem of
identilying the unknown system then reduces to the problem of estimating a
set of parameters for certain probability density functions. These paramcters,
such as the mean vector and the variance-covariance matrix, can be estimated
from the training instances in a fairly straightforward fashion (sce Duda aad
Hart, 1973).

In the terminology of Simon and Lea (1974), the set of all possible x vec-
tors [orms the instance space, and the set of possible values lor the parameters
of the probability distributions forms the rule space. The rule space is searched
by direct calculation from the training instances. The instance space is not
actively searched.) '

Unfortunately, these methods rely on assuming a particular form (c.g.,
multivariate normal) for the probability distributions in the model. These
assumptions frequently do not hold in real-world problems. Furthermore, the

computational costs of the cstimation may be very high when there are many

features.

Parameter Learning

In parameter learning, a fixed functional form is assumed for the unknown
system. This functional form has a vector of parameters, w, that must be
determined from the training instances. Unlike the statistical mcthods, there
is little or no probabilistic interpretation for the unknown parameters and,

378 Learning and Inductive Inference XIv

conscquently, probability theory provides no guidance for estimating them

. from- the data. Instcad, some sort of criterion, usually the squared error

(v — ¥)? averaged over all training instances, is minimized. The rule space
is thus a space of possible parameter vectors, and it is searched by hill-
climbing (also called gradient descent) to find the point that minimizes the
error between the model and the unknown system.

The most popular form assumed for the unknown system is a linear

functional:
y=wx= Z wiz; .

i
The 6ubput is assumed to be a linear combination of the input feature vector,

x, with a weight vector, w. The clements of Lhe weight vector are the unknown
parameters. The rule space is thus the space of all possible weight vectors,

~known 23 the weight space.

An important special case arises when the unknown system is a binary
pattérn classification system similar to the system shown earlier in Figure
D2-2. In binary pattern classification, the classifier must indicate in which

_of the two pattern classes the input pattern, x, belongs. This is t.ypicaﬂy
accomplished by taking the output, y, of a linear functional and companng
* it to a threshold, b:

Ify > b, thcn x iy in class 1, !
Ify < b, then x is in class 2.]

Usually, the instance apace is normalized, so that the threshold 6 is zero. This
linear-discriminant function can be thought of as a hyperplane that splits the
instance space into two regions (class 1 and class 2). For example, if x:=-
{z1,z2) is a two-dimensional feature vector and w = (~1,2), the instaﬁce
space is split as shown in Figure D2-4.

" The learning problem of finding w can thus be viewed as the problem
of linding a hyperplane that scparates training instances of class 1 from
training instances in class 2. When it is possible to find such a hyperplane,
the training instances are said to be linearly separable. Often, however, the
training instances arc not linearly separable. In such cases, we must cither i:se_
a more complex functional form, such as a quadratic [unction, or else settle
for the hyperplar.e that makes the fewcst errors on the average.

" - How can the desired hyperplane, or, equivalently, the desired weight
vector, be found? We describe three basic algorithms for computing the weight
vector. The lirsl two algorithms are hill-climbing methods that process the
training instances onc at a time. Alter cach tr.umng instance, x,, the weight
vector, wy, is updated to give wy4.

The first algorithm, called the fized-increment perceptron alyorithm, seeks
to minimize the classification errors made by the model. If x, is an instance
of class 1 and § = wyx, is less than 0, instead of greater than 0, an error

-~ i

r/(

D2 Learning in Control and Pattern Recognition Systems
Class 1 A
-~ E] +
~ N *
++ >
+ <

Y

E3}

+: Instance of class 1
- : Instance of class 2

Figure D2-4. An example of a linear-discriminant function.

has been made. The magnitude of this error is e =
difference between the desired value for the output of the system (y =

0 — wixi, that i, the .
0) and

the value computed by the model (§ == wyxi). Tlus 8 usually written as the

perceptron criterion,

J, = —WiXy,

and the goal of learning is to minimize J,. The fixed-increment algorithm

updates w, whenever J, > 0 according to

Why| =2 Wi+ Xy

1)

We can think of J, as a surface over the weight space, the space of possible
values for the weight vector w (see Fig. D2-5). Mathematical analysis shows
that x can be viewed as a vector in this weight space (as well as in instance
space) pointing in the direction of steepest descent for J,. Thus, this algorithm
takes a fixcd-size step in the direction of steepest descent.

Similarly, if x, is in class 2 and wixx > 0, an error has been made. The

solutlon is to adjust w as

T Whe = Wi Xa

Equivalently, all training instances in class 2 can be replaced by their nega-
lives, and all instances can be processed as though they were in class 1.

Equation (1) can then be uscd to perform the cntire lcarning process.

The fixed-increment algorithm converges in a finite number of steps if the
training instances are linearly separable. It has becn shown for the two-class
case that the number of training instances should be at lcast twice the number

-of features in Lhe instancc space (sec Nilsson, 1965).

378 Learning and Inductive Inference xav

s
; f
: | wy

i ol

W weight space
<

Figure D2-5. A schematic diagram of the perceptron algorithm.

Historically, the fixed-increment algorithm is associated with Rosenblatt’s
(1957, 1962) perceptron, which was developed within the study of bionics and
neural mechanisms. The simplest perceptron, shown in Figure D2-8, is a
device that assigns palterns to one of two classes. [t consists of an array
of sensory units connected in a random way to an array of unmodifiable
threshold units, each of which computes some desired feature of the sensory
array and produces a +1 or —~| output, depending on whether the feature
is present or absent. The outputs of these fecature-extraction units are then
connected to a modifiable unit that weights each input and sums the result
(i.c., computes wx). The resulting value is comparcd with a threshold, and the
perceptron produces an output of +1 if wx is greater than the threshold and
=1 otherwise. Thus, the simplest perceptron implements a linear-discriminant
function. The original publication of the perceptron model sparked a large

24
o 2 -1
T or
% I3
o1 -1
Ol r
fo. 4
Nensory Fixed Adjustable
lnput.; Feature l.inear Tbreshold
Extractors Device

Figure D2-6. The simplest form of perceptron.

vl e - .
T e i =
|

D2 Learning in Control and Pattern Recognition Systems 379

amount of research, and a fair amount of speculation, concerning the potential
for building intelligent machines from perccptrons. Minsky and Papert (1969)
attempted to quiet this speculation by proving several thcorems about the
limits of perccptron-based learning. The introduction to their book provides
severa! criticisms of Al learning research that remain valid today.

The fixed-increment perceptron algorithm can be improved in several ways
by choosing how fur in the direction of the gradient to go at each step. The
LMS (lzast-mean-square) algorithm (Widrow and Hoiff, 1960), for example,
updates w according to

Wiil = Wi + peyXk,

where p is a positive value and ex i3 the magnitude of the error, that is,
~wxx,. This algorithm tends to minimize the mean-squared erroe

Io=) (wixa)?
x

even when the classes are not linearly separable. The algorithm is also very
easy to implement. ' . :

More robust, but harder to compute, algorithms are based on tradi-
tional linear-regression and linear-programming techniques (see Duda and
Hart, 1973). Given a set of training instances, linear regression can be used
to minimize J,. The weight vector is computed from the data as

w=(XTX)"'XTy,

where y is the true output of the unknown system and X is a matrix of train-
ing instances, one instance in each row. Unfortunately, this method requires
computing the pseudo-inverse (X7 X)~'X7 of X, which is an expensive step.
Less costly recursive algorithms have been developed that can compute w
incrementally as the training instances become available, rather than collect-
ing all of the instances and ccmputing w once and for all (Goodwin and Payne,
1977). :
' Linear-programming techniques can be used to minimize the perceptron
criterion, J,. These methods also conduct a hill-climbing search of the weight
spa~e. Further details are available in Duda and Hart (1973).

Some of these linear-discriminant algorithms can be modified slightly to
put them on sound statistical foundations. The regression techniques, for
example, can be adjusted to converge in the: limit to an optimum Bayes clas-
silier. Their rate of convergence is slower than the unmodified algorithms.
Consequently, the simpler, faster algorithins showrt above are often chosen in
favor of the statistically more rigorous mcthods.

All of these methods for finding discrisninant functions can be general-
ized to handle classification problems for morc than two classes. Typically,

380 , Learning and Inductive Inference XIv

a separate discrimination function is learned for each of m classes, and x is
classified to that class i for which the value of the discriminant function fi(x) -
is largest. Another approach to multiple-class problems is to perform a multi-
stage classification in which x is first classified into one of a few classes and
then each of these is in turn split into subclasses until x is properly classified.
By decomposing the classification problem into subproblems, other a priori
knowledge about different classes—and the features relevant to those classes—
can be incorporated into the system. Most large, malticategory problems do
not lend themselves to straightforward general solutions. Instead, the strue-
ture and organization of the classification strategy are usually highly depen-
dent on the particular problem and domain-specific knowledge. Coasequently,
many of these classification problems overlap problems in Al.

Learning Automata

An alternate representation for an unknown system is as a finitc-state
automaton (Fu, 1970b). The. goal is to find a finite-state automaton whose
behavior imitates that of the unknown system. Two quite similar approaches
have been pursued. One models the unknown systcm as a deterministic finite-
state machine with randomly perturbed inputs. The learning program is
given an initial state transition probability matrix, M, which tells overall for
each state, ¢;, what the probability is that the next state will be ¢;. From
M, an equivalent deterministic machine can be derived, and the probability
distribution of the input symbols can be determined. This approach requires
that the internal states of the unknown system can be precisely observed and
measured.

A second approach models the unknown system as a stochastic machine
with a random transition matrix for each possible input symbol. Rcinforce-
ment techniques are applied to adjust t! - iransition probabilities. Unfortu-
nately, this requires a large amount of training information in ocder to exercise
all possible transitions. As with the first approach, assumptions about the
observability of all internal states inust be made.

Fuz1y automata based on Zadch'’s fuzzy set concept provide an alternate,
but similar, approach to that used with stochastic automata (Wee and Fu,
1969). Set-membership criteria are applied, rather than probabilistic con-
straints, in the selection of transitions and outputs. Fuzzy automata are also
able to make higher order transitions than stochastic automata and, conse-
quently, they can usually learn faster. _

The basic ideas of automata lcarning have been cextended to take into
account Lhe interactions of a number of automata operating in the same envi-
ronment. Such automata may interact in cither cooperative or competitive
modes. This has led to the formulation and study of automata games (Fu,
1970b). '

D2 Learning in Control and Pattern Recognitioﬁ Systems 381

Automata methods have the advantage over parameter-learning methods
in that they "o not requirce that there be a performance criterion with a unique
minimum point. Furthermore, automata provide a more expressive repre-
sentation for describing the unknown system. The principal disadvantage
of automata learning methods is that they are relatively slow cenrpared to
parameter learning techniques. In addition, they are usually suitable only fo:
application in stationary (i.c., non-time-varying) environments. Consequently,
automata methods have not yet seen much practical application.

Structural Learning

Structural learning techniques have been used primarily in situations in
which the objects to be classified have impt ‘tant substructure {Fu, 1974). The
parametric linear-discriminant approaches described abeve can represent only
the global features of objects. By employing pattern graphs and grammars,
important substructures, such as the pen strokes that make up a character
and the phonemes that make up a spoken word, can be represented along with
their interrelationships. A first step in setting up a structural learning scheme
involves identifying a set of primitive structural elements associated with the
problem. These primitives may be thought of as the alphabet for describing
all possible patterns associated with the application. They nced to be higher
level objects than simple scalar measurements (e.g., characters, shapes, and
phaenemes instead of height, width, and curvature). Legal and recognizable
paLi.rus are formed from combinations of the primitives according to certain
syntactic rules. . '

Formal language theory provides a theoretical framework that accom-
modates the structural or descriptive formulation of pattern recognition. Here,
the alphabet corresponds to the set of structural primitives. A number of for-
malisms have been used to express structural descriptions. In linguistic terms,
a pattern may be thought of as a string or-sentence, and a grammar may be
associated with each pattern class. The grammar controls the structure of
the language in such a way that the sentences (patterns) produced belong
exclusively to a particular pattern class; a grammar is therefore needed for
each pattern class. Parsing techniques can help determine whether a sentence
(pattern) is grammatically correct for a given language. Both deterministic
and stochastic grammars have been employed in pattern classification. (See
Article XIM.E3 for a discussion of grammatical approaches to image under-
standing.) .

Stochastic grammars (see Article XIV.D5e) have been used in an attempt
to accommodate the possibilities of ambiguity and crror in pattern descrip-
tion. These grammars make it possible for probabilistic assignments to be
made. Before such a grammar can be used for classification, the production
probabilities must be determined, for example, by “learning” them from a set

“of training examples.

c e

382 Learning and Inductive Inference : xv

There are still several dificulties associated with the structural approach
to pattern classification. In contrast to the statistical and parameter learning
methods, very few practical structural training algorithms have presently been
proposed. The problem of learning a grammar from training instances is
called grammatical inference. Article ¥1V.D5e describes the current state of
work in that area. In addition to the problem of learning the grammar, the
steps of segmentation into primitives and formation of structural descriptions
are only partly solved.

Relevance for Artificial Intelligence

This survey of learning systems in engincering shows that many of the
problems addressed are analogous to those encountered in the design of Al
learning systems. Engineering systems are particularly adept at handling
noisy training instances—a problem that few Al systems have addressed. It
has also been possible to develop detailed analyses of these learning algo-
rithms, including convergence proofs and investigations of their statistical
foundations. '

The primary drawback of these methods is their reliance on simple feature-
vector representations. Although there are many practical applications for
which these representations suffice, most problems of interest to Al research-
ers require more expressive representations. The more recent attempts to use
automata and pattern-grammar representations are much mnore relevant to Al
research. v

Some aspects of the work in engineering may be important for Al reserrch-
ers. In addition to work on the problem of noise, some progress has heen
made on solving the problem of choosing a good set of features with which to
perform the learning process. One approach is to cstimate the discriminatory
ability of each feat.re given choices of the other features. Dynamic-program-
ming techniques can help determine a good ordering of the features (from
most relevant to least relevant). A sccond interesting approach—called dimen-
stonality reduction—is to take a large set of features and compute a new,
smaller set by forming linear combinations of the old features. The Karhunen-
Loéve expansion can be used to create such derived features {sce Fu, 1970a,

and Article XI11.C5). :

References

A very readable introduction to linear-diseriminant functions can be found
in Nilason (1965). Duda and tlart (1973) provide an excellent survey of pattern
recognition techniques. Tsypkin (1973) develops a (rrmal, unified treatment
of learning methods in engineering.

D3. Learning Single Concepts

MANY PROGRAMS have been developed that are able to learn a single concept
from training instances. This article describes the single-concept learning
problem and discusses a few, sclected learning programs that give a sense of
the techniques that have been applied to this problem.

What does it mean to learn a concept from training instances? The term
concept is used quite loosely in the Al literature. In this ariicle, we take
a concept to be a predicate, expressed in some description language, that
is TRUE when applied to a positive instance and FALSE when applied to a
negative instance of the cuncept. A concept is thus a predicate that partitions
the instance space into positive and negative subsets. For example, the concept
of straight can be thought of as a predicate that indicates, for any poker hand,
whether or not that hand is a straight.

The single-coneept learning problem is the problem of discovering such a
concept predicate from training instances—that is, from a sample of positive
and negative instances in the instance space. The standard solution to this
problem is to provide the learning program with a space of possible concept
descriptions that the learning program searches to find the desired concept
description (sce Article xav.D1).

Formally, the single-soncept lecarning problem can be stated as followa.

Gaven (1) A representation language for concepts. This implicitly
j -defines the rule space: the space of all conccpts repre-
| sentable in the language.

(2) A set of positive (and usually negative) training instances.
_ In mowt work to date, these training instances are noise (ree
{ - and classified in advance by the tcacher.

i

Find: The unique concept in the rule space that best covers all of
the positive and none of the negative instances. Most work
to date assumes that if enough instances are presented, ex-
actly one concept exists tha is consistent with the training
instances.

To gain insight into the origin of the single-concept learning problem, it
is useful to examine the performance tasks that make use of the concept once
it is learned. The standard performance task is classification; the system is
presented with new unknowns and is asked to classify them as positive or
ncgative instances of a concept. Another common task is prediction; if the
training instances are successive elements of a sequence, the system is asked to
predict future elements in the sequence. A third task is data compression; the
system is given all possible instances (the full instance space) and is asked to

383

-k

384 Learning and Inductive Inference XIV

find a concept that compactly describes them. The concept-classification and
sequence-prediction tasks both arose as laboratory paradigms within cognitive
rsychology (sce Hunt, Marin, and Stone, 1968) Sequence extrapolation is also
a paradigm example of induction as discussed by philosophers (Carnap, 1950).
Data compression is of practical value for storage and classification.

The two key assumptions made in all of this work are (a) that the train-
ing instances are all examples (or counterexamples) of a single concept and
(b) that that concept can be represented by a point in the given rule space.
When the first assumption is violated, il is necessary to lind a set of concepts
that account for the training instances. The systems described in the article
on multiple concepts (Article XIV.D4) address this probicm. When the second
assumption is violated, it i3 nccessary to alter the rule space so that it does
contain Jhe desired concept. Very little attentioa has been given to this prob-
lem in single-concept learning. The BACON program employs some simple
methods to alter the rule space by adding new terms to the rcpresentation
language (see Article XIV.D3b).

Approaches to Solving the Single-concept Learning Problem

In Article XIV.D1, we described four basic techniques—version apaces,
refinement operators, generate and test, and schema instantiation—that are
used to search the rule space. Each of these search methods has been applied
to the single-concept learning problem. The remainder of this article is divided
into four subarticles—one devoted to each method. The first two subarticles
describe data-driven methods. Mitchell’s version-space mcthod is discussed

first. It provides a useful framework for describing several related systems

developed by Hayes-Roth, Vere, and Winston. Ther two refinement-operator
systems, BACON and CLS/ID3, are presented. The second gair of subarticles
desceibes model-driven methods: a gencrate-and-test method developed by
Dietterich and Michalski (1981) and a schema-instantiation method, SPARC,
that plays the card game Eleusis.

References . e

See Mitchell (1978, 1979).

D3a. Version Space

RECENT WORK by Mitchedi {1877, 1979) provides a unified framework for
describing systems that use a data-driven, single-representation approach to
concept learning. Mitchell has 10ted that, in all representation languages, the
sentences can be placed’in a partial order according to the generality of each
sentence. Figure D3a-1 illustrates this general-to-specific ordering with a few
sentences in predicate calculus containing the predicates RED and BLACK. The
concept 3 ¢) : RED(c;), for exumple, describes the set § of all poker hands
that coatain at least one red card. This conccpt is more general than the
coneept 3 ¢ ¢g : RED(cy) A RED(cz) that describes the set T of all poker hands
containing at least two red cards, since the set S strictly contains the set T.
The set of cards described by 3 ¢jca2c3 : RED(c;) A RED(c2) A BLACK{c3)
is smaller still and, thus, is e¢ven more specific than the 3 ¢ c3 : RED(c)) A
RED(c3) concept.

It should be evident that the syntactic rules of generalization described in
Article XIV.D1 can be used to generate this partial ordering. In this example,
the dropping-conditions rule of generalization was applied to the three most
specific concepts to generate the others. In geucral, ~ny rule space can be
partially ordered according to the general-to-specific ordering.

_ The most general point in the rule space is usually the null description
(in which all conditions have been dropped), which places no coustraints
on the training instances and thus describes anything. The most specific
points in the rule space correspond to the training instances themselves—
represcnted in the same representalion language as that used for th.c rule space
(ace Fig. D3a~2).

3 ¢y : RED(e1)

3 cics : RED(e1) A RED(e3) 3 eiea : RED{c1) A BLACK({¢a)

c3 : REDIe1) A BLACK(e2) A BLACK(es)

P4 .
3 erezey : RED{er) A RED(e2) A BLACK(ca)

Figure D3a-1. A small rule space and its ge2ral-to-specific ordering.

385

386 Learniné and Inductive Inference Xiv

null description more general

A

Rule Space

Yo

less general

training instances

Mitchell has poinied out that programs can take advantage of this partial
ordering to represent -the set I of plausiblc hypotheses very compactly. A set
of points in a partially ordered set can be represented by its most general
and most specific elements. Thus, as shown in Figure D3a-3, the set IT of
plausible hypotheses can be represented by two subsets: the set of most general
elements in [T (called the G set) and the set of most specific elements in I
{called the S set). Once I has been represented in this manner, the rules of
generalization must be used to fill in the subspace between the G set and the
S sct whenever the full H set is nceded.

The Candidate-elimination Learning Algorithm

Mitchell’s learning algorithm, called the candidate-elimination algorithm,
takes advantage of the boundary-set representation for the set If of plausible

more general

.

%

more specifie

Figure D3a-3. Using the boundary sets to represent a subspace of the
: rule spare.

D3a Version Space 387

hypotheses. Mitchell defines a plzusible hypothesis as any hypothesis that has
not yet been ruled oat by the data. The set I of all plausible hypotheses is
called the version space. Thus, the version space, M, is the set of all concept
descriptions that are consistent with all of the training instances seen so far.

Initially, the version space is the complete rule space of possible concepts.
Then, as training instanccs are presented to the program, candidate concepts
are eliminated (rom the version space. When it contains only one candidate
concept, the desired concept has been found. The candidate-elimination
algorithm is a least-commitment algorithm, since it does not modify the set
I until it is forced to do so by the training information. Positive instances
force the program to generalize—thus, very specific concept descriptions are
removed from the H set. Conversely, negative instances force the program

.to specialize, so very gencral concept descriptions are removed from the H

set. The version space gradually shrinks in this manner until only the desired
concept description remains.

To see how training instances force the version space to shrink, consider
once again the problem of teaching a program the flush concept in poker.
Suppose the program has already seen the positive training instance

{(2, clubda), (5, clubs), (7, cluds), (jack, clubs), (queen, clubs)} = PLUSH.

Since the candidate-elimination algorithm is a least-commitment algorithm, it
makes the most specific possible assumption about the flush concept. Namely,
it sets up the S set to contain '

S == {SUIT{c,, clubs) A RANK(c1,2) A
SUIT(c3, clubs) A RANK(c2,5) A
SUIT(c3, clubs) A RANK(c3,7) A
SUIT(c4, clubs) A RANK(cy, jack) A
SUIT(cs, ¢lubs) A RANK(cs, queen)} .

This hypothesis is very specific indeed. It says that there is only one haand
that could possibly be a flush. At the same time, however, the candidate-
elimination algorithm makes the most general possible assumption, namely,
that every possible hand is a flush. The G sct contains the nuil description.
This means that the version space—the H set—of all plausible hypothescs
coatains §, G, and every hypothcsis in between,

Now, suppose the positive training instance\

{(3, clubs), (8, clubs), (10, clubs), (king, clubn),‘ace, clubs)} = FLUSH

is presented. The candidate-climination algorithm rcalizes that its initial
assumption for the S set was too specific—therc pre other hands that can be

— §) .) i '-gf‘.\L'M,. m‘,m;_— PR TSI S—

- > &\K N VAR ;

T e U MNha : / , ,,.«/" Lt
' ’ A A e

388 Learning and Inductive Inference xIv

flushes. Thus, it is forced to generalize S to contain, amonyg other hypothm..
the rule) '

S = (SulT{c,, clubs) A SUIT(cy, clubs) A SUIT(cy, cluds) A
SUIT{cy, clubs) A SUIT(cs, clubs)}.

The G set does not change. Suppose, however, that a negative training
instance

{(3, spades), (8, clubs), (10, clubs), (king, clubs), (ace, cluba)} = -FLUSH -

is presented. This forces the candidate-climination algorithm to realize that
its assumoption for the G set, that any hand could be a flush, was vrong. It
must specialize the G set in some way, so that it does not wrougly classify

this hand as a flush. .
In full detail, the candidate-elimination algorithm procceds as follows:

Step 1. Initialize /1 to be the whole space. Thus, the G set contains only
the null description, and the § set contains all of the most specific
concepts in the space. (In practice, this is not actually done due to
the huge size of S. Instead, the S5 set is initialized to contain oaly
the first pusitive example. Conceptually, however, H starts ~ut as
the whole space.)

Step 2. Accept a new training instance. [f the instance is a positive exam-
ple, fiest remove from G ail concepts that do not cover the new
example. Then update S to contain all of the maximally specific
common generalizations of the new instance and the previous cle-
ments in S. In other words, generalize the clements in S as little as
possible, so that they will cover this ncw positive example. This is
called the Update-S routine.

If the instance is a negative example, first remove from S all con-
cepts that cover this counterexample. Then update the G set to
contain all of the maximally general, common specializations of
the new instance and the previous elements in G. In other words,
specialize the clements in G as little as possible so that they will
not cover this new negative example. This is called the Update-G
routine.

Step 3. Repeat step 2 until G == § and this is a singleton set. When this
oceurs, /1 has collapsed to include only a siugle concept.
Step 4. Output I7 (i.c., cither G or §).

tlere is an example of a complete run of the candidate-climination algo-
rithm. Suppose we have the following feature-vector representation language:
The instance spacce is a set of objects, cach object having two features— size
and shape. The sizc of an object can be small or large, and the shape of an

R T TV R SN

D3a . Version Space 389

(xy)

// ’}7‘ K\

) < (18- V) (x sguare) (x_cirels) (x triangle)

eircle) {Ig. cirele) (sin. &hngl:)‘(fki' ngle)

Figure D3a~4. The initial version space and the general-to-specific
partial order.

object can be circle, square, or triangle. Figure D3a—4 shows the entire rule
space [or this representation language.

Each point in the rule space specifies either a variable or a value for both
of the features. If a featurc is specified by a variable, then any value of that
feature can be applied.

Suppose we want to teach the program the concept of a circle. This is

. represented as (x circle) where z represents any size. First we initialize the
H set. to be the entire rule space. This means that the G set is

G ={x »},
representing the most general possible concept, and the S set is

S = {(emall square) (large square) (small circle) (large circle)
(small triangle) (large triangle)}.

Now we present the first training instance: a positive example of the

concept, a small circle. The Update-S algorithm is applied in step 2 to yield:

G={xyn}

§ == {(small circle)}.
Figure D3a-5 shows the resulting version space. Solid lines connect con-
cepts that are still in the version space. In practical implementations of the
candidate-elimnination algorithm, the version space is usually initialized at this
point rather than cxplicitly listing the entire instance space as in the step T
above.

The second training instance is (large triangle) —a ncgative example of
the concept. This lorecs the G sct to be specialized. Update-G is applied to
produce

G = {(x circle) (small y)}
S = {(small circle)}.
Figure D3a-8 shows the resulting version space.

360 -Learning and Inductive Inference - xav

{x¥)
(sm. y) (Ig. y) (x square) (x_elrele) (x triangle)

(sm. square) (Ig. square) (sm. elrele) (1g. circle) (sm. triangle) (Ig. triangle)

Figure D3a~-5. The version space after the first training instance.

Notice how the (x y) -lescription was specialized in two distinct ways, so
that it no longer covered the negative example (large triangle). A third
possible specialization (x square) is not considered, since it was removed
from thc version space during the previous training instance. Of course,
further specializations such as (small circle) are not considered because the
Update-G algorithm specializes as little as possible.

In this case, the G set grew larger as a result of the specialization. The
Update-G and Update-S algorithms often expand the size of the G and §
scts. It is the size of thesc sets that limits the practical application of this
algorithm. .

Finally, we present the algorithm with another positive example: (large
circle). Update-S first prunes G to eliminate (small y), since it does nct
cover (large circle). Then § is generalized. as necessary:

‘G = ((z circle)}
§ = {(z circle) }.
Since G = §, the algorithm halts and prints (z cirele) as the concept.

It is possible to give intuitive interpretations of the G and S sets. The
set S is the set of sufficient conditions for a new example to be an instance

(x)
(sm. y) (Jg. y) (x square) (x_cirele) (x tfiangle)

(sm. s«iuare) (lg. square) (sm. eirele) (1g. circle) (sm. trinngle) (Ig. triangte)

Figure D3a~-8. The version space after two training instances.

i VU

D3a _ » Version Space . 391

of the concept. Thus, aftcr the second training instance, we know that if
the new example is a’(small circle), it is an instance of the concept; (small
eircle) is a suflicient condition for positive classification. The set G is the set
of necessary conditions. Aller the second training instance, we know that an

object either must be a circle or must be small in order to be an instance of the

concept. Neither of these conditions is sufficient. The algorithm terminates
when the necessary conditions are equal Lo the sufficient conditions—that is,
the algorithm has found a necessary and sufficient condilion.

It is important to note that the candidate-elimination algorithm. conducts
an exhaustive, breadth-first seacch of the given rule space, guided only by
the training instances. This makes the algorithm infeasibly slow for large rule
spaces. The efficicney of the algorithm can be improved (at the cost of possibly
failing to find the desired concept) by employing heuristics to prune the § and
G sets. We postpone further discussion of the strengths and weaknesses of
the candidate-climination algorithm until after we have discusscd the related
methods developed by Hayes-Roth, Vere, and Winston. '

Methods Related to the Version-space Approach

Two learning methods similar to the Update-S procedure of the version-
space algorithm were developed prior to it. One method, termed interference
matching, was developed by Iayes-Roth and MceDermott (1977, 1978). The
other method, the mazimal unifying generalization method, was developed by
Vere (1975, 1978). These methods can both be viewed as implementations
of the Update-S procecure with respect to slightly different rcpresentation
languages in that they learn from positive training instances only.

Interterence matching was developed to discover concepts expressed in
Hayes-Roth's Parameterized Structural Repeesentation (PSR), which is roughly
equivalent to an existentially quantificd conjunctive statcment in predicate
calculus. Rceall that Update-S seeks to generalize the deseriptions in §
as little as poasible in order to cover each new positive training instance.
When the descriptions are represented as predicate calculus expressions, this
is equivalent to finding the largest common subexpressions, because the largest
common subexpression is that subexpression for which the fewest conjunctive

conditions need to be dropped. As an example, supposc that the set § contains

- the description
S = {BLOCK(z) A BLOCK({y) A demncm(z) A ONTOP(z, ¥} A SQUARE(y)}
and the next positive teaining instance ([,) is
I, = BLOCK(w) A BLOCK(v) A SQUARE(w) A ONTOP(w, v) # RECTANGLE(v).
Update-S will produce the following common subexpressions:
§' = {s,32},

392 Learning and Inductive lnference h xv

where 3; = TLOCK(a) A BLOCK(b) A SQUARE(a) A RBCTANGLE(IJ), and 83 =
BLOCK(c) A BLOCK(d) A ONTOP(c, d).

The s; description corresponds to the hypothesis that the ONTOP rela-
tion is irrelevant to the concept. The s; description, on the other hand,
corresponds to the hypothesis that the shapes of the objects involved are
irrelevant. Notice that there is no consistent way to match I, te § that
prescrves a one-to-one correspondence of the variables z and y with » and v;
either the rectangle and square predicates conllict (e.g., when z is matched
with w) or eise the urder of the arguments to ONTOP conflict (e.g., when z is
matched to v).

The interference-matching algorithm starts out as 2 breadth-first search
of all possible matchings of one PSR with another. The search proceeds by
“growing” common subexpressions until a space limit is reached. Unpromising
matches are then pruned with a heuristic utility function, and the growing
process continues in a.more depth-first fashion. The utility of a partial match
is cqual to the nuinber of predicates matched less the number of variables
matched. If the space limit is approximately the same as the largest com-
mon subexpression, the algorithm becomes truly depth-first, since only one
subexpression “fits” within the space limit. Thus, the interference-matching
algorithm tends to find one good common subexpression rather than finding
all maximal common subexpressions (as in the Update-S algorithm).

Vere's algorithm for finding the maximal unilying generalization of two
first-ord~~ predicate-calculus descriptions is very similar to the interference
matching algorithm. The representation language used by Vere, however,
permits.a many-to-one binding of paramcters during the matching process
{Vere, 1975). Vere's method aiso conducts a breadth-first search of possible
matchings but does not do any pruning of this search.

Winston’s Work on Learning Structural Descriptions from Ezamples

Winston's (1970) influential work on structural learning served as a precur-
sor to the other learning methods described above. The method has the
same basic data-driven approach as in the version-space and related algo-
rithms: Training instances are accepted one at a time and matched against
the concept descriptions in the set /{. Unlike those breadth-ficst algorithms
(e.g., Update-S and Update-G), however, Winston's system conducts a depth- -
first search ofithe concept space. Instead of maintaining a set of plausible
hypotheses, Winston’s program uses the training instances to update a .n'ngle
current conccpﬁ description. This description contains all of Lho progrnm 's
knowledge about the concept Leing icarned.

The task of the program is to learn concept descriptions that charae-
terize simple toy-block constructions. The toy-block asscinblies are initially
prescnted to the tomputer as line drawings. A knowledge-based interpretation
program converts these line drawings into a semantic-network description.

D3a Version Space 323

Winston also ‘uses this semantic-network representation to describe the cur-
rent concept and some background knowledge about toy blocks.

Figure D3a-7 shows a line drawing of an arch and the corresponding
semantic netwotk. The network is roughly vquivalent to the predicate-calculus
expression

ONE-PART-IS(areh, a) A\ ONE-PART-iS(areh, b) A

ONE-PART-IS(arch, ¢) A HAS-PROPERTY-OF(a, lying) A
A-KIND-OF(a, object) A MUST-BE-SUPPORTED-BY(a, b) A
MUST-BE-SUPPORTED-BY(a, ¢} A MUST-NOT-ABUT(b, c) A
MUST-NOT-ABUT(c, b) A LEFT-OF(b, ¢) A RIGUT-OF(c, b) A
HAS-PROPERTY-OF{b, stunding) A 11AS-PROFERTY-OF(c, standing) A
A-KIND-OF(b, brick) A A-KIND-OF(c, brick),

aloag with statements of blocks-world knowledge such as

A-KIND-OF(brick, object)
A-KIN D—OF(atandinq, property)

and statements relating differenv predicates in the .eprescntation language,
such as

OPPOSITES(MUST-ABUT, MUST-NOT-ABUT)
MUST-FORM-OF(IS-SUPFORTED-BY, MUST-BE-SUPPORTED-~BY).

A distinctive aspect of Winston's concept representation is that it allows
necessary conditions to be represented explicitly. For example, the condition
that in an arch the posts must not touch can be ditectly represented by a
MUST-NOT-ABUT link. This allows Winston's program to express necessary
and sufficient conditions in one combined network structure.

Wiaston's learning algorithm works as follows:

Step 1. Initialize the current concept description, H, to be the network
corresponding to the first positive training instance.

" Step 2. Accept a new line drawing and couvert it into a semantic-network
representation. '

" Step 3. Match the training instance with I (using a graph-matching algo-
rithm) to obtain the common skelcton. The skeleton is a maximal
common subgraph of the two graphs. Annotate the skealcton by
attaching comments indicating Lthose nodes and links that did not
match.

Step 4. Use the annotated skcleton to decide how to modily the current
concept description H.

394

Learning and Inductive Inference

= ARCH

&
-

O-PRetein

mmt=lus
supported-by

_Figure D3a-7. A training instance and its internal representation.

- 7 S I \

D3a : ' Version Space 393

It the new instance is a positive example of the concept, then
generalis: H as necessary. The algorithm gencralizes either by
dropping nodes and links or by replacing one node {e.g., cube) by a
more general node (e.g., brick). In some cases, the algorithm must
choose between these two generalization techniques. The prcgram
chooses the less drastic method (node replacement) and places the
other choice on a backtrack list.

If the new instance is a negative cxample of the concept, a necessary
condition. (represented by a must-link) is added to H. If there are
several dillcrences between the negative training instance and H,
the algorithm applies some ad hoc rules to choose one difference
to “blame” for causing the instance to be a ncgative instance.
This dillerence is converted into a necessary condition. The other
differences are ignored.

Repeat steps 2, 3, and 4 until the teacher halts the program.

Since the algorithm searches in depth-first fashion, it is possible for con-
tradictions to arise in step 4. For example, after seeing a negative training
instance such as shown in Figure D3a-8, the algorithm might assume in step 4
that the r-ason this is not an arch is the triangular lintel rather than the fact
that the posts are touching. Subsequently, when the program sees the positive
instance shown in Figure D3a-9, a contradiction arises. When this happens,
the system backtracks to the last point at which a choice was made, and the
algorithm makes a new choice. .

This lcarning algorithm is somewhat weak and ad hoc, since it does not
concern itself cither with the possibility that the training instance matches
H in multiple ways or with the problem that there are multiple ways of
generalizing or specializing H. Winston makes two important assumptions
that allow this algorithm to ignore these problems. First, it is assumed
that the training inslances are presented in good pedagogical order, so that
contradictions and choice-points are unlikely to arise; the teacher is assumed
to have chosen the examples so as to vary only one aspect of the concept in
each example. The second assumption is that the negative teaining instances

=~ ARCI

Figure D3a-8. A near-miss negative example of an ARCH.

398 Learning and Inductive Inference xXv

-

- ARCH

Figure D3a-9. A positive example of an AKCIL.

are all near misses, that. is, instances tha: - :st harely fail to be examples of
the concept in question. These two assumpions permit the fearning system
to perform fairly well in the domain of toy-block concepts.

Weaknesses of the Version-space Approach (and Related Approaches)

There arc several weaknesses in these methods that limit their practi-
cal application. This section discusses these problems and examines some
proposcd solutions.

Noisy training instances. A<« with all data-driven algorithms, these
methods have dilliculty with noisy training instances. Since these algorithms
seek to find a concept description that is consistent with all of the train-
ing instances, any single bad instance (i.e., a falsc positive or {alse negative
instance) can have a big effect. When the candidate climination algorithm is
given a false positive instance, for example, the § sct becomes overly general-
ized. Similarly, a false negative instance causes the G set to become overly
specialized. Eventually, noisy training instances can lead to a situation in
which there are no concept descriptions that are consistent with all of the
training instances. In swch rases, the G set “passes” the S set, and the ver-
sion space of consistent concept descriptions becomes empty. The methods
of Hayes-Roth, Vere, and Winston »'s0 overgenecralize in the presence of false

" posilive training instances. -
~In order to learn in the pr:sence of noise, it is nccessary to relax the
condition that the concept desc..ptions be consistent with all of the training
instanca. One solution, proposed by Mitchell (1978), is to maintain several §
and (7 < s of varying consistency. The set Sy, for example, is consistent with
all of the positive examples, and the sel S is consistent with all but one of
the positive examples. In general, each deseriplion in the set S; is consistent
with all but i of the positive training instances. Similarly, cach description
in the set (G, is consistent with all but ¢ of the negative training instances.
Figure D3a-10 gives a schematic diagram of these scts. Mitchell provides a
fairly elficient algorithm for updating these multiple boundary sets.

D3a _ Version Space 397

inore general

T

Y

more speeific

Figure D3a-10. The muitiplc-boundary set techaique.

When Gy crosses Sy, the algorithm can conclude that no concept in the
rule space is consistent with all of the training-instances. The algorithm can
recover and try to find a concept thatb is consistent with all but one of the
training instances. If that fails, it can look for a concept consistent with
all but two instances, and so forth. This approach to crror recovery works
for learning problems. containing a few erroneous training instances, but it
requires a large amount of memory to store all of the § and G boundary sets.

Disjunctive concepts. A second, important weakness of these data-
driven algorithms is their inability to discover disjunctive concepts. Maay
concepts have a disjunctive form. For instance, an uncle is either the brother
of a parent or the spouse of a sister of a parent:

UNCLE(z) = BROTIER(PARENT(z)) V
UNCLE(z) = SPOUSE(SISTER{PARENT(z))).

Parent itsell might be expressed disjunctively as PARENT(z) == FATHER(z) V
PARENT(z) == MOTHER(z). However, if disjunctions of arbitrary length are
permitted in the representation language, the data-driven algorithins described
above never gencralize. In the candidate-elimination algorithm, for example,
the S sct will aiways contain a single disjunction of all of the positive teain-
ing instances scen so far. This is because the least generalization of a new
training instance and the currcat S sct is simply the disjunction of the new
instance with the § set. Similarly, the G set will contain the disjunction of
the negation of each of the negative training instances. Unlimited disjunction
ailows the partially ordered rule space to become infinitely “branchy.”

It

398 Learning and Inductive luference Xxav

The basic diliculty is that all of these algorithing are least-commitment
algorithms that generalize only when they arce forced to. Disjunction provides
a way of avaiding any generalization at all —so the algorithms are never forced
to generalize. In ordar to develop a useful technique {o. learning disjunctive
concepts, some method must be found for controlling the introduction of
disjunctions. The learning algorithms must be guided toward generalizing in
certain ways to exclude the trivial disjunction.

One solution (proposed in different forms by Michalski, 1769, and by
Mitchell, 1978) is to employ a representation language that does not contain
a disjunction operator and to perform repeated candidate-elimination runs
to find several conjunctive descriptions that together cover all of the train-
ing instances. We repeatedly find a conjunctive concept description that is
consistent with some of the positive training instances and all of the nega-
tive training instances. The positive instances that have been accounted for
are rerioved from further consideration, and the process 13 repeated uatil all
positive instances have been covered:

Step 1. Initialize the S set to contain one positive training instance. G is
initialized to the null description—the most general concept.

Step 2. For cach negative tiaining instance, apply the Update-G algorithm

to G.

Step 3. Choose a description g from G as one conjunction for the solution
set. Since Update-G has been applied using all of the ncgative
instances, ¢ covers no negative instances. ilowever, g may cover
scveral of the positive instances. Remove from further considera-
tion all positive training instances that are more specific than g.

Step 4. Repeat steps | through 3 until all positive training instances are
covered.’

This process builds a disjunclion of descriptions that covers all 6f the data.
[t tends to find a disjunction coantaining only a few conjunctive terms,
Figure D3a-11 is a schematic diaigram of how this process works.

The point 3y is the first positive training instance selected in step 1. After
all of the negative instances have been processed with Update-G, g, is selected
from the & set in step 3. Notice that g, covers several posilive instances in
addition to 1y, but that not all positive instances are yot covered. The point 9
is then chosen and g2 is developed. Similariy, 31 is chosen and g3 is developed.
As the figure shows, the conjunctive concepts, g;, necd not be disjoint. Also,
the set of concepts g, that is obtained by this procedure varies depending on
the order in which the positive training instances are selected in step 1.

An algorithm very similar to this, called the A7 algorithm, was developed
by Michalski (1969, 1973) for use with an extended propositional caleulus
an additional hcuristic in

¢

representation. The A7 algorithm makes use o

Dia - ' Version Space ' 399
Instance Space

+: Positive Instance
—: ivegative [nstance

Figure D3a-11. Schematic diagram of an iterative version-space algorithm
for finding disjunctive concepts.

step 1. It selccts as a “seed” positive training instance one that has not
been covered by any description in any previous G set. This has the effect

of choosing training instances that are “far apast” in the instance space. -

Larson (1977) elaborated A7 to apply it to an extended predicate-calcu'us
representation. '

The effect of this iterative version-space approz:h is to find a description
with virtually the fewest number of disjunctive terms. Finding such a descrip-
tion is not always desirable. Programs searching for symmetrical descriptions,
for example, may hypothesize a disjunctive term for which there is, as yct, no
evidence. Consider how a program would learn tha direction of wind rotation
about a weather zystem. After seeing the following two training instances

Instance 1. [IEMISPHERE = north A PRESSURE = Aigh

= ROTATION = clockwise

Instance 2. HEMISPIERE = south A PRESSURE = high
= ROTATION a= counterci-- ' se,

the program might hypothesize that

HEMISPHERE = north A PRESSURE == high v/
HEMISPHERE == south \ PRESSURE = low
= ROTATION = clockwise ,

even though the simplest hypothesis would be
HEMISPHERE == north = ROTATION == clockwise.

The problem of learning disjunctive concepts is still largely unexamined
by Al researchers. ’

e el

400 Learning and Inductive Inference
Rz/erencé:

.

Mitchell (1977, 1979) provides good descriptions of the version-space ap-
proach. Hayes-Roth and McDérmott (1978), Vere (1975), and Winston (1970)

present detailed descriptions of their methods. See Dietterich and Michalski
(1981) for a critical comparison of these methods.

ks iz st S sl - " Y
. N \ j v
N - . . - L
R N - N N vy
vy . ~ LI
« - ~. - I .
. ~ ’ Ta~E
v X
PR

)
e

et
e

D3b. Data-driven Rule-space Operators

THE SECOND FAMILY of data-driven methods does not employ partial match-
ing to search the rule space. Instead, these mcthods develop a set of hypothcses
in a rule space that is separate from the instance space (i.e., the single
representation trick is not used). The hypotheses are modified by refinement
operators, which cre selected by heuristics that inspect the training instances.
The following is a general outline of these operator-based algorithms:

Step 1. Gather some training instances.

Step 2. Analyze the instances to decide which rule-space operator to apply.

Step 3. Apply the operator to make some change in the current set, H, of
hypotheses.

Repeat steps 1 through 3 until satisfactory hypotheses are obtained.

In this article, two systems are described that use this technique: BACON and
CLS.

BACON

BACON is a set of concept-lcarning programs developed by Pat Langley

(1977, 1980). These programs solve a varietly of single-concept learning tasks,
including “rediscovering” such classical scientific laws as Ohm'’s law, Newton's
la'w of universal gravitation, and Kepler's law. The programs are also capable
of using the learned concepts to predict future training instances.

The idea underlying BACON is simple: The program repeatedly exam-
ines the data and applies its refinement operators to creatc new terms. This
coniinues until it finds that one of these terms is always constant. A single
concept is thus represcnted in the form term = constant value.

BACOv uses a feature-vector representation to describe each training
instance. A distinguishing aspect is that the features may take on continuous
real values as well as discrete symbolic or numesic values. For example,
suppose we want BACON to discover Kepler's law: Tle period of a planct’s
revolution around the sun, p, is related to its distance from the sun, d, as
d*/p® = k, for some constant k. First, BACON is supplied with trmmng
instances of the form:.

Features
Instenes Planet P d
I Mercury 1 1
Iy Venus 8 4
I Earth 27 9
401
R e L LA e b v Sseiniin S
~ »’)'/ ol \:\ ~
SN N :
\ . ,'\'? , .

402 Learning and Inductive Inflerence xv

BACON s told that p and d are dependent on the value of the planet
variable. Once BACON has gathered a few training instances, it examines
them to see if any of its rule-space operators are triggered. In this case, since
p and d arc both increasing and are not linearly related, an operator that
creates the new term d/p is triggered. This rule-space operator is executed,
and the training instances arc reformulated to give: '

Features
Instance Planet P d dfp
L Mercury 1 1 1.0
Iy Venus 8 4 5
I Earth 27 9 33

Again, BACON checks to see il any of its rule-space operators are trig-
gered. This time, the product operator is exccuted to create the term (d/p)d,
since d and d/p are varying inversely. The data are reformulated to give:

Features |
Instance Planet) d dip |d*/p
L Mercury 1 1 1.0 - i 1.0
I ~ Venus 8 4 .5 | 2.0
I Earth 27 9 33 30

On the third itcration, BACON again checks to see if ..nyf operators apply.
The product operator is again triggerzd to create the term Kd/ p)4*/p). The
data are reformulated to give:

|
!
Features :

Instance - Planet P d., dfp dz/p‘i' d3/p?
Iy Mercury 1 1 1.0 1.0 | 1.0
I Venus 8 4 5 200 1.0
I Earth 279 33 30, 1.0

BACON examines these data, and its constaney opcratér is triggered to

create the hypothesis that the d®/p? term is constant. BACON then gathers

more data to test this hypothesis before it halts.

BACON's Rule-space Operators

The various BACON programs have different rule-space operators. lSach
operator is stored as a production rule, of which the left-hand side performs
extensive tests to search for possiblc patterns in the data and the right-hand
side creates the new terms. lere is a brief survey of the operators implemented
in the BACON.1 program:

~N
(l
R

l'f/'r_' X

"D3b ' Data-driven Rule-space Operators - . 403

1. Constancy detection. This operator is triggered when some dependent
variable takes on the same value, v, at least two times. It crcates the
hypothesis that this variable is always constant with value v.

2. Specialization. This operator is triggered when a previously created
hypothesis is contradicted by the data. It specializes the hypothesis by
’ adding a conjunctive condition.

3. Slope and intercept term creation. This operétor detects that two variables
are varying together linearly and creates new terms for the slope and
intercept of this linear relation. .

4. Product ereation. This operator detects that two variables are varying
inversely without a constant slope. It creates a new term that is the *
product of the two variables. ‘

5. Quotient creation. This operator detects that two variables are vary-
ing monotonically {increasing or decreasing) without constant siope. It
creates a new term that is the quotient of the two variables.

6. Modulo-n term creation. This operator notices that one variable, vy, takes
on a constant value whenever an independent vaciable, vs, has a certain
value modulo n. The new term v;-modulo-n is created. Only small values
of n are considered.

Eztensions to BACON

BACON.2 is an extended version of BACON.1 that includes two additional
operators for detecting recurring scquences and for creating polynomial terms
by calculating repecated differences. BACON.2 can solve a larger class of
sequence extrapolation tasks as a result. '

BACON.3 is another extension of BACON.1 that uses hypotheses proposed
by the constancy-detection operators to reformnulate the training instances.
For BACON.3 to discover the ideal gas law (PV/NT is equal to a constant),
for example, it is given the following training instances:

Features
Instance v P . T N
I .0083200 300,000 300 1
e el 0062400 400,000 300 1 S
I .0049920 500,000 300 1
L .0085973 300,000 310 1
Is .0064480 400,000 310 1
I .0051584 500,000 310 1
) .0088747 300,000 320 1
Iy .0086560 400,000 320 1
Iy .0053248 500,000 320 1

104 Learning and Inductive Inference v
Features
Instance | 4 P T N
Ins 0266240 300,000 320 3
Iz .0199680 400,000 320 3
Iy 0159740 500,000 320 3

By applying the product-crcation operator followed by the constancy-
detection operator, BACON develops thc hypothesis that PV is constant for
particular values of NV and T. This hypothesis, which BACON must rediscover
for each particular value of N and T, is used to recast the data to give the
following derived training instances:

Features

Instance PV T N
4 2,496 300 1
5 2,579.1999 310 1
I, 2,662.3999 320 1
A 4,991.9999 300 2
1'5 5,158.3999 310 2
% 5,324.7999 320 2
% 7,488 300 3
A 7,737.5999 310 3
v 7,987.2 320 3

Each of these derived instances results from collapsing three of the original
training instances. Thus, I is derived by noticing that PV takes on the
constant valuc 2,496 in /[y, [3, and I;. By applying the slope-intercept operator
to these derived instances, BACON develops the hypothesis that PV/T is
constant for particular values of N. It uses this hypothesis to recast the
training instancey into the following form:

Features
Instanee PV/T N
I 8.32 1
b4 16.64 2
r 2495 3

By applying the slope-intereept operator to these doubly derived instances,
BACON devclops the hypothesis that PV/NT is constant and, thus, posits the
ideal gas law. o

P o 2 U
- e

D3b Data-driven Rule-space Operators 405

BACON'’s Rule Space

What is the rule space that BACON is searching? BACON expresses
hypotheses as feature vectors, some of whose values are omitted (i.e., turned
to variables). For example, Kepler’s law is expressed as

Features: Planet p d dfp d*/p d%/p?
Values: - - - - - 10

Thus, the rule space is the space of such feature veztors whose features are
any terms that BACON can create with its operators.

BACON conducts a sort of depth-first search through this space. The

conditions under which the operators are triggered are quite specialized. The
constancy-detection operator, for cxample, only checks the values of the
most recently crezted dependent variable against the most recently varied
indcpendent variable. Most of the other operators are invoked under similarly
constrained conditions.

Strengths and Weaknesses of BACON

BACON's primary strength is its ability to discover simple laws relating
real-valued variables. Also of interest is BACON's use of rule-space operators
to create new terms as combinations of existing terms. Further, the BACON.3
strategy of reformulating the training instances when partial regularities are
discovered may be important for future learning programs. Simon (1979) has
discussed BACON as a model of data-driven theory formation in science.

There are some dilliculties with the present BACON programs, however.
First, the fact that the operators are cvoked only under highly specialized
conditions causes the program to be sensitive to the order of the variables and
to the particular values chosen for the training instances. For some sets of
training instaaces, for example, BACON is unable to discover Ohm’s law (see
Langley, 1980, p. 104). It is necessary to adjust the order of the variables and
the particular training instances to get BACON to discover concepts efliciently.
For example, when BACON is discovering the pendulum law, 40% more time
is required if the vaciables are poorly ordered. Similarly, it cannot handle
irrelevant variables well.

Second, BACON is unakle to handle noisy training instances. The trig-
gering of the constancy detectors, for example, is based on the near cquality
of the values secn in as few as two training instances. Such calculations are
highly sensitive Lo noise. The slope detectors are similarly sensitive.

Third, BACGON can haadle only relatively simple concept-formation Lasks
involving nonnumeric variables. The program cannot, {or example, discover
concepts that involve internal disjunction (such as the concept of a red or
green cube). It is also unable to discover the simple concept underlying the

..\\‘ .) e
N .

- e T R

408 Learning and Inductive Inference xav

letter sequence ABTCDSEFR ... and similar sequences appearing in Kotovsky
and Simon (1973).

In summary, BACON is interesting primarily for its use of rule-space
operators to create product, quotient, slope, and intercept terms and for its
ability to recast the training instances on the basis of developed hypotheses.

CLS/ID3

CLS (Concept Learning System) is a learning algorithm devised by Earl
Hunt (see Hunt, Marin, and Stone, 1966). It is intended to solve single-
concept learning tasks and uses the learned concepts to classily new instances.
A more recent version of the CLS algorithm, ID3, was developed by Ross
Quinlan (1979, in press). In this article, we discuss the ID3 algorithm aad its
application to data compression and concept formation.

Like BACON, ID3 uses a feature-vector representation to describe the
training instances. The fcatures must each have only a small number of pos-
sible discrete values. Concepts are 1epresented as decision trees. For example,
if the features of size {small, large}, shape (circle, square, and triangle), and
color (red, blue) are used to represent the training instances, the concept of a
red circle (of any size) could be represented as the tree shown in Figure D3b-1.

An instance is classified by starting at the root of the tree and making
tests and following branches until a node is arrived at that indicates the class
as YES or NO (see Article X1.D). For example, the instance (large, circle, blue)
is classificd as follows. Starting with the root node (shape), we follow the
circle branch to the color node. From the color node we take the blue branch
to a NO node indicating that this instance is not an instance of the concept
of a red circle.

Decision trees are inherently disjunctive, since each branch leaving a deci-
sion node corresponds to a scparate disjunctive case. The trec in Figure D3b-1,

NO

Figu‘re D3b-1. Decision tree for the concept of a red cirele.

D3b Dgt&driven Rule-space Operators 107

for example, is equivalent to the predicate calculus expression:
~SHAPE(z, triangle) V ~SHAPE(z, square) V
SHAPE(Z, cirele) A [COLOR(z, red) V ~COLOR(z, blue)] .

Consequently, decision trees can be used to represent disjunctive concepts
such as large circle or smail square (see Fig. D3b-2).

A drawback of decision trees is that there are many possible trees cor-
responding to any single concept. This lack of a unique concept representation
makes it difficult to check that two decision trees are equivalent.

The CLS Learning Algorithm (as Used in IDS)

The CLS algorithm starts with an empty decision tree and gradually
refines it, by adding decision nodes, until the tree correctly classifies all of the
training instances. The algorithm operates over a set of training instances, C,
as follows:

.

Step 1. IF all instances in C are positive, then create a YES node and halt.
If all instances in C are negative, create a NO node and halt.
‘Otherwise, sclect {using some heuristic criterion) a feature, F, with
values vy, ..., v and create the decision node:

Step 2. Partition the training instances in C into subsets Cy,Cy, ..., Ca
according to the values of V.

Step 3. Apply the algorithm recursively to each of the sets C;.

YES ~ NO NO YES

Figure D3b-2. Decision trce for a disjunctive concept.

408 Learning and Inductive Inference xav

The criterion used in step 1 by [D3 is to choose the feature that best dis-

criminates between positive and negative instances. Hunt et al. (1968) describe

" several methods for estimating which feature is the most discriminatory.

Quinlan chcoses the feature that leads to the greatesi reduction in the esti-
mated entropy of informatioa of the training instances in C. The exact crite-
rion is to choose the feature F (with values vy, va, ..., v,) that minimizes

v Ve
i () - v (7))
Z[' vi+ve/) ! Vi+v;
where V' is the number of positive instances in C with F = v;, and V[is
the number of negative instances in C with F = v;. _

This CLS algorithm can be viewed as a refinement-operator algorithm
with only one operator:

Specialise the current hypothesis by adding a new condition (a new
decision node).

The CLS algorithm repeatedly examines the data during step 1 to decide
which new c>ndition should be added. The final decision tree developed by
CLS is a generalization of the training instances, because in most cases not
all features present in the training instances nced to be tested in the tree.
Thus, CLS begins with a very general hypothesis and gradually specializes it,
by adding couditions, until a consistent tree is found.

The ID$ Learning Algorithm

The CLS algorithm requires that all of the training instances be available
on a random-access basis during step 1. This places a practical limit on the siza
of the learning problems that it can solve. The ID3 algorithm (Quinlan, 1979,
in press) is an exteusion to CLS designed to solve extremely large concept-
learning problems. It uses an active experiment-planning approach to select
a good subaet of the training instances and requires only scquential access to
the whole set of training instances. llerc is an outline of the ID3 algorithm:

Step 1. Select a random subset of size W of the whole set of training
instances (W is called the window size, and the subset is called the
window).

Step 2. Use the CLS algorithm to form a rule to explain the current window,

Step 3. Scan through all of the training instances serially to find exceptions
to the current rule. '

Step 4. Form a new window by combining some of the training instances
from the current window with some of the exceptions obtained in
step 3.

Repeat steps 2 through 4 until there arc no exceptions to the rule.

D3b .Data-driven Rule-space Operators 409

Quinlan has cxperimented with two differcnt strategies for building the
new window in step 4. One strategy is to retain all of the instances from the
old window and add a user-specificd number of the exceptions obtained from
step 3. This gradually expands the window. The second strategy is to retain

. one training instance corresponding to each leaf node in the current decision

tree. The remaining training instances are discarded from the window and
replaced by exceptions. Both methods work quite well, although the second
method may not couverge if the concept is so complex that it cannot be
discovered with any window of fixed size W.

Application of the ID$ Algorithm

¢ The ID3 algorithm hus been applied to the problem of learning classifi-
écation tules for part of a chess end-game in which the only pieces remaining
'are a white king and rook and a black king and knight. D3 has discovered
rules to describe the concept of “knight’s side lost (in at most) n moves” for
in=2and n =23. Table D3b~1 shows the results of these processcs.

The features describing the board positions have bcen chosen to capture
:patterns believed to be relevant to the concept of lost in n moves. The actual
raw data for the L 3t in 2 moves concept comprise 1.8 million distinct board
.positions. By choosing appropriate features, Quinlan was able to compress
;these into 428 distinct feature vectors. This is an excellent example of the
.importance to concept learning of zood representation and of knowledge-based
iinterpretation of the raw data. Quinlan (in press) points out that an important
;task for future learning research is to develop a program that can discover a
igood set of features.

! .

EStrcngtha and Weaknesses of CLS and IDS

The ID3 and CLS programs with their very simple representations and
straightforward learning algorithms perform impressively on the single-concept

TABLE D3b-1
The Application of ID3 to a Chess End-game
Number of Number of Size of Solution
Concept L .. .
training instances features decision tree time
Lost in 2 moves 30,000 25 334 nodes 144 scconds®
Lost in 2 moves 428 23 83 nodes 3 seconds®

Lost in 3 moves 715 39 177 nodes 3 sccon_da'

¢ Using P.ASCAL implementation on a DIEC KL-10.
YUsing PASCAL implementation on a CDC CYBER 72.

110 Learning and Inductive Inference xIv .

learning problem. Much of the power of the ID3 algorithm derives from its
sophisticated selectiont of training instances. This form of instance selection
has been termed ezpectation-based filtering by Lenat, Hayes-Roth, and Klahr
(1979). The basic value of expectation-based filtering is that it focuses the
attention of the program on those training instances that violate its expec-
tations. These are preciscly the training instances needed t¢ improve the

program’s represeniation of the concept being learned. Even this simple form

of experiment planning allows ID3 to solve large learning problems efficieatly.

Oane of the chidf difficulties of the CLS/ID3 method is that the repre- .

sentation for learned concepts is a decision tree, and decision trees are diflicult
to check for cquivalenc>. What is more important, it is difficult for pcople to
understand the learned concept when it is expressed as a large decision ree.

References

The best discussion of BACON is Langley (1980). The ID3 algoritﬁm is-

well described in Quinlan (in press).

D3c. Concept Learning by Generé.ting and
Testing Plausible Hypotheses

TIUE two modcl-driven approaches discussed in Article XIV.D1 on issues—
generate-and-test and schema instantiation—have received little attention
from people doing learning research. This article describes one method,
developed by Dietterich and Michalski, that discovers a single concept from
examples by modcl-driven gencrate and test. In spite of using only a very
simple model, this method exhibits the strengths and weaknesses that are
typical of model-driven methods: It is quite immune to noise but cannot
incrementally modify its concept description as new training instances become
available.

The INDUCE .2 Algorithm

Dictterich and Michalski (1981) address the problem of learning a single
concept from positive training instances only. Their program, INDUCE 1.2,
is intended to be applied in structural-learning situations, that is, situations
in which each training instance has some internal structure. Winston’s toy-
Llock constructions, for example, are structural training instances; a toy-block
toanstruction is represented as a set of nodes connected by structural relations
like ONTOP, TOUCH, and SUPPORTS (see Article XIV.D3a). Dietterich and
Michwualski's modcl, which guides the search for generalizations, expects the
learned concept to be a conjunction involving both structural rclations and
ordinary features. v

INDUCE 1.2 seeks to find a few concepts in the rule space, cach of which
covers all of the training instances while remaining as specific as possible.
This learning problem is similar to the problem of finding the S set in the
candidate-eliminalion algorithm. INDUCE 1.2, however, applies some model-
based heuristics to drastically prune the S set so that only a [ew generaliza-
tions are discovered. :

The program assumes that the training instances have been transformed
so that they can be viewed as very specific points in the rule space (i.e., it uses
the single-representation trick). A random sample of the training instances
is choscn. Thesc points in rule space serve as the starting points for a beam
search upward through the rule space, that is, from the very specific train-
ing instances toward more gencral concepts. The concepl deseriplions are
genceralized by dropping conjunctive conditions and adding internal disjune-
tive options until they cover all of the training instances. By starting at the
most specific points in the rule space and stopping as soon as it finds concepts
that cover all of the training instances, INDUCE 1.2 is guarantced to find the
most specific concepts Lthat cover the data.

411

412 - Learniag and Inductive Inference : v

The beam-search process has the folfowing steps:

Step 1. Initialize. Sct H to contain a randomly chosen subset of size W of
the training instances (W is a constant called the beam width).

Step 2. Generate. Generalize cach concept in /f by dropping single condi- -
tions in all possible ways. This produces all the concept descrip-
tions that are minimally more general than those in //. These form
the new H,)

Step 3. Prune implausible hypotheses. Remove all but W of the concept

. descriptions from H. The pruning i3 based on syntactic characteris-
tics of the concept description, such as the number of terms and
the user-defined cost of the terms. Another criterion is to maximize
the number of training instances covered by cach clement of I1.

Step 1. Test. Check cach concept description in £ to sce if it covers ali of
the training instances. {This information was obtained previously
in step 3.) If any concept does, remove it from £/ and place it in a
set C of output conceptas. :

Repeat steps 2, 3, and 4 until C reaches a prespeciflied size limit or H
becomes cmpty.

A schematic diagram of the beam-search process is shown in Figure D3c-1.

Eztensions to the Basic Algorithm

Structural learning problems of the kind INDUCE 1.2 was designed to
attack require binary (and higher order) predicates to represent the desired

more general

A

, ¥

: Pruned more specific
: Not Prened :

: Placed in C

B & O

Figure D3e-1. A schematic diagram of INDUCE 1.2’s beam search.

D3¢ v Concept Learning by Cenerating and Testing Plausible Hypotheses 413

concepts. The binary predicates are needed to express relaiionships among
the parts (e.g., toy blocks) that, make up each training instance. In Winston's
arch training instances, for example, binary predicates could be used to rep-
resent the fact that two blocks are touching—TOUCH(a, b)—or that one block
is supporting anotlier—-SUPPORTS(a, b). Unary predicates and functions are,
of course, still neede | as well. Typically, they represent the attributes of
the parts of 2n instance. In Wins*on's arches, for example, unary predicates
cuild represent the size and shape of each block. The syntactic distinction
betv.een unary and binary predicales thus corresponds to a semaatic distine-
tioa betvreer feature values and binory relationships.

Although it is possible to represent structural relationships using ounly
unary predicates or functicns, such a representation is cumbersome and un-
natural. Consequently, this distinction—by which binary anu higher order
predicates correspond to structural relationships and unary predicates and

functions corrcspond to feature values—holds in most structural Ieamingl

situations.

Dietterich and Michalski take advantage of this dichotomy to improve
the cfficiency of INDUCE 1.2’s rule-space search. Two separate rule spaces
ars used. The first rule space, called the structurc-only space, is the space of
all concepts expressible using cnly the binary (and higher order) terms in the
representation language. The training instances are abstracted into this space
(by dropping all unary predicates and {unctious), and then the generate-and-
test beam search is applied to this abstract rule space.

Once the set, C, of candidate structure-only concepts is obtained, each .
concept, ¢;, in € i~ used to define a new rule space, consisting of all concepts

expressible in terms of the attributes of the subobjects (e.g., blocks) referred
to in ¢;. This space can be rcpresented with a simple feature-vector repre-
sentation. The truining instances ace transformed into very specific points in
this space, and another heam scarch is conducted to find a set, C’, of plausible
concept descriptions. The descriptions in C' specify the attributes for the
subobjccts referred to in ¢;. Taken together, one concept in C’ combined
with ¢; provides a compleic concept!description.

As an example of this two-space approach, consider the two positiv:
training instances depicted below: Y

Instance 1. : Juv: LA\R.GE(U) A CIRCLE(u)} A
. LARGE(v) A CIRCLE(v) A ONTOP(u, v).

———

[P U——

& v — ——

. o = o S i i o e s n

- ot ety

e S

P o

414 Learning and Inductive Inference XIv

Instance 2. 3w, 2,y : SMALL{u) A CIRCLE{w) A
O LARGE(z) A SQUARE(z) A
LARGE(y) A SQUARZ(y) A
" ONTOP(w, z) A ONTOP(z,).

When these two training instances are transiated into the structure-only rule
space, the following abstract training instances are obtained:

Instance I’. 3 u,v: ONTOP(u, v).
Instance 2. 3 w,z,y: ONTOP(w,z) A ONTOP(z,y).

The INDUCE 1.2 beam search discovers that C = {ONTOP(u, v})} is the only,
least general, structurc-only concept consistent with the training instances.
Now a new attribute-vector rule space is developed with the features of u

and v:
(S1ZE(u), SHAPE{u), S1ZE(v), SHAPE(v)} .

The training instauces are translated to obtain:

Instance 1”. (large, circle, large, circle).
Instance 2.1”. (small, circle, large, square).
Instance 2.2”. (large, square, large, square).

Notice that two alternative training instances are obtained from instance 2,
since ONTOP(u, v) can match instance 2 in two possible ways (u bound to w, v
bound to z; or u bound to z, v bound to y). During the beam search, only one
of these two instances, 2.1” and 2.2”, nécd be covercd by a concept description
for that deseription to be consistent.

The sccond beam search is conducted in this feature-vector space, and the
concepts (large, o, large, s} and (», circle, large, o) are found to be the least
general concepts t.hat cover all of the training instances (“«” indicates that the
corresponding feature is"irrelevant). By combining each of these feature-only -
concepts with the structurc-only concept ONTOP(u, v), Lwo overall consistent
concept descriptions are obtained:

Ci: 3 u,v: ONTOP(u, v) A LARGE(u) A LARGE(v),
C2: 3 u,v: ONTOP(y, v) A CIRCLE(u) A LARGE(v).

These correspoad to the observations that in both instance 1 and instance 2
there are (C) “always a large object on top of another large object and (Cy)
“always a circle on top of a large object.”

D3¢ Concept Learning by Generating and Testing Plausible Hypotheses 415

Strengths and Weaknesses of the INDUCE 1.2 Approach

The basic algorithm suffers from the absence of a strong mode! to guide
the pruning of descriptions in step 3 and the termination of the search in
step 4. The present syntactic criteria, of minimizing the number of terms in
a proposed concept, minimizing the user-defined cost of the tcrms, and max-
imizing the nnmber of training instances covered, are very weak. Dietterich
and Michalski claim that domain-specific informalion could easily be applied
at this point to improve the model-based pruning.

A second weakness is that step 2 involves cxhaustive enumeration of all
possible single-step g-neralizations of the hypotheses in H. This can be very
costly in a large rule space. The method of plausible generate and test works
best if the generator can be constrained to gencrate only plausible hypotheses.
The generator in INDUCE 1.2 rclics on a subsequent pruning step, which is
quite costly.

A third weakness of the method is that, because it prunes its search, it is
incomplete (sce Dietterich and Michalski, 1981). It docs not find all minimally
general concepts in the rule space that cover all of the training instances.

As with all model-driven methods, this approach does not work well in
incremental learning situations. All of the training instances must be available
to the learning algorithm simultane=ously.

The advantages of the algorithm are that it is faster and uses less memory
than the full version-spacc approach. As with all model-based methods,
INDUCE 1.2 has good noise immunity. In particular, if INDUCE 1.2 is to be
given noisy training instances, then step 4 can be modified to include in C
the concepts that cover most, rather than all, of the training instances.

References

Diettcrich and Michalski (1981) describe INDUCE 1.2.

Yy

D3d. Schema Instantiation

SCHEMA-INSTANTIATION techniques have been used in many Al systems
that perform comprechension tasks such as image interpretation, natural-
language understanding, and speech understanding. Few learning systems
have employed schema-instantiation methods, however. These mothods are
uscful when a system has a substantial number of constraints that can be
grouped together to form a schema, an abstract skeletal rule. The search of
the rule space can then be guided to only those portions of the space that fit
one of the available schemas. In this section, we describe one learning system,
SPARC, that uses schema instantiation to discover single concepts.

Discovering Rules in Eleusss with SPARC

Dictterich's (179) SPARC system attempts to solve a learning problem
that arises in the card game Eleusis. Lleusis (developed by Robert Abbott,
1977; sce also Gardner, 1977) is 4 card game in which players attempt to
discover a secret rule invented by the dealer. The secret rule describes a linear
sequence of cards. In their turns, the players attempt to extend this sequence
by playing additional cards from their hands. The dealer gives no information
aside from indicating whether or not each play is consisient with the secret
rule. Players are penalized for incorrect plays by having cards added to their
hands. The game ends when a player empties his hand.

A record of the play is maintained as a layout (see Fig. D3d-1) in which the
top row, or main line, contains all of the correctly played cards in sequence.
Incorrect cards are placed in side lines below the main-line card that they
follow. In the layout shown in Figure D3d-1, the first card corrcctly played
was the 3 of hearts (38). This was (ollowed by another correct play, the 9 of
spades (95). Following the 9, two incorrect plays were made (JD and 5D) before
the next correct card (4€) was played successfully.

Main line: 301 95 4C 90 2C 10D 88 78 2C S

Side lines: JD AH AS 108/
5D 8H 108
QD

If the last cuxd is odd, play black; if the last card is even, play red.

Figure D3d-1. An Eleusis layout ~nd the corresponding
secret rule.

418

Dad Schema Instantiation 417

The scoring in Elcusis encourages the dealer to choose rules of inter-
mediate difficulty. The dealer's score is determined by the difference between
the highest and lowest scores of the players. Thus, a good rule is one th-t is
easy for some players and hard for others.

Schemas in Eleusis

In ordinary play of Eleusis, certain classes of rules have been observed.
Dietterich has identified three rule classes and developed a paramecterized
schema for each: o

1. Periodie rules. A periodic rule describes the layout as a sequence of
repeating fcatures, For example, the rule Play alternating red and black
eards is a periodic rule. Dictierich's rule schema for this class can be
described as an N tuple of conjuactive descriptions:

(C1,Cay ..., Cn).

The parameter N is the length of the period (the number of cards before
the period starts to repeat). The above-mentioned periodic rule would
be represented as a 2-tuple:

(RED(card;), DLACK(card.-)) .

More complex periodic rules may refer to the previous periods. %hus,
the rule ’

(RANK(card;) > RANK(cardi-), RANK(eard;) < RANK(card;_,))

describes a layout composed of alternating ascending and descending
sequences of cards,

2. Decomposition rules. A decomposition rule describes the layout by a
sct of if-then rules. For example, the rule If the last card is odd, play black;
if the last card is even, play red is a decomposition rule. The rule schema
for this class requires that the set of (f-then rulos have single conjunctions
for the if and then parts of each rulc. The i/ parts must be mutually
exclusive, and they must span all possibilities. The above-mentioned rule
can be written as:

ODD(card;~,) = BLACK(eardi) V
EVEN(card;.,) = RED(card;).

3. Disjunctive rules. The third class of rules includes any rules that can
be represented by asingle disjunction of conjunctions (i.c., an expression
in disjunctive normal form, or DNF). For cxample, the rule Play a card
of the same rank or the same suit as the preceding card is a DNF rule. This
is represented as: ’

RANK(card;) == RANK.(cardi-1) V SUIT(card;) = SUIT{card;_,).

€3¢ mprove

418 Learning and Inductive !nference ' xwv

Each schema has a few parameters that control its application. The N
(length of period) parzmeter of the period schema has already been described.
Each schema also has a parameter L, called the lookback paramcter, that
indicates how many cards back into the past the rule may consider. Thus,
when L = 0, no preceding cards are examined. When L = |, the features of
the current card are compared with the previous card, and expressions such
a8 RANK(card;) > RANK(card;_y) are permitted. Larger values of L provide
for even further lookback.

Searching the Rule Space Using Schemas

Each schema can be viewed as having its own rule space—the set of all
rules that can be obtained by instantiating that schema. SPARC uses the
single-representation trick to rcformulate the layout as a set of very specific
tules for cach of the schema-specific rule spaces. The overall algorithm works
as follows: :

Step 1. Parameterize a schema. SPARC chooses a schema and sclects par-
ticular values for the parameters of that schema.

Step 2. Interpret the training inatances. Transform the traihing instances
{i.e., the cards in the layout) into very specific rules that fit the
chosen schema.

Step 3. Instantiate the schema. Generalize the transormed training instances
to fit the schema. SPARC uses a schema-specific algorithm to
accomplish this step.

Step 4. Evaluate the instantiated schem:. Determine how well the schema fits
the data. Poorly fitting rules are discarded.

SPARC conducts a depth-first search of the spacc of all parameterizations
of all schemas up to a user-specified limnit on the magnitudes of the parameters.
Notice that a separate intcrpretation step is required for each parameterized
schema. :

When these steps are applied to the game shown in Figure D3d-1, fer
example, stcp 1 eventually chooses the decomposition schema with L = 1.
Step 2 then converts the training instances into very specific rules in the cor-
responding rule space. In this case, the first five cards produce the training
instances shown below. Thc instances are represcnted by the foature vee-
tor (RANK, SUIT, COLOR, PAR!TY) to describe cach card. (SPARC actually
generates 24 features to deserib2 each training instance.)

Instance 1 (positive). (3, Aearts, red, odd) = (9, spades, black, odd).
Instance 2 (negative). (9, spades, black, odd) = {jack. diamonds, red, odd).
Instance 3 {negative). (9, spades, black, odd) = (5, diamonds, red, odd).
Instance 1 (positive). (9, spades, black, odd) = (4, clubs, black, even).

D3d Schema Instantiation 419

Step 3 produces the following mstnntuted schema (wnth irrelevant features
indicated by s):

(s,9,9,0dd) = (o, bdlack o)V (o,s,¢,cven) = (o, reds).
Step 4 determines that this rule is entirely consistent with the training in-
stances =nd is syntactically simple. (‘onscquently, the rule is accepted as a
. hypothesis for the dealer’s secret rule.

The schema-instantiation method works well when step 3, the schema-
instantiation step, is easy to accomplish. A good sche. . provides many
constraints that limit the size of its rule space. In SPPARC, [or example, the
periodic and decomposition schemas require that their rules he made up of
single conjuncts only. This is a strong constraint that can be incorporated into
the model-fitting algorithm. On the other hand, the DNF schema provides
few constraints and, consequently, an efficient instantiation algorithm could
not be written. The general-purpose A? algorithm (see Article X1v.D3s) was
used instead.

Strengths and Weaknesses of SPARC

The schema-instantiation method used in SPARC was able to find plaus:ble
Eleusis rules very quickly. This is the primary advantage of the schema-
instantiation approach—Ilarge rule spaces can be searched quickly. A second
advantage of this approach is that it has good noise immunity. The schema-
instantiation process has access to the full set of training instances, and, thus,
it can use statistical measures to guide the se:rch of rule space.

There are three important disadvantages of the schema-instantiation
method as used in SPARC. First, it is difficult to isolate a group of con-
straints and combine them to form a schema. The three schemas in SPARC,
although they cover most “secret rules” pretty well, are known to miss some
important rules. The task of coming up with new schemas, however, is par-
ticularly difficult. A second problem with the schema-instantiation approach
is that special scherna-instantiation algorithms must be developed for each
schema. This makes it difficult to apply the approach in new domains. The
third disadvantage is that separate interpretation mecthods need to be devel-
oped for each schema. This was lcss of a problem in the Eleusis domain, be-
cause the interpretation processes for the different schemas were very similas.

References

Dietterich (1979) is the 6riginal deseription of the SPARC program. Diet-
terich (1980) is a more accessible source. See also Dictterich and Michalski
(in press).

-

D4. Learning Multiple Concepts

A FEW Al learning systems have been devcloped that discover a set of con-
cepts from training instances. Thesc systems peiform tasks, such as disease
diagnosis and mass-spectromcter simulation, for which a single concept or
classification rule is not suifficient.

To undcrstand the problems of learning multiple concepte, it is helpful
to review single-concept learning. 'n single-concept learning (see Sec. XIV.D3),
the learning clement is presented with positive and negative instances of some

concept, and it must lind a concept descriplion that effectively partitions the

space of all instanccs into two regions: positive and ncgative. All instances in
the poaifi.ive region are believed by the learning system to be examples of the
single concept (sce Fig. D4-1).

In multiple-concept learning, the situation is slightly more complicated.
The learning elecment is presented with training instances that are instances
of several concepts, and it must find several concept descriptions. For each
concept description, there is a corresponding region in the instance space (see
Fig. D4-2). An important multiple-concept Irarning problem is the problem
of discovering discasc-diagnosis rules from training instances. The learning
element is presented with training instances that each contain a description
of a paticat's symptoms and the proper diagnosis as dctcrmmcd by a doctor.
The program must discover a sct of rules of the form:

i (description of symptoms for disease A) = Diseaseis A,
‘i (description of symptoms for disease B) =4 Disease is B,
| ’ H
{

{description of symptoms for disease N) = Disease is N.

Instanee Space

Positive Region:

Negative Region

Figure D4-1. A single concept viewed as 2 region
of the instance space.

420

D4 Learning Multiple Concepts 421

Instance Space '

()

Figure D4-2. Regions of the instance space corre-
sponding to dilferent rules.

The left-hand side of each rule is a concept description that corresponds to
a region in the instance space of all possible symptoms (see Fig. D4-2). Any
paticnt whose symptoms fall in region A, for example, will be diagnosed as
having disease A.

An important issue arising in multiple-concept learning is the problem
of overlapping concept descriptions-—that is, overlapping left-hand sides of
diagnosis rules. In Figure D4-2, for example, when a patient’s symptoms fall
in the area where regions A and B overlap, the system will diagnose the patient
as having both diseases A and B. This overlap may be correct, since there
are often cases in which a patient has more than one disease simultaneously.
On the other hand, it is often the case in multiple-concept problems that
the various classes are intended to be mutually exclusive. For example, if,
inatead of diagnosing diseases, the performance task is to classify images of
handwritten characters, it is important that the system arrive al a unique
classification for each character.

The probliem of overlap among multiple concepts can lead Lo integration
problems, as described in Article XIV.A. When a new rule or concept is added
to the knowledge base in a multiple-concept system, it may be necessary to
modify the lefi-hand sides of existing rules, particularly il the concept classes
are intended to be mutually exclusive.

The systems described in this section differ from those dcscribed in the
Section XIV.D5 on multiple-step tasks in that the performance tasks dis-
cussed here can all be accomplished in a single step. The various discase-
classilication rules, for cxample, can be applied simultancously o classify a
paticnt's syinptoms. Tasks for which this is not the case—like playing check-
ers or solving symbolic integration problems—are discussed in Section Xiv.Ds.

We [irst discuss the work of Michalski and his colleagues on the AQI1
program, which learns a set of classification rules for the diagnosis of saybean

P

[

4 e g e+

422 Learning and Inductive Inference xv

diseases. Second, we describe the Meta-DENCRAL system, which learns a set
of cleavage rules that describe the operation of a chemical instrument called
the mass spectrometer. Finally, the AM system, which discovers new concepts
in mathematics, is discussed in some detail. Since these systems do not all
address the same learning problem, we begin each article with a description of
the particular learning problem being attacked and then discuss the methods
employed to accomplish the learning,

D4a. AQll

MICHALSK! and his collcagues (Michalski and Larson, 1978; Michalski and
Chilausky, 1980) have developed several techniques for learning a sct of classi-
fication rules. The performance clement that applies these rules is a pattern
classifier that takes an unknown pattern and classifies it into one of n classes
(sce Fig. D4a-1). Many performance tasks, such as optical character recogni-
tion and disease diagnosis, have this form.

The classification rules are learned from training instances coasisting of
sample patterns and their correct classifications. For the classifier to be as
efficicnt as poasible, the classification rules should test as few featuces of the
input pattern as necessary to claasify it reliably. This is particularly relevant in
areas like medicine, where the measurement of each additional feature of the
input pattern may be very costly and dangerous. Consequently, Michalski's
learning program AQ11 (Michalski and Larson, 1978) sceks to find the most
general rule in the rule space that discriminates training instances in class ¢;
from all training instances in all other classes ¢; (i 7% j). Dictterich and
Michalski (1981) call these diseriminant descriptions or discrimination rules,
since their purpose is to discriminatc one class from a predetermined sct of
other ciasses.

Using the A* Algorithm to Find Discrimination Rules

The representation language used by Michalski to reptesent discrimina-
tion rules is VL, an extension of the propositior.al calenlus. VL, is a fairly rich

Output Classification

_ Input Pattern ——+] Classifier = {¢1,...,¢n)}

\A

Knowledge
Base of
Classification
Rules

Figurc D4a~1. The n-category classification task.

423

424 Learning and Inductive Infrrence X1v

language that includes conjunction, disjunetion, and sct-membership opera-
tors. Conscquently, the rule space of all possible VL, discrimination rules is
quite large. To search this rule space, AO11 uses the A? algorithm, which
is nearly equivalent to the repeated application of the candidate-climination
algorithm (scr Article XIV.D3a). AQI1 converts the problem of lenrning dis-
crimination rulcs inwo a series of single-concept learning problems. To find a
rule for class ¢,, it considers all of the known instancee in class ¢; as positive
instances and all other training instances in all of the remaining classes as
negative instances. The A* algorithm is then applied to find a description
that covers all of the positive instances without covering any of the negative
instances. AQIl secks the most general such description, which corresponds
to a necessary condition for cinss membership. Figure D4a-2 shows schemati-
cally how this works. The dots reprrsent known training instances, and the
circle represents the sct of possible training instances that are covered by the
description of class ¢,. .

For each class ¢;, such a “concept” is discovered. The result is shown
schematically in Figure D4a-"

Note that the discrimination rules may overlap in regions of the instance
space that have not yet been observed. This overlap is useful because it
allows the performance element to be somewhat conservative. In the areas in
which the discrimination rules are ambiguous (i.c., overlap), the performance
element can report this to the user rather than assign the unknown instance
to one arbitrarily chosen class.

AQ11 also has a method for finding a nunoverlapping set of classification
rules. Since the A algorithm uses the single-represertation trick, it can accept
not only single points in the instance space (as repr sented by very specific
points in the rule space) but .iso generalized “instances” that are conjuncts

N

1]
.’.
eci10 ®
@

Instance Space

Figure D4a-2. learning ¢; by treating dll other classes
as negative instances.

D4a ' AQil 425

Instance Space

Figure D4a-3. Finding single concepts for each class.

in the rule space corresponding to sets of training instances. This allows AQt1
to treat the concept Jescriptions themselves as negative examples wien it is
learning the concept description for a subsequent class. Thus, in order to
oolaiu a tonoverlapping set of discrimination rules, AQ11 takes as its positive
instances all known instances in ¢, and as its nagative insiances all known
instances in ¢; {j 7 1) plus all conjuncts that make up the discrimination
rules for previously processed classes ¢y (k < i). The resulting disjoint rules
are shown schematically in Figure D4a-4 (assuming the classes were processed
in the order ¢y, ¢3, ¢3).

The rules that arc developed split up the unobserved part of the instance
space in such a way that ¢, gets the largest share, ¢; covers any space not
covered by ¢, ¢3 covers any space not covered by ¢, or ¢z, and so on. The way
in which the space L, diviucd <7 2zpends on the order in which the classes are

Instance Space

Figure D4a-4. Finding nonoverlapping classification rules.

428 Learning and Inductive Inference xXiv

processed. A performance elemcent that uses such a disjoint set of coneepta
will be reckless in the sensc that it will assign an unknown instance to an
arbitrary class. The classifier arbitrarily prefers ¢ to ¢, ¢3 to ¢3, and so oa.

The discrimination rules developed by AQ11 correspond (roughly) to the
set of most gencral descriptions consistent with the training instances—the
G set in the candidatc-elimination algorithm (see Sec. Xiv.D3). [n many
situations, it is also good to develop, for cach class ¢,, the most specific (S-set)
description of that class. This permits very explicit handling of the unobserved
portions of the space. Figure D4a-5 shows such a set of descriptions.

When S and G sets are both available, the performance clement can
choose among 'chinite classification (the instance is covered by the § set),
probable classification (the instance is covered by only one G set), and mulitiple
classificaiion (Lhe instance is covered by several (7 sets). AQ11 has the ability
to calculate an approximate § set for cach class. When the description of the
class is disjunctive, the 5 sct is alyo disjunctive,

Applications of AQ1!

The AQ11 program has been applied to the problem of discovering disease-
diagnosis rules for 15 soybean diseases (Michalski and Chilausky, 1980). Here
is an example of a classilication rule for the disease Rhizoctonia root rot
obtained by the overlapping-concept approach discussed above:

leaves € {normal} A stem € {abnormal} A
stem cankers € {below soil line} A canker lesion color € {brown} v

leal maiformation € {absent} A stem € {abnormal} A
stemn cankers € {below soil line} A canker lesion color € {brown}
=+ Rhizoctonia root rot.

Instance Space

Figure D4a-5. Learning both the G and § set descriptions
for cach class.

Dia : AQll 427

An interesting experiment was conducted as part of the soybean disease
project. The goal was to compare the quality of rules obtained through
consultatioa with expert plant pathologists with rules developed by learning
fromn examples. Descriptions of 830 diseased soybean plants were entered into
the computer (as feature vectors involving 55 fealurcs) along with an expert’s
diagnosis of cach plant. A special instince-selection program, ESEL, was used
to sclect 290 of the sample plants as training instances. ESEL attempts to
select training instances that are quite different from one another—instances
that are “far apart” in the instance space. The remaining 340 instances
wers sct aside to serve as a testing sct for comparing the performance of the
machine-derived rules with the perfurtnance of the expert-derived rules.

AQ11 was then run on the 290 training instances to develop overlapping
tules such as the rule ahove. Simultancously, the rescarchoss consulted with
the plant pathologist to obtain a set of rules. They adopted the standard
knowledge-engineering approach ol interviewing the expert and translating
his expertise into diagnosis rules. The expert insisted on using a description

" language that was soinewhat more expressive than the language used by AQ11.
The cxpert’s rules, for examole, listed some features as nccessary and other
features as confirmatary; AQU1 was unable to make such a distinction.

As a conscquence of the differing description languages, slightly differing
performance elements had to be developed to apply the two sets of rules, and
each performance element was adjusted to get the best pecformance from its
classification rules. Surprisingly, the computer-generated rules outperformed
the expert-derived rules. Dcspite the fact that the expert-derived rules were
expressed in a more powerful language, the machine-gencrated rules gave the
correct diseasc top ranking 97.8%% of the time, compared to only 71.8% for the
expert-derived rules. Overall, the inachine-generated rules listed the correct
disease among the possible diagnoses 100%5 of the time, in contrast to 96.9%
for the expert's rules. Furthermore, the computer.-detived rules tended to
list fewer alternative diagnoses. The conclusion of the experiment was that
automatic rule induction can, in some situations, lead to more reliable and
more precise diagnosis rules than those obtained by consultation with the
expert.

References

Michalski and lLarson (1978) describe the AQ11 and ESEL programs in
detail. The soybean work is described in Michalski and Chilausky (1980).

D4b. Meta~-DENDRAL

META-DENDRAL (Buchanan and Mitchell, 1978) is a program that discovers

rulcs describing the operation of a chemical instrument called a mass spee-
trometer. The mass spectrometer is 2 device that bombards small chemical
samples with aceclerated electrons, causing the molecules of the sample to
break apart into many charged fragments. The masses of these fragments can
then be measured o produce a mass spectrum —a histogram of the number
of fragments (also called the intensity) plotted against their mass-to-charge
ratio (see Fig. Dab-1).

An analytic chemist :an infer the molecular structure of the sample
chemical through careful inspection of the mass spectrum. The Heuristic
DIEENDRAL program (sec Sec. VIIL.C2, in Vol. 11) is able to perform this task
automatically. [t is supplied with the chemical fornula (but not the structure)
of the sampic and its mass spectrum. tleuristic DENDRAL lirst examines the
spectrum Lo obtain a set of constraints. These constraints are then supplied
to CONGEN, a program that can generate all possible chemical structures
satislying the construints. Finally, each of thesc generated structures is tested
by running it through a mass-spectrometer simulator. The sitnulator applies
a set of cleavage rules to predict which bonds in the proposed structure will
be broken. The result is a simulated mass spectrum for each candidate
structure. The simulated spcetra are compared with the actual spectrum, and
the structure whose simulated spectrum best matches the actual spectrum is
ranked as the most likely structure for the unknown sample.

Intensity

lllll u ” 1l “l ll ll'lll -

Misseto-charge ratio

Figure D4b-1. A mass spectrum.

428

)4b Meta-DENDRAL 429

The Learning Problem

Meta-DENDRAL was designed to serve as the learning element for Heu-
ristic DENDRAL. (l'or an alternate view of Meta-DENDRAL as an expert
system, see Article VIL.C2¢, in Vol. 11.) Its purrose is to discover new cleavage
rules for DENDRAL'’s inass-spectromcter siriulator. These rules are grovped
according to structural families, Chemic s have noted that molecules that
share the samce structural skeleton bchave in similar ways inside the mass
spectrometer. Conversely, molecules with vastly different structures behave
in vastly diffcrent ways. Thus, no single sev of cleavage rules can accurately
describe the behavior of all molecules in the mass spectrometer.

Figure D4b-2 shows an example of a structural skelcton for the family

of monokectoandrostanes. Particular molecules in this [amily are constructed

by attaching keto groups (OIlf} to any of the available carbon atoms in the
skelcton.

" The learning problem addressed by Meta-DENDRAL is to discover the
cleavage rules for a particular structural family. The problem can be stated
as follows:

Given: (a) A representation language for describing molecular structures
and substructures; and

(b) A training set of known molecules, chosen from a single strue-
tural family, along with their structures and their mass spee-
tra;

Find: A sct of clecavage rules that characterize the behavior of this strue-

tural family in the mass spectrometer.

This learning problem is difficult because it contains two sources of ambiguity.
First, the mass spectra of the training molecules are noise-ridden. There may
be [alscly observed fragments ([alse positives) and important fragments that
may not have been observed (lalse negatives). Sccond, the cleavage rules need

~.

Figure D4b-2. The structural skeleton for the monoketo-
androstane family.

430 . Learning and I[nductive Infcrence ‘ Xiv

not be entirely consistent with the training instances. A rule that cqrrectly

- predic* 2 cleavage in more than half of the molecules can be considered to
be aceeptable; the rules nced not be cautious. It is saler-—from the poiat of
view of DFENDRAL's simulation task-—to predict cleavages that do not occur
than it is to {ail to predict cleavages that do occur.

Meta-DENDRAL’s reptesentation language corresponds to the ball-and-

" stick modcls used by chemists. The molecule is represented as an undirected
graph in which nodes denote atoms and ed:zes denote chemireal bonds. Hydro-
gen atoms arc not included in the graph. Each atom can have four features:
{a) the atom type (c.g., carbon, nitrogen), (b) the number of nonhydrogen
neighbors, (c¢) the number of hydrogen atoms that are bonded to the atom, and
(d) the number of double bonds in which the atom participates. A cleavage
rule is expressed in terms of a bond environment—a portion of the molecular
structure surrounding a particular bond. The bond cavironment makes up
the condition part of a cleavage rule. The action part of the rule specifies
that the designated bond will cleave in the mass spectrometer. Figure D4b-3
‘shows a typical clcavage rule.

The performance elemnent (the simulatoe) applies the production rule by
matching the left-hand-side bond environment to the molecular structure that
is undergoing simulated bombardment. Whenever the left-hand-side pattern
is matched, the right-hand-side predicts that the bond designated by « will
braak.

The Interpretation Problem and the Subprogram INTSUM

Meta-DENDRAL employs the method of modcl-driven generate-and-test
to search the rule space of possible eleavage rules. Before it can carry out
~ Lhis scarch, however, it must first interpret the training instances and convert

them into very specific points in the rule space (i.c., into very specific cleavage
rules).

T—Y—Z—wW = LY & Z—w

Node Atom type Neighbors - tl-neighbors Double bonds

z carbon 3 1 0
y carbon 2 2 0
z nitrogen 2 1 0
w carbon 2 2 0

Figure D4b-3. A typical cleavage rule.

D4b : Meta-DENDRAL 431

The interpretation process is acconiplished by the subprogram INTSUM
(INTerpretation and SUMmary). Recall that the training instances-have the
form: ' :

(whole moleculer structure) =+ (mass spectrum).
INTSUM seeks to develop a set of very specific cleavage rules of the form:
(whole molecular structure) = (one designated broken bond). -

To make this conversion, INTSUM must hypothesize which bonds were
broken to produce which peaks in the spectrum. It accomplishes this by means
of a “dumb” version of the DENDRAL mass-spectrometer simulator. Since
Meta-DENDRAL is attempting to discover cleavage rules for this particular
structural class, it cannot use those same clcavage rules to drive the simula-
tion. Instead, a simple half-order theory of mass spectrometry is adopted.

The hall-order theory describes the action of the mass spectrometer as
a scquence of complete fragmentations of the molecule. One fragmentation
slices the molecule into two pieces. A subscquent {ragmentation may further
split one of those two pieces to create two smaller pieces, and so on. After
each fragmentation, some atoms rom one piece of the molecule may migrate
to the other picce (or be lost altogether). The haif-order theory places certain
consteaints on this split-and-migrate process. It says that all bonds will break

" in the molecule ezcept the following:

1. Double and triple bonds do not break;
2. Bonds in aromatic rings do not break; °
3. Two bonds involving the same atom do not break simultancously;
4." No more than three bonds break simultaneously; ;
5. At most, only two lragmentations ocour (one after the other);
6. No more than two rings can be split as the result of both of the frag-
mentations.
Constraints are also placed on the kinds of migrations that can occur:

1. No more than two hydrogen atoms migrate after a fragmentation;
. 2. At most, one H0 is lost;
3. At most, one CO is loat.

The parameters of the theory are flexible and can be adjusted by the user of
Mecta-DENDRAL.

Bascd on this theory, INTSUM simulates the bombarding and cleaving of
the molecular structures provided in the training instances. The result is a
simulated speetrum in which cach simulated peak has an associated record
of the bond cleavages that caused that peak to appear. Each simulated
peak is compared with the actual observed peaks. If their masses match,

432 Learning and Inductive [nference ' xav

then INTSUM infers that the “cause” of the simulated pcak is a plausible
explanation of the oltscrved peak. If a simulated peak finds no matching
observed peak, it is ignored. If an observed peak remains unexplained, it is

_ also ignored. However, unexplained peaks are reported to the chemist. A large

proportion of unexplained peaks would indicate that the half-order theory was
inadequate to explain the operation of the mass spectrometer in this training

‘instance.

The hall-order theory contributes another source of ambiguity to the
learning problem. The interpreted set of training instances can easily contain
erroneous instances. INTSUM's half-order theory tends to predict cleavages
that did not, in fact, occur. It is also not unusual for the half-order theory
to fail to predict clcavages that did occur. Thus, the training instances that
guide the rule space search are very noisy indeed.

The Search of the Rule Space

Meta-DENDRAL searches the rule space in two phases. First, a model-
driven generate-and-test search is conducted by the RULIGEN subprogram.
This is a fairly coarse search from which redundant and approximate rules
may result. Thc second phase of the search is conducted by the RULEMOD
subprogram, which cleans up the rules developed by RULEGEN to make them
more precise and less redundant.

RULEGEN. This subprogram searches the rule space of bond environ-
ments in order from most general to most specific. The algorithm repeatedly

generates a new set of hypotheses, I, and tests it against the (positive) train-

ing instances develuped by INTSUM, as follows:

Step 1. Initiglize H to contain the most general bond environment.

zey
Node Atom type Neighbors FH-neighbors Double bonds
z any any any any
y any any any any

This bond environment matches every bond in the molecule and
thus predicts that every bond will break. Since the most useful
{i.e., most accurate) bond environient lies somewhcre between this
overly general environment (z ¢ y) and the overly specific, complete
molecular structure (with specified bonds breaking), the program
generates rcfined cnvironments by successively specializsing the £/
set. '

Step 2. Generate ¢ new sct of hypotheses. Specialize the st M by making
a change to all atoms at a specilied distance (radius) from the
» bond—the hond designated to break. The change can involve
cither adding new ncighbor atoms or specifying an atom feature.
All possible specinlizations are made for which there is supporting

[P

D4b Meta-DENDRAL 433

evidence. The technique of modifying all atoms at a particular -
radius causes the RULEGEN search to be coarse.

Step 3. Test the Aypotheses againat the irasning instances. The bond environ-
ments in A are examined to determine how much evidence there
is for each eavironment. An tmprovement criterion is computed for
each environment that states whether the cnvironment is more
plausible than the parent environinent from which it was obtained
by specialisation. Environments that are determined to be more
plausible than their parents are retained. The others are pruned
from the H set. If all specializations of a parcnt environment are
determined to be less plausible than their parent, the parent is
output as a new cleavage rule and is removed from H.

Repeat steps 2 and 3 until H is empty.

Figure D4b-4 shows a portion of the RULEGEN secarch teee. Horuontal
levels in the tree correspond to the contents of the H sct after each 'itera-
tion. Starting with the root pattern, Sp, the number-of-neighbors attribute
is specialized (i.e., the pattern graph is expanded) for cach atom at distance
zero from (adjacent to) the break to give pattern §). The atom type is then
specified {or atoms adjacent to the break in S; and for atoms oane bond
removed from the break in S3. At each step, there are many other pos-
sible successors corresponding to assignments of other values to these same

“attributes or to other atributes.
The improvement criterion used in step 3 states that a daughter emnrom

ment graph is more plausibie than its parent graph if: ,
1. It predicts fewer fragmentations per molecule (i.e., it is more lpeciﬁc)j;

- |

X » X (S) '

I

X-XsX-X(S)

($:) X-C+C-X

N<-CsC-C(S)

Figure D4b-4. A portion of the RULIICEN search tree.

434

Learning and Inductive Inference

2. It still predicts fragmentations for at least half of al! of the molecules
(i. e it is sufficiently general); ,

3. It predicts fragmengaﬁom for as many molecules as its parent—unless
the parent graph was “too general” in the sense that the parent predicts
more than 2 fragmentations in some single molecule or on the average
it predicts more than 1.5 fragmentations per moiccule.

xav

This algorithm assumes that the improvement critcrion increases rnono-
tonically to a single maximum value (i.e., it is unimodal). This is usually true

for the mass-spectrometry learning task.
following monotonically increasing paths down through the partial order of

the rule space until the criterion attains a local maximum value.

RULEMOD. The rules produced by RULIEGEN are very approximate and
have not becen tested against negative cvidence. RULEMOD improves these
rules by conducting fine hill-climbing scarches in the portions of the rule space
near the rules located by RULELGEN. The subprogram RULEMOD procceds
in four steps:

Step 1.

Step 2.

Select a subset of important rules. RULEGEN can produce rules that
are diffcrent from one another but that explain many of the same
data points. RULEMOD atlempts to find a small set of rules that
account for all of the data. Negative evidence is gathered for
each rule by re-invoking the mass-spectrometer simulator. Each
candidate nile is tested to see how many incorrect predictions are
made as well as how many correct predictions. The rules are ranked
according to a scoring function (I X {P + U — 2N), where [is the
average intcnsity of the positively predicted peaks, £ is the number
of correctly predicted peaks, U is the number of correct peaks
predicted uniquely by this rule and no other, and N is the number
of incorrectly predicted peaks). The top-ranked rule is selected.
All evidence peaks cxplained by that rule are removed, and the
ranking and sclection procesy is repeated until all positive evidence
is explained or until the scores fall below a specificd threshold.

Specialize ru..s to ezclude negative evidence. RULEMOD attempts to
specialise the rules in order to exclude some negative evidence while
retaining the positive evidence. For each candidate rule, RULEMOD
attempts to fill in additional values for features that were left
unspecified by RULEGEN. RULEMOD flirst examines all of the
positive instances predicted by the candidate rule and obtainy a list
of all possible {eature values that are common to all of the positive
instances. lSach of these feature values could individually be added
to the rule without excluding any positive instances. RULEMOD

RULEGEN can thus be viewed as

attemnpts to select a mutually compatible set of values t.h.u. will .

exclude a large amount of negative evidence.

D4b Meta-DENDRAL 435

The selection process uscs a hill-climbing search. The feature value
that cxcludes the largest number of negative instances is chosen
and added to the candidate rule. Incompatible feature values are
pruned from the list of possible refinements, and the process is
repeated until further refinement is not possible or all negative
evidence has been excluded.

Step 3. Generalize rules to include positive evidence. RULEMQD attempts
to generalize the rules in order to include some positive cvidence
without including any new negative evidence. This is accomplished
by relaxing the legal values for atom features that were specitied by
RULEGEN. RULEMOD examines cach atom in the bond environ-

"ment of the rule, starting with the atoms most distant from the s -
bond. It first checks to sce il the whole atom can be rerioved from
the graph without introducing any ncgative evidence. If it caanot,
then a hill-climbing search is perforined that iteratively removes
the one atom feature that allows the rule to include the largest .
amount of new positive evidence without introducing any negative
evidence. When the outermost atoms have been gencralised as
much as possible, RULEGEN examines the set of atoms that are
one bond closer to the fragmentation site. This scacch continues
until all poesible changes have been made.

Step 4. Select the final subset of rules. The procedure used in stcp 1 is re-
applied to sclect the final set of rules.

The key assumption made by RULEMOD is that RULEGEN has located rules .
that are approximately correct. RULEGEN points cut the regions of the rule
epace in which detailed searches are needed.

Notice that RULEMOD must frequently invoke the mass-spectrometer
simulator to assess the negative (incorrect) predictions of a proposed rule.
INTSUM provides only positive training instances to RULEGEN. Negative
instances are not provided to RULECEN dircctly because there are many
more ncgative instances than there are positive instances. This is a problem
that frequently arises in sysiems that are attcmpting to explain why some
particular set of events took place. Negative information must indicate every-
thing that did not occur.

All three of Mcta-DENDRAL'’s subprograms make use of some form of
the mass-spectrometer simulator. These versious of the simulator are fexible
and transparcnt. They allow the learning element to interpret the training
instances and to reason about the performance of a hypothetical modification
to the cleavage rules. Similar transparent performance clements are used in
systems that learn to perform multiple-step Lasks (sce See. XIV.DS).

Experiment planning and the search of the instance space. Meta-
DENDRAL docs not conduet a scarch of the instance space. Such a search
would require that Meta-DENDRAL select a molecular structure and ask
the chemists to synthesize it and obtain its mass spectrum. To choose an

438 Learning and Inductive Inference v

appropriate. molecule, Mcta-DENDRAL would need to invert the INTSUM
process, Given u set of possible bond cleavages that it wunted to verify, Mcta-
DENDRAIL would need to determine a molccule in which those bonds would
cleave. Once the molecule was chosen, existing organic-synthesis programs
could be used to plan the synthesis process (sce Article viL.C4, in Vol. 1I). The
chosen molecule might be dillicult or iinpossible to synthesize. Instance-space
scarching was not incorporated into Mcta-DENDRAL because of the complex
and time-consuming nature of these procedures.

Another View of the Meta-DENDRAL L earning Algorithm

In the previous section, we discussed the RULECEN/RULEMOD pair of
subprograms as a coarsc search followed by a fine search. Another view of
this process is that RULIGEN converts a multiple-concept learning problem
into a set of single-concept learning problems. This view regards the output
of RULEGEN not as a set of rules but as a clustering of the Lraining instances.
Once RULEGEN has completed its scarch, the program knows approximately
which training instances belong together as instances of a single cleavage rule.
At this point, a ringlc-concept learning algorithm could be applied to discover
this rule directly from the RULEGEN-supplied cluster of training instances
eather than by incremental modifications of the RULEGEN-supplied rule.

As part of his thesis work, Mitchell (1978) applicd the candidate-
elimination algorithm to this learning problem. Each approximate rulc devel-
oped by RULEGEN was used to build a set of positive and regative training
instances that were then processed by the version-space approach. This
technique resulted in a better sct of cleavage rules than those developed
with RULEMOD. The version-space approach has the advantage of support-
ing incremental learning, so Mitchell’s system can incorporate new training
instances as they becomc available.

Strengths and Weaknesses of the Meta-DENDRAL System

Meta-DENDRAL is an effective learning system applied to a real-world
domain. Meta-DENDRAL has discovered cleavage rules fos five struclural
families of molecules. The system providces solutions to the problem of inter-
preting training instances and to the problem of learning in the presence of
certain kinds of noise. These solutions are based on the incorporation into
the program of a large amount of domain-specific knowledge. This knowledge
enters the system in Lhe form of the half-order theory of mass spectrometry
(to guide interpretation) and in the use of a model-directed search of rule
space. .

The two-phase scarch of the rule space provides an efficient method foe
searching a large space and also suggests how a multiple-concept learning
problem can be converted inte a set of single-concept learning problems.

D4b Meta-DENDRAL 437

Among the weaknesses of the system™are its domain-specific representation
and the fact that much of the domain knowledge is buried in the code rather
than represented as an explicit knowledge base.

References

Lindsay, Buchanan, Feigenbaum, and Lederberg (1980) present a com-
prehensive survey of the many programs developed during the DENDRAL
project. Buchanan and Mitchell (1978) describe Meta-DENDRAL as an Al
learning system. Mitchell (1978) discusses the application of the candidate-
elimination algorithm to Mcta-DENDRAL,

D4c. AM

AM is a computer program written by Douglas Lenat (1976) that discovers
concepts in elemcntary mathematics and set theory. Unlike most of the
learning systems described in this chapter, AM does not learn concepts for
use in some performance task. lnstead, it secks simply to define and evatuate
interesting concepts on the basis of a knowledge of mathematical aesthetics.
It employs a refinement-operator approach (see Article XIV.D1) to conduct a
hy “sistic search of a space of mathematical concepts.

M starts with a substantial knowledge base of 115 concepts selected from
finite set theory. As AM runs, it collects examples of these concepty, ercates
new concepts, and hypothesizes conjcctures rolating the concepls Lo cach
other. During one typical run of a few CPU hours' duration, AM defined about

200 new concepts, half of which were quite well known in mathematics. One .

of the synthesized concepts was equivaleat to the concept of natural numbers.
AM'’s knowledge of mathematical aesthetics led it to pursue this concept in

depth, and it speat much time developing elementary number theory, includ-.

ing conjecturing the fundamental theorem of arithmetic (i.e., every number
has a unique prime factorization). This impecssive perforinance can be traced
to AM'’s large body of knowledge about mathematics and its ability to apply
this knowledge to discover new concepts and conjectures, '

In this article, we first describe AM’s architecture in terms of its repre-
sentation for concepts and its control structure for deciding what tasks to
perform. Then we change our perspeetive and show how AM can be viewed as
searching an instance space and a concept space by the refinement-operator
method. Third, we examine the initial contents of AM’s knowledge base and
teview brictly the concepts that it discovered. Finally, we attempt to sum-
marize the strengths and weaknesses of AM's approach ty concept discovery.

AM's Architecture

AM is a blend of three powerful methods: frame representc on, production
systems, and heuristically guided dest-first search. We discuss each of these
in tuen.

Frame representation. The concepts that AM discovers and manipu-
lates are represented us frames (see Article 111.C7, in Vol. 1), each coataning
the same fixed sct of slots. flach concept has slots for its definition, for known
positive and negative ezamples, [or links Lo other concepts that are specializa-
tions and generalizations of the concept, for telling the worth of the concept,
and for several other things. Figure D4e-1 shows the [rame representation of
the PRIMES concept after it has been discovercd and filled in by AM.

438

D4c AM 439

‘NANE: Prime Numbers
DEFINITIONS:
ORIGIN: Number-of-divisors-of(x) = 2
PREDICATE-CALCULUS: Prime(z) = (V2)(z |t = 321 @ 2 = 2)
ITERATIVE: (for x > 1): For i from 2 to sqrt(x), ~(i | %)
EXAMPLES: 2, 3, S, &, 14, 13, {7
BOUNDARY: 2, 3
BOUNDARY-FAILURES: O, 1§
FAILURES: 12

GEMERALIZATIONS: MNos., Noa. with an even no. of dhuérl.
Nos. with a prime no. of divisors

SPECIALIZATIONS: Odd Prises, Prime Pairs, Prime Uniquely-addables

CONJECTURES: Unique factorization, Goldbach’s conjecture,
Extremes of Number-of-divisors-of

AMALOGIES:
Maximally divisible numbers are converse extremes of
Number-of-divisors-of,
Factor a nonsimple group into simple groups

INTEREST: Conjectures associating Primes with TIMES
and with Divisors-of

WORTH: 800

Figure D4c-1. AM's frame representation of the PRIMES concept.

The DEFINITIONS slot is the most important. It provides one or more LISP
predicates that can be applied to determine whether something is an example
of the concept. AM knows a concept when it has a definition for it. How-v~:,
the frame representation allows AM to reprcsent more knowledge about a
concept than just its definition. The CONJECTURES, SPECIALIZATIONS, and
GENERALIZATIONS slots, for example, all describe different ways in which
concepls are refated Lo ench other. Furthermore, attached to ench slot in a
concept arc heurislic rules (nov shown in the ligurc) that can be exccuted to
Jill in the contents of a slot or to check the contents to sec if they are corcect.
These heuristic rules form a production system that carries out the actual
discovery process.

. 440 Learning and Inductive Inference xv

Production systems. AM operates as a modified production system.
Each of the 242 hcuristic rules attached ta the coneept slots of AM's knowledge
base is written, as in all production systeins, as a condition part and an
action part. The condition part wells under what conditions the rule should
be executed, and the action part carries out some task such as creating a new
concept or finding cxamples of an existing concept. For instance, the following
heuristic rule is attached to the EXAMPLES slot of the ANY-CONCEPT [rame:

If: The current task is “Fill in cxamples of X”
and X is a specialization of some concept Y,

Then: Apply the definition of X to each of the examples of ¥
: and retain those that satisly the definition.

The main dilference Letween AM's production-system architecture and
the standard recognize-act cycle is the way rules are sclected for exccution.
Recali that in an ordinary production system, the condition part of each
rule is compared to the contents of a working memory, and all rules that
match are executed. In contrast, AM is mnuch more selcetive about which
rules it exccutes. It operates from an agenda of tasks of the form “Fill in (or
check) slot § of concept C." Each task has a numeric “interestingness” rating.
AM repeatedly selects the most interesting task from the agenda, gathers all’

" heuristic rules relevant to performing that task, snd executes thoee rules that
are ~ctually applicable.

To locate those heuristics that are relevant to the task “Fill in (or check)
slot § of concept C," AM looks at slot § of concept C to see if it has any
attached heuristics. 1If it does, those hcuristics are executed. [f not, AM
examines relatives of concept C Lo see if any of them have heuristics that can
be inherited by C and applied. For cxample, when AM is looking for rules
relevant to the task “Fill in examples of sets,” it finds no heuristics attached
to the EXAMPLES slot of SETS. Cousequently, it looks at coucepts such as .
ANYCONCEPT, which are more general than SETS. The EXAMPLES slot of

T s - - ANYCONCEPT has an attached heuristic that-says: ... s

If: The current task is “Fill in examples of X”
and X has a recursive definition,

Then: Instantiate the base step of the recursion to get -
a boundary example,

When AM applies this heuristic rule, it creates the null set as a boundary
EXAMPLE of sETS. leuristics that are closely related to C are executed before
heuristics of distant rclatives.

A heuristic rule ean do one or more of the lollowing:

1. Fill in slot § of some concept C. This covers many activities, including
finding new examples for a concept, proposing conjectures, and providing
guidance for the scarch by modifying the WORTII slot of a concept.

. Dae - : AM 441

2. Check slot § of concept C. The process of checking a slot involv-s verifying
that the contents of the slot are correct and noticing interesting facts
about a slot. Often, a rule will check a slot and notice that some new
task should be performed as a result. For example, one rule notices that
all of the examples of one concept, X, arc also examples of a more specific

.. concept, Y. It conjectures that X and Y are equivalent and proposes
the task “Check examples of Y™ to see if Y is actually equivalent to an
even more specific concept, 2.

* 3. Create new concepts. Ncw concepts are created by adding a new frame
to the knowledge base and filling in the DEFINITIONS slot of the frame.
Usually the WORTH siot is (illed in as well.

4. Add new tasks to the agenda. Olten, a rule will propose thut a new task
.~ be added to the agenda. For example, 3 rule that creates a new concept,
" X, will propose the new task “Fill in examples of X.” Moat rulcs that
generate examples of X will propose the task “Cheek examples of X.*

S. Modify the interestingness of a task on the agenda. The numerical intemL
ingness of a task is computed from a list of “reasons” for performing
the task. Thus, a rule can add a new renson to an existing task. This
is anothcr way of providing gnidance in the search for concepls and
conjectures.

Best-first search. The procedure of always choosing the most interest-
ing task frotn the agenda gives AM the tlavor of best-first search. This search is
well guided by heuristics that modify the INTCRESTINGNISS and WORTH slots

" of concepts and that propose and justily agenda tasks. AM has 59 licuristics

for assessing the interestingncess of concepts and tasks. One rule, for example,

- suys that a conccpt is intercsting if cach of its examples accidentally satisfies

an otherwise rarcly satisfied predicate P. (The satisfaction is accidental if the'
concept was not deliberately delined as the set of things satisfying P.):
Without heuristic guidance and the agenda mechanism, AM woild be

"swamped by a combinatorial cxplosion of new concepls. However, the fact

that it creates only 200 new concepts and that haif of them are acceptable to:
a mathematician shows that its search is quite restrained. AM is an excellent

- example of the power of well-informed best-first search.

AM and the Two-space View of Learning .

Thus far, we have discussed the architecture of AM. We now turn our
attention to how this architccturee is used to accomplish learning. Although
its 242 heuristic rules arc extremely varied and can perform many diverse
functions, AM tends to behave as if it were exccuting the following loop:

Repeat:

Step 1. Select a concept to evaluate and generate examples of it.

b S A 1t A

Bt o, e & e A

-

“2 Learning and Inductive Inference xav

Step 2. Check these examples looking for regularitics. Based on the regu-
larities,
(a) update the assessment of the interestingness of the concept,
{b) create new concepts, and

{c) create new conjectures.

Step 3. Propagate the knowiedge zained (especially from new conjectures)
to other concepts in the system.

ln terms of the two-spice view of learning, step | searches a space of instances,
step 2 examines these instances and scarches the space of concepts {the rule
space) and conjectures, and step 3 performs bookkeeping to maiatain the
consistency and integration of the knowledge base. We examine each of these
steps in more detail.

Searching the instance space. When a concept is ereated, AM knows
very little about that concept aside from its LISP definition. In fact, when
AM s first started up, none of its 115 initial concept [rimes has any exam ples
filled in. Thus, one of the firat tasks it must perform—in order to assess the
value of the concepts and develop conjectures—is to gather examples (and
negative examples) of its concepts. AM has more than 30 heuristic rules to
guide this example-generating process. Here are some of the techaiques they
use:

1. Symbolic instantiation nf definitions. Symbolic instantiation converts the

delinition of a concept into an example. Tyvically, each concept has,
as one of its definitions, a recursive LiS1? predicate. The base step of
this recursion can be instantiated to give an instance that satisfies the
detinition. For example, one of the definitions of the SET concept is:

(lambda (s)
(or (= s (D
(set. . definition (remove (any-member s) s)))) .

Since the first thing this delinition checks i3 Lo sce if s is the null set,
we can conclude that the null set iy an example of a set. Similarly, AM
knows that removing is the opposite of inserting, so it can deduce that
{{}} is also a set by inserting {} into itsell.

[&]

Generate and test. Another approach used by the program is to generate
examples and test them against the concept definition. In order to
generate examples of some concept C, the progeam looks at “nearby”
concepts in the knowledpge base. 'oe example, AM may look at generaliza-
tiony of {concepts more general than C), operations that have € in
theie eange, consing of € (concepls thit share & common generalization
or specialization with C), and even random LISIP atoms from various
internal lists inside AM {such as the list of users of the system).

3. Inheritance of ezamples. If concept C has other concepts that are more
specialized than it, any example satisfying these more specialized coneept
definitions will satisfy C. lixamples can thus be inherited *up” the

D4e - AM . 443

generalisation hierarchy. Similarly,"ncgative examples can be inherited '
“down” the generalisation hierarchy.

4. Applying the algorithm of the concept. So-called active concepts (i.e., opers-
tors such as SET-UNION) have aigorithms that compute an element in
the range of the concept when given valid arguments from the domain.
Thus, by randomly sclecting domain items and applying these algo-
rithms, AM can produce new examples. For instance, il {A} and {B}
are scts, then SET-UNION.ALGORITHUMS produces {A, B}, and the list
{{A}, {B}, {A, B}) forms a positive example of SET-UNION.

S. Reasoning by wiews or by analogy. The VIEWS slot of a concept provides
an algorithm for converting instances of one concept into instances of
another. The ANALOGY slot yives less precise inforraation about how
instances of one conrept are related to instances of another concept. AM
can use these Lwo slots Lo map existing cxamples into examples of the
concept under construction. '

When AM nceds to fill in examples of a concept, it atlempts to apply these
methods until it has developed 28 examples of the concept (o until it has
exhausted its time or space quota for the current task).

A particularly interesting feature of AM is its ability to locate the dound-
ary of a concept. Examples of a concept arc classified according to whether
they are: ’

1. Normal positive examples,

2. Boundary positive examples,

3. Boundary negative examples (i.e., what Winston, 1970, calls near misses),
4. Normal negative examples, or

5. Just plain weird (i.e., have the wrong data structure).

Most examples produced by the above-mentioned techniques will turn out to
be normal positive examples (or normal negative examples, if they do not
satisfy the concept delinition). Some of the example-gencration techniques,
however, are faulty. They can accidentally generate negative examples. A
particular case is the VIEW slot of SETS that teils AM that it can view a bag
as a set by changing the] brackets (that represent a bag) to {} b .ces. This
does not always work (e.g., when the bag [a, b, a} is viewed as thav .et {a,b,a}
which contains an impermissible duplicate clement). When AM checks these
examples against the definition of a set, it discovers that they fail. Such
negative examples are classified as boundary negative examples.

Boundary positive examples can be found by such techniques as instan-
tiating the base case of a recursion (which alinost always produces a boundacy
case) or by taking boundary non-examples of more specialized concepts and
determining that they sztisly the concept definition. Another technique is to
take a normal positive example and progressively modily it until it fails to
satisly the definition. This isolates the boundary of the concept quite well.

7

‘444 Learning and Inductive Inference Xiv

By applying all of these techniques, AM is able to gather a good set
of examples that can‘be used for analysis and gencealization. AM can also
assess how much effort was expendcd to obtain these examples. Thus, it can
conclude that a predicate is “rarely satislicd” or “easily satisfied.” All of these
empirical data are used to drive the search of the rule space and the search
for intercsting conjectures.

Scarching the rule space. The rule space for AM is the space of
all possible instantiations of its concept frame. This is indeed an immense
space. To search it, AM applies a refincraent-operator method similar to the
techniques employed by BACON and ID3 (see Article XIV.D3b). The current
sct of concept frames can be thought of as AM’s current set of hypotheses.
These hypotheses are repeatedly rcfined and extended by applying operators
(i.e., heuristics) that create new concepts and conjecturcs.

AM has roughly 40 heuristics that create new concepts. These can be
broken into two scts. One set of heuristies is general and can be applied to
virtually any concept in AM. The second set is applicable only to functions
and relations-—active concepts that can he viewed as inapping elements from
some dom:in set into some range set. The gencral mcthods are:

1. Generalization. AM implements, in some form, virtually all rules of
generalization that have appeared in other Af programs. The dropping-
ccndition, adding-option, and turning-constants-to-variables rules are
all used. Also implemented is the technique of specializing a negative
conjunct [e.g., A A -B is generalized to A A =8, where B’ is more
specific than B). AM can generalize expressions involving quantification,
for cxample, converting 3z € S : P{z) to 3z € §' : P(z), where §’
is a lurger sct than S. Since the definitions of concepts are typically
recursive LISP® functions, AM contains many rules of generalization that
are applicable to recursion. For instance, a definition can be generalized
by eliminating onc of a conjoined pair of recuesive calls or by disjoining
a new recursive call. [n particular, AM knows that il onc recursive call
involves CAR (or CDR), the other recursive call should use CDR (or CAR,
respectively). ’

2. Specializatinn. AM 1so implements a wide variety of rules of specializa-
tion. These are the reversals of the rules of generalization mentioned
above.

3. Ilandling ezceptions. When a concept has a lot of exceptions {negative

boundary examples), a new concept can be created whose instances

- are these negative cxamples. Also, AM can create the concept whose

instances are those positive examples, but not boundary examples, of

the original concept. This allows AM to represent Lhe conjecture that
all prime numbers are odd—except the number 2.

4. Reasoning by analogy. If J is a conjecture and J’ is an analogous conjec-
ture, then AM can create the concept {§' | J'(4)} and also the concept

A
B e L T T T

D4e

T S S T e gt L i e e o e et 10 2o e

AM 445

{8’ | ~J'(8)}, that is, the set of cbjects for which J' is true and the set
of objects for which J' is false.

AM’s concept-creation methods that apply to active concepts (mappings)
usually produce new active concepts. New concepts can be created by the

following:

1.

Generalization. The domain and range of an existing concrot can be
expanded.

Specialization. The domain and range of an existing concept can be
contracted (restricted).

Inversion. The inverse of an existing relation can be created. AM can also
create interesting concepts such as the inverse image of an interesting
subset of the range und the inverse image of an intercsting value in the
range.

Compasition. Two functions F(z) and G(y) can be composed to obtain
the new functions F(G(y)) and G{F(z}). ‘

. Projection. An existing multiple-argument function ¥ can be projected

onto a subset of its arguments. For example, Proj2(#'(z, y)) is just y.

Coalesce. The arguments of F(z,y) can be coalesced to produce a new
function, G(z) = F(z, z).

Canonization. This method takes two predicates, P, and P;, and
defines a function, F, and a set, the range of F, such that Pi(z,p) =
Py(F{z), I'(y)). If z and y are instances of concept C, then FF maps C to
the set of canonical C. Thus, P; applied to canoanical C is the same as
Py applied to C. AM uses this operation to invent NUMBERS by taking
SAME -SIZE(z, y) as P, and EQUAL(z,y) as P;, and applying them to
bags to create the canonizing function SIZE-OF(z) and the concept of
CANONICAL-BAGS (i.c., bags vhat contain only T'). CANONICAL-BAGS
can be interpreted as numbers.

. Parallel-replace and parallel-join. These concept-creation operators come

in many varieties and are used to create ncw concepts by repeated

~ application of old concepts. Multiplication, for example, can be created

10.

by repeated addition (with the parallel-replace method).

. Permutation. The arguments of a function or relation can be permuted

to give a new functicn or relation.

Cartesian product. A ncw concept can be obtained by taking the Cartesian
product of cxisting concepts.

Many of the refinement oocrators in this group (e.g., COALESCE, COMPOSI-
TION) arc also concepts defined in AM. It is perhaps only in mathematics that
the means of study are also the objects of study.

R Y

-~
-
Y
-

446 Learning and Inductive Inference xIv

: o ' Representing and proposing conjectures. Roughly 30 of AM's rules
: also propose conjectures based upon examination of the empirical data. Con-
jectures take one of the following forms:
C) is an example of Cs;
C\ is a specialization (genernluahon) of Cz.
C, is equivalent to Cy; ‘
C\ is related by X to C; {where X is some predicate);

.
FalE o

Operation C; has domain D or range R.

— . Most of these conjectures are discovered by performing rough statistical
: comparisons of examples. [f all of the examples of C; are also examples of
Ca, then AM conjectures that C; is a specialisation of Cz. If AM is unable
; to find ncgative examples of C,, it conjectures that C, is trivially true. If
all examples of elements in the range of C, secin to be numbers, then AM
conjcctures that C| has numbers as its range. If ail of the range elements of
C, are cqual to corresponding domam clements, then perhaps C, is the same
as the identity function.

Conjectures, once proposed are believed completely by AM. The relevant
slots are changed, and the changes are propagatcd throughout the knowledge
- basc. If two concepts are conjectured to be equivalent, they are merged aad
= the space occupied by one is releascd. AM can also modify the LISP definitions
to take advantage of new conjectures.

— Propagating acquired knowledge. Several heuristics (including those
_ ’ that locate and generate exam ples) scrve to propagate new information through-
- . out the network of frames that. constitutes AM’s knowledge base. These are
o St faiely straightforward and make heavy use of the three sels of inheritance
¥ : links (13-AN-EXAMPLE-OF/EXAMPLES, SPECIALIZATIONS/GENERALIZATIONS,
DOMAIN/RANGE). i

. To complete our review of AM l‘rom the perspective of the two-space
~ view of learning, we note that. although the example-generation tech-
niques discussed above perform sophisticated instance selection, there is no
. corresponding need for complex interpretation routines like those found in
A Meta-DENDRAL. On the contrary, since mathematical objects are easily rep-
) resented and manivulated in LISP, there is no need to convert them to some
alternate representation. More sophisticated instance selection and inter-
pretation routines would probabiy be necded for nonmathematical domains.

o s B 9y s o e <

AM’s Initial Knowledge Base

- We now turn our attention to AM's actual performance. First we describe
- the knowledge that it started with, and then we give a summary of the
‘ concepts and conjectures it found.

|

Die _ AM 7

AM's initial knowledge base contains the basic conccpt hierarchy shown
in Figure D4c-2. In addition, beneath the concept of STRUCTURE are many
important data structures: SETS, ORDERED SETS, BAGS, LISTS (i.e., ordcred
BAGS), and ORDERED PAIRS. Under the ACTIVITY concept a-: many opera-
tions such as SET-INTERSECT, SET-UNION, SET-DIFFERENCE, and SET-
DELETION (and analogous operations for BAGS, ORDERED SETT, and LISTS).
Also, several of the concept-creation operators such as PARALLEL-JOIN,
RESTRICT, PROJECTION, and so forth, are included here. Under PREDICATES
are the constant predicates TRUE and FALSE, as well as the concept of EQUAL-
ITY. Finally, the most important part of the initial knowledge base is the body
of 242 heuristic rules attached to various concepls in this trce. Most of these
were summarized above.

Results: AM as a Mathematician

Now we review the mathematics that AM explored. Throughout, AM
acted alone, with a human user watching it and occasionally renaming some
concepts for his (or her) own benefit. Like a contemporary historian sum-
marizing the work of the Babylonian mathematicians, we will use present-day -
terms to describe AM’s concepts, and we will criticize its behavior in light of
our current knowledge of mathematics.

ANYTHING

ANYCONCEPT NONCONCEPT

ACTIVITY) OBJECT

OPERATION PREDICATE RELATION ATOM CONJECTURE STRUCTURE

Figure D4c-2. AM’s initial concept tree (partially shown).

448 Learning and Inductive Inference xav

AM began its investigations with scanty kncwledge of a few set-theoretic
concepts. Most of the obvious sct-thcoretical relations (e.g., de Morgan's
laws) were eventually uncovered; since AM never fully understood abstract
algebra, the statement and verification of each of these was quite cbscure. AM
never derived a formal notion of infinity, but it naively established conjectures
like “A set can never be o member of itsell” and procedures for making
chains of new scts (“Inscrt a set into itseif”). No sophisticated set theocy
(e.g., diagonalization) was ever done.

After this initial period of exploration, AM decided that cqualﬂ.y was
worth generalizing and thereby discovered the relation “same size as.” Natural
numbeers were based on this discovery, and, soon after, most simple arithmetic
operations were defined.

Siuce addition arose as an analogue to union, and mulitiplication as a
repecated substitution, it came as quite a surprise when AM noticed that they
werc related (namely, N + N = 2 X N). AM later rediscovered multiplication
in three other ways: as repeated addition, as the numeric anualogue of the
Cartesian product of sets, and using the ca.rdma.ht.y of the power set of the
union ol two sets.

Raising to fourth-powers and taking fourth-root.s were discovered at this
time. Perfect squares and perfeet fourth-powers were isolated. Many other
numeric operations and kinds of numbers were found to be of interest: odds,
evens, doubling, halving, integer squarc root, and so on. Although it isolated
the sct of numbers that had no square roots, AM was never close Lo discovering
rationals, let alone irrationals. No notion of “closure” was provided to—or
discovered by—AM. ‘

The associalivity and commutativity of multiplication indicated to AM
that it could aceept a bag of numbers as its argument. When AM defined
the inverse operation corresponding to “times,” this property allowed the
definition to be: “any bag of numbers greater than | whose product is 2" This
was just the notion of factoring a number z. Minimally factorable numbers

_ turned out to be what we call primes. (Maximally fnctornbk: numbers were

also thought to be interesting.)

Prime pairs were discovered in a bizarre way: by restricting thc domain
and range of addition to primes (i.c., solutions of p+ ¢ = r in primes).

AM conjectured the fundamental theorem of arithmetic (unique factoriza-
tion into primes) and Goldbach’s conjecture (every even number greater thaa
2 is the sum of two primes) in a surprisingly symmetric way. The unary
represcntation of numbers gave way to a representation as a bag of primes
(based on unique factorization), but AM never came up with exponential nota-
tion. Since the key concepts of remainder, greater than, greatest common
denominator, and exponentiation were never mastered, progress in number
theory was arrested.

When a new base of geometric concepts was added, AM beg'm finding
some more general associations. In place of the strict definitions for the

D4c : AM 149

equality of lines, angles, and triangles cime new definitions of concepts com-
parable to parallel, equal measure, similar, congruent, translation, and rota-
tion, together with many that have no common name (c.g., the relatioaship
of two triangles sharing a common angle). A clever geometric interpreta-
tion of Goldbach’s conjecture was found: Given all angles of a prime num-
ber of degrees (0°,1°,2°,3%,5°,7°,11° ...,179°), any anglc betwcen 0 and
180 degrees can be approximated (to within 1°) as the sum of two of those
angles. Lacking a geometry “model” (an analogical representation like the
one Gelernter, 1963, employed; s2e Article 1.D3, in Vol. 1), AM was doomed to
propose many implausible geometric conjectures (see Article 111.C5, in Vol. 1).
Perhaps a (ull appreciation for the depth of AM’s search of the concept
space can be gained by examining Figure D4c-3, which shows the derivation
path for prime numbers. It is eight levels deep and requires 14 concept-
creation operations. This derivation is quite impressive, both because of its
depth, and because the f{inal concept is so far removed semantically from
the initial concepts. Note, in particular, the fascinating way in which a new
concepl, SELF-COMPOSE, is used as a new operator Lo derive TIMES21 and
TIMES22. AM is able to search in a highly directed, rational fashion.

Evaluating AM

It is important to ask how general the AM program is: Is the knowledge
base “just right” (i.e., finely tuned to elicit this one chain of behaviors)?
The auswer is no: The whole point of this project was to show that a rela-
tively small set of general heuristics can guide a nontrivial discovery process.
Keeping the program general and not finely tuned was a key objective. Each
activity or task was proposed by some heuristic rule (like “Look for extreme
cases of X") that was used time and time again, in many situations. [t was
not considered fair to insert heuristics that provide guidance in only a single
situation. For cxawnple, the same heuristics that lead AM to decompose num-
bers (using TIMES-inverse) and thereby discover unique factorization, also lead
to decomposing numbers (using ADD-inverse) and the discovery of Goldbach'’s
conjecture. ' .

AM does, however, have some weakneases. Although AM was able to
discover and refine many intcresting new concepts, it had no way of improving
its stock ol heuristic rules. Consequently, as AM ran longer and longer, the
concepts it defined were further and further from the primitives it began
with, and the eflicacy of its fixed set of hcuristics gradually declined. Lenat
(1980) has proposcd a solution to this problem. Ile advocates turning cach
heuristic rule into a concept and developing additional operators for crealing
new heuristics. The RURISKO project is presently pursiing this research.

A deeper problem has to do with some of the characteristics of the domain
of mathematics that may nol hold in other domains. Onc important fact
about clementary mathcmatics is that the density of interesting concepts

450

Figure 04c¢-3

T.esenine and Inductive Inference

restrict domain and range

DIVISORS-OF DOU BLETONS

compose specialize range
& ‘ SET-INSERT

puallel-;om 2 invert specialize examples
'/ N\
/

STRUCTURES PROJ!

éé

merge specialize mt.erest

SETS

self-compose — — —-self-compose = === - @
coalesce

parallel-join 2

\ 1
\

COMPOSE

canonize-op
. . Key:
generalize-recursive All concepts are in SMALL CAPITALS
EQUAL -

All concepts invented by AM are circled
All concept-creation operaturs are in lower case

D4c . AM . 451

is quite high. AM reclics on the abililty to build up complex conccpts from
more primitive concepts in a step-by-step fashion. At cach step, the partial
concepts must appcar to AM to be interesting. In many domains, howcver,
it is not possible to assess the intercstingness of partial solutions. Consider,
for example, the problem of credit assignment in a gaie such as chess. For a
novice cheas player, it is necessary to play an cntire game before recciving any
fecdback on the quality of individual moves. Even as a player becomes expert,
it is still necessary to searcn several moves in advaace in order Lo cvaluate a
particular choice. [Future efforts Lo develop AM-style discovery systems in
other domains may face difliculties in evaluating the worth of concepts. More
sophisticated intcrestingness heuristics may need to be developed. Work on
the EURISKO project may provide some answers to these questions.

Conclusian

AM is a powerful ciscovery system that investigates and refines concepts
in clementary set and nuimber theory. It begins with a large body of knowledge
about what kinds of coucepts are mathematically interesting and how they
can be synthesized from existing concepts. This knowledge can then carry
AM far beyond its initial store of concepts to discover prirae numbers and the
funaamental theorem of arithmetic.

References

Lenat (1976) provides complete details on AM; see - also Lenat (1977)
Lenat (1980) describes the EURISKO pro;ect

*

-~

-
’° .
: W
. —
[2P, EL.

~
y

-
7
i
¥

-

D5. Learning to Perform Multiple-step Tasks

MOST of the learning programs discussed so far in this chapter were designed
to learn how to perform single-step tasks—that is, tasks in which one rule, or a
set of independent rules, can be applied in one siep to accomplish the perfor-
mance task. In pattern classification (Article XIV.D2} and single-eoncept learn-
ing (Sec. X1v.D3), the performance element takes an unknown object or pattern
and assigns it to one of two classes (e.g., an arch or a “nonarch”). These sys-
tems apply a single classilication rule, or concept, to perform the classification.
iven the sequence-extrapolation problems addressed by BACON (Article
X1v.D3b) and SPARC (Article X1v.D3d) involve applying a single rule to predict
the next item in the sequence from the previous items. Similacly, in the
multiple-rule tasks of scybean-discase diagnosis (Article XIV.D4a) and mass-
spectrometry simulation (Article X1v.D1b), several rules are applied in paralicl
to determine the unknown disease or to predict how the unknown molecule
wiil break apart. h

Multiple-atep Tasks

In contrast, this section surveys a few learning systems that learn how
to perform multiple-step tasks—that is, tasks in which several rules must Le
chained together into a sequence. Examples of multiple-step tasks include
the game of checkers, in which rules for making individiual moves must be
chained ‘ogether to play a whole game, and symbolic integration, in which
several rules of integration must be applied sequentially to solve each integral.
The goal of the learning system is to acquire a good set of rules for performing
these tasks.)

Multiple-step tasks are essentially planning tasks in which the perfor-
mance element must find a sequence of operators to get from some startiug
state (e.g., the opening position in checkers) to some goal state {e.g., a won
game). The chapters on search (Chap. 11, in Vol. 1) and planning (Chap. xv)
describe various methods that have becn used to accomplish this state-space
search (sec Article 1.C3, in Vol. 1). S far, Al learning systerms have been devel-
oped only for siinple, forward-chaining planning programns. No attempis have
been made Lo learn how to perform hierarchical or constraint-bascd planning.

Viewing the Performance [llement as a Production System
The first four systems deseribed in this scction—Samuel's (1959) checkers

player, Waterman's (1970) poker player, Sussman’s (1975) IACKER planaing
system, and Mitchell's LEX system for symbolic integration (Mitchell, Utgolff,

452

Y Baste i d e,

DS Learning to Perform Multiple-step Tasks 453

and Baneri, in press)—are all simple, forward-chaining protlem solvers and,
thus, can be viewed as simple production systems. The grammatical-inference
systems discussed in the fifth article (Article XIV.D8e) employ coutext-free
grammars, which can als; be considered production systems. The knowledge
base for each of these systems contains a set of production rules of the form:

(situationy} =+ (action;)
(situationg) =+ (actiony) .
{situation,) =o (actionn) .

The performar :e clement repeatedly selects a rule whose situation part (left-
hand side) matches Lhe current state and applies the rule by performing the

action indicated (right-hand side). The action usually has the effect of moving

the performance element to a new state, closer to the goal.
Fér most of the programs discussed in this section, the possible actions

are provided in advance. The problem addressed by the learning element is to -

determine under what situations the actions should be applied. This learning
problem is similar in many ways to the problems addressed in Section Xiv.D4
on lecarning multiple concepts.

However, two factors make this learning problem more difficult. Fiest,
because the rules must be chained together, the learning element has to
consider possible interactions among the rules when it modifies the knowledge
base. In LEX, for example, the lcarning clement might decide that in aay
integral of the form

/ ef(z)dz,

the constant ¢ should always be factored out. This is expressed in LEX as the
prcduction rule

If the integra.l has the form féj(z) dz, then apply OPO3,

where OP03 converts [cf(z)dz to c [f(z)dz. Unfortunately, if the constant
cis 0 or 1, this is not an advisable step. Instead, OP08 (coavert 1- f{z) to f(z))
or OP15 (convert 0 f(x) to 0) should be applied. When LEX is learning the
production rule for OP03, it must.take into account these possible interactions
with OP08 and OFi5. In fact, LEX's goal is to discover the best operator to
apply in every sitnation. Thus, any time more than one operator is applicable
because of overlapping left-hand sides, LEX must climinate the overlap. In
this case, the appropriate rule foe OP03 is: '

If the integral has the form Jeflz)dz A e 50 A ¢ 5 1, then apply OPOS.

This is a particular instance of the general problem of incorporating new
kroawledge into the knowledge base (see Article XIV.A).

4154 Learning and Inductive Inference xv

The second diflicult aspect of multiple-step tasks is the problem of credit
assignment. In single-step tasks, the system has available a performance
standard that can be employed immediately after a rule is applied to deter-
mine whether or not the rule is correct. In discase diagnosis, for example,
the learning element reccives the correct disease classification along with each
training instance. The performance elemnent can apply its diagnosis rules and
reccive immediate feedback on the correctness of those rules. The perfor-
mance standard caa even be incorporated directly into the learning process
as in the version-space method, in which the correct classification determines
how the version space is updated.

In multiple-step tasks, however, feedback from the performance standard
is not usually available until the game is completed or the problem is solved.
The program can determine only whether the entire sequence of rules was
good or bad. The credit-assignment problem is the problem of converting this
overall performance standard into a performance standard for each rule. The
¢ rail credit or blame must be parceled out somchow among the individual
rules that were applied.

The Importance of a Transparent Performance Element

To solve these problems of integration and crcdit assignment, it is criti-
cally important for the perforinance element to be transpzrent. A transparent
performance element can provide the learning clement with a trace of all
actions that it considered, as well as those it actually performed. This allows
the learning clement to determine all of the rules that might have been appli-
cable at each step of the probicin-solving process. Such information makes it
easicr to solve the problem of integrating new rules:into the knowledge base.

A complcte performance trace also aids the credit-assignment task. During

credit assignment, it is very useful to know why the performance clement

chose the rules that it did and what it expected those rules to do. By compar-
ing the goals and expectations of the performance clement with what really

__transpired, credit and blame can be assigned to individual decisions.

Eztracting Local Training Instances from the Performance Trace

When the learning system for a multiple-step task is presented with a

training instance—such as a board position in checkers and knowledge of
which side can win from that position—it eannot immediately lcarn from the
training instance. Instead, it must actually perform the task -that is, play
out th.2 checkers game —and compare the result with the information supplied
by the performance standard —that is, which side should have won. Duting
credit assignment, it can actually decide which individual decisions were good
and which bad, and these evaluated decisions can serve as training instances
for learning the lcft-hand sides of the production rules in the knowledge base.

DS Learning to Perform Multiple-stcp Tasks 455
By performing the task and assigning credit and blame, the “global” training

instances can be converted into “local” training instances.
For example, 1n LEX. a global training instance consists of an integral

such as
/ 2z% dz

along with knowlcdge of whether or not the integral can be solved. The

solution trace (see Fig. D5-1) shows that OP12 should not have been applied,

since it leads to a complicated expression that requires several wnore steps to

solve, but that OP03 and OP02 were used correctly.
Thus, three local training instances can be extracted:

/2:’«1: = OP12 (negative).
/2:’:1:: = OPO3 {positive).
2 / *dz = OP02 (positive).

Once local training instances have been extracted, the techniques for
doing concept learning discussed in Sections XIV.D3 and XIV.D4 can be applied
to learn the left-hand sides of the production rules in the knowledge base.
Figure D5-2 shows a slight perturbation of the simple learning-system model

presented in Article XIV.A. The model now contains a loop in which the

performance trace is analyzed by the learning element to extract local training
instances. Global training instances are still supplied by the environment.

J2z? dz
oP12 OP03

2,4;._[1;.243 2f:£’dz

NS

Figure D5-1. A'sample performance trace.

i
i
]
|

458 Learning and Inductive Inference xv
Performance
Element -
Per;t;rm:nce Knowledge
ac Base
_ Learning
Environment Element

Figure D5-2. A modified model of learning systems.

Qutline of This Section

The five systems presented in this section all perform multiple-step tasks
and, consequently, must address problems of integrating new rules and assign-
ing credit and blame. Waterman, and to some exteut Sarmuel, simglifics
the credit-assignment problem by obtaining a move-by-move performance
standard from the cnvironment. Furthermore, all of the systems, except
Waterman's poker system, ignore the problem of integrating new rules into the
knowledge base. Work in this area is still in its infancy, and more sophisticated
learning systems for multiple-step tasks can be expected in the future.

References

Buchanan, Mitchell, Swmith, and Johnson (1977) provide another perspec-
tive on the usec of feedback in learning systems.

D5a. Samuel’s Checkers Player

From 1947 to 1967, Arthur Samucl condactzd a continuing research project
aimed at developing a checkers-playing program that was able to lcarn from
experience. Samuel investigated three dillerent representations for checkers
knowlcdge—memorized moves, polynomial evaluation [unctions, and signa~
ture tables—and two diffcent training methods—sell-play and book-move
learning. The work on rote learning of checkers moves is discussed in Article
X1v.B2. The present article discusses two specific learning situations: (a) self-
play as it was used to learn a polynomial evaluation function and {b) book-
move training as it was used to learn a set of signature tables. Samuel
experimented with several other combinations of training methods and repre-
sentations (for more details, see Samuel, 1959, 1967).

The performance element in all of Samuel’s systems employs a look-ahead,
game-tree scar-h to determine which moves to make (see Articles 11.B3 and
1.CS, in Vol. 1). The performance element uses a static evaluation function
(Article 1.CS) to evaluate possible future positions in the game and applies
alpha-beta minimaxing to determine the best move to make. The goal of the
learning process is to establish and improve this static evaluation function
through experience.

Learning a Polynomial Evaluation Function Through Seif-play

The first static evaluation function investigated by Samuel was a poly-
nomial of the form

value = Z w; fi, |

where f; are board features and w; are real-valued weights (coefficients). For
most of Samuel’s experiments, a polynomial with 16 {eatures was employed.
Each board feature provides a numerical measure of some aspect of the board
position under evaluation. For example, the EXCH feature measures the
relative ezchang‘g advantage of the player whose turn it is to move. EXCH
is computed by \\taking Teurrent, the total number of squares into which the
player to move may advance a piece, and in so doing force an exchange, and
subtracting Treviouss the corresponding quantity for the previous move by the
opposing player. | .

Samuel's program faced two tasks in attempting Lo learn such a poly-
nomial evaluationSfunction: {a) discovering which [catures to use in the fune-
tion and (b) developing appropriate weights for combining the various features
to obtain a value [or the board position. We describe the weight-learning task
first and later return to the problem of discovering which fi:stures to use.

457

458) Learning and Inductive [nference xxv

In the self-play mode of training, the checkers program learns by playing
a copy of itself. The version of the program that is doing the learning is
referred to as Alpha, while the copy that serves as an opponent is called
Beta. The learning procedure employed by Alpha is to compare at each turn
its estimate of the value for the current board position with a performance

_ standard that provides a more accurate estimate of that value. The difference

between these two estimates controls the adjustment of the weights in the
evaluation function. Alpha’s estimate is developed by conducting a shallow
minimax search applying the evaluation polynomial to tip board positions
and backing up these values (see Article U.CS5s, in Vol. [}. The performance
standard is obtained by conducting a deeper minimax search into future board
positions using the same evaluation function as in the shallow search. Samuel
takes advantage of the fact that a decp search is usually more accurate than
a shallow one. . .

How does Alpha use this move-by-move performance standard to guide
its search for proper weighting coeflicients? [First, the difference, A, between
the performance standard and Alpha’s estimate is computed. If A is negative,
Alpha's polynomial is overestimating the value of the position. If A is positive,
Alpha is underestimating it. For each board feature, a count is kept of the
times that the sign of that feature agrees or disagrees with the sign of A. From
these tallics, a correlation coellicient is developed that indicates the degree
to which that feature predicts A. The goal of the learning procedure is to
minimize A (so that Alpha is duplicating the evaluations of the performance
standard). The weights of the polynomial are determined by scaling the
correlation coefficients onto the range —~2!% to 2!8. Large positive coefficients
are given to features that strongly predict positive values of A and vice versa,
so that the polynomial will tend to “follow” A and thus reduce it.

The overall effect of this scheme is to independently assign blame for
Alpha’s estimation errors to the individual features. This is sensible, since
the featurds arc combined independently (i.c., by addition, without any inter-

" action termns) to form the polynomial.

Alpha can be viewed as conducting a hill-climbing search through the
“rule space” —the space of possible weights. Each move in the checkers
game serves as a training instance to guide this search. The correlation
coefficients summarize the entire body of training instances and indicate in
which direction the search must move in order to minimize A.

Hill-climbing is known to have many drawbacks, including convergence
to local maxima. Samuel addresses this problemn as follows. When Alpha and
Beta commence play, they arc identical. llowever, while Alpha proceeds to
search the rule space, Beta does not change. As Alpha improves, it begins to
defeat Beta regularly. When Alpha has won a majority of the games played,
Beta adopts Alpha's improved evaluation function, and the count of games
won and lost is started again from zero. Beta is thus used to “remember” a
good point in the rule space. If Alpha is at a local maximum, however, its

Déa Samuel’s Checkers Player ' 458

performance will tend to worsen whenever it makes a minor modification to its
polynomial. To prevent a local maximum from halting Alpha's improvement,
an arbitrary change is made to Alpha's scoring polynomial whenever Alpha
loses three games to Beta. The largest weight in Alpha's polynomial is set at
zero to jump Alpha to some new point in the rule space.

Now that we have seen how Samuel's program determines the weights
for the evaluation polynomial, we turn our attention to the first learning
problem—determining what features should be used to evaluate a board posi-
tion. This is a variant of the problem of new terms (see Article XTv.D1): How
can a learning program discover the appropriate terms for represeating its
acquired knowledge? Samuel offers a partial solution to this problem, nam-ely,
term selection. The learning program is provided with a list of 38 possible
terms. Its learning task is to sclect a subset of 16 of these terms to include in
the evaluation polynomial.

The selection process is quite straightforward. The program starts with
a random sample of 18 features. For cach feature in the polynomial, a count
is kept of how many times that feature has had the lowest weight (i.e., the
weight nearest zero). This count is incremented after each move by Alpha.
When the count for some feature exceeds 32, that feat..re is removed {rom the
polynomial and replaced by a new term. At all times, 18 [eatures are included
in the polynomial, and the remaining 22 features form a reserve queue. New
features are selected from the top of the queue, while features removed from
the polynomial are placed at the end of the queue. Viewed in the context of
credit assignment, Samuel’s program assigns blame to features whose weights
have values near zero, since those [catures are making no contribution to the
evaluation function.

Samuel (1959) was dissatisfied with thm term-selection approach to the
new-term problem. He writes:

[t might be argued that this procedure of having the program select new
terms for the evaluation polynomial from a supplied list is much too simple
and that the program should generate terms for itself. Unfortunately, no
satisfactory scheme for doing this has yet been devised. {p. 220)

The feature-selection and weight-adjustment learning proccases take place
concurrently. [n Samucl’s experiment with these learning methods, the set of
selected features and their weights started to stabilize after roughly 32 games
of scif-play. The resulting program was able to play a “better-than-average”
game of checkers (Samnuel, 1959, p. 222).

Learning a Signature Table by Book Training

The second kind of static evaluation function investigated by Samuel was
a system of signature tables. A signature table is an n-dimensional array. Each
dimension of the array corresponds to one of the measured board features.

460 Learning and Inductive Inference xv

To obtain ‘he estimated value of a board position, we measure each of the
board features and index these values into the signatuve-table array. The
contents of each cell in the table is a number that gives the value of the
corresponding board position. In a sense, the signature table maps all possible
board positions into a small n-dimensional feature space. Every point in that
feature space is represented as a cell in the signature table that gives the value
of all board positiors mapped to that point.

Suppose, for example, that we had only three features: KCENT (king
center control), MOB (total mobility), and GUARD (back-row control). The
cube shown in Figure D5a-1 is a schematic diagram of the resulting signatute
table. Notice that KCENT and GUARD take on oaly the values -1, 0, and 1,
while MOB is allowed to take on values from -2 to +2. If we have a board
position for which KCENT = 1, GUARD == 0, and MOB = 2, then we look into
the signature Lable at the ccll addressed by (1,0,2) to obtain the value: .8.

It is possible to view this signature table as a set of 3 X 3 X § =
45 production rules. There is one rule for every possible combinatior of
features—ecvery cell—in the table. The rule for the situation illustrated in
Figure D5a-1 could be stated as '

If: KCENT = 1 A GUARD =0 A MCB == 2,
Then: Value of position == .8.

Signature tables are more expressive than linear polynomials because they

can capture interactions among all of the features. Their main drawbacks,
however, are their large size and related problems with learnability. A full
signature table f{or the entire set of 24 terms used by Samuel would contain
roughly 8 X 10'2 cells—[ar too large to he stored or effectively learned. Two
techniques were applied to overcome these problems. First, the uumber of

possible values for each feature was substantially reduced. Most features were

restricted (o three values: +} /if the position is good for the program), 0 (if
the position is even), and —1 (if the position is bad for the program). Second,

XCENT o L eo—r—r
LT T
.8
-1
GUARD
1

-2-10 1 2
MOB

Figure D5a-1. A three-dimensional signature table.

’ .
L
g
!
H
H
+
H
H
i
¥
]
H
h
}
{
H
}
>
/(
/
.

Dsa Samuel’s Checkers Player 461

Fiemt
Raage of rvel
velas tables

S ¢ Rangs of
:' “ valem
) Eaci l Sncond
3 tables
3
]
3] 3 128 Range of
) o] Entrien Entnes values
PR [l Thind
jevel
table
§] / '
s ST
) enmad Entries
3 wvvrmad
lm -
. ?
) ommend 60 ‘ 15
3 wmmnd Entries
3 ——
L]
[pen—
3 movand 1} -8 128
§ wmaed Entnes Entnes
3 e . [
s /
Jomd o8
3 we—d Entries
:——4

Figure D§a~2. Threc-level hierarchy of signature tables
(from Samuel, 1967).

instead of one giant signature table, Samue! adopted the three-level hierarchy
shown in Figure D5a-2. .

_ The 24 board fcatures are partitioned into six important subgroups, and
a separate signature table is developed for each group. The outputs of the
six first-level signature tzbles are values between —2 and +2 that are used as
indexes to two second-level signature tables. The second-level tables produce

 values between —7 and +7 that are used as indexes to the final signature

table to obtain the estimated value of the board position. This hierarchical
system was found to be expressive enough to support excelient checkers play
and small enough to be learnable.

The program learns the values for the cells in these tables by following
“hook ~aines” played between Lwo master checkers-players. Approximately
250,000 bourd situations of master play were presented Lo the program. Most
of these moves were sclected from games ending in a draw. The program
operates as [ollows. Each cell in the signature table is associated with two
counts, called A (agree) and D (differ). Initially, A and D are zcro for each
cell. At each move, the program is faced with a sct of alternative moves, one

‘

462 Learning and Inductive Inference xav

of which is the book-designated move. Tach of these possible moves can be
mapped into one cell in each signatire table. The program adds a one to the
D count of each cell whose corresponding inove was not the book-preferred
mave. A total of n (where n is the tumber of nonbook moves) is added to the

- A count of each cell corresponding to the book-preferred move. Periodically,

the contents of the signaturc-table cells themselves are updated to reflect the
A and D counts. Each cell is given the value

(A+ Dy’
which is a rough corrclation coeflicient indicating the extent to which the
board positions mapped to that cell are the book-preferred moves. The
correlation cocfficients are then scaled into the -2 to +2 (or -7 to +7) range.

This learning process can be viewed as a technique of learning from
examples. Bach move provides a training instance that is used to update
several signature-table entrics. Credit assignment is casy, because the book
provides a fairly reliable performance standard on a move-by-move basis.
Credit is assigned to the signature-table cell corresponding to the book move,
and blame is allotted to all cells corresponding to rejected alternative moves.
It is the learning-by-doing approach that allows the program to determine
which moves are the alternative moves.

The second- and third-level tables are trained at the same time, and by
the same techniques, as the first-level tables. The current contents of the
signature tables are used to determine which second- and third-level cells
correspond to the alternative moves under consideration, and their A and D
totals are updated.during each move. The learning process is quitc erratic
at the start, since most of the first-level signature-table cells contain zeros
initially. Thus, incorrect second- and third-lcvel cells are selec.cd during the
early stages of learning. As learning progresses, these errors are overcome.

To make the tables more reliable during the early stages of Lraining,
some smoothing is done to (ill in cclls for which the A and D counts are still
near icro. Smoothing is a form of generalization involving interpolating and
extrapolating from surrounding cells in the table. The smoothiag has no effect
on the A and D counts—these are used later to replace the interpolated values
with more accurate, induced values,

Onc othicr refinement of the signature-table system is to break the game
of checkers into seven chronological phases and to use a different signature
table for each phase. Samuel rensoned that the board features relevant to
determining good moves during the opening of the gnme are unlikely to be the
same as Lhose used during the ends of games. The seven-phase approach leads
to an increase in the number of cells, thus making the tables more difficuit to
learn. However, Samuel was able to fill in empty cells by smoothing from the
tables of adjacent phases. -

D5a Samuel’s Checkers Player 463

Results

Samuel's signature-table system was much more effective as a checkers
player than any of the other configurations he tested. To assess the goodness of
play, Samuel tested the program on 895 book moves that were not used during
the training. A count was made of the number of times that the program
rated 0, I, 2, etc., moves as equal to or better than the buok-recommended
move. After training on 173,989 book toves, the test gave the results shown
in Table D5a-1. By summing the first two columns, we see that the program
chooses the best move or the second-best inove, as defined by the book,
6% of the time. These ratings are made without employing any forward
search. Minimax look-ahewd search improves the performance of the program
substantially. '

Despite this impressive level of performance, champion checkers players
are still able to beat the program. In 1965, the world champion, W. . llellman
won all four correspondence games played against the program. lle drew with
the program during one “hurriedly played cross-board game” (Samuel, 1967,
p. 601, n. 2).

Comparison of the Signature-table and Polynomial Methods

The signaturc-table method substantially outperformed the polynomial-
evaluation-function approach. Even when both methods were trained by
following book moves, the moves chosen by the polynomial evaluation function
correlated with the book-indicated moves only half as well as Lthe moves chosen
by the signature tables. This difference is dve to the improved representational
power of Lhe signature tables. The signature table can represent noalinear
relationships among the various terms, since there is a different table cell
for cach possible combination of terms. in the polynomial representation,
only linear relationships are possible. Such a representation assumes that
each term contributes independently to the value of a board position. This
assumption is evidently incorrect for checkers.

Conclusion
Samuel developed and tested several different representations and training

techniques for teaching a program to play chcckers. Among the contributions

TABLE D5a-1
Evaluation of Signature-table Performance

Number of mouves rated
as better than or
cqual to book move 0 1 2 3 4 5

8
Relative proportion 38% 26% 16% 10% 6% 3% 1%

L] { /) e /
r: . } ._—-"‘7“*'{ ' v‘” // ‘
-
4/4 Learning and Inductive Inference . xv

of this work are {a) the' demonstration that machine-learning techniques can
be highly successful, (b) the technique of using a deeper search and book-
supplied moves Lo solve the credit-assignment problem, (c) the term-seicction
methoda for determining which leatures to inclnde in the polynomial evalua~
tion function, and (d) the demonstration that signature tables provide a much
more eflcctive representation for checkers knowledge thaa cither the linear-
polynomial or the rotc-learning techniques.

References

All of this work is discussed in Samuel (1959, 1967). See Buchanan,
M.tchell, Smith, and Johnson (1977) for a discussion of Samuel’s term-selection
technique as an instaace of a layered learning system.

Cerebaee L

\ ' TN A o / % . p
W, ’ . LoTTs . -] R

. K \ N LA

1' N 7 ' \i /,(/.—-"-"

B
B e A e

S e

D5b. Waterman'’s Poker Player

AS PART of his thesis project, Donald Waterman (1968) developed a computer
program that learns to play draw poker. Draw poker is a game of imperfect
information in which psychological factors, such as how easily one’s opponent
is bluff-d, become important. Minimax look-ahead search is not vossible
because the overall state of the game (i.e., the contents of all the hands)
is not completely known. Instead, approximate heuristic methods must be
used. Waterman developed a production system (sce Article 111.C4, in Vol. 1) to
encode a sel of heuristics for poker, and he sought to have his program discover
these production rules through experience. In this article, we first deseribe
Waterman's production- rule knowledge representation and its application in
the poker-playing performance clement; we then discuas in detail the methods
used in the learning clement to acquire and refine these production rules.

Waterman’s Performance Element for Draw Poker

Each game of draw poker is divided into five stages. First, each player
is dealt five cards. This is followed by a betting stage in which the players
alternately choose to place a bet larger than the opponent’s bet (RAISE), place
a bet equal to the opponent's bet (CALL), or give up (DROP) the hand; a CALL
or DROP action ends this stage. In the third stage, cach player has the optioa
of replacing up to three of his {or her) cards with new cards drawn from the
deck. This is followed by another betting stage like the first. Finally, the
hands are compared (excep! in a DROP), and the player with the best hand
wins the game.

Waterman's performance element has built-in routines for carrying out
the deal, the draw, and the final comparison of hands. The two betting
stages, however, are performed by a modifiable production system. It is the
production rules making up this production systemn that the program attempts
to learn and improve.

The production system developed by Waterman contains two basic kinds
of rules: interpretation rules that compute important featurces of the game
situation and action rules that decide which action (CALL, DROP, or RAISE)
to take. ’

The action rules make their decisions based on the values of seven key
variables that make up the so-called dynamie state vector:

(VDEAND, POT, LASTBET, BLUFFO, POTBET, ORP, OSTYLE).

VDEAND, for example, k. a mcasure of the value of the program’s hand, P07 is
the current amount of money in the pot, and BLUFFO is an estimate of the
opponent’s “blulfability.”

485

-

Faa

e

468 Learning and Inductive Inference Xiv

The interpretation rules compute the values of these seven variables from
directly observable quantities. To compute the valuc of BLUFFO, for example,
features such as OBLUFFS (the number of times the opponcns has been caught
bluffing) and 0CORREL (the correlation between the opponent’s hands and his
bets) are examined. Unce numeric values for the scven variables have been
computed, they are converted into symbolic values that describe important
sabranges of values. For example, the rule

If POT > 50, then POT = BIGPOT.

gives POT the symbolic value BIGPOT whencver POT is larger than 50.
The action rules are stated solely in terms of these symbolic values. A
typical action rule is

(SUREWIN, BIGPOT, POSITIVEBET, o, », o, o)
= (v, POT » (2 X LASTBET), 0, », o, ¢, ¢) CALL,

‘v

which can be paraphrased as

If: VDEAND = SUREWIN

and POT = BIGPOT
and LASTBET = POSITIVEBET,
Then: POT :== POT ¢ (2 X LASTBET)
LASTBET := 0
CALL .

The condition and action parts of the rule have the same form ay the state
vector. The left-hand side of the rulc is a pattern that is matched against
the state vector to determine whether the rule should be executed. The right-
hand side of the ruic indicates which action to take and provides instructions
for modilying the value of the state vector.

These production cules are applicd by the performance clement as fallows.
First, all of the interpretation rules are used to analyze the current game
situation in order to develop the dynamicstate vector. Next, the action
rules are examined one by one in a fized order until a rule is found whose
condition pattern matches the state vector. That rule is cxecuted to make
the program’s move. This fixed ordering for the production rules serves as
a conflict-resolution tectnique (sce Article 1L.CY, in Vol.). If more than one
rule is applicable in a given situation, only the first rule in the list is executed.
Hence, whaen new rules are acquired or old rules are modified, the order of the
rules must be carcfully considered. ‘

There are two basic ways to generalize the lefl-hand side of an action rule.
One mothod is to drop a condition by replacing one of the symbolic values
on the left-hand sidc (e.g., BIGPAT) by «, which matches any value. The other
method is to modify the interpretation rule that delines a symbolic value so
that it includes a larger set of underlying numeric values (e.g., charging 816POT

g

e

R v

Dsb Waterman's Poker Player 467

to be any POT > 42). This is the same as Michalski’s method of generalizing
by internal disjunction (sce Article Xiv.D1). We will see below how Waterman
makes use of these two generalization methods.

Learning to Play Poker

Waterman sought to bave the program learn the interpretation cules, the
action rules, and the ordering of the action rules by playing poker games
against an expert opponent. As the poker games proceed, the lezrning element
analyzes each of the decisions of the performance element and extracts train-
ing instances. Each training instance is in the form of a training rule, that is,
a specific production -ule that would have made the correct decision had it
been chosen and executed. The training rules guide the leartning element as
it determines which production rules to generalize and specialize.

The task of extracting a training rule is quite difficult, Liecause the eavi- -

ronment provides very little infocmation that could serve as a performance
standard. Unlike deterministic games such as checkers or ‘chess that have
no chance elemcent, poker is probabilistic. Fven an expert' player will lose
from time to time. Thus, the program must rlay several hands before it can
assess the quality of the production rules in ils knowledge base As discussed
in thre introduction to this scction (Article XIV.DS), however, even when a
reliable performance standard is available on a full-game hasis, the problem
of assigning credit or blame to ind vidual moves in thai game is still very
difficult. Conscquently, Waterman sought to provide the program with some
form of move-by-move performance standard. Three dilferent techniques were
developed advicc-taking, automatic training, and analytic tlfa.’ning.

In advice-taking, the program plays a series of poker games against a
human expert. After each turn by the performance element, the learning cle-
ment asks the expert whether the performance-clement actiolfl is correct. The
expert responds cither with (0K) or with some advice such us (CALL BECAUSE

YOUR BAND IS FAIR, THE POT IS LARGE, AND THF LASTBET IS LARCE). This ad-

vice provides the training rule directly.

In the aut.omahc-t.rammg approach, an expert program serves as the
opponent and advice-giver. The expert program uses a knowledge base of
production rules developed by Waterman himself to determine, at cach move,
what action to take. During play against the learning program, the expert
program compares eaca move made by the learning program with the move
it would have made and provides advice exactly as a human expert would.

Finally, the most inte. esting mcthod of instruction, the analytic method,
involves no advice-taking whatsoever. After cach full round of play (i.e., cach
single hand), the lcarning elenient analyzes the moves made by the perfor-
mance elemenl and attempis to deduce which moves were incorrect. In
place of an externally supplied performance sta~dard, the learning clement is
provided with a predicate-calculus axiomatization of the rules of poker. From

- e e

468 Learning and Inductive Inference xav

these axioms, the program is able to deduce, afier the hand is over, what the
correct decisions would have been, thus providing the learning elemcent with
a performance standard.

Once the learning clement has a move-by-move performance standard, it
can extract a training rule and modify the production system. The modifica
tion process works by first locating the production rule that made the incorrect
decision and then examining the list of production rules for a rule before or
after the error-causing rule that could have made the correct decision. If
such a rule is found, generalization and specialization techaiques are applied
to modify the production rules so that the proper rule would have been exe-
cuted. [no such rule is found, the training rule itself is inserted into the
production-rule list immediately in (roat of the error-causing rule.

In the remainder of this article, we discuss how cach of these threr training
techniques allows the learning element to develop a training rule. For the
advice-taking and automatic-training methods, this is straightforward. In the
analytic approach, however, ‘a series of credit-assignment probleins must be
solved. We deseribe Waterman's solutic. s in detail. Finally, we deseribe how
the training rule acquired by any one of these methods is used to modify the
current sct of production rules in the knowledge base.

Advice-taking and Automatic Training

In the advice-taking and automatic-training methods, the program is
supplied after ecach move with advice such as:

(Cr.L BECAUSE YOUR HAND IS FAIR, THE POT IS LARGE,
AND THE LASTBET IS LARGE) .

This advice provides the training rule directly. The proper actioa (i.e., the
right-hand side of the training rule), CALL, is indicated along with the relevant
variables and their values. This advi~c is equivalent to the production cule:

(FAIR, LARGE, LARGE, », ¢, s, o)
=s (=, POT + (2 X LASTBET), 0, », », ¢,) CALL.

The details of the right-hand side of the rule can be filled in automatically
for each action from knowledge of the rules of the game. In this case, for
example, CALL rcquires the program to tatch its opponent’s bet, and thus the
POT must increase by Lwice LASTBET, oancc for the opponent’s bet and again
for the progeam’s reply. The other possibilities, DROP and RAISE, arc handled
similarly.

It is intercsting to note that Waterman’'s program aceepts [airly low-level
advice. The cxpert's advice can easily be interpected in lerms of the present
game situation, so there is no need to interpret or opcrationalize the advice
(see Article X1v.C1). Walcrman's advice-taking research concentrates, instead,

1-1,‘ -

D5b Waterman's Poker Player 469

on the problem of integrating this advice into the current knowledge base.
We describe how this happens after we discuss the methods employed during
analytic training to obtain the training rule.

Learning by the Analytic Technigque

The main difficulty facing Waterman's program during analytic training
+is credit assignment. The learning element has to deal with a pair of credit-
assignment problems. The first problem is determsning the quality of a round
of play. As we mentioned above, the probabilistic nature of draw poker makes
this difficult, since the loss of a single hand docs not necessarily indicate that
the program is playing poorly. Furthermore, the fact that poker is a game
of imperfect information leads to difliculties. [f, for example, the program
“drope” its bid (i.e., folds its hand and gives in to the other player), the
contents of the oppoanent’s hand are never known. The program solves this
first credit-assignment problem by always “calling” the bid (i.e., meeting the
opponent's bet and requesting to see his hand), instead of dropping, acd. by
applying its knowledge of the rules of poker to deduce whether the program
could have improved its play within the round.

. During the round of play, a complete trace of the actions of the performance
element is kept. To solve the second credit-assignment problem, the learning
element applies its axiomatisation of the rules of poker to evaluate each move
in detail. The rules of poker are axiomatised in predicate caleulus as 2 set of
implications such as:

ACTION(CALL) A HIGHER(YOUREAND, OPPEAND)
D ADD(LASTBET, POT) A ADD(POT, YOURSCORE).

These statements define the effects of each of four possible actions: BET RICH,
BET LOW, CALL, and DROP. To evaluate a particular move in the game, the
learning element takes the value of the dynamic state vector at that point and
uses it to determine the truth value of certain predicates in this axiom system
(e.g., GOOD(OPPHAND),, RIGHER(OPPHAND, YOUREAND)). Then it trics to prove the
statement

MAXIMIZE (YOURSCORE)

by backward-chaining through the axiom system (see Article m1.C4, in Vol. 1).
The resulting proof indicates the action that should have been performed and
provides the move-by-move performance standard. When the performance
standard dilfers from the move made by the program, blamec is assigned to
that move, and the i arning element builds a training rule.

The correct decision, obtained from the performance standard, forms the
right-hand sidc (action part) of the training rule. Waterman axiomatized the

If the program could have done better, it turns its attention to the second,
credit-assignment problem—determining which individual moves were poor. .

470 Learning and Inductive Inference ‘ xav

RAISE action as two podsible subactions, BET 81GHE and BET LOW, so that the
program would not have to learn how big a bet to make. For BET HIGH, the
performance element chooses a random bet between 10 and 20. Similarly, a
BET LOV action leai's to a random bet between 1 and 9. Thus, the performance
standard provides ke complete right-hand side of the training rule.

The left-hand side of the training ruie is obtained by examining a table

_called the decision matriz. The decision matrix contains four abstract rules,

one for each possible action. These rules tell which values of the seven
state variables are relevant for the indicated action. The exact values of the
variables are not given—only a general indication of whether the values should
be large or small. For instance, the abstract rule for the DROP action is

(CURRENT, LARGE, LARGE, SMALL, SUALL, CURRENT, LARGE) =+ DROP,

or more clearly,

It YDEAND = (currént symbolic value of VDEAKD)
and POT == LARGE
. and LASTBET == LARGE
and BLUFFO == SMALL
and POTBET == SMALL

aad ORP == {current symbolic value of ORP)
and OSTYLE = LaRcE,
Then: bRoP.

Once the learning clement has deduced from the axioms that the proper
action would have been DROP, it takes the corresponding rule from the decision
matrix and uses it as the training rule. Notice that the level of abstraction of
the rules in the decision matrix is the same as the level of abstraction of the
advice supplied by the human expert or expert program.

It could be argued that the use of Lthe decision matrix is improper, since
it provides the learning element with essential information that a person who
was learning to play poker would have to discover himsclf. Waterman (1968)
suggests some methods by which the decision matrix could be learned fro
cxperience, but none of these was implemented. '

Using the Training Rule to Modify the Knowledge Base

Once the training rule is obtained, whether by ~dvice from a person, by
advice from the expert program, or by analysis, it must be used to modify
the production rules in the knowledge base. The training rule is first used
to modify the interpretation rules. The left-hand side of the training rule is
compared with the statc vector computed by the interpretation rules. LARGE
matches symbolic values that cosrespond to large values of the underlying
variable. Similarly, SMALL matches small values. If a symbol does not match,

-

DSb ' Waterman’s Poker ' .yer 471

the interpretation rules that computed th... <.. bol are assigned blame. They
are then either modified or augmented te . .!ude a new interpretation rule.

Suppose, for example, that the state voc . .r listed POT as having the value
P8, where P3 is derived by the interprett.. i rule:

If POT > 20. .n POT = P3,

Furthermore, suppose that the value o/ r0T in the game situation being ana-~
lyzed is 45. By comparing P3 with LARGE, the learning element determines that
this interpretation rule is incorrect (since P3 can refer to very small values of
P01). The learning clement can either modiiy the rule (by substituting 44 for
20) or create a new rule. A user-supplied parameter, XX, specifies the largest
allowable change that can be made to a numeric value in an interpretation
rule. In this case, we will assume that the learning element creates the new
rule

It POT > 44, then POT = P4.

and modifies the state vector so that POT has the value P4.

Once the interpretation rules have been checked and modified, the up-
dated state vector is matched against the action rules to find the rule that
madc the incorrect decision. This rule is called the error-causing rule. The
training rule is then used to locate a production rule that could have made
the correct decision had it been executed. This is accomplished by coraparing
the right-hand side of the training rule with each production rule in the rule
base. . :

Waterman'’s program classifies action rules as either recently hypothesized
or accepted. A reccntly hypothesized rule is one that was recently added to the
knowledge base, whereas an accepled rule is one that the program believes to
be nearly correct. The learning element follows a strategy of first attempting
to make minor changes in accepted rules and then, if minor changes do not
suffice, attempting to make major changes.in recently hypothesized rules.
Finally, if a suitable recently hypothesized rule cannot be found, the training
rule is added to the rule basc and is labeled as recently hypothesized.

The learning element searches upward ahead of the error-causing rule

..for an accepted rule that would have made the correct decision. If such a

rule is found, it is checked to see if the pattern of its left-hand side can be
generalized to match the current state vecltor. Only minor generalisatione—
that is, changes to the interpretation rules—are considered. No conditions
are dropped (i.e., replaced by +).

Il no accepted rule can be found, the learning clement again searches
upward before Lhe error-causing rule, this time looking for a recently hypothe-
sized rule that would have made the correct decision. If such a cule is
found, major changes—including both dropping conditions and medifying
interpretation rules—are made in the left-hand-side pattern so that it matches
the state vector.

. 472 Learning and Inductive Inference xXv

If no suitable rules can be found before the error-causing rule, the learning
element searches for an accepted rule after the error-causing rule. If an
appropriate rule is found there, the error-causing rule and all intervening
rules must be specialized so that they will not match the state vector, and
the target rule must be generalised—by changing the interpretation rules—so
that it will match the state vector. :

Finally, if no rules can be found that could be generalized to make the
correct decision, the training rule is inserted into the ordered list of production
rules immediately in front of the error-causing rule. The training rule is
marked as being recently hypothesized. Figure D5b-1 depicts this four-step
proccss of modifying the rule base.

This four-step proccss combines the task of integrating new knowledge
iato Lthe knowledge base with the task of generalising the training rule. Notice
that the integration process must have knowledge about how the performance
clement chooees which rule to execute, so that it can decide how to update the
rule base. The generalization process is fairly ad hoc. For example, recently
hypothesized rules becomé accepted when enough conditions ate dropped from

the left-hand side so that only N conditions remain (N is a parameter given

to the program). This is a very weak lechmque for preventing rules -from
becoming overgenerahzed

Resuits 'E

i

Waterman's poker pr’bgram learned to play a fairly good game of poker.
Separate tests were conducted with each of the three training techniques. In
each case, the program start.cd with only one rule: “In all situations, make a
random decision.” For advxcc.\takmg from & human expert and for learning
@ Search for “accepted rule”

R,

Ry

@ Search for "recently-hypothaizea” rule

* : f . ®<—-— Insert training rule

Re e~ error-causing rule

————————

R, @ Search for “accepted rule”

Figure D5b-1. The four steps to modifying the production-rule base.

.

Dsb . Waterman’s Poker Player 173

from the expert program, training was continued until the program played
one complcte game of five hauds without once making an incorrect decision
{as judged by the expert). For the analytic method, the program continued to
play games until the original “random decision” production rule was executed
only 5% of the time. The results are shown in Table D5b-1.

The rightmost column shows the results of a proficiency test in which the
program and a human expert played two sets of 25 hands. During the first
set of 25 hands, the cards were drawn at random [rom a shuffled deck as in
ordinary play. However, during the second set of 25 hands, the same hands
were used as in the first set, except that the programn reccived the hands
originally dealt to the person and vice versa. At the end, the cumulative
winnings of the program and person were compared.

The results show that in all three training methods, performance improved
markedly. The automatic training provided the best performance improve-
ment, perhaps because the automated expert played more consistently than
the human expert. Although the analytic method performed the noorest, the
results are not strictly coinparable, since the axiom set provided it with only
four possible actions, whereas the advice-based melhods were given eight pos-
sible actions. Consequently, the analytic method may not actually be inferior
to the two advice-taking methods.

Conclusion

Watermaa’s poker-playing program faces a very dificult learning problem.
Poker is a multiple-step task that provides very little feedback to the learning
program. For the two advice-taking methods, this problem is sidestepped
by allowing the program to accept a training rule directly from an expert.

" However, for the analytic method, two credit-assignment problems must be

solved: evaluating a rouad of play and evaluating a particular move. To solve
these problems, the prograin modifies its betting strategy (to call instead

TABLE D5b-1
Comparison of Three Training Methods (from Wat.c.rman, 1970)

Training method Number of Final number Percent dillerence

training trials of rules in winnings*
Before training S 1 -71.0
Advice-taking as 26 -6.3
Automalic training 20 19 -1.9
Analylic method 57 14 -13.0

“These percentages are computed by subtracting the amount of money won.
by the oppoaent from the amount of money won by the program and dividing by
the amount of money won by the opponent. In all cases, the program won less
thsa the opp t aand, h , the percentages are all negative.

¥) 474 Lmhg and Inductive Inference xxv

of dropping) and applies knowledge available from the axiom set and from
the decision matrix. This permits the credit-assignment process to extract a
training rule from the trace of decisions taken by the performance element.
Once the training rule is acquired by any cf these three methods, it is used
to guide the generalisation and specialisation of the production rules in the
knowledge base. Since only positive training instances are available, the
program must make use of arbitrary constraints to prevent overgeneralization.

References

Waterman (1970) describes this work in detail.

i
.
:
;
i
i
!
1
i
'

D5c. HACKER

HACKER is a learning system developed by Gerald Sussman (1975) to model
the process of acquiring programming skills. tIACKER’s performance task is
to plan the actions of a hypothetical one-armed robot that manipulates stacks
of toy Llocks. This planning task is described in detail in Article Xv.C.
HACKER learns by doing. It develops plans and simulates their execution.
The plan and the trace of the execution arc examined by HACKER to acquire
two kinds of knowledge: generalized subroutines and generalized bugs. A gen-
eralised subroutine is similar to a STRIPS macro operator (see Article ILDS, in
Vol. 1), in that it provides a sequence of actions for achieving a general goal.
A generalized bug is a demon that inspects new plans to sce if they contain
an instance of the bug and provides an appropriate bug fix.
An example of a generalized subroutine is the following procedure for
stacking one block on top of another:
(10 (VAKE (0N a b))
(BPROG
(UNTIL (y) (CANNOT (ASSIGN (y) (0M y a)))
(MAKE (XOT (ON y a)))
(PUTON a b))).
The goal of this procedure is (MAKE (ON a b)): The procedure changes the
world so that (0¥ a b) is true. This subroutine is general and works for any
two blocks a and b (a and b are variables that are bound to particular blocks—
denoted by eapital letters—when the subroutine is invoked). The procedure
removes everything that is on a and then picks up a and puts it ocn b,
Viewed as a production rule, this procedure could be written as:
(MAKE (ON a b)) = (EPROG
(UNTIL (y) (CANNOT (ASSIGN (y) (ON y a)))
(MAKE (NOT (ON y a)))
(PUTON a b)) .
From this perspective, we see that when HACKER learns a generalized sub-
routine, it is learning both a generalized lcft-hand side, the goal, and a general-
ized right-hand side, the plan. As we will see below, the lcft-hand sides of the
production rules are generalized by turning constants into variables, while the
right-hand sides are developed by concat.enatmg subplans and ordering them
properly to form macro operators.
An example of the other kind of knowlcdge gained by IACKER—a general-
ized bug—is Lthe demon:
(VATZE-FOR (ORDER (PURPOSE 1line (ACHIEVE (ON a b)))
(PURPOSE 21ine (ACHIEVE (ON b ¢))))
(PREREQUISITE-CLOBBERS~BROTHER-GOAL
current-prog iline 2line
(CLEARTOP b))).

475

476 - Learning and Inductive Inference xwv

It tells HACKER to watch for plans in which one step, iline, has the goal
of achieving (0N a b) and a subsequent step, 21ine, has the goal of achieving
(0N b ¢). In such cases, the prercquisite of the second step—that b have
a clear top—requires undoing the goal of the first step. When this demon
detects such bugs, it invokes the PREREQUISITE-CLOBBERS~BROTHER-GOAL repair
procedure to fix them.

Generalized bugs can also be viewed as production rules This partxcular
bug demon could be written as:

(ORDER (PURPOSE 1line (ACHIEVE (ON a b)))
(PURPOSE 21ine (ACHIEVE (ON b c)))) =
(Plﬂ!ﬂUISIT!-CLOBBERS-BIOTKEl-GOM.
current-prog iline 211:\0
(CLEARTOP b)) .

HACKER learns both the left- and the nghb-hand sides of these bug demons.

HACKER's Architecture
HACKER is a complex program that contains several interleaved com-
ponents (see Fig. DSc-1). These include: '

1. The planner, which develops plans by pattern-directed cxpansion of plan- -
ning operators;

2. The enitics’ gallery, which inspects the plans for known generalized bugs;

3. The simulator, which simulates the exccution of the plans and checks for
errors; :

4. The debugger and generalizer, which locate and repair bugs in the plaﬁ
for later use by the critics’ gallery; and

S. The generalizer and subroutiniz - which generalize plans and install them
in HACKER'’s knowiedge base.

The first two components comprise the performance element, which develops
block-stacking plans. The simulator creates a performance trace of the simu-
lated execution of the plan. The last two components perform the actual
process of learning generalized subroutines and gencralized buks

These components interact continually. As the planner is developmg the
plan, for example, the critics’ gallery is interrupting to repair known bugs
and the simulator is symbolically exccuting the evolving plan. Thc dchugger
may step in to fix a new bug and then resume the planning proccss In this
article, however, we describe each of these components separately and pretend
that the plan is first developed in its cntirety and then successively criticized,
simulated, debugged, and generalized. This false architecture| corresponds
fairly closely to our simple model of learning multiple-step tasks. There are
two lcarning elements, however: one for devcloping generalized|subroutines

Dse

HACKER o 477

and one for developing generalized bugs. Figure D5¢-1 surimarizes this false
architecture. We wilk explain the operat.xon of HACKER by following the flow

through this model.

HACKER's Performance Element:
The Planner and the Critics’ Gallery

HACKER employs a simple problem-reduction planner (Chap. XV; see also
Article 1.B2, in Vol. 1), which is presented with an initial situation and a goal
block-structure to create. Figure D5c-2 shows a sample situation and goal.

The goal is matched against HACKcR's knowledge base of known plaas,
subroutines, and refinement rules. If a known plan or subroutine is found that

Performance Element

Critics'
Gallery |

| Planner 3
' Knowled /
Performance Trace nawledge Base

Subroutine Bug
Library Library
Simulator 4
Subroutine Leammg Exemem
i
Simulator ! Subroutinizer
Trace Generalizer
Bug)
Debugger And | Generalizer
Fix

Bug Learning Element

Figure D5c-1. A simplified archilecture for HACKER.

et oty ., s s s i o

o v At

© - e R SR TR TR ST R D 0k 5 P Skt e o

4

~) # !
478 Lezrning and inductive Inference xv
C
A . B

L1777 77777

Goal: (ACRIEVE (AND (ON A B) (ON C A)))
Figure D5¢-2. A sample situation and goal.

can accomplish the goal, it is used. Otherwise, a refinement rule is applied
to reformulate the goal as a set of subgoals. These subgoals, in turn, are
matched against the knowledge base to locate knownu methods for achieving-
themn. The expansion into subgoals proceeds until HACKER finds existing
plans or primitive operators that can achieve each of the subgoals.

HACKER is noted for its linearity gssumption. Whenever the planner is
faced with the problem of achieving a pair of conjunctive subgoals, it assumes
that they can be achieved indspendently. This a.ssumphon is represented in
the AND rule for refining a conjunctive goal:

(TO (ACHIEVE (AND a b))
(AND (ACHIEVE a)
(ACHIEVE b))) .

This says “10 achieve goals a and 5, first achieve a and then achieve 5." As
a result of this lincarity assumption, the plan developed by the planner is a
naive plan that may not work (see Article Xv.C).

The naive plan is criticized by the critics in the critics’ gallery, which

attempt to find instances of the generalized bugs kept in the bug library.
When a bug is found, the associated bug fix is applied to improve the plan—

usually by rearranging plan steps. The result of this criticism is a plan that
reflects all of HTACKER'’s past experience but still may not be correct.

HACKER's Performance Trace:
Plans and Simulation

HACKER's plans coatain a large amount of information about the plan-
ning process itseif. Each step of a plan is justificd by giving the purpose of the
step—the subgoal it is intended to achieve. There are two fundamental kinds
of steps: main steps and prerequisite steps. Main steps are directed at goals
relating to the goals of the overall plan. Prerequisite stcps are computations

D8e : HACKER 479

needed to establish preconditions for the main steps. For example, the plan
for the problem of Figure D5c-2 contains three steps:

Step 1. (PUTON C TABLE) [purpose: (CLEARTOP A) span: step 2] .
Step 2. (PUTON A B) (purpose: (ON A B) span: full plaa].
Step 3. (PUTON C A) [purpose: (ON C A) span: full plan) .

Steps 2 and 3 are maiu steps, while step 1 is a prerequisite step needed to
clear off the top of A so that the robot can move A. As HACKER simulates the
execution of the plan, it verifies that the goal of each step has been attained.

Each step in the plan also includes an indication of thc time span of the
goal il is attaining. The purpose of a step may be to accomplish something
that will remain true for only a short time. In this example, (CLEARTOP A) will
be true only until step 3. For IIACKER to know that this is not a bug, step 1
includes a time-span indication that its goal is intended to be true only until
the end of step 2. . ' :

The criticized plan is simulated to verily that it works properfy. The
simulator detects bugs in three forms: illegal operations, failed steps, and
unaesthetic actions. An illegal operation is one that is considereu impossible
in the hypothetical blocks world. For instance, it is illegal to pick up a
block unless it has a clear top. A failed step is onc that does not achieve its
goal for the designated time span. The simulator uses the goal information
attached Lo each plan step to verily that at all times the goals intended by the
planner have actually been met. Lastly, an unaesthetic action is a situation
in which the robot moves the same block two times in succession without
any intervening actions. These three methods for detecting bugs provide a
performance standard for HACKER, which states that a plan must execute
legally, achieve all intended goals and subgoals, and also be aesthetically
correct, The simulation halts whenever one of these problems is identified,
and a ‘*race of the simulation is provided to the bug learning element.

HACKER's lLearning Elements:
The Subroutine Learning Llement and the Bug Learning Element

As mentioned above, there are two learning elements in HACKER. One,
the subroutine learning element, inspects tue criticized plan and simulation
trace to identily possible subroutines. The other, the bug learning element,
examines the performance trace to diagnose and correct bugs uncovered by
the simulation.

The subroutine learning element alicmpts to detect when two subgoals
in the plan arc sufliciently similar to allow a single subroutine to accomplish
both. The trace of the planning and simulation proccsses indicates which
constants in a goal or subgoal—for example, the constants A and B in the
goal (UN A B)-—can be generalized. A constant cannot be generalized if the

480 Learning and Inductive Inference xv

plan somehow refers to that constant explicitly (e.g., the constant TABLE has
special status). HACKER generalizes each subgoal in the plan by turning
all generalizable constants into variables. The generalized subgoal is then
compared witk all other goals in the program. Any two subgoals found to have
an allowable common generalization are replaced by calls to a parameterized
procedure. This generalization process is similar to the technique used in
STRIPS to generalizc macro operators.

As an example, consider the block-stacking task of Figure D5¢-2. The ini-
tial plan involves separate steps lor achieving (ON A B) and (0N ¢ A). However,
traces of the planning and simulation processzs indicate that the code for
(0¥ A B) will work for any variables u and v. The generalized goal (0N u ¥)
is checked against other goals in the plan and found to match the sub-
goal (0N C A). As a result, HACKER formulates a generalized subroutine,
(MAKE-0K u v), and replaces the subplans for steps 2 and 3 with calls to MAKE-
oN. The MAKE-ON subroutine is placed in the kuowledge base for use in future
plans as well. :

The subroutine learning element can be regarded as learning from exam-
ples. The goals and subgoals in a particular plan form the training instances,
which are generalized by turning constants into variables. The distinctive
aspect of the HACKER approach is that the search of th~ rule space is accom-
plished very directly. HACKER (and its predecessor, STRIPS) is able to reason
about how the different steps in the plan depend on particular values for the
arguments of the goal statement. From this dependency analysis, the correct
generalization can be deduced directly. IIACKER thus differs from most of
the other learning methods described in this chapter in that it is able to use
the meanings of its operators to guide the generalization process.

The bug learning element faces a much more difficult learning task. It
must determine why the plan failed and repair the plan. Then it must attempt
to gencralize the discovered bug and create a bug critic that will prevent
the bug from reappearing in future plans. The first task—determining why
the plan failed—is the problem of credit assignment. The traditional credit-
assignment problem is to dctermine which rule, used in the performance

_ element, led to the mistake. In HACKER's case, there is one fundamental

source of error: the lincarity assumption as implemented by the AND rule.
HACKER's credit assignment, instead, involves determining how the current
planning task violates this linearity assumption— that is, how do the subplans
in this problem interact?

HACKER's solution to the credit-assignment problem is to compare the
intentions and cxpectations of the performance clement with what actually
happened. This approach again relies on kunowledge of the semantics of the
operators to assign blame to individual steps. This is morc direct than the
weaker, more empirical approach of comparing many possible plans obtained
through a more widespread search, as in Samucl's checkers program uud the
LEX system.

AN N,
DSc HACKER 481
.y
(e i
Prerequisite

Figure D5c-3. The m-:nsnuzsns-ct.nssnsmnonu-cod
bug schema.)

HAC¥ER has a small library of schemas that describe possible subgoal
interactions. Credit assignment is accomplished by matching these schemas
to the goal structure of the current plan and performance trace. For axample,
one class of interactions, the PREREQUISITE-CLOBBSERS~BROTHER-G0AL, involves
the goal structure depicted in Figure D5¢-3. .

The prerequisite step of goal 2 somehow makes goal ! no longer true. For
example, if the overali goal is (ACHIEVE (AND (ON A B) (0 B C))), we have
the subgoal structure shovmn in Figure D5c-4.

(AND (OM A B) (OX B ©))

(0N A B) (0N B G

A
(CLEARTOP B)

’
Figure DSe-4. A subgoal structure thzt matches the bug schema
of Figure D§c¢-3.

482 Lcaming and Inductive Inference xav

HACKER simulates this plan by first placing block A on block B, then
clearing off B so that it can place B on €. The clearing-ofl process makes
(ON A B) false—the prerequisite of goal 2 has clobbered goal 1. (This is
detected by the simulator when it checks the time span of each subgoal.)

Each of HACKER's bug schemas. describes some general goal structure
that can be matched to the goal structure of the current plan. The matching
process is implemented in an ad hoc fashion as a series of six questions that the
debugger asks of the performance trace. As a result of the matching process,
the bug is ignored as innocuous, is properly classificd, or is found to be too
difficult to repair.

The process of repairing the plan is straightforward. Each bug schema
contains instructions on how to repair the bug. These can involve reorder-
ing plan steps, creating new subp’ars that establish prerequisite conditions,
and even removing unnecessary plat stens. The resulting repaired plan is
simulated again to detect further bus.

The process of gencralizing the bug is wlso easily accomplished. Each bug
schema contains instructions regarding which components of the goal strue-
ture can be genceralized by turning constants into variables. For instance, the
bug schema for PREREQUISITE-CLOBBERS~BRG1HER-GOAL contains the instructiona

(CSETQ goall (VARIABLIZE (GOAL linel))
goal2 (VARIABLIZE (COAL line2))
prereq (VARIABLIZE pre)),

where 1ine1 refers to the first goal (whose prerequisite wus clobbered), 1ine2
refers to the scarch goal, and prereq refers to the prerequisite that did the
clobbering. Thesc instuctions tell [IACKER to analyze the dependencies in

“the performance trace and gencralize all three of these goal expressions. The

resulting generalized goal structure shown in Figure D5c-5 is compiled into a
demon and added to the bug library for use in subscquent criticism of naive
plans.

The bug learning element can be regarded as lcarning by schema instan-
tiation. Over time, HACKER discovers new situations in which particular
kinds of subgoal intcractions accur, generalizes these situations, and watches
for them in future plans. It does not tackle the problem of discovering these
classes of bugs in the first place, nor does it address the problem of discovering
techniques for fixing bugs. :

Conclusion

HACKER is a system that learns to develop plans for manipulating toy
blocks. It acquires two kinds of knowledge—gencralized subroutines and
generalized bugs. Doth of HACKER's learning elements make extensive use of
the performance trace, which consists of the plan (annotated with goal infor-
mation) and a trace of the simulated execution of the plan. The subroutine

DSe HACKER 481

Prerequisite

Figure D5¢-3. The PREREQUISITE-CLOBBERS-BROTHER-GOAL
bug schema.

HACKER has a small library of schemas that describe possible subgoal
interactions. Credit assignment is accomplished by matching these schemas
to the goal structure of the current plan and performance trace. For example,
one class of interactions, the PREREQUISITE-CLOBBERS-BROTHER-GOAL, involves
the goul structure depicted in Figure D5¢-3.

The prerequisite step of goal 2 somehow makes goal | no longer true. For

_ example, il the overall goal is (ACHIEVE (AND (ON A B) (ON B C))), we have

the subgoal structure shown in Figure D5c-4.

(D (0N A B) (ON B C))

(ox A B) (0N B C)

(CLEARTOP B)

1}
Figure D5¢c-4. A subgoal structure that matches the bug schema
of Figure D5¢-3.

=4

s o

e e

D¢ HACKER 483

(D (OX x y) (ON y 2))

oM x y) (oM y 2)

(CLEARTOP ¥)
Figure D3c-5. A generalized gonl'structure.

learning element generalizes by analyzing the goal structure in the perfor-
mance trace to dctermine which constants can be turned into variables. The
bug learning clement accomplishes credit assignment by instantiating schemas
that describe bug-inducing goal structures. The schemas provide guidance
for bug repair and gencralization. Much of HACKER's impressive behavior
derives from its ability to reason about the scmantics of its task. The value of
a transparent performance element for credit assignment and generalization
is very evident in HACKER.

References

HACKER is described in Sussman’s (1973) thesis. Doyle (1980) describes
a formalization of the concepts of goal and intention as used by HACKER. An
alternative to the linearity assumption is described in Article Xv.D1.

D5d. LEX

LEX, a system designed by Thomas Mitchell (see Mitchell, Utgoff, and Baneriji,
in press; Mitchell, Utgoff, Nudel, and Banerji, 1981), learns to solve simple
symbolic integration problems from experience. LEX iy provided with an
initial knowledge base of roughly 50 integration and simplification operators,
some of which arc shown in Table D5d-1. The goal of LEX is to discover
heuristics for when to apply these operators. That is, LEX secks to develop
production rules of the form

{situation) = Apply operator OPf,

where {situation) is a pattern that is matched against the current integration
problem. The situations are expressed in a generalization language of possible
patterns. For instance, a heuristic rule for operator OP12 might be:

//(:) transc (z)dz = Apply OP12 with u = f(z) and dv = transc(z)dz.

This tells the LEX performance element that il it sees any problem whose
integrand is the product of any function, f(z), with a transcendental function,
transc(z), then it should apply OP12 with u bound to f(z) and dv bound to
transc(z) dz. The concepts of f(z) and transc(z) are part of tke generalization
language (illustrated later in Fig. D5d-4).

Mitchell calls these production rules Aeuristics because they provide heuris-
tic guidance to LEX's performance element, which is a simple, forward-chaining
production system (see Sec. 11.B, in Vol. 1). Without any heuristic rules, the
performance elemeat conducts a blind uniform-cost search (see Article IL.C1, in
Vol. 1) of the space of all legal sequences of operator applications. Consider the
problem of integrating [3z coszdz. Without any heuristics, LEX produces
the rather large search tree shown in Figure D5d-1. It is no surprise that

TABLEDSd-1 =~ ' -
Selected Integration Operators in LEX

OP02 convert [z"dz to z"*'/(r+1) (power rule)

oPO3 convert [rf{z)dz to rf /(z) {factor out a real constant)
OI08 convert f sinzdzr to =—cosz '

OP08 convert 1: f(z) to [(z)

CPr10 convert f coszdz to sinz

OP12 convert [udv to uv— fvdu (integration by parts)
OP1S convert 0- f(z) to O

184

RIS

Dsd . . LEX - 485

f:l:eoa:ﬁz

3fzcoszdr 3zsinz - [3sinzdz

0OP12 _ oP12 . oPo03

#

Yzsinz - [sinzdz) 3|(% cosz)~ [(~F sinz)dz] 3zsinz—3[sinzds
OPoe . opPe’

Y

3(zsinz — (-~ cosz)) - A 3zsinz —~ J(~cosz)

Figure D5d-1. Partial search trec for [3z cos z dz without heuristics.

when LEX has no heuristics, it often cannot solve integration problems before
exhausting the time and space available to it.

The task of learning the left-hand sides of heuristic rules can be thought
of as a set of concept-learning tasks. LEX tries to discover, for each operator
OP1, the definition of the concept situations in which OP{ should be used. It
accomplishes this by gathering positive and negative training instances of the
use of the operator. By analyzing a teace of the actions taken by the perfor-
maace element, LEX is able to find cascs of appropriate and inappropriate
application of the operators. These training instances guide the search of
a rule space of possible lelt-hand-side patterns. The candidate-elimination

algorithm (see Article Xiv.D3a) is employed to search the rule space, and par- -

tially learned heuristics, for which the candidate-elimination algorithm has
not found a unique left-hand-side pattern, are storcd as version spaces of
possible patterns. Thus, the general form of a heuristic rule in LEX is:

(version space represenf.ed as Sand Gsets) = Apply OPi.
For example, after a few training instances, LEX might have the following

partially learned heuristic for the integration-by-parts heuristic, OP12:

Version space for OP12:
G = [f(z)g(z)dz = OP12, with u = f(z) and dv = g(z) dz;
S = [3zcoszdz = OP12, with u = 3z and dv = coszdz.

a2 e P 4 er,

486 ' Learning and Inductive Inference xv

This heuristic tells LEX to apply OP12 in any situation in which the integral
has the form [f(z)g(x)dz. It also indicates that the correct left-hand-side
pattern lies somcwhere between the overly specific S pattern, [3zcoszdz,
and the overly general (pattern, [f(z)g(z)dz. Below, we show how this
partially learned heuristic was discovered by LEX.

LEX's Architecture

LEX is organized as a system of four interacting programs (see Fig. D5d-2)
that correspond closely to our modified model of learning for multiple-step
tasks. The problem solver is the performance element. It solves symbolic inte-
gration problems by applying the current set of operators and their heuristics.
When the problem sclver succeeds in solving an integral, a detailed trace of
its performance is provided to the critic, which examines the trace to assign
credit and blame to the individual decisions made by the problem solver.
Ouce credit assignment is completed, the critic extracts positive (and negative)
instances of the proper (and.improper) application of particular operators.
These training instances are used by the generalizer to guide the search for
proper heuristics for the operators involved. Finally, the problem generator
inspects the current contents of the knowledge base (i.e., the operators and
their beuristics) and chooscs a new problem to prescnt to the problem solver.

LEX thus incorporates all four components of our simple model: the
knowledge base (of operators and heuristics), the performance clement, the
performance trace, and the lcarning element (composed of the critic and the
generalizer). Furthermore, LEX is onc of the few Al learning systems to include
an experiment planner—the problem generator.

In this article, we first present an example of how LEX solves problems
and refines the version spaces of its heuristics. Then we describe each of LEX's
components in detail and discuss somne open research problems.

Problem
Solver

Critie I’roblemn
Generator

Generalizer

Figure D5d-2. LEX's architecture.

Dsd LEX ' 487

in Bzample

To show how LEX works, supposc that the problem generator has chosen
the problem [3z cos z dz and the problem solver has produced the trace shown
earlier in Figure D5d-1. The critic analyses the trace and extracts several
training instances, including:

/3zcoa:dz = OP12, with u == 3z and dv = cos z dz (positive) .
/3ain::dz = OP03, with r = 3 and [(z)=sinz (positive).

/ sinzdz = OPOS ’ : (powitive) .

We will watch how the generalizer handles the training instance for OP12.
Let us assume that this is the first training instance that has been found for
this operator, so the knowledge basc does not yet contain any heuristics for
* when to use it. Consequently, the generalizer will create and initialize a new
OP12 heuristic. The left-hand side of the heuristic is a version space of the
form:

Version space for OP12:
G = [/(z)o(z)dz = OP12, with u = f(z) and dv = g(z) dz;
S [3zcoszdz = OP12, with u == 3z and dv == coszdz .

Notice that S is a copy of the training instance and G is the most general
pattern for which OP12 is legal. This heuristic will recommend that OP12
be applied in any problem whose integrand is less general thaa [f(z)g(z) dz.
This is not a highly refined heuristic.

To sec how LEX refines this heuristic, let us assume that the other training
instances shown above have been processed. At this point, the problem
generator chooses the problem [5zsin zdz to solve. The problem solver will
apply OP12, since the G set of the heuristic matches the integrand. Figure
D5d-3 shows a portion of the solution tree.

Some of the training instances extracted by the critic are:

/ Szsinzdz = OP12, with 4 = 5z and dv == sinzdz (positive).
/Scoszdz = OP03, with r = 5 and f(z) = cosz (positive).
/ coszdz = OP10 . {positive) .

/5:_sin zdx = OP12, with 4 = sin 2 and dv = 5z dz (ncgative).

AN 2 A2 s VAP TRPOTT

A A A 8 s B3

A A 5 3 sy

488 Learning and [nductive Inference X
[5zsinz dz
OoP12 OP12
§z%sinz - [§z% cosz dz —5zcosz + [Scoszdz
' OP03
~5zcosz+35 [cosz dz

‘ OP10

~3zcosz + Ssinz

Figure D5d-3. The solution tree for [5zsin z dz.

The generalizer updates the version space for OP12 to contain:

G= {ghg?}r where
d1: fpolynom {z)9(z)dz = oOP12,
with u = polynom(z} and dv = g(z) dz;
92: [f(z)transe(z)dz = oP12,
with u = f(z) and dv = transe{z) dz;

§ = {51}, where
3,: sz trig(z)dz = OP12,
with u = kz and dv = trig(z)dz.

The positive training insitance forces the constants 3 and 5 to be general-
ized to k, which represents any integer constant, and “sin” and “cos” to be
generalized to “trig,” which represents any trigonometric function, as shown in
31. Similarly, the negative training instance leads to two alternative specializa-
tions. In g, f was specialized to “polynom” to avoid u = sinz, and in gy,

g was specialized to “transc” to avoid dv = 5z dz. These Lwo specializations

no longer cover the negative training instance. With a few more training
instances, the heuristic for 0’12 coaverges to the form shown at the start of
this article, that is, ff(a:) tLransc(z)dz. The concepts “k,” “trig,” “polynom,”
and 30 on, are all part of the gencralization language known to LisX from the
start (see I'ig. D5d-4, shown laler). '

Now that we have seen an example of LIX in action, we describe each of
the four components of LEX in turn. '

L)

Dsd . LEX 4890
Tﬁe Problem Solver

As discussed above, the problem solver conducts a forward search of
possible operator applications in an attempt to solve the given integration
problem. Initially, this search is blind. However, as the heuristics for the.
operators are refined, the search becomes more focused.

The problem solver conducts a uniform-cost search. At each step, it
chooses the one expansion of the search tree that has the smallest estimated
cost. The search tree is maintained as a list of open nodes—that is, nodes
to which not all legal integration operators have been applied. The cost of
an open node is measured by summing the cost of cach search step (for both
time and space) back to the root of the search tree. In addition, the cost of a
proposed cxpansion is weighted to reflect the strength of the heuristic advice
available. In detail, the problem solver chooses an cxpansion as follows:

Step 1. For each open node and each lcg..l operator, compute the “degree
of match” according to the formula:

0 if no heuristic recommends this operator for this node;

m/in if there is a heuristic, and m out of the n patterns in the
boundary sets of the version space (i.e., the § and G scts)
match the current situation.

Step 2. Choose the cxpansion that has the lowest weighted cost, computed
as:
(1.5 — degree of match) X (cost s0 far + estimated expansion cost) .

The effect of the (1.5 — degree of match) weight on the cost is to emphasize
the cost of the path when little heuristic guidance is available but to ignore
cost considerations as the heuristic recommendation becomes stronger.

The problem solver continues to select nodes and apply operators until
the integral is solved. Notice that, in LEX, a simple performance standard
is available: solution of the integral. This is a substantially simpler situation
than that faced by Waterman’s poker player, which neceds to play several
hands to evaluate how well it is doing. LEX knows when it is doing well.
LEX also knows when it is doing poorly. For each integration problem, the
problem solver.is given a time and space limit. If it runs out of time or space
before solving the problem, it gives up and the problem generator selects a
new problem to solve.

The Critic

The problem solver provides the critic with a detailed trace of each sue-
cessfully solved problem. The critic’s task is to cxtract positive and negative
training instances {rom this trace by assigning credil and blame to individual

L

490 Learning and Inductive Inference xxv

decisions made by the problem solver. The critic solves the credit-assignment
problem as {ollows:

1. Every scarch step along the minimum-cost solution path found by the
problem solver is a positive instance;

2. Every step that (a) ieads from a node on the minimum-cost path to a .
node not on this path and (b) leads to a solution path whose length is
greater than or equal to 1.15 times the length of the minimum-cost path
is a negative instance.

These criteria are intended to produce applicability heuristics that guide
the performance element to minimum-cost solutions. To evaluate these criteria
(especially 2b), the critic must re-invoke the problem solver to follow out
paths that appear to be bad. This deeper search is in some ways analogous
to the deep scarch Samuel used in his checkers-playing program for solving
the credit-assignment problem. The criterion of minimum-cost solution is
convenient because it can be incasured by the computer itself—by its own
experience in attempting to solve the problem.

The critic is fairly conservative. It provides the generalizer only with the
training instances that can be most reliably credited or blamed. However,
the critic is not infallible. It can produce [alsc positive and [alse negative
training instances when the knowledge base contains incorreet heuristics.
Since the problem solver follows the guidance provided by the heuristics in
the knowledge base, it may believe it has found the lowest cost solution when
in fact, the heuristics have led it astray. Since LEX does not conduct an
exhaustive search of the space, it will not always detect this fact. As a result,
the critic may create false positive and false negative instances. Its reliability
can be improved by increasing the safety factor (normally 1.15) when the
problem solver is re-invoked by the critic. This causes the problem solver
to search more deeply along alternative paths and improves the chances of
finding the true minimum-cost path.

The Generalizer

The gencralizer simply applies the candidate-elimination algorithm to
process each of the training instances provided by the critic and to refine the
version spaccs of cach of the operators. The multiple-boundary-set form of
the algorithm (see Article XIv.D3a) was adopted to handle crroncous training
instances.

The generalizer is able Lo learn disjunctions in certain cases. During
generalization based on a positive training instance, for cxample, if the version
space would normally be forced to collapse because. no consistent rule exists,
a second version space is created instead. This second version space contains
the patterns that are consistent with all of the negative instances and the
single new positive instance. As additional positive instanccs are received,

Dsd - LEX 491

they are processed against any version space whose G set covers them. When
more than one heuristic rule is created for a single operator, the effect is the
same as if a single disjunctive heuristic had been devcloped.

The generalization language {and, thus, the rule space) in LEX is based
on the tree of functions shown in Figure D5d-4. The most general pattern
is f(z), that is, any real function. The most specific functions are integer
and real constants, sine, cosine, tangent, and 2o on. This language is known
to have shortcomings (e.g., it cannot describe the class of twice continuously
differcntiable functions), but it is adequate for expressing some of the heuris-
tics useful in the domain of symbolic integration.

LEX relies entirely on syntactic generalization methods. It cannot, for
example, analyzc the solution of [3zcoszdz and realize that, since OP03
requires only a real constant r, the oarticular constant 3 can be generalized
to any real constagt. This kind of analysis, based on the semantics of the
operators, is done in STRIPS and HACKER. The advaniage of LEX’s syntactic
approach is that it is general—it ca;)_be applied to any generalization language.

The Problem Cenerator

The purpose of the problem generator is to select a set of integration
problems that form a guod teaching sequence (see Article X1V.A). This portion
of LEX is still under development, so only some strategies that have been
proposed for the design of the problem generator are discussed here.

One strategy for sclecting a new problem is to find an operator whose
version space is still unrefined and select a problem that “splits” the version
space—that is, an iategral that matches only hall of the patterns in the §
and G sets. If the problem solver can solve such a problem, LEX will he able
to refine the version space for that operator.

i «OMMos fy fo . fi} BT~ £, fa
TRANSC POLYNOM (ehh ..te i hs .. I (BN W]
- U hh
it h
™IC X, MOMNOM 10 VHINENE ARINENE, \N)\"\'.] ~h h
i /\
o Kxp LN w [}
ol WM
TAN ! NP}
X [CX . HA 12 V13

Figure D5d-4. Function hierarchy used in LEX'’s generalization language.

4

492 Learning and Inductive Inference xv

A second, related strategy is to take a problem that LEX has already
solved and modify it in some way. For instance, having solved the integral
J 3zsin zdz, LEX could consider attempting the integral [5zsinzdz. This
would force it to generalize its version space to indicate that any constant
could appear (not just 5 or 3). The generalization hierarchy i in Figure D5d-4
can be used to create such training problems.

A third strategy is to look for overlaps in the knowledge base. If there
are two operators whose version spaces overlap, the problem generator caa
choose a problem for which both operators are believed to be applicable.
The resuiting attempt to sclve the problem may show that only one of the
operators should be used in such situations.

Finally, when LEX is just beginaing to learn, it may be neccssary to apply
the inverses of the integration operators to create problems of known difficulty
for the problem solver to solve. This is analogous to Lh§ technique of providing
students in chemistry courses with an “unknown” that is, in lact, deliberately
synthesized by the professor. LEX must learn how to control its search so that
it can solve the training problem without being overwhelmed by combinatorial
explosion.

The problem generator, more than any other componcnt of the !
system, must have meta-knowledge of what LEX already knows and whcu ita
weaknesses are. [t must keep a history of previous problem-solving attempts,
so that it does not repealedly propose unsolvable or uninformative problems.
The design of the problem generator |s, in fact, the most diflicult part of the
LEX project. - |

i
Conclusion :
|

LEX learns when to apply the standard operators of symbolic integra-
tion. For 2ach integration operator, the system lcarns a hcuristic pattern.
The problem solver matches these patterns against the expression being inte-
grated to determine which operators should be applied. LEX obtains train-
ing instances by observing its own attempts to solve intcgration problems.
Similarly, LEX obtains its performance standard by computing the cost of
the shortest solution path that it found when it tried to solve the problem.
The credit-assignment problem is solved by conducting a decper search and
crediting those decisions that led to the minimum-cost solution. Decisions that
caused the problem solver to depart from the minimum-cost path are blamed.
Positive and negative training instances are thus extracted and processed by
the gencralizer to update the version spaces of the integration operators.

Experiment planning is implemented in LEX by the problem generator,
which cmploys a variety of strategics to selcct problems that will help the
other components of the system refine the knowledge base.

The primary weakness of LEX, und a source of its generality, is that
it employs only syatactic methods of generalization. It is unable to reason

D5d , LEX 493

about the meanings of its operators, and vhus it cannot use knowledge about

dependencies among operators to determine how the heuristics should be
generalized.

LEX does not attack the probicms of learning new operators (i.e., right-
hand sides of heuristic rules) or learning operator sequences (i.e., macros).
To learn a new integration operator, LEX wouid need much more knowledge
about mathematics and the goals of integration. This is a very difficult
learning problem. The problem of learning ma.co operators (i.e., useful
sequences of operators) and thair applicability conditions has been addressed
in HACKER and STRIPS. Further work on LEX may include the learning of

such operators, ‘

References

Mitchell, Utgofl, and Banerji (in press) and Mitchell, Utgoff, Nudel, and
Banerji (1981) provide descriptions of LEX.

D5e. Grammatical Inference

MOST Al RESEARCHERS employ numerical or logical representations in their
learning systems. in work on adaptive systems, for example, the concept to be
learned is often represented as a vector of numerical weights. Most of the other
systems described in this chapter represent their knowledge in logic-based
description languages (e.g., predicate calculus, semantic nets, feature vectors).
A number of researchers, however, have developed systems that employ formal
gramnars to represern* the learred concepts. This article discusses the body
of work, known as - rammatical inference, that secks to learn a grammar from
a set of training instances.

The primary interest in grammar learning can be traced to the use of for-
mal grammars for modeling the steucture of natural language (see Chomsky,

.1057, 1965). The question of how people learn to speak and understand lan-

guage led to studies of language acquisition; interest in modeling the lan-
guages of other cultures encouraged the development of computer programs
to help field researchers construct grammars (or unfamiliar languages (Klein
and Kuppin, 1970); and rccent attempts by pattern.r-.cognition researchers to
use grammars to describe handwritten characters, visual scenes, and cioud-
chamber tracks have crcated a need for grammatical-inference techniques.
Thus, all of these researchers are interested in methods for learning a gram-
mar from a set of training instances. '

A grammar is 2 system of rules describing a languagz and telliug which
sentences arc allowed in the lunguage (see Acticle tv.C1, in Vol. 1). Grammars
can describe natural langnages—that is, langnages spoken by people—and for-
mal languages—that is, simple languages amenable to mathematical analysis.
I natural languages, grammar rules indicate th -zenerally accepted ways of
constructing sentences. In formal languages, however, grammars are applied
much more strictly. A formal grammar foe a language, [, can be viewed .3 4
predicate that tells, for any sentence, whther it is grammatical, that is, “in”
the language L, or ungrammatical, th~ =, not 2 legal sentence in L. From
this formal perspective, a language is simply a potentially infinite set of all
legal sentences, and a grammar is simply a Jescription of that set.

One might expeet the task of .earning a grammar to be the same as the
task of learning a single concept (sec Sec. XIV.D3), since a single concept can
also be viewced as a predicate deseribing some sct of objects. Usually, however,
this is not the cnse. Most formal languages are too complex to be described
b’ a single concept or rule. Instead, a grammar is usually written as a set
of rules that describe the phrase structure of the language. For example, we
might have one rule that says: A sentence is an article followed by a noun
phrase followed by a verb phrase. This could be written as the grammar rule:

494

,.:\‘(

e Ty

St T

D3%e Grammatical Inference - 495

(sente.:z) — (article) (noun phrase) {verb phase}.
This rule describes the overall structure of a sentence. Of course, there are
many different kinds of noun and verb phrases. These can also be described
by phrase-structure rules. We might, for example, write another rule’

{verb phrase} — (verb)

for the simpliest case in which the verb phrase is just a single word, as in The
boy cried. A more complex verb phrase could be written as

(verb phrase) — (verb) (article) (noun phrase)

for sentences like The program learned the grammar.

A grammar can thus be built out of a set of phrase-structuce rules (also
called productions). These rules break the problem of determining whether
a sentence is grammatical into the subproblems of determining whether it is
composed, for example, of a grammatical article followed by a grammatical
noun phrase followed by a grammatical verb phrase. In this way, the single
concept grammatical sentence is broken into the subconcepts of noun phrase
and verb phrase. Moreover, such subconcepts are not indcpendent but interact
according to the grammar rules. Thus, determining whether a sentence is
grammatical is a multiple-step task involving the sequential application of
phrase-structure rules. It is for this reason that we include grammatical
inference in our survey of systeins that learn to perform multiple-step tasks.

In this article, we first introduce formal grammars and their uses and
then discuss the theoreticai limits of grammatical inference. The problem
of learning a grammar from training instances has reccived a fair amount of
mathematical analysis. We describe the principal results of this work along
with their relevance for practical learni.ig systems. Finally, we present the
four major methods that have been developed for learning grammars.

Grammars and Their Uses

In the theory of formal languages, a language is defined as a set of strings,
where each string is a finite sequence of symbols chosen {rom some finite
vocabulary. In natural languages, the strings are sentences, and the sentences
are sequences. of words chosen from some vocabulary of possible words. To
describe languages, Chomsky (1957, 1965) introduced a hierarchy of classes
of languages bascd on the complexity of their underlying grammars. We will
focus primarily on the contezt-free languages (and grammars).

A context-free language i3 defincd by the following:

1. A terminal vocabulary of symbols-—the words of the language;

2. A nonterminal vocabulary of symbols—the syntactic categories {c.g., “nonn,”
“ves0”) of the language;

498 Learning and Inductive Inference xav

3. A set of productions—the phrase-structure rules of the language; and
4. The start symbol

The best way to understand these definitions is by considering an example.
Examine the following context-free grammar, G, with

(a) the terminal vocabulary {a, tke, boy, girl, petted, held, puppy, kitten,
wall, hill, by, on, with}; .
{b) the nonterminal vocabulary {2,5,V,A,P,W,0,X};
(¢} the productions o
2 — ASY, .
V=X V- XA0, V- VP,
P - WAS, P— WAO,
A—a, A the,
§ — boy, § - girl,
W-—-by, W-—=on W— with,
O - puppy, O — kitten, O —hill, 0 — wall,
X — petted, X — held; and
(d) the start symbol, 2.

This grammar, G, describes a laaguage of simple sentences such as The boy
held the puppy and The girl on the hill held a kitten. It describes a sentence
by deriving it from the start symbol. We start with the symbol Z and
choose a production that has Z as the left-hand side. There is only one
such rule in G: Z — ASV. We apply this rule by rewriting Z as the string
ASV. Now we choose one of the nonterminals, A, S, or V, and find a rule
that can be used to rewrite it. If we choose the rule V — XAOQ, our current
sentence becomes ASXAO. We continue rewriting nontermiials (according to
the production rules) until the sentence contains only terminal symbols. A
complete derivation for the sentence The boy held the puppy is as follows:

Current sentence Chosen production rule

¥4
(Z — ASY)
ASY
{V = XA0)
ASXAO
(A == the)
the SXAC
(S — boy)
the boy XAO
{X — held)
the boy held A0
(A = the)
the boy held the O
(0 — puppy)
The boy held the puppy
. N Vi . - /\ -~ i . \ § , :
¥ 'J \‘{ k ‘;‘ \!_\ J \ J ‘\ ":.r, i \\ P - !/ \

e

-,*1_'

DSe Grammatical Inference | 497

2

SN
A .|9 X T\ (IJ
the boy held the puppy

Fig"ure D5e-1. Derivation tree for the sentence The boy held the puppy.

Thia is usually depicted as a derivation trec (sec Fig. DSe-1).’

" Depending on which rules we choose during the rewriting process, we get
different sentences. If we choose “O — kitten” instead of “O — puppy,” we
get the sentence The boy held the kitten. The context-free language described
by G is the set of all possible scntences that can be derived from Z by the
rewrite rules in G. Notice that we can also start our derivation with some
symbol other than Z. If we start with the nonterminal V, for example, we
generate Lhe sublanguage cf all verb phrases in G. Each nonterminal has a
sublanguage. Thus, each nonterminal represents a subconcept, such as noun
phrase (S) or verd phrase (V), of the ovérall concept of grammatical sentence
(2). | '

[tf: pattern recognition and language understanding, the performance task
facing a computer program is not the generation of grammatical sentences but
their ‘recognition. Given a senteuce, the problem of determining whether it
is grammatical—that is, of finding a derivation for the sentence—is called
parsing. Many cflicient algorithims have been developed for parsing sentences
in context-free languages (see Article {V.D, in Vol. I; Hopcroft and Ullman,
1969).

Eztensions .» Contezt-free Grammars

Context-free grammars are able to capture much of the structure of
natural and artificial languages, especially computer programming languages.
Ilowever, many problems require extensions to the basic context-{ree grammar
framcwork.

Transformational grammars. Some characteristics of natural lan-
guage cannot be modcled with context-free grammars. One example that is
frequently cited is the “respectively” construction in sentences such as The

N_,'

£ DRI o m e g 4

S—

A —

498 Learning and Inductive Inference xav

boy and the girl held the puppy and the kitten, respectively. Other examples
include the conversiog of scntences from active to passive voice and discon-
tinuous constituents like throw out in the sentence fle threw the junk out. In

_response to these shortcomings of context-free grammars, Chomsky (1965) de-

veloped the theory of transformational grammar (see Article 1V.C2, in Vol. 1),
in which a scntence is first derived as a so-called deep structure, then manipu-
lated by transformation rules, and finally converted into surface form by
phonological rules. The deep structure, which corresponds to the basic de-
clarative meaning of the sentence, is derived by a context-free grammar. The
transformation rules can modify the structure—but not the meaning—by al-
tering the derivation tree. For example, a transformation rule can coavert a
declarative sentence into a question by flipping branches of the tree to change
the word order. Under such a transformation, the sentence The bow is hold-
ing the dog becomes the question [s the boy holding the dog? Some methods
have been dcveloped for learning transformation rules, as well as context-free
grammars, from cxamples. Particular attention has been given to learning
these rules under conditions believed to be similar to those under which a
child learns a language. :

Stochastic grammars. Although context-free grammars (and traasfor-

mational grammars) can represent the phrase structure of a language, they
tell nothing about the relative frequency or likelihood of appearance of a given
sentence. [t is common, for instance, in context-free grammars to use recur-
sive productions to represent repetition. In our sample grammar above, the
production V — VP is recursive. If we apply it over and over again, we can
gencrate scntences like The boy held the puppy on the wall by the hsll with the
kitten... Although the sentence is technically grammatical, it would be nice
to represent the degree of acceptability of such a sentence.

Stochastic grammars provide one approach to this problem. Each produc-
tion in a stochastic grammar is assigned a probability of selcction—that is, a
number between zero and one. During the derivation process, productions are
selected for rewriting according to their assigned probabilities. Consequently,
each string in the language has a probability of occurrence computed as the
product of the probabilities of the rules in its derivation. If we took our
sample grammar, for instance, and assigned probabilities of .5 to all of the
rules except X — ASV (probability 1.0) and V — XAO (probability .33), the
string “The boy held the puppy” has probability 1{.33)(.5)(.5)(.5)(.5).5) =
.01, while the string “The boy held the puppy on the wall by the hill with the
kitten” has probability 1.58944 X 107, This expresses the intuition that the
sccond scntence is very uanlikely to be considered acceptable.

Stochastic graminars have been employed by pattern recognition rescarch-
ers in noisy and uncertain cavironments where it is better to have an in-
dication of the degree of grammaticality of a sentcnce than a single yes-no
decision. Stochastic grammars also allow grammatical-inference programs to

-

Y
YN

T

—t

BN

N,

[P RN R

D3e Grammatical Inference 499

represent uncertainty about the true language when noisy and unreliable
training instances are presented. :

Graph grammars. In syntactic pattern-recognition problems, it is often
important to represent the two- or three-dimensional structure of “sentences”
in the language. Traditional context-free grammars, however, generate only
one-dimensional strings. Context-free graph grammars have been developed
that construct a graph of terminal nodes instead of a string of terminal symbols
(see Article X11.E3). Rewrite rules in the grammar describe how a nonterminal
node can be replaced by a subgraph. Evans (1971) employs a sct of graph
grammars to describe visual scenes. Other rescarchers have applied graph
grammars to the pattern recognition of handwritten characters and cloud-
chamber tracks. This latter use of grammars is especially appropriate in
that the rewrite rules in the grammar directly correspond to properties of
the pattern. For example, subatomic particles decay into other particles
only in certain ways, and these decay events can Le modeled naturally with
productions whose left-hand sides have the decaying particles and whose right-
hand sides state the corresponding particles into which they decay.

Theoretical Limitations of Grammatical Inference

Now that we have reviewed some of the important kinds of formal lan-
guages and grammars, we turn our attention to the problem of learning these
formal languages from examples. As with other forms of learning from exam-
ples, it is profilable to view grammatical inference as a search through a
rule space of all pussible context-free grammars for a grammar that is consis-
tent with the training instances chosen from an instance space. In language
learning, the training instances are usually sample sentences that have been
classificd by a’teacher to indicate whether or not they are grammatical. The
goal of the grammatical-inference program is to find a grammar {or the “true”
language that underlics the training instances,

Under what conditions is it possible to learn the correct context-free
language from a set of training instances? This question has received a fair
amount of study, and several results have been obtained. The most important
result is that it is impossible to learn the correct language (or the correct single
concept) fror positive examples alone. Gold (1967) proved that if a program
is given an infinite sequence of positive examples—that is, sentences known
to be “in" the language—the program cannot dctermine a grammar for the
correct context-[ree language in any finite time. To sce why this is so, consider
that at some point the program has received k strings {21, 99, ..., 5 }. There
are many possible languages thal are consistent with these examples. The
most general, universal language, which contains all possible strings of the
terminal symbols, certainly contains all of the strings in the sample. Similarly,
the trivial language L = {s1,92, ..., 3%} is the most specific language that

500 Learning and Inductive Inference XIv

contains all of the strings in the sample. There are many possible languages
between these two exttemes. No finite sample will allow the learning program
to choose the correct language from these various possibilities.

Fortunately, in most learning situations, additional information is avail-
able shat can help constrain the choices of the learning program so that a
reasonable language, and its grammar, can be found. Let us examine possible
sourccs of this additional information.

Negative examples. Negative training instances allow the program to
eliminate grammars that are too general (sce Article XIV.D3a, on the candidate-
climination algorithimn). Gold (1967) showed that if the learning program could
pose questions to an informant, that is, ask a person whether or not a given
string was grammatical, the true language could be learned. The informant
could be used to obtain complete positive and negative examples and thus
determine exactly the true language. Gold called this learning situation infor-
mant presentation.

Stochastic presentation. When a program is trying to learn a stochas-
tic context-free grammar, learning is also possible if the training instances are
presented to the program repeatedly, with a [requency proportional to their
probability of being in the language. In this stochastic-presentation method,
the program can cstimate the probability of a given string by measuring its
frequency of occurrence in thn?‘mitc sample. In the limit, stochastic presen-
tation gives as much informatibn as informant presentation of positive and
negative examples: Ungrammatical strings have zero probability, and gram-
malical strings have positive probability.

Prior distributions. As we have seen above, even after a set of positive
instances has been processed, there are still many possible languages, and
hence many possible grammars, for the learning program to chcose {rom.

Furthermore, even when a unique language has been determined, as with

informant presentation, there may be several dilferent grammars that all
generate the same language. One way to tell a program how to choose the right
grammar is to define a prior probability (or desirability) distribution over all
possible grammars. The program can then choose the most probable grammar

that is consistent with the training instances. Ilorning (1969) employs a

prior distribution that makes simple grammars more likely than complex
ones, where simplc grammars are those that have fewer nonterminals, fewer
productions, shorter right-hand sides, and so on.

Semantics. According to cognitive psychologists, children reccive little
negative feedback when they are learning a language. Consequently, we
arc faced with the puzzle of how pcople are able to learn natural language
almost entirely from positive training instances. One important source of
information for children may be the meaning of the sentences they hear. A few
psychological theorics, and some computer programs (sce below), have been

* developed that incorporate semantic constraints as a source of information.

These theories basically claim that the grammatical structure of a language

DSe ‘ Grammatical Inference 501

parallels the semantic structure of the internal representation that people
employ.

Structural presentation. One technique employed by pattern recog-
pition researchers to aid grammatical inference is structural presentation, in
which the program is given some information about the derivation tree of
the sample sentences. This is similar to the use of book training in Samuel’s
checkers program. The derivation tree provides a movc-by-move (or, in this
case, a rule-by-rule) performance standard along with each training instance.

Grammar restriction. One final way to get around Gold’s results is
to learn only special subclasses of the context-free languages. In particular,
grammatical inference is much easier for regular and delimited languages,
which, though not as powerful as the context-{ree languages, have important
practical applications.

In summary, thea, although Gold’s theorems show Lhat the formal prob-
lem of learning a ccntext-frec grammar [rom positive instances alone is impos-
sible, there are many alternative sources of information that allow programs,
and presumably people, to leara language.

Methods of Grammatical Inference

In this section, we survey four basic techniques that have been used to
learn context-free grammars from training instances. The various mcthods,
some of which parallel the basic learning methods discussed in Article XIv.D1,
differ primarily in the way that they search the rule space and the kinds of
information that they use to guide that search.

The first approach we discuss is enumeration. Enumerative, or generate-
and-test, methods propose possible grammars and then test thém against
the data. The second basic grammatical-infcrence technique is construction.
Constructive methods usually learn from positive examples only. They collect
information about the structure of the sample strings and use it to build a
grammar reflccting that structure. Refinement methods form a third impor-
tant class of graminatical-inference tcchn&ques. They start with a hypothesis
grammar and gradually improve it by mcans of various heuristics based oa
additional training instances. Finally, aemzntics-bused mecthods employ knowl-
edge ol the meanings of the sample mnténceg to decide how to search the
rule space. Most semantics-based methiods have been developed to model how
children learn natural languages. \

Rules of generalization and specialization for grammars. Belore
describing these learning methods in more detail, we first discuss three meth-
ods for the syntactic gencralization and specializalion of grammacs:

1. Merging. A context-free grammar can bBe generalized by an operation
called merging. Suppose the graminar G contains two nontcrminals, A

a

502

Learning and Inductive Inference xv

and B. We can madify G to obtain A more general grammar by merg-
ing A and B—that is, by creating a new nonterminal, @, and replacing
all occurrences of A and B by Q. This has the eifect of pooling the
sublanguages of A and B to create a new sublanguage, @, whose strings
may appear anywhere that either the strings of A or the strings of B
could have appeared. Suzpose, for cxample, that in our sample grammar
discussed above, we murged § (subjects) and O (objects) to obtain Q. The
productions of the grammar G become:

Z— AQY

Vo X, V- XAQ V- VP

P — WAQ,

A—a, A-sthe,

W-—by, W-on, W with,

Q — puppy, Q— kitten, @ —hill, Q — wall,
Q — boy, Q — girl, :

X < petted, X — held.

Previously ungrammatical sentences like The puppy petted the boy arc now
allowed. The language is thus larger and, consequently, more zeneral.

Splitting. The inverse of merging is a specialization process calicd sphit-
ting. We can specialise a grammar by splitting the sublanguay of one
nonterminal, N, into two smaller sublanguages, Ny and N;. This is
accomplished by replacing some occurrences of Vin the grammar by A}
and others by N;. In the gratamar above, for instance, we could split
the A (article) nonterminal into Ay and A; to obtain the grammar:

Z—- AQV,

VX V=XAQ V- VP

P— WA:Q'

A| - a, Az - the,

W=by, W-on, W— with,

Q -+ puppy, Q — kitten, @ —hill, @ — wall,
Q — boy, @ - girl, ‘

X ~» petted, X~ heid.

Now all sentences must begin with “a,” and all prepositional phrases and
object phrases must use “the.” The previously grammatical sentence
The boy petted the puppy is now illegal. This language is therefore more
specialized. '

Disjunction. One operation that is similar Lo merging is called disjune-
tion. la disjunction, we choose two strings, s, and 32, and create a new
nontcrminal, D, whercby the pules D — s\ and D — 33 are added to the
grammar. fvery occurrence of the strings 3, and s in cxisting produc-
tions is replaced by D. lor example, we could disjoin AQ and AS in our
sample grammar to create the new nonterminal, N {noun phrase). The
grammar then becomes:

LA

L amer s e

DSe ~ Grammatical Inference ' 503
2 -+ NV,
V=X, V—XN, V- VP
P — WN,

N—AS, N-— A0,

A =3, A~ the,

§ — boy, §-—girl,

Wby, W-on, W - with,

O - puppy, O — kitten, O — hill, 0 — wall,
X = petted, X — held.

This operation is similar to merging, except that it can be applied to
strings of terminals and nonterminals. If both of s; and sy are simple
nonterminal symbols, disjunction has the same effect as merging. If only -
one of sy or 33 is a nonterminal, the operation is called subatitution.

Thesec rules of generalization can be applied to move from one point in
the rule space (i.e., one grammar) to another. We now turn our attention to
the four basic methods of grammatical inference and show how they apply
these operations to search the space of possible context-free grammars.

Enumerative Methods

Enumerative methods generate grammars one by one and test each to
determine how well it accounts for the training instances. The first enumera-
tive method we consider is that of llorning (1969), who developed a procedure
for finding the most plausible stochastic grammar consisteat with a set of
stochastically presented training instances. The general idea behind Horning’s
method is Lo cnumerate all possible grammaes in order of simplicity and choose
the first grammar that is consistent with the training data. The actual algo-
rithm is somewhat more complicated, however, since Horning seeks the most
likely stochastic grammar, that is, the grammar G that is most likely to have
generated the observed set S of sample strings. This is expressed formally as
the gramnmar G that maximizes P(G | S), that is, the probabilily of C given S.
Unloctunately, it is diflicult to compute P(G | §) directly from the training
instances. Bayes’ theorem, however, provides a way of computing P(G | §)
from three other quantities, P(G), P(S | G), and P(S):

_PG)x P(S]G)
Pe|s) = ELLEALE),
where P(G) is the a priori probability that G is the “truc” grammar, P(S)
is the a priori prabability of observing the particular sample S, and P(S | G)
is the probability of observing S given the grammar C. Since P(S) is inde-
pendent of G, we can maximize P(G | §) by just maximizing the numerator
P(G | §) = P(G) X P(S | G). The probabilities P(G) and P(S | G) can be
computed for any particular grammar G.

504 Learning and Inductive Inference v

The probability P(S | G) that the training instances S will be generated
by the stochastic grammar G can be computed directly from G by parsing
each sentence in S. The problem of computing ’(G) is more Jdifficult, however.
Horning sought to have the a priori probability of . reflcct the complexity
of the grammar G. Simple grammars should be highly probable; complex
grammars should be improbable. Consequently, he devcloped the idea of a
granmar-grammar, that is, a stochastic grammar that generates a stochastic
grammar as ils terminal string. Such a grammar-grammar can be constructed
irom a terminal vocabulary of symbols such as A, B, C, Z, —, etc. Since, as
we have seen ahove, a stochastic grammar generates short strings with a much
higher probabilily than it does long strings, the grammar-grammar generates
simple grammars with a much higher probability than it does complex ones. In
particular, the probability P(G) is the probability that the grammar-grammar
would generate G.

Since we can compute P(G) and P(S | G), we can use DBayes’ theorem
to compute F/(G | S). Therclore, if we compute P'(G | S) for all possible
grammars, G, we can find the grammar that most likely gencrated . Such
a procedure is impossibly inefficient, however. Instead, Horning used the
following technique. First, he developed a procedure that could enumerate
all possible stochastic grammars starting with the most likely grammar, Gy,
and continuing on in order of decreasing probability P(C;). Next, he noticed
that P/(Gy | S) did not have to be computed for all grammars but only for
those grammars whose probability P(G,) was greater than P/(G, | §). This
is because once P(G;) falls below P'(G, | S), there is no way that multiplying
by P(S | Gi) will ever exceed P/(G, | S), since P(S | G,) is always less than
or equal to 1.

Counsequently, Horning’s method enumcrates all grammars G, starting
with G, and continuing until P(G;) < P/(G, | S). The probability P(G; | S)
is computed for each grammar G, and the grammar that maximizes P/(G; | S)
is output as the grammar most likely to have produced the set of examples, S.

The algorithm is theoretically correct—it always finds the best grammar—
but it is still too incflicient for all but the smallest grammars. Therefore,
Horning modified the graminar gencrator to generate only grammars that
were deductively acceptable (DA). A grammar is deductively acceptable if it
generates every string in the sample, S, and if every production in G is used
to derive at least one of the training instances. [n other words, a DA grammar
must be consistent with the training instances and must not be overly specific
oc cluttered by useless produciions. It can be shown that all DA grammars
with k£ + [nonterminals can he obtained by splitting PA grammars with &
nonterminals. Furthermore, once a grammar ccases Lo be dednctively accept-
able, no further splits will make it deductively acceptable, since it is already
overly specilie.

These facts were used by Horning to organize the rule-space search.
Starting with the most general (and most likely) DA grammars, repeated splits

B v

[

A Tem———

s o n

A

S U

R R e

D5e Grammatical Inference 505

are made until either the grammars ceasé to be deductively acceptable or their
a priori probability P{G;) falls below the bound PG, | §). The probability
P'(G: | S) is computed for all of the generated grammars, and the grammar
that maximizes P/(G; | S) is selected. This procedure, although more efficient
than the frst one, is still of theoretical interest only.

A second enumcrative method makes use of training instances to guide
the enumeration of plausible grammars. Pao (1969) describes an approach to
grammatical inference that resemblcs the plan-generate-test paradigm of the
DENDRAL program (see See. VILC2, in Vol. lI). In the initial planning phase,
Pao’s algorithm analyzes the (positive) training instances and constructs a
trivial grammar——that is, a very specific graminar that generates only the
training cxamples. A partially ordered set (actually, a lattice) of plausible
grammars can be generated by merging nonterminals from this trivial gram-
mar. During the generate-and-test phase, Pao’s algorithm enumerates all of
these grammars in order, from most spccxﬁc to most general, and tests them
by consulting an informant.

Pao's algorithm gencrates two gr:unmars at a time, G and F, and uses
an informant to eliminate one of the two. The informant is presented with
a new sentence, s, that is generated by G but not by H. Il the informant
says s is in the “true” language, then IT and all grammars more specific than
H are removed from further consideration. Also, the set of grammars more
general than H (but not more general than G) is searched in order from
general to specific, and grammars that do not generate s are discarded. If,
on the other hand, the informant says that s is not in the “true” language,
then G and al! grammars more general than G are removed from further
consideration. The generating and testing of possible grammars continues
until only one possihle grammar remnains. This search through the partiaily
ordered set of all possible grammars is similar to Mitchell’s (1978) candidate-
elimination algorithm (sce Article XIV.D2a). In Pao’s program, though, an
active experimentation approach is cmployed to search the space rather than
waiting for new training instances to drive the search.

Unfortunately, this method does not work for general context-free grame -~

mars. The basic algorithm works only for regular grammars—that is, gram-
mars whose productions all have the form N — tMor N — ¢t for ¢, a single
terminal symbol, and M, a single nooterminal symbol. In regular languages,
there is no difficulty finding a test sentence s to distinguish between two gram-
mars G and H. Unfortunately, this ;annot be done for general context-free
languages. Pao has extended the method to handle dclimited grammars—
a somewhat larger class of grammars than the regular grammars.

Constructive Methods

Constructive methods attempt to build a plausible grammar using only
the information from a positive sample with no informant. From Gold's

BT e o e At 4+ e sty e 2 o0

508 Learning and Inductive Inference _ xav

theorems, it is clear that this problem is ill-formed, since no unique language
is determined by a set of positive instances. |lowever, various hecuristics have
been developed for constructing simplie, {airly general gramimars {rom positive
instances only.

One important set of heuristics is based on the idea of the distribution
of substrings in the language. In context-free languages, certain classes of
strings, such as noun phrascs and prepositional phrases, tend to appear in
the same contexts in differcnt sentences. This suggests that we might be able
to discover interesting classes of strings by looking at their surroundings in
the set of sample sentcnces. lor instance, the words a and the both tend
to oecur at the beginnings of sentences, so perhaps they should be grouped
together to form the class of articles. This is done by creating a noaterminal
A and inventing the production rules “A — a” and “A — the.” Distributional
analysis has been employed by Harris (1964), Fu (1975), Kclley (1967), and
Klein and Kuppin (1970) .

For regular grammars, Fu (1975) has applied a particular kind of distribu-
tional analysis based on the idea of the formal derivative of a string. The
formal derivative of a string s is the set of strings

D,L = {t| the string st is in the language L},

that is, all of the strings ¢ that follow s in the given language L in sentences
where s is at the beginning of the seatence.

Formal derivatives can be employed to construct regular grammars in a
straightforward way. Imagine that we have a grammar G, and we are in the
process of gencrating a sentence. Suppose that, so far, we have generated the
string sU, where U is 2 nonterminal and s is a terminal string. Il we take
formal derivatives for every string sa that appears in the sample (where a is
a single terminal symbol}), we can create rnsw nonterminals {or each distinct
formal derivative. We can add the productions :

U—- GV1
U=bVy

.

U—'ka

to the grammar, G, where V7, V-_., .+, Vi correspond to the formal derivatives
of sa,sb, ..., sm. The elfect of this construction is to group together all of
the strings in the formal derivative of sa, for example, and place them in
the sublanguage for V. We can construct the enlire grammar G by initially
taking s to be the null string and U to be the start symbol.

The chief difliculty of distributional methods is that some definition of
similar contczts is needed so that strings that appear in similar contexts can

be grouped into the sublanguage for a new nonterminal symbol. Problems

DSe - Geammatical Inference 507

can also arise when one string is in two different sublanguages and therefore
appears in different contexts. The word program, for example, can be both a
noun and a verb.

Another approach to constructive inference of grammars is to look for
repetition in the sample and model it as a recursive producticn. This method
is rarcly sufficient in itself to construct the whole grammar, but it can be used
in combination with other methods. Consider, {or example, the set of training

‘instances {4, aaq, aaaa}. A reasonablc grammar to infer has the productions

S — a and § — Sa and generates all possible strings of repeated as.

To employ this repetition heuristic, it i3 help{ul to know the properties of
tepetition for different kinds of gramrmars. For regular grammars, iteration
always takes the form of repeated choice of a string without reflerence to
any other strings. [lowever, for context-free lunguages, repeiition can be
more complicated. One important theorem about context-free languages
{called the wvzyz theorem) states that if a sufficicutly long string uvzyz
is in the language, then so is the string uwv*zy*z as well; that is, v and
y are repeated an equal number of times. This can be represented by a
self-embedding production of the form X — VXVY. Solomonoff (i964) and
Maryanski (1974) describe inference methods based on searching for double
eyceles of the uv*zy* z variety. Once a possible cycle is found, it can be tested
by consulting an informaat.

Refinement Methods

Refinement methods formulate i hypothesis grammar and then refine it
by applying simplification heuristics or by gathering new training instances.
Knobe and Knobe (1977), for example, present an algorithia that creates
an initial hypothesis grammar, G, and then enters a refinement cycle in

which it repeatedly accepts a new grammatical string, refines G to include’

the string, and gencralizes and simplilies G. The initial grammar includes a
distinct nonterminal {or each of the terminal symbols. In the course of the
algorithm, these nonterminals are generalized by merging. The basic learning
cycle proceeds as follows:

Step 1. Accept a grammatical string (i.e., a positive training instance) and
attempt to parse the string with the current grammar, G. If the
parse succeeds, repeat step 1; otherwise, go to step 2.

Step 2. Compute a list of partial oarses and sort it aceceding to generality.
(A partial parse i3 a string of terminals and nontcrminals in which
parts of the original training string have been partly parsed into
nonterminals; the more general partial parses arc shorter, since
most of the sentence has been successiully parsed.) Hypothesize
the production § — P, where S is the start symbol and P is the
most general partial parse. (This atllows the training instance to be
parscd successfully.) Use the modified grammar to generate a icst

L J

508 _ Learning and Inductive Inference v

sentence, and’ ask the informantif the test sentence is grammatical,
If it is, go to step 3; otherwise, try the next moat general partial
parse, and repeat until a sufficiently specific production has been
fcund.

Step 3. Generalise and simplify the grammar by applying some of the
merging aud suhstitution heuristics described below.

The third step of yeneralization and simplification is important, because
it is in this step that the new nroductica § —» Pis integrated into the grammar
and coanected to existing production rules. Many different simplification and
generalizatinn techniques have been developed by various rcsearchers. We
survey a numver of these here.

Generalization by disjunction. One important simplification tech-
nique is to apoly disjuncticn (see above) to replace two similar s.cings s and ¢,
which appear on the right-hand sides of productions, by a single nonterminai.
There are two basic heuristics for deciding whether s and ¢ are similar: inter- .
na! similarity and ezternal similarity. The internal-similarity heuristic com-
pares the sublanguages generated by s and ¢. If the sublanguages are si::ilar,
tke heuristic proposes that s and ¢ are similar and should be disjoined. The .
external-similarity heuristic, on the other hand, compares the contexts in
which s and ¢ appear. As in the constructive technique of distributional
analysis, if s and ¢ appear in similar contexts, the hcuristic recommends that
they be disjvined. Thare are many important spccial cases of these heuristics:

1. Heuristics based on internal similarity: \The first internal-similarity heuris-
tic is subsumption. If the language gencrated by s is a superset of the
language generated by ¢, then s and ¢ should be disjoined. This often
occurs when s 1s a single norterminal, X, and the rule X — ¢ is among
the productions for X in the grammar.

If s and t are both single nonterminals, .X and Y, a second internal
heuristic can be applied. This heuristic compares the right-hand sides,
u and v, of production rules of the form X — u and Y — v, to see il
they are similar. If they are, X and Y can be merged.

A third internal-similurity heuristic is k-tasl equivalence. Two strings s
and ¢ are k-tarl eguivalent, for some nonnegative integer k, il the sets of
strings of length k or less that they generate are the same. Thus, 5 and
¢ are judged simi'ar if the short strings that they generate are the same.
This heuristic can be applied by choosing a value for k and merging
groups of nonterminals that are &-tail equivalent. As k gets small, this
heuristic causes more generalization.

2. Heuristics based on external similarity. The one heuristic for external
similarity is to look at productions in which s and ¢ appear cn the right-
hand side of productions. If s and ! appear in similar contexts within
the productions, they can be disjoired. Various specint cases of this .
heuristic have been used, including the case in which s and ¢ are both
single nounterminals.

R PO AR o IR o o Rl < R <kt

DSe Grammatical Inference 509

Hypothesising iteration. As with constructive methods, if productions
such as X — a and X — aa are present, a recursive production X — Xa can
be introduced.

Shorthand substitution. When a string s appears many times on the
right-hand side of productions, it is often good to create a new nonterminal,
A, replace all occurrences of s by A, and add the production A —~ s to the
grammar. This simplifies the grammar without modifying the language that
it generates. The advantage of the simplification is that it is easicr to apply
the various merging heuristics to a simplified grainmar.

The k-tail beuristic was employed by Biermann and Feldman (1970) in the
inference of regular grammars. Various of the other heuristics arc employed
by Klein and Kuppin (1970), Evans (1971), Knobe and Knobe {1977}, and
Cook and Rosenfeld (1976). Cook and Rosenfeld are concerned with stochastie
grammars and use their heuristics to simplify grammars with a hill-climbing
procedure based on a numerical-complexity measure.

Semantics-dased Methads

The fourth basic approach to grammatical inference employs semantic
constraints to guide the search for plausible graminars. Most of this work
has centered on language acquisition by children. The child is given positive
examples of sentences and is assuined to know the meanings of individual
words in isolation. Furthermore, the situation in which the scntence was
uttered, and, thus, some idea about its overall mecaning, is assumed to be
known by the child. In most work, no negative examples are provided,
nor is an informant available. This is because most research in psychology
(e.g., Brown and llanloa, 1970} has found that children reccive little or no
feedback concerning the grammaticality of the sentences they utter. Pinker
(1979) discusses the work of several rescarchers who have studied grammatieal
inference under these assumptions, including Anderson (1977) and Ifamburger
and Wexler (1975).

Anderson’s Language Acquisition System (LAS) attempts to learn a context-
free grammar for English from training instances that include a representation
of the meaning of cach senience. The Human Associative Memory (HAM;
Article XI.E2) network notation is used to represent these sentence meanings.
Learning proceeds in a cycle similar to that of Knobe and Knobe (1977): A
sentence and its mecaning are input, and LAS attempts to parse the sentence.
If the parse [ails, the grammar is extended according to some refinement
heuristics so that the training senience can be parsed and assigned the correet
meaning. One such heuristic adds a word to a sublanguage—for example, it
adds chair to the sublanguage for (noun)—when the word is located at a place
in the HAM net similar to the place of other words in the sublanguage. This
is a special case of the general heuristic that the structure of the semantic
represcntation is reflected in the structure of the syntax of the language. A

510 Leuni.n'g and Inductive Inference L XTIV

more sopliisticated version of this heuristic is the graph deformation condition,
which states that branches in the HAM represention of the sample sentence
are not allowed to cross. This heuristic rules out certain parses that would
result in an ill-formed IIAM structure. Anderson also employs one syntactic
heuristic: Two nonterminals are merged if they have similar sublanguages.
The work of Hamburger and Wexler (1975) is more theoretical in nature

and is concerned with showing that transformational grammars (see Chomsky, -

19685) are learnable. In their model, the learner is repeatedly given a sentence
and its meaning, where the meaning is represented as a deep-structure parse
tree (based on a deep-structure context-free grammar). The learner must
find a set of transformation rules that succeed, for cach sample sentence,
in converting the deep structure into the given sentence. Illamburger and
Wexler are proponents of Chomsky's nativist theory of language acquisition,
which asserts that people have built-in limits and biases that provide essential
constraints for the language-learning process. Consequently, their model of
language learning includes several factors that limit the complexity of possible
transformations.

Given these limits, Hamburger and Wexler show that the desired set of
transformations can be learned by a program as follows. As each training
instance (a sentence and its deep structure) is received, the learner tries to
transform the deep structure into the surface sentence by applying its current
sct of transformations. If this succeeds, the learner goes on to the next input
example. If not, the learner randomly adds, delctes, or alters a teansformation
and goes on. This method will work as long as the learner does not repeat
transformaltion rules known to be incorrect. Plainly, this learning proccdure
is not practical, but it does demonstrate that learning transformation rules
under these assumptions is possible.

Conclusion

The expressiveness of grammars for usc in Al knowledge representation
is somewhat limited, so interest in the diflicult problem of grammatical infer-
ence is also correspondingly limited in the Al community. This is especially
80 hecause of the impractical nature of many of the grammatical-inference
systems developed thus far. llowever, future work on the problem may yield
more powerful inference systemna, and an understanding of past work may well
be helpful in research on related learning problems.

iteferences

We have surveyed here the motivations, limitations, and methods of gram-
matical inference. More detailed surveys of grammatical inference in the con-
text of cognitive psychology are given in Pinker (1979) and Rceker (1976).

L

oy

- Aa—

Die ' Grammaticsl Inference 511

Surveys of grammatical inference for use in syntactic pattern recognition are
given in Fu (1974, 1975), Biermann and Feldman (1972}, and Gonzales and’ ‘

Thompeon (1978).

R T I e T R DU O YN

512

e e S e

STANFORD UNIVERSITY

STANFORD. CALIFORNIA 91305

DEEARIMENT CF COMPUTER SCIENCE Lelepdnone
DRI A

Dedenber 3, 19,
Mr. Janaiss
Zefence Teennicul Informnetion Center
DDA
Cuzer.un Jtation

fToL TR > e N
i neelbnaria, VA U314

Oy
.

Deur N
In resiunse to cur telepnene conversation oo
: Thursde;r, December 2, 1952, I spoke with cne or
. tne authiors of "Learning and Inductive Inference."
! He assured me that there were no missing pages in
j) the reports you received. Apparently, the sequence:
i of pages you reported as missing were intentionally
; deleted from the text by the authors. Unfortunately,
the pages in the report were not subsequently renumberec,
and so some confusion has ensued.

I have included two copies of this report. The
autLor assured me that they are both complete, I
an sorry for the inconvenience.

Please 4o not lLesitate to call re in the future
if aifficsulties arise. Thank yYou for ycur interegst
in C3 Reports.

Sincerely,

RE: Pages deleted by authors

513 thru 564, 572 thru 588, Kathryn Berg
591 thru 600. Publications Coordinator

ST P

e Y s L

- s

BIBLIOGRAPHY

Abbott, R. 1977. The new FEleusis. Av:uhblc from '\uthor Box 1175, General Post
Office, New York, NY 10116.

Aho, A. V., Hopceroft, J. E., and Ullinan, J. D. 1874. The design and analysis of
computer algorithms. Reading, Mass.: Addison- Wesley.

Anderson, J. R. 1977. Induction of augmented transition networks. Cognitive Seience
1:125--157.

-Anderson, J. R., and Bower, G. H. 1973. Human associative memory. Washington,

D.C.: Winston. .

Barr, A., Bennett, J., and Clancey, W. 1979. Transfer of expertise: A theme for
‘Al rescarch. Rep. No. HPP 79 U1, Heuristic Programming Project, Stanford Uni-
versity.

Biermann, A., and Feldman, J. 1870. On the synthcsis of ﬁmtc-statc atcopt.ors Al
Memo 114, Computer Science Dept., Stanford University.

Biermann, A., and Feldman, J. 1972. A survey of results in grammatical inference.
In S. Watanabe (F.d.), Frontiers of pattern recognition. New York: Academic Press.

Brown, R., and llanlon, C. 1970. Derivational complexity and order of acquisition
in child speech. In J. Hayes {(Ed.}), Cognition and the development of language. New
York: Wiley, 11-53.

Buchanan, B. G., and Mitchell, T. M. 1878. Model-directed learning of production
rules. In D. A. Waterman and F. Hayes-Roth (Fids.), Pattern-directed inference
systems. New York: Academic Press, 297-312.

Buchanan, B. G., Mitchell, T. M., Smith, R. G., and Johnson, C. R., Jr. 1977.
Modecls of learning systems. In J. Belzer, A. G. Holzman, and A. Kent (Eds.),
Fneyclopedia of computer seience and technology (Vol. 11). New York: Marcel Dekker,
24 51,

Carnap, R. 1050. Logical foundations of probability. (‘luc.ugo Umvcrslty of Chicago
l’

Chomsky, N. 1857. Syntactie structures. The Hague: Mouton.

Chomsky, N. 1965. Aspeets ¢, *Le theury of syntaz. Cambridge, Mass.: MIT Press.

Cook, C. M., and Rosenfeld, A 1976. Some experiments in grammatical inference.
InJ. C. Slmon (15d.), Proceedings of the NATO Advanced Study Institute on Computer
Oriented Learning Processes. Leyden, The Netherlands: Noordhof!.

Date, C. J. 1977. An introduction to dotabase systema (2nd cd.). Reading, Mass.:
Addison-Wecsley.

Davis, R. 1976. Applications of meta level knowledge to the construction, main-
tenance, and use of large knowledge bases. Rep. No. STAN- CS-76-564, Computer
Science Dept., Stanford University. (Doctoral dissertation. Reprinted in R, Davis
and D. B. Lenat (Iids.). 1980. Knowledye based systemns in artificial intelligence. New
York: McGraw-Hill.)

Davis, R. 1878. Knowledge acquisition in rule-based systems: Knowledge about
represcntations as a basis for aystem construction and maintenance. In D. A.

565

568 Bibliography

Waterman and F. Hayes-Roth (Kds.), Pattern-divected inference systems. New York:
Academic Press, 99 134,

Dietterich, T. G. 1979. The methodology of knowledge layers for inducing deserip-

ticns of sequentially ordered events. Rep. No. UIUC-DCS 80 1024, Compuber_

Science Dept., University of lllinois, Urbana.

Dietterich, T. G. 1980. Applying general induction methods to the card game
Eleusis. AAAI 1, 218-220.

Dietterich, T. G., and Michalski, R. S. 1979. Learning and generalisation of charac-
teristic descriptions: Evaluation criteria and comparative review of selected - ~th-
ods. 1JCAI 6, 223 231. :

Dietterich, T. G., and Michalski, R. S. 1981. Inductive learning of structural
descriptions: Evaluation critcria and comparative review of sclected methods.
Artificial Intelligence 16:257-294.

Dietterich, T. G., and Michaiski, R. S. In press. Discovering sequence generating
rules.

Doyle, J. 1980. A model for deliberation, action, and introspection. Tech. Rep.
AL-TR-581, Al Laboratory, Massachusettis Institute of Technology. (Doctoral
dissertation.)

Duda, R. O., and Hart, P. E. 1973. Pattern clossification and scene analysis. New
York: Wiley.

Evans, T. G. 1971. Grammatical inference techniques in pattern analysis. In J. T.
Tou {Ed.), Software engincering (Vol. 2). New York: Academic Press, 183-202.

Fikes, R. E,, Hart, P. E., and Nilsson, N. J. 1972. Learning and executing general-
ised robot plans. Artificial Intelligence 3:251 -288.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence 2:180-208.

Fogel, L. J., Owens, A. J., and Walsh, M. J. 1966. Arhﬁcwl intelligence through
ssmulated cvolulum. New York Wiley.

Friedberg, R. M. 1958. A learning machine: Part I. /BM J. R ch and Development
2:2-13. '

Friedberg, R. M., Dunham, B., and North, J. H. 1959. A learning machine: Part I1.
IBM J. Research and Development 3:282-287.

Fu, K. S. 1970a. Statistical patter. recognition. In J. M. Mendel and K. 8. Fu
(Eds.), Adaptive, learning, and pattern recognition systems. New York: Academic
Press, 35- 80.

Fu, K. S. 1970b. Stochastic automata as models of learning systems. In J. M.
Mendel and K. S. Fu (Eds.), Adaptive, learning, and pattern recognition systems. New
York: Academic Press, 393-432.

Fu, K. 8. 1974. Syntactic methods in pattern recognition. New York: Academic Press.

Fu, K. 8. 1975. Grammatical inference: Introduction and survey. IKEE Transactions
on Systems, Man, and Cybernctics SMC -5:95 - 111, 409 -423.

Gardner, M. 1977, On playing the new Elcusis, the game thau simulates the search
for truth. Scientific American 237:18-25.

Gelernter, H. 1959, Realization of a geometry theorem-proving machine. l’meced-

ings of an International Conference on Information Processing. Paris: UNESCO House,
273-282.

Gt | e cotmsmins e

Bibliography 587

Gelernter, H. 1963, Realisation of a geemetry thecorem proving machine. In E. A,
Feigenbaum and J. Feldman (Kds.), Computers and thought. New York: McGraw-
Hill, 134-152.

Gold, K. 1067. Language identification in the litnit. Information and Control 16:447-
474. ‘

Gonsales, R. C., and Thompson, M. G. 1978. Syntactic pattern recognition. Reading,
Mass.: Addison-Wesley. "

Goodwin, G. C., and Payne, R. L. 1977. Dynamic system identification: Ezperiment
destgn and analysia. New York: Academic Press.

Greiner, R. 1980. RLL 1: A representation language language. Rep. No. HPP-80-9,
Heuristic Programming Project, Computer Science Dept., Stanford University.
Greiner, R., and Lenat, D. B. 1080. A representation language language. AAAL 1,

165-169.

Hamburger, H., and Wexler, K. 1975. A mathematical theory of learning transfor-
mational grammac. J. Mathematieal Pasychology 12:137-177.

Harris, Z. 1964. Distributional structure. In J. Fodor and J. Kats (Eds.), The
strueture of language. Englewood Cliffs: Prentice Hall, 33-48.

Hayes-Roth, F., Klahe, P., Burge, J., and Mostow, D. 1978. Machine methods for
acquiring, learning, and applying knowledge. Rand Paper P-6241, Rand Corp.,
Santa Monica, Calif.

Hayes-Roth, F., Klahr, 1., and Mostow,). 1880. Knowledge acquisition, knowledge
programming, and knowiedge refinement. Rand Paper R-2540 -NS¥F, Rand Corp.,
Santa Monica, Calif. :

Hayes-Roth, F., Klahr, P,, and Mostow, D. 1881, Advice-taking and knowledge re-

. finement: An iterative view of skill acquisition. In J. R. Anderson (iid.}, Cognitive
skills and their acquisition. Hillsdale, N.J.: Lawrence Erlbaum, 231-253. {Also in
Rand Paper I' 6517, Rand Corp., Santa Monica, Calif., 1980.)

Hayes-Roth, F., and McDermott, J. 1977. Knowledge acquisition from structural
descriptions. IJCAT §, 356--362.

Hayes-Roth, F., and McDermott, J. 1978. An intcricrence matching technique for
inducing abstractions. CACM 26:401-410.

Hopcroft, J. E., and Ullman, J. D. 1069. Formal languages and thesr relation to autom.
ata. Reading, Mass.: Addison-Weslcey.

Horning, J. J. 1869. A study of grammatical inference. Rep. No. CS-138, Computer
Science Dept., Stanford University.

Hunt, E. B., Marin, J., and Stone, P. J. 1966. Ezperiments in induction. New York: ——

Academic Press.

Kelicy, K. 1967. Larly syntax acquisition. Rep. No. P-3719, Rand Corp., Santa
Monica, Calif.

Klein, 8., and Kuppin, M. 1976. An interactive hcuristic program for learning
transformational grammars. Computer Studies in the llumanities and Verbal Dekavior
3:144 -162,

Knobe, B., and Knobe, K. 1877. A method for inlerring context-frce grammars.
Information and Control 31:129-146.

Kotovsky, K., and Simon, H. A, 1973. Empirical tests of a theory of human
acquisition of concepta for sequential patterns. Cognitive Faychology 4:399-424,

R e

568 ‘Bibliography

Langley, P. W. 1977. Rediscovering physics with BACON.3. 1JCAL 6, 505 507.

Langley, P. W. 1980. Descriptive discovery processes: Experiments in Baconian
science. Rep. No. €S 80 121, Computer Science Dept., Carnegic-Mecllon Univer-
sity. (Doctoral dissertation.)

Larson, J. 1977. Inductive inference in the variable valued predicate logie system
VL2t: Methodology and computer implementation. Rep. No. 868, Computer
Scieace Dept., University of lilinois, Urbana.

Larson, J., and Michalski, R. S. 1977. Inductive infecence of V1. decision rules.
SIGART Newsletter 63:38 -44.

Lenat, D. B. 1976. AM: An artificial mtolhgmce approach to discovery in mathe-
matics as heuristic search, Rep. No. STAN €S 76 570. Computer Science Dept.,
Stanford University. (Doctoral dissertation. Reprinted in R. Davis and D. B
Lenat. 1980. Knowledge-based systems in artifictal intelligence. New York: McGraw-
Hill.)

Lenat, D. B. 1977. On automatcd scientific theory formation: A case study using
the AM program. In' J. K. Hayes, D. Michie, and L. I. Mikulich (Kds.), Machine
tntelligence 9. New York: Halsted Press, 251-286.

Lenat, D. 1. 1980. The nature of heuristics. Rep. No. UPP-80 26. Heuristic Pro-
gramming Project, Computer Science Dept., Stanford University.

Lenat, D. 3., Hayes-Roth, F., and Klahr, P. 1979. Cognitive economy in artificial
intelligenee systems. IJCAT 6, 531-536. (Extended version available as Rep. No.
HPP-79-15, lleuristic Programmming Project, Computer Scicnce Dept., Stanford
University.)

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. 1980.
Applications of artificial intelligence for organic chemistry: The DENDI: Al project. New
York: McGraw-Hill.

Maryanski, F. J. 1974. Inference of probabilistic grammars. Doctoral dissertation,
Electrical Engincering and Computer Science Dept., University of Connceticut.
McCarthy, J. 1958. Prograins with common scnse. In Proceedings of the Symposiurs
on the Mechanization of Thought Processes, National Physical Laboratory 1:77 -84. (Re-
printed in M. L. Minsky (Kd.). 1968. Semantic information processing. Cambridge,

Mass.: MIT Press, 403-409.)

McCarthy, J. 1968. Programs with common sense. In M. Minsky (Ed.), Semantie
information proéessing. Cambridge, Mass.: MIT Press, 403-409.

Michalski, R. S. 1969. Op the quasi-minimal solution of the general covering prob-
lem. Proceedings of lll# Fifth International Federalion on Automatie Control 27:109-
129. .

Michalski, R. 8. 1975. V\flablc~v1llled logic and its applications to pattern recogni-
tion and mnchlnc |carn§ng In D. C. Rine (i8d.), Computer science and multiple- Mlutl‘
logic theory and ¢ppl|c¢lwm Amsterdam: North-Holland, 506 -534.

Michalski, R. S. 1980. Patteen recognition as rule-guided inductive inference. IKER
Transactions on Pattern }drmlyais and Machine Intelligenee PAMI-2:319--361.

Michalski, R. 8., and Chil\ usky, k. L.. 1980. Learning by being told and learning
from examples: An experimental comparison of the two methods of knowledge
acquisition in“the context of developing an expert system for soybean discase
diagnosis. International Jdurnal of Policy Analysis and Information Systems 4:125-161.

Bibliography 569

Michalshi, R. S., and Larson, J. B, 1878, Selection of most represeatative teain-
ing examples and incremental generation of VEL hypotheses: The underlying
methodology and the description of programs ESEL and AQ11. Rep. No. 867.
Computer Science Dept, University of Hiinots, Urbana.

" Minsky, M. 1963, Steps toward artificial intelligence, In K. AL Feigenbaum, and

J. Feldman (1ds.), Computers and thought. New York: MeGraw 111, 106 450,

Minsky, M. L. {i2d.}). 10968, Sernantie mformation proccasing. Cambridge, Mass.: MIT
Press.

Minsky, M. L., and Papert, S. 1969. Perceptrons; an introduction to computational
geometry. Cambridge, Mass.: MIT Press.

Mitchell, T. M. 1977, Version spaces: A candidate elmination approach te rule
learning. 1JCAI S, 305 310.

Mitchell, T. M. 1978, Version spaces: Aa approach to concept learning. Rep.
No. STAN €8 78 711, Computer Science Dept., Stanford University., (Doctoral
dissertation.)

Mitchell, T. M. 1979. An analysis of generalization as a search problem. IJCAI 6,
577-582.

Mitchell, T. M., Utgoff, I’. E., and Banerji, R. B. In press. Learning problem-solving
heuristics by experimentation. {n R. 8. Michalski, T. M Mitchell, and J. Carbonell
(Eds.}, Machine learning. Palo Alto, Calif.: Tioga.

Mitchell, T. M., Utgoff, P~ K., Nudel, 3., and Banerji, R. 3. 1981, Learning problem-
solving heuristics through practice. JCAI' 7, 127-134.

Mostow, D. J. 1981. Mecchanical transformation of task heuristics into operational
procedures. Rep. No. ¢S 81113, Computer Science Dept., Carnegie-Mellon Uni-
versity. {Doctoral dissertation.)

Mostow, D. 1. In press. Using the heuristic search method. In R. S. Michalski, T. M.
Mitchell, and J. Carbonell (12ds.), Mackine learning. Palo Alto, Calif.: Tioga.

Mostow, D.], and Hayes-Roth, F. 1979a. Machine-aided heuristic programming:
A paradigm for knowledge engineering. Rep, No. Rand N 1007 - NSF, Rand Corp.,
Santa Moniea, Calil,

Mostow, D. J., and Hayes-Roth, ¥. 1870b. Operationalizing heuristics: Some Al
methods for assisting Al programming. IJCAI 6, 601 609.

~ Nii, . ., and Aiello, N. 1979, AGE (Attempt to Generalize): A knowledge-based

program for building knowledge-based programs. 1JCAT 6, 645-655.

Nilsson, N. J. 1965, Learning machines. New York: McGraw-Hill.

Normai, D. A, 1980. Twelve issues for cognitive science. Cognitive Seience 4:1-32,

Pao, T. W. 1869. A solution of the syntactical induction-inference problem for
a non-trivial subset of context-free languages. lnterim Rep. No. 69 19, Moore
School of Electrical Ergineering, University of Pennsylvania,

Pinker, 8. 1979, Formal models of language learning. Cognition 7:217 243,

Quinlan, J. R. 1979, Induction over large data biases. Rep. No. HeE 79 14, Heuris-
tic Programming Project, Computer Science Dept., Stanford University,

Quinlan, J. R. In press. Inductive inference as a tool for the construction of high-
performance progeams, In R. S, Michalski, ‘. M. Mitchell, and J. Carbonell
(12ds.), Machine warning. Palo Alto, Calif.: Tioga.

570 Bibliography

Reboh, R. 1981. Knowledge enginecring techniques and tools in the PROSPECTOR
environment. Rep. No.+243. Al Center, SRI International, Inc., Menlo Park, Calif.

Recker, L. 1. 1876, The computational study of language acquisition. In
M. ftnbinoll and M. C. Yovits (Ids.), Advances in computers (Vol. 15). New York:
Academic Press, 181 237,

Rissland, E. L., and Soloway, E. M. 1980. Overview of an example generation
system. AAAL [, 256 258. _ ’

Rosenblatt, F. 1957. The pereeptron: A pereriving and recognizing automaton.
Rep. No. 85 460 1, Project PARA, Cornell Acronautical Laboratory.

Rosenblatt, F. 1962, Principles of neurodynamics: Perceptrons and the theory of brain
meehanisms. Washington, D.C.; Spartan ooks.

. Samuel, A. L. 1959. Some studics in machine learning using the game of checkers.
IBM J. Research and Development 3:210 229. (Reprinted in ¥. A. Feigenbaum,
and J. Feldman (Fds.). 1963. Computers and thought. New York: McGraw-tlill,
71.105.))

Samuel, A. I.. 1967. Some studies in machine learning using the game of checkers.
Il - Recent progress. JHM J. Research and Dcvelopment 11:601 617,

Shortliffe, K. H. 1976. Computer-8ased medical consultations: MYCIN. New York:
Amcrican Elsevier.

Simon, H. A. 1978a. Actificial intclligence research strategies in the light of Al
models of scientific discovery. JJICAI 6, 1086 1094,

Simon, H. A. In press. Why should machines tearn? In R. §. Michalski, T. M.
Mitchell, and J. Carbonell (Kds.), Machine learning. Palo Alto, Calif.: Tioga.

Simon, H. A., and Lea, G. 1974, Problem solving and rule induction: A unified view.
In L. Gregg (13d.), Knowledge and cognition. llillsdale, N.J.: Lawrence Eribaum,
105 127.

Solomonoff, R. 1964. A formal theory of inductive inference. Informatiun end Control
7:1-22, 224 254.

Soloway, 15. 1978. Learning = interpretation + generalization: A case study in
knowledge-directed learning. Rep. No. COINS Tit 78 13, Computer and Informa.
tion Sricnces Dept., University of Massachusetts, Amherst. (Doctoral disserta-
tion.)

Sussman, G. J. 1973. A computational model of skill acquisition. Al Tech. Rep. 297,
Al Laboratory, Massachusetts Institute of Technology. {Doctoral dissertation.)
Sussman, G. J. 1975. A computer model of skill aequisition. New York: American

Elscvier.

Tsypkin, Y. Z. (Z. J. Nikolic, Trans.). 1973. Foundations of the theory of learning
syatems. New York: Academic Press.

Ullman, J. D. 1980. P’rinciples of database systems. 'otomac, Md.: Computer Scicnce
Press.

van Melle, W. 1880. A domain-independent system that aids in constructing
knowlcdge based consultation programs. Rep. No. 820, Computer Science Dept.,
Stanford University. (Doctoral dissertation.)

Vere, 8. A. 1975. Induction of concepts in the predicate caleulus. IJCAT ¢, 281 287,

Bibliography L4

Vere, 8. A. 1978. Inductive learning of relational productions. In). A, Waterman
and F. Hayes-Roth (Eds.), Pattern-directed inference systems. New York: Academic
Press, 281 296,

Waterman,). A. 1968. Machine learning of heuristics. Rep. No. STAN €S 68 118,
Computer Scicnce Dept., Stanford University. {(Doctoral dissertation)

Waterman, N. A, 1970, Generalisation learning techniques for automating the
learning of heuristics. Artafictal Intelligenee 1:121 170.

Wee, W. G., and Fu, K. §. 1869. A formulation of fussy automata and its applica-
tion as a model of learning systems. IEEE Trarsactions on Systern Science and
Cybernetica 5:215 223.

Widrow, 13, and Hoff, M. E. 1960. Adaptive awitching circuits. In 1960 IRE WESCON
Convention Records 4:96 104.

Wiederhold, G. 1977. Databdase design. New York: McGraw-1lili.)

Winston, P'. H. 1970. Learning structural descriptions from examples. Rep. No.
TR 231, Al Laboratory, Massachusetts Institute of Technology. (Reprinted in
P, H. Winxton (1d.}. 1975. The psychology of computer viavon. Now York: McGraw-
Hill, 167 200.)

Winston, . I1. (Ed.). 1975. The paychology of computer msion. New York: McGraw-
Hill.,

Yovits, M. C., Jacobi, G. T, and Goldstein, G. D). (Eds.). 1962. Self-organinng
systems 1962. Washington, D.C.: Spartan Books.

Zadeh, L.A. 1879. Approximate reasoning bascd on fussy logic. 1JCAl6, 1001 1010,

NAME INDEX FOR CHAPTER XIV

Abbott, RR., 418
Aho, A. V., 387
Aiello, N., 348
Anderson, J. R, 509 510
Baneri, . 3., 52 {53, {84 {92
Barr, A, 354
Bennett, J. S, 343
Biermann, A. W., 509, 311
" Brown, R. H., 509 ‘
Buchanan, B. G., 334, 369, 372, (23 {37,
458, 464
Carnap, R., 384
Chilausky, R. L.., 429, {26 27
Chotnsky, N., 494 ¢98, 510
Clancey, W. J., 348
Conk, C. M., 50¢
Da-s C. 4., 337 .
Davis, R., 330, 133, 348, 349
Dicteerich, T. G., 33, 370, 372, 384, 400,
411-415, 416 {19, 423
Doyle, J., 483
Duda, R. O, 378, 379, 382
Dunham, B, 328
Evans, 1. G, 499, 509
Feigenbaum, B. A., 437
Feldman, J. A., 509, 511
Fogel, L. J., 328
Friedberg, . M., 525
Yu, K. 8., 380, 181, 382, 506, 51t
Gardnce, M., 418 '
Gelernter, 11, L., 449
Gold, B., §99-500, 501, 505-508,
Goldatein, G. D., 325 '
- Gonsales, R. C., 51 = co
Goodwin, G. C., 379
Greiner, R., 330
Hamburger, H., 509, 510
Hanlon, C., 509
Harrls, Z., 508
Hart, I'. E., 375, 379, 382
Hayes-Roth, F., 333, 334, 336, 338, 2/5-348,
348, 350, 353, 359, 364, I91-392, 400,
410
Hofl, M. R.. 37?
Hoperoft, J. E., 357, 497
Hoenlng, J. J., 503-508

- Owens, A. J., 325 - e

Hunt, K., 384, J06 {08

Jacodbi, G. T., 328

Kelley, K., 508

Klehr, P*., 334, 336, 338, 345-343, 348, 330,
352, 353, 359, 164, 410

Klein, S., 494, 506, 509

Knobe, B., 507 508, 309

Knobe, K., 507 508, 508

Kotaoveky, K., 406

Kuppin, M., 494, 506, 509

Langley, PP. W, 371, 401 -406, 410

Larson, J. D., 365 367, 398, j22- {26, 427

Les, G., 367 361, 372, 375

Lederberg, 1., 437

Lenat, D. Li,, 330, 334, 336, 338, 364, 369,
410, {38- 451

Lindsay, R. K., 437

Marin, J., 384, 406, 408

Maryanski, F. J., 507

McCarthy, J., 332, M5, 548, 360

MeDermott, J., 391 -39¢2, 400

Michalski, R. 8., 331, 365-367, 370, 372, 384,
398 399, 400, {11 415, 419, {23427

Minsky, M., 325, 326, 331, 343, 379

Mitchell, T. M., 334, 369, 372, 384, 385-391,
396 398, 400, 428, {34-436, 437, {5¢-
459, 456, 464, §84 {93, 505

Mostow, D. 1., 333, 345 348, 349, 350 359

Nii, H. P, 348 }

Nilsaon, N. J., 377, 382

Norman, D. A., 328

North, 1. H., 328

Nudel, B, 484, 493

Pao, T. W., 508

Papert, 8., 328, 379

Payne, R. L., 379

Pinker, 8., 509, 510

Quinian, J. R., 106, ,08-410

Reboh, It., 348

Reckee, .. H., 810

Rissland, . L., 363

Rosenb'att, F., 325, 378-379

Rosenfleld, A., 509

Samuel, A. | ., 332, 338, 399-344, 452, {57-
46

589

- —_—

ekt e

590 Name Index for Chapter XIV

Shortliffe, E. 1., 331 .

Simon, H. A., 326, 327, 360 361, 372, 373,
405

Solomonoff, R., 507

Soloway, E., 363, 36§

Stone, P. J., 384, 406, 408
Sussman, G. J., 452, 75 {483
Thompson, M. G., 511
Taypkin, Y. Z., 382

Ullman, J. D, 337

Utgofl, P. K., 452 453, §84-499

van Melte, W., 348
Vere, S. A., 391, 292, 400
Walsh, M. J., 225

~Waterman, D. A., 331, 452, {65 47§
_ Wee, W. G, 380 -

Wexler, K., 509, 510

Widrow, B, 379

Wicderhold, G., 337

Winston, P. ., 326, 364, 392396, 400, 443
Yovits, M. C., 32§

SUBJECT INDEX FOR CHAPTER XIV

Active instance selection, 363. See also In-
stance space, search of.
Adaptive learning. See albo Adaptive zys
teims.
Adaptive systerns, 325, 371, 373 382
Advice-taking, 328, 333, 345 359, 427, 467
468
AGE, 348
AM, 326, 330, 370, 371, 372, 122, 438 451
bext-first search, 438, 4141
performance, 447 451
rcasoning about bovndary examples, 443

Classification

for matitiple ~lasses, 423 427

as n perfortaanee task, 331, 383
Cleavage rules, 428, 430
Closed world assumption, 362
1.5, 3%, 406 408

refinement opreator, 408
CONGEN, 429
Context-free gramisars, 493
Cantext-free languages, 198
Control of physical systems, 373
Credit-assigninent problem, 331, 348, 454~

444 456, 109
refinement operators. 444 445 rolved by analysis of goals and iatentions,
representation of mathe.natieal concepts, 180

438
searching instance space, 442 444
searching rule space, 4144 4435
Analogy as a mcthod of learning, 328, 334,
443 415
Analytie chemistry, 428
A? algorithin, 398, 419, 423 427
AQ11, 421, 423 427
Associated pair, 333
Automata (as objects of learning), 33¢ 381
BACON, 370, 384, 101 4086, 411, 152
refinement operators, 401403
BASEDALIL, 364
Bayes theorem, 503
Beam search, 4111 415
Best-first search, 438, 141
Bond ¢nvironment, 430
Caching, 336
Candidate-climination algorithm, 386 -391,
396 399, 4136, 484, 487 (88, 190, 505
G-sct (sct of moast gencral hypotheses),
386, 424, 426
learning disjunrctions using, 4190 491
multiple boundary-sct extension, 396, 190
S-set (sct of most speeific hypotheses),
356, 411, 426
Update-G routine, 338 391
Updatc-S routine, 388 392
version space (set of plausible hypothescs),

387

suived by asking cxpert, 487
solved by deeper search, 457
soives by post-game analysis, 467-470
solved by wider »~arch, 489
Data reduction task, 383
Deeision tree pepresentation of coneepts, 406-
$97
Delimited Ianguages, 503, 508
DENDRAL, 331, 429
Derivation tree, 497
Discrimination rules, 423-427
Distributional analysis, 508
Fleusis, 416 419
EMYZCIN, 348
Environment, 327
crrors in training instances, 362 363, 370,
396 397, 429, 132, 190
providing the perforinance standard, 331,
A54
providing the training inscances, 328-329,
155 456
rolc in learning, 328-329
stability over time, 337
Epistemological adequacy, 348
Eree -8 in training instances, 362- 363, 370,
396 397, 129, 132, 190
ESEL, 427
EURISKO, 149
IZvaivation function. See Static evaluation
function.

Checkers, 332333, 339 344, 457 454 Expectation-based filtering, 364, 409

601

[

602 Subjeet Index for Chapter XIV

Experiinent planning. See Instance space,
search of.
Expert systema, 345, 348, 427
Fredback in learning, 331. See also Perfor-
mance standard.
Finite-state automata, 380
FOQ, 333, 346 347, 319, 350 359
Formal derivatives, 508
Formna! languages. See also Context free lan-
2uages; Delimited languages; Regulae
L.anguuges.
in grammatieal inference, 494 497
in steuctuesl learning, 381 382
Forward-chaining prodaction systems, 452.
See also Prodiction syatems.
Frame problem, 337, 343
Frame representation for coneepts, 438 439
Fuzsy automnmata, IN0
-set (set of most general hypotheses), 386,
424, 126 :
Game-tree search, 339 342
General-to-specifie ordering, 385
Jeneralisation, 360, 365 368, 385
by adding options, 386, 411, 444, 502
by elimbing concept tree, 395, 487, 491
by curve-fitting, 367, 376 380, 101 105,
457
by dependency analysis, .80, 492
by disjunction, 366 367, 397
by dropping conditions, JI6K, 385, 391,
393, At1, 435, 444, 468
by internal disjunetion, 367, 411, 166 467
by meeging non-tceminals, 501
by partial matching, 487
by turning constanta to variables, 365
366, IR7, 388 190, 391, 414, 444, 482
by seroing a eocfficicnt, 367
Generalised bugs, 475 478, 480 482
Generalised subroutines, 475, 479 480
Generate-and-test method for searching rule
space, 369, 411 415, 430
Generate-and-test operationalization method,
351
Gold's theorens, 199
iradient-descent, 375 380. See also Hill-
elimbing.
Geammatieal inference, 381, 453, 494 510
by conatruetion, 505 507
by enumeration, 503 508
by generate-and-test, 503 505
guided by semantics, 509 510
by refinement, 507 509
refinement operators, 508 509
Graph deformation condition, 510

Geaph grammars, 499

HACKER, 152, 475 483, 491, 493
performance element, 477

Half-ordee theory, 431 432, 436

HAM, 509 510

Hearts, 350

Heuristic search operationalization iaethod,

351 '

Hill-elimbing, 375 380, 434, 458

13, 334, 407 410

INDUCE 1.2, /11 418
attribute-only rule space, 413
strueture only rule space, 413

Induetion, 327, 333 334. See also learning

situations, from examples.

Informant presentation, 500

Instance selection. See Instance space, search

of. .

Instanee space, JEY 365 .
presentation order of instances, 363
quality of training instances, 362 363, 370,

306 397, 429, 132, 490
search of, 363, 371, 408, 435 436, 441-
144, 491 492]

Integration problem, 331, 3147, 421, 453, 456

Interference matehing, 391 392

Interpretation

" in advice-taking, 354
of training instances, 364 363

INTSUM, 430 432

KAS, 348

Knowledge aequisition, 326. Sce also Learn-

ing; xpert systems.

Knowlcdie engineering, 427

Knowledge needed for learning, 326, 330,

446 447

LAS, 509 510

Learning
history of, 325 328
ineremental, 363, 370
unsupervised, 363

Learning elemeut, 327- 328, See also l.earn-

ing.

Learning -factors affecting
role of the environment, 328 329
role of knowlcdge representation, 329 -330
role of performance task, 330 332

Learning kinds of objects learned
multiple-coneepts, 331, 420 451
rules for multiple-step tasks, 331, 421,

452 511
single concepts, 331, 383-419, 420 422,
436
Learning methods. See Rule-space search.

. e P

Subject Index for Chapter XIV 603

-

Operationalization methods
Learning - object of, 371-372
automata, 380 381
cleavage rules, 428, 430
context-free grammars, 453, 495
decision trecs, 408- 407
delimited languages, 501, 508
diserimination rules, 423 427
finite-state automata, 380. See alse Regular
grammars.
(rames, 438 439
fussy sutomata, 380
generalired bugs, 475 476, 480-482
generalised subroutines, 478, 479-480
graph grammars, 499
linear-discriminant functions, 376-380
macro-operators, 475, 493
parameters, 373-380
polynomial evaluation functions, 457-459,
463
production rules, 452-435, 465-474
regular grammars, 501, 505, 508, 507, 509
signature tables, 459 464
stochastic automata, 380
stochastic grammars, 381, 498-49%
structural descriptions, 381-382, 392 -396,
411, 412
transformational grammars, 497- 498, 510
Leasning problems
losed-world ption, 362. See alse
New-term problem. '
eredit-amsignment problem, 331, 348, 454
456, 459, 4167 168, 480, 489
disjunctive concepis, 397-399, 406-407,
490
errors in teaining instances, 362 363, 370,
396 397, 429, 432, 490
frame problem, 337, 343
integrating new knowledge, 331, 347, 421,
453, 458
interpretation of training Instances, 384,
364-363
new terms, 370 -371, 408, 459
Lesrning situations
by analogy, 328, 334, 443 445 .
by being told, 343-359. See else Advice-
taking.
from examples, 328, 333-334, 360-511
by rote, 128, 332-333, 335344 .
by taking advice, 328, 333, 345-359, 427,
467 468
Learning systems. See also indes entrics for
each system nemed.
AGE, 348

AM, 226, 330, 370372, 422, 438- 451

AQ1I, 421, 423 427

BACON, 370, 384, 401-406, 444, 452

BASERALL, 364

CLS, 384, 408 408

EMYCIN, 348

CEURISKO, 449

FOQO, 333, 346- 347, 349, 350-359

HACKER, 452, 475- 483, 4081, 493

ID3, 384, 407 410

INDUCE 1.2, 411-418

KAS, 348

LAS, 509 510

LEX, 152-453, 453, 484- 493

Meta- JENDRAL, 328, 332, 369, 372, 422,
428 436 '

model of, 327

modified model for muitiple-step tasks,
455-456, 476 477, 48¢

Samuel's checkers player, 332 333, 339
‘344, 452, 457 464

simple mode! of, 327

SPARC, 369- 370, 384, 416-419, 452

STRIPS, 475, 191, 493

TEIRKSIAS, 333, 348, 349

Waterman’'s poker player, 331, 318, 452,

456, 165- 474, 489

Least-commitment algorithms, 387

Least recently used (LRU) algorithm, 338,
342

LEX, 452, 453, 458, 484-493

Linear-diseriminant functions, 376-380

Lincar programming, 379

Linear regression, 379

Linesr separability, 376

Linear systems theory, 325

Linearity assuinption, 478

LMS (least-mean-square) algorithm, 379

Look-ahead power, 340

L.ook-ahead search. See Minimax look-ahead
search.

LRU, 338, 342

Machine-aided heuristic programming, 350,
357

Macro-operators, 473, 493

Maas spectrometer, 4128

Maximally general common specialisation,
388. See also S-Set.

Maximally specific common generalisation,
388. See alse G-set.

Memory organisation, 337, 342

Mesa effect, 343, 458

Meta-DENPRAL, 326, 332, 369, 373, 422,
428438

— 1

_—

604 Subject Index for Chapter XIV ' .

learning muitiple concepts, 428 436
learning & sat of single coneepts, 436
searching instance space, 435
searching rule space, 432 433
Meta-knowledge, 330
Meta-rules, 347
Minimasx look-ahead search, 338 342, 165
Model of learning systems, 327
modificd for muitiple-step tasks, 455 456,
A7 477, 486
two-space view, 360 372, 383, 411
Multiple step tasks, 452 456, 495
MYCIN, 331, 347
Near miss training instance, 395
New-term prohlem, 370 371, 405, 459
Noise in teaining instances, See Errors in
training instances.
Noan-terminal symbols, 493
Operationalization, 333, 316, 350359
Operationalization methods, 351, 352, 357
approximation, 353
case analysis, 354
expanding definitions, 354
cxpress things in common termns, 355
finding nccessary and sufficient condilions,
351
generate-and-test, 351
heuristic search, 351
interscetion search, 354
partial matching, 355
pigeon-hole principle, 351
recognizing known concepts, 355
simplification, 355
taxonomy of, 358
Overlnpping concept deseriptions, 421, 434
Parameter learning, 375 -380
"arse tree, 497
Parsing, 497
Pattern recognition, 373-382, 497
Peeceptron algorithms, 376-380
Perceptrons, 325, 376- 380
Performance clement, 327, 452 453. Sece also
Performance tasks; Performance teace,

implications for the learning system, 330 -

332,372
portance of teansparency, 435, 454, 182
role in providing feedback, 333, 374, 454 -
455
Performance standard, 331, 347, 454, 457,
458, 4162, 467 468, 4179, 192, 501
Performance tasks. See clso Performance
clement.
classifieation, 331, 388, 423-427
controi of physical systems, 373

data reduction, 383

diagnosing soybean discases, 426 427
expert systems, 345, 348, 427
ass speetrometry, 428
multiple-step tasks, 452 456, 4195
parsing, 497

pattern recognition, 373 382, 497
planning, 452, 475 479

playing eleusis, 416 419

playing hearts, 350

playing poker, 331, 465 174
prediction, 383

single-step tasks, 452

Performance teace, 154 455, 169, 475- 177,
A78R 479, 482 1R3, 486 487, 4189

Planning, 350, 152, 475 17¢

PPoker, 331, 465 474

Polynomial evaluation function, 457, 463.
See also Statie cvaluation function.

Prediction task, 383

Problem reduction, 477

Production rules, 452- 455, 465-474

Production systems, 138, 152-455

Refinement-operator method for scarching
rule space, 369, 401 110, 440, 507- 509

Regular grammars, 501, 505, 506, 507, 509

Regular languages. See Regular grammars.

RLL, 330

Rule space, 360, 365 -371

representation of, 365-369 ,

rules of inference, 385. Sece also Generalisa-
tion; Spceialisation; Grammatieal in-
ference.

search of, 369 370. Sece also Rule-space
search algorithms; Rule-space scarch
methods,

Rule-space scarch algorithms. See also Generalisa-
tion; Specialisation; Itule-space search
mcthods; Geammatical inference.

A9 algorithm, 398, 419, 423-427

beam search, 411- 418

best-first scarch, 438, 441

candidate-elimination algorithin, 386-391,

396 399, 136, 184, 487 488, 490, 505

distributional analysis, 506

formal derivatives, 506

hill-cliinbing, 375 380, 434, 458

interference matching, 391- 392

linear programming, 379

linenr regecssion, 379

L.MS (least-mean-square) algorithm, 379

perceptron algorithms, 376 380
Rule-space search methods

generate-and-test, 369, 4111--415, 430

-—

Subject Index for Chapter X1V 805

. refinement operators, 369, 401 410, 440,
507- 509
schema-instantiation, 369, 416-419, 481
version space method, 369, 385- 400
RULEGEN, 432-435
RULEMOD, 434 433
Rules of generalization. See Generalization.
Rules of inference. See Generalisation; Gram-
matical Inference; Specialisation.
S-set (sct of most specific hypolheses), 386,
411, 426
Samuel's checkers player, 332-333, 339-344,
452, 457 464
rule-space search, 458, 461-462
Schema instantiation method for searching
rule space, 369, 416-419, 181
Sclective forgetting, 338, 342

. Self-organising systems, 325

Signature tables, 459 464
Single-concept learning, 331, 383-419, 420-
422, 438
Single-representation trick, 368-369, 411,
418, 124-425
Single-step tasks, 4152
Skill acquisition, 326. S:e also Learning.
Soybean diseases, 426-427
SPARC, 369-370, 384, 416-419, 452
searching rule space, 418-419
Specialization, 444
by adding conditions, 408, 432, 4134
by splitting non-terminals, 502
Stability in the learning environment, 337
Start symbol, 496 '
State-space search, 452]
Static evaluation function, 338, 457, 459-
464
Statistical learning algorithms, 375
Stochastic automata, 380
Stochastic grammars, 381, 498-499
Stochastic presentation, 500
Store-versus-compute tradc-off, 337-338, 343
STRIPS, 475, 491, 493
Structural descriptions. See Struetural Learn-
ing.
Structural family of malceules, 4129
Struetural learning, 381-382, 392-396, 411,
412
Structural presentation, 501
System identification, 373 -375
TEIRESIAS, 333, 348, 3149
Term selection, 459. See also New-term
problem.
Terminal symbols, 495
Theory formation, 327. See also Learning.

Training instances, 454, 328 329, 362- 364.

See also Instance Space.
global, 454 455
local, 451 453

Transfer of cxpertise, 345, 348

Transformational grammars, 197 498, 510

Trivial disjunction, 398

Trivial grammar, 499

T wo-space model of learning, 360 -372, 383,
441 .

Uniform-cost search, 484, 489

Universal grammar, 199

Update-G routine, 388391, See alsn Candidate-
elimination algorithm.

Update-S routine, 388 392. See also Candidate-
elimination algorithm.

Version space, 387. See also Candidate-
elimination algorithm.

Version-space method for searching rule space,
369, 385 400

VL, 423

Waterman’s poke. player, 331,, 349, 452,
456, 465 474, 189

Weight space, 376

Winston’s ARCH program, 326, 364, 384,
392- 386

A A,

