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What is Stiffness?

L. F. Shampine
Sandia National Laboratories

* ,Albuquerque, New Mexico 87185

1. Introduction

The numerical solution of the initial value problem for a system of N

* first order ordinary differential equations is considered:

. y' f(xy) a ( x(b (1.1)

y(a) given • (1.2)

Modern codes based on step-by-step methods begin with y(a) Yo at xO - a

and step from a to b successively producing approximations y. to y(x.)

on a mesh x0 < xl < < -- b. At the step from xn the code selects a
U

step size h,+1 so that the resulting approximation at xn+l - xn + h+ 1 is to

satisfy a certain accuracy requirement.

The standard assumption about f(x,y) is that it has as many continuous

derivatives as needed and that it satisfies a Lipschitz condition,

If(x,u) - f(x,v)I 1 L lu-v 1 (1.3)

for a 4 x 4 b and all y. This guarantees (1.1, 1.2) has a unique solution

y(x). The classical situation" is that L(b-a) is not "large." In this

situation classical numerical methods such as Runge-Kutta and Adams are

quite satisfactory with one major exception - too frequent output can dras-

tically reduce the step size. There are a variety of other reasons why the

step size might have to be restricted, but in the classical situation, none

can led to a severe restriction of the step size.
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When L(b-a) is "large," the matter is quite different. In the first

place, the class of mathematical problems must be restricted in order for

step-by-step methods to have a chance of solving the problem adequately.

it develops that in some extremely important circumstances, classical methods

suffer a variety of restrictions on the step size which are so severe that

such methods are Impractical. This is what is usually termed "stiffness."

Many authors have sought a definition of stiffness involving only the

mathematical problem (1.1, 1.2). Unfortunately the situation is far more

-- complex than that. In this paper we shall explore those factors determining

* . the step size in a sequence like that of the usual treatment of Runge-Kutta

methods. All the seeds of step size restrictions are present in the classical

situation. We shall see how a large Lipschitz constant affects the algorithms

and shall describe ways to circumvent or overcome the difficulties. We aim

to provide some feeling as to the kinds of problems leading to severe step

size restrictions for classical methods and to show how the computational

problem, formula, and implementation are related to "stiffness." Some remarks

will be made about how such restrictions can be recognized automatically.

2. Mathematical Problem

* We are interested in approximating a vector function y(x) which satisfies

(1.1) as an identity for given function f(xy) and Interval [a,b). The

* solution y(x) is to have the specified initial value y(a) at x - a. The

assumption tndt f(x,y) is continuous and satisfies a Lipschitz condition (1.3)

for a 4 x 4 b and all y guarantees that the equation (1.1) has a unique solu-

tion for any given initial value yu at any point xn in [a,b]. It is easy

*!to reduce the requirements on f to holding only in a neighborhood of the

solution y(x). Although this reduction is of great theoretical and practical
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value, we do not want to complicate matters by going into details.

i One-step methods exemplify step-by-step methods. They have the form

Yn+l - Yn + hn+l 4Kxnyn;hn+l) • (2.1)

tHaving reached in, such methods are supplied only the values xn, yn, hn+l,

and the ability to evaluate f. It is clear that the best one can hope to do

is to approximate u(xn+ i) where u(x) is the "local solution" of (1.1) with

- Initial value Yn :

u= f(xu) u(xn) = yn • (2.2)

Some of the classical methods use a small number of the most recent previously

.. computed approximations, but the situation is not really any different for

them.

The question which Immediately arises is how well does u(x) approximate

- y(x) for x ) xn. This is a question of the stability of the solution y(x). A

classical result states that if u(x), v(x) are two uolutions of (1.1), then

ku(x+A) - v(x+A) I -C ea lu(x) - v(x) i (2.3)

where L is the Lipschitz constant of (1.3). The result is sharp as the

single equation y' - Ly shows.

We simply cannot solve unstable problems In practice by the kinds of

methods we consider. A single error of e at xn moves us from y(x) to the

u(x) of (2.2). If u(x) diverges strongly from y(z), the error of a is ampli-

fied accordingly. Of course what "too" much means depends on the accuracy

desired and the computing budget. In the classical situation, (2.3) implies

that y(x) is reasonably stable.
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A large Lipschitz constant tells us that some solutions of (1.1) either

diverge or converge rapidly in a relative sense. Suppose equality holds in

(1.3) for zo. uo. vo near y(xo). Let u(x) be the local solution of (1.1)

with u(xo) - uO and similarly define v(z). Further let 6(x) - u(x) - v(x).

Then (1.3) states that

1 .1

There are problems of great practical Importance for which the Lipschitz

constant is "large." Rere and later we say the Lipschitz constant is large

as an abbreviation for the statement that (b-a)L Is large; the reader should

remember that the length of the Interval Is also important. As noted, a

problem with a large Lipschitz constant may be unstable. For the kinds of

numerical methods we consider, we must assume that the solution is stable.

In order to formulate quantitative results, we must supplement the Lipschits

condition with some other condition guaranteeing stability.

The most studied class of problems with large Lipschitz constants consists

of linear problems with constant Jacobian:

y, Jy + F(x) • (2.4)

It Is often assumed for convenience, and we do so, that J has a complete set

of eigenvectors {vi) and associated elgenvalues (%). The general solution

can then be written in terms of a particular solution p(x) as

N

y(x) - p(z) + D e. (2.5)

This class is so simple that many numerical procedures can be analysed in

considerable detail and so provides insight as to more general problems.
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The representation (2.) makes It clear that stability Is equivalent to the

requirement that for all i, either Re(ki) -( 0 or if Re(kj) > 0, then

(b-a)Ra(7.) is not large. Notice that U13 L ) fkiI fc- all i, so the
presence of sootA with (b-&)ReUkj) << -1 Implies a large Lipschitz constant.

It is often suggested that the general problem (1.1) be modelled near

a point x.,y(xn) by a problem of the form (2.4):

-i f(Xn#Y(zn)) + fx(zn*Y(xn,)) +

where f7 io the Jacobian matrix of first partial derivatives of f. This is

a time-honored tactic of applied mathematics. Wei say that our numerical

methods should perform well on problem of the form (2.4) and that we hope

the linearization stated will provide a useful guide for more general problems.

Recent work has considered f which satisfy

(f(xu) -f(xv), u-v> < llu-v12  (2.6)

for a suitable Inner product <,.This is a one-sided Lipechitz condition

because In general

-L bs-V 12 (C <f (Z'U) f f(x, v) u-v- (L k-v 12

The new thing is that I might be a lot less than L and even negative. By

differentiating D(x) -exp(-21x)Iu(s) -v(x)1
2, one can show that

*u(x+&) -v(x+A) U 4 e1Z6 u(x) -v(x)I 1 (2.7)

which can be a great Improvement over (2.3).

A variant io to consider problems of the form

71 Jy + g(X.y) (2.8)



-6-

where g satisfies a Lipschitz condition

Ig(xu) - g(x,v)l C plu-vE (2.9)

and p is the smallest constant such that

<Jz,z> C pilz 2 all z

for the constant matrix J. The quantity p - p [J] is called the logarithmic

"norm" of J and it may be negative. One can then prove

Iu(x+&) - v(x+A)I - e(P*P) u(x) - v(x) I

Notice that this class is included in (2.6) with I - p + p. This class is a

natural one for the investigation of several kinds of methods and, as we shall

see later, is natural for certain practical reasons as well.

In sumeary, continuity of f and a Lipschitz condition guarantee existence

and uniqueness of the solution y(x) of (1.1, 1.2). We cannot solve (1.1, 1.2)

in practice using step-by-step methods if y(x) is not moderately stable. In

the classical situation of (b-a)L not large, the Lipschitz condition alone

guarantees adequate stability. Otherwise we must assume stability, or supple-

sent the Lipschitz condition with other hypotheses about the problem which

guarantee stability. We have mentioned three such subsets of Lipschitzian.

problems for which stability can be demonstrated even when the Lipschitz con-

stant is large.

*A qualitative way to describe the problems with large L which interest us

is that y(x) is stable in the direction of Integration and some solution of

(1.1) approaches y(x) very rapidly. A way we prefer for describing the latter

condition is that y(x) is very unstable in the opposite direction. Notice

that the stability result (2.3) shows that in the classical situation, y(x)
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is stable in both directions. For stiffness to occur, there must be a strong

directional effect.

3. Classical Formulas

The Adams family of formulas for approximating the solution of (1.1)

arises from an equivalent integral form:

Y(x,+1) - y(xn ) + y'+l (t)dt (3.1)

n

Approximations to y'(t) arise naturally from approximations yj to y(xi) by

y' (xi) - f(xiy(xi)) - f(xi,yi) • (3.2)

-The Adams formulas approximate y'(t) in (3.1) by interpolating values

fi - f(xj,yj) previously computed. Thus an Adams-Bashforth formula of order

p forms the (unique) polynomial P(x) of degree p interpolating to fn-i for

I * 0,1,",p and then definesir
x n+l

Yn+l m Yn + Jx P(t)dt

* n

This explicit formula is defined for any set of mesh points but simplifies

in the case of constant step size h to a formula of the form

P

Yn+l = Yn + h Difn.i
i-0

The simplest example is the (forward) Euler method

Yn+1 = yn + hfn • (3.3)



The Adams-Moulton formula on p points interpolates to the unknown value

f(xn+l,y,+l), too:

P(Xn+i) fn.-i I - Ol, ,p

This formula defines yn+l implicitly. For constant step size it has the form

p
Yn+i - Yn + hO0f(rr l,n+l) + h FPifn+l-i.

The simplest example is the backward Euler method

4Q Yn+l - Yn + hf(xn+lyn+l)

The backward differentiation formulas (BDF) have a similar origin. Now

the polynomial P(x) interpolates to solution values:

'P(n+l-) yn+l-i I 0,1,60,p

and the differential, rather than the integral, form of the equation is used:

P'(xn+l) f(x.lP(+l)) f(xn+lYn+l)

For constant step size h this results in a formula of the form

6P

yn+l hyof(xn+lyn+l) + EYiynl-i
i-1

The backward Euler formula happens to be one of the BDF.

These formulas are representative of classical methods using previously

computed solution values. In the case of implicit methods such as Adams-Moulton

* and BDF there are the imediate questions as to whether they are well-defined,

and how they are to be evaluated in practice. In the classical use this is

C - ' .... . . .. .. .
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always done by simple iteration. A predicted value y(.j is first formed

LI with an explicit formula. The iteration method will be exemplified for the

- backward Euler method:

7(m41) (m an+h~~qly~) m-O1 (3.4)

It is easy to see that a sufficient condition for convergence is that

hL < I.

It is necessary that

hP(fy(xn+l.,Yn+l)) < 1

where fy is the Jacobian matrix of f and p04) is the spectral radius of the

matrix M. The sufficient condition guarantees contraction in the norm being

used. It is virtually the necessary condition in practice because only a

very few Iterations are allowed in the codes and convergence must be observed.

There is a variation on the use of the Adaus-Moulton methods which does

a fixed number of iterations, a comon choice being one. An example is the

use of the Euler method as predictor and one "correction" with the backward

., Euler method:

* (0)yni+i y + bf(xnyn)

"n+l yn + hf(xn,.Yn~i)

* This variation results in explicit methods which behave similarly, but by no

S."means identically, to the implicit methods.

The one-step methods were mentioned earlier. The most important classical

examples are the Runge-Kutta methods. An s-stage method has the form
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* ~. where

ki f(% + h,,yu+ h bjkj) il
J-1

The constants at satisfy

and the constants b11, ci define the method. If bIj 0 for all j L , the

kare evaluated explicitly to the order I1**,,s and the method is explicit.

Otherwise it Is Implicit. The Ruler method (3.3) is also an example of an

* explicit Kunge-Kutta formula and the backward Euler method Is an example of

an implicit Runge-Cutts formula. In the classical use of Implicit Runge-Cutta

formulas, they are also evaluated by simple iteration: -

kja1) -f(x. + ha,, yn + h Ebijkla)) a ,,-

J-1

*A sufficient condition for convergence Is hyL < 1, where y is a constant

depending only on the formula.

'V The classical formulas, as exemplified above, are all explicit, or are

evaluated by simple Iteration. In every case, simple Iteration converges

if the step size satisfies hL < v for a constant % which depends only on the

* method and which is not particularly small. In the classical situation[ hL 4 (b-a)L and L is not large, hence simple Iteration does not pose a severe
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restriction on the step size. Obviously the situation is quite different if

Uthe Lipschitz constant is large. It is important to appreciate that a severe

restriction on the step size arises only when hL >> 1. Thus the problem

* must have a large Lipschitz constant, the solution must be stable, and the

solution must be easy to approximate in the sense that the desired accuracy can

be achieved with a step size h such that hL >> 1. Later we shall explore circus-

..stances leading to this situation. The restriction is one manifestation of the

complex of phenomena called stiffness. The difficulty of defining stiffness

is evident here. For some kinds of methods there is no step size restriction

of this kind at all. The ones that do have such restrictions suffer in vary-

ing degrees. Clearly stiffness depends on the method as well as the problem.

The key to solving problem with large Lipschitz constants is to resort

to a more powerful iteration method for evaluating implicit formala. The

only popular way is to linearize the algebraic equations by the simplified

Newton's method. In the case of the backward Euler method this is

(2+1) 7n+ h[f(xn+lay~s1) + J(Y(2+l) - 2f))](.5

Rare J - fy(xn+l.yn+l). Newton's method does not use a fixed matrix J, rather

uses fy(xn,lyiM1) to calculate yt(,'). Generally the formation of approximate

* Jacobians is very expensive. For example, each iteration of (3.4) requires

* only one evaluation of f. In the common case of forming J by differences for

a system of N equations, N evaluations of f are made just to form J. For this

reason it is considered impractical to use Newton's method itself. In (3.5)

one must repeatedly solve linear system with matrix I-hJ. Simply decomposing

this matrix into triangular factors is rather expensive, and the repeated sub-

stitution processes to solve for the yn+l are a cost by no means negligible.

F
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The simplified Newton iteration is so much more expensive than simple

iteration that it can be worthwhile only if the step size must be severely

restricted to got convergence with simple iteration. Of course a great deal

of research has been, and is being, devoted to minimizing the costs of this

iteration. For example, the s-stage Runge-Kutta process involves a system

of N algebraic equations at each step. This can be reduced in various

ways to dealing with system of size N. The structure of the Jacobians can

be used to reduce the costs of forming these matrices and of solving the

resulting linear system.

An important cost-saving device is to use an approximate Jacobian J for

as many steps as possible. Convergence of the iteration and the rate of con-

vergence depend on how well J approximates fy(zn+lyn+l) for the various xn+1 .

As long as convergence is adequate, one should continue to use J. It Is a

fundamental practical assumption that the Jacobian Is roughly constant for

distances such larger than l/L. This is one reason why the class of problems

of (2.8) is particularly significant for analyzing practical computation.

Codes intended for stiff problems are based on Implicit methods for r!

reasons we shall examine below. Until recently the simplified Newton itera-

4 tion was used exclusively during an integration. Whenever hL is not large,

this is grossly inefficient. The inefficiency Is not as bad as it might

seem at first because efficient reuse of an approximate JacobLan reduces

the waste. Still, the inefficiency is significant when solving a problem

which, e.g., does not have a large Lipschitz constant. Codes intended for

non-stiff problems use simple iteration exclusively if they are based on

implicit methods. This is grossly inefficient if the problem has a large

Lipschitz constant and its solution allows a step size h such that hL >> 1.
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It is worth remarking that the same formula, e.g., the backward Euler, might

u be used in both kinds of code. Recent research has considered how to recog-

nise when simple iteration is feasible and efficient. There has been con-

siderable success at recognizing and coping automatically with this manifesta-

tion of stiffness.

4. Output

So far we have considered approximate solutions only at mesh points.

If the user wants results at specific points, the code will have to reduce

its step size as necessary so that these points are in the mesh. Amore

efficient alternative is natural with the Adams formulas and the BDF. They

are based on polynomial interpolants which can simply be evaluated at the

places specified by the user. In this way the step size of the code Is not

affected by the output requirements. (Actually it is affected weakly in the

popular codes for various software reasons.)

One might not think that output could severely restrict the step size,

but for some methods it certainly can. Runge-Kutta methods of many stages

must take "large" steps to compensate for the expense of a step. The classical

extrapolated mid-point rule can be viewed in typical implementations as a

family of Runge-Kutta methods of a great many stages. Obviously the methods
w

described for problems with large Lipschitz constants do a great deal of

work at each step. This pays off only when the step size Is large. The

fact that the BD? are not impacted by output is one reason for their popu-

-larity. Recent research has considered ways to "interpolate," or at least

to weaken the effect of output on methods which produce values only at mesh

points.

Vw
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The effects of output depend on the formula and how It is Implemented.

Excessive output for certain methods has exactly the same effect as what is

called stiffness. However, it is easier to see the origin of the difficulty

and there Is usually not a severe restriction on the step size. Furthermore,

alternative methods not seriously affected by output have been widely available.

11s shall refer no more to this issue, but the reader should keep in mind that

the computational problem (which Includes specification of output points)

may determine whether the step sie possible is severely restricted end further

that this depends on the formula and how It is implemented.

5. Stability

In our description of convergence we shall restrict our attention to

one-step methods, more particularly to lunge-Kutts Methods, in order to avoid

* -technical details arising from use of previously computed solution values.

Suppose the integration has reached (xnyn). A one-step method produces

Y.+1 ya7 + hn.1 G(x'n$'~nl)

Let us define

n1 - y(xn) + hQ10 ,xn-l(Xn.*,t ,

the value the formula would produce if It had available the correct solution

value at xn . A fundamental decomposition of the error is

-Y(x+ 0) Y+l" (Y(xn+l) " 3n+l) + (sn+l-yf+l)- (5.1)

The difference y(z,+1 ) - *n+l In (5.1) is the local truncation error,

lte, which measures how well the formula approximates the behavior of the

differential equation. Notice that

Ii
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Y(Zu+l) - y(n) + h 4.+1  (Yn.y(xn);hn+l) + ite

8 The difference 3n+l - Yn+i measures the stability of the foruula. We need to

relate it to y(za) - yn in a way analogous to the stability results for the

differential equation itself.

The step else hn+1 is chosen so that

litel 4 h. 1 C (5.2)

for a tolerance c provided by the user of the code. We shall see how this

can be accomplished in the next section. Let huin and h5ex be the smallest

and largest step sizes allowed by (5.2) for any x In [a,b].

It Is easy to establish the stability result for Runge-Cutta methods

that

1s41 - yn+ m I C (l+hn+:)liy(xn ) - yn1 (5.3)

which comes directly from the Lipschitz continuity of the function 0:

14Kx,u;h) - 4Kx,v;h)U IC Uu-vI . (5.4)

These results hold only for hL 4 c. When c is small, Z ; L and the factor

(1+hnI.Z) In (5.3) approximates the analogous factor ezp(h3 4 IL) of the

differential equation.

Combining (5.2) and (5.3) leads to

ly(xn4.) - y74.1 1 C (1+hng. 1L)ly(Xn) - ynI + htr.q. C

. (+hmz) ny(x 8 ) - yn I + h"X C

which then implies

maY(x) " 
- c . ext (b-a) )ax (5.5)apt
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In the classical situation the stability of all the Runge-Kutta methods

is adequate and the convergence result (5.5) satisfactory. Let us consider

the stability of the formulas when L is large. The constraint that hL be

not large is not artificial as the simplest examples show. (It is also not

due to implicit ,formulas as we shall see In a moment.)

In section 2 we discussed the stability.of solutions of

y' Jy + P() (2.4)

when J is a (constant) matrix with a linearly independent set of eigenvectors.

The difference of two solutions, w - u-v, satisfies w' - Jw. The (constant)

change of variables w - 16, where the columns of R are the eigenvectors of J,

uncouples the equations Into the set

6 (z) - ) 6i(x) i -

where X1 is a (possibly complex) eigenvalue of J. It ts easy to verify that

the same scheme works for the Runge-Kutta methods with the result that

8i,n+l R(hX )61,n

where 8i,n - 8 (xn). Rare R() is a polynomial for explicit Runge-Kutta

methods and is a rational function for implicit methods.

For the sake of simplicity we consider the case of Re(ki) 4 0 each i so

that 8 i(x) is non-increasing. It is noteworthy that this means that in a suit-

able norm,

Uu(x+&) - v(X+A)I 1 Iu(x) - v(x) . (5.6)

The formula preserves this stability property of the differential equation

only if IR(hk)l 4 1 for each Xi. The region of absolute stability S of
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the method is the set of z such that Re(z) ( 0 and IR(z)I ( 1. The step size

h must be constrained so that hX1 E S for each eienvalue of J.

All the explicit Runge-Kutta methods have finite regions of absolute

stability. This follows because JP(z)j *- as 1z1 . o for these non-trivial

polynomials. Indeed, all the classical explicit methods have finite regions

of absolute stability. We point out that L - IJI # X7LI so that in the

*classical situation this stability constraint on h is not severe, as follows

already from the general result for LLpschitzian problem (5.3). Notice thatas

in the norm of (5.6), if the formula is absolutely stable with the step size

h, the convergence results are much stronger than in (5.5):

y(zn+I ) - yn+l I 4 Iy(zn) - yni + hn+1 c

"'" 4 (hl+h2+"'+hn+) e

(X-+x-a) ,

using y(a) - yo. This reflects the additional information available about the

g stability of the differential equation.

Obviously, even to solve the very special class of problems (2.4) with

hL >> 1, we need methods with infinite stability regions. As already noted,

we must resort to implicit methods. Very stable methods exist, e.g., the

backward Euler method has

-Rz~ [ IL. all Re(z) 1C 0

but we then must pay the price of implicitness discussed In the preceding

section. A great deal of effort has been devoted to finding formulas with

good stability properties which can also be evaluated relatively cheaply.

It should be appreciated that the formulas in comon use do not have ideal

p.
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stability even for the class (2.4). For example, all the popular BDF of

orders at most 6 have infinite absolute stability regions. Still, some are

finite for elgenvalues near the Imaginary axis. It is quite easy, for

example, to write down a problem for which the BDF of order 3 has no sta-

bility restriction, but the one of order 4 does, and the restriction suffered

is Just as severe as that of an explicit Runge-Kutta formula. Evidently stiff-

ness depends on the formula as well as the problem.

In our view these stability constraints arising from the simple class

(2.4) are necessary requirements for a reasonable numerical procedure. Of

course we hope that the behavior for (2.4) is indicative of the behavior of

the procedure for more general problems. A considerable amount of practical

experience suggests that it is provided that one is a little cautious. For

example, the trapezoidal rule has IR(z) 1 for all a with Re(z) 4 O. How-

ever, &(a) - -l as 1=I * so that the formula is barely stable for IhL >> l.

One expects, and sees, slowly damped oscillations In the numerical solutions.

Furthermore, it is not difficult to write down problems only a little different

from those of (2.4) for which this rule is unstable.

Naturally stability results for classes broader than (2.4), e.g., (2.6)

or (2.8), are of great interest. We mention one such result. Suppose we

consider the class (2.6) with I - 0 so that no two solution curves spread

apart. A Runge-Kutta method is called SN-stable if the approximate solutions

also do not spread apart then. The backward Euler method is an example of a

XN-stable formula.

We have said that the step size should be restrained so as to lie in

the region of absolute stability, but codes do not impose this restraint

directly. It Is interesting that the classical methods, as implemented in

good codes, do bring this about. Some details are provided in section 7.

6!
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The commonly used procedures with infinite stability regions seem not to

(have stability difficulties often, but typical codes do not handle them well

when they do occur. Providing that a method with adequate stability is used,

the principal restraint on the step size is the iteration restraint discussed

rin the preceding section. We do not wish to minimize the importance of a

better understanding of stability nor of the.need for more stable formulas

which are more easily evaluated, but very stable formulas which are apparently

adequate for most practical problems are already known.

By resorting to implicit methods one can avoid stahility restrictions in

a practically useful way. There are costs involved. One is the implicitness

already discussed. Another is accuracy. Restricting the choice of parameters

defining a Runge-Kitta method so as to assure good stability properties

leaves less freedom to develop very accurate formulas. As a rule, the

classical methods with poor stability are much more accurate than those at

present being used because of their good stability. As a consequence, the

' classical formulas permit significantly larger step sizes (hence are more

efficient) when accuracy dominates the selection of the step size.

6. Accuracy

In section 5 the local truncation error, Its, of a one-step method was
I

defined by the relation

y(xn+l) y(xn) + h 0(xn,y(xn);h) + Ite

By Taylor series expansion one finds that

ite - hP+ (xy(x)) + 0(hp+2) (6.1)

for sufficiently smooth f. In such a case the formula is said to be of order p.

I' p . . .



S-20-

For methods of order p > 1 it is always possible to choose h so that

Iltel h t . (6.2) _

Indeed for small h, or equivalently small tolerances c, (6.1) shove that the

largest h satisfying (6.2) is approximately

The smallest step size needed in the integration is approximately

\ a,b]"

and the largest,

h min((b-a), jCfmin I 'T~ ))laI)
max [ab]

Sy way of example both the forward and backward Euler methods are seen

to have

te -h y"(x) + 0(h3) (6.3)

The general case of two stage, second order explicit Runge-Kutta formulas

form a one-parameter family of formulas. In terms of the parameter a 0,

they are

*(xy~h * l-~f~xy) + h y + h- f(x,y))

The local truncation error is

le- h3 1 )y(x) fy (x,y(x))y"(x)] + O(h4 ) . (6.4)
ft 6 8a
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With the exception of output, none of the restrictions considered In this

paper can be severe in the classical situation when L(b-a) is not large. It

Is true that, for example, stability might restrict the step size some so

that one needs to consider stability regions when designing a code for non-

r stiff problems, but there cannot be the kind of restriction that we call stiff-

ness.

Some valuable information can be gleaned easily from the expression for

1 the local truncation error of a method. We are now interested in problems with

solutions y(x) which are smooth, but fy(X,y(x)) is "large." If the term v

in (6.1) involves fy, it is often easy to see that the step size must be

restricted so that hL is not large in order to yield the desired accuracy.

This excludes some methods immediately from their use for problems with

large L. For example, the second term in (6.4) will impose an unwelcome

restriction on the step size when fy is large.

The Adams-Moulton methods are implicit methods which use past solution

values. When the step size is a constant h, the local truncation error for

the method of order k has

*(k+l)(= k Y (x) ,

where is a constant characteristic o the method. A populr variant of

these formulas which is explicit was mentioned earlier. This variant has

f~, fyxyx) (k)(x) + * y(k+l)(x)

The coefficients ok,O, yk are constants. It is evident that this variant

is unsuitable for problems with large fy(x,y(x)) despite whatever merits it

might have in the classical situation.

These observations do not exclude some formulas which are, in fact,
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useless. For example, in the asymptotic expression (6.3) we do not see a

difference between the explicit and implicit Euler methods. Still this is

an easy way to see that some formulas cannot be helpful when solving problems

with large Lipschitz constants.

Considerable insight can be gleaned from a study of the class (2.4) of

problems

y' - Jy + F(x)

The representation (2.5) of the solution,

N

y(x) - p(x) + Z.vie xa)
i1l

tells us how all integral curves behave qualitatively. Suppose the eigenvalues

are ordered so that

Re() 4 " Re(k i ) 4 " C Re(Xj)

where (b-a)Re(AN) << -1 and if Re(X1 ) > 0, then (b-a)Re(l) Is not large.

The constants ai are determined by the initial conditions. The terms corres-

ponding to "large" Re(Xi) vanish rapidly as x increases. We might say that the

rapidly varying components decay out quickly so that the solution looks smoother

and smoother. Of course just when some term is computationally negligible

depends on the norm and tolerance used.

Generally we expect to need a small step size to get accuracy when the

solution is changing rapidly. This arises from the fact that T in (6.1) con-

sists of various derivatives of the solution and of f. When the solution

changes rapidly, one expects T to be relatively large, although this is not

necessarily so. Rere we see that

IJ
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N

y m)() - + C9xa)
Ll

There is a region of rapid change near x - a in which all derivatives of y(m)(x)

g are large and a small step size is necessary. As x increases, the exponential

terms dominate the F factors so that the solution looks smoother and

a larger step size Is permissible. It must be understood that if p(x) itself

Is not easy to approximate, e.g., it is not smooth, then neither is y(x)

and one cannot expect hL >> 1 will be possible.

If Pn is the numerical result of solving (2.4) with initial value p(a)

and yn the result with y(a), the difference

yn - Pn " wn

is the result of solving the homogeneous problem with the Runge-Kuta method.

Uncoupling the equations again leads us to considering how well Z(x) x

is approximated by our Runge-Kutta method. We saw earlier that

61(xn+l) = exp(Xihn+1)6i(xn)

and

6i,n+l 1)1,n

We have already considered when IR(Xih+1)I 4 1 in the stability analysis.

We are led to the same consideration again on grounds of accuracy. When a

solution component is negligible in the norm used, we want it to stay negligible

in the numerical solution, too. The asymptotic expression (6.3) for the

truncation error did not distinguish the forward and backward Euler methods.

They certainly differ dramatically in the present situation.

|b,
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In qualitative terms, hL > 1 Is possible only when the solution y(x)

is easy to approximate for the method at hand. There is typically a region

of rapid change after which the solution smooths out so that It becomes

easier to approximate. Just how fast and how smooth the solution becomes

depends on the stability properties of the differential equation and on the

norm and tolerance supplied by the user. With nonlinear problems the solution

may go through other regions of rapid change. Van der Polls equation under-

going relaxation oscillations Is a familiar example.

7. Error Estimator

There are a number of related ways In which large Lipschitz constants

pose additional restrictions on the step size. Fundamental to them is the

question of approximating y'(x). With some methods this is a very natural

task. Indeed, the Adams methods are best viewed as methods for approximating

y'(x), rather than y(x). Traditionally the approximation

Y.,- f(zn,y n ) " y'(xn)

is used. The function f is usually evaluated at (xn,yn) anyway, so this

approximation is often returned by codes as an approximate derivative. The

error of the approximation is easily analyzed. For dimensional reasons, the

error of the scaled derivative hy'(x n ) is more relevant. Now

hy - hy'(x n )n - hnf(xn,yn) - f (xn,y(xn)) I

ChL yn -y(x n ) I

If we know only that

lyn - Y(xn) I A ,
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the best we can say is that

UhyA - hy'(xn)I (hL * -

Obviously this approximation is satisfactory only when hL is of modest size.

Now can we generate a reasonable approximation when the Lipschitz constant -

is large? One way is to use only approximations to the smooth solution y(x) and

so avoid the large derivatives associated with local solutions. For example,

U a Taylor expansion results in

~hyCxn) w yxul h h(:) h2hy(x)- h ( " )- -". y'() + 0(h3)

which suggests the finite difference approximation

S hy'() h (Ytt+1 Yn)

What is the error of this approximation?y
1h yn+lh ) hy'(x,) 1 (Y+l " yn) " (Y(x +j) - Y(xn))'

+ I(y(X,+.) - y(X,)) -hy(X.n) I

if

U+ 1 l y(xn+1 )3 4 p and yn - y(xn)I C i.

This is a perfectly reasonable approximation even when the Lipschitz constant

is large.

The truncation error expressions for the Adans-Moulton formulas and the

BDF involve only derivatives of the solution. In typical Adams codes these
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derivatives are approximated by divided differences of the f(x,,y,) values.

As we have seen, these values do not give a good approximation to y'(xn) and

differencing them results In even worse approximations for higher derivatives.

If the code should try step sizes too large for stability, these local trunca-

tion error estimates are affected; the higher the order of the foruula, the

more the estimator is affected. Indeed, propagated error due to instability

"looks" to the code like a solution which Is not smooth. Modern Adam codes,

* like ODE, consider several orders at a time and select that which appears

moas efficient. The result is that the order is lowered and the step size

reduced until the computation is stable. This is used in ODE to diagnose

stiffness when the code does a lot of work. The typical BDF code is intended

for problems with large Lipschitz constants, hence must difference the Yn

values to obtain reasonable estimates of the truncation error. In some

*codes this is not obvious because of the representation of the formula, but

they are all doing uch the same thing.

Although described In a variety of ways, all the popular procedures for

estimating local truncation error in explicit Runge-Kutta codes can be

viewed as taking each step with two formulas of different orders and estimating

the error of the lower order formula by comparison. Obviously this estimate

is disturbed if the step size is such that either formula is unstable. The

Interesting behavior can be used to recognize stiffness. Basically the

* situation is the same as with the Adams codes. Instability looks like

inaccuracy arising from a solution which is not smooth, so the step size

is reduced until the computation is stable.

lll l lS.J l l lli l ll ~ k k mlma l lli . .
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8. Sumary

It is assumed that the function f of (1.1) is continuous and satisfies

the Lipschitz condition (1.3). This guarantees the initial value problem

(1.1, 1.2) has a unique solution y(x). In the classical situation when L(b-a)

Is not large, this also Implies that y(x) is moderately stable. Step-by-step

methods for approximating (1.1) numerically select at each step a step size

hn+1 intended to satisfy the local truncation error requirement (5.2).

There are other restrictions on the step size, too, but in the classical

situation they cannot be a severe restriction except in the case of very

frequent output for some methods and some implementations.

To consider problems with L(b-a) large, we must assume y(x) Is stable.

Some mathematical conditions guaranteeing this have been stated. Some solution

curves oust approach y(x) very rapidly so as to cause L to be large, or, as

we prefer to put it, in the reverse direction y(x) is very unstable. There

is really nothing new unless haccL >> 1 for the step lsoZ hacc yielding the

desired accuracy. For this to happen y(x) must be "easy" to approximate.

Typically y(x) has a region of rapid change in which haccL is not large, but

hacc increases rapidly as y(x) smoothes out in the course of the integration.

All the classical methods must restrict the step size h actually used so that

hL is not large in order to integrate even very simple problems stably. There

are formulas which seen to have satisfactory stability properties, but they

are all implicit. The classical way of evaluating implicit formulas also

must restrict h so that hL is not large. This can be avoided by resorting

to the expensive simplified Newton iteration. Implicit is the assumption that

the Jacobian changes slowly along y(x) so that it need not be evaluated "often."

The classical ways the local truncation error is estimated also impose a

I". ll' J ~ l l I lt l l , l l ld ll ... ".. . . . . . . .
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restriction that hL be not large. However, there are estimation procedures

which do not suffer such restrictions.

Except for the case of too frequent output, a problem Is "stiff" In a

region for a given code If the step size muet be severely reduced from that

value which woult yield the requested accuracy. The classical situation has

no stiff problems. We have described certain characteristics of the mathematical

problem which must be present to have stiffness. Unfortunately stiffness also

depends on the computational problem, e.g., norm and tolerance. Furthermore,

whether a given code exhibits stiffness depends on the particular formula, how

it is Implemented, and how It relates to the particular mathematical problem.

Apparently minor changes can change a severe restriction into none at alll

U2

U
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Abstract

I
We describe here in rough form an algorithm for solving the linear systems

that arise in the solution of stiff systems via the backward differentiation

formulas. The algorithm is fairly complicated, but has low computational cost and

g should be especially attractive for sparse systems. Identification of those equa-

tions in the system that can be integrated with the Adams formulas is a part of

the algorithm.
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Introduction

The solution of a stiff differential equation via the backward

differentiation formulas involves at each step the solution of an equation of

the form

(1) f(tn+1 1 yn+I
) - P'n+1 - a(Yn+1 - Pn+ = 0

where the subscript n+1 indicates the current step number, yn+l is the

numerical solution at the current time, tn+,, to the differential equation
m

(2) y" - f(t, y),

Pn+l and p'n+l are initial estimates for yn+1 and f(tn+1, Yn+i
) , and

a is a parameter proportional to 1/h, where h is the stepsize. The solution

of (1) is usually obtained from a constant slope Newton method of the form

(3) ;6y (J) - (J)- [f(t y Pn -a j P
n+ 1 n+l ' n+1 n+- nYn n+1

where -(0) (j+l) (J) + a (J ), is an approximation to G J aI
Yn+l - Pn+l' Yn+l - yn+l n+l'

and J - 6f/6y evaluated at (tn+i, Y .j))

Iteration (3) has linear convergence with Iay~jl a 04u~)

where

(4) P - largest eigenvalue of G (G-G)

In addition, one can use the value of p as a guide to the .umber of iterations

that are required to maintain stability of the numerical method, see [1] and [2].

The larger p, the more corrector iterations required, until a point is reached

that a new G is essential.

-a
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Errors In J and in a both contribute to u. Errors in J outside

of our direct control are assumed to be zero for the purposes of what we

develop here. Of course a code must be prepared to cope with such errors.

At some point the code will obtain a factorization of

(5) Gf - aj I

and we wish to use that factorization as long as possible. Initially we will

have a - a (or perhaps, a - expected future a) and we wish to keep a

useful G as a changes due to changes in the stepsize.

We propose here a factorization that is characterized by having low

cost and good fill-in characteristics when being used on problems which have a

sparse J. A by-product of the factorization is that equations which can be

integrated with explicit methods are identified. What is given here is in a

very unfinished form.

We first suggested using an automatic partitioning of stiff systems

into equations integrated with Adams methods and equations integrated with BDF

methods in [3], and gave some results with such a code in (41. This early

work on automatic partitioning attempted to do this job without requiring a

Jacobian matrix. We now believe it was a mistake to attempt so much with so

little information. A test suggested by Shampine (5] does a good job in

identifying when at least one equation in a system is stiff, and at such a

point it seems to us (now) that there is little reason to avoid the

calculation of the full Jacobian matrix.

Enright and Kamel 16] give an excellent summary of work that has been

done on partitioning. Enright (71 has done some work on investigating

stability for algorithms which involve mixing different methods.



An Overview

Row and column interchanges play an important role in the algorithm

which we describe, but in order to bring out the essential ideas they are

little more than alluded to in this section. An interchange of two rows is

gfrequently accompanied by an interchange of the corresponding two columns thus
mapping diagonals to diagonals. The factorization of Gf has the form

fi

Gf - LUR

where U is upper triangular, and L and R are both unit lower triangular

composed of a product of elementary matrix transformations. The total number

of elementary matrix transformations in L and R is <N (the dimension of Gf)

and all are of a different "size". (I.e. the number of rows or columns

affected by the transformations are all different.) Thus there is room in the

space occupied by Cf to store L, U, and R. For example if N - 7, and the

factorization consists of removing factors in the order R L L R L R, then the

lower triangle has the appearance

I

U AL~r

A r r r

rrrrrr

where I indicates an element of L and r an element of R.

Let 0 - a - a, i.e. (the current value of a)-(the value of

a used in forming Gf). We want to define a matrix G which is a function of

0 such that for 0 0 0 the spectral radius of CI (C-) is less than the

spectral radius of C 1 (G-G ). In addition the factorization of C should bef f
readily available from the factorization of Cf. In [1] we examine G c Cf

f

* 3



where c is a parameter depending on 0. That approach may give a fruitful

mix with what we describe below, but such considerations would complicate

considerably what we present. The factorization suggested by Enright [8] and

[71, might also be useful in combination with what we suggest here.

If diagonals of Gf are mapped to diagonals of U, then we can write

Gf - LUR, G - LUR - $I, G - L (U-DS)R

.-I1
G G (G-) - 0-'G (LDR-I)

where D is a diagonal matrix selected to minimize DLDR - I •

Let D - diag (dk ), L - (Iij), R - (ri,j), where Iii = rii i = 1

and £ - rij - 0 for J>i. Because of the way L and R are

constructed, if j<i<k either tLj - 0 or rki - 0. Thus LDR has the form

D + LD + DR where L and R are the parts of L and R below the diagonal. Thus

the matrix norm is minimized if

dk - 1/(l + I kIl 2+ 11 2k )

where Lk is the k-th column of L, Rk is the k-th row of R, and either L or

is zero. Observe that the smaller we can make E and R the smaller the norm of

G.-G. Thus if a diagonal can be used as a pivot, we multiply on the left by L

2f I1 11 f < IiRkil , and otherwise multiply on the right by R.
A When diagonals in Gf do not map to diagonals in U, things become

significantly more complicated. In this case D is permuted and some elements

of OD fall in L, some in U, and some in R. The formula given above for dk

is still a good approximation for those elements of BD that fall in U, for

those that fall in L or R we use

dk " luk,kI / (luk,k 12+Ukh 2)

where U is the part of U above the diagonal, Uk is the k-th row of U, and Uk,k
is the k-th diagonal of U.

4
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Although the algorithm appears fairly complicated, the actual

arithmetic required should usually be less than that required for a simple LU

factorization. (We sometimes set matrix elements to zero to save Gaussian

elimination steps.) We believe the approach, or some %ariant, has real

promise, but what is given here is perhaps best described as working notes.

Notation and More Details.

In the following section we give an algorithm in a form something

like that of SFTRAN3, 19]. We believe that anyone familiar with structured

programming will not be bothered by this form of presentation, even if totally

unfamiliar with SFTRAN3. This section defines variables used in the algorithm

and gives a few more details on why certain choices are made.

A Gf initially. When done, this area of storage contains U above
the diagonal, and information defining L and R below the diagonal.

ai' j  The ij element of A.

s,e Start and end indices for the part of A remaining to be factored.

This includes (a ), s<i<e, s<j<e.

,e I i,j _a '
e

e

i-L Iaiji-aj,jl

q A flag set as follows.

q - 0 Up to this point there have been only row and column

interchanges that take diagonals to diagonals. While q = 0,

those equations to be integrated with an Adams method are

identified.

q>0 a did not start out as a diagonal element. Interchangesq,q
are always such that there is at most one i, s i<e for which

ai1 i did not start out as a diagonal.



q-1 For s<i<e, ai started as a diagonal element.

While q - 0, and perhaps later, equations are identified which are such that

the coupling to the equation, the coupling from the equation, or both can be

ignored. This identification is based on the following. If

' r ,' = 2 =' ,'

then the spectral radius of il (B-i satisfies

S1/2, UZi P, ti o, where
P D'' l1jjcl HrII /jb1j.- These results follow immediately from

an examination of the eigenvalues of BI(B- i).

* pused for temporary storage of rici/lai, i. A computer

code would require more care in dealing with potential

overflow or divide by zero.

Pmax,90min maximum and minimum values computed for o, s<i<e.

imax imin indices corresponding to p giving the Pmax and P min
If Pmin is not too large, the diagonal at imin is used as a

pivot. Otherwise, the pivot is m laiki, J iak,d here
s<k<e 9 J hr

i - q if q>O, and otherwise i - i max . It is hoped that the use

of i-imax will lead to smaller off diagonal elements in later

steps.

A bound on relative errors allowed in G. Let Mm,k denote

the values in Table 1 of [1]. Mk gives a bound on u, the

spectral radius of G-1 (;-G) for a BDF method using a predictor

of order k and m iterations on each step. Choose c - c M1,k1

where c is a parameter (u1/2) to be determined, and j is

probably 1, but might be 2 depending on other aspects of the

algorithm.

6



BA If at least one direction of coupling can be removed and the

associated diagonal of J times h is > B A then an Adams method

is used on that equation. This is justified by arguing that

if all is working as it should, then the integration for every-

thing feeding into this equation is stable and hence can be

fregarded as a function of t, cf. Milne and Reynolds [10. We

regard this test as a first step. It will sometimes use BDF

when it should use Adams. (But probably not vice versa.) The

Adams method is preferred when it works since it allows a

larger order and gives better accuracy. BAn-.2.

BB If at least one direction of coupling can be removed and the

associated diagonal of J times h is < BB or if no coupling

can be removed, then a BDF method should be used on the

equation. -.6 a B B j2 B A' When coupling can be removed

and BB < associated diagonal of J times h < BA, then the

method for the equation should not be changed. Algorithms for

the switch are given in (111 in the case when the history of

the solution is saved as modified divided differences.

Formulas for the mix of algorithms are given in [12). These

formulas allow for the direct integration of equations with

order greater than one. We believe that such methods will be

helpful for mixed differential algebraic systems by sometimes

reducing the nilpotency of the system.

BD Bound used to decide diagonal is sufficiently large that there

is no need to use some element off the diagonal. If for

iimin' min (ri, ci) < BDIaIJ then the diagonal is

used as a pivot.

cIA Value to be used for a when equation is integrated using the

Adams formulas. See [121 for more details.

e,,uiVivi, 1(i.N This gives information necessary to update A when a or

cA changes. e. gives an index of a differential

equation, ui, vi give the row, column indices where the

diagonal for equation ei got mapped, and wi gives the

weight by which a change in B is multiplied in order to

update A. Thus changing step size or order require N

multiplies in order to update the factorization. Because

7



permutations are only applied to the active part of A, a row

or column may contain several elements that started on the

diagonal. Some things would become cleaner if permutations

were applied to the entire matrix.

PJOXj I LjN This gives information on the interchanges in the order In

which they are done. The row or column index is supplied

by pj and xj tells what to do with it.

xj =l exchange columns a to • of rows p and s, then exchange rows

s to e of column pj and s. Increment s.

-2 exchange rows s to e of columns p and e, then exchange

columns s to e of rows p and e. Decrement e.

=3 Same as 1, except ignore henceforth (treat as 0) elements

below the diagonal in this column.

=4 Same as 2, except ignore henceforth elements to the left of

the diagonal in this row.

=5 Same as 3, except elements to the right of the diagonal In

this row are also ignored.

>10 Let k-s if pj>0, k - e otherwise. Exhange columns s to * of

rows k and x J-O, then exchange rows s to e of columns k and

x -10. Then if pj>0 exchange columns s to e rows pj and

s and increment s. Otherwise exchange rows s to e of columns

p and * and decrement e.

, , s jZ-1  p t is the current estimate for the spectral

radius of G (C-C) g [IIPB +PM],

g I smallest diagonal of U when Cf was factoredi(
Ismallest diagonal of U currentlyl

We suggest simplifying g by using the smallest diagonal seen

since the factorization in the above denominator.

O= a - a (as usual)

P gives the linear part (which is most of 1:) of the change in

p with respect to B. This is a messy one to compute. If

we applied row and column interchanges to the whole of A, then

we would have

Cf PLLURPR C PLURP -BI
f L8



G - PL(L - BDL) (U - Du) (R - ODR)PR

where PL and PR are permutation matrices, and DL, DU , and DR
are sparse weighting matrices that are non zero only where the

permutations carry them back to diagonals of the original matrix.

K Thus

d

dT G- - PL (DLUR + LDuR + LUDR) PR" i

We propose to estimate di/dO by using a power method on

G d- B (G-G)] which if permutations were as above, would be

P; R-u' L-l LI PL(DLUR + LDuR + LUDR PR- 1

With permutations as we have defined them here, the permutations get

imbedded in the multiplications by R and L, and to do the multi-

plications by DR and DL one must do the permutations in a simi'Ar

way, using the information in xj, Pj, ei, ui, vi, wi , all defined

above. (Note that in doing this power method one does only matrix

vector multiplies, and some temporary vector space will be needed.)

The power method is used whenever a new matrix is factored, but only

a few iterations should be required since no great accuracy is needed.

During the power method an estimate for '-ic ll is generated from

z k+11/ lk[ where G7 Zk+1 ' k"

PM  is a measure of the error purposely introduced into the initial

factorization. We have only indicated errors that are introduced to

save applying an entire elementary transformation. But a better

sparse code should consider dropping any element that changes a zero

to a nonzero. Houbak and Thomsen [131 report good results from

setting matrix elements to 0 during a factorization for some problems.

]i -il an estimate for the norm of . Initially the estimate is given by



The Algorithm

Usual BDF/Adams stuff

U g* ( B0p + PM)

If (v is too big) Then

Compute new Jacobian, J, if desired.

A J -aI

IIG- 11 -g1 1
DO (Factor New Interation Matrix)

Compute Ps and 11 -1 0 using power method

. 0MP- IIG'Il pl
End If

Continue with usual BDF/Adams stuff

(B, g, and A must be updated if a changes.)

510



Procedure (Factor New Iteration Matrix)

q-O

asal

e -N

set e Iu i avi  i for l<i<e

j -1

.M=O

DO.(Get Row and Column Norms)

Do Until (s>e)

min

x -
j

If (r < ci) x 2

If (omi G < C) Then (Not full coupling)

xj " x + 2

P M max (P M' min/)

If ((P min11 "11 < 2/4) & ((r+ Co) < I,±Il/10)) Then

xj 5

M  max (M , Pmin 
/C)

End If
If (q = 0) Then (Set for desired Method)

If (h.(at,1 + a) > BB) Then

If (h*(aI 11 + a) > B.) Then

Set ei-th equation for Adams if it is not already.

End If

If (e1-th equation set for Adams ) atl a at l + (a - ZA)

Else

Set et-th equation for BDF if it is not already.

End If

End If

DO (Fix Matrix)

II



Else

If (q 0) Then

Do For k - s to e

Set equation ek, for BDF if it is not already.

End for

End If -

If (min (ri c < B 3D'a I Then

Do (Fix Matrix)

Else (find the pivot)

minq

If (M < 0) M-i
max

X = MU+ 10
j

a -0
max

*Do For k -sto e

if ( IakI > am$=) Then (Max on the column)

amax 'ak,mi

End If

If (Ia kI>sax) Then (Max on the row)
a amax laki
± a -k

End If

End For

DO (Fix Matrix)

End If

* End If

End Until

End Procedure

0 12



Procedure (Fix Matrix)
N pj-

j
Do Case (xj)

Case X 1

k- s

r If (i k) Then

DO (Exchange Rows and Columns)

End If

If (i -q) Then

4!- q -1

Else

If (k - q) q - i

w 2 j~IC ,.ki 24 2iak~l2/( , ,l + ck)

End If

Compute and apply elementary matrix transformation which zeros column

a in rows s + 1 to e using a as a pivot.
siSi+S

(I DO (Get Row and Column Norms)

Case x - 2

k-ne

If (i k) Then

DO (Exchange Rows and Columns)

End If

If (i =q) Then

q -- 1

Else

If (k - q) q - i2/ 2~ 2)

wk" Is 1 1kk i 2 + r2

End If

Compute and apply elementary matrix transformation which zeros row e

in columns a + 1 to a using a as a pivot.

e e-i

DO (Get Row and Column Norms)

Case x -3 and x 5
j1

k s

13



If (i k) DO (Exchange Rows and Columns)

If (i-q) Then

q --

Else

If (k -q) q -i

wk
End If

DO (Update Row and Column Norms)

Case x j -4

k e

If (i #k) DO (Exchange Rows and Columns)

If (i q) Then

* q--

Else

If (kc q) q -I

wk 1

End If

ce-I

DO (Update Row and Column Norms)

Case xj > 6

km a

If ( < 0) k- e

i x -10

If (i k) Then

DO (Exchange Rows and Columns)

If (q - L) q - k

End If

£-pj

If (i>O0) Then

If (kc 0 q) w~ k l ak.Il /(Iakil +~ c
If (1 0 k) Then

DO (Exchange Rows)
2)

w ± ik,k/skkI +r 1k
q -I

Else If (k -q) Then

* 14



q -- 1

U End If

Compute and apply elementary matrix transformation which zeros

column s in rows s + 1 to e using a as a pivot.
S's

DO (Get Row and Column Norms)

Else

i - -i

If (k ,,q) ,". lai,k2 ( lakl2 +.2

If (i k) Then

DO (Exchange Columns)

" "akkI (lakkl 2
q-l

Else If (k - q) Then

q - -1

End If

Compute and apply elementary matrix transformation which zeros row

el • in columns s + 1 to e using a as a pivot.e'e

e - e-1

DO (Get Row and Column Norms)

End If

[End Case

j - j+1

End Procedure

15
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Procedure (Exchange Rows)

DO For a - s to e

* exchange a ,: and ak,,

End For

Exchange e and ek

U U

V* V

qV u-k

ui

If (V k uk) ui - uk
vk V.

uk k

i Ef (V u') ut -u"

End Procedure

Procedure (Exchange Columns)

Do for m - 9 to e
exchange a3M~ and am~k

End For

Exchange ei and ek

ui -u k

If Nv uk) vi -vk

uk mU
°

Vk -k

If (V" U') V k -v1.

End Procedure

16
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Procedure (Exchange Rows and Columns)

U Do for m - s to e

exchange aim and ak 3

exchange am,. and aM~i am,k
End For

Exchange eI and ek

U" U

If (vk uk) Then

* i 'k

vi vk
Else

ui

vi

End If

If (v 0 uo) Then

Vk a, va U~kV -vu

Else

Vk - k

End If

End Procedure

0P 17



Procedure (Get Row and Column Norms)

,max - 0

,mi n w big (big is a very large constant)

Do For i a to e

e
ri -~ Iivm-fri,iI

mas

iMaIJami aiI

p r = rlc / aii

If (0 > )max  Then
P max P

max =

End If

If (p < P mi) Then
P min iP

min i

End If

End For

End Procedure

Procedure (Update Row and Column Norms)

Omax a 
0

Pmin - big

Do For i - s to e

* ri a r - lai , k

C, - ci - k,i

p rici/ ai,i

If (P > )max  Then
P Oma x  x

max

End If

If (p < Pmin ) Then

miin
i mi

End If

End For

End Procedure
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ABSTRACT

The physical relation to stiffness is examined in systems with:

chemical reactions, heat and mass transfer with reaction, diffusion, and

viscous dissipation, and in distillation towers. Physical insights are

illustrated to reduce computation times, as compared with integration by

a generalized integrator. The advantages and disadvantages of single-

and multi-step algorithms are considered.
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SCOPE

Since Curtiss and Hirschfelder (1952) introduced the term "stiff"

ordinary differential equation (ODE), many authors have referred to a

system as stiff when it exhibits widely-spread response times and re-

quires very small step-sizes to maintain numerical stability with some

(all explicit and some implicit) integration formulas. In recent years,

however, generalized algorithms have been developed to overcome the

limitations of numerical stability and refinements in the definition ('f

stiff systems have evolved.

We begin with a brief review of the origin of the term stiff and

present those definitions and interpretations that we believe to be most

useful. Then, stiffness in the models of several chemical processes is

related to the behavior of the physical systems. Next, several approaches

to reduce the computation time for integration of both stiff and non-stiff

systems, mostly utilizing physical insights, are reviewed.

Finally, we focus on the generalized stiff integrators and offer our

views on the advantages and disadvantages of the single- and multi-step

algorithms.

CONCLUS IONS

1. A system of ordinary differential and algebraic equations is stiff

if and only if numerical integrators with a stability bound must

restrict their step-sizes (below that necessary to give desired

accuracy) to avoid numerical instability. This restriction can

be avoided with A-stable or "stiffly-stable" integra-
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tion formulas, but with added computations per step, usually in-

volving evaluation of the Jacobian matrix. When a system is not

stiff, integrators with a stability bound can be used without

these added computations.

2. a quantitatively measures the additional computations due to stiff-

ness, as compared with a reference integrator. It appears to be

superior to other measures for assessing the degree of stiffness.

However, we have not completed evaluating a for a set of repre-

sentative systems.

3. As suggested by Shampine and Gear (1979), there is a relation be-

tween stiffness and the inherent stability of a system. As the

system stabilizes its stiffness increases, and vice versa. This

is demonstrated in this paper for:

(a) The Belousov reaction system in a limit cycle,

(b) coupled heat and mass transfer with reaction in a fluidized -

bed,

(c) viscous dissipation in fluid mechanics, and

(d) an azeotropic distillation system.

Furthermore, as steep fronts dissipate, they stabilize and the

4 system of ODEs stiffens. This is demonstrated for (c) and (d).
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4. For partial differential equations, discretization with additional

grid points gives an improved representation of the system and its

eigenvalues. Additional grid points introduce larger negative ei-

Kgenvalues and the system often becomes stiff.

5. In distillation, as trays are added to increase purity, the response

times are increased. As demonstrated by Tyreus and coworkers (1975),

I Re{f}min decreases more rapidly than IRe{XlImax and the system

stiffens.

6. Most stiff systems experience changes in degree of stiffness, a,

during their life cycles. Some alternate between stiff (step-size

limited by a stability bound for explicit and some implicit in-

tegrators - a > 1) and nonstiff ' a = I).

7. Increasingly, engineers and scientists are reporting the importance

of physical insights in significantly reducing integration times

(compared with generalized multi- and single-step integration methods);

in some cases, permitting solutions that otherwise could not be ob-

tained with available computing resources. This is demonstrated

(a) for chemical reaction systems, when the fast reactions are in

local equilibrium, and the remaining reactions are slow,

(b) using approximations that permit analytical integration, giving

algebraic equations that express the exponential variation in

temperature and composition - avoiding integration with small

time-steps to track such fast variables,
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(c) for coupled heat and mass transfer in a fluidized bed, by

eliminating the heat and mass balances for the particles as

the temperatures and concentrations of the bulk and particle

phases approach each other, and

(d) for distillation, by assuming dL/dt 0 when it is not neces-

sary to accurately track the liquid flow rates immediately

following a disturbance.

8. Classification by rate of change identifies slow variables that may

not require integration or may permit integration with a nonstiff

* integrator.

9. For reaction systems, the suitability of the pseudo-steady-state ap-

*proximation must be determined by experimentation.

10. Steady-state algorithm that use physical insights to gain efficiency

in the solution of algebraic equations can be easily coupled with

implicit integration algorithms. This is demonstrated for dynamic

simulation of distillation towers.

11. The advantages of our new adaptive semi-implicit Runge-Kutta al-

gorithm (ASIRK - Prokopakis and Seider, 1981), as compared with

multi-step algorithms using backward difference formulas are:

(a) Larger time steps (for the problems tested),

(b) the Nordsieck array is not stored,

(c) ASIRK is strongly A-stable, not stiffly-stable,

(d) error estimation and step-size adjustment is fairly simple

and not coupled to the adjustment of order of accuracy



(using a heuristic methodology), and

(e) ASIRK permits easy expansion and contraction of the number

of ODEs in time.

12. The advantages above may not override the following advantages of

the multi-step methods:

(a) The Jacobian is evaluated less often and with less accuracy,

(b) the Nordsieck array permits routine printing at even intervals, and

(c) multi-step methods are easily coupled to steady-state algorithms

for solution of the algebraic equations.

INTRODUCTION

Curtiss and Hirschfelder (1952) were apparently the first to intro-

duce the term "stiff" differential equation in connection with the mass

balances for the free radicals in flames. They explain that: "Free ra-

dicals are created and destroyed so rapidly compared to the time-scale

for the overall reaction that to a first approximation the rate of pro-

duction is equal to the rate of depletion. This is the notion of the

pseudo-stationary state". However, they continue: "In some cases such

as flames and detonations, this approximation is not sufficiently accu-

rate" and note the difficulty in integrating the radical mass balances

with ordinary numerical procedures. With this they introduce backward

difference formulas for integration of the so-called stiff differential

equations. Ho~ever, they demonstrate the methodology for integration of

a single ordinary differential equation (ODE) with slow and fast response
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terms, rather than the mass balances for a reaction system.

K Subsequently, many authors have adopted the adjective stiff and

added their interpretations. The concise definition of Aiken and La-

pidus (1974) is particularly effective: "An m-dimnsional system of

initial value ODEs

d_{tt } : _{o1 = (1)

dt

is called stiff if the local Jacobian (J = (f/3y)) contains at

least one eigenvalue, A, that does not contribute significantly0
over most of the domain of interest". It focuses on the exponential

terms that contribute to the solution:

Yl d1 eX (t'ti+ +deA m (t-ti)

(2)

(t-t)  X (t-ti)

ym dmle l +" + dnem

where A is a vector of eigenvalues and d. the eigenvectors of J evalu-
--

ated at t.. When Re{A.} is large negative, its exponential terms de-

cay rapidly and do not contribute significantly.

The problem, of course, with stiff systems is that, to keep the

truncation errors bounded (maintain numerical stability), simple explicit

(and some implicit) integration methods require a step-size that decreases

* inversely with the magnitude of the largest negative eigenvalue. Imprac-

0, ..
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Stically small step-sizes are required, giving local truncation errors
much smaller than necessary, with the possible accumulation of round-off

errors that can invalidate the solution. Whereas in the fast transient

(non-stiff) regions, when the step-size is reduced to accurately track

the rapidly changing variables, further reduction to satisfy the sta-

bility bounds is unnecessary.

Then, a system is stiff if and only if numerical integrators with

a stability bound (all explicit and some implicit integrators) must re-

strict their step-sizes to avoid numerical instability. This restriction

can be avoided with A-stable or "stiffly-stable" integration formulas

(permit any step-size without numerical instability) but with added com-

putations per step, usually involving evaluation of the Jacobian matrix.

When a system is not stiff, integrators with a stability bound can be

used without these added computations.

The most widely used measure of stiffness is the so-called "stiff-

ness ratio",

l Re {: Imax
SR -(3)

Despite its simplicity, however, SR has two important limitations: (1)

stiffness is not a function of IRe{A}min (although the range of inte-

gration, tfinal - t , is often on the order of l/lRe{X}Imin), and (2)0

the system is normally not stiff in rapid transient periods (regardless

of IReX ,jijax).

I.i



--

Byrne (1981) suggested a superior measure

ttna -t ofinal 0, (4)
T rin

"providing the solution is slowly varying on most of the interval",

where Tmin is the smallest time constant, Tj = -l/Re(X}. Furthermore,

to paraphrase Byrne, if Tmi n is small over a time interval many times

longer and the solution is slowly varying on the interval, the system is

stiff. However, "if t - t = Tm. or the solution is always rapidly

varying, the system is not stiff". Eqn. (4) is superior to Eqn. (3),

0 but is weakened by the qualitative requirement that the solution must

vary "slowly".

An improved measure is:

h
h

* where h is the step-size to satisfy the local truncation error, e,

and h is the step-size to satisfy the stability bound for a reference
s

integrator that is not A-stable; i.e.:

h = hE  h < 6{r}/IRe{X}lmax

S6rI/jRe{X}Ijmax h E > 6{r}/IRe{X}fmax

where 3{r} is the real stability bound for the reference integrator of
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order r and h is estimated using an integrator of the same order. Of

course, a is more difficult to compute than SR, but a is a direct meas-

ure of tht additional computations by the reference integrator due to

stiffness and, as such, a measure of the degree of stiffness. An evalu-

ation of a is currently underway for representative systems.

An additional perspective, concerning the source of stiffness, is

offered by Shampine and Gear (1979): "By a stiff problem, we mean one

for which...at least some component is very stable (at least one eigen-

value has a real part which is large and negative)". This suggests a

relation between stiffness and the inherent stability of a system, which

we explore for many chemical processes in the next section.

PHYSICAL RELATION TO STIFFNESS

The coupling of slowly and rapidly changing processes is the most

obvious cause of stiffness. Given a slow process, the rapid process

introduces large negative eigenvalues in the exponential components of

the dependent variables. When the slow process is rate-controlling

(all variables respond slowly), the coupled system is stiff. However,

given a fast process, the coupled system is stiff only when the depen-

dent variables respond slowly. As examples, fast controllers do not

alter the response times of slow processes, but the differential equa-

tions that describe the closed loop are stiff. In distillation, some

of the vapor and liquid flow rates leaving the trays (small hold-up)

continue to vary rapidly when coupled to a slow reboiler (large hold-up).
1

After rapid changes in the flow rates, the coupled system responds slowly

and the MESH (Material balance, Equilibrium, Sumnation of mole fractions,
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and Heat balance) equations become stiff.

Chemical Reaction System

The dynamics of many chemical reaction systems can be adequately

described with reactions involving molecular species. The intrinsic

rates of forward and back reactions are relatively slow (as compared

with reactions involving free radicals and ionic species) and the mass

balances are usually not stiff. Hence, with integrators having a sta-

bility bound (so-called "nonstiff" integrators - all explicit and some

implicit methods), the step-size is not reduced below that to give de-

sired accuracy.

For some systems, such as in pyrolysis, reforming, and combustion,

reactions involving free radicals are necessary to give an adequate

representation of conversion in time. These fast reactions introduce

large jRe{X}I. At times when the concentrations of the molecules and

radicals respond slowly, the mass balances are usually stiff; with

widely-spread response times they may not be stiff.

Pyrolysis and reforming systems are endothermic and, hence, nearly

isothermal in industrial furnaces. In contrast, combustion systems are

highly exothermic with rapid rises of temperature and conversion in the

flame front. The high sensitivity of reaction rates to temperature,

usually described by the Arrhenius equation:

k = k E/RT (4)
0

causes all reactions to be accelerated. Both IRe{X}Imax and the response

times of the concentrations increase and stiffness of the differential

I



Iequations depends upon the largest rate of change in concentration.

Limit Cycles

Shampine and Gear (1979) refer to the Van der Pol equation as an

example of a limit cycle that is intermittently stiff and nonstiff.

Another example is the Belousov reaction system, studied by Prokopakis

and Seider (1981) with the kinetic model of Field and Noyes (1974).

For a mixture of 1.25M H2So4 , 0.0125M KBrO 3, 0.001M Ce(NH4)2 (N03 )5,

and 0.025M CH 2(COOH)2 Field and Noyes derive the mass balances for

the intermediates HBrO2, Br-, and Ce 
4+ , with dimensionless concentra-

tion, Y1 ' Y2, Y3 ' respectively:

dY 77.27(y 2 -y y2 
+ y -8.375x10y-6y) ; y {0 } 4 (6)

dY2  y2 - ylY2 + 3 ; y2 {0} = 1.1 (7)

dt 7/.27

dY 
3 -t 0.161(y 1 - y 3) y y3{O} 4 (8)

The period of the limit cycle is 300s as illustrated in Figure 1. Note

that the bold curves in Figure lb denote the fastest changing variable,

the so-called "stiff variable". Table 1 shows the eigenvalues of the

system which vary by at most four orders of magnitude (and usually far

less) during the rapid transients, or steep concentration fronts. In

this region, the system is not very stiff; probably a nonstiff integrator

could be used without unduely small step-sizes. Then, the system gin
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5
inherent stability, with 1XImax = 1.33xi0 . Since the concentrations

change more slowly, the system becomes stiff and the stiffness increases

as it stabilizes. At longer times, the system slows further and lXImax

decreases as instability sets in, just prior to the rapid transient.

Consequently, stiffness decreases with destabilization.

Another limit cycle, of environmental interest, involves the re-

actions of atomic oxygen, 0, oxygen, 02" and ozone, 03P in the atmosphere.

In the mechanism of Chapman (Dickenson and Gelinas, 1976):

k1
0 + 0 2- 03

32
0 + 03 202

0 2 {t 20

k4 {tl
0o- 0 + o2

reactions (3) and (4) require photochemical energy and have rate con-

stants that vary diurnally:

e-c/ sin wt > 0

k ki {t}- i=3,4 (9)

sin (Jt < 0

-l -l)
where half the frequency of oscillation, w = w/43200 s (=w/12hr 1 and

c3 = 22.62 and c4 = 7.601. These rate constants rise rapidly beginning

at dawn (t 0,24,48hr,...), reaching a peak at noon (t=6,30,54hr,...),

U
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and decreasing to zero at sunset (t-12,36,60hr,...). The mass balances

for 0 and 03 are:

dy1  -3
- = -klylY3 - k yly2 + 2k 3 (t}y3 + k4 {tly2  ; y{0} = 10 cm (10)

dy2  12 -3
k k1 y1 y3 k- -y1y2 - k=4 ty 2  2 {0} 10 cm (11)

where y1, y2 ' Y3 are concentrations of 0, 03, and 02, respectively, and

kI - 1.63xi0 -16 and k2 
= 4.66x0 -16

. When integrated with y3 = 3.7x106cm-3

0 traverses a limit cycle while 03 builds just prior to noon and remains

constant at other times, as illustrated in Figure 2. Note that y1 drops

fro 6-3. -30 -3
from 106cm initially to virtually zero (<10 '3cm ) within one minute

and builds to 2.92xi0
- 2 in one hour. Similarly, yl drops from 3.15xlO-2 cm

-3

after 11 hours to virtually zero after 12 hours, where it remains until

24 hours. At 24 hours, the rapid rise begins. The rates of change and

eigenvalues are given in Table 2. X1 is nearly constant and X2 reflects

the rate of change of the system. Ix21 increases toward noon as the sys-

tem accelerates and decreases toward sundown as the system decelerates.

Since the rates of change are very slow at night, the system is very stiff.

However, throughout most of the daytime, with rapid rates of change, the

system is nonstiff.

Heat and Mass Transfer with Reaction

Models that couple heat and mass transfer between a bulk fluid phase
aand a solid catalyst are justified when the resistances to heat and mass

p
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transfer are important. Such a model is presented by Luss and Amundson

(1968) to represent the dynamics of a batch fluidized-bed reactor where

external resistances are significant. The mass and heat balances for

the bulk phase are:

dT Pe -P + Hg(Pp - P) p{O} - P (12)

dT . T - T + HT(T - T) + H(T -T) ; T{0} - T (13)
dr e T p w w e

and for the reacting catalyst:

A- =-HKkp +H(p - p p {0O p* (14)
dT g p g p p

dT- HTFKkPp + HT(T - Tp) TP{o} p° (15)

where T and p are the temperature and partial pressure of species A in

the bulk phase; T and p , the particle properties; T e, p the entrance
p p e Pep

* conditions; and k, the rate constant for a first-order reaction, A - B.

The results of Luss and Amundson (1968) are illustrated in Figure 3.

Using the explicit Runge-Kutta Gill integration formula, the step-size

is small initially and decreases as T p T and p -) p, with decreasing

rates of change. Because JAlmax increases, as shown above, stiffness

increases with stabilization.
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9Diffusion

The dimensionless diffusion equation:

ac a 2c
W =7 (16)

c{O,t} - cfl,t} - 0 ; c{x,o} given

is often integrated using the method of lines with a second-order finite

2 2difference approximation for 3 c/ax The resulting ODEs are:

-2 1

1 -2 1

d 2 1 -2 1 (17)
-- dt (n+ 1) c

1 -2 1

1 -2

UL

where n is the number of equally-spaced intervals and c- [co...cn]T

is a vector of approximations to c at n+l grid points.

An interesting observation is that as n increases I Lj of J in-
max

creases, as illustrated in Table 3. Consequently, stiffness of the ODEs

increases with n.

At first glance, the increased stiffness appears to be due solely

to the spacial discretization. However, Shampine and Gear (1979) show

that the eigenvalues of J are:
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A. = -[2 (n+l)sin{j/ [2 (n+l) ] }]2  (18)
J

and

A, 27 A - 4(nl

2

which correspond to the eigenvalues of the diffusion equation, -(j)

j - 1,2... They note: "The first eigenvalue of the discretized system

is approximately the first eigenvalue of the differential operator, and

the others are approximations to some of the larger ones". This points

out that"stiffness is inherent in the problem (we prefer model), not

part of the method of solution".

Viscous Dissipation

The dimensionless momentum balance with viscous dissipation in one

spa Lal dimension:

2au au a2u

=-u Tx+ 11 (19)

with the boundary conditions of Burger

u{t,O} = O{t,O}

u{t,l} - *{t,}-

u(O,x} - 0{o,x}

has the analytical solution:

O {x,t} 0.le-A + O.Se-B + e - C  (20)
-A e-B -Ce +e + e

I6
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with

A = . (x - 0.5 + 4.95t)

B- --5 (x - 0.5 + 0.075t)

c - N - 0.375)

Equation (19) has been integrated with the method of lines, using a

five-point central difference approximation for a 2u/ax2 and a third-order

four-point, upwind finite difference approximation for au/ax. Such an

approximation is found to improve the tracking of step waves when the

* viscosity, u - 0 (Carver, 1976 and Hu and Schiesser, 1981)

With the grid spacing Ax = 0.01, we integrated the ODEs to give the

solution in Figure 4, which compares favorably with the analytical solu-

tion. Of course, as 1 increases, viscous dissipation spreads the fronts

ai shown.

Table 4 shows that IRe{X}Imax increases as U increases (dui/dt)max

decreases in the less steep fronts and the system gains inherent stability.

Once again, we observe that stiffness increases with stabilization.

Distillation

It is well-known that feedback of mass and energy more closely couples

slow and fast process units in recycle loops. This is exemplified in the

countercurrent cascade of vapor/liquid separators (or trays) of a dis-



-18-

tillation tower, as illustrated for the separation of propane from

n-butane in Figure 5. The trays (small hold-up) respond rapidly to

changes in flow rate, but the large reboiler slows the coupled response.

After the initial rapid transients, the MESH ODEs become stiff as com-

positions and temperatures respond slowly. For separation of propane

from n-butane, the Jacobian of the mass balances:

dx.
- G + jl,...,C (21)

dt -j--j

Tgives a measure of the stiffness. In Eqn. (21), x. - [xij.... OX]

where x.. is the mole fraction of compound j in the liquid on Tray i.

N is the number of trays and C the number of chemical species. G. is

the tri-diagonal coefficient matrix due to the coupling of Tray i to

Trays i+1 and i-1 (as illustrated in the Appendix).

It is interesting that as the product purities approach unity

(e.g., xN,propane - 1 and xl,n-butane ) 1), N increases and the mole

fractions respond more slowly. This is demonstrated by Tyreus and co-

workers (1975) who show that IXImin decreases more rapidly than IA x.

* Hence, for difficult separations (with large pinch zones - adjacent trays

with small concentration differences), the MESH equations become stiffer

as the response times increase. This effect is also demonstrated for de-

* creasing relative volatility, air - K /Kr.

jr j

I
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Azeotropic Distillation

5Typical operating conditions for an azeotropic distillation tower
to dehydrate alcohol are shown in Figure 6. The trays in t,. upper

portion of the stripping section have very small changes in alcohol

r and entrainer concentration while water is removed. Then, in a few

trays, the alcohol mole fraction is increased to near unity as the en-

trainer is eliminated. These trays respond more rapidly than others

in the stripping section, as illustrated in Figure 7, which shows the

profiles of liquid mole fractions after a thirty percent increase in

the feed flow rate.

REDUCTION IN COMPUTATION TINE

Many models, involving ordinary differential and algebraic equa-

tions, are stiff during part of their life cycles. Consequently, mod-

elers are turning to the generalized multi- and single-step methods for

integrating systems of stiff ODEs. Although these methods are success-

ful for many systems, increasingly engineers and scientists are reporting

the importance of physical insights in significantly reducing computation

times; in some cases, permitting solutions that othezise could not be

obtained with available computing resources. It is noteworthy, however,

that some approaches, presented in the name of eliminating stiffness,

D

t. ___..__..._ rhlnunumn en nm mn - -
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rather reduce the computation time for nonstiff systems. There appears -

to be confusion regarding the properties of stiff systems which, hope-

fully, the previous sections have helped to clear-up.

In this section, we consider a number of approaches for reducing

computation times.

Linearization

For systems that are mildly nonlinear, linearization from time-to-

time can offer an efficient solution method. At appropriate times, ti,

0 the linear approximation is:

Y{t i -Y (22)

* The Jacobian, J, is computed, as well as its eigenvalues, Xi'" "A

and their corresponding eigenvectors, d., j-l,... ,m. Then, the analytical

solution, Eqn.(2),is used for ti < t < ti+I, where the step-size, h -

t i+ - ti, within which acceptable accuracy is obtained, is determined

by the nonlinearitieL.. Mah and coworkers (1961) applied this repeated

linearization with some success for integration of the mass balances in

distillation. However, the appcoach has not been widely adopted, pri-

marily due to difficulties in adjusting the step-size and the complexity

of calculations to determine J and its eigenvalues and eigenvectors.

Of course, for linear systems, such as networks of first-order re-

versible reactions among isomers (Wei and Prater, 1962), Eqn. (2) is

the analytical solution.

S

0
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Classification by Rate of Change

For systems that exhibit widely-spread rates of change (usually

not stiff, unless IRe{X1Ia is sufficiently large to require that amax

nonstiff integrator reduce its step-size below that necessary to ac-

rcurately track the fastest variables), significant savings in integra-
tion time can often be achieved by classifying the variables according

to rate of change. Let the m ODEs be listed in order of descending

- magnitude of rate of change:

1 f{t,y}

k2 " f2{t'y-
(23)

= fM,{t,Y}

wherel~il>>IimI . Some authors refer to Y1 as the "stiff'! variable (Aiken

and Lapidus, 1974; Prokopakis and Seider, 1981) and yl .... ,n (where n

Iis arbitrary) as the stiff variables with yn+l' ...y as "nonstiff" vari-

ables. Since the system may not be stiff, we prefer to replace these

with the adjectives "fast" and "slow".

In some cases, it may not be necessary to accurately track the

fast variable(s). If not, their derivatives can be approximated, say,

with a first-order finite difference or as zero (pseudo-steady-state

assumption), resulting in algebraic equations. The resulting ODEs (with

the slower rates of change) permit larger step-sizes to accurately track
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the slower variables. However, with rates of change in closer proximity,

they are more likely to be stiff, requiring an implicit or semi-implicit

algorithm with evaluations of the Jacobian, J. Normally, the increase

in h reduces computation time far more than that added to evaluate J.

This is demonstrated for a 12 tray azeotropic distillation tower

to dehydrate isopropanol with cyclohexane, as illustrated in Figure 8.

The primary feed is on Tray 9 and the reflux from the decanter is as-

sumed to remain constant. Initially, Trays 10-12 are at the feed com-

position, and Trays 1-9 have a linear decrease in mole fraction of cy-

clohexane with the ratio of isopropanol to water equal to that in the

feed. Also, initially L0 - 85 mol/rain and V0 - 566.7 mol/min and the

remaining L. and V. are those at constant molal overflow. The simulation

begins holding the boil-up ratio, V1/L1, fixed at 6.67. Cyclohexane is

initially concentrated at the bottom of the tower and the dynamic re-

sponse involves an inversion in concentration profiles. The results of

two integrations are compared in Table 5, one with x and L as state-

variables, (Eqns. (21) and (AI0)), the other assuming dL/dt - 0 (Proko-

pakis and Seider, 1982). As expected, very small time-steps are nec-

essary to accurately track L. With the pseudo-steady-state assumption,

after 0.075 min L begins small oscillations about the true solution,

whereas the mole fractions are in good agreement throughout the inte-

gration. After 23 min, the liquid flow rates agree to five significant

figures. In many situations, these small oscillations in flow rates in

the early transient are insignificanc over the 2-3 hours to achieve a

steady-state. Note that a first-order finite difference approximation

for dL/dt gives intermediate accuracy.

-Ud m md I ~ ~ ~ mmam.,, m mm m mmdm
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Shampine and Gear (1979) state: "Current codes for stiff dif-

ferential equations are sufficiently efficient that there is no need

to consider such model changes for most problems for reasons of cost,

and there are excellent reasons of convenience and theoretical support

for not changing the model. To be sure, there are exceptions because

we are discussing general purpose codes". We believe that the MESH

equations in distillation constitute such an exception.

In other cases, the slowest variables may be changing too slowly to

require integration or when the rate of change is significant, it may be

possible to integrate their ODEs with a nonstiff integrator (if lRe{k}Imax

is sufficiently small). Such decompositions are recommended by Prokopakis

and Seider (1982) for integration of the MESH equations in distillation

and by Edsburg (1980) for integration of the mass balances in reaction

systems.

For pyrolysis, reforming, and combustion models, where the need to

include the fast reactions involving free radicals is generally acknowl-

edged, there is question concerning the applicability of the pseudo-steady-

state assumption (PSSA) for radical concentrations. Blakemore and Cor-

coran (1969) postulate a free radical mechanism for the pyrolysis of

n-butane and integrate the mass balances with and without the PSSA.

After 10 msec in a batch reactor at 5190C they show negligible difference

in the radical concentrations, with no changes in the radical concentra-

tions thereafter. With the PSSA, the step-size for their nonstiff in-

tegrator is increased significantly, presumably because the resulting

ODEs are nonstiff.S

i
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However, others question the suitability of the PSSA. Sundaram

and Froment (1978) studied the pyrolysis of propane with a free radical

mechanism at 8000C and found significant errors in the PSSA. Further-

more, Edelson and Allara (1973) report that, using the model of Herriott

and coworkers (1972) for propane pyrolysis, three of the radicals do

not achieve a steady-state simultaneously and H. atom does not achieve

a steady-state at all.

It seems clear that the PSSA is appropriate for some reaction systems

and not for others. Unfortunately, the rates of change of the fast for-

ward and reverse reactions, or any other measure (to our knowledge), does

not indicate its appropriateness. The suitability of the PSSA must be

judged by experimentation. Since this involves integrating the unabridged

ODEs, it is pointless to make the assumption unless repeated integrations

are planned with small changes in the parameters.

Chemical Equilibrium

In chemical reaction systems, it may be possible to reduce compu-

tation times if some of the reactions are in local equilibrium (i.e.,

have equivalent forward and back reaction rates); for example, if the6

reaction:

kfor
H + 0 2 .-w- 0 + 0IH

* krev

is in local equilibrium, the forward and reverse rates of reaction are

equal:



-25-

r for  k forcHC02 r rrev k revC 0 COH (24)

and

F 
kfor CoCOH

X = i- =(25)
rev C Hc02

where K is the chemical equilibrium constant.

Sorensen and Stewart (1980) present a method to determine an in-

dependent set of mass balances when a subset of the reactions can be

taken at equilibrium. They identify R basic species, where R is both

the number of independent reactions and mass balances. The R basic spe-

cies are divided arbitrarily into A and B subsets. There are NB of the

B species, one for each of an independent set of reactions taken at equi-

librium. There are NA of the A species, one for each of R - NB reactions

not taken at equilibrium that form an independent set with the reactions

taken at equilibrium. Then, with row eliminations, NA mass balances are

derived that do not involve the rates of reactions taken at equilibrium.

White and Seider (1981) apply this method to a system of 21 reac-

tions for combustion of H2 and CO in air, with 7 reactions taken at

equilibrium. The 8 independent mass balances are reduced to 4, since

there are 4 independent reactions at equilibrium, and have the form:

d
- = f{r } (26)
dt
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where C is a linear combination of concentrations (e.g., i = NO + CH

+ CH2 - C0 ' C2 = cOH + 2co2 + cH + 2c0,...) andr is a vector of net
H2  2

rates of reaction for reactions not taken at equilibrium. White and

Seider use the GEAR integrator to give C across a time-step. Then, the

concentrations, c, are computed using the Rand method (Newton's method)

to minimize the Gibbs free energy given t. For this system, computation

qtimes are not reduced primarily because the reactions not taken at equi-

librium are fast as well as slow. They conclude that computation times

should be reduced when all reactions not at equilibrium are relatively

slow, reducing the rates of change, d4/dt,and probably the stiffness of

Eqn. (26). This should permit large time-steps and possibly the use of

a nonstiff integrator. This has been demonstrated for a very small sys-

tem of marginal interest.

Near-Analytical Integration

EOften the responses of process variables, such as temperatures and

compositions, have a familiar form, approaching exponential variations,

for example. In these cases, it may be possible to obtain algebraic

equations that contain this functionality through analytical integration

with the appropriate numerical approximations and, in this manner, avoid

numerical integration with small time-steps in tracking these fast vari-

ables.

As an example, consider Kayihan's model for reacting polydispersed

particles which he illustrates for an entrained bed reactor to devola-



-27-

tilize coal (1980). Figure 9 is a schematic of the reactor into which

a slurry of pulverized coal in carrier gas (at temperature,

gas flow rate, Go, and mass flow rates of particles in K discrete size

ranges, mi... ,mK ) is mixed with hot gas (at temperature, TFo, and flow

rate, Fo). As the coal particles move through the reactor, they are

heated by convection and devol~tilization occurs.

The model assumes a uniform density and heat capacity in all solid

particles and uniform heat capacity in the gas phase. The energy balance

for particles in each size range, j, is

dT.

mj cd-T a h(TF - T) + dmJ (C - c)Tj + AH (27)
j dt sj dt j R

where T. does not vary with particle radius and a . is the area for
3 S)

convective heat transfer. It is assumed that N first-order reactions,

i, remove the volatile species from each size range:

dv.. -E /RT
u - kov -vi)e- i i=l,....N (28)

dt j, . K

where v.* is the maximum volatiles produced by reaction i in grams per
II

gram of solid initially and v.. is related to m. by the mass balances

m. = m .(i - Z v..) j-i ... ,K (29)) 0) i1)

For devolatilization of Montana lignite, Kayihan uses kinetic parameters

of Suuberg (1977) for 15 parallel reactions to produce 8 volatile spe-

cies. With K = 10, Eqns. (27) - (29) give 160 ODEs to be solved with
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the algebraic mass and energy balances in the gas phase. The particle

temperatures range from 500K (for the larger particles) to 1000K and

with a wide range of reaction rates the differential equations are ex-

pected to be stiff. Kayihan estimates a stiffness ratio (JAI /IXImin)

24
equal to 10 , but this is a poor measure of stiffness.

This led him to use the DVOGER stiff ODE integration routine in the

IMSL Library (1977), which uses the GEAR algorithm. The 160 stiff ODEs

were integrated, using analytical expressions for the Jacobian elements,

over one-one hundredth of the residence time for the largest particles

and projected to require over 10 hours on a CDC CYBER 73 computer. This

was primarily due to the excessive operations with zero elements in LU

factorization of a sparse 160 x 160 Jacobian matrix and the subsequent

elimination and substitution steps. A significant reduction in operations

would be expected using GEARS with its routines for efficient inversion

of sparse matrices. But, Kayihan did not use this generalized algorithm.

Instead, he integrated Eqns. (27) and (28) analytically with nu-

merical approximations and obtained algebraic equations that preserve

the exponential variations in temperature and conversion with time.

The energy balances for particles in size range j, Eqn. (27) are re-

written:

dTj dmn
jdt +j F dt

where
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mjc (C - c)T. + AHR

M -
13 a .h a a *.h

s] s3

An integrating factor, exp{t/a.}, is introduced:

t/a.

jde Tj} . (TF + d- )dt (31)
1

and Eqn. (31) is integrated analytically from t n_ to tn assuming

TF = (TF + TF n)/2, aI = (a. n-1 + aj n)/2, 8. = (n. + 'Sn )/2, and

linear variation of mj exp{t/a.} with t to give:

s)

-At/At At/c.
Tj{tnM} {t le + T{tn} (1 - e (

+ -a mt ( At) - m.t 11- At e-At/a. (32~n(l mjt~l( o)

a. n )n-i F

Similarly, Eqns. (28) are integrated analytically:

-ki ft e-Ei/RTj dt

v.. v* l- e 0 ] (33)
) 1
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or

n
-ko Z j {t }

3.1) 3
V.ijr v[[1 e m-1 ( 34)

where

t ftm e -E./RT. (35)

tmil

and Eqn. (35) is integrated assuming linear variation of T. between

and t The resulting algebraic equations are solved simultaneously

with Eqns. (32), and the mass and energy balances for the gas phase to

compute profiles of all unknowns in time. The equations are decoupled

with guesses for the profiles of particle temperatures to avoid opera-

tions with large sparse matrices.

Using a uniform At (= 0.01 t max ), 4-5 iterations gave three sig-

nificant figures in less than 30 seconds of CDC CYBER 73 computer time.

Whereas the stiff integrator is very convenient to use, this is illus-

trative of the many problems for which physical insights lead to special-

ized algorithms that are more efficient, in some cases permitting a solu-

tion that could otherwise not be obtained with available computing re-

sources.

Application of Steady-state Algorithms

Many models involve coupled ordinary differential and algebraic
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equations, with the ODEs reducing to algebraic equations in the steady-

state. Since steady performance is the usual objective for continuous

processing systems, an extensive collection of algorithms has been de-

veloped for design and evaluation of operating strategies in the steady-

state. These often solve large sets of algebraic equations using spec-

ialized algorithms that incorporate physical insights to gain efficiency.

However, when the GEAR multi-step algorithm is used to integrate

stiff ODEs

t --

backward difference formulas:

r- 1
YEl ~v_ +hO8 f{t +, yn+11  (36)

£z-0 - -1 nl

must be solved for during each time step, where r is the order of

accuracy of the formulas. Of course, these nonlinear algebraic equa-

tions are very similar to the steady-state equations:

fy{ - 0 (37)

Hence, they can be solved using the steady-state algorithm with minor

r modifications. The GEAR subroutine STIFF is also modified to transfer

the summation term:

r-l

9=0E[ Y-
[.-
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and the step-size, h, and _1 to the modified steady-state algorithm,

which solves the entire set of algebraic equations for Y+1 (and the

other variables) and returns to the GEAR integrator.

This technique was introduced for distillation towers by Boston

and coworkers (1981). They used the GEAR integrator to integrate Eqn.

(21), the energy balance (ignoring the sidestreams):

L
1h 1 L L) v L1-( (h - h. -V.(h. -h.)38

dt M. i+1 i+l 1 i i i (38)1

+V. (h - h.) + F.(h. - h.L) +Q

and the overall mass balance (ignoring the sidestreams):

dM.
S L+ + Vi1 +F. - L. - V. i-l,...,N (39)

These equations and associated algebraic equations are derived in the

Appendix. Rather than allow the GEAR algorithm to solve Eqn. (36),

with the algebraic MESH equations, Boston and coworkers prefer to use

their efficient RADFRAC program with modifications. RADFRAC solves

the MESH equations in the steady-state using the Boston and SullivanS
algorithm (1974). This algorithm calculates K-values and enthalpies

accurately in an outer loop only. The MESH equations are solved in

the inner loop using approximate models for K-values and enthalpies
a
and, roughly speaking, holding relat've volatilities constant. Far

o
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1!
fewer iterations of the outer loop are necessary, as compared with

solution using a Newton-Raphson method, and hence fewer accurate

evaluations of K-values and enthalpies (very time-consuming calcula-

tions in non-ideal distillation towers) are necessary.

Model Simplification

In some of the previous approaches (e.g., near-analytical in-

tegration and application of steady-state algorithms), physical attri-

butes of the processes permit us to improve the efficiency and relia-

bility of the numerical methods without simplification of the model.

In other cases, the model is simplified; for example, using approxima-

tions for dL/dt in distillation when it is not necessary to accurately

track L during the fast transients following a disturbance.

It is occasionally possible to simplify a model, to reduce its

stiffness, and permit integration with a nonstiff integrator, with no

loss in accuracy. The equations of Luss and Amundson (1968), Eqns. (12) -

(15), comprise such a model. As noted previously, at long times T p- Tp

and p - p, with decreasing rates of change, and the system stiffens be-
p

cause I '1max increases with stabilization. When the temperatures and

partial pressures differ by less than 1 percent, stiffness sets in

(I Ax = 2187). To permit efficient integration with an explicit in-

tegrator, Luss and Amundson set Tp = T and pp p and add Eqns. (12)

and (14) and Eqns. (13) and (15), giving two less-stiff ODEs (IXjmax

1.242),
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(1 +A) -p -p-H Kkp (40)
dtr e g

(1 + C) !T T - T + H (T - T) + HTFKkp (41)dT e

which are integrated with a step-size increased by a factor of 100.

SINGLE-STEP AND MULTI-STEP AIGORITHMS -

ADVANTAGES AND DISADVANTAGES

Much of the recent literature places emphasis on the multi-step

algorithms using the backward difference formulas popularized by Gear

(1971) and Hindmarsh (1974). The single-step methods, such as semi-

implicit Runge-Kutta, receive less publicity, probably because the Ja-

cobian must be evaluated accurately during each time-step. However,

there are an increasing number of factors that favor usage of single-

step methods, and collectively, for some problems, these may override

the factors that favor the multi-step methods. These are itemized below:

1. A new adaptive semi-implicit Runge-Kutta algorithm (Prokopakis

and Seider, 1981), in limited testing, appears to be com-

petitive with the GEAR program (Hindmarsh, 1974). Larger

time-steps are taken, but the computation time per step is

*somewhat larger, mostly due to more frequent evaluation of

the Jacobian.

2. Storage of the 6xm Nordsieck array (or the equivalent

is avoided in the single-step methods,

I

a-o~- - - . -- . - -
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but interpolation for printing at even intervals is less

accurate - sometimes requiring integration with a reduced

time-step.

3. The semi-implicit Runge-Kutta (SIRK) methods are A-stable

and the adaptive algorithm adjusts y (the characteristic

root as hJRe{dIJ m a ) as a function of hX,, where XroashR{} max s s

is the pseudo-eigenvalue given by

dysd - - (42)

and s is the fastest variable or "stiff" variable. y. is

adjusted to give an exact solution to Eqn. (40) and to in-

crease the accuracy of a second-order SIRK formula for the

system of ODEs. When hT is large, y, - 0 to give strong
s

A-stability. Whereas, the backward difference formulas of

order one to five are just "stiffly-stable" and can be un-

stable for X near the imaginary axis.

4. For the semi-implicit Runge-Kutta methods, step-size adjust-

ment can be accomplished using imbedded formulas for estima-

tion of truncation errors and an efficient extrapolation

method (Prokopakis and Seider, 1981). Whereas, in the multi-

step methods, the step-size and order of methol are adjusted

simultaneously and according to Shampine and Gear (1979):

(
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"While the basic strategy is straightforward - the two

are chosen to try and minimize the amount of work done

to integrate over the interval - the implementation is

not. The problem lies in the fact that there is not yet

an adequate theory to tell us how to choose these para-

meters".

5. Finally, in some problems it is desirable to expand or con-

tract the number of ODEs in time. This is difficult to ac-

complish with multi-step methods due to the need to inter-

polate or extrapolate the derivatives of the Nordsieck ar-

ray. Whereas, in single-step algorithms no historical in-

formation need be updated.

Many of these advantages may not override two key advantages of

the multistep methods:

1. The Jacobian is evaluated less frequently and need not be

evaluated accurately as it is only used to solve the cor-

rector equations.

2. With the Nordsieck array, printing at even intervals is accom-

plished routinely. Single-step methods require approximate

interpolation or integration with a smaller timi-step.

Another important advantage is:

3. Multi-step methods can be coupled to steady-state algorithms
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for solution of the algebraic equations. This cannot be

accomplished, to our knowledge, with single-step, non-it-

erative methods.

The advantages of these methods should be weighed for each system.

APPENDIX

This Appendix briefly reviews the typical model for the dynamic

simulation of a distillation tower. mbre details are given by Proko-

pakis and Seider (1982).

The usual nomenclature is shown in Figure 10, a schematic of a dis-

Utillation tower, where the general Tray i has a feed stream, vapor and
v

liquid sidestreams, and heat transfer. Note that s. is the fraction
1

L
of vapor leaving Tray i in the sidestream and s. corresponds for the1

liquid sidestream.

The usual model involves the following assumptions:

(1) The vapor and liquid streams leave the trays at equili-

brium,

(2) the liquid on each tray is perfectly mixed,

(3) the vapor hold-up on the trays is negligible,

(4) the transportation delay of liquid and vapor between

trays is negligible, and

(5) the temperature on each tray is uniform.
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These lead to the following equations, beginning with the material

balances for species j on Tray i

d v
(M x.. (1 - s. )L + U- - )Al)

- i 1j i+] i+i'i+l,j i- i -l i-l j  (Al)

+ F.Z. - L.x.. - V"yi i 1 1] j iij j-l, .... C

The overall mass balance on Tray i is:

0

dM.
- s L )L + ( s )V + F. -L. -V. (A2)

i=l,.. ,N

The equations that relate the compositions of vapor and liquid phases

at equilibrium are:

Yij - Kij{xi' y1 , Tit Pi}xij i=l,.. (A3)

The energy balance on Tray i is:

d hL- L L(M hfx.,T.,P. = (1 - s )L h {x ,T ,P I
dt( i i ,1 1 i+l i+li+l-1l i+I i+l

+ (1 - s )V h v l T.* -il i- l--2-l.-l1P-l }

Ffz.TFP} +(A4)
F F F A4+F.h.{z.,T.,P.} +Qi

11 "1- 1 1 1

L v
L Lh.{x.,T.,P. I V h {y.,Ti,P.}

* 111 1 .1 11- , 1 .1 N

0
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The liquid hold-up on Tray i is:

M. = pL{x.,Ti,Pi}A(H + A) i=l,...,N (AS)
1 1 1 W. W.

1 I

where Ai is cross-sectional area of Tray i, Hwi is the weir height, and

Awi is the crest height of the liquid over the weir. Ballard and Brosi-

low (1978) use a form of the Francis weir formula to represent the tray

hydraulics:

2/3

Awi = 1.41 v i=l,...,N (A6)

where Lwi is the weir length and g the acceleration due to gravity.

L
Whereas, others assume that Aw. is independent of Li, Pi, and Iwi;

that is, a constant volune of hold-up exists on each tray.

In addition, the mole fractions for the vapor and liquid phases on

Tray i sum to unity:

C C
Zx. y =1 i=l,...,N (A7)

j=l 1 = j=l iJ

There are N(C + 2) ODEs (Eqns. (Al), (A2) and (A4), and N(C + 4)

algebraic equations ((A3), (AS) - (A7); hence, N(C + 5) independent

equations, since the overall mass balances depend upon the renaininQ

equations. There are N(3C - 15) variabLes and N(C + 10) specxf-ci-.
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with an appropriate set: Fz. ,TrP i  5i sA.iHwi,I , i-l...,N,

21 4 .1 2.i 2
L-o

and jml,...,C, plus Qi' i-2,...,N-l, si, il,...,N-l, and three of theL L

variables, reflux ratio (R = (1 - s )/sL, boil-up ratio (R' = VI/L

bottoms flow rate (L), boil-up rate (VI), reboiler heat duty (Q1), or

condenser heat duty (Q Alternatively, tray pressures, Pi can be

computed as a function of the liquid head on the trays. Note that when

constant volume hold-up is assumed, Eqn. (A6) and the variables Lwi do

not apply; Aw is specified in place of Lwi,

Eqn. (21) is derived by expanding the left-hand-side of Eqn. (Al).

Eqn. (A2) is multiplied by xij and subtracted from Eqn. (Al). Finally,

the vapor mole fractions, yiJI are eliminated by substitution of Eqn.

(A3).

Ballard and Brosilow (1978) combine Eqns. (Al), (A2), and (A6 to

give:

dL
-L -DL +EV- Z (AS)_

where KL - diag{aMi/aL } and D and E are bidiagonal matrices. It is

assumed that the liquid density is the molal average of the densities

of the pure species. Another equation is derived using Eqns. (A4) and

(A3) to give:

EL + CV -(A9)
-;-

where B and C are bidiagonal matrices. Then, combining Eqns. (AS) and

(A9), they obtain:

U~ . . .. .
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-1 -. B)L M- 1 ==-~l~ W~)(O)

Eqn. (38) is derived by expanding the left-hand-side of Eqn. (A4).

L
* -Eqn. (A2) is multiplied by h. and subtracted from Eqn. (A4).

72.
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NOMENCLATURE

A,B,C defined in Eqn. (20)

A,C,FHg dimensionless constants in Eqns. (14) and (15)

2
asj surface area of particle in size range J, cm

2Ai  active cross-sectional area of Tray i, mi
c concen.:L.tion, zol/t; heat capacity of solid particles,

cal/gOK; constant in Eqn. (9)

C number of chemical species; heat capacity of gas, cal/gOK

d_ Jth eigenvector of Jacobian matrix

&j,dM,dw vectors in Eqns. (21), (AS), and (A9)

Ei activation energy for reaction i, cal/mol

f function

Fi flow rate of feed to Tray i, mol/s

g acceleration due to gravity, m/s

Gj triangular coefficient matrix for species j in Eqn. (21) ;.

h step-size; enthSlpy, cal/mol; convective heat transfer
coef., cal/s cm, K

he step-size to satisfy the local truncation error, e

hs  step-size to satisfy the stability bound for a reference
integrator that is not A-stable

Hwi height of weir on Tray i, m

J Jacobian matrix

k reaction rate constant

ko  pre-exponential factor

K chemical equilibrium constant; number of discrete par-
ticle size ranges

Kij vapor-liquid equilibrium constant for species j on Tray i

Li  liquid flow rate from Tray i, mol/s

LIwi length of weir on Tray i, mol/s

m number of ODEs

m mass flow rate of particles in size range J, q/s

Mi liquid hold-up on Tray i, vol
I

I|
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* N diag{3aZi/DL i}

n number of equally spaced intervals in x (Eqn. (17));
number of fast variables

N number of trays; number of gas-solid reactions

NiA R -MB

NB number of independent reactions taken at equilibrium

p Partial pressure of reacting species

Qi rate of heat transfer to Tray i, cal/s

r order of accuracy; intrinsic rate of reaction, mol/1-s

- rn net rate of reaction (rf - r ,ol/-s

K universal gas constant; number of independent chemical
reactions

_2 (tfinal - mi n

9i  fraction of stream in sidedraw from Tray i

sK stiffness ratio, e m n

t time, s

T temperature, OK

u dimensionless velocity in x-direction

v volatiles produced in size range j by reaction i, g/g

max. volatiles produced by reaction i, g/g of solid
i, initially

K flow rate of vapor stream from Tray i
x spatial dimension

xij mole fraction of species j in liquid on Tray i

y dependent variable

zij mole fraction of species j in feed stream to Tray i

Greek Symbols

ajr relative volatility, K /K r
,,,".-.ax,, -I parameters in GMA backward difference formulas

yo characteristic root of integration formula as hjRe{A} * w

real stability bound

Ax grid spacing in x-direction



-44-

AWl liquid height over weir on Tray i, m

linear combination of concentrations (Eqn. (26)), mol/I

vector of m eigenvalues

K X's pseudo-eigenvalue for stiff variable, Eqn. (42)

PL density of liquid on Tray i
a h~l s C .h

time constant, l/IRe{(}I; dimensionless time, Eqn. (13)

ii dimensionless viscosity

* defined in Eqn. (20)

Wfrequency in Bqn. (9)

Subscripts

e entrance

F feed

for forward

i time-step counter; tray counter

j species counter; particle size-range counter

n time-step counter

0 initial

p particle

rev reverse

s stiff (or fast) variable

w wall

Superscripts

F feed

L liquid -.

o initial

v vapor
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Table 2 Concentration derivatives and eigenvalues
for the atmospheric reaction system. Com-

puted using LSODE*.

t, hr dy 1 /dt dy 2 /dt xl 1

-6 6 1
0 -6.0315x10 6.0305x10 -6.031 -9.3l9x10O

-4 -4
1 2.324110 -2.595:10 -6.031 =

2 79.331 -117.94 -6.031 -7.723xlOl

4 9.495u10 3.022x10 -6.032 -4.7731108 -

2 7 -
6 9.178x10 l.102x10 -6.032 -1.622110 -

4 5 -
8 -1.021x10 3.180x10 -6.032 -5.140110S

10 -85.518 40.671 -6.032 -8.324x101

12 0 0 -6.032 =

18 =0 =0 -6.032 1

24 =0 20 -6.032 =

30 9.115X102 l.101x10 7  -6.032 -1.741110O

42 20 *0 -6.032 20

-8
* Relative error tolerance -104

Absolute error tolerance -10

UNIVAC 1100 - Double precision
Values 20 are i7



r

Table 3 Eigenvalues of ODEs from discretization
of the spatial derivative in the diffu-
sion equation.

SH I max Stiffness ratio

2 9.00 27.00 3
3 9.37 54.62 5.8
5 9.65 134.34 13.9
7 9.74 246.23 25.3
9 9.79 390.18 39.9
11 9.81 566.14 57.7

L . 13 9.83 774.11 78.8

15 9.84 1013.8 103

Table 4 Eigenvalues for momentum balance with
viscous dissipation+

Dimensionless IRe{Almn IRe{A} x
i: viscosit,,U

t _________ ~ eM max

0.003* 0 0.937 224
0.2 0.964 238
0.5 1.04 254
1.0 2.65 263

0.03 0 0.721 1.69x10 3

0.2 0.900 1.71x10l 3

0.5 1.44 1.72x10 3

g1.0 5.39 1.72x103

0.3 0 3.07 1.6ix104

0.2 3.08 1.61x104

0.5 3.12 1.61x104
1.0 3.18 1.61x104

* Most eigenvalues are couplex

+ All eigenvalues have a negative real part

- .
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Figure 1. Profiles of dimensionless concentration for the Belousov
reaction system
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Numerical Integration of Stiff Differential/Algebraic Equations
with Severe Discontinuities
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.* The simulation of industrial processes often involves the
numerical solution of a system of initial valued, stiff
differential/algebraic equations (DAE) with severe discontinuities

. in the derivative of its solution. On problems of this type a
standard variable-step integrator is either very inefficient or
fails to compute the solution.

The purpose of this paper is to describe a restart strategy
which can be used to improve the efficiency of a variable-step
stiff integrator and present a case for its inclusion in a

* general-purpose stiff solver. The paper will also discuss the
if design of an efficient variable-step solver for a DAE system based

on the work of Petzold[1). The design and use of the restart
strategy for a DAE system arising from the simulation of British
Gas transmission networks is given in Chua and Dew[2] ; this
paper put this work into a more general framework.

t The general parabolic DAB system considered is

EF - f (t,) (1)

where the matrix E is singular if there are algebraic equations
present in the system. The general strategy employed is to use
normal variable-step integration everywhere except immsdiately
after a discontinuity has occurred when a restart phase is indicated.
(The discontinuity is detected using a supplied function which
changes sign over the discontiniuty). During the restart phase,
the local error centrol.is suspended which enables a larger timestep
to be used than would otherwise be the case. The timestep is kept
constant during this phase until the estimate of the global error
indicates that it is safe to return to normal variable-step
integration. Extensive numerical testing on Gas transmission problems ha
shown that the restart strategy is extremely robust and considerably
reduces the amount of computation.

The variable-step integrator described in the paper is based on
a 2-stage 2nd order, L-stable Rosenbrock-type method (Scraton(3J).
The numerical performances of the integrator is illustrated using a
heat conduction equation with discontinuous boundary conditions and
a large scale British Gas transmission network simulation.
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ABSTRACT

It is shown here that the rate equations for a first order chain

branched reaction modelling the combustion of hydrogen can be approximated

by a solvable canonical problem. We call this the explosion mode approxi-

mation to the problem. We say that there is an explosion if branching

reactions initially dominate termination reactions. A dimensionless

parameter E is introduced which provides a quantitative criterion for an

explosion to occur; for E > 0 there is an explosion, for E < 0 there

is not. We construct approximations to the explosion kinetics when E > 0,

and present numerical simulations to illustrate several cases.

U.!
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1. A CANONICAL FIRST ORDER CHAIN BRANCHED REACTION

The reaction studied in this section illustrates the basic calculations

needed for our explosion mode analysis of the combustion of hydrogen. The

reaction is summarized in Table 1.

We denote by [A] the concentration of chemical species A, and we set

u* [A] and x= [BJ.

The kinetic rate equations which describe this reaction are

- koU2
-=-kux 2, u(O) = u0

. = kux -ax + kou2, x(O) -O,

where • d/dt. The analysis of this problem breaks down into three parts

which reflect the three stages of the reaction.

R Initiation: x - O.

In the initial stages, the kinetics are described by the equations

-ko0u2 ,  k = kou2

Thus, u & uo/(uokot+l) and x A uo - u.

2
Branching: kux - ax >> ko u

If ku0 > a, then [B] will grow due to the branching reaction dominating

termination. The model now becomes

i-1
*1

F
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U =-kux, * = (ku-a)x.

This problem can be solved explicitly:

x = (a)ln(u/0) - u + +

where U, I are values of (A] and (B) after the initiation phase of the

reaction. In fact, the initiation and branching phases are adequately

approximated by taking

x ln(u/u)+ u0  u.

This approximation is valid throughout the remainder of the reaction.

The initiation reaction plays no further significant role since at the

maximum of x, u rapidly approaches a quasi-static state (u = 0), after

-which the termination reaction dominates:

u u 0, 1 -ax.

Parameters analogous to those of hydrogen

combustion are

u0 = 1E-8, k0  E2, k =lEll, a =1E2, x0 =0.

Here the notation IE-8 denotes I x 10-8 , etc.

Reactions of this kind have been studied earlier [1-3]. In the next

section, we show how this analysis can be applied to study the combustion

of hydrogen.

2. AN H2-02  REACTION

The reaction studied here is described in Table 2. This breaks down

into three types of elementary reactions: initiation, branching and

SI



propagation, and termination. In these reactions, HO2  is taken to be an

inactive particle [1,3] and W in the termination reactions indicates collision

with the container's wall.

We set

u [H2], v = [02], x = [H.], y = [OH-]., z = [0-].

Then, the kinetic rate equations are

0 = -(kly + k3z)u - k0uv, u(O) = u0,

= -(k2x)v - k0uv, v(O) = VO ,

k = -(k2v + a2 )x + (klu)y + (k3u)z + kouv, x(O) = 0,

= (k2v)x - (klu + al)y + (k3u)z, y(O) = 0,

I = (k2v)x - (k3u + a3)z, z(O) = 0,

where a. = aiw, i = 1, 2, 3, denote the pseudo first order rate constants

for the termination reaction (w remains constant throughout these

reactions). It is convenient to rewrite this system in matrix form

d (klY + kdt i u z) 0 l -ouv '
0 -k 2x v

d Y = (B-T) y + kouv(O

The matrix B describes the branching reactions, and it is of the form

B = -8 , where a = k2 v, 8 = kIu and y= k3u.
0 Y

The matrix T, which describes the termination reactions, is
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a1  0 0

T 0 a2  0

0 0 a3 .

k 0. Ignoring for the moment the initiation reaction, we see that

initially (i.e., at t = 0 where u = u0, v = v0, x = y = z = 0), the rate

equations have the form

= = oT , X

|Z •

where B0 denotes B evaluated at u = u0 , v = vO. If the matrix B0-T

has a positive elgenvalue, then once initiated, the branching reactions

dominate termination, and the vector of radical components (i.e., x, y, z)

has a growing mode. We base our definition of an explosion on this fact.

Namely, we say that an explosion will occur if branching initially dominates

termination, or equivalently if Bo-T has a positive elgenvalue. We define

the explosion number to be the dimensionless quantity

E det(B0 T)T 3

where T has the dimensions of time used to measure the kinetic rates. We

show next that E > 0 implies an explosion occurs, E < 0 implies no

explosion occurs.

3. EXPLOSION MODE ANALYSIS:

a. Spectral Analysis of B-T.

We begin with the characteristic polynomial of B-T:

P - -det(B-T-X13)

Si
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whose roots are the eigenvalues of B-T. Here 13 denotes the 3 x 3-identity

r matrix. P has the form

P(X) X + OX2 + .X - 6(u,v)o

where

+ = +8 +y +a +a 2 +a3> 0,

U= c(a2+a3) + B(Y+a1+a3) + y(al+a2) + ala 2 + a2a3 + ala 3 > 0

and

6(u,v) = 240y - {a1By + ala 2y + ala 3a + a2a3p + ala 2a3}. (2)

Note that 6(u,v) = det(B-T). The sign of 6 plays an important role here.

First, P is monotone increasing for X > 0. In fact

d- 2 + 2ax + > 0 for X,> 0.

Therefore, if P(O) = -6(u,v) < 0, then there is a unique real, positive

elgenvalue X*(",v). Moreover, if Xl and X2 denote the other two eigen-

values, then either (a) they are real and both are negative, or (b) they

are imaginary (i.e., X1 = 72 ). In the last case X* + X1 + X= " < 0,

so 2 Re X1 < - X*< 0. Thus, in either case, if 6(u,v) > 0, then B-T has

one positive, real eigenvalue and two other eigenvalues having negative real

parts.

We denote by X*(u,v) the eigenvalue of B-T that has largest (i.e.,

right most) real part. We have just seen that if 6(u,v) > 0, then

X*(u,v) > 0. Let ** denote the corresponding eigenvector; i.e.,

(B-T)*- X*O*,

6
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and let ?* denote the corresponding adjoint eigenvector; i.e.,

(B-T)tr =

These are normalized so that

i*" *=lI and * *=I.

The components of ** are denoted by , , , , , etc., and the notation

* ** denotes the usual dot product of vectors: ** • 0* =

* * + + 0303 etc.

' Thus, X*(uov O) > 0 if and only if 6(uo,vo) > 0 (i.e., E > 0), so

an explosion occurs according to our definition. If E < 0, then

X*(U0,VO) < 0, and no explosion occurs since termination reactions dominate.

b. Explosion Mode Decomposition

A When 6(uoVo) > 0, we refer to 0* as the expZoaion (or branching)

mode since it gives the combination of radical concentrations which will grow

initially with amplification rate X*(uO*VO).

Any combination of radical concentrations can be written as "

-Explosion

y c* + a Mode, Decompositionj

where the scalar c, called the explosion mode amplitude, is defined by

C= *

and 2 = - cO* satisfies *R = 0. Moreover, in the absence of

initiation, the components of il are (strongly) damped since Q is carried
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by modes corresponding to eigenvalues of B-T having negative real parts.

Therefore, we ignore S, substitute y= ce into the equations (1) and

project the radical equations onto the explosion mode 0* (i.e., we apply

* to both sides of the radical equations). The result it
K

Sa -(kM k3  )cu - kouv

, = -(ke )cv - kouv

t = A*(u,v)c + kou*s* - oP* 4 (d*(u'v)),

which is a system of equations for the fuel, oxidant and explosion mode

amplitude.

c. Some remarks on the analysis of this system.

tiSeveral remarks must be made at this point. First, if = 0,

then the initiation reaction will not excite the branching mode of the

reaction. Thus, no explosion will occur even though 6(uovo) > 0. There-

fore, the size of * must be accounted for in calculating the initiation

phase of the reaction. In most of the reactions we have considered in

detail, the initiation reaction has been mostly in the direction of $*

(i.e., * f 1). Next, the final term in the t equation must be avluated.

Note that if some stoichiometric relation between u and v exists, say

v c u, and a1 = a2 a a3 a a, then X*(u,v) m u and 0* is constant

(independent of u and v). This term has the form b + where

a and b are proportional to 0 and 0. Thus, if lXil >> 1 or 101,

I01 << 1, then this term is negligible. In general, if CndObar* = O0, then

the last term in this equation for t vanishes, and a completely solvable

system results to describe the branching phase of the reaction. In particular,
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**"~ti~f ~ ** 0, and the initiation reaction is ignored, then

0 - -cu(kl* + k3.)

- -cvlket )

e X *(u,v)c.

This system can be solved in the following way: The first two equations show

that

__Lv wh r k2 .o _

d u v her - (klo + k3 )

Therefore, v - ku where k is a constant. Next

dc X*(u~kAdu (k1O* + k~d u

Therefore

iu X,*(u' ,ku'g)du '

c -+ "k-* + k3"-*lu3'

which describes the explosion mode's amplitude starting from post initiation

concentrations %Z).

We describe a composite approximation to the reaction kinetics in the

next section.

4. EXPLOSION KINETICS

Let us suppose that the initial concentrations of fuel (uo) and

oxidant (v,) are sufficient so that 6(uo,vO ) > 0. As in the canonical

problem, the reaction breaks down into three phases, initiation, explosion

and termination.
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Initiation: x, y, z << u, v.

U At the start of the reaction, the radical concentrations are small, and

the rate equations become

(a = *-k 0uv, U(O) =u 0, V(0) v 0

t k uv

These equations can be solved explicitly: Since (a

U =V -V 0 + U0 .

Therefore,

k(uO-v)t r -
UMt u u0e0  0 j + { ek u -~t 0

c(t) = I*(uO-u(t)).

This approximation is valid as long as

x*(u,v)c << ko UV.

Explosion: k 0, ~ . *=0.0 dt

This phase describes the branching of the radicals. Since Q is small

* (at most order k u v0), and it does not grow in time, we ignore Q terms,

and arrive at the canonical problem

(klo + k3 )c
2 V

0 ka o
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whose solution was described in the last section. This approximation remains

valid as long as 0* * ~ 0. However, when c is large, u and v

can change rapidly, and so * is expected to change.

Termination: kic >> 1.

In this X*(u,v) - 0, but the fuel (u) and oxidant (v) are driven

rapidly to the static state: u = 0, v = 0. As a consequence, c decays

through the termination reactions; thus

e =*(O,O)c.

Composite solution.

A detailed matching procedure can be formulated to combine these approxi-

mations of various phases of the reaction into a composite approximation to

the kinetics. However, the portion of the solution which carries the most

important information is in the initiation and explosion phases, and for

typical parameter values these two phases can be approximated by

v~ u
(4)

C u X*(,kD) dO
fuc (k 1 *+ k 3

u0  2

This approximation is(roughly)valid until the turning point is reached

(i.e., X*(u, ku) - 0). It is illustrated in several numerical examples

e presented in the next section.

5. NUMERICAL SIMULATION OF THE H2 -0 2  REACTION.

We present here several illustrative calculations using typical reaction

rates listed by Semenov (1959). These are based on a version of Gear's

0$
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package [4] and the EISPACK package [5] for finding eigenvectors and

A elgenvalues of matrices. (see 7144le 4)

6. DISCUSSION

The explosion mode method of analysis presented here clarifies the

mechanisms of H2-O 2 explosions. In particular, it gives a quantitative

criterion (6 a 0) for determining when initial concentrations of fuel and

oxidant are sufficient to sustain an explosion. These remarks are based on

our definition of explosion: An explosion occurs when branching initially

dominates termination.

*The formula (4) is taken here as a good approximation to the solution

up to the turning point. In fact, if we take X* to be constant in (4),

then we have

II - n(uL) (5)
turning o2 303 0

point

where c and u are the values of c and u at the turning point. Table

3 shows a comparison of these values with those obtained from the simulations.

The numerical evidence presented here supports this approximation technique.

We have also found this approach to be useful in studying the H -Air

combustion reaction. In that case there are for certain parameter values,

two explosion and two damped modes, so that the analysis becomes more intricate.

Note that in applying the method to other problems, the branching termination

matrix B-T can be easily identified by writing the rate equations in the

linear form indicated in (1) and then evaluating the coefficient matrix at

the initial concentration levels. In the case of the H2-02 reaction, this

mr i
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There are no significant numerical problems in solving these equations

on a computer. However, there is an Interesting numerical analysis aspect

to the explosion mode analysis. What stiffness there is in the problem is

due to the eigenvalues of 8-T which have negative real parts. These are

summarized for the five simulations in Table . As stated, earlier Gear's

package had no trouble solving these problems. However, the explosion mode

projection is actually a projection onto a subdominant mode, and so avoids

what stiffness there is. To implement this scheme numerically, computational

effort must be invested in evaluating the spectrum of B-T, and then solving

the resulting canonical problem.

Research supported in part by the Department of Energy Grant #29284.
Computations were carried out in the AppLied Mathematics Computing Laboratory
at the University of Utah.
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TABLE 1

£CANONICAL REACTION DESCRIPTION

REACTION RATE CONSTANT TYPE OF REACTION

A + A B + P k0  Initiation

A + B 2B k Branching

B C a Termination

I



TABLE 2

H2-02 ELEMENTARY REACTIONS

REACTION RATE TYPE OF REACTION

H2 + 02--o-H- + H02  k 0 Initiation

H + OH.-wH. ~H 0k

02 + H- OH- 40- k2

*H 2 + 0- . + OH. k 3  Propagation

OH. +w-s a1

H. + W a2

0. + W- a3 Termination



TABLE 3

r Estimated and Calculated Values of c

SIMLATION c max([H*) a) E(from (5))

1 .3E-8

2

3 .6E-7 .36E-7

4 .3E-7

5 .6E-7 3.9E3 z 6E- - E-6

1E5



TABLE 5,

EIGENVALUES OF B-T (MAXIMUM)

SIMULATIONS /L4 v

1 3.OE1, -2.4E7, -2.8E4

2 -5.2EI, -3.2E3, -2.9E4

3 3.8E39 -2.3E4, -2.8E5

4 3.E29 -2.4E49 -2.8E5

*5 3.9E39 -2.3E59 -2.8E6



Simulation 1. Low initial concentrations, slow quenching.

k = 60, k1 = 2.3E11, k2 = 4.02E9, k3 =2.82E12

a , 92, a2 = 8, a3 = 92

u= 1.E-8, v0 = .5E-8.

T(Secs) H2  02 HO OH. 0. ,,

0 l.E-8 .5E-8 0 0 0 30 (l., 2E-2, 7E-4)

.01 I.E-8 .5E-8 3E-17 5E-19 2E-20 30

.1 lE-8 .5E-8 1.SE-15 2.5E-17 1E-18 30 "

.2 1E-8 .5E-8 3E-14 5E-16 2E-17 30£1

.3 1E-8 .5E-8 IE-12 2E-14 8E-16 30

.4 1E-8 .5E-8 l.3E-l1 2.1E-13 9E-15 30

.5 .96E-8 .48E-8 2.3E-10 3.8E-12 1.6E-13 29

.* .6 •35E-8 .27E-8 .29E-8 .7E-10 •3E-11 11

.65 .4E-9 .14E-8 .35E-8 .2E-9 .2E-10 -3.1 (1., 5E-2, 3E-3)

7 .3E-14 .8E-9 .2E-8 .1E-9 .9E-l0 -11 (1, 4E-2, 4E-2)
.8 .3E-20 .5E-9 .73-9 .2E-l0 .2E-10 -10 (1, .02, .02)

r .r- - - .-. -_ _ _ _ _ _ _ _



Simulation 2. Low initial concentrations, fast quenching (E 0)

kic as in Simulation 1.

a 920, a 2 80, a 3 920

T H 2  0 2 H. OH- 0. __

0 1E-8 S5E-8 0 0 0 -52 (1, .01, 7.E-4)

1E5 .9E-8 .46E-8 .5E-16 .6E-18 .3E-19 -54 (1, .01, .7E-4)

Changes in all components are monotonic.

.0
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Simulation 3. Moderate initial conditions, slow quenching

(6(Uo,Vo) > 0)

T H2  02 1_.. OH- 0-

0 1.E-7 .5E-7 0 0 0 390 (l., .02, 7.E-4)

.01 1E-7 .5E-7 .6E-13 IE-15 .4E-16 390

.02 1E-7 .5E-7 .2E-11 .4E-13 .2E-14 390

.03 1E-7 .5E-7 .6E-10 .1E-l1 .4E-13 380

.04 .94E-7 .48E-7 .4E-8 .7E-10 .3E-11 370

.05 .1E-7 .2E-7 .6E-7 .25E-8 .IE-9 140 (1., .05, 2.E-3)

.051 .9E-9 .lE-7 .6E-7 .6E-8 .7E-9 53 (.95, .3, .02)

.52 .2E-11 .1E-7 .6E-7 .9E-8 .3E-8 -48 (.6, .6, .5)

In this case the turning point (X* = 0) occurs at time T = .515.

At this value, 0* = (.8, .6, .1). Thus, 0* remaining approximately constant

up to the turning point of the reaction, and then changes significantly

thereafter, due to rapid changes in [H2].

qI

@.



Simulation 4. Moderate initial conditions, fast quenching

(S(u0,v0) > 0

1 2 a2 80, 920 a920

T H 2  0 2 H. OH 0.X(uV

0 .1E-6 .5E-7 0 0 0 300 (1., .02, 7E-4)

.01 .lE-6 .5E-7 .3E-13 .4E-15 .2E-16 300

.02 .1E-6 .5E-7 .6E-12 .1E-13 .4E-15 300

.03 .1E-6 .5E-7 .6E-ll .lE-12 .5E-14 300 1

*.05 .1E-6 .5E-7 .2E-9 .4E-l1 .2E-12 300 S

.05 .96E-7 .49E-7 .7E-9 .4E-10 .2E-11 290

.06 .4E-7 .3E-7 .3E-7 .7E-9 .3E-10 120 (1., .02, .001)

.07 .3E-13 .8E-8 .2E-7 .1E-8 .9E-9 -110 (1., .049 .04)

.08 .3E-19 .5E-8 .7E-8 .2E-9 .2E-9 -98
71

46



Simulation 5. High initial concentrations, slow quenching

(6 > 0)

a1  92, a 8, a 92

T H2  02 H- OH 0._

0 .lE-5 .5E-6 0 0 0 3.9E3 (1., .02, 7E-4)

.001 .lE-5 .5E-6 .3E-12 .6E-14 .2E-15 3.9E3

.002 .lE-5 .5E-6 .3E-l0 .5E-12 .2E-13 3.9E3

.003 .1E-5 .5E-6 .9E-9 .2E-10 .6E-12 3.9E3

.004 .9E-6 .47E-6 .5E-7 .9E-9 .4E-l0 3.E3

0.005 .lE-7 .lE-6 .6E-6 .6E-7 .7E-8 850 (.96, .28, .01)

.0051 .6E-10 .lE-6 .6E-6 .9E-7 .3E-7 -17 (.1, .97, .2)

.00525 E-22 .8E-7 .6E-6 .lE-6 .7E-7 -9.2 (0, .99, .2)

This calculation again illustrates that **may change rapidly near

the turning point.
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An Overview of the Highly Oscillatory Initial Value Problem

W, L. Miranker
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V. Typed by: J. Genzano

Abstract: We review computational methods for approximating the highly oscillatory
problem which utilize a functional of the solution such as its smooth part as a mean-
ingful solution description. We review highly oscillatory recurrences by the two-time
technique and give several applications. Then the highly oscillatory ordinary differen-
tial equation is treated by three methods: the two-time method, an extrapolation
method and finally an averaging method. The last treatment is accompanied by
illustrative computations.
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1. Introduction

The highly oscillatory problem is particularly difficult since the rapidly changing

behavior of the solution is an ever present feature and not a transient phase to be

gotten through. Thus most approaches to the highly oscillatory problem abandon the

customary procedure of approximating the solution pointwise (at least on a mesh).

Instead some functional of the solution such as its "smooth part" or some "running

mean" is accepted as a meaningful description and it is this functional which is

Ps approximated through computation. This overview will deal with several methods

which take this approach. (For methods with the classical pointwise approach see [11

and (121.)

We begin this review with highly oscillatory recurrences since there are many applica-

tions for them, several of which are reviewed here. These recurrences are treated by

the two-time technique. We then turn to the initial value problem for differential

equations. We do not explicitly cite applications for the latter, but we do illustrate

computations on a model problem. Applications are to be found in circuit analysis and

orbiting motions, for example. We demonstrate three approaches to the differential

problem. The first, which is most common, is through singular perturbation methods

and in particular, multi-time techniques. The third is a method of averaging which is

independent of singular perturbation methods. The second method, the extrapolation

method, falls in between.

References are given to source material, but all of the work reviewed may also be

found discussed in detail in my monograph on stiff equations (8].
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2. Recurrences

Consider first the model

x,+- (A + eB)x,, x0 given,

where xeRW and A and B are pxp constant matrices. To illustrate the behavior of this

recurrence it is convenient to suppose for the time being that A and B commute. In

thiscase

x.- (A + B)x o  A'( +eA B)Xo.

-. Then

x. = A" exp (A-Benxo(1 + neO(e)).

This demonstrates the composition of x, as it develops on two scales: a rapidly

developing part (viz, An) and a slowly developing part (viz, exp [A- Ben]). In many

cases the rapidly varying part is akin to noise from which the more meaningful part of

the solution needs to be separated. How this separation may be performed in more

general cases (i.e. noncommutative and nonlinear cases) has been demonstrated in [6],

where a two-time formalism for recurrences is developed.

* We continue by describing three applications, and we illustrate the separation of the

scales achieved by use of a two-time technique.

i) Training algorithm

The so-called training algorithm [41 arises in pattern recognition and corresponds to

the -mathematical problem of determining a separating hyperplane. Such a hyperplane

* is specified by a vector weRo+ t to which the following recurrence may be made to

-2-



converge (in finitely many steps):

For fixed 8>0 and WOc.R p I define wI, w2, ... as follows

W.+1 W. + X-S( -,,

where

1, w.x<_9

I and xcA,

-1, w.x>#.S M ; .)  - 1 , W X : $-1, wz I- and xcB.

o, w.x<-o 
o

Here A* and BO are the finite point sets in R 1 being separated. Setting w, - z(n)

and . 0-, the recurrence relation for w,, becomes

%(n + 1) = z(n) + erxS(z(n).x.; x.)

while in the definition of S, w is changed to z and 9 is replaced by unity.

The two-time formalism specifies the slowly evnlving aspect of the trajectory defined

by this recurrence for z(n) as a function zo(S) where moreover z(n) - o(en) + 0(e).

Indeed zo is the solution of the following non-stiff problem:

an XS(Zo),

di

-3-



where the average

n-|S(: o) - lim 1~ XAS(zo.zn; LA).

Sk-,O

(In applications this average is finitely computable.) Computation of z0 is straight

forward and leads to a limiting vector which is an appropriate w sought by the training

algorithm.

ii) A-population genetics model

In a large population of diploid organisms having discrete generations, the genotypes

determined by one locus having two alleles A and a. divide the population into three

groups of types AA, Aa, and aa, respectively. Suppose that the gene pool carried by

this population is in proportion p, of type A in the nth generation. It follows [21 that

p.(-p)[(w, ,-w 2 )pv + (w2 1-w 12)(l-p,)]
+2 2wjp,, + 2w, 2,p.(l-p.) + w22(1-p,,)

where w 1, w12 and w 22 are the relative fitnesses of the genotypes AA, Aa, and aa,

respectively. If the selective presses act slowly, i.e., if w1 - I + e., w12 - I and

w22 - I + eP then

ep(-p.)[(a-[)p.+ ]
Pn+.I -u P + 10e

I + O(e)

The two time formalism tells us that

P. P(en) + O(e),

I

Lri 4-
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where

d. p(l-p)[(a- )p + p].

and this simple non-stiff differential equation is easily solved numerically.

iii) Regression analysis

tA g()WA) WA

Let g(w) be a function with a unique root w and such that g(w)(w-w)>O, w#'. Let

* zk, k - 0, 1, ... be a sequence of identically distributed random variables with mean

zero and unit variance. The Robbins-Munro algorithm for approximating w s peCi

fied by the following recurrence:

w(k + 1) - w(k)-eak[g(w(k)) + azk].

g(w(k)) + OZk is a noisy measurement of g(w(k)) so that the recurrence specifies a
U

very chaotic behavior for w(k). However, the two-time methodology asserts that

w(k) - Wo(ek)(I + 0(r)),

where

dW o

d - -g(Wo)

and

k j

The differential equation for Wo is simple to solve, and for appropriate g, its solutions

Aconverge to the equilibrium value W, the root which is sought.

5 -
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3. Two-time Methods in Stiff Differential Equations

The two-time method

The model highly oscillatory problem is taken to be

edA; - (A + eB), te(O, T,

dt

N(O) -go,

where a is an n-vector and A and B are n x n matrices. The solution is

R"e[(A+rB)t/ejo

A+BtR

where 1 - t/e. r is called the fast time and t the slow time. If A and B commute the

dependence of the solution on these two time scales separates, viz,

a - e Aeatnot

l. and in principle, each of the factors here could be determined separately and without

computational difficulty. When A and B do not commute this separation is not so

readily available, and moreover, it is not necessarily the case that the development of

the solution on the t-scale is even meaningful to approximate numerically. To treat

this case we employ the method of two-times. We suppose that the initial condition

has the form

a(O) are
r=O

and that the solution of the initial value problem has an approximation in the form of

-6-
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a general two-time expansion:

r=O

We take the leading term uo(t,,r) of the expansion as an approximation to the solution

r of the initial value problem. The method two-times ([9]) specifies x 0(t, ) as follows

U(t, 7) -4')Volt),

- where the fundamental matrix 0 (r) is given by

a) ,- AO, 0(0) I

Further

drtb) -d- YO -o

where

c) - im f0 -(o)B$(o)d.

(For the development of this two-time methodology in a more general non-linear

setting see [51.) The specification of E0 (t, r) leads to the following numerical algor-

ithm

Algorithm

i) Solve (a) an a mesh of increment k in the r-scale by some self starting numerical

method, obtaining the sequence O(jk), j = 0. ..., N.

ii) Using the values O(jk) obtained in (i). approximate B by truncating the limit of r

-7-
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integration and replacing the integral in (c) by a quadrature formula, say

= ! , -- Ck-(Jk)B'b(jk). .
Nj-o

The integer N is determined by a numerical criterion which insures that the elements

of the matrix B are calculated to within some desired accuracy.

iii) With B (approximately) determined in (ii), solve (b) for 70 (h) by some self

starting numerical method.

iv) Compute vuo(h, Nk) - $O(Nk);0 (h), and take this as the approximation for ar(h).

The approximation u0 (H, Nk) produced by this algorithm is not an approximation to

u1h, Nk) (i.e., is not a pointwise approximation in the conventional sense of numerical

analysis). The approach of this algorithm takes pointwise approximation as ill-

conditioned (and meaningless). Indeed approximation on the fast time scale is

abandoned. In fact, n0 (h, Nk) is an approximation to ,(t, Nk) for t near h and not

necessarily for i - h.

In the following figure we schematize the computation. Of course, in practice e will

be extremely small so that unlike the schematic an enormous number of oscillations of

4 b will occur in the t interval [0, h]. Notice how far the computed answer O(Nk) o(h)

may be from the customary approximation to the solution, u0 (h, h/e).

-8-
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uo(h,h/q)

* b"k (N)k o(h)

The fundamental matrix O() is composed of modes corresponding to the eigenvalues

of A. Since the eigenvalues of A lie in the closed left half plane, the profile for (a

component of) 0 will, after some moderate number of cycles, settle down to an

(almost) periodic function. Thus the set of mesh points {jk I j - 0. ..., NJ may le

expected to extend over just these cycles (approximately).

4. The Extrapolation Method

The exploitation of singular perturbation theory for the development of numerical

techniques for stiff differential equations usually proceeds with the numerical determi-

nation of values of one or more terms in the asymptotic expansion supplied by that

theory. The extrapolation method (71 which we will now review is a way to break

through this limitation of approach.

Consider the following nonlinear analogue of the model problem which we have been

-9-



discussing.

dx fiQ/e, X), X(O)-

where x, f, 4elRn and where f(, -) is an almost periodic function of T. Multi-time

perturbation methods lead to the approximation

XQf, e) - XO(: + ex 1 , /0) + O(a 2)

where xO is determined from the initial value problem

* ~f(XO) .rO(O) C~

f is the average of, defined by

I('O) Ji yr fir, zo) dr.

The coefficient x, is determined from the formula

X1(i. i/a) - 10 + J(r. z)-f-(xO)Jdr.

00

will not be needed here, it is not discussed further. Thus,

X(i'a) = XO(t) + ea7 (t) + fl Lfr o-~O)Jdr} + O(e2).

We seek to determine certain larger values a' of a. The initial value problem is solved

with these larger values of a and an appropriate extrapolation determines an approxi-

* mation to x(t. a) itself.

-10 -



First the average f must be determined. A straightforward numerical approximation of

f" can be costly, but there is the possibility of accelerating this computation by a

second difference method which we now describe.

In most applications, the integral of the almost periodic function f has the form

V(T, x) - f(x)T + p(T, x),

Ab where p is an almost periodic function of its first argument and which has mean zero.

Thus, given a tolerance 6, there is a &translation number 0(8, x) such that

Ip(T + J(8, x), x)-p(T, z) I < 8

for all T a 0; in particular, since p(O, r) - 0. then I p(.7(8, r) I < S.

To find candidates for X note thatK

V(2T, x)-2V(T, x) - p(2T, x)-2p(T, x).

In particular for T - J'(8, x), we have that

V(29', x)-2V(f, x) =p(28", x)-p(f , x)-p(.f, x) + p(O, x)

- 0(8).

Thus, any 8-translation number of p makes this second difference of order 8. Unfortu-

nately, the converse does not hold; in particular, I V(2T, x)-2V(T, x) II may be small

while 11 p(T, x) II is not small.

Still, by tabulating

V(2T. x)-2V(T, r),

-11 -



candidates for 9(8, x) can be found and tested by comparing the values of V(T. )/T

for several of them, since these should all approximate ?(x). In practice, this method is

no worse than the direct calculation of (x), and in periodic cases, it reliably gives

f(x) after calculation over one period.

Thus we use

X(d,,r) -'0

as an approximation to f.

The extrapolation method proceeds by choosing an appropriate value T which repre-

sents a time at which rapid motions can be ignored. We pick T to be a 8-translation

number of p(r, x). Then, in particular,

p(2T, x)-2p(T, x) I p2T
f T [(-r, x)-f(r)ldr - (h

for x J + 0(h). The existence of such a value of T follows from viewing this

equation as the statement that T is an approximation to a 8-translation number. Such

a T value must be found, perhaps using the second difference method just described or

additional knowledge about a specific problem being studied.

Once a T value is found we define

a' - hIT,

and then we calculate x(h, e'/2) and x(h, a') from the initial value problem by a

pth-order numerical method. It follows from the form of the asymptotic expansion for

12-
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x(t. e) above that

3 2x(h. 0'2) -x(ha -xo(h) + e'f, f(.. xo(h)) -f(xo(h)) JdT + 0((e' 2

-x0(h) + O(h" ) +0

On the other hand,

xAh, C) mX0(h) + ex, + Cf Vf(T, xo(h))-f xo(h))Idi + O(e2

mx0 (h) + 0(a),

since

fh/tIf(1. x(h))-(xo(h))]di' 00).

r Therefore,

xAh, e) - 24h, e'/2)-x(h, a') + 0(e) + 0(hP+I) + o((.A)2).

This formula gives the extrapolation methodr for calculating x(h. C).



5. A Method of Averaging

We now describe an example of a numerical method which is independent of singular -

perturbation methodology (see [10]). For other examples of methods which are

likewise independent see [1] and [21 the latter employing aliasing.

Consider the following model problem

"+ \2X f(t), :r(O, T).

When f(t) X A sin t, this problem has the following family of solutions

xQ-s sin t
.. x(t) -a sin At + 7

For A large, this solution family consists of a high frequency carrier wave, a sin At,

modulated by a slow wave, sin t/(l-/A 2 ). The specification of the value at a point

of such a function is ail Un-conditioned problem.

The linear multistep class of methods is highly desirable for numerical analysis since

these methods are easy to use and easy to analyze. However these methods consist of

a linear combination of unstable functionals namely, solution values and values of

solution derivatives at points. The method of averaging replaces these unstable

functionals by stable ones, thereby producing a class of linear multistep methods

suitable for the highly oscillatory problem. We suppose that the stable functionals

* provide information about the solution being sought, and (subject to a process like

mesh refinement) that the stable functionals furnish as adequate a description of the

solution as is needed.

- 14-
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Let r, s and N be positive integers, let h w TIN and let t, - ih, i - 0. ± 1 .... be the

points of a mesh. Let -() be a functional of x which can be calculated at each mesh

point. Then we seek to determine y. - yQn). in terms of y-. i- 1, ... r r and

:R-, - Z~t-i) i - 0. 1, .... s by means of the linear multistep formula

a, y,- + b;-0, n 0, 1,.. N.
iMO i-O

We choose y(t) to be

At) - W~-s)x(s)ds,

where

_11'-A<z<O,
kiz) 1 0, otherwise.

Thus y(t) represents the average of x(t) over the interval [t-A, t].

The functional z(t) is chosen to be [d 2 /dt 2 + X2 ]x(t), i.e., f(t), which we suppose can

be stably calculated at each mesh point. -Thus with a change in normalization, the

linear multistep formula may be written as

S. Sy = c~y~..1 + h2  d
i-I i=O

Notions of local truncation error and of order of accuracy of such generalized linear

multistep method (for functionals) are introduced. They are analogous to and generali-

zations of the traditional ones. For example, let

so l and sj = -¢j, 1.. r,

-15 -



and let

L A/h.

Then

m, - l k ('')Lk - I~ itl~l-k5
(M+1) LI j-o

/d, V /-d, 1-0, 1,...

are so-called generalized moments of the method. The equations m, - 0, 1 - 0, ..

are generalized moment conditions.

View the equations m, - 0, 1 - 0 .... r- I as r equations for the r unknowns sj.

j 1, ....r. The Ith row of the resulting coefficient matrix which has as its jth term

1 k (f +l)Lk-t .+1-k '

is a linear combination of the first I rows of the Vandermonde matrix. Thus the

system of r equations has a solution in this case. Indeed by choosing the dj,

2j - 0 ...... s to be proportional to A we obtain a solution for the sj, j M 1 ... , r

which is 0(1) + O(-2).

If the coefficients sij, j - 1 ... r and d, j - 0, ....,s are chosen as solutions of the

generalized moment equations m, - 0, 1 - 0, ..., p, we may obtain an estimate of the

local truncation error which is O(hp

0 In addition to notions of local accuracy a notion of stability for generalized linear

multistep methods may be introduced. One such condition is quite analogous to the

6

- 16-
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classical one; namely, that the polynomial

S(:) Siz
j-0

obeys the root condition. Then combining notions of local accuracy and of stability. a

global error estimate may be obtained.

Examples

We now consider some examples of these methods in which the coefficients are

determined by the generalized moment conditions. In particular, we have for 1 0, 1

and 2, respectively:

0. M 0 - -hA d
j-0 j-O

-~1. inM, + s-vjh'2A2  jd
j-0 2j-0 j-0

2. mn2 0 13 _ h S~ i d
jw 0 .0wO j-0

Consider the following case where the first two generalized moment conditions are

satisfied.

bA. inm in=m=0.

For r -s = 1. we get

- .; 2, 21
L L

dmh22LL o

-17-
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In the special case do  0. this becomes

IMi

I c 
2 .

(d,-
h2\ 2 L

These coefficients (i.e., cl ) obey the root condition if and only if L 2 1. In the

special case do  d i , we obtain

I L+ _
{do =.dj M. h__

h2A2 L+1

Under the restriction L _ 0, the root condition is equivalent to L 2! 0 for these

coefficients.

For r - s - 2,

1 + 2 h (dod),

L L

In the special case do  O, ct = c2 , d, m d2 , this becomes

C1 =C2" L-3
2L

Id t -d 2 - 2\ 2h2L

In this case,

S(z) -
2 _ L-3z- L-3

2L 2L

-18-
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and this polynomial S(z) obeys the root condition for a set of values of L which

includes all L _> 1.

In the special case c- c 2, d, - d2 - 0, c, and d, become

23+L'
-do W 1

A2h2 3+L'

-- Hore

S(z) - Z2 _ I L ._ L
2 3+L 2 3+L"

This polynomi .1 obeys the root condition for a set of values of L which includes all

L > 0.

In the special case cl - c 2, d o - d, - d2, we obtain

-C c 2 IL-1
2 2L+I

4-dj - d 2 1
3A2h 2 I+L

In this case, the root condition is obeyed or L > 0.

Now we consider a case corresponding to three generalized moment conditions.

B. mo-m 1 -m 2 -.

- 19-



Forr -s - 1 we get

Clo 21-.L(-.4.4." L2

VI do- I-L+L2(IL2+L- 4 i ,1

dim ' - +(2L-L 2)1QL 2+ L_ 4-- -].21\ 2 h 3 2,\

Notice that the root condition is obeyed for L large and positive but is violated for h.

small compared to L.

Remark: In all of these examples as in the general case, we see that the coefficients

2
obtained as solutions of the moment conditions depend on X . At first sight this

seems to be more restrictive than the case of the classical linear multistep formulas

where the coefficients of the formula do not depend on the coefficients of the differ-

ential equation. In fact there is no such distinction. In the classical case, the coeffi-

cients of the differential equation enter into the method when it is used to approximate

the differential equation, e.g., when Vnj is replaced by f(y,-.,, nj). It is essential

after all that the numerical method at some point be dependent on the equation to be

solved. In the present development, this dependence occurs at the outset in the

determination of coefficients and in the error analysis. In the classical case it enters in

the error analysis and in the use of the methods.

Computational Experiments

We now apply the six sets of methods labeled I, 1 ....... VI above to the model

- 20-



problem:

X4.xwX sint,

AIx() . ;C(O) +

Computalions are made over the interval [0. TI - [0, ir]. In the following table we

display hY
2 times the I2-norm of the global error:

(W/Al 1 /2

2 IIeIIl 23 h , e .2

for a set of various combinations of h ,.1, .01, A - 10, 10, 105 and L , 12, 3 and

for each of the six methods cited. Here [/h] denotes the integer part of in/h.

TABLE

Method XL 1 2 3 1 2 3

1 10 .273 .108 .112 .133 .126 .126
10 .113 .00217 .0611 .0283 .00683 .0083
105 .112 .00209 .0611 .0111 .000106 .00627

II 10 .122 .133 .155 .126 .127 .128
103 .00125 .0622 .177 .0241 .00926 .0136
105 .00104 .0621 .177 .000118 .00627 .0125

II 10 .242 .111 .0872 .136 .126 .126
103 .0032 .00422 .00317 .0294 .00684 .00546
t05 .0034 .00419 .00313 .00023 .00112 .89E-6

IV 10 .123 .111 .0938 .126 .126 .126
10 .00627 .0144 .0244 .0241 .00684 .00546
10s .00623 .0144 .0244 .000133 .000179 .000264

V 10 .144 .152 .156 .127 .127 .128

103 .0657 .094 .119 .0249 .0116 .0136
105 .0657 .0939 .119 .0063 .00942 .0125

VI1 10 .758E4 .66E11 .124 .195Et .471E1 .11E2
03 .0447 .0639 .244 .0246 .00901 .0253
105 .0447 .0639 .244 .00421 .00629 .0251

h .1 .01

-21 -
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h"' 2 Ile 112,I

To illustrate both the favorable and unfavorable effects, the table contains cases for

which the methods are designed to operate well along with cases to which correspond

poor or nonsensical results.

For example although the cases corresponding to A = 10 give fair results, these cases

are not stiff, and we should not expect good results. When h is decreased, improve-

ment should occur but only for the stiff cases. The cases A - 103 and h = .01 are not

stiff, and improvement with decreasing h does not always occur in these cases. Me-

* thod VI is used in some unstable cases. The stiff cases for moderate L give extremely

good results as we expect.

In the systems case, the model problem is replaced by the second order system

+ A2x - f(x, t).

Here x and f are q-vectors and A is a q xq matrix. The coefficients c, (and s,) and d.

of the numerical method are replaced by qxq matrices (denoted by the same symbols).

Many such formal replacements of the scalar development follow. For example, the

first two generalized moments become

r S
MO ( I + " S";' d jjq

Jo j-o jfo

* where is the q-vector all of whose components are unity.
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Referring to the remark above and noting the dependence of the coefficients of the

numerical method on the coefficients of the differential equation, we see from m0 and

a1 here, the way in which the dependence appears in terms of the matrix A2 , for the

coefficients determined by the generalized moment conditions. It is important to take

note that the coefficients depend on the matrix A2 and not explicitly on eigenvalues of

A'. Thus. if we know that a system is stiff, with highly oscillatory components, we

may use the methods described here without having to calculate the eigenvalues of A2

which cause this stiffness.
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ABSTRACT

We consider the linear ODE

£dx - M 1 x 1  + 22
dx =2 l lx!  A x

dx =A21X + A2 2x2

For various reasons one may be interested in a "similarly"

transformed ODE that is decoupled such that one has a pos-

sibility to compute the fast and slow modes and (or the

decreasing and increasing modes) separately. We propose

a technique the employs a Riccati transformation for

decoupling the two time scales and a Liapunov type

of transformation to decouple increasing and decreasing
C.



2.

k

fast modes. The last technique is numerically implemented

as a special predictor-corrector technique, which employs

a QU-decompo';ition each corrector step.

1.- PROBLEMSETTING

Consider the linear ODE

dx' A1'x1 + A' 2 X2 + rI

()I A1x + A 2 X + r, t O

where A", A12, A2 1 and A2 2 are matrix functions of t and

r, r2  are vector functions of t. We assume that A2 2 is

nonsingular for all t. In fact for our discussion only

the homogeneous part of (1.1) is of importance, as will

turn out later. Problems with slow and fast time scales

(as expressed by the "small" parameter c) arise both in IVP

and BVP. We restrict ourselves to the latter class of

problems. They differ from IVP in that they usually deal

with ODE that have increasing and decreasing modes. Due

to the instability with respect to initial values of the

* former, serious numerical difficulties may arise if one

4 tries to compute them (as may be necessary to obtain a

fundamental solution in solving the BVP). However, for

the same reason as the increasing modes make forward

.4

4
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integration an unstable affair, the decreasing modes

render backward integration unstable. Therefore we look

for methods that decouple the differential equation into

slow and fast modes on the one hand (in order to local-

ize the stiffness) and in increasing and decreasing modes

on the other hand (in order to cIrcumvent the above men-

tioned instability). We shall do this by transforming

the homogeneous part of (1.1) onto (block) uppertriangular

form, using linear transformations T(t), i.e. we determine

U', U2 I and U2 2, such that by setting

(1.2) (x) = eI)

we have
d '' *U 2 y2 +

a)et d U1 y I + U2Y2+ (T-1r)l

(1.3)
b) = U2 2 y 2  + (T-,.)2

The ODE (1.3) (b) has smooth solutions. Hence one may

e.g. apply a multiple shooting technique for determining

a fundamental solution and a particular solution of it.

Once the component y2 of a solution has been determined

we are left with an (inhomogeneous) stiff ODE for y'.

The U11 now has an upper triangular form,

K _
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[_B C

(1.4) U ( E B of order m say,
iE

such that B belongs to a system describing the increasing

modes and E similarly the decreasing modes. If we parti-

tion the vector y correspondingly as (z), then z' should

be computed in forward direction, for which we may use a

stiff integrator, and similarly z' in backward direction

afterwards. In Section 2 we first describe the decoupling

of slow and fast time scales. In Section 3 we then show

how the fast system may be decoupled further. The latter

decoupling is done by a predictor-corrector method, the

convergence of which is shown in Section 4 and its stabil

ity in Section S.

2.- DECOUPLING OF SLOW AND FAST MODES

*0 For the matrix T we choose the (generalized) Riccati

transformation

( M(t) 0
(2.1) T(t) - , M(t) nonsingular.

* P(t)M(t) 1)

we obtain then

S,



u I uli 2 M- ' 1 + A' 2P) -E: 9,] M- 1 A"12
(2.2) =

s u2 -PA 2 2 AP

Q provided P satisfies the Riccati equation

(2.3) E = PA'' + PA12 P- A2 2 P-eA 2 1

- It is of importance now to realize that we are free to

choose the initial value P(O) of (2.3). In particular we

may try to choose P(O) such that P is smooth. From power

series expansious arguments (see e.g. Mattheij, O'Malley,

this proceedings) we may therefore expect P(O)=O to be a

good choice. Rather than computing P by some stiff inte-

grator, we suggest to compute a few terms of its power

expansion in e. Let

(2.4) P(t) = Z ejP.(t)U j~o

then we have e.g.

(2.5) 0 = -A22P -A2'

whence

(2.6) P = -[A 2] -'A 2

And also for the first order term

(2.7) P P A'' + P A'2 P -A2 2P 
0 0 0 0 1

ii
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Since P can be found analytically, i.e.
0

(2.8) 0 = [A2 2]' A22A22]-'A1-A21 ,
0

P follows from (2.7) and (2.8) etc.

The attractive feature of this approach is that it can

be carried out without introducing discretization errors

* -and therefore is very suited to be combined with a numer

ical method that requires certain stepsizes in order to

compute e.g. solutions of (1.3) (a).

3,- FURTHER REDUCTION OF THE FAST SYSTEM

Thus far we didn't specify the matrix M. We now require

U to have an upper triangular form and therefore we

have to determine M such that

(3.1) M-FM-MU, where F-A11-A12 P, U-U1'

If we assume that the directions of the solutions of the
S

homogeneous part of (1.1) are only slowly varying, we may

expect that (3.1) has a smooth solution M, such that M(t)

is orthogonal for all t. To understand this one should
S

realize that e.g. the first column of M represents the

"direction" of some solution of the ODE '=Fy', and

6
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the first two columns "span" a two d'mensional solution

subspace etc. In order to find such M and U we propose

a predictor-corrector technique, where the corrector

utilizes a kind of QR algorithm that ultimately gives the

orthogonal matrix M and the upper triangular matrix U.

We shall only sketch the method. Suppose we have a cor-

rector

n . n
(3.2) Z a.z; Z z a -I, P *0

j=0 ) j=0

then a typical corrector step has the form

(3.3) MMU ":F. 1 - i -I

0

* In (3.3) we have set Fi=F(ti), W- the jth correction

step for M(t i ) and similarly U4; finally Gi contains

the rest of the terms, only depending on previcus time

Isteps. In the next section we deal with the convergence

of the iteration (3.3) and in Section 5 with the accuracy

of the approximation M.

4.- CONVERGENCE OF THE CORRECTOR METHOD

We write more conveniently the iteration (3.3) as

(4.1) MjU j - HMj'IG ,1

i.e., we omit thc indices and write for short

(4.2) H= (F
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We shall restrict ourselves to matrices F having a complete

system of eigenvectors e ,...,en, corresponding to the

(ordered) eigenvalues X n..,X ( ).n " 2 n'

Moreover we shall only investigate the convergence of

the first column of MJ , mi say. Let G(1) denote the

first column of G, then there exist scalars 'y '. n

such that
n

(4.3) G(1) = Z ,jej

It is not restrictive to assume that all yj< O. We now

first investigate the fixed points (if any) of the itera-

tion (f(4.1))

(4.4) miv j  = H mi- 1 +G(1), 11mi -11 tim 11 =
2 2

Hence suppose for some vector m with IInmI -1 and some
2

scalar v there holds

(4.5) m v - H m * G(1)

Note that (4.5) might be regarded as an "inhomogeneous

eigenvalue problem".

"* Now write
n

(4.6) m Z

then we obviously have

(4.7) (v'X; )pk = ..' "' n

U
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Hence

Property 4.8 If 7 t 0 for an)y Z, then A,0

Now let k be such that 7k O, then we obtain from (4.7)

.7i.

( 4 .9 ) A t A k

The actual values for A k (and hence for the other At)

follow from the requirement "1mll =1 if we write for
2

short

(4.10) eij a (ei,e.)

(the natural inner product), then we must require that

i (4.11) fk( Mk) = 1,

where

n e. .i7.
(4.12) fk(X) = x 2  Z 1J1J

i~'j" (7k+(Xk-X,)x) (fk+()k-Aix

It is not restrictive to take k minimal. Since by

definition fk is positive definite (x*0) we have a graph

like in fig 4.1

Fig. 4.1
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Hence there are at least two values of x such that

fk(x)-l. Denote the negative root of fk(x)=l by Ok"

We have then

Theorem 4.1 The choice Yk-ak(< 0) is the only stable

one and gives a fixed point m of (4.5) with the largest

possible v= k_
k

That we should choose Ik<0 for obtaining the largest

possible v is trivial (n.b. 7k <0!). The stability

follows from a perturbation argument.

CONCLUSION

The sequence {mJ } converges to a unique vector m and the

sequence {vj } converges at the same time to a scalar v,

and they moreover form the largest possible pair (m,v).

Now if m(ti. 1) was the approximate direction of the most

increasing solution at time t-t1.,, then it can be eypc-t

ed that m(ti) computed this way, will approximately have

the direction of this solution at t=t1 . Indeed, to see

this, let for simplicity F be a constant matrix, and

trj(t.)ze/ile 1 Then apparently Gi -i(I) has the direction
I 2

S
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of e , whereas 7 e /hP and 7 "''' n are small.
I I 0 2

From (4.11), with k-l, we thus see

(4.14) 1 2

whence v - 7 +
0

Since X is the largest eigenvalue of H(=F- I)
!0

we therefore see that v is approximately the largest

eigenvalue of F!

By similar arguments as are used to show convergence of

the QR algorithm one can expect that the general process

(4.1) will converge in a stable way to some M and U.
g

In order tu find initial values for M and U, one may

use an appropriately ordered Schur normal form of F(O).

5.- ACCURACY OF THE DECOUPLED DIFFERENCE EQUATION

Since the above described method necessarily introduces

discretization errors, the actually found upper triangular

matrices U. will, in general, not correspond to an exactly
1

transformed ODE. The following qualitative discussion is

concerned with this problem.

I
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Let M(t) be a piecewise polynomial that is sufficiently

differentiable (at least as many times as the order of

the corrector) and moreover such that

(5.1) M(t i):= Mi

For this M, which is a certain transformation function

now, define a matrix function U(t) by

(5.2) U = M (AM-eA)

If we (theoretically) discretize (5.2) we make a discreti

zation error hAi say. Apparently, using the notation

Ui:=U(ti), we must then have

n A

(5.3) 0 = h Z .iM(U i-Ui) hAi

j=O 0

(for simplicity we assume constant step sizes). Let
n

the polynomial 1 03z J have stable roots only, then it
j=0 j

follows from a standard error analysis that

Ai

(5.4) 11U -U 11 0 I (1A 1l/h))1 ()

4 i.e. of the order (h 1 ) for a pth order method. (Note

that Mi is orthogonal).

4 Whether or not these errors in Ui are - clearly

depends on the values of the magnitudes of the elements

of Ui, which carr be monitored. Moreover, we can monitor

the local errors quite conveniently by taking (p+1)th

divided differences of the matrices Mi

I1



DECOUPLING OF BOUNDARY VALUE PROBLEMS

FOR TWO-TIME-SCALE SYSTEMS

by

R. M. M. Mattheij1

and

R. E. O'Malley, Jr.
2

U Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Troy, New York 12181

1. Supported in part by the Netherlands Organization for the
Advancement of Pure Research (Z.W.O.) and the Niels Stenson
Stichting. On leave from the Mathematisch Instituut,
Katholieke Universiteit, Nijmegen, The Netherlands

2. Supported in part by the Office of Naval Research under
Contract Number N00014-81K-056.



1. Introduction

We wish to consider linear two-point boundary value problems

of the formdx

(1) = a(t)x+f(t), 0 1 t 1 1

(2) M0X(0) + M1x(l) = b

where the homogeneous system involves coupled slow and fast dynamics.

This contrasts sharply with most mathematical discussions of singu-

q -larly perturbed systems where a small parameter multiplies some of

the derivaties and slow and (potentially) fast components of the

solution vector are immediately recognized. Special numerical

methods are available for stiff initial value problems with slow

and fast components identified (cf. S6derlind (1981)) and Riccati-

like transformations are available to decouple such problems

analytically and/or numerically (cf., e.g., O'Malley (1969),

Mattheij (1979), and O'Malley and Anderson (1982)). In this paper,

we propose a different type of transformation which will be useful

in more general situations. We expect to numerically implement

our algorithm and to pursue important generalizations in several

directions. Relation to ongoing work of past and present colleagues

and friends will be obvious to those familiar with earlier work

(cf., especially, Ferguson (1975), Flaherty and O'Malley (1980),

Mattheij and Staarink (1980), and Chow et al. (1981)). They are

all thanked for their stimulation and encouragement.

Our basic assumption is that the homogeneous system has both

smooth (or "slow") and rapidly-varying (or "fast") solution modes.

This requires the matrix a(t) to have large entries, so to make
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our hypotheses more explicit, we introduce a small positive

scaling parameter e and write

(3) art) = -7A(t,) t. A'

j=0

We do not actually intend to use a full power series expansion

here (or below), but would in practice use a truncated expansion

(approximation) involving only a few terms. Thus, our n-vector

system takes the form

dx(4) ca- - A(t,c)x + ef(t)

where the presence of slow modes implies that A(t,O) - A0(t) is

a singular matrix. Since the nonhomogeneity can be dealt with

by variation of parameters, most of our attention will be re-

stricted to the homogeneous problem.

We shall seek a change of variables

(5) x = T(t,)y

where T and T- 1 are both smooth (slowly-varying) throughout the

interval 0 t - 1. (Appropriate assumptions will be introduced

A as our discussion proceeds.) The transformed problem will take

the form

(6) = U(t,e)y + cT 1 f

where

(7)U= 1  dT
(7) U T T(AT -a)

6
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We shall determine T and U simultaneously so that U has the

block triangular form

a Ull U U3

(8) U 0 U22  U23 J

0 ~ 0 CU 33/

where the eigenvalues of U11 and -U22 all have strictly positive

real parts (at least for e small). Thus, the rapidly-varying

solution modes of the transformed homogeneous problem will be

either fast-growing or fast-decaying, but not (indefinitely)

rapidly oscillatory. We shall assume that the partitioning holds

throughout the interval 0 1 t 1 1, thereby implicitly eliminating

possible "turning points" within the interval (cf. Wasow (1965)).

The matrix T, then, corresponds to a decoupling transformation

which separates rapidly growing, rapidly dc aying, and slow modes.

The time scales for the rapid modes will be roughly O(l/E) times

those for the slow modes. The reason we don't allow purely

imaginary eigenvalues of U(t,0) is that we wish to base our

analysis on boundary layer methods (cf. O'Malley (1974)). We

shall further presume that we can obtain smooth dependence of

the UiJ's on e, although dependence on some root el/r, for some

integer r > 1, would be necessary in some degenerate situations

involving defective eigenvalues. These neglected possibilities

should be considered in later work.

In order to proceed, let us fix the dimensions of U11 and

U2 2 to be k x k and I x Z, respectively, and write T as

(9) T(t,E) = T(t,O) [I + G(t,)]n
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where G will ultimately have the special, compatibly partitioned

form

0 G 1 2  0

(10) G(t,c) = 2 1  0
G 31  G 32 0

j= ( G  )

At several stages, we make somewhat arbitrary choices for the

form of our transformations. Though these cause us no complica-

tions, others might find different choices more appropriate. Our

decoupling will be done in two steps. First, we shall separate

*fast and slow time scales. Then, we split fast-growing and

fast-decaying modes to higher orders in e. We shall let m, n-k-t

designate the number of slow modes with bounded derivatives as

S*0.

2. Time-scale Decoupling

At our first decoupling stage, it is convenient to tempor-

arily combine notation somewhat. Splitting T after its first

k + I columns, we set

1T(t,) (R(t,) Z(t,c))

Introducing

r. 1(12) Bi(t,E) =U 2

and

6
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(13) C(t,E) = 23

Uthe equation (7) defining U implies that the fast decoupling

transformation R(t,e) must satisfy the linear matrix (Liapunov)

equation

(14) Ek =AR- RB

Since A and B have power series expansions in E, it is natural

to seek a smooth matrix solution R in the form

(15) R (t, c) Rj (t) j C o

j=0

We shall, indeed, simultaneously determine a formal series solution

for this differential equation and for the block-triangular system

matrix B(t,c) for the transformed fast subsystem. Specifically,

by equating coefficients we obtain

(16) A0R 0 - R0B 0 = 0

and, for each j Z 1,

(17) A0Rj - RjB0 = RoBj +j

where the aij 'c are known in terms of preceding coefficients.

To solve our problem, we introduce the Schur canonical form

(18) A0 = QVoQ0
T

for the principal part A0 (t) of our system matrix ea(t). Here,

Q0 (t) is orthogonal and V0 (t) is upper triangular, so

(19) A0Q0 QoV 0
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We observe that these matrices are convenient to obtain numerically

through the QR algorithm (cf. Golub and Wilkinson (1976)). This

provides a full triangularization for A0, though a block-triangular-

ization would suffice for much of our paper. We shall set

(20) V 0 ( B0  C0O

and, without loss of generality, we suppose that the first k (and

remaining 1) eigenvalues of the (k + ) x (k + L) matrix B0 will

have strictly positive (negative) real parts throughout the

interval 0 5 t 5 1. This clearly, but definitely, restricts the

A matrices A0(t) under consideration. The matrices B0(t) and C0 (t)

so specified determine our limiting transformed system matrix U(t,0).

Moreover, with such an ordering of the eigenvalues of B0, we separate

the fast growing (first k) and fast decaying (next t) modes at this

first (and critical) order (with respect to c). If we further let

R0 coincide with the first k + I columns of Q00 we satisfy the

desired linear system A 0R0 - R0B0 = 0 and specify the fast part

R 0(t) of our limiting transformation matrix T(t,0). Its rank,

k + X, coincides with that of'A0 (t).

3. Higher-order Terms

Since Q T =R (Ik+9) ,multiplying the linear system (17)

through by QT and settingiR

(21) Rj= Q0  for j 1

,

UR
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implies the pair of equations

(22) B W 1 + C 1 1 O B

and

_"'2 2
(23) -RjB -

0 0

where the a Is are known successively.

Since the triangular matrix B0 is simply-inverted by back sub-

"'2 stitution, R is uniquely determined and a linear system

(24) B0R - RB 0 = . + 0j-1

B 0 U2 "'
1 "'2 . "1

with Bj_ 1 = oj_ 1 + C0 R. remains. We now seek to specify R. so

that the resulting fast-growing and -decaying modes are separated

(to the appropriate order) by making Bj upper triangular. Sub-

stituting for B0 and B., we seek a solution of the form

12

(25) R. (t) =
G210

This provides the four linear matrix equations

u11 G12 1 12 22 1200 3 J 0 BJ-
1

U22 21 U21 U11 21

(26)

U12 G2 1 = Ull +8 l
0~ 3-1

21 12 22+ 22
S-G U = Uj j 1

presuming we can take U12 = 0 for j > 0. The first two systems3



8.

solvable for G1 and 2 respectively, since 0
are uniquely sod G0

and U22 have no eigenvalues in common. Indeed, the triangular

form of U11 and U22 allows a simple solution for these nonzero

blocks of R. by forward and backward substitution. Then, the

last two equations directly specify the block-diagonal matrix

B.. The procedure can be continued to any desired order.

To determine the full transformation T(t,e), we must select

a matrix Z(t,c) whose span is complementary to that of R(t,c).

It is natural to attempt to take T(t,O) = Q0 (t). Then(0 G}
(27) R (t,C) = nd R2 (t,e) = (G3 1 G3 2).

Q G~21  0

The T matrix so obtained is readily inverted since

I k  + R  0

(28) T 0

CR2 im)

* implies that

(k£+ C i) -l 0

* (29) T-I  T
= )QO-cR I /

and (30)+ +'+ C 0" -

)CR G21 i) 0 (It-C 2 G2 1 G 1 2 )

at least for c sufficiently small.

0.-



9.

The matrices T and U are, of course, determined -imultaneously.

We should check that our transformed state matrix U attains the

0desired block structure. From (7), it follows that Z, the last

m columns of T, must satisfy

33 dZ
(31) RC + CZU 33 - AZ -

Since Z = Q0  multiplication by Q0 implies that

T =Q 0 0 0 T0
(32) T + ( Q AQ0  R

Since QoAoQ0  (:0 C and Q R0  k , we have

equality when £ = 0. From the coefficient of each eJ with j > 0,

we directly obtain

U13

(33) C (

2 3

(in terms of preceding terms) from the first k + X rows of (32) and

(34) U33

J!

from the last m rows. This completes the specification of T (t)

and U (t).
)
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We should verify that the truncated series actually provides

decoupling to a corresponding order and that analytic transforma-

tions exist with asymptotic expansions coinciding with the formal

series generated. it should, however, be realized that our approach

is not necessarily limited to asymptotic validity as c * 0, but

that the decoupling achieved should be numerically valid for any

realistic small c for which our algorithm is defined.

4. Boundary Value Problems

The principal value to our approach is the simplicity it

provides for solving two-point boundary value problems. In

y-coordinates, our problem (1) - (2) becomes

(35) AX = U(t,c)y + cT-I(t,e)f(t)

dt

(36) M0 T(O,c)y(0) + M1 T(l,e)y(l) = b

If we first find a particular bounded solution of (35), using

boundary conditions appropriate to the conditional stability of

our fast subsystem, we need after only consider the homogeneous

system.

All solutions of the homogeneous system have the form

(37) y(t) - S(t,C)c

dS2
where a is any fundamental matrix for e- = U(t,c)Q. We shall

use a fundamental matrix

4 (38) Q(tc) = S 22 123

0 0 .1233

40

... ...
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subject to special boundary conditions at the endpoints t = 0 and

t = 1 which will assure us boundedness of the aas's. Specifically,

we'll define Q on 0 1 t 1 1 by asking that

W2 33 33 33 33
U a n , (0) -Im

Sdn22 =U22n22 22
Cdt(0 11

C d9 23U22 23 + U23 n33  a 23 (0)..0• (39) =-t+

d = U 11n 11

1 12 1 12 12 22 12C - U-- + , n=1(1

d 13 u11 13 U12 23  13 33 13C,..--.. = U Q + U n + , n n•1

As c * 0, we note that S22 decays rapidly to zero for t > 0 (i.e.,

away from an initial boundary layer), while n11 rapidly decays to

zero away from a terminal boundary layer near t = 1. Away from

t = 0, S23 tends to an outer limit W22 )-l u23 33 as 0.

n12 and n 13 involve boundary layer behavior at t = 1. Such

asymptotic results readily follow from singular perturbations

theory (cf. O'Malley (1974)).

Since any solution of our homogeneous problem (1) - (2)

has the form (37), we obtain a unique solution if and only if the

matrix

(40) D - M0T(0,)2(0,d) + MIT(I,€)Q(Ic)

is nonsingular. Moreover, the special structure of T(t,c) and of
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U

(0,c) and Q(l,e) can be utilized to simplify the checking of

this invertibility condition. If D = 0(ep ) as E * 0, we can

anticipate having solutions which become algebraically unbounded

like c-P. We can even identify the limiting behavior as e - 0

within (0,1) with the solution of a reduced boundary value problem

of order m (cf. O'Malley (1969) and Harris (1973)). Special

numerical interest, however, concerns problems where c is small,

but nonvanishing.
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7. R. M. M. Mattheij and G. W. M. Staa:,:ink (1980), "A Method
for Solving General Linear Boundary Value Problems," Report
8029, Mathematisch Instituut, Katholieke Universiteit,

• Nijmegen.
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subject to special boundary conditions at the endpoints t = 0 and

t = 1 which will assure us boundedness of the Qc's. Specifically,

Swe'll define 9 on 0 1 t 1 by asking that

/dn 33  33 33 33

22  222 22
= U22 22(0) =

23

d 23 22 23 23 33 23
(39 - t + U a Q (0)=0

d1 11 11 11

d12 U 1a2 +U1 2Q22  Q12 (1) 0
at

dl'= 1113 U12 Q23 U13Q33 Q13* E_ aE- =  2 °ln3 ,~ ()=0

As e 0, we note that R22 decays rapidly to zero for t > 0 (i.e.,

away from an initial boundary layer), while Q 11 rapidly decays to
zero away from a terminal boundary layer near t = 1. Away from

t = 0, Q23 tends to an outer limit (U22 )- U 23 33 as e 0.

112 and Q13 involve boundary layer behavior at t = 1. Such

asymptotic results readily follow from singular perturbations

theory (cf. O'Malley (1974)).

Since any solution of our homogeneous problem (1) - (2)

has the form (37), we obtain a unique solution if and only if the

matrix

(40) D H MoT(0,E)n(O,e) + M1T(IE)Q(I,E)

is nonsingular. Moreover, the special structure of T(t,.
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Q(0,e) and n(1,e) can be utilized to simplify the checking of

this invertibility condition. If D = O(eP ) as e 0, we can

anticipate having solutions which become algebraically unbounded

like c- p • We can even identify the limiting behavior as e - 0

within (0,1) with the solution of a reduced boundary value problem

of order m (cf. O'Malley (1969) and Harris (1973)). Special

numerical interest, however, concerns problems where £ is small,

but nonvanishing.
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INTRODUCTION

Consider the autonomous retarded differential-difference eqatation

9 E( - rY(t).y(t- 1)9...,y(t-T3)J (is)

with the initial function

Z( (t) (t, a -T,o3), (1b)

vhere - maxi , (T Suppose the function f is sufficiently

d
differentiable; then ve have at (QQ,...,0)-chosen for notational con-

venience-

!(o,y, , - !(9 o 966092) + ±i-o - + fOi'..u ' (2)

where

if' - (0,o,...,99 (3)

and

I mi6..II,(Z±I...,ZH )l 1/E0 0 1 ill - 0. (4)-- ai I-~l

Assume that there exists an a such that

-(Q.o.....Q) + [E~ 1 - 0 (5)

Nov. set Z(t) - x(t) + %;*then (1) with (2) and (5) yields the autonomous

retarded differential-difference equation

0

+ ;x(t)S, x(t-))4!,...,x(t-r,)4) (6a)

('.
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with the Initial function

xlt) - t(t) - s (t £ E-i,01) (6b)

It Is out of consideration of (6a) that we vere led to consider

!°(t .O(t) + .r - )(7a)

with the Initial function

O(t) (t) (t t t-r,03) (7b)

as an archetype equation against which to assess the stability properties of

mmerical methods for the solution of (1). In £1] we defined F-stability

sad Fls.,3-stability with respect to (7) for a multistep-sethod/Lagrange-

"sthod pair-end displayed pairs exhibiting such stability types. .

In this paper we turn to a special case, that when (7) is a scalar

equation with just one delay. For this distinctive case we replace (7) by

A(t) -pu(t) 4 qu(t-r) (8)

With

ult) - *(t) (t C t-T,03). (Sb)

In [2], aBrvell, extending results reported by Cryer in [33, proposed this as

an archtype equation. He there introdaced the P-stability and G?-stability

types. These types differed only in a restriction On T In the former type.

Since we will not distinguish two typej by such a restriction, we will need

:- only one type designator. For simplicity, we shall adopt the formr desig-

nator (P-stability), but with a definition to suit our exposition.

.- : -'-. *...
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BCKGROUND,

We shall say that the archetype equation (8a) is p-dominant if

* Rep) '-qi (9)

The asymptotic behavior of the solution of (8), when (Ba) is p-dominant,

is described in

Theorem 1: For all bounded, measurable,*(t), the solution

u~t) of (8) is asymptotic to zero (lim ~u(t) -0) for all

Ta 0 if (Ba) is P-dominant.

The validation of this result given by Barwell in [23 is =ore tedious than

that found next in our

Proof: Let a variable subscripted with Rt [with 13 denote the

real part [the imaginary part) of that variable. Then the

complex scalar-valued differential-difference. equation (Ba)

is equivalent to the real vector-valued differential-difference

equation

(10

(01 r1 Fp1  -pR u(t) q1  -q R u. (t-T)(0

The solution of this equation will be asymptotic to zero for all

ta0 If and only if its characteristic function
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1~J 01 FPR -P1F]

Is nonzero in the closed right half-plane for all T X 0. [4,53

Note: A superscript * denotes (complex) conjugate. As shown

by Kanmen In (63, this Is equivalent to

P(S'z) ii 0 (RC(sIZO, IzISi), (12a)

* where

P(s~z) -(s-p-qz)(s-p*-q*x). (12b)

Now, for Izisi,

Re(p~qz) -Re~p) + Re~qa) s Refp) + IqI < 0

and

Xe(p*+qz) -Re(p*) + Re(q*z} S Re.{p*) + jq*1 - .(p) + jqj 0.

These two relations Imply, respectively. that (s-p-q:) and

(s..p*..q*z) cannot became zero for Re(s) a0 when 1:1 & 1.

Therefore, P(s,z) cannot become zero for Re(s) k 0 when jzj S 1. U

Next, let u U %In, and u n denote approximations of u(tn), a(t n) and

u(t -r), where t n - h and v - n/h for some h. Clearly, (Ba) with the

substitution of these approximations provides just one relation among the

three variables u and u *An additional two Independent relationsn n n-v.
are needed.



An the first of those two remaining relations we shall use the multi-

sto (integr.9aion relation

0 r auCeo 3 0 (13)i1A.+i h8±an+1J-0

which Is of order jIf the coefficients a and satisfy

z a 0 (14a)

0 j i-i -Zl .KiG±-i pa (Jinlp... ap). (14b)

Being of order p implies, when u(t) is sufficiently differentiable, that

0 6+1) +1 hj423

Z ia ~u~t~ih0i (til )3~ 1  (Iz)h~p + 01 J (5

Wherej~t ,tjan

As the second of these two remainin relations we shall use the order q

Lagrange (interpolation) relation

un-vi EjU j a

Vwhere the indices a (J'm0,...,j) satisfy 0a;->.aO and the coefficients

4-.. 6 Wv satisfy

(-)k 46 (va t.0 (km-0..qj)O (18)
1-.J-0 j 3

The wall known solution of (18) is

6 (v) *-(19)
jk-Oao

k0 .

kI
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Being of order Implies, when u(t) is sufficiently differentiable, that

q (v)u(t~

(;+I) q+l 2
Wu)hA + IJUJ3 (20)

where v c [t" t 3~ and
0 q~a

(V (vql 1 q a ('V)a (21)

we turn our attention now to the stability versus order properties of

the numerical methods.

Firstly, with respect to the multistep-method, herein assumed to be such

0 K 0 c+1
that Z1iK a i and E i1.)i are relatively prim, ws have

Definition 1: The multistep-method is said to be passive if

0 aC 1CL 0 KIC~ ~ Ii1: ' 0 iC+iLO (2
ZiaiKI A i ±_ 0 C j~ A C~ 4~ *- (02)

and

Definition 2: The multistep-method is said to be r-passive

(0' <n a 9 2) if

K0K1i 0 + i 0
Iars{in..ri/E...,i) 0 a -rnW V~ C 19ICIZ1 A Z C IC+I 0 . (23)

Obviously, a w12-passive method is passive. Note: Passivity of a method is

equivalent to It being A-stable and an-passivity of a method is equivalent

* to It being ACrnJ-stable. The research of Nevanlinna and Sipila [7) makes

It evident that r-passive methods are necessarily implicit. Furthermore,

by the now classic Dahiquist Theorem [8), we know that the order of passive

methods cannot exceed two. Fortunately, *n-passive methods (with a < w/2) of

order exceeding two exist; for exampl*, the backward differentiation methods

W
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of Gear E9, chapter 113 are a set of a-passive methods-orders one through

six.

Secondly, with respect to the Lagrange method we have

Definition 3: The Latrange-method is said to be passive if

Z1,, (V) r.9 I V aI 1. (24)

and

Definition 4: The Lagranse-method is said to be 0-passive

(Is B) if

- 0s B v (Vl j 1. (25)

Obviously, a I-passive method is passive. The research of Strang 103.

(See also, [11.) discloses that Lagrange-methods with a uniform mesh

(a -X+J) are passive when -v c t-)X+(q-1)/2, -X.+(j+1)/23 for q odd and

:-v £ t-AI2-i, -A+q/2+13 for q even. These intervals are center In the

larger interval E-A, -)L+q3 spanned by the interpolation points. A Lagrange-

method with a uniform mesh will be called a uniform Lagrange-method and,

when I is chosen such that -v is restricted to the central interpolation

interval, It will be called a centered uniform Lagrange-method.* It Is

evident that, if a centered uniform Lagrange-method is to be passive for

all v z 0, then the order cannot exceed two. (This limit is the counter-

"In general, a mesh is uniform when o= - +Jl. Obviously, Strang's result

continues to be correct, but with respect to the central interpolation
Interval within a larger mesh, a mesh with a mesh-interval of 1. It was
convenient for the results to be presented in this section to implicitly
use 1-'.
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part of the order limit on a passive multistep-method.) Fortunately,

because E v jM a IV)O is a polynomial in v and 4 it is bounded f or all

vi & 0, provided the Interpolation points a (J.0O,... A) ire suitably chosen

V and for a1. Thus, a Lagrange-method of any order is 0-passive.

P-STABILITY

Our Initial result is with respect to

Definition 5: The multistep-method/Lagrange-method pair (13)

and (17) is said to be P-stable if the (numerical) solution

of (8) by (13) and (17) for all T k 0 and for any fixed positive

h Is asymptotic to zero when 08a) is P-doninant.

'e now offer

Theorem 2: The multistep-method/Lagraneuatodpar(3an

(17) is P-stable, if the multistep-method is passive and if the

Lagrange-method is passive.

and Its

Proof: By Definition 5, (s) is p-dominant. It therefore follows,

by Theorem 1. that the solution of (8) is asymptotic to zero for

all T Z 0. As noted in the proof of that theorem, this is equiva- -

lent to

I~e,:) vi 0 (Re.(s) z 0, Iz:5 S 1), (26a)

-
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where

( P(sz) - (s-p-qz) (s--jz). - (26b)

In that proof we validated (26a) by showing that

R(s,z) 0 (Re(s) a 0, jzj 1 I), (27a)

- where

a R(s,z) = s-p-qz. (27b)

Nov consider the set of discrete time equations (8), in which the

variables have been replaced by their previously noted approxima-

tions, with (13) and (17). If the solution is to be asymptotic

to zero, then the characteristic function (easily shown to be)

o(r)REP()/ha(0), O(C)] must be nonzero for JCJ 2 1, where

U( 0 iC +i ,C(0-E0 #C+i an ()- qa()
p(.) - = - - ( 0 and 8(t;) - J= OS (vj .

That this is true for C such that kI 1 and a(c) 0 0 follows

from (27a) with (22) and (24). For the case of C such that

hJC; 1 and O(C) - 0, the characteristic function equals p(C),

which is nonzero.

The orders of the multistep-method and of the Lagrange-method are

related to the discretization error as follows: If q p-I, if un+-t

u(t ) +O(h 1 ) for I (-K,...,-1 M ...,a}\O, and if u(t).is p41

times coutinuously differentiable for t c Etn_9 , t n]U[tn +o, tn+O 3. then

u - u(tn) +(OhX ]. We hereafter assume that q k p-I and shall, as a

consequence of this observation, refer to as the order of the multistep-

method/Lagrange-mothod pair. As a consequence of Theorem 2 and of previous

observations, we have

-- - - - - - - -- -..-- --- *-----------"~.... .~. .. .~-- -- ',.. .
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Theorem 3: The order of a, necessarily P-stable. passive

uultistep-method/passive Lagrange-method pair cannot exceed

If we should assume that q a p, then, additionally, the principal

error term would be dominated by the principal error term of the multistep-

method. This being the situation, a solution process for differential-

difference equations based on a set of passive (hence, P-stable) multistep-

method/Lagrange-method pairs could be created by augmenting a solution

process for differential equations, based on the set of multistep-methods,

by interpolators from the set of Lagrange-methods. The error-control-

hence, also the step-control--procedure would not naed to be changed.

And, the order-control procedure could remain unchanged, but with only an

upper Limit of two on the order.

P[EG.0-STABILITY

The order constraint imposed by Theorem 3 can be circumvented by in-

voking other methods and/or by considering alternate stability types. We

consider the latter in this section, beginning with

Definition 6: The multistep-method/Lagrange-method pair

(13) and (17) is said to be P[ta,0)-stable if the (numerical)

solution of (8) by (13) and (17) for all T a 0 and for any fixed

positive h is asymptotic to zero when

R1ej (W 2--)P) <-IqI, (28)

where -



With respect to this definition we offer

o Theorem 4: The multistep-method/Lagrange-method pair (13)

and (17) is P[ .03-stable if the multistep-method is a-passive

and if the Lagranse-method is O-passive.

* and its

Proof: The validity of (28) by Definition 6 implies the dif-

ferential-difference equation

1±j (w/2-le)*(t) e pv(t) + qv(t-r) (29)

s 2 )-dominant. Therefore, by Theorem 1, the solution

of (29) for any bounded, measurable initial function is asymptotic

to zero for all . This Implies and Is implied by Its character-

/:. istic function

..Q(Oe - 1 ±(Jlw/2-a) -s'a I ±jlwll-*) u1-TS-

being nonzero for Re(o) k 0 and for all T k 0. As previously noted,

this is equivalent to

Q(ao 0 (RQ.{o a 0, I sl, 1) (31a)

where

. - ±J(w/2-*) 1 tj(w2-a) (31b)

*7

71
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This Implies that both factors must be nonzero for Re(a} k 0

and JCJ 1 1. Since multiplication of either factor by an entire

function does not alter this property, we have by Implication

(upon multiplying the left factor by 15e (w/2-a) and setting

a Ot w2"0G) aW z - (t 2 -o)+) that

R(s,) i 0 Iarg(s)l s v-a, I s 0), (32a)

where

R(s,:) - s-p-qz. (32b)

This sam function appeared in the proof of Theorem 2, but was,

there, nonzero on a smaller domain. (See (26).) Nov, as in the

proof of Theorem 2, ha(I)Rtp(c)/ha(c), O()], the characteristic func-

tion.In the solution of (8) with (13) and (17), must be nonzero

for I C k 1. (The functions p, a, and 0 are as defined In the

proof of Theorem 2.*) By definition 2, ;arg(p(C)/hv(C)l S v-a"

over the region of C such that IC a Iand a(C) 0 and, by Def-

inition 4, the modulus of O(C) in bounded by 0 over the region

1 1. Our result, for r. such that III 0 and a(,) # 0, now

follows from property (32a). or the case of C such that tCI .1 1

and a(C) - 0, the characteristic function equals p(C), which is

nonzero.

Since there exist a-passive multistep-mathods (such as the backward

differentiation multistep-methods) of order exceeding two and since every

*In the first half of this proof a and C vere used as transition variables,
with no relationship to the meaning ascribed to them hereon and in the

- proof of Theorem 2. We trust that no confusion has ensued or will ensue
*from doing this.
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* Lagrange-method Is bounded, it follows that Pfc,-stable multistep-method/

Lagrange-me tbod pairs exist.* For uniform Lagrange-methods a 0 valid for

all v~ a 0 is easily obtained for q 2,2 as the maximum of r .o~(v)I with

respect to -V a E-A+(i+l)/2. --%+D for j odd and -v a (-14j/2+1, -A4j3 for

q oven. In Table I we display order-by-order, for orders 1 through 6, the

a and 0 values for the paired backward differentiation multistep-metbods

and uniform Lagrange-methods.

P a B

1 90.00 1.00

2 90.00 1.00

3 86.1* 1.64

4 73.40 2.21

5 51.90 3.11

6 17.9* 4.55

Table 1 Pla,0J-stable backward
differentiation multistep-
method/uniform Lagrange-
method pairs.7

The constraint (28) on p and q associated with a P~a.0J-stable method

is illustrated in Figure 1. The value of p must lie within the sector when

that of q lies within the disk of radius P.

E-~
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dOa-

Figure I p and q regions for a
PEe.0J-stable pair.

COMPOSITE MULTISTEP-4ETHDS

In this section we turn our attention to other methods; in particular,

we focus on composite uultitp-mnthods E 12, 133 as an alternative to multi-

step-methods. Such methods are characterized by the relation

0 3A. -bI (33)

where

and .
L~ iJ1
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are -vectors of consecutive blocks of t contiguous approximants to the

solution of (8) and where A1 (--K,...,O) and Bl (I--K,...,O) are (.x)-

matrices which satisfy

0:. (34.)

and

. F -_j L1 -9 (j-l,...). (34b)

As for multistep-methods, p is the order. Note: Ve assume herein that the

composite multistep-methods have zero defect; that is, that both A0 and B

are of full rank, rank A. Now, with respect to the composite mu ltistep-

method we have

Definition 7: The composite sultistep-method is said to be

a-pZssive (0 <o S u12) if

de(E0 K+T 0 B K+1 (35

This definition relates to those for passivity and a-paosivity of a multi-

step-method (composite multistep-method with A-i) in the following way: .

de(0  ~ K+1}
1-KB I Is not identically zero because B0 is Of full rank. Therefore,

4et~t.,...II~CE A 1-11~l) Is not zero for C such that ~ n

L-4"" inde( 0 r + 0 and for Iars(-X)I a.~

---

Ii



16

0 K+1 -1 0 K+"
This implies that the egenvalues of El1 1_KIC 3 Er. 3 are

algebraic function of C whose arguments are contained in the Interval

C-(w-,(: )3 for all C such that JCJ Z 1 and det(E, j 1.,+ 0. This

is just property (23) in the definition of a-passivity when L-1. It Is

equivalent to property (22) in the definition of passivity when 1-1 and

a 1/2.

We now offer

Theorem 5: The comosite multistep-method/Lagrane-method pair

(33) and (17) with o1 t ~ is P~ca8J-stable if the composite

uultistep-authod is a-passive and if the Lagrange--maethod is

O-Vassive.*

and Its

Proof: The first portion of the proof of this theorem Is that for

Theorem 4 through (32). We take-up this proof from that point.

The numerical soluti:on of (8) by (33) and by (17) with a = C £
j i

engenders the difference equation

0 -: Z,_ (Az. VIp q 6j, -0 ])..
V, .z (v) ] IrnO (36)

muich has

detZ 1 +A 0 K+I p4.qiI 41 3 W C (37)

*Definitions of the stability types when a composite multistep-method is
* used as the integrator were not given as they would be trivially different

from Definitions 5 and 6 wherein just a multistep-method serves as the
integrator.
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as Its characteristic function. If the numerical solution in

to be asymptotic to zero, then (37) must be nonzero for Ir0ki.

Virstly, let us consider those C such that ICI k I and

dett I..TIC 0. Then. (37) is equivalent to

*1 0 [+1-I1 0 K+I
(hfZI..I 3 .(Z IC~ 3

functions of - 6pqZ.(V)CCJ31 0. (3838)-

mo, let C (i-1,...,L) denote the oigenwalues - algebrac

0 K+ 1 [ +1functions of• C of EU: -1r EllIhC 3. Then, (38)

may be replaced by

,..~ £(r)-V-qF. 6 0vr (tl, . t) 39a1

or, equivalently,

.~~ ~ itaIlc/h, 84lll 51 0. (i~,..t)39b1)l-

As previously noted, we have erg € Jsw-o (i€1.....}1.

and, because t€.), S 0. we have I9(c )j' 0. It therefore fol-

I lows from (32) that property (39) in true for C such that I CI 1

and det(E 0. Let us, now, secondly consider those

C such that a 1 ande -. 0. In thiscase (37) 7

0 IC+I 0 K+I
Is equivalent to det(ad(iZ c+'CZ J. ir ) 0 0. But this

Is an immediate consequence of (35) for such values of r.

if for the composite multistep-msthods we were to use those reported

by Dickart and Picel E14] and If for the Lagrange-methods ve were to require

a uniform nsh (mesh ipterval 1, rather than the previous 1), then we vould

have a set of ?ta,03-stable composite multistep-method/Lagrange-method

pairs withs the a and 0 values displayed in Table 2. The Blickart-Picel
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methods are one-step methods for which maximum order was sacrificed- the

order Is one less than the maximum possible-to achieve Improved numerical

solution properties for very large h.

P a

1 90.0°  1.00

2 90.0* 1.00

3 88.9" 1.64

4 87.70 2.21

5 85.5 3.11
0e

6 82.7' 4.55

7 79.50 6.93

8 76.0' 10.95

9 72.5' 17.85

10 69.6* 29.91

Table 2 PCa,03-stable Bickart-
PJel composite multistep-
method/uniform Lagrange-
method pairs

If we were to use the maximum order one-step composite multistsp-methods,

then we would have a set of Pcg]-stable pairs with, in particular, a-90.01

for order 2 at 1l1 through order 7 at 1-6. C15-163

CKtOSITE LAGRANGE-METHODS

Interpolation on a uniform mesh with an interval of L rather than 1 has.

a principal error term which Is larger by a factor of I +  If I is large,

then the principal error term of the integrator, which dominates that of the

Interpolator when q a p, may not be In fact significantly greater than that

-' of the interpolator. This could have a deleterious effect on error control

- In a solution process using an approximation to the principal error term of

...........
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the Integrator as the error measure. This is the reason we here remove the

constraint aj - L and consider the resulting composite Lagrange-methods.

With respect to the block of solution values j, the archtype equation

(Sa) establishes the relation

" pUj + qUjV (40)

with

JAt-1-v1
-j-

The Interpolation relation (17) applied to each element of U yields the

composite Interpolation relation

Vmj-V "- (v + 1 (41)

where each row of the (block row) matrix &6-: ...A3 has i+l nonzero elements

for almost all v, the coefficients 6 (v) of (17). For example, when 1-3,

-.- 4, and (op0 ... ,a 4) - (-8, -6, -5, -3, -2), then Q-3, (Z01,2,3) .-
(-3, -2, -1. 0), and the A1 have the nonzero structure displayed next: 0

o O ] 311 L E- I[ i] a 3 [[ o0J " 0-- X X_ 0 X 0--3 m".0 X X X

It is quite evident, based on (17) for each of the constituent relations,

that

2:
-o-_ _

_ _ _ _ _ _ _ _ _ _*
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" [. ' iOjj L. ' --o~ o a(11
.... - -.-.:0 (. 1 ,~. 1  (i-2,....,(,j-i,...,(Q+ )) ))

' 4: -... !a3:0 -1)

1 -0 (i-2,...,J.,(j-L,..., (i-1))).

relatin of fm of ( . tn we c d sy oy tt , (

If each of the constituent relations were based on a different interpolation
'" relation of the form of (17), then we could say only that w6!. O ould

have i+l nonzero elements per row for almost all v and that

- (-2,...,L,(j-l,...,(i-1))). (42)

Note: q could of course be different for each row, a case we will not

develop in this paper. Composite Interpolation relations (or composite

Lagrange-mthods) for which (42) is true are said to be cyclic.*

Since we are solving for the block of solution values -N the i-th

relation could depend on all of the values of -N , not Just the i-th and those

preceding it. So, for the i-th constituent relation the constraint on the

o can be relaxed, becomis i-1 k a >'O"0 -T h umerical

solution of (8) by (33) and, in this general setting, (41) engenders the

difference equation

oh pg1*+qZ (v)U J} - 2, (43)
I-K~Y~-1h1CJ-0 J -N-IE

which has

*~ def~ K+I 0)EJ (")

*1 *Such methods are said to be cyclic because, when one is paired with a cyclic
composite multistep-mechod [173, the constituent equations ot the resulting
solution process can be solved cyclicly for the successive solution values
in a block of solution values.

-o_
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*/' as its characteristic function. If the numerical solution is to be asymptotic

to zero, then (44) must be nonzero for Wial.

UWe have no analytic results on the stability properties of composite

". nuultistep-method/composite LagranSe-method pairs to report In this paper.

Dowever, for a few cases, we have obtained stability boundary plots when

Sv a (0,A) to Illustrate what might be expected of such pairs. We used the

Bickart-Picel composite mltistep-methods In conjunction with composite

Lagrange-methods having AZ with the nonzero structure displayed next:

LOOO

,*-, - Y° 6 1 [izo X 0 [ 000o
0 0 0] X [ 0]

00 -- 100 0

x x 0 0 0 ' x O00O

The correponding plots, obtained by numerically solving the characteristic

equation-characteristic function equated to zero-with q-1 and v-1/2, 1,

312,...,L-1/2, are displayed in Figures 2 through 4. With respect to these

* plots, we can at best expect these methods to be P(90*, B-stable with

* 5s-1, 1.56, 3.69 for 1-2,3,4 (respectively).

, p
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CONCLUDING DISCUSSION

We have herein intr,4uced the properties of P-stability and Pa,6)-

*stability for integration/interpolation pairs upon which to base a process

for solution of retarded differential-difference equations. We considered

* various pairs with respect to these properties; in particular, we introduced

* the pairing of a composite multistep-method with a composite Lagrange-

method. In this instance we could present only limited non-analytic data

on stability attributes. A larger base of such data led us to implement a

variable-order, variable-step solution process based on a set of composite

multistep-method/composite Lagrange-method pairs. The listing of a FORTRAN

coded version, together with supporting documentation, is to be found in

[183. The listing and user manual of an APL.coded version are provided in

*[19). A simple illustration of the latter, drawn from [2), is pro-

,* vided in PLate 1.
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(t) - -104 y(t) + y.(t -. 0

- ln(104 - 1)
'!

y(t) - (tcE-T,03)

ERROR TOLERA.CE

0.1 0.001 0.00001

* L HE ERROR L HF ERROR L HF ERROR
-. - - -s -

0.00001 1 8.0E-6 1.0E'5 1 8.0'6 1.0E5 1 6.4E6 4.8E6

0.0001 1 6.4E-5 1.0E4 1 6.4E5 1.OE-4 1 5.1£-5 4.3£ 7

0.001 1 s.lE'4 1.oz4 1 5.11-4 3.3Z-6 1 6.lE-4 1.67

0.01 1 8.2£ 3 4.4E 5 1 8.2E-3 5.9£-6 2 4.1E 3 1.2E 8

* t 0.1 1 6.6E'2 4.9E-4 2 6.6£C2 1.6E-5 3 3.3E-2 1.1E8

1.0 2 5.2E 1 5.0E 4 3 2.5E1 2.415 5 2.0E-1 2.6£-7

10.0 1 3.OE0 4.7E75 4 1.3.0 2.9E'7 5 5.6E71 1.7E-8

TRUE SOLUTIOK ON 10,103

Plate 1f(t:) - o

Plate 1 Example of DDE solver of [19].
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DAVID J. NOLTING, Dept of Mathematics, U. S. Air Force Academy,
Colorado, 80840 and DAVID J. RODABAUGH, Lockheed - Burbank, Ca

It 91520. stiffly Stable Linear MultisteV Methods. Abstract.

Currently popular codes for the solution of stiff ordinary differential
equations employ the backwards difference formulae (BDF). Notwithstanding
the computational advantage of the BDF, they suffer large regions of in-
stability in the left half plane for orders four through six and are not

as Ao-stable for orders greater than six. This roughly points out the need
for more robust methods.

Desirable properties of linear multistep methods (LMM), such as size
of stability regions, can be optimized by viewing those properties as
functional values and the 1M2 possessing those properties as points in a
domain space. This study conducts such an optimization numerically.

The concept of A(a,r)-stability is introduced for stiffly stable I,,.
It recognizes the need for large regions of absolute stability in the left
half plane and the need for a region of accuracy about the origin defined
by the region of relative stability. An economical means of determining the
region of relative stability is developed and used. Nearly-optimal A(a,r)-

Cstable implicit LMM are found for orders four through six for a variety of
classes determined by fixed error constants Cp+l/a(l).
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STIFFLY STABLE LINEAR MULTISTEP METHODS

1. Introduction

Consider the initial value problem

Y' - f(x,y), xC[a~b], y(a) - y()

where y, yo, and f(x,y) are in Rn and sufficient conditions are

placed on f to ensure a unique solution exists. In the past fifteen

years much research has been devoted to the development of numerical

methods for obtaining solutions to problems (1) of the class referred

to as stiff problems. Commonly used numerical methods are linear

k-step methods of the form

k-I k-1

where a- -1 and lak-11 + I ek01 1 O. Most popular codes which employ

LMH for the solution of stiff problems depend exclusively on the back-

ward difference formulas (BDF) [3. p.217]. These methods suffer large

regions of instability In the left half plane and are not A0-stable [l]

U for orders greater than six. This suggests much improvement is possible.

Grigorieff and Schroll (4] and Kong (7] have given constructive

proofs which show the existence of A(c)-stable [12) methods of arbitrar-

ily high order with a arbitrarily close to 'i/2. However, searches for

practical methods successful in the solution of stiff problems have made

little progress (7, 11, 6, 5, 2]. None of these investigations have

resulted in methods which perform significantly better than BDF.

r-1
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2. Defining the problem.

There are several properties of L04 which appear decisive in

determining the performance of a LMM in the solution of a stiff problem.

To conduct a search for optimal methods we need to isolate these proper-

ties, determine a useful measure for each property, and define our object

function in terms of these measures. The region of absolute stability is

of prime interest because of the need to maintain stability for the com-

ponents resulting from the eigenvalues with negative real part and large

magnitude. The angle Oi is a measure of the ab.solute stability region which

is widely used.

The region of accuracy about the origin is important because the com-

ponents of the solution resulting from sigenvalues near the origin are

dominant in the solution and their accuracy must be of concern. A natural

measure for this region is the radius of relative stability. A knowledge

of the relative stability characteristics is essential before we attach

meaning to the numerical solution.

To illustrate the necessity of measuring relative stability we solve

an example problem in 35-digit precision with the 5th order Adam-Bashforth

(A-B) method and with a 7th order explicit near-optimal method (9] of

better relative stability characteristics. The problem considered is

- -16y, y(O) - 1, xc[0,3J.

We use a stepsize of h - 0.01. Thus we have h - 0.16 which is inside both

methods' region of absolute stability. However it is well outside the A-B

5th order relative stability region and near the boundary of relative sta-

bility for the 7th order method. This problem gives us an example of what

can happen when we forget about relative stability in the left half plane.

The results are given below in table 1.

2



TABLE 1

Illustration of the importance of relative stability

U

Step True A-B 5th Order 7th Order Near-Optimal
No. Solution Calculated Actual Error Calculated Actual Error

0 0.l00Q+01 O.lOOOQ+Ol 0.0 0.000Q+O1 0.0

50 0.3355Q-03 0.3357Q-03 -0.1988Q-06 0.3354Q-03 O.6280Q-07

100 0.1125Q-06 0.3001Q-06 -0.1875Q-06 0.1125Q-06 o.8515Q-10

150 0.3775Q-10 0.1108Q-06 -0.1108Q-06 0.3769Q-10 0.6116Q-13

200 0.1266Q-13 0.6541Q-07 -0.6541Q-07 0.1263Q-13 0.3401Q-16

250 0.4248Q-17 0.3862Q-07 -0.3862Q-07 0.4231Q-17 0.1686Q-19

300 0. 1425Q-20 .0.2280Q-07 -0.2280Q-07 0. 1418Q-20 0. 7640Q-23

If we had solved this problem with the A-B 5th order method and desired to

follow the solution to this problem (possibly a component of a larger system)

until the solution fell below 10 for example, we would find it necessary to

continue to step 825. Whereas in fact, and as detected by the relatively stable

7th order near-optimal method, we could terminate calculation after step 150.

In this case and others like it, ignoring the relative stability characteristics

of a method can be a very costly choice. The relative error for the A-B solution

in Table 1 after 300 steps is 1.6000Q+13 and for the near optimal method is

5.3610Q-03. Note that the A-B solution is tending to zero, which evidences the

methods' absolute stability at hA - -0.16, but not nearly so fast as the solution

itself. In fact it tends to zero so slowly that the calculated solution values

are essentially meaningless.

These considerations led to the definition of A(a, r)-stability given below.

Definition: A LMM is said to be A(a, r)-stable if the method is A(a)-

stable with regard to its region of absolute stability and is relatively stable

3



within the disk of radius r about the origin.

It is this definition which we implement in our search for

stiffly stable LM. It seems of interest then to know how far a

and r can be extended for a fixed value of the error constant. We

report the results of such an Investigation in this paper and find

methods nearly optimal with regard to these desired properties.

Further, in comparison we find these near-optimal methods perform

successfully as we would expect from the stability and error measure-

ments applied. A method which is &(a, r)-stable will be relatively

robust depending upon the size of a and r. By that we mean it should

give good results on a large variety of both stiff and non-stiff

problems.

Let c(nm) be the class of all nth order, m-step correctors,

We choose the class C(n, n) for our search of optimal methods. The

corrector search is posed as a numerical optimization problem. Our

object function for the optimization is defined as a linear combination

of a and r.

3. Results and Comparisons

Defining the object function as a linear combination of at and r

increased the scope of the optimization since then.our interest extends

to the effect of taking different linear combinations. In doing so we

find a relationship existing between ct and r, corresponding to maximal

values of different linear combinations. (Different relationships exist

for different values of the error constant C /C(l).) The two proper-

ties are inversely related but not linearly so. For example, the

following relationships exist within C(4,4).

4
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Figure 1. at vs. r.

The three curves result from fixing the error constant,

C /G(I), at the values given adjacent to the curves. Notice the

curves seem to approach the limiting ct-value of 12 for larger values

of the radius as the error constraint is relaxed. This leads one

to suspect these curves, corresponding to values of C P /c7(l) in

(0,-), fill in the area under the line at - T/2 and to the left of

5
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the line r - ro, where r 0 is the largest radius of any method in the

class C(4.4). An estimate for the value of r0 is provided by the

work of Thompson and Rodabaugh [10], where they report candidates for

r 0 values for the classes CCn, n-1). 4 < n < 9. They obtained these

values by a numerical optimization with no constraint on the error

constant. We did not investigate thoroughly for all orders and

error constants the portion of the curve defined by linear combinations

in which the radius was weighted much more than alpha. The methods

in this portion of the curve are expensive to find, and of little

value in the solution of stiff problems because of their poor absolute

stability properties. Kong [7] considered only absolute stability,

and therefore his results define the upper extent of the curve on the

alpha axis. The optimization runs for these methods are inexpensive,

however, they also are of little value to this investigation because

of their poor relative stability properties. For orders greater than

four we concentrate our effort in the region about and just to the

left of the point where the curve starts dropping off most rapidly.

This region of the curve yields methods which pair values of a and r

in a way least costly to either property.

Several methods obtained from the investigation are described

*O  here for orders four through six. The properties of the second order

trapezoidal rule and the third order BDF suggest little or no improve-

ment possible below fourth order. Since the BDF are members of

*• Cun, n) and are used extensively in :tiff codes, we use them for com-

parison. We choose a selection of near-optimal methods with error

constants C p+l/(1) of -0.2 and -0.5 for fourth order, -0.4 and -0.8

6



for fifth order, and -0,9 for sixth order, Their stability pro-

perties are outlined in Table 2.

TABLE 2

Stability Properties of Near-Optimal Stiff Methods.

Order Alpha Radius Cp+1 /a (l)

4 1.481 0.192 -0.200
1.414 0.471
1.377* 0.650

4 1.535 0.142 -0.500
* 1.511 0.294

1.445 0.514

5 1.431* 0.092 -0.400
1.338 0.359
1.259 0.497

5 1.485 0.077 -0.800
1.463 0.155
1.394 0.463

6 1.321* 0.121 -0.900
1.284 0.299
1.065 0.435

* Indicates use in test runs referred to Table 4.

12 For comparison we give corresponding information for the BDF

in Table 3 below.

TABLE 3

Stability Properties of the BDF

Order Alpha Radius Cp+1 /l a(1)

4 1.280 0.484 -0.200

5 0.905 0.302 -0.167

6 0.311 0.130 -0.143

7
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The kth order BDF has an error constant of 1/(k+l). The

severity of this restriction on the error constant no doubt causes

the loss of AO-stability for the higher order BDF. Notice for each

order, the near-optimal methods have considerably greater regions of

relative and absolute stability. The effect of the larger error

constants is nullified by the capability to increase the order with

no accompanying restriction on alpha. For example, if we compare

the near-optimal sixth order A(1.284, 0.299) -stable method from

Table 2 with the fourth order BDF, it is the case that the problem

independent part of the error term for the near-optimal method will

be less than that of the BDF for stepsizes less than 0.471. This

particular comparison does not involve a sacrifice in the permissi-

A
ble values of alpha. In other similar comparisons we could even

realize a gain in the permissible values of alpha.

4. Demonstration of methods obtained.

We note that an increase in the error constant accompanying

methods with higher values of alpha is a negative aspect that can be

controlled. However, an inferior value of alpha, such as possessed by

the fifth and sixth order BDF, severely disables a method. We

illustrate this fact by solving the following two stiff systems of the

form y'(t) - Ay(t) where A is a constant 4 x 4 real matrix.
a

Problem 1 (Pi)

y Ay. te[0,51, y(O)- (2.0, 0.0, -0.99, 3.73)
T

| -1 0 100 0

A 0 -1 0 I.ij
0 0 -100 -373
0 0 373 -100.

8



Problem 2 P2)

y'- Ay, tcEO,5], yCO) - C2.0, 0.0, -0.99, 2.5) T

i-1 0 1000

A 0 -1 0 100
0 0 -100 -2501

10 0 250 -0i

Table 4 indicates the methods uied on each of the problems. A

constant stepsize of h - 0.005 was used for each of the solutions

throughout the interval [0,5j, Results of the calculations, as

well as coefficients of the methods used, are given in the appendix.

All calculations were carried out on an Amdahl 370/V7 in 35-digit

precision. Numbers less than approximately 10 in magnitude are

represented as 0.0.

TABLE 4

Order of
Method Method Used ProblemK

4 A(l.377, 0.650)-Stable PI
4 BDF P1
5 A(1.431, 0.092)-Stable P2
5 BDF P2
6 A(1.321, 0.121)-Stable P2
6 BDF P2

Referring to the appendix we see the sixth order near-optimal

method solved problem P2 accurately whereas the fifth order EDF was

unstable. Since these computations were completed we have found a

seventh order method which also solved problem P2.

Lambert (8, p.479] indicates an interest exists in the use of

stiff methods for non-stiff problems. With their large regions of

accuracy about the origin these near-optimally A(a, r)-stable methods

should be ideally suited for this purpose. In test runs comparing

9



these methods to Adams-Moulton methods, we solved non-stiff

problems with a method of one order higher than the Adams-

Moulton method used, and obtained a smaller actual error.

The larger error constants of these methods is more than

offset by using a method of one order higher. Using a

method of higher order is permitted by the larger stability

regions.

A large number of methods were found in this investiga-

tion, and only a few have been mentioned or used. Space has

not permitted a full discussion of the procedure used to find

these methods. For a further discussion of these procedures

refer to Nolting [9].

1
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APPENDIX

TABLE A-I

First Component Solution of Problm P1

Step True Fourth Ordo, Near-Opttiaal Fourth Order SDF

(h-O,005) Solution Calculae au Global Error .a ultd V.a Global grrc

0 0.20004+01 0.2000q+01 0.0 0.2000Q+01 0.0
200 O.3679Q 00 0.3679Q00 -0.5267Q-06 0,9475Q401 -0.9107q401
400 0.1353+00 0.13S3Q+O0 0.3970Q-10 0.2122Q403 -0.2121Q+03
600 0.49794-01 0.4979Q-01 0.1672Q-10 -0.8181+03 0.8181Q403
800 0.1832Q-01 0.1832Q-01 0.9199Q-1l -0.12854+06 0.12865 06

1000 0.6738Q-02 0.6738q-02 0.4234Q-11 -0.200@Q+07 o.200"7

TABLE A-2

Second Componnt Solution of Problem P1

Stop True Fourth Order Na-Ottael Fourth Order 3DF
(00O.005) Solution Calculated Value Global Error Calculatd Value , Global Erot

0 0.0 0.0 0.0 0.0 0.0
200 0.279"4-43 -0.1916Q-05 0.19164-05 0.5968Q4401 -0.59 Q+401
400 0.0 0.4772Q-11 - 0.4772Q-11 -0.13Q4+03 0. 1348Q403
600 0.0 -0.1773Q-17 0.1773q-17 -0.572404 0. 57&2404
800 0.0 -0.5826Q-22 0.5826Q-22 -0.3738Q+05 0.373804'W5

1000 0.0 0.3869Q-27 -9.3869Q-27 0.23K 407 -0.23440.O7

TABLE A-3

Third Camponent Solution of Problem P

Step True Fourth Order Neer-OntImel Fourth Order 3DF
(h,0. 003) Solution CalCulated Value Global Error Calculated Value Global Error

0 -0. 9900Q400 -0.9900Q4)O 0.0 -0.9900Q44O 0.0
200 -0.7988Q-43 0.6626Q-05 -0.6626q-03 -0.3128Q02 0.3128Q402
400 0.0 -0.11984-10 0.1198Q-10 0.2928O03 -0.2928Q4403
600 0.0 -0.2188Q-16 0.2118Q-16 0.2223Q+05 -0.2223Q+05
800 0.0 0.309Sq-21 -0.3095Q-21 0.2669Q+06 -0.26694+06

1000 0.0 -0.1601Q-26 0,1601Q-26 -0.6769Q4+07 0.6764,07

TABil A-4

Fourth Componut Solution of Problm P1

Step True Fourth Ordtr Near-Optimal Fourth Order SD?
(h-O.005) Solution Calculated Value Global Error Calculated Value Global Eror

0 0.3730Q+01 0.373004+01 0.0 0.3730Q4+01 0.0
200 -0.1193Q-42 0.3862Q403 -0.3862Q+05 0.2806Q+02 -0.2$06Q402
400 0.0 -0.2664Q-10 0.2664Q-10 0.92454+03 -0.92459i83
600 0.0 0.1091Q-15 -0.1019Q-15 -0.26334404 0.2633Q406
800 0.0 -0.26974-21 0.2897Q-21 -0.4424Q+06 0.4424"06

1000 0.0 0.2124Q-27 -0.21240-27 -0. 9134+07 0. M13Q07
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TABLE A-5

First Component Solution of Problem P2 by Fifth Order Methods

Step True Fifth Order Near-Optimal Fifth Order BDF
(h-0.005) Solution Calculated Value Global Error Calculated Value Global Error --

0 O.2000Q+01 O.2000Q+01 0.0 0.2000Q+01 0.0
200 0.3679Q+00 0.3679Q+00 -0.2413Q-11 O.9366Q03 -0.9366Q+03
A0O 0.1353Q+00 0.L353Q+00 -0.1687Q-12 0.1696Q0S -0.1696Q+08
600 0.4979q-01 0.4979Q-01 -0.9338Q-13 0.2666Q+12 -0.2666Q+12
800 0.1832Q-O1 0.1832Q-01 -0.458SQ-13 O.2852Q+16 -0.2852Q+16

1000 0. 6738Q-O2 O.6738Q-02 -0.2112Q-13 -0. 2026Q+20 0.2026Q+20

TABLE A-6

Second Component Solution of Problem P2 by Fifth Order Methoda

Step True Fifth Order Near-Optimal Fifth Order BDF
(h-0.005) Solution Calculated Value Global Error Calculated Value Global Error

0 0.0 0.0 0.0 0.0 0.0
200 -0.3610Q-43 -0.5067Q-12 O.5067Q-12 0.2S58Q+04 -0.2558Q+04
400 0.0 -0.4956Q-23 0.4946Q-23 0.6 4 29Q+0S -0.6429Q+06
600 0.0 -0.1757Q-31 0.1757Q-31 0.1601Q+13 -0.161OQ+L3
800 0.0 -0.6335q-32 0.6335Q-32 0.3953Q+17 -0.3953Q1+17

1000 0.0 -0.1333Q-32 0.1333Q-32 0.9673Q+21 -O.9673Q+21

TABLE A-7

Third Component Solution of Problem P2 by Fifth Order Methods

Step True Fifth Order Near-Outimal Fifth Order SDF
(hO.OO05) Solution Calculated Value Global Error Calculated Value Global Error

0 -0.9900Q+00 -0.9900Q+00 0.0 -0.9900Q+00 0.0
200 0.8139Q-43 -0.8977Q-12 0.8977Q-12 -0.7321Q+04 0.7321Q04
400 0.0 0.7781Q-22 -0.7781Q-22 -0.1775Q4.09 0.1775Q09
600 0.0 -0.4609Q-32 0.4609Q-32 -0.4267Q+13 0.4267Q+13
800 0.0 0.2243Q-42 -0.2243Q-42 -O.1016Q+18 0.1016Q18

1000 0.0 -0.9632Q-53 0.9632Q-53 -0.2398Q+22 0.23"964.22

TABLE A-8

Fourth Component Solution of Problem P2 by Fifth Order Methods

Step qTrue Fifth Order Near-Optimal Fifth Order 3DF
(h-O.005) Salution Calculated Value Global Value Calculated Value Global Error

A

0 0.2500Q+01 O.2500Q+Ol 0.0 0.2500Q+01 0.0
200 0.5816-43 0.5967Q-11 -0.5967Q-11 -0.1914Q 03 0.1914Q+03
400 0.0 -0.1604,Q-21 0.1604Q-21 -0.2124Q+06 0.2124Q+08
600 0.0 0.4982Q-32 -0.4982Q-32 -0.9187Q+12 0.9187Q+12
800 0. -0.1293Q-42 0.1293Q-42 -0.3200Q+17 0.3200Q+ 17

1000 0.0 0.2167Q-53 -0.216
7
Q-

53  
-0.1008Q+22 0.1008Q-22
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TABLE A-9

first Component Solution of Problem P2 by Sixth Order Methods

Step True Sixth Order Near-Optimal Sixth Order RDF
(h"0.005) Solution Calculated Value Global Error Calculated Value Global Error

0 0.2000Q+o01 0.2000Q+o 0.0 0.2000Q+o 0.0
200 0.3679Q+00 0.3679Q+00 -0.3246Q-09 -0.1667Q+14 0.1667Q+14
400 0.1353Q+00 0.1353Q+00 u.J810Q.-14 0.3979Q+29 -0.3979Q-29
600 0.4979Q-01 0.4979Q-01 0.2113Q-14 -0.8016Q4 0.8016Q+4
800 0.1832Q-01 0.1832Q-01 0.1039Q-14 0.1467Q+60 -0.1467Q460
1000 0.6 73SQ-02 0.6738Q-02 0.4786Q-15 -0.2508Q+75 0.2506Q+75

TABLE A-10

Second Component Solution of Problem P2 by Sixth Order Methods

IM Stop True Sixth Order Near-OotiWel Sixth Order so?
(h-0.005) Solution Calculated Value GloMbl E.ror Calculated Value Global Error

o 0.0 0.0 0.0 0.0 0.0
200 -0. 3

6
10Q-43 0. 6007Q-10 -0. 6007Q-10 -0.4319Q+14 0.4319+14

400 0.0 -0.2069Q-10 0.2069Q-18 0.59
4
5Q4+29 -0.5945Q-29

600 0.0 -0.690Q-28 0.6930Q-28 -0.7611Q+4 0.7611Q#44
Boo O.0 -0.21

8
2Q-31 0.21$2Q-31 0.8753q.59 -0.8753Q+59

1000 0.0 -0.5375Q-32 0.5375Q-32 -0.8216Q,.74 0.8216Q+74

TABLE A-11

a Third Component Solution of Problem P2 by Sixth Order Methods

Step True Sixth Order Near-O9timal Sixth Order 1DF
(h-0.003) Solution Calculated Value Global Error Calculated Value Global irror

* 0 -0.9900Q+00 -0.9900Q+00 0.0 -09900Q+00 0.0
200 0.8139Q-43 -0.4715Q-09 0.4715Q-09 0.1245Q+15 -0.1245Q+15
400 0.0 0.4503Q-l8 -0.4503Q-16 -0.1880Q+30 0.1880Q+30
600 0.0 0.3034Q-27 -o.3034Q-27 0.2696Q445 -0.2696Q"4S
800 0.0 -0.1408Q-36 0.1408Q-36 -0.3640Q+60 0.36

4
0Q"60

1000 0.0 -0.1651Q-45 0.1651Q-45 o.4537q+75 -0.4537Q+75

TABLE A-12

Fourth Component Solution of Problem P2 by Sixth Order Methods

Stop True Sixth Order Near-OptImal Sixth Order BDF
(h-0.005) Solution Calculated Value Global Error Calculated Value Global Error

0 0.2500Q401 0.2500Q+01 0.0 0.2500Q+01, 0.0
200 0.5816Q-43 0.7519Q-09 -0.7519Q-09 0.1089Q+13 -0.l069Q+13
400 0.0 0.3885Q-18 -0.3

88
5Q-18 0.4061Q+29 -0.

4
061Q+29

600 0.0 -0.2590Q-27 0.2590Q-27 -0.L250Q"45 0.1250Q4S
800 0.0 -0.2275Q-36 0.

2
2
7
5Q-36 0.2800Q+60 -0.2800Q+60

1000 0.0 0.7022Q-46 -0.7022Q-46 -0.5457Q+75 0.5
4

5?Q+75

13



TABLZ A-13

Rational Coefficients of the Near Optipal Methods Used in the Solution of Problems P1 and P2

Coefficient
Numerator Fourth Order Fifth Order Sixth Order

L0 46 400 27 720 000 69 824 000
'1 -306 600 -35 100 000 -72 000 000

CI 87 268 22 500 000 53 260 000

-5 088 - 7 200 000 -18 720 000

C 1 060 000 1 440 000
a S5 576 000

109 512 4 159 875 6 563 520

so 24 165 -4 117 125 -9 114 120

B1 -64 993 -1 212 750 1 415 S0

02 19 199 4 067 250 4 667 600
3 46 829 -1 537 125 -1 129 200

" 84 259 875 -1 M5 L20
"01894 520

Coefficient
DeminaCor 240 000 9 000 000 14 400 000

14
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I. 1.

ABSTRACT:

'Henrici (1962) discussed optimal Stormer Cowell

class of linear multistep methods for the second order

differential equations y" = f(x,y). Lambert and Watson

z (1976) established that such formulae are orbitally

unstable and developed symmetric Lmm which annihilates

the instability. Dahlquist (1978) proved a barrier

theorem that the order of accuracy of a P-stable Lmm
*

cannot exceed two. Hairer (1979) generalized these

concepts. Fatunla (1981) proposed symmetric hybrid

schemes well suited to periodic initial value problems.

A generalization of this idea is proposed and a k-

stable scheme of order six is realized. The new

algorithm compares favourably with the existing schemes

for periodic initial value problems i.e. Stiefel and

Bettis (1969), Lambert and Watson (1975),Hairer (1979),

Fatunla (1981)



2.

Introduction:

Henrici [4] and Lambert (5] discussed the direct

application of the Linear Multistep scheme

p(E)yn - h2 a(E)fn (1.1)

to the second order initial value problem

y" - f(x,y), y(a) - n, y'(a) = 6 (1.2)

4 x e R and y, f, n, 6 are m-vectors with the assumption

that (1.2) satisfies the existence theorem.

p(E) and a(E) are respectively first and second

characteristic polynomials given as

k
p(E) Z j EJ  (1.3)

=0 i

C k
a(E) = j B. E, (1.4)j=nO J

iand E is the shift operator such that

E3Yn - Yn+j (1.5)

where

Yn+j -=y(Xn+j 1

defined on the discrete point set

(XnIXn - a + nh, n = 0, 1,... }

The initial value problem (1.2) in general possesses

periodic or oscillatory solutions and an important subclass

of the Lmm (1.1) is the St6rmer-Cowell formulae whose

first characteristic polynomial is simply

p(E) = E2 - 2E + 1 (1.6)



i • 3.

with the optimal 2-step scheme given by Numerov Scheme,

whereby

or (E) - (E 2+ 10E + 1) ' (1.7)

In order to explain the concept of P-stability, we

consider the application of (1.1) to the scalar test

problem (1.2) with

f(x,y) -- 2 y, w c R (1.8)

leading to a linear difference equation

(p(E) + S 2 a(E))y - 0 , (1.9)* n

(= wh) whose characteristic polynomial is

w(r, ) = p(r) + a 2 (r) (1.10)

which possesses a general solution

n
Yn= £7rr (1.11)f=1

with &,being the roots of n(r,-).

Definition:

The Lmm (1.1) is said to be orbitally stable if

there exists Q2 such that for an 92 c (0, g), the
00

principal roots C1 and &2 lie on the unit circle while the

spurious roots &3'" ... k lie inside the unit circle.

Dahlquist 11] established that for the Lmm (1.1) to be

* iunconditionally stable, the order of accuracy cannot

exceed 2 and besides, among the unconditionally stable

* formulas, the scheme of Richtmyer and Morton [7, pp. 2631

* given by



j 4.

p(E) - E 2 - 2E + 1, G(E) =(E 2 + 2E + 1) (1.12)

has the minimum local error.

Definition 2 (Lambert and Watson £61).

The method (1.1) is said to have an interval of

periodicity (0, a) provided that for all Q 2 C (0, g),

the roots s of n(r, n2) defined by (1.10),satisfy
a

1 e e  ) 2 - e -ie (4

l-sl < lo s - 3(1)k

where e(n) e R.

Lambert and Watson developed symmetric multistep

methods with non-vanishing interval of periodicity; a

desirable property deficient in the St6rmer Cowell

schemes with stepnumber greater than two.

Recently Fatunla [2) proposed symmetric hybrid

0methods of order six which possess non-vanishing intervals
of periodicity. The resultant algorithms denoted by

P E PH E P2 E cHE and specified as follows:

E : fn+ - f(Xn+ n%
3 h2

P3 : = " Yn + 2Yn+l + 16 n + 5 fn+l)

- E : n+3 f(xn+3, yn+3)

P 10 y 1 2 - 2y ~~ + h 2 1 (1.14)2 n+2 2n+l Yn h 04



5.

E f(o] f (x o)
n+2 n+2 Y'n+2

CH y11 hi (f 01

2 n+2 - 2- n + 60 n+2 n+3

+ 26fn+ 1 + 16fn+h + fn)

E. f f()

n+2 (Xn+2' Yn+2

are not P-stable.

In this paper, we extend the concept of Fatunla

r2] to derive P-stable hybrid methods also of order six.

With a choice of a parameter r, 0 < r < 1, the development

4 of the new algorithms are based on the following formulae:

Method I

PH y + y1 +~ y = h2(Bf + f
1 n+r lOYn llyn+l 0n llfn+l

E fn+r = f(xn +r ' Yn+r )

H 2 h(B +P : Yn+2-r +  20yn + 21yn+l 20 fn 21 fn+l )

E :f f(x (.5
n+2-r =  n+2-r' Yn+2-r )  (1.15)

P 1o1 + C, + = h( f + 8 fP2 : n+2 3oyn 31yn+l 830fn 31fn+l

fE frol fo
n+2 f(xn+2' Yn+2)

CH y n+2 + 4oyn + a 41yn+l = 40fn + B41 fn+l

+ 842 n+2 + Y41fn+r + Y42fn+2-r)

E f ri f (x yil]n+2 (n+2 n+2)
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Other alternatives are methods II, method III and

method IV whereby the predictor P2 are respectively

replaced by the following predictors:

-H [03~ + a h 2 (0 f +
2  n+2 3Oyn + '31yn+l 31 n+r

g Y f32 n+2-r

yO] + C + a h2 (0 f +a f +
2  n+2 30n 31Yn+l 30fn 31 n+l

Y31 fn+r),

P2 : Yn+2 + 3oYn + 31yn+l h 3  n t 31 f n+l

Y32fn+2-r
) .

In section 2, we shall discuss the development of the

P-stable formulae while section 3 deals with the effective

solution of the iteration scheme. TheP-stability of the

usymmetric scheme is discussed in section 4 while section 5
is concerned with the numerical experiment and comparison

with the existing schemes.

2. Development of Integration Formulae:

In this section the coefficients of the integration

formulae (1.15) are obtained in terms of parameter r,

O < r < 1. This is illustrated with the integration formula

for the first hybrid step i.e.

y h 2 Bf+ 1 )f

n+r + llYn+l (810 fn 811fn +

..(2.1)
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while the other formulae are simply stated.

We now associate with (2.1) the linear difference

operator LCy(x), hj defined as follows:

L1 y(xn), h] = Y(Xn+ r ) + aloy(Xn) + l1 1 Y(xn+l)

-h 2 (a 10y'(x n ) + 'lly'(xn+l ) ). (2.2)

If we now ensure that y(x) is the theoretical solution

to (1.1) and obtain the Taylor series of terms on the rhs

of (2.2) to obtain

CO= 1 + ai + al
C10 = 10  a11

Cl= r + al
C11  11

C12 = (r2 + a11) - (810 + 811) (2.3)

C13 (r + a 1 1 ) - 811

c1 4  4(r + a11) - 811

In general we have

01
1 (rJ + all) 811, j = 3, 4, 5,

With the desire to obtain the highest possible order for

the integration formula (2.1), the first four equations in

(2.3) are allowed to vanish and the resultant system of

linear equations has the following solution:

a10 =r-1

a 11 i-r (2.4)



r r(r -l(r - )(2.4)
10 6

oil r(r -) (r+l1)

thus yielding the integration formula:

Yn+r - Zryn+1 + (r-l)y n = g-L-r(r-1)r-2)f,

+ r(r-l)(r+l)f n+1J (2.5)

with the error constant obtained from last equation in

(2.3) as

= r(r-l) (r2 -r1.(2.6)
14 24 (rr-)

Using identical argumetns, the integration formula

for the second hybrid step can be obtained as:

Yn+2-r + (r-2)y n 1 - (r-l)y n

6 [--(r-1) (r-2) (r-3)f n+i + r(r-l) (r-2)f~j

(2.7)

with error constant

C.24 =
1 -4[(r-2) (2-r) +1 + 2(r-l)(r-2)(r-3)J * (2.8)

Similarly, the predictor for method I is obtained as

7n+2 -
2 n+l 'n n+f1 (29

and error constant

=1~

Finally the hybrid corrector is obtained as
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Yn+2 + y 1 2l+ 2Or(r-2) 1(f n+2 + f)n

.(-,Tf., 20r(r-l)z(r-2) (n+r+ fn2-r-

(2.10)

L ~ with error constant C 48

C 8  ! -{-254 - 8 [37 64(r-1 2 2r(r-2) -(r (2-r)].

(2.11)

While the two hybrid formulae (2.5) and (2.7) as well as

the predictor formula (2.9) are of order 2, the hybrid corrector

* formula (2.11) is of order six. The corrector formula (2.11)

being implicit has to be solved iteratively and this is

discussed in the next section.

3. Solution Process for Corrector Formula (2.11)

With a starting value Y1n1 given by formula (2.9), the

corrector formula (2.11) is solved iteratively as

YES+l] =2y~ + yn + h 2[Af +Bf l+C(fn +fn+2 )T
7n+2 l nn l r 2-

+ h 2Af(x 2 yrsl) , (3.1)

for s 0, 1, 2....

.0 where

A = 40 -42(3.2) -

+ (3.2)
* 12 20r(r-2) '-

B = 41

5 1 (3.3)
6 10(r-1) 2
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and

C - Y41= 42

-1 (3.4)-2Or (r-1) 2 (r-2)

The convergence of (3.1) is assured provided

h2IIA- Ili. < 1 (3.5)

11.11. is the maximum norm.

*. Unfortunately, for highly oscillatory systems of the form

(1.2), we have that

1 1.ii *>> 1 (3.6)ay

and thus impose a severe constraint on mesh-size h. This

constraint could be averted with the introduction of the

Newton Raphson procedure into (3.1) i.e. wish to solve the

nonlinear equation

F(yn+2) = Yn+2 - h2Af(xn+2'yn+2 ) - 2yn+l + Yn

-h LAf + Bf + C(f n+ r + fn+2_r)

S= 0. (3.7)

The application of Newton Raphson Scheme to (3.7) yields
yrS][l IS

,_+'S = - LI - h2A M S()x F(yn 2 ),n+2 n+2 ay(Xn+2 'yn+2-J n+

(3.8)

a s0, 1, 2,...

and this invariably cpnverges in one or two iterations:

We confine our numerical experiments in section 5 to only



one iteration.

4. P-Stability Consideration and Determination of Parameter r -

The application of the integration formulae (2.5),

(2.7) and (2.11) to the scalar test problem

y W2 Y, W > 0 (4.1)

respectively leads to the following difference equations:

7n~r yn~ (r-l)yn -- C-r(r-l) (r-2)yn

+ r(r-l)(r+l)y n+1 1,

(4.2)

~n+2r = (r-2)yn+ + (r-l)yn - [-(r-1) (r-2) (r-3)y 1

+ r(r-l)(r-2)ynJ, (4.3)

and

1+ ZA3 y n 2 - [2 + Bn]y n+l + [1 + Q'2 Aayn

+ S12CFY + y(4.4)

where A, B and C are specified by equations (3.2), (3.3)

and (3.4).

The adoption of (4.2) and (4.3) in (4.4) gives the

following second order difference equation:

R()y + S (SI) Yn + R (S2) (4.5)

* where

R (n) [r +n 2 (1-+ (4612 20r(r-2) . 46
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I and

S S)-2. + j51 -1

I - - + 10(r--17 1O M-1) (r-2)-

'10Or (r-1)d + 4f(r-1)(r-2) rl)L1)

A (4.7)

The characteristic equation associated with (4.5) is

given as

R(Q)r 2 + S(n)r + R(O) =0

which the bilinear transformation

r + (4.8)

reduces to

t2R~n) -S)]2+L2R(S9) + S(SI)I 0' (4.9)

The roots of (4.9) are purely imaginary and lie on the

p unit circle provided

2R(fl) + S Ml)
(4.10)2R(n) + s(W -

w i.e.

S(M) -0 (4.11)

This implies

I - +E + 11+ 1 n2

6 l0(r-1)2 10(r-1)2 (r-2) 10r(r-1I"

+ ~Lr1 r -2 n= 0 (4.12)

At nl-* equation (4.12) reduces to
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r+30 -(4.13)

___ __ __ r-2
(r-l) (r-2) r (r-1) 0

which gives

4
r -4 (4.14)5

Hence, the adoption of (4.14) in the integration

formula (3.8) leads to a P-stable scheme.

5. Numerical Experiments

We first consider the nearly periodic initial value

problem of Stiefel and Bettis £81

z" + z - O.OOleix, z C C (5.1)

z(O) -1, z'(0) -0.9995i

whose theoretical solution is given as

Z(x) - u(x) + iv(x),

U(x) - cos x + 0.OOO5x sin x, (5.2)

V(x) = sin x - 0.OOO5x cos x.

(5.2) denotes a motion on a perturbed circular orbit which

*spirals outwards at a distance

Y(x) - Vu2 (x) + v'(x) (5.3)

from the origin.

0 Problem (5.1) was solved numerically in the interval

O .< x .< 40w adopting unoform mesh-sizes

in the P E PH E P2 E CH E mode with r - consideringr 2 r

the cases:
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(a) without incorporating Newton Raphson i.e.

in formula (2.10)

(b) incorporating the Newton Raphson scheme

i.e. formula (3.8)

Tables 1 and 2 give a detailed comparison of the proposed

scheme

(i) five step St6rmer Cowell scheme of order six [81

(ii) Symmetric multistep methods of order 6 [6)

While the proposed scheme whose corrector is also of order six

compare favourably with the syruetric multistep scheme of

Lambert and Watson [61, they are both superior to the St6rmer

Cowell Methods £8).

We finally consider the example proposed by Lambert

and Watson 16] and designed to illustrate P-stability:

yj + W2 y1 = f" (x) + w2f(x);

yl(O) - a + f(O), yi(O) - f'(0) (5.4)

y + w2 y2 - f" (X) + w2f(x);

Y2 (0) = f(O), y;(O) - wa + f(0)

The theoretical solution to (5.4) is given as

Yl (x) = a coswx + f(x) (5.5)

Y2 (x) - a sinw x + f(x)

W with

-O.05x
f(x) e (5.6)

U
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I.

and three different values of parameter a are adopted i.e.

a - (0, 0.1, 0.21'

The numerical integration scheme was applied to

ivp (5.4) in the interval 0 < x < 20w using a uniform mesh

size h "

The same problem was solved by Lambert and Watson in

161 using

(i) Numerov Method (1.6 - 1.7)

(ii) Symmetric Multistep Scheme p - 2, C - -
12

(iii) Symmetric Multistep scheme p - 2, C - -h

While the Numerov Scheme is not P-stable, both the proposed

scheme as well as symmetric scheme of Lambert and Watson [63

are P-stable. Table 3 gives the error E in the radius

R =(y + y

at x - 20w.

I
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Some Comments on Stability and Error Analysis
for Stiff Nonlinear Problems

Germund Dahlquist
Royal Institute of Technology, Stockholm

and Stanford University

r
ABSTRACT

First some basic facts and notions concerning stiff

nonlinear ODE's will be presented, partly by examples.

Techniques for deriving stability properties and error bounds

for certain classes of nonlinear systems will be described.

Some of the techniques are applicable to variable step size.

If stability can be proved for a system with a Jacobian

J(t), when the step size is h(t), then a modified stability

result is valid for the system with Jacobian J(t) + AJ(t), if

(in the case of one-leg multistep methods),

(M + A) -JW-ildt

is reasonably bounded, where M - (I- hJBk/ak)-

Results are known for monotonic systems, i.e., when the

Jacobian has a negative loqarithmic norm, relative to some

inner-product norm, and for systems with a negative diagonal-

dominant Jacobian, see e.g., Kreiss. The generalized

contractivity analysis for one-leg multistep methods will be

summarized, see also Dahlquist 1978, S~derlind and Dahlquist

1981. In the latter paper improved results are given for

systems of singular perturbation type, also covering the case

when different methods are used for different subsystems.

Improved results for monotonic systems, when the time-

derivative of the Jacobian is bounded, are given by S8derlind I



I

1981. Contractivity analysis for linear multistep methods

and one-leg methods, in maximum norm, is discussed by

Nevanlinna and Liniger (1978) and Sand (1981), also for the

case of variable step size. Rundsdorfer (1981) has extended

the analysis of contractivity (B-stability) for Runge-Kutta

methods, qiven by Butcher (1975) and Burrage and Butcher

(1979), to a Rosenbrock method. Dahlquist and Jeltsch

qstudied generalized contractivity properties of Runge-Kutta

methods, which need not be A-stable.*

much remains to be done, in particular concerning the

4 following things:

i) instabilities, which may be caused by the change of

step size and order,

ii) the practical verification during the computation

that the assumptions of the theory are satisfied at the point

and with the step size proposed,

iii) the automatic detection, if one of the eigenvalues

of hJ(t) with large modulus approaches the imaginary axis (in

particular the origin).

A sketch of an asymptotics for variable step size has

recently been worked out by Dahlquist (1981, rep. 8110).

*Nevanlinna and Odeh (1981) have recently developed a very
powerful technique for nonlinear stability analysis for fixed
step size.
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Contractivity of Multistep and One-leg Methods with VpriableC Steps
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Abstract: Some of the work on contractivity of multistep and one-leg methods for
-m ordinary differential equations is surveyed. This theory provides sufficient conditions

for stability of such methods as applied with variable steps to certain classes of
nonlinear systems and equations with variable coefficients. It also identifies explicitly
families of A0 - and A-stable formulas which can be extended to variable steps in such
a way that these stability properties are preserved for some of the problem classes
mentioned above.
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1. Introduction

A linear multistep formula,

k kajX 0:_hE .(.,0
jO j-o

normalized by

k

jmO

is said to be stable at q - hA, if all solutions (x, of the difference equation

k
. (a-qbj)x.j - 0 (1.3)

j.0

generated by applying (1.1) to the "test equation"

K

;r Ax, A const., complex, (1.4)

I

on the uniform grid {t. Itr - nh, n - 0,1, .... are bounded for a given h > 0 as

n-.. The set of all q's at which (1.1) is stable is called the stability region S of the

formula. On the uniform grid and for constant formula coefficients, we have stability

V at q iff the "root condition" is satisfied.

In practical applications, multistep formulas are used to solve non-linear systems of

differential equations, or linear equations with variable coefficients. Furthermore, they

are normally implemented with variable steps, and under any or all of these circum-

stances it is in general hard to find necessary and sufficient conditions for asymptotic

stability of the difference equation. The theory of contractivity, part of which is

summarized in this paper, gives sufficient conditions for stability in some of these I
cases, notably a) for dissipative (monotone negative) nonlinear systems of differential

"-I



equations

- - f(t, x), (1.5)

i.e.. systems satisfying (4,51

<X -yf(t,x) -f(ty)> s ,IX -y1 (1.6)

for some scalar product <,> and some it S 0, where I x 2 <x, x>; and b) for the

variable coefficient test equation

S- (I)X, h(t) complex (1.7)

*' with arbitrary X(t) in the negative left half-plane or in some subset thereof. Further-

more, contractivity results can be gotten for variable (in some cases, arbitrary) step

sequences {h } as well as for constant steps. For variable steps, the formula usually

has variable coefficients,*

k k
, j.- -h o. (1.8)
jMo jMo

normalized again by

k
Sbj 1. (1.9)

j-o

In general, however, stability results for variable steps are obtained only if the formula

(1.8) is implemented as a one-leg (OL) method (4,5]

* R,,x,-hj(St,, Sx,) - 0, (1.10)

* * In some cases, it is advantageous to write the variable-step formulas in terms of a

step other than the leading step h., as discussed in Section 3 hereafter.

-2-



where

k k
S': = 7 a S.,E,-" 8x,:: b..,-_j (1.11)]

j-O j-O

rather than in the usual multistep (MS) form

RX-hS x,) . (1.12)

In studying contractivity of the discrete solutions {x.) of the test equation (1.4) or

(1.7) (respectively, the non-linear system (1.5)) we ask whether Ix.) (respectively the

difference {xn} of any two solutions {yj and fy, + xnj) is non-increasing in an

appropriate sense (rather than bounded as in discussing stability)? More precisely, we

ask whether IX,.. I > IXI in some given norm I. i (independent of n), where

X,,:- (xnEk+, x n k 2 .... x,,)? If this is the case for all n a k, then

SXk- I | X. I and we have stability. When applied to the constant coefficient test

* equation (1.4) with fixed steps, both the MS- and the OL-implementations of (1.1)

lead to the difference equation (1.3). In this case, the formula (1.1) is said [15] to be

* :contractive at q - hk if (xEI is non-increasing in the above sense for any solution of

(1.3) computed with constant step size h. The set of all q at which the formula is

contractive (for the given norm) is called the contractivity region, K. Clearly, contrac-

tivity at q implies stability at q and thus KrS for any norm. By analogy to the

corresponding stability concepts, we say that a formula is A-contractive,

Ao-contractive, etc. if, respectively, the left half q-plane, the negative real q-axis, etc.,

are contained in K. Every one of these contractivity properties implies the corne-

sponding stability property.

When applied to (1.4), both implementations of the variable-step formula (1.8) give

,(aj'fn-q bj, )X._j  - , ( .3

j.0

-3-
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where q, - hX. Note that qntK, for all n is sufficient for stability, i.e., q need not be

constant. When implemented as a OL-method and applied to the variable-coefficient

test equation (1.7), the formula (1.8) still generates a difference equation of the form

(1.13) but with q, - hA(S:t), and again we have stability if (qjsK,. By contrast,

the MS-method applied to (1.7) produces a difference equation of a more complicated

6M type,

k: ~ (a.,-qj,.b,,)x,,_,, 0.O

jO

one who's contractivity depends on (k + 1) complex parameters qj,, ,

rather than on only one of them, and this is the case even for constant steps.

Most of the existing work on contractivity falls into one of two categories. In the

first, contractivity in inner product norms of OL-solutions of dissipative nonlinear

systems (G-stability) was introduced in [4,51 and further investigated in

[6,7,9,11,13,14,15.18,19,20,221. Contractivity of Runge-Kutta methods for the same

problem class (B-stability) was studied in [3,8.171.

The second approach, the one which is mainly surveyed in this paper, is to investigate

contractivity in the max norm or related norms for the test equation (1.4), respectively

(1.7). For constant steps, contractivity in this sense was first studied in [1) for

" classical Adams multistep and Runge-Kutta methods applied to (1.7) with X(t) 5 0.

In [15,201 many aspects of the contractivity theory were developed systematically;

Section 2 hereafter mainly summarizes that work.

S-For non-uniform grids, contractivity of Backward Differentiation Methods in certain

"polygonal" norms was analyzed in [2,16,211. Some results on max-norm contractivi-

ty of variable-step Adams-type OL-methods were given in [201. A-Contractivity was

studied in [22) for the class of all second-order (p - 2) two-step (k - 2) formulas, a

-4-
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two-parameter family. It was shown that, for any given ratio of the two steps, all

formulas of this class which are A-contractive, in either the max norm or in constant

inner product norms, are members of one and the same one-parameter sub-famil!

all p - k - 2-formulas. The OL-implementations of these formulas are A-stable wih

arbitrary step sequences for any dissipative nonlinear system and for (1.7) with any

X(t), Re X(t) < 0. Finally it was shown in [25] that for any k a 1 and for arbitrary

step sequences the set of all p - 2. k-step formulas which are A-contractive in the

max norm represent a (k - 1)-parameter sub-family of the (2k - 2)-parameter family

N of all p - 2, k-step formulas. The OL-implementation of these formulas are A-stable

with respect to (1.7) for any (t), Re ,(t) < 0, for arbitrary variable steps. The

A-contractivity work is summarized in Section 3 of this paper.

2. General Discussion of Contractivity

a) Description of the contractivity region.

The contractivity region K has a simple geometry. With respect to any norm, K is

Eclosed and connected by arcs of circles ([151, Th. 2.1). For explicit formulas, K is

convex. In contrast to this, the stability region S in general consists of several

disconnected components, as illustrated in 112] for a formula given in [10.

- With respect to the max norm, we have ([r5), Th. 3.1)

K (q IF(q):: aj-qbj- Iao-qboI : 0). (2.1)
j-i

The boundary of K is c1K - {q I F(q) - 01. It is smooth except possibly at its

intersection points with the real axis. Many examples of contractivity curves are

plotted in [12,20] in comparison with the corresponding root-locus curves.

.5-
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For any Backward Differentiation Formula (defined by bo 1,

-t b2 -. -bk -0) the max-norm contractivity region is a circle [15] of center
k I-

a0 and radius!T I aj I.In inner product norms, ail formulas have contractivity regions
i-I

which are either half-plane. or the inside or outside of circles [181.

b) Algebraic constraints for contractivity".

It was shown ([15JTh.3.2) that the formula (1.1) is contractive at q -0 iff

It is contractive at q -aiff

6 -. k
y:z bo-X7 I b, a 0 (2.3)

* and A.-contractive (strictly contractive at q m)iff y > 0. The formula is

A%-contractive iff both (2.2) and (2.3) hold. (The corresponding statement for

A0-stability is, of co"r~, not true in general) Finally, the. formula (1.1) is A-

contractive iff ([151, Th. 3.3) it is A%-contractive and

k 2 2 2 2 1/2
V [aj + bj'i,)/(ao + boil)] S 1, 0 S il + ao. (2.4)

For a given ip, the inequality (2.4) is necessary and sufficient for contractivity at

q iy y real, with q Y2 .

* * From here on, unless otherwise stated, contractivity is to be understood in the
max-norm.

-6-



c) Existence of high-order contractive formulas

For any a > 0 and any 4, < r/2 there exist ([151,Th.4.1) A(a)-contractive formulas

of Adams type (i.e., with a0  , a, m -1, a2 m ... a 0) and of any order of

accuracy p such that -y defined by (2.3) satisfies* y a I -a and a > q,. It should be

noted, however, that these formulas exist only for k Z kmin(p) where ki'(p) is a

rather rapidly increasing function (empirically, kmZn 3p). Furthermore, formulas with

p > 2 which are A(a)-contractive (and thus A(a)-stable) with a near w/2 cannot be

*m accurate, i.e., they must have large error constants [231.

A sequence of A(a)-contractive formulas of Adams type and of orders p S 6 was

given in [201. Among them is the p - k - 2-formula

x,-xn-l-'(3MR + ;,C-2 ) - 0, (2.5)

*I which is characterized in Section 3 hereafter and which is A-stable and

A(a)-contractive with a;- 70.5*, and a formula with p - 3 and k , 4,

x,-nl-h(8 + 5;:,- 2 -;,_ 4 ) - 0, (2.6)

which is A(a)-stable with a - 780 and A(a)-contractive with a - 41. In [201

variable-step extensions of (2.5) and (2.6) were defined uniquely by requiring that

they, too, have a2.. - bl.,, - 0, respectively a2., - a3.,, - bl,. - b3.. , 0, and it was

shown that the variable-step extension of (2.5),

xl-x.[-,, 2+r , + x2 - 2  - 0 (2.7)2 + 2r,, r

* It is trivial to verify that, subject to (1.2), we have y < 1.

-7-
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remains Ao-contrative for arbitrary step ratios r.:- h./h _ !

The familiar Backward Differentiation Formulas (BDF) with p- k > 2 ae not

contractive in the max-norm at q - 0 [1,15] (nor are they, therefore, Ao-, A(W)-, or

A-contractive in this norm). The two-step second-order BDF,

3 x2 4 + X._2-hi - 0, (2.8)

is A-stable and thus [13] A-contractive in an inner product norm (G-stable). Howev-

er, as shown in [221 and discussed in Section 3 hereafter, this contractivity does not

notprally extend to variable grids (see also the remark at the end of Sub-section 3a

hereafter).

d) Boundedness theorem for nonlinear systems.

In [201, Th. 5.1, a boundeduess result was given for the discrete solution of a nonli-

near mnx m-system of the form

k - Ai, &)1 + d(t, 1), (2.9)

where A - (a) with a11lt, x) < 0, 1, j - 1, ..., m, and d(, 1) is bounded. A some-

what sharper result is the following [241:

o Assume 14, is a discrete solution of (2.9), generated by a one-leg method which is

both AO- and A.-contractive in the max-norm, and let B - (bi,) with b. - -a,y >0
k

and bi- -(I IbjI) sup l aj,(S,, Sx,)I 0 0. If we let I - ( ,) - (8),

t z I xI , and 8j: I diI. where IulI denotes the max-norm of a scalar sequence

juj}, then we have

Bf S , 0, A> 0 (2.10).

-8-
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and if B is a M-matrix (which is the case if A has a sufficient amount of diagonal

0 dominance) then we have input-output stability,

I l(2.11)

for some w because B has a bounded inverse.

3. A-contractivity of multistep formulas with variable steps

a. A-contractivity of two-step formulas with variable steps

In [22] contractivity in inner product norms (G-stability) for dissipative nonlinear

systems and A-contractivity in the max-norm were analyzed for the three-parameter

family of all methods with p - 1 and k w 2 and/or the two-parameter family of all

* p - k - 2-methods. We summarize the results of this theory.

For variable-step G-stability analysis it turns out to be useful to write the two-step

formula

aoxx + alx,,_ + a2x,,_ 2-h,,(bo*. + b1,i., I + b2k._ 2) - 0 (3.1)

in terms of the step

Ahn: aohn-a 2h,_,, (3.2)

where h. -n-in and h,,_ .. _ 1-tn_2. With this choice of the step, the coeffi-

cients of the consistent (p - 1) two-step formulas can be written in terms of three

-9-,S



parameters a, b, c as

1 i

am- bo=-([,+)+(,+,].
2 4

We characterize the non-uniformity of the steps by the grid-parameter

£ - r,:- (h.-k._)/(k. + h.- ). 1 c1< 1, (3.4)

where c 0 iff ho hit _I. Then h. - h.( + ), h_.i - h,(l-,), and

A+ ac), where -:. (h + h ) is the average step. For equal steps

A
)(0), h n M h-h,- h_.. In general. c is related to the step ratio

r i r,,:2 h./h._ via

r M (1 + e)/(l-e) .-- en(r - l)/(r + 1). (3.5)

It is easy to verify that the formula whose coefficients are specified by (3.3) is

second-order (p -2) accurate iff

a- e[ ' cJ]. (3.6)

Thus for i- 0 we have p -2 iff a -0.

Global contractivity,

XJ I5 < Xk_ 1 II, , Zk, (3.7)

which implies A-stabilty, is assured for all discrete solutions of dissipative nonlinear

systems generated by variable-step one-leg methods provided these methods are

(locally) G-stable, i.e., IXii < I X_ I I for all i, I - k, k + 1, ..., n, in a G-norm

I • | which is constant with respect to n, i.e., independent of the step changes. It was

-I0-



shown [221 that the only second-order two-step formulas for which a constant G-norm

exists are defined by

a() = e2c( - )/(A + c)

b() - (1 - c2)/(1 + ec) , (3.8)

c(e)=c-const.,O _ c 1.

They represent a one-parameter subfamily of the two-parameter family of all

p - k - 2-formulas defined by (3.3), subject to the constraint (3.6).

In analyzing A-contractivity in the max-norm for k - 2, the inequality (2.4) was

squared twice to obtain an equivalent rational condition in the coefficients. Subject to

the constraints for second-order accuracy and A0 -contractivity, the latter turns out to

define the same one-parameter subfamily (3.8) of the two-parameter family of all

p = k - 2-formulas as does the contractivity analysis in inner product norms (except

that, from the viewpoint of A-contractivity in the max-norm c(e) need not be con-

stant).

In [15] the particular formula (2.5) was derived by minimizing, over all Ao-contractive

p -k - 2-formulas, a bound for the global error generated by applying the OL-

implementation of any such formula to I = A()x, X (1) 5 -a, for some arbitrarily small

a > 0. The objective function whose minimization led to (2.5) was 1 c3 1 /7, where c 3

is the error constant and y is defined by (2.3). As an example of an A-contractive

formula, we give the one minimizing the same objective function over all A-contractive

p = k - 2-formulas [15]:

x x 1 -ix -h- + 1i -2) (3.9)
6 6 6 ~- 9 f 9f 911

The formula (3.9) is associated with a = 0, b- and c Its variable-step
9 3



0

extension (3.1) is defined by cm ,
3

A 5
6 " 6 (3.10)

and by (3.3) with

2 2
a - a(e,) = 10e2/[3(3 + 2e,,)2,

2 (3.11)
b - b(e) 5/(3 + 2e.)

and .;th e. defined by (3.4). The error constant of this variable-step formula (with

A
respect to h.) can be computed from the general expression

C3 = ¢3,n  - -u a0 +- V a2
)- -j 00 + V 02)  (3.12)

which is valid for any p - k - 2-formula; here

A
W Us:- h./- I 1 h.(1-)/(1 + ec),

A (3.13)
Svn,,,:= h,'h - (1 +)/( + c),

and again c , 2/3 for (3.9).

For uniform steps, the p - k - 2 Backward Differentiation Formula (BDF) (2.8) is

A-stable and thus G-contractive as stated above. However, it is not a member of the

family (3.8) for e - 0 and its variable-step extension (normally defined by setting

bI.R - b2 , - 0) is not contractive in any fixed G-norm. In fact, the BDF was shown

[22, 241 to become unstable for problems of type (1.7) with marginally stable, oscilla-

tory solutions of increasing pefiod and for geometrically increasing step sequences with

a fixed number of steps per period. For similar problems with decreasing period and

steps, the BDF was stable but overdamped. By contrast, the OL-method associated

with the variable-step version of (3.9) was not only stable for both problems but gave

- 12-
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a much more accurate amplitude response than the BDF.

b. A-contractivity of second-order multistep formulas with variable stepi -

Consider the k-step formula (1.8) written in terms of the leading step, h., and let

so that 0=0 and 9, MI by definition. For k -2, 02 -2/(1 +e) where e is

- defined by (3.4). For uniform grids. , - j. In terms of the weighted moments2

k

(3.15)
k

BM'iBm.n:= 78N.
j-0

where m is any integer 2: 0, the constraints for P h -order accuracy of (1.8) are [i8]

AO = 0 AM WMmi,,,.., m W 1,.. (3.16)

and the error constant (with respect to h,) is given by

(-1 '
-P+ -[A,.,.-(p + 1)BP]. (3.17)

The squaring technique used in (221 to analyze max-norm A-contractivity for k M 2 is

impractical for k > 2. But another approach given in (25] is applicable to arbitrary k:

subject to (2.2) and for ajo0 one can write (2.4) in the form

F(1: k 22 (;,la 1/2 >0
I(): -a[ bi/~]0 (3.18)

-13 -



By consistency. F(7) -F-F + and thus
2

k
F:z I (b /aj) >_ 0 (3.19)

j.0

is necessary for (3.18) to hold. But it is easy to prove that second-order accuracy

implies F S 0. Thus at best, F - 0. For any given fixed aj (satisfying the consisten-

cy relations), F is a quadratic function of the b/which takes a unique maximum,

Fmax 0, (3.20)

identically in the a, for

- (0j-lA2)(-aj) - 0, 1. k. (3.21)

Thus the formulas defined by (3.21) do satisfy the necessary condition (3.19) and for

ajO no other formulas will.

One finally proves that, subject to Ao-contractivity and second-order accuracy, (3.19)

is also sufficient for (3.18) to hold, and thus for A-contractivity. This is done by

squaring (3.18) once and by majoring the remaining irrational terms, which are

geometric means of any two of the radicands, by the corresponding arithmetic means.

The result is (3.19).

From the consistency relations and normalization, A0 - 0 and A1 - B0 - 1, it follows

that

k
ao - 1-7 (j M(-al).

i.- 2

(3.22)

a,=- 1-71j(-a),

14-
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and thus the contractivity condition (2.2) at q m 0 defines a simplex in the

(k - 1)-dimensional space of the parameters a j, 2, ..., k, whose vertices are the

origin and the intersection points [ - aj = l/j, aj = 0, iIj, jm 2 ... , k|" of the

a-axes with the plane a, - 0. One immediately verifies that these extreme points

represent, respectively, the Trapezoidal Rules with step lengths - j ,

Sj-1, .... k.

From the above it follows that all p = 2, k-step formulas which are A-contractive in

the max-norm are members of the (k - 1)-parameter sub-family (3.20) of the

(2k - 2)-parameter family of all p - k - 2-formulas, with the parameters {a2, ..., ad

representing any point in the above mentioned simplex. A particularly interesting case

is p - 2,k = 3, in view of the fact that, for evaluating the local error of a second-

order method, at least three backward data must be available at every integration step.

In this case, the above construction provides a two-parameter family of A-contractive

formulas for arbitrary step sequences.
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A Survey of Runge-Kutta Methods

for the Numerical Integration of Stiff Differential System

1. Introduction

A q-stage Runge-Kutta formula for the numerical integration

of'the initial value problem

dy f(x,y), Y(X) = Yo y c (1.1)
dx''

can be written in the general form

q
ynl - yn uh E b.k. (l.2a)ni=n11 1

iu 1

q
k. = f(xn + cih, y n + h E a ijk), I < i <q, (1.2b).

-zz

Such formulae can be represented conveniently by the arrays

cI  a11 a12 ..... alq

cA
c a a a T(1.)
q ql q2.- qq b

SI  b2 ...... bq

* Classically all Runge-Kutta formulae were explicit, i.e. a.1 - 0

for j _ i, but they became interesting for the numerical integra-

tion of stiff differential systems with the introduction of fully

implicit Rtngc-Kutta formulae by Butcher (1964). Butcher showed

that for all q there exist fully implicit q-stage Runge-Kutta

formulae of order 2q and Uhle (1969) has shown that all of these

maximal order formulae are A-stable. Thus, amongst the class of

*J.R. Cash

Department of Mathematics
Imperial College of Science and Technology



implicit Runge-Kutta formulae we have the possibility of deriving

A-stable methods of arbitrarily high order whereas it is well known

from a celebrated result of Dahlquist (1963) that the highest

attainable order of an A-stable linear multistep method is limited

to two. In addition to this, the pioneering work of J.C. Butcher

(1963, 1965) has led to the development of a general algebraic

framework which allows the LnveLL.atm of quite high order Runge-

Kutta formulae in a comparatively straightforward manner.

One of the main arguments against the use of fully implicit

Runge-Kutta formulae was on the grounds of the amount of computa-

tional effort required to solve (1.2b) for the k. If (1.2) isD1

applied to a stiff system of ordinary differential equations it is

necessary to solve the resulting system of algebraic equations,

defining the ki, using some form of Newton iteration. The system

of algebraic equations to be solved is of size qs and so a modified

Newton iteration scheme, if applied in the most obvious and naive

way, will for large s require the order of L q s multiplications
3

to obtain the required solution. This is about q3 times as much

work as is required to solve the algebraic equations arising from

the use of a linear mu|ltistep method. It follows that if these

two classes of methods are compared on this basis, the immediate

conclusion is to reject fully implicit Runge-Kutta formulae in

favour of linear multistep methods. However, because of the

inherent stability of some classes of implicit Runge-Kutta formulae,

coupled with the desirability of having high order single step

integration methods, there has been a large amount of research

into the possibility of overcoming these computational difficulties.

Broadly speaking, research into finding efficient high order

o



implicit Runge-Kutta methods has followed two main directions:

(1) The investigation of the use of transformation methods

to obtain a solution of the algebraic equations de-

fining the k. in an efficient manner.1

(2) The derivation of different classes of implicit Runge-

Kutta formulae which do not call for the solution of

a system of qs simultaneous algebraic equations.

In what follows we shall survey some of the recent results con-

cerned with Runge-Kutta formulae. The literature on implicit

Runge-Kutta formulae is very large and an attempt to cover it

fully in a single chapter has proved impossible. Instead, what

we have done is to gather together those results which we think

will have a significant effect on the way in which Runge-Kutta

codes will be developed in the near future.

2. Stability Requirements for Implicit Runge-Kutta Formulae

If the Runge-Kutta formula (l.2a,b) is applied with a fixed

stcpsize h to the scalar test equation

Ay, A e C, Re(A)<0 (2.1
dx

* we obtain the relation

Yn+l= R(z)yn' z * hA (2.2a)

where

T -1~
R(z) = I + zbT(I - zA)'e, e = [ll,...,l] (2.2b)

and where I is the q x q unit matrix.



Here R(z) is a rational function of z with both the numerator and the

denominator having maximum degree q. The complex number z lies

inside the region of absolute stability of (1.2) if JR(z)I .1. The

first, and still most widely used, stability criterion for Runge-

Kutta formulae applied to stiff differential systems is that of

A-stability due to Dahlquist (1963).

Definition 1

A numerical method is said to be A-stable if its region of

absolute stability contains the whole of the left-hand half-plane Re(z)'O.

A stronger condition, which ensures that the method has

the correct damping at z a - -, is that of L-stability due to Ehle

(1969).

Definition 2

A Runge-Kutta formula is said to be L-stable if it is A-stable

and, in addition,

lim IR(z)I = 0. (2.3)
Re (z). --

The A-stability criterion was originally developed for lineir multi-

step methods but has been widely applied to Runge-Kutta formulae.

Many results are known concerning the conditions under which the

rational function R(z) has modulus less than unity for all z in the

complex left-hand half-plane. (Ehle (1969) calls such a property

A-acceptability and if, in addition, (2.3) holds, then R(z) is

said to be L-acceptable.) In particular, it is known that if R(z) ,

is a diagonal of the Padd table fc2 e , then R(z) is A-acceptable



(Birkhoff and Varga (196S)). Furthermore, if R(z) lies on one of

the two subdiagonals then R(z) is L-acceptable (Ehle (1969)).

Runge-Kutta formulae which, when applied to (2.1), give rational

approximations of this type, have been investigated by Axelsson

(1969), Chipman (1971) and Ehle (1969). However, the investigation

Eof the A-acceptability of rational approximations to ez remains a

difficult task although there have recently been some important

advances in this area (see, for example, N~rsett (1975), Iscrles

- (1979), Wamner, Hairer and Nrsett (1978)). In particular, we

mention the concept of order stars developed by Wanner et al. which

is fast becoming a very important tool in the theory of approxima-

tion.

Although the criterion of A-stability has proved to be a very

valuable one, particularly in helping us to discard those methods

uI which are not promising for integrating stiff systems, it has the

obvious limitations that the model test equation (2.1) is linear,

homogeneous and has constant coefficients. Several authors have

given examples of stiff equ.;tions for which a particular A-stable

method with a certain variable stepsize gives a violently unstable

solution (see, for example, Stetter (1973, p. 181)). A quite

widely used generalisation of A-stability is that of S-stability due

to Prothero and Robinson (1974). This is associated with the

inhomogeneous test equation

y= g'(x) + X(y - g(x)} . (2.4)

Prothero and Robinson sought to categorise those one-step methods

which give a stable numerical solution when applied with a step-

.0.......
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length h to any equation of the form (2.4) where X is a complex constant

with negative real part and where g'(x) is any function that is defined

and bounded in some interval x c [x0 ,X]. They define the concept of

S-stability in the following way.

Definition 3.

A one-step numerical method is said to be S-stable if, for a

differential equation of the form (2.4) and for any real positive

constant A,1 there exists a real positive constant h such tha!

Ynl g(x ) I)

Yn" g(x)

providing y n g(xn), for all 0 h h and all complex X with Re(-X) > AO,

and XnXn+l [Xo,X]-

In addition an S-stable one-step method is said to be strongly

S-stable if nl Xnl)
if yngx, 7- 0 as Re(-A) -- for all h > 0 such that

Xn [x 0 ,Ni. Clearly, the concept of S-stability reduces to that

of A-stability in the case g(x) 0 0. For further comments on S-stability

see Stetter (1975).

Although many of the Runge-Kutta formulae that have recently been

proposed for the integration of stiff systems still seek to satisfy the

conditions of A-stability or S-stability, the test equation (2.4) has

the major limitation that it is linear. A significant step in over-

coming this deficiency was made with the G-stability criterion of

Dahlquist (1975) for multistep methods and the B-stability criterion of

Butcher (1975) for Runge-Kutta methods. The concept of B-stability is

concerned with the nonlinear test equation



y = f(y x)) (2.5)

and is defined by Butcher (1975) in the following way.

Definition 4

Let Ynlyn..., Znl z n,... be two sequences of approximate

solutions of (2.5) computed by an implicit Runge-Kutta method using

the same stepsize h. Let < .,. > denote a scalar product on 6N and

II. I the corresponding norm.''The method is defined to be B-stable

if, for any f satisfying

< f(u) - f(v), u-v > < 0 for all u,v c (2.6)

it holds that Hyn-n 11 1 lYnl-Zn II.

This condition was further extended by Burrage and Butcher

(1979) to the nonlinear system

y' = f(x,y(x)), f: N+I N (2.7)

satisfying the monotonicity condition

< f(x,y) - f(x,z), y-z > < 0 for all y,z C ag

* and all x C R. (2.8)

Associated with the test equation (2.7), Burrage and Butcher (1979)

give the following definition of BN-stability.

Definition S

Let (yn ),(Z n be two sequences of approximations to the solution

of (2.7) computed by (1.2a,b) using a fixed step h. If

I'



I lyn-znl Hynrznlil (2.9)

then the method is said to be BN-stable.

Condition (2.9), which with slight modifications is equivalent

to the concept of contractivity used by Nevalinna and Liniger (1978),

is stronger than that of A-stability since A-stability requires only

that [Ilyn-Zn1 is bounded as n * . Burrage and Butcher give the

following sufficient condition for BN-stability:

Consider the quadratic form
.a

Q(6,e2 ... q) m. j.1, where m.. = b.a. . b.a. .- b.b..
i,j=l 2) 1 J

If the method (l.2a,b) is such that b.> 0 for I _i <q and Q is

non-negative, then (1.2) is BN-stable. This leads to the following

definition of algebraic stability due to Burrage and Butcher (1979).

Definition 6

A Runge-Kutta method which is such that b > 0 and T Mc, where

M }i) is a non-negative form, is said to be algebraically slo .

This condition has been given independently by Crouzeix (Q79).7,

conJvomd bN-sL.AX 14 valent to the A-contractivity .or.d.cei. of Neva 4.

Dahlquist and JeLtsch (1979)aLc observe that it is necessary to have

b. > 0 for all i since if one of the b. is zero we have m.. = 0 and1| 1 11
tht

the non-negative definiteness of M implies that the i row of M

must be zero and the method becomes reducible. Burrage and Butcher

(1979) have shown that if the Runge-Kutta formula is non-confluent

(i.e. c1 ,c2 ,..., q are distinct) then

algebraic stability <= > BN-stability.

A further interesting result has bcen proved by Hundsor--
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Spijker (1981) who show that for any irreducible Runge-Kutta formula

(see, for example, Stetter (1973)), which is not necessarily non-

confluent, the concepts of B-, BN- and algebraic stability are

equivalent.

A neat way of proving the B-stability of certain classes of Runge-

Kutta formulae has been given by Wamer (1976) who shows that the

implicit Runge-Kutta formulae based on Gaussian points and Ehle's IIA

methods based on Radau points are B-stable by using the well known

fact that these particular Runge-Kutta formulae are equivalent to

collocation methods (Wright (1970)). This technique has recently

been extended by N~rsett and Wamer (1981) to include other classes

of Runge-Kutta formulae. The problem of classifying classes of

algebraically stable Runge-Kutta formulae has been considered by

Burrage (1978b). He shows that the q-stage methods of order 2q

are all algebraically stable and has given a classification of all

algebraically stable q-stage Runge-Kutta formulae of order 2q-2 which

are non-confluent. However, Burrage makes the point that such a

classification is much harder for lower order formulae.

In conclusion we can say that in the past few years there has

been considerable development in the stability analysis of Runge-

Kutta formulae applied to nonlinear stiff differential systems. The

condition of algebraic stability has two major advantages to recom-

mend it over A-stability. Firstly, it seems likely that an alge-

braically stable Runge-Kutta method will be superior for nonlinear

stiff systems to one which is only A-stable. Secondly, it is pos-

sible to give an algebraic condition for algebraic stability (i.e.

one depending only on the coefficients of the Runge-Kutta method).



Because of this, algebraic stability, and the closely related

concept oP BN-stability, should play an important role in the

future development of new Runge-Kutta formulae.

3. Fully Implicit Runge-Kutta Formulae

It was mentioned in the introduction that the main objection

to implementing fully implicit Runge-Kutta formulae has tradition-

ally been on the grounds of the amount of computational effort

required to solve the nonlinear equations resulting from a modified

Newton iteration. Algorithms to overcome this problem for a special

* "class of Runge-Kutta formulae have been given by Butcher (1976) and

for more general formulae, including the maximal order ones based on

Gaussian points, by Bickart (1977) and Varah (1979). These algorithms

are all based on transformation methods and in what follows we shall

describe Butcher's approach since this has already been implemented

in a successful computer package.

Consider the solution of the differential system

y,(x) = f(y(x)) (3.1)

using the q-stage formula (1.2). The numerical solution at the point

*' xn = Xn l h is computed using

where

q
Yi z yn-l + h E a..f(Y.) 1 i < q. (3.2b)

To evaluate Y1 ' Y2""'"Y q satisfying (3.2b) we use a modified Newton

iteration scheme so that, at the end of a correction iteration, Yi isf1



replaced by Y. w." The increments w. satisfy

q -- I
w. h E aiJW -g 0 < i <q (3.3a) __-

where J is the s x s Jacobian matrix evaluated at an appropriate

point and

q
Z. Yi + Y n- + h Z a. f(Y), 1 i < q. (3.3b)

1j=l ..

Let M 1 G I - hA Q J be the matrix of coefficients in (3.2) where

I is q x q, I is s x s and 0 denotes a tensor product. Relation (3.3a)

can then be written as

MW- Z 0o(34

for the appropriate vectors w, Z and the matrix M.

We assume that system (3.4) is to be solved for w in the usual

way by first UL decomposing the matrix M. The number of multiplica-

tions required to carry out this decomposition is Cs3/3 + O(s2) for

2

large s and for the back substitution we require Ds' + 0(s) multipli-

cations where C a q3 and D - q2 . The idea behind Butcher's approach <.

is to solve a suitably transformed system of equations so that the

factors C and D are considerably lowered.

Let P and Q be non-singular q x q matrices so that

Wu (Q l)w, z (P 0 I)Z.

Then M - (P 0 I)M(Q 0 I) a PQ I - hA Q J, where A a PAQ. It



W-

immediately follows that (3.4) is equivalent to the transformed

system

M- Z a 0. (3.5)

Suppose now that the Jordan canonical form of A-1 is

T- A Iil

T'AIT = 1 1  -l=f ifA. A +"

Ul 3. X i i+l

u2  A3

q-1 q-

and set D a diag(l,,)2, .... Aq), P - DT-1A 1 , Q T. Butcher (1976) 1'"

shows that in the case where all the Ai are real and equal we have

C I, D a q. This is a result of great practical significance

because it says that for a q-stage implicit Runge-Kutta formula

whose defining matrix has just one real q-fold eigenvalue the com-

putational effort required to solve the algebraic equations arising

from the application of a modified Newton iteration scheme decreases

3 3 2 3 2from q s /3 + OCs ) to s /3 + Ocs ) multiplications for large s.

The obvious question now is whether there exist implicit Runge- .

Kutta formulae having this special property. This question was lop

answered in the affirmative by N~rsett (1976) who showed that formulae

of this type can be constructed by the method of collocation

using the ratio between zeros of certain Laguerre polynomials as

collocation points. The class of methods derived by N~rsett was

extended by Burrage (1978a). The family of Runge-Kutta formulae of

order q, or greater, given by Burrage is
- w

#U



c 2

cqqq
C2

b b. ......... b

12 qqIc
where (bb 2 ... ,b) = (1-.. 1)q Vq

Iqq

A 1 0 0 .•.0 a q
q O 22q

S0 3q

**q-1 -qq

(kq _ I < k< q and where A is

real and non-zero. Burrage (1978a) defines the concept of a trans-

formed Runge-Kutta method and then gives the following definition. .u

Definition 7

A transformed method of order q or greater whose Runge-Kutta

matrix has just one real q-fold eigenvalue is called a singly implicit

method.

Burragc also proved that the maximum attainable order of a

singly implicit Runge-Kutta method with q stages is q'l. The con-

nection between these formulae and the formulae of N6rsett (1976)

comes from the observation that if ZlZi,..,zq are the zeros of the a

qth degree Laguerre polynomial

q
Lq(Z) = £(-I)J1)z/j!jqO



then the singly implicit Runge-Kutta method of Burrage is such that

c. = Az1 , 1 < i < q, where X is the single $-fold eigenvalue of Aq,

q k-l 1 k
E a. c = , i,k 1,2..,qj Il k i

q k-i 1jl b'c = k = 1,2,...,q.

The final remaining step was to derive explicitly the transformation

matrices required to implement these sintly implicit formulae and

this was done by Butcher (1979).

The importance of singly implicit Runge-Kutta formulae from an r

algorithmic point of view is that it is possible to derive a whole

class of formulae of increasing order and that for each order q it is

possible to derive an embedded formula of order q+l which is used for

the purpose of local error estimation. This has led to the develop-

ment of the program STRIDE due to Butcher, Burrage and Chipman (1979a,b)

which is based on the singly implicit formulae of Burrage. STRIDE

is a variable step/variable order program which allows the use of

formulae of orders I(I)15 all of which are A(m)-stable with 0>830.

The implementation details of these formulae arc too numerous to des-

cribe here but are fully described in Butcher, Burrage and Chipman

(1979a). Although STRIDE still does not seem to be generally com-

petitive with codes based on backward differentiation formulae (see

also Gaffney(1982) for further comments) it should be remembered that - -

linear multistep methods have benefited from a vast amount of testing

and re-programming. It is therefore quite possible that the gap between

the performance of BDF and R-K methods will continue to decrease as

more experience is gained with STRIDE and its strengths and weaknesses

become better understood.
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4. Diagonally Implicit and Mono-Implicit Runge-Kutta Methods

Closely related to the singly implicit Runge-Kutta formulae

implemented in STRIDE is the class of diagonally implicit Runge-Kutta

formulae. This class of formulae was originally proposed by N~rsett

(1974) and was further developed by Alexander (1977) and Crouzeix

(Sur l'approximation des Equations diffdrentielles opdrationnelles

lindaires par des mdthodes de Runge-Kutta, Thesis, University of

Paris VI, Paris, 1975). A diagonally implicit Runge-Kutta formula

is one whose defining matrix A is lower triangular. As a result,

the use of a Newton iteration scheme to solve for the k. associated
1

with these methods calls for the solution of q sets of s algebraic

equations. Normally these methods are constructed so that the diagonal

elements are all equal, called DIRK methods by Alexander And SDIRK

by others, but formulae where the diagonal elements are "almost"

equal also seem worthy of study.

Alexander proved that a q-stage, A-stable DIRK formula is strong-

ly S-stable if aqi a bi, 1 < i < q, and c q 1. In Alexander (1977)

he derived strongly S-stable DIRK formulae of order 2 in 2 stages,

order 3 in 3 stages and showed that it is impossible to derive a

strongly S-stable DIRK formula of order 4 in 4 stages. Cash (1979)

gave a strongly S-stable DIRK formula of order 4 in 5 stages and S

Cooper and Sayfy (1979) gave one of order 5 in 6 stages. In Alexan-

der's paper some numerical results are given which indicate that

DIRK formulae can in some cases be competitive with linear multi-

step methods especially when low precision is requested. However,

Alexander, and others, have pointed out that efficient error estima-

tion and, more particularly, change of order, is a problem with DIRK

formulae since it seems difficult to derive families of DIRK

formulae suitable for inclusion in a VSVO algorithm.



There are several important theoretical results known con-

cerning the maximum attainable order of q-stage DIRK formulae.

N~rsett (1974) has shown that the maximum order attainable by a

DIRK formula with q stages is generally q + 1 but if q a 2u,

2 <a P 10, this maximum order is q. NHrsett and Wolfbrandt (1977)

F
have given an important, and somewhat surprising, result concerning

singly implicit Runge-Kutta formulae and DIRK formulae in cases

where all the diagonal elements of the defining matrix A arc not

necessarily equal. They examine rational approximations of the form

m •n

E aiz / il (1 yiz) to e- z where z e C, yi c (4.1)
i=O i=l 1

and show that the maximum attainable order is m.l with the least

absolute value of the error constant being when y I Y 2 s "

This result immediately implies the result of NOrsett that the order

of a q-stage semi-implicit Runge-Kutta formula cannot exceed q~l.

An additional, rather negative result from the point of view of DIRK

formulae, has been given by Hairer (1980a) who has shown that the

order of an algebraically stable DIRK formula cannot exceed four.

The computational aspects of DIRK formulae have not received

much attention so far. The step control procedure used by Alexander

(1977) was based on Richardson extrapolation. However, in view of the

wide., used technique of embedding for explicit Runge-Kutta formulae

(Fehlberg (1964)) it was a natural progression for the error estima-

tion in DIRK formulae to be carried out using pairs of embedded

formulae with orders differing by one. N~rsett (1974) derived some

low order embedded DIRK formulae and Cash (1979) extended this to derive

a third order DIRK formuttin three stages and a fourth order one in

!p



five stages, both of which are strongly S-stable and contain an

embedded formula of one order lower. Present implementations of

DIRK formulae often use fixed order methods. There has not been

any extensive testing of DIRK formulae to date although a research

level code due to Alexander has performed well in the integration of

a certain class of oscillatory problems (Gaffney (1982)). Also a

DIRK code SIRKUS has been given by N~rsett (1974) and a scmi-

implicit Runge-Kutta code for large sparse systems has been developed

by Houbak and Thomsen (1979). S

The possibility of changing both order and stepsize efficiently

with DIRK formulae came with the investigation of block DIRK formulae.

Block implicit Runge-Kutta formulae have been around for some time

(Shampire and Watts (1972), Watanabe (1978), Williams and de Hloog

(1974)) but generally these are based on fully implicit Runge-Kutta

formulae and often they are only proposed as a starting procedure

(Gear (1980)). Block DIRK formulae have been considered in Cash (1982)

and such formulae offer important computational advantages over con-

ventional DIRK formulae. For example, the second order block formula

given by Cash is

2 1 1 b =0.256 (4.2)

1 1 11 2 2 .

2 3 -1 -1 1

3 3-16)3 11 +6 1-L 3b 1S7 11 13- 3-b 2+b S

-- 6b 3b T.6b --- 3b 1 at n + 3

3 -1 -1 1 at n + 2

I at n+lI
2 T

'Si



This formula is strongly S-stable and gives second order solutions at

n~l, n+2, n+3 as well as first 5Wder solutions at n~l and n 2. It

can be seen that (4.2) gives second order solutions at three step

points using a total of five stages so we describe this formula as

being second order and requiring "l1- stages per step". Also given
1

by Cash is a third order formula requiring 2.1 stages per step, a
44

fourth order one requiring 2§ stages per step and a fifth order one

requiring 34 stages per step. All these formulae are strongly S-stable,

or very nearly so, and the stages required per step are considerably

less than for conventional strongly S-stable DIRK formulae. Cash

also describes procedures for varying both the order and stepsize of

these formulae and some numerical results are given.

In Cash (1982) it is argued strongly that in the case of implicit

Runge-Kutta formulae it may not be valid to compare the efficiency of

two formulae by counting the number of stages. It is clear that we

must also take account of the computational effort required to evaluate

the ki. This point is highlighted if we consider an extrapolation
V

method. The trapezoidal rule using h - h Richardson extrapolation

without smoothing can be written as

Ynl,lua Yn h + T [f(xn yn+ , f(Xn'Y n ,

Yn,h f Yn,h/2 = Yn (4.3a)

Yn+/2,h/2 = Yn+(i-l)/2dIi[f(Xn+L/2'yn+L/2,h/2) 
+

+ f(Xn+(LL)/2, yn+(i-l)/2,h/2)] i = 1,2. (4.3b)

The extrapolal-d soltition Yn+l is given by



= i(4Y~, - Y (4.3c)

Formally this process for computing )n~l can be written as the -

diagonally implicit Runge-Kutta formula

0 -0

12 001 1

2 11(4.4)

T o 4
10 1 1 

.0

1 1 2 1
T 6',

We see that this formula has four stages but this does not tell the

whole story. This is because the stage k4 is likely to be very cheap

to evaluate since, when computhng the approximation Yn~lhf2 we al-

ready have the approximations ynlh and ynl, available. Many

extrapolation methods can be regarded as high order diagonally implicit

Runge-Kutta methods which require more than the minimum possible

number of stages to achieve a given order but which are such that

some of the stages are very cheap to evaluate. Note, however, that

k. extrapolation methods are such that the diagonal elements for the

corresponding DIRK method are not all equal.

IWe now consider the class of Mono-Implicit Runge-Kutta formulae

introduced by Cash (1975). The idea of introducing this class of

formulae came from the observation that if we take the forward Euler

rule

Yn+l " Yn - hfn'

I"



which has only a small region of absolute stability, and replace h by

-h we obtain the backward Euler rule

Yn " Yn-l = hf

which is known to be L-stable. This idea can be extended by taking

any explicit Runge-Kutta formula and replacing h by -h to obtain what

is called the "backward version" of the Runge-Kutta formula. If the

explicit Runge-Kutta formula when applied with fixed 1i to thc equation

y' = Xy gives
Yn+1 /Yn R(z), z M h,

and the backward version gives

yn+11/y = R(z)

it can easily be shown that

-(z) R-z• (4.5)

This leads us to the "reflection principle" that the stability region

of the backward formula is the complementary set of the image of that

t of the classical explicit formula reflected in the imaginary axis.

For further extensions of this idea see Stetter (1973). This class of

* •backward formulae generally has very good stability properties and it

can be shown to be a subset of the more general class of formulae

k

S * )'n+l" Yn =h Z bjf(x na.' Yn+a ) (4.6a)

m
= y +(- 6 )yn + hir a..f(x n "  (4.6b)

n~a3 ~ l n i=O ji n+ai n~cx.i



If in(4.6b) we take m j - 1, 6. 0 we obtain a classical explicit

JJRunge-Kutta formula. If m =j, 6 j 0 , a jj = for all j we obtain

a diagonally implicit Runge-Kutta formula and if m z k, 6j = 0 we

obtain a fully implicit Runge-Kutta formula. If, however, we take

m = j - I and 6. 0 for at least one j we obtain a formula which is

implicit in the single unknown Yn-l" In Cash (1975) the general

class of formulae proposed was of the form (4.6a,b) with

6. =0, M = j -1, 0 < j <r,

6. 1, m j 1, .. = 0, r + 1 < j < k, 0 < i < r,

where r [-k]. Some numerical testing of these formulae was done

by Birnbaum and Lapidus (1978) and they were found to perform well on

a set of test problems from a chemical engineering environment. These

formulae were further investigated by van Bokhoven (1980) who derived

the general order relations to be satisfied by formulae of order < 6.

As with fully implicit Runge-Kutta formulae, the way in which MIRK

formulae are implemented is of great importance. The system of algebraic

equations to be solved is of dimension s but the coefficient matrix of

the modified Newton iteration scheme is of the form

t

E a .h.1  (4.7)i=O 1

where J is an approximation to the Jacobian matrix. In Cash and

Singhal (1982) a special class of MIRK formulae were investigated

which is such that (4.7) can be approximated by

(I - BhJ)t

since in this case no matrix-matrix products are called for. Some

L-stable formulae of this class with order < 4 have been given in

-Im 
m m ' i m ' ' " a

. . . .
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Cash and Singhal (1982) and some numerical results are presented.

S. Defect Correction

The technique of defect correction is a further attempt to over-

come the difficulty of solving large systems of nonlinear algebraic

equations when applying high-order implicit Runge-Kutta methods. The .

basic idea behind the Iterated Defect Correction (IDeC) technique is

to obtain an approximate solution of the differential equation using

a "cheap" low-order implicit R-K method and then to improve this

approximate solution iteratively by means of a correction procedure.

The technique of IDeC has been given by Frank and Ueberhuber (1977,

1978). They show that every IDeC method based on the backward Euler

rule, using piecewise polynomial interpolation, has a fixed point

which coincides with the solution obtained using an appropriate poly-

nomial collocation scheme. However, in general, the IDeC technique

calls for not much more computational effort than is required by a

linear multistep method to solve the algebraic equations arising from

a modified Newton iteration. The technique of IDeC as described by

Frank and Ucberhuber (1977) is as follows.

Consider the solution of the stiff differential system

y' -f(x,y), y(O) =Yo 0 <x < If.

Define a grid

W (x- ffi 11C, V = l(1)mIO < <I •  ' m = 1.

On this grid apply the backward Euler rule

(o) (o) + hf(x (o), v O(1)m-1, hV x -x . (5.1)
V~l V V l" v +l



This gives a solution n(° )  (0 ) (0) (0) T. Now construct an

interpolating polynomial P0 (x) of degree m which interpolates the

- points {x n , i.e. -

0s

P°x ) * n(o) O= O(1)M, (5.2)
V

"0

K Having constructed this polynomial we can define the defect, which is

a continuous function of x, as

d (x) = d [pO(x)] - f(x,pO(x)). (S.3) -"

This allows the following initial value problem to be constructed

y'(x) - f(xy) + d0 (x), y(o) = Yo

Zf(x,y) + d [P (x)] (xP (x)) (5.4)
U

i which has the known solution y(x) = P°(x). We now solve the initial -,

value problem (5.4) in exactly the same way, i.e. using the backward

Euler rule on the same grid w, to obtain a numerical solution

IK T(0) (T (a)
o 1 ''

(o) o
We now use the known discretization errors T - P (x ) as estimates

of the unknown errors n(o) - y(x ). This approach follows an original
qV

idea due to Zadunaisky (1976). We now replace the unknown errors

in the identity
S

Y(x) - () - (n (0) - Y(X,)), V -0(1)

by the known error estimates T(o) - P0 (x ). This leads to the
V V

following formuila to improve the first approximate solution n(o), w

S

I.

L .. . .l l I i l " l l l . . .. A. . .
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S o - (T(0) PCx)), v = Ot)M, (S.S)

V V V

Following an idea due to Stetter (1974) this whole procedure can be

used iteratively as

n-jl) n(0 T ) - cs~ (.6)
V V 'V

where P3(x) is the polynomial of degree m interpolating the points

{X Subject to some general differentiability conditions onV V VZO" .

the function f, Frank and Ueberhuber (1977) have proved the following

result for the IDeC method applied on an equi-distant grid for a fixed

degree of polynomial m and for h * H/m:

If an arbitrary Runge-Kutta scheme of order p(_ m) is used and

if f satisfies suitable differentiability conditions then

S
- Y~xv) =O~hmin(P(j+l),m))

Thus the technique of IDeC achieves the high order attainable by

implicit Runge-Kutta formulae but at a significantly less computation

cost. Much of the theoretical analysis concerning IDeC has now been

completed (Stetter (1974), (1978), Ilairer (1978), Frank and Ueberhuber

(1978)) and this approach does seem to be a very promising one.

Actual implementations of defect correction have been largely

based on the backward Euler rule although Butcher (1979b) has con-

sidered the application of defect correction to a more general class

of Runge-Kutta methods. Ueberhuber (1979) has considered many of the

computational details associated with a particular implementation of -

IDeC but it is clear that much more experience is needed in this area

before a really successful implementation can be contemplated.
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6. Runge-Kutta Methods Using an Approximation to the Jacobian

6.1 Rosenbrock Methods

For the numerical integration of the autonomous differential -

system

d f(y), Y(x y (6.1)

Rosenbrock (1963) proposed the class of q-stage integration methods

defined by

q
Ynl =Yn + h £ brkr  (6.2a)rwl rr

r-1 r-I

r f(yn h E arsks r n h E rss r)kr,

SRI

2 < r < q, (6.2b)

where J(yn) - Such formulae have the major computational
y3,, 

. ,.L

advantage that it is only necessary to solve linear systems of algebraic

equations to find the k but have tile disadvantage that the ex:ct
r

Jacobian is required at each step. In view of this, Rosenbrock

methods are only likely to be competitive with other classes of methods

on problems for which the Jacobian matrix is not too expensive to

evaluate. An important class of problems of this type has been given

by Edsberg (1974). Edsberg considered problems where the elementary

steps of some composite reaction taking place in a homogeneous

solution according to the mass action law are known. In such cases

the system of O.D.1*.s describing the kinetic behaviour of the system



can be set up from the coefficients and the structure of the reactions.

Edsberg showed that such problems can often be written in the form 2
y' = Ap, y(o) given, (6.3)

where A is an M x N matrix with integer entries and p is an N-vector

with

M r..
pj= k Tr yj. (6.4)

Here the r.. > 0 are integers describing the reactions and the k. > 0
3~1 - 3

are the rate constants. For such problems we can obtain the Jacobian

matrix f directly from the relationY

ap.
-3 = r.jp/yi" (6.5)
ay. 313

Most early studies of Rosenbrock methods appeared in the engineering 0

literature. In particular we mention the work of CalahazL(1968),

Allen and Pottle (1966), Caillaud and Padmanabhan (1971), Lapidus and

Seinfeld (1971) and Michelson (1976). In Cash (1976) the suggestion

was made to look for Rosenbrock formulae with B = 0 since these

require only one Jacobian evaluation per step. Also given by Cash

was a novel form of error estimation which is applicable to a quite f I

wide class of Runge-Kutta methods. To describe it we consider the T

second order Rosenbrock method

S
Yn+l " 'n h(b k + b k (6.6) -1n1 22~ -

k 1 [I - ahJ(y n)] -f(y n )

k2 a [I - ahJCYn)] f(yn + hcIk1 ).

m



The coefficients of this formula can be chosen so that it is L-stable

(Cash (1976)) and we call the resulting formula R2 (xn'w1 w2 ,a,cih).

IV The procedure used to obtain an estimate of the local truncation error

is a modified form of Richardson extrapolation whereby two approximate

solutions are found at each step point, one using two steps of size

u h/2 and the other using one step of length h. Thus, starting from

the point Xn I we use the integration formulae R2(xntl,,w'w 2 a,cih/2),

R2(x 19,Ww a,cl,h/2) to compute an approximate solution y at x
2 n-2 2p'' n n'

A second approximate solution in is computed using the formulaRn

R2 (X n-lip,2,a/2,cI/2,h). The crucial point to note about using the

formula R2 with a steplength h is that it uses exactly the same It

and k2 as were used by R2 (xn-lWIw 2,a,clph/2). This means that, in

general, a negligible extra computational effort is required to com-

pute the error estimate. In Cash (1976) an L-stable formula of order

two in two stages and an L-stable formula of order three in three •

stages using a Merson-type error estimate were derived. This tech-

nique has recently been used by Bui (1981) to obtain a fully embedded

formula of order 3. .

A modification of Rosenbrock formulae was given by Wolfbrandt

(1977). lle introduced the class of ROW methods eiven by

* i-I i-I S

(I - yhJ(Y )]k . hf(y + E a. k hJ(y ) r y. kit
n j l jai1jkj jl ij

1 < i < q, (6.7a)
q

Yn~l= Yn + E bik.
i-I

Kaps and Wawier (1981) have shown that mathematically this formulation

is equivalent to the computationally more efficient class of formulae



~I1

where

[I - ihJ(yn)]k.i  hf(yn + E aijk.) h Z yijkj • (6.7b) -
jal jl

We shall refer to both these classes as ROW methods and we note that

if Y ij *ij s 0 they reduce to Rosenbrock methods. If (6.7a) is

applied with a fixed stepsize h to the scalar equation y' - Xy we

obtain

Yn+l "R(z)yn, z •hA,

where, if the method is of order q at least, U

R(z) E z Y

j=0 i:O

An investigation of how to choose y to give optimal stability and

accuracy has been carried out by Waner (1980). Higher order formulae

of the Rosenbrock, or ROW, class have been derived by several people .

and in particular we mention the work of Bui (1979) who derives an

L-stable formula of order 4 in 4 stages, Kaps and Wanner (1981) who "

derive methods of order five and six requiring just one Jacobian

evaluation per step(but the step control is by Richardson extrapola-

tioJ Kaps and Rentrop (1979) who derive a fourth order method with an

embedded third order method for error estimation, NMrsett and Wolf-

brandt (1979) who derive the order relations for Rosenbrock methods

by extending the Butcher series approach, and the thesis of Wolfbrandt

(1977) which investigates ROW methods. Finally, we mention a report - •

by Shampina (1980) who raises several interesting points concerning



the implementation of Rosenbrock methods. Generally speaking,

Runge-Kutta formulae evaluate the function f(x,y) several times in

the interval [XnXn+l]. Shampine argues that it is desirable that -

these function evaluations should span [x nx n+] so that the formula

is able to spot any quasi-discontinuities in the solution. An

example of a formula which does not satisfy this condition, the

implicit mid-point rule, is discussed and by considering a different-

ial equation of the form

y'(t) - d - by + aE(t),

where the forcing function E(t) is a square wave, Shampiu. shows that

the implicit mid-point rule can sometimes give a very poor solution

due to its inability to spot quasi-discontinuity.

Another important point raised by Shampine is that the linear S

system of algebraic equations defining the ki is almost bound to be

ill-conditioned. This is also the case for BDF methods but for these

formulae this is not serious since they solve for the change in the S

solution and normally it is only necessary to get the first few digits

correct. Ilowever, for Rosenbrock methods this ill-conditioning can

be serious and special care must be taken to monitor it. Shampiue

derives a fourth order formula with an embedded formula of order three,

both of which have rational coefficients and satisfy the spanning

conditions, and discusses their implementation and practical perfor-

mance in some detail.

A class of formulae similar to Wolfbrandt's methods was proposed

by Cash (1980). These take the form



q

Yn+l -Yn a Z wik. (6.9a)

f y]2k = ( h f  i-1(I - h y (Yn ki h(I ch yn + Z b. .k.). (6.9b)
a nal ij 

Each k. calls for the solution of a linear system of equations of

the form

A2k. a b.
1

This can be done efficiently, i.e. without the need for matrix pro-

ducts, by LU decomposing A and solving the systems

uz .6 Wz* b

LUk. z.
1

Cash gives an L-stable formula of order 3, with an embedded L-stable

formula of order 2, of the form (6.9) and the results of some numeri- S

cal computations are reported.

An obvious extension of Rosenbrock methods is to see what can

be done with formulae of the general form (6.2) where J is no longer s

the exact Jacobian. An interesting contribution in this area is due

to Stcihaug and Wolfbrandt (1979) who consider methods of the form

i-I i-I
(I - hd iiA)ki - f(yn + h Z a ij.k) + hA X d ijk 1 < i < q.(6.10)

jai jai

Here A is a real square matrix and h is chosen so that l-hdii A is

non-singular. Since A is no longer the exact Jacobian, there are

considerably more order relations to be satisfied than for ordinary

ROW methods. In particular Steihaug and Wolfbrandt show that to get

order 3 it is necessary to satisfy eight order relations. They give a

LS



second order formula with an embedded error estimate and present

the results of some numerical computations.

An alternative approach to the problem of deriving Runge-Kutta -

formulae with coefficients depending on an inexact Jacobian is the

one due to Verwer (1977). Verwer has investigated a class of for-

mulae considered by van der louwen (1972a,b) and defines a generalised

m-point Runge-Kutta method to be • I

~nl Yn + Ao (h J )k~ (6.11)
(j) m -I

k hf + h C! k j ,,h J()6.II) x x
nl n' Yn + nm,j n nn n n

j-lk *~ =h fx *ujhn ,yn E A. .(h J )k )•  h n  -~ X~n'
n n (n jn £= , n n n 'n=X

j -l
where uj - E Aj, (o), j - 0,1,...,m-1 and where A.j, , j = 1,2,...,m,

= 0,1,...,j-1 are rational functions with real coefficients. Verwer

derives a class of generalised Runge-Kutta formulae which have order

independent of the choice of J n . Associated with these formulae,

Verwer defines the concept of internal S-stability as follows.

Define (J) by the relation

hf(x ), j = 1,2,...,m.
k n nn n Ujna Yn+l "'!

The Runge-Kutta formula (6.11) can then be written as

y(o)
n+l " y

SCj) j -1
= n hn 0A. (hnJn)f(x u h, y , j=1,2,. ..,m

O nn(6.1 )

yn~ (m)
SUnl"



The usual approach in the stability analysis of methods for stiff

* problems is to examine the stability of the solution only at the end

point of the current step. However, for those Runge-Kutta schemes

which are such that the solution is built up successively in several

intermediate stages it is also of interest to examine the stability

properties of the intermediate solutions y To allow for this,"n+l"

Verwer gives the following definition of internal S-stability.

Definition 8

The integration formula (6.12) is said to be internally S-stable

thif at each j stage, j - 1,2,...,m, the corresponding scheme at

stage j is S-stable.

Verwer considers the performance of three second order formulae

of the form (6.11) on a set of three test problems. The first for-

mula is L-stable but not S-stable, the second is S-stable but not

internally S-stable and the third is internally S-stable. The numeri-

cal results presented suggest that the third formula is superior to

the other two on the problems considered.

7. Nonlinear Methods

Finally, we mention briefly an interesting class of nonlinear

-" Runge-Kutta methods. It seems likely that such methods will experience

difficulties in solving some classes of stiff systems but numerical

experience obtained so far indicates that they may have real potential

in solving the stiff equations arising from the methods of lines

solution of parabolic partial differential equations. Their main

feature is that, being nonlinear, they are able to achieve A-stability
w

-- while still heing explicit. Lambert (1974) seems to have been the



first to consider nonlinear Runge-Kutta methods. One particular

example he gives is

Y "n = hf(xn+ . Yn + - hy I .Ihfn)). (7.1)

This method has the advantage that it is "component applicable" "O

(see Lambert (1974), p. 176) but has the disadvantage that, although

having order 2 in general it only has order I if y = 0. Also, of

course, care must be taken to ensure that yn - - hf does not vanish.n 2 n
Nonlinear Runge-Kutta methods were also examined by Wambecq (1978)

and Hlairer (1980b). The general class of formulae they consider is

given by "

s i gig(

Y, =y 0 Z - -ij s (7.2)jul jul Z bkgk

k=l I

i-I

gi hf(y0 + E aijgj
jai

These formulae no longer have a simple interpretation in component

ab
form. instead, the expression C appearing in (7.2) must be inter-

preted for real or complex vectors as

ab a Re(b,d) + bRe(d,a) - dRe(a,b)
d - (d,d)

where (a,b) denotes the scalar product of a and b. These methods are

more expensive to implement for systems than those due to Lambert

but do not suffer from the problem that the order changes if y passes

through zero. However, there is still the problem that the denominator

may become zero as is emphasiscd by the second order equation

'lS



g = hf(y 0)

g2 = (y +

gg
1

Y, -o+ I
0 2g 1-g2

so they need to be implemented with particular care.

Hlairer (1980b) gives a second order A -stable method with an

embedded error control. In numerical tests this method was found to

perform poorly on some stiff problems arising in chemical kinetics

and so they are probably ruled out for the integration of general

stiff systems. However, good results were obtained for the integra- 0

tion of some parabolic P.D.E.s using the method of lines. Because of

these results and the very low storage requirement of the formulae

(7.2) (they do not require the evaluation or storage of a Jacobian),

they seem worthy of further attention as candidates for use with the

method of lines solution of parabolic partial differential equations.
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Four-pass Heat Exchanger

(ODE/PDE System)

F; dTl/dt -fl(T 15 TS)

dT5/dt - f5 (T11 T5 ,T9 )

T 9 (Olt) dT 9/dt - f 9CT5 0T 9)

x - 0 T (Lot)

Nine PDEs

Four tube fluid temperatures

T 1 (x,t)

T2 (x,t)

T 3 (x~t)

T 4 (x,t)

Four metal temperatures

T (x,t)

T 6Cx,t)

T 7 (x,t)

T(x,t)

Shell fluid temperature

T (x,t)

11-point grid in x

Number of ODEs 9 x 11 + 1 -100



SUBROUTINE INITAL
CO~

CO.. DYNAMIC MODEL OF A FOUR-PASS SHELL AND TUBE HEAT EXCHANGER WITH
Coos MAPPING OF THE IODEL JACOBIAN MATRIX
Coos

Co.o A HEAT EXCHANGER IS A DISTRIBUTEO SYSTEM IN WHICH CONVECTION AND
Co.. TRANSFER OF HEAT ALONG THE EXCHANGER ARE THE PRINCIPAL MODES OF
Co. OPERATION. THUS THE SPATIAL DISTRIBUTION OF TEMPERATURE WITHIN
C... THE EXCHANGER MUST BE TAKEN INTO ACCOUNT IN A REALISTIC ANALYSIS.
C... IF THE TRANSIENT OPERATION OF AN EXCHANGER IS ALSO TO BE CON-
C... SIDERED9 THE MATHEMATICAL MODEL MUST NECESSARILf INVOLVE SPACE
Coo. AND TINE9 I.Eo, THE MODEL IS EXPRESSED IN TERMS OF POES ALSO,
Coo. MIXING IN THE HEADERS OF THE EXCHANGER (THE ENTRANCE CHAMGER FOR
C.. EACH TUBE PASS) IS MODELED BY ODES WHICH SERVE AS BOUNDARY CON-
Coo OITIONS FOR THE POES. THE ANALYSIS OF EXPERIMENTAL DATA FOR HEAT
Coo EXCHANGERS HAS INDICATED THAT THE MIXING IN THE HEADERS CANNOT BE
C.o NEGLECTED AND THUS A NIXED OOE/POE MODEL IS REQUIREO, TO ILLUS-
C... TRATE SOME OF THESE CONCEPTS, CONSIDEq THE FOLLOWING SYSTEM OF
C... NINE POES AND FIVE POES FOR A FOUR-PASS, SHELL AND TUBE HEAT
C.,. EXCHANGER (SUBSCRIPTS T AND X DENOTE PARTIAL DERIVATIVES WITH
C.oo RESPECT TO T AND X, RESPECTIVELY) -
C..
CO.. TI a -C1*T2 + C3*(TS - T11 (i
Coo. T X
Coe@

C..o T2 a C1*T2 * C3(TG - T21 (21
Coo* T X

C..o T3 a -CI*T3 * C34ITT - T3) (31
C.** T X
Co..
C.o T4 a CI'T4 0 C3*(T8 - T41 (41
Coos T X
Coo*

C.. TS a C44ITI - T5) * CI'(T9 - TS) (5)
Co.. TC... *
C... T6 a C4I*T2 - T6) + C*I(T9 - T6) (61
C... T
Co..
C... T? a C44(T3 - TY) # :5*(T9 - T7) iil
C... T
Co..
Co.o TB a C4f(T4 - TO) + C5*(T9 - TS) (61
C... T
C.o.

Co T9 a -C2*T9 + C6((TS - TI) + (T6 - T91
C.** T X (9)
C..* (TT - T9) * ITS * T91)

Co:: THE NINE DEPENDENT VARIABLES, TI(XoT), T2(XvTl9 e* T9(X.T) ARE
C... TO BE COMPUTED. CI, C2, ,el, C6 ARE SIVEN NUMERICAL CONSTANTSC... WHICH REFLECT THE THERPAL CAPACITANCES OF THE LIQUZOS FLOWING

Coo THROUGH THE EXCHANGER, THE THERMAL CAPACITANCE OF THE METAL IN
Coo THE EXCHANGER TUBES ANO THE HEAT TRANSFER CHARACTERISTICS. EQUA-

WooWN,



9

C... TIONS (11 TO (4 AND (91 EACH REQUIRE A BOUNDARV CONDITION zN X
Coo. AND ALL NINE EQUATIONS REQUIRE AN INITIAL CONDITION IN To THESE
C.. WILL SE TAKEN AS
Co..
coo.OTI(OTIIOT w 81*(TI - TIO,T11 (101
C...
C...OTI(0,T)/OT a 81*(Tl - TI(0.T11 (101

Co.. OT2(LT)/OT 8 1Z1(T1(L,T) - TZ(LT)) (11

C*.. OT3(0,TI/OT a B2*1T2(OT) - T3(0,TI (123

Cos OT4(LT)/OT a B2*(T3(LPT) - T4(LTl) (131
CodeCoss T9(0,T) z TSI E141

... i

Coos TI(X903 a T2(X9a) a T3lXv83 9 T4(X,0) a
Coss

Coss TSIXpo a T6(XO) a TtXOI a TOIX.0 a (153
Coos
C.s* T9(XO a 0"

Coo FINALLY9 ONE ORDINARY DIFFERENTIAL EQUATION WILL BE ADDED TO MODEL
Coo THE MIXING IN THE HEADER AT THE EXIT 3F THE FOURTH PASS
co.

Co* OTOIOT x BI*(T4(OvT) - TOP (161
Coeo

Coo.* TO(O3 a 0 (17T
Coo
Co.. EQUATIONS (1) TO (17) CONSTITUTE THE ZOIPLETE SYSTEM (NINE POES
C.o AND FIVE ODES)* Li S1 AND 92 ARE THE EXCHANGER LENGTH AND MIXING
C... TINE CONSTANTS FOR THE HEADERS, PESPECTIVELL. TI AND TSI ARE THE
Co.. ENTERING TEMPERATURES OF THE TUBE SIDE AND SHELL SIDE FLUIDS.
C... RESPECTIVELY.

C... THE SOLUTION OF EQUATIONS (1) TO (173 IS BASED ON THE APPROXI-
Co.. MATION OF THE DERIVATIVES IN X IN EQUATIONS I13 TO (43 AND (91
C... OVER A GRID OF 11 POINTS. AN APPROXIMATING ODE IS WRITTEN FOR
Co. EACH GRID POINT FOR EACH POE. THUS THERE WILL BE A TOTAL OF 1149
C... a 99 ODES APPROXIMATING EQUATIONS (13 TO (93. FINALLY. EQUATION
C... (163 BRINGS THE TOTAL ODES TO 100.
Coos
C... IN ORDER TO GAIN A PICTURE OF THE 100 ODE SYSTEM STRUCTURE, THE
Co. FOLLOWING PROGRAM ALSO CALLS SUBROUTINES JMAP AND EIGN TO MAP THE
C..o 100 ODE SYSTEM JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGEN-
C.. VALUES, RESPECTIVELYo SUBROUTINE ERGEN IN TURN CALLS IMSL ROUTINE
C... EIGRF. IF EIGAF IS NOT AVAILABLE, THE CALL TO EZGEN IN SUBROUTINE
C... PRINT CAN GE CONVERTED TO A COMMENT (0 IN COLUMN 1.
Coo
Coo THE USUAL FUNCTION OF SUBROUTINE INITAL, EVALUATION OF
C..o THE INITIAL CONDITIONS FOR THE DEPENDENT VARIABLES IN
Coo. COMMON/Y/, IS ACCOMPLISHED BY A BLOCK DATA ROUTINE.
C.o. THEREFORE INITAL IS ESSENTIALLY A DUMMY ROUTIME, AND
Coos DOES NOT REQUIRE THE USUAL COMMON/Ti, /Y/ AND /F/.
Coo*

RETURN
ENO

lie



SUBROUTINE OERV
COMMON/T/TIHENSTOP, NORUN

I I/ Tlight, T24h111 Ttill~, T44111), T54111,
2 v TSchh), T7(1h), T811119 T941119 TO
3 /F/TlT(hlT2TIIIIT3TIlhI,TbTI11).TSTIh1),

4 T6T:1h,TT'h1ITST1IIl).TST(l1I, TOT
9 /S/TlX(h1IT2X1111,T3X(11),T'.xI11),T9x111)
6 C NG, C19 C29 C39 Clog C59

Coo * 7 CS. Big 82, TI, TS19 XL

C... SET BOUNDARY CONE41TION 11'e)
T9Ih1=TSI

C..
Co.. COMPUTE THE FIRST DERIVATIVES WITH RESPECT TO X BY FIVE-POINT
C... CENTERED DIFFERENCES

* CALL OSSCSI(O.,XtNGTIvTIXl
CALL DSSg0Iovg.XLNGvT2vTZ2XI
CALL DSSaA4EO.,XL9NST3#T3X)
CALL OSSOI4lO.,XLvNG9Tb.T4X)
CALL DSSOO4(CoqXLvGT9v19X)

Co..
Coo. ASSEMBLE TH4E POES, EQUATIONS III TO (91

00 1 Xui.NG

T27t?)m CI*T2X(I) + CS*(T()-T2(!)I
TlTqIl=-ClOT3XqI) 0 C3*(T7411-T31111
T'.TII)m CIOfU.XIII + C3flTSIL-T4(II3

TSTII)= C4I'6T211-TSCIII

1 ~4U(TII-TSII)l
T7TMI$= CI.*(T3(I)-TTII

I 4 CSO(TIl-T71ril
TOTZ!)a CkO'T'.:1-T&I!3)

1 ~4 5'((-Te(Ell
T9TlI)m-C2sT9XfI) - '..C6*T91I)

*I CONTINUE

C... EVALUATE THE COE DERIVATIVES FROM EQUATIONS tIM AND 4131 AND-
C... EQUATION £161. NOTE THAT THESE DERIVATIVES MUST BE COMPUTED
Coo. AFTER THOSE FOR THE POES

TITI 11=910f TI-TlI 1W
T2T (NG,.e2*dTIlNGI-T2fNG'l
TMT h)2IT(t-T34 III
T'.TtNG1UU24 tTS NS) -Tl#(NGII

* T9T( 11=0.
TOT aS1'tTbt 11- TaO)
RETURN
END



SUBROUTINE PRINT(NI9NOl
COMMON//TI? MENSTOP. NORUN

2 751119 17311I). T$3111 T941±)o To
3 /F/T1T(11),T2T(111,T3(1llT.T(11,.TITIIR.
a.T&T:1i),T7T'xI).vTsTt11gTqTq11), TIT

5 /TlX(11).T2X(111,T3X(11),T.X(11I,T9E(111,
6 /C/ NB, CIO C26 C39 C'., Cs,
7 C69 31. 32, TI, Ts!. XL

m C::: THI'S SECTION OF SUBROUTINE PRINT

C.*. 1) CALLS SUBROUTINE JMAP TO "AV THE JACONIAN MATRIX OF
coo* ISO OE SYSTEM.
C.*.
Coo* £2) CALLS THE IMSL. SUOROUTINE EIGRF TO :OMPUTE THE TEMPORAL
coo* EIGENVALUES OF THE DOE SYSTEM, AND 3PTIONALLY9 THE ASSOCT-
Coo. ATED EIGENVECTORS.

Coo. ABSOLUTE DIMENSIONING OF THE ARRAYS REQUIRED BY SUBROUTINES JNAP
Coo. CA, Y9 TOLD, Ft FOLD$ ANID EIGRF (EIGENV9 HF)

OIM1NSO A.1009.16019 EIGENVI100. WFI113)
I (1001, TOLotIOUI,

2 F(10019 FOL091001

Co.EQUIVALENCE lTIII)vY&11)).TITlIIFCj))

UCoo* THE COMPLEX TEMPORAL EIGENVALUES Or THE OE SYSTEM ARE STORED IN
Co.. ARRAY EIGENY

COMPLEX EZOENY

Coos HAP THE JACOBIN MATRIX Of THE 0DE SYSTE" DEFINED IN4 SUBROUTINE
Co.. OEPV, AND COMPUTE ITS TEMPORAL EIGENVALUES

IFITIME*GTo.IGO TO 5

CALL JHAPCNOApY4YOLOF.FOLO)

C... SUBROUTINE EZOEN (PART Of OSS121 CALLS IMSL SUBSROUTINE EIGOF TO
Coo* COMPUTE THE TEMPORAL EIGENVALUES, AND OPT1O0EALLY THE EtGENVECTORS.
C... Of THE 100 OCE SYSTEM JACOBIAN MATRIX. IF EISRF IS NOT AVAILABLE,
C... THE FOLLOWING CALL TO EISEN CAN SE CONVERTED TO A COMMENT 4C IN
Coo* COLUMN 11

* CALL ElGEMN9A9EGENVWfl

lS



Coo* PRINT A HEADING FOR 11IE NUMERICAL SOLUTION
WWITE(NO930

3 F0RFAI(1v9X99§HN!XED ORDIt4ARY/PARTIAL DIFFERENTIAL EQUATION MN

WRITE:NO91)C1.C29C39C,

13X@40C1 a v1I.393X,'.NC2 8 ,E16.3v3Xqi.C3 a vEl1p,- .

23XI.HC. = .E10.31
WQITEtPO921C99C699.,82

2 FORMAT(
13X916NCS a ,EID.393X,'.NC6 * 9f1O.393Xv4H91 a ,Ela.3.
23X94H32 2 ,E1A.3s//)
WRITECNO94)

S FORMAT(
I BXI.NTIIETX,7TIXaS1,7X,8NT1.LXU1219$X.2NtU.IOX.
2 SNTqtxxl2)I

Coo.
C.*. PRINT THE SOLUTION
5 WRITE(NO.GIT!NETlIIT.4NC3 ,TI,T9INGR

6 FORMATtE23o'.ea,5l
PET URN

4ENO



DEPENSEN? VARIA91.1 CowUmN tIE .j CFO* YTfl IS PRINTEG 1400IZONTALIV

OlatVSTufVPO oow xwm I CFO* 19110? a PI"l'vi . ... YJ .... 1v4S 13 PItMTID VEVICALLY
JSCOIIIAM R'Tel, CLEMNT IN T1H9 04P WITH ISI'CKS "1.I FOR 911tPVJ "04109 P DENOTES A POhtIAL OtuIVuIWf

12 ISS4 a0
13 699%6 6

19 45a69%
to aalga a

21 #669511229£ 1~22II~
23 4.a
2aa9g
toaag
16Zag
toaag
msaag
soaal
23aa1

16 agala a27 4949a a.

32 %sea$#.

33 a~gg ab
Igga

31a6a
6lg

37a.g
Ieaal
isa~I
ag aias

a a
&I a
asa2

a? a

93 a a
76 a a

@1 a aIt a a

a. a a.

91 a a a j642 a a a 6673 a a a %69a a a a 636
96 

316aTa

98 2 a%%a
99 a a %

6 &98



96
is
.1
u

St

is

31

6

S.
Is

t

6,

To

I
Vi

.

.



tn.

290 MALU

- .914 1.499
2-.964 0.166
3-.689 2.616 .636 Z. I"
162-..*S .426 9.996
O-.882 i2isr .639 1.161
*-.092 -2.3-1? .839 2.696
7-.as% Z.199b .039 2.19M
*-.491 -90991b .;79 2.396
9 .841 2.196 .839 2.80

16-.661 -. 496 .631 t.g91
11 -. 199 t.716611 L.796
it-.0 -1 7.' *17t.790
13 -1 ,g 1.71' *111 WOO0
14. Ut1 -1711.*121.
1$ -.291 L.737? .19 1.71.9
10 -. 201 -1.73? *110 1.74b9
17 -.216 1.739 .114. 1.711
i6 -.819 -1.739 .111. 1.71
19 -. 40. 1.199 .399 1.278
to-1.1 -1.190 .30 1.176
21 -.. 01.1664 .3419 1.267
22-..9 -1.160 .360 L.287
2n-'.. 1.1*3 .344 1.21.7
21.-1.. -1.103 .306 1.21.7
IS -.1.76 1.14bg .389L.6
Is -. *1.7 1.11.9 .3411 1.21.1
2? -.7417 .777 .731. L.894,
to -. 797 -.73? .731. 1.396
29 -. 643 .73? .413 .992

1:-.693 -. 737 .03 .94?
It -. oboe .992 .48? .769
32 -. 4.94 -. 092 .03 .7G9
33 -.Set .020 .46& 1.6123
21. -. 862 -.92C *102 1.423
30 -. 19 .1.09 .911.6
30 -.919 -.144 .91 1.092
3? -1.221 *289 .973 1.095
30 -1.221 -. 264 .972 L.209
39 1t.29 .114. .996 1.899

19 -1.296 -. 11. .996 1.2r"
11-.374. .162 .602 .09 "

12-.376. -. 4862 .062 .91.9
13-414, .310 .806 .310
1..-.GIG -. 316 .606 .210

1.8 -. 631. .263 .126 .265
1.6 -. 634b -. 203 .120 .249
lb? -. 299 .207 .764 .33a
1.0 -. 299 -.817 .760 .336
4.9 -. 873 Ise6 .370 .1%6
s6 -.373 -.181 .370 *1O06
91 -.061 .&1& ."1? .1910og
92 -. 16 .111 .007 .101
63 -.102 .199 .81.0 .26
0'. -.172 -. 129 .01. .61
s9 -. 63 6.636
00 -.173 6.066
07 -1.216 6.066
9 -.760 6.866
so -.619 .6ff$ .999 .010

6:-.19 *.41.6 .999 .410
01 *.9164 .419 .992 .990
02 -. 96.0 -. 119 m99 .9141
03 -.889 .173 .99T .466

-.4419 -.272 .997 .86
as -1.0? 6.066
so -. "a .630 .999 .942
0? -. 992 -.439 .999 .992
0o -. 909 .899 ."a6 .7t

09-.969 -.099 .990 .971
76 -. 96.9 .6. 9 .904
71 -. 9#69 -. 61.9f .99 96

*72 -.vs? .01. .999 .Its
?1 -. 910 -.46Y7 .999 .916
71. -.917 .61.1 .919 .938
79 -. 927 -.0641 .999 .916
70 -. 931 .01.2 .999 .922

7?-.931 -. C1. .999 .9!2
76 -. 93's .06 .999 .921.
M9 -. 93 -. S4 .999 .921.
as -. 932 .032 .199 .932
$1 -. 932 -.631 .999 .912
6f -. 921 .031 .999 .922
as -. 921 -.131 .999 .922

6.-.923 .636 .991 .921.
of -. 923 -.834 .9.926.
so -. 926 .329 1.8 .920
or -.122 -. 020 1.666 .926
66 -. 921 .26 1.86 .921
69 -.924 -. 06 L.648 .421
it -.938 .:Z? &.326q6
91 -. 926 -. 427 1.6 .936
of 92.929 .420 1.866 .93.6
93 -.929 -.4.2 1.684 .932
91. -.927 .621 1.868 .127
99 -. 927 -.821 L.886.2

90-.936 6.1
9? -. 910 0.066

96-.914 06
99 -.944 ;3

Ise 6.866 6.466



MIIXED OROLNARY/PARTIAL DIFFERENTIAL EQUATION MODEL

Ci.a 10980E+00 C2 a 3eOOOE-i. C3 =1.3aoE-gx C4. = '.0761E-01
CS 2 4*31.OE-Ui C6 c 9o630E-03 at. 50SSOE-1 82 = o3E0

TIME TIIX=U) T41X=12) TO T91X=.2)

S2o500E*O0 7o69S6'.E+gC 6.a'.3'eE-10 lo7195E-05 2.5359!E-07
Se.OOE+30 9.ea89E+00 -2,70340E-07 8.5287q9E-oa -6.i.258SE-05
70500E+00 9*8776'4E+00 I..23i.13E-0f5 4o97729E-03 591.2851E-03i..030E+O1. ge97173E+0O 2.65403E-03 i..'.Q'32E-02 6e3i.5±7E-O2i.9250E+01 9*9934'.E+00 1.'.a25'Ea2 2*80i.89E-02 lo?3538E-0.* i.500E*01 90998'.8E00 3oS6641E-o2 4*6i.230E-02 3*L0717E-01l.750E*0. 9099965E+00 6*54722E-02 6.*A4672E-02 4*583SE-O1*2.OOOE+O1 9*9qqqqaE.00 i..050GOE-oi. ihi.372E-i. 6908318E'-01
2*?SOE+01 9*9q998E+O 2*562LSE-01 i..4291OE-O1 7,561e06E-012*530E+01 1.00000E+Ci 6*386a41E-01 i..9235LE-Oi. 9ei.27'9E-012*750E.Oi. 1000000E+01. i.2036i.E.00 2*5373SE-01 i..O?609Ee003*000E+01 100000uiE+6i, 1*82i86E+00 3.s325SE-01 i.2'989E+oa3.250E.0i. 1*00OOOE+os 2*38733E.00 6sI41656E-Oi. 104323$E+00
33*Oi.o 1*000CE0os 2sG5129E.QO I..01725E.00 1.6i.968E+00307'50E*01 loOOODOE.0i. 3.20799E+0O 1*44583E.00 1060670E+b0'.OCCE+91 1*0OOOOE+oi 3*47273E*00 i..6602SEi+oo 1.987?2E+O0I..250E40i. i.000000E+0 3.66745E+eO0 2.2i.9Z6E#00 2.i.571?Eea.
'e.5E+01 leGOOOE*01 3981257E+00 2s50956E.GO 2*3i.366E+00'.eT50Efl1000000E+01, 3.92404'E+00 Ze73'.81E+00 204'I606E+00510OOE.O1 ls..OOOE+O1 4.01296E+01 2*90659E+00 2*56',o1E+00



iU

SUBROUTINE JMAP(N,A,YvYOLOFvFOLOl
coo.•

C... SUBROUTINE JMAP PAPS THE JACOB[AN MATRIX OF AN NMTH-OROER SYSTEM OF
Cos. ALGEBRAIC EQUATIONS OR FIRST-OROER ORDINARY DIFFERENTIAL EQUATIONS
C0.4

Co.. COPYRIGHT - LEHIGH UNIVERSITY, 1980
C...
C... AUTHORS
C ...

Coo. Go Ro OISSINGER
C... AND
C... No E. SCHIESSER
Co.. WHITAKER NO* 5
coo. LENIGI4 UNIVERSITY
coo. KTNLEHEW PA 18015

C.. 215/86-4264

C.. ARGUMENT LIST
Ceoo*

Coo. NUMBER OF ALGE#RAIC OR FIRST-OROEt ORDINARY DIFFEREN-
Coo* TIAL EQUATIONS tOOES) FOR WHICH T1HE JACOvIAN MATRIX IS
Co. TO BE MAPPED, tIE., THE OROER OF THE ALGEBRAIC OR 00!
c... SYSTEM (INPUT)
Co.
Coo A TWO-DIMENSIONAL ARRAY CONTAINING TIE JACOVIAN MATRIX
Co.. OF THE NTH-OROR ALGEBRAIC OD OQE SYSTEM COUTPUTt

Coo* V ONE-OINENSIONAL APRAY OF N OEPEN3ENT VARIABLES SET TO
Coo. INITIAL VALUES BY A CALL TO SUBROUTINE INITAL IN JMAP
Co.. :[IUT TO SUBROUTINE JMAP VIA SUBROUTINE INITAL)
Co.*•

Coo. VOLD ONE-ODIENSIONAL WORK ARRAY TO STORE THE N DEPENDENT
C..* VARIABLES IN Y TEMPORARILY SO THAT WHEN THE INDIVIDUAL
co* Y*S ARE PERTURBED IN COMPUTING TIE JACOBIAN MATRIX ELE-

Coo. "ENTS THE Y'S CAN THEN BE RESTOREO TO THEIR ORIGINAL
C..o VALUES
Coo*
C.. F ONE-DIMENSIONAL ARRAY OF N OEPIVATIVES OF THE DEPENDENT
Ce.. VARIABLES SET BY A CALL TO SUBROUTINE DERV IN JMAP
Co. (INPUT TO SUBROUTINE JMAP VIA SUIMUIME OERVI
Co~o

Cos* FOLO ONE-OINENSIONAL WORK ARRAY TO STORE THE N DERIVATIVES U
Co.* IN F SO THAT A FINITE DIFFERENCE APPROXIMATION OF THE
Coo. INDIVIDUAL ELEMENTS OF THE JACOBIAN ATRIX CAN Of CON-
Coo. PUTED
coo 0

Co.. FROP THIS POINT ON, THE DISCUSSION IS IN TERS OF FIRST-OROER
C..o ODES, BUT IT CAN AS WELL BE PRESENTED IN TERMS OF LINEAR OR NON-
Co.. ALGEBRAIC EQUATIONS* OR TRANSCENDENTAL EQUATI3NS. OR A COMBINA-
Co.. TION OF ALL THREE TYPES OF EQUATIONS. THE O4LY REQUIREMENT IS
Coo. THAT INITIAL CONDITIONS ABOUT WHICH THE JACOSIAN MATRIX IS TO SE
Coo. COMPUTED MUST BE DEFINED IN SUBROUTINE INITAL, AND THE EQUATIONS
C.o. THEMSELVES MUST BE PROGRA"PEO IN SUBROUTINE ODRVo



Ce.. SU8ROUTINES zNITAL AND DERV DEFINING THF ODE SYSTEM ARE SUPPLIED
Co*o BY THE USER, AS WELL AS A CALLING PROGRAM FOR JPAP. THE NATHE-
C... NATICAL CONCEPTS ARE EXPLAINED FURTHER IN THE FOLLOWING COMMENTS.
C.o THE CALCULATION OF THE INDIVIDUAL ELEMENTS OF THE JACOSIAN MATRIX
Ce.. SY A FINITE DIFFERENCE APPROXIMATION IS PROGRAIQEO AS STATEMENT 14
C.e WITHIN 0O LOOP 1.
Coo*
C.. THE SYSTEM OF ODES FOR WHICH THE JACOBIAN "ATlIX IS NAPPED IS
coos
Co. OYI/OT a FI(YIY Ie..qTNl

C...

coo: OTZIOT - F2(Y .,T29eo*,YH| |f.

coo •

Coo: BYN/OT - FNlYI,Y2:*.,VNI
C...
Co.. WHICH CAN BE SUMMARIZED IN VECTOR FOPM AS
C.oo

coo: OY/DT a FIY1 921
Co.*

C... - T
Coo. Y :YIY2,oevtYN)
C..
Coo. - I
CO. F = lFlF2,..,FNI
Coo•

Co... SINCE THE DERIVATIVE VECTOR F IS IN GENERAL A NONLINEAR FUNCTION
Coos•

C... OF THE DEPENDENT VARIABLE VECTOR V, A TAYLOR SERIES EXPANSION
CO. TRUNCATED AFTER LINEAR TERMS GIVES A LINEARZE) APPROXIMATION OF
Coos THE ORIGINAL SYSTEM
Coos•"

Coco DY/OT a ;Y 131C.. *
C... -

Co. WHERE J IS THE JACOlUAN MATRIX OF THE ORIGINAL SYSTEM, I.E.,
C.o.. .

C.oos 0
C... .F F a
CO.O * 11 iN.C ... . .- -
C... - . F
Co.. Ja * • J *eIk

C...

C... F F
C.* * Ni 0N.

CO..

Coo. F IS THE PARTIAL OERIVATIVE OF F WITH RESPSCT TO Y • THUS THE
COcO * J I J
C*. JACCOZAN MATRIX IS SQUAVE (N X Ni.

-



O1

W0

coo.

Coo. SUBROUTITE JMAP PRINTS A TWO-DIMENSIONAL MAP OF J WITH THE NUMBERS
C.o. 0 TO 9 INDICATING THE RELATIVE ORDER-OF-"AGNITUOE OF THE INDIVID-
Co.. UAL ELEMENTS OF THE "ATPIX. THE VALUES OF rHE ROW SUBSCRIPT I ARE
C... PRINTED DOWN THE LEFT SIDE OF THE MAP AND THE VALUES OF THE COLUMN
Coo. SUBSCRIPT J ARE PRINTED ACROSS THE TOP. THE MAP IS PRINTEO IN
Coo. SECTIONS 100 CCLUMNS WIDE@ THUS IF THE DIFFERENTIAL EQUATION
C... SYSTEM IS GREATER THAN 100TH-ORDER, SUCCESSIVE SECTIONS OF THE MAP
Ge. WILL BE PRINTED VERTICALLY. THESE CAN THEN BE JOINED TOGETHER TO
Co.* RAKE UP THE COMPLETE HAP.
Coo
Coo THE N X H PARTIAL DERIVATIVES IN THE JACOBIAN MATRIX ARE COMPUTED
C... A'PROXIMATELY BY A SIMPLE DIFFERENCING PROCEOURE. THE INITIAL

Coo. VALUES OF Y REQUIRED TO START THE CALCULATION ARE OBTAINED BY A
C...
C.oo CALL TO SUBROUTINE INITAL. VALUES OF F ARE :3NPUTED BY A SERIES
Coo. OF CALLS TO SUBROUTINE DERV. ALTHOUGH THES. SUBROUTINE NAMES
Co.. PERTAIN SPECIFICALLY TO 0SSU29 JNAP CAN EASILY BE ADAPTED FOR USE
Coo. WITH ANY INITIAL-VALUE ODE INTEGRATION SYSTEM.
Co..
Coos COHION/IO/ CONTAINS THE INPUT/OUTPUT UNIT (DE4ICE) NUMBERS

O

U



SUBROUTINE 0E'v
CONNON/TIN!, NSIOP. ORIJN

I /y/ Yflo0I
3 4fFf F1140)

~COMHONIA 1119 T2ii 112 T31119 1T411 5111) T6(1119

CoeTRAN4SLATE THE DEPENDENT VARIABLE VECTOR V IN COMMON/V/ TO TNT
Co-PROBLEM DEPENDENT VARIABLES

J=l
On) 10 10lNG

T2(If=Y(Jl

T*.(I)=Y(J)

17 l)v(j)

T9(I1*Y(J)
1o CONTINUE

C... SET ROUNOARY CONDITION fl~I
T9tll=TSI

coot COMPUTE THE FIRST DERIVATIVES WITH RESPECT TO X BY FIVE-POINT
Coo# CENTERED DIFFERENCES

CALL OSSOO41O.,XLNGiTlTlX)
CALL OSSQOI(O.,KLNGvTZvr2Xl
CALL 055004? OoXLvNG9T3,pT3Xl
CALL OSS0OOv.XLNG.T4vT4Xl
CALL 0SSOO'dOeXL*NG-pTqT9X)



Co. 0

Co.. ASSEMBLE THE POES, EQUATIONS 91) TO t9l
00 1 1-19MG
TtTff)=-Cl*TIX(II + C30(T5tIJ-Tl(r)J
T2Tzr)m CI*T2X(T) + C39IT6111-T2(l))
TMII-CIOMCII + C3*tT?.'r)-T391))
T4TfrIw CI*TkX(Il + C3*(T8(T)-T4(lIf
TST(lis C4*(Tltl$-TS41)1

I + C504T9411-TS(Ill
T6TIZ)c C4*CT2'.I)-TGCIII

+ C5* I T9 (T)-TG (III
T7T.tr) C40 M (I I -T7 (III

I + CS*lT94II-T7(1I%
TSTO.1)z C4*.'T4tT)-T8tIf)

1 + CS*(T9fI)-T8(T)I
T9TIlls-C2*TgXtll - 4**CG*T9(1)

+ C6*(T5(l)+T6(1)+T7(1)+T8(I)I
I CONTINUE
Co..
Coo* EVALUATE THE DOE DERIVATIVES FROM EQUATIONS 1121 AND (131 ANC
Coo. EQUATION 116). NOTE THAT THESE DERIVATIVES MUST BE COMPUTED
Coo* AFTER THOSE FOR THE POES

TIT% tl=Sllwt 71-719 1))
TZT(NGI*8Zs(Tl(NG)-T21NGJ)
T3TI 11=820IT21 11-T31 III
T4T1NG)z92s(T3tNG)-T4(kGII
T9T., 1)uO.
TOT =3101T41 11- TO)

Co..
Coo.
Coo. TRANSLATE THE PROBLEM DEPENDENT VARIABLE DERIVATIVES TO THE
Coo. DEPENDENT VARIABLE DERIVATIVE VECTOR F IN COMM041TI

J*20
Of) 11 IxING
JUJ*l
Ffj)=TITII)
J=J+I
FW)=T2T9Zj

jzj+l
FIJSsTSTfl)
J=J41

FlJ)=T4TIll
jzj*i
Fli)=TSTIII
jzjbl
FIJ)uTGTIII
izi*l
Fti)=TT!Il
jitj*l
FlilsTOT11)
jzj4I
FI.JI=T9T'.Il

11 CONTINUE

FIJI*TCT
Coo.

Co..
RETURN
END



59RIVAm37 fewas 101UP6 t 6 Ira PS.O Y' PRITE *':wto 612@EALL

JhC89?*. 041011 CL1-q? IN 11.4 NAP "IT" tMIICIS I.J It FOR PPI/PYJ mW16 P O1W02 A PwtAmLa DERIVATIVE

1111111 11 nIZ22222 U S3223333b666666666555 9fW9W"69f M6?7?7VT9&146 f If 664 9999"9*"
It 349 6 813 67M14,674SUS321b5945% &Z3 A-9611136 6441Z34-596q@LZ IM60041134.%7490 446M~

2 6

7 6 6

*o 6 1

&3 6 4. 6 9

19 4b 6 .6

21 1 9
21 6 6 5 6
22 6 £ 6
236 6
26 66

21 6. 66

27 b 2fl3 3

29 6 9
36 9 9 6 6 5

326 6

26 6 6.6
is 6 66.
396 3 222 6 S
IT ? 41 66 5 % p

66 S b 6

6*b 6
63 6 663

95 b 22

56 6 022 6
51 9 b 
so 6 6
53 6 66

6 3 2 2223 6 1

56 6 6 6 5 6 .

55 6b 6 6 . 4
96 6 6 61

?2 62216

96~~ 6 6 6

99 6. 6 t

7 6 66b

E1 7? 2n 6 336
91 9 S 6 6 9 6

79 9 5 5 6

966 66

99 2221222 6#

to6o 5 6



-.- 4 1.3. .33 2. -

3 .362 21.39? .3% 2.816.

5 -.161 2.396 .3 2.896
* .63 2.096 .136 2.096

-.0:::1 -256.43 2.017

1o -. 361 .239 *3 2.696
11 -. 96 1766 11 1.799

IM3 -. 61.7"6 UZ1 L.795
1S -.too U1NA6 *11? 1.796

19 -233 1.719 .114h 1.751
16 -.269 -1 729 .14 9.791
17 -. 231 1:73? .119 1.?%%-66
to -. 281 -1.71? US1 t.769
19 -. 4960 1.195 .399 1.27S
to-.6 -1.196 .399 1.276
21 L.9 .164 Sao6 9.237
22at9 -1.1681 .309 1.29?
23 .1469 1.163 .360 &.Eby
26 -. 469 -1.063 .364 1.26?
25 -. 471 &.146 .36S 1.261
26 .478 -1.163g .34S 1.261
2? -. ?*1 .73? .716k 1.336
23 -. 797 -. 73? .714 1.66

-29 -.483 .71 .633 ."?2
3o -. G13 -. 737 .63 .992
31 -1.I21 .209 .973 1.255
32 -1.f21 -.269 .972 1.299
33 -1.296 .&If& .9%6 1.299
36 -1.296 -.116 .9% 1.29
39 -.975 .649 .961 1.962
so -. 979 -.609 .981 1.16f
37 -. 662 .323 .662 1.423
33 -.662 -.588 AGE2 1.823
39 .693v .992 .637 .749

6 .93 -. 992 .637 .?69
.1 .37b .*62 .682 .969

62-.37% -.442 .681 .39
b? -. O16 .316 .393 .316

W. -.314, -. 316 .463 .316
66 -. 1341 .263 .326 .269
66 . .36 -. 203 *120 .2G5
67 -. 2591 .207 .766 .3130
66 -. 299 -. 817 .744 .336
69 ..03 .136 .376 .194
so -.ITT -. Led .376 .19#1
51 -. 163 0.90
92 -. 13% .116 .637 .191

13-.lob -. 113I .647 .151
56-.072 *169 .666 .213.6

59 -. 172 -. 169 .8"6 .C4

96 -.173 3.530
97 -1.213 4.083
96 -. 716 0.333
59 -. 964 .11q .99t .996
Go -. 966 -. 149 .992 .996U61 -. 819 .36.3 .999 .616
62 --$Is -.040 .999 .316
63 -. 669 .03 .917 .6
66. .645 -. :?3 .99? .480
63 -1.367 8.333
66 -. 993 .339 .999 .993
G7 -.941 -. 639 .999 .993
66 -. 969 .859 .995 .971
Go -.904 -.099 .990 .971
?a -. 9441 .369 .999 .953

-71 -. 949 -.365 .999 .991
72 -. 917 .8b7 .199 .913
73 -. 917 -. t67 .999 It1s
76 -. 937 1"6 .999 .933
75 -. 937 -.a"d .999 .933
76 -. 931 .02 .9"9 .932
7? -. 931 -. 042 .999 .932
73 -.933 .336 .990 . 934
79 -. 933 -. d16 .999 .936
so -. 436 G.Cfe
61 -. 932 .632 .999 .912
62 -. 432 -.332 .999 .932
83 -. 921 .331 .99S .92?
66 -. 921 -. 031 .919 .922
of -. 93 .033 .199 .926
36 -. 123 -. 434- .999 .9'6
67 -. 923 .626 1.333 .923
as -. 926 -. 029 1.033 or@3
69 -. 920 .026 1.0 .921
93 -. 920 -. ,26 1.040 .921
91 -.It? .321 1.333 .927
it9 -.927 -. 021 1.339 .92?
93 -.930 .027 1.203 .930
96a -. 930 -.427 1.063 .915
99 -. 929 .326 1.063 .933
96 -. 919 -. 026 1.806 .930
97 -. 918 1.3
9S -. 911 8.6

99-.906 6.440
too 6.103 3.353



41XED ORDINARYIPARTIAL DIFFERENTIAL EQUATION MODEL

Cl = 10960E4oo C2 = 3000OE-Oi C3 = 103D0E-O. C4. 2 4769E-01
CS 4o340E-O1 C6 = 9o63CE-03 1 = 5*880E-G1 82 2 2o941E-O1

TIME 1jqXzel T4(X~iZ) TO r9(X=12)
0. Do a* 0. 0. 0
20500E+00 7.70630EOU 0 b66325E-i 1.632OBF-05 208997~3E-07
5*00OE+00 9.4714i5E+00 -2e5279GE-07 8.4.6567E-04 -5.0177E-05

*7o5)uE+00 9087a20E~oe 3*956Ca.E-45 4,967'.0E-03 5.0106.E-013
i*OOOEGOI. 9097186E*00 2.63b2OE-03 1.o4033SE-02 6*38533E-02
19250E+01 9.9937?E+OU 1*394i1E-02 2.79863E-02 1073a.25E-o±
10530E+01 9,99A5IE+0O 3o55964E-02 4*6097SE-02 3olOS29E-Ot
lo75CE+01 9e99965E'r40 6.54438E-22 6994011eE-C2 '.58362E-O1
2.009E+01 9*99992E+00 I.04453E-O1 1*0129'.E-01 6s08313E-Oi
2.250E+01 9099998E+00 2.5'i327E-O± 1.'e2843E-OI ?@56366E-01

*Z.5IGE+01 l.o1oaooE+O1 6*36993E-01 1*92319E-01 9*125?3E-O1
2*750E+01 is.Of30E'01 1.29306E+00 2*53294E-Si ie3?6O1ElG0
3.OOOE.01 1*0 0000E4I. 1.82226EW30 3.SZ2244E-01 lo21.9S3E0OO
3.250E*U1 1000000E+01 2o38814E4OO 6040658z-O1 io43235E.OU
3.50OE+Oi i0000O0E+01 2*85217EtOO l*U1675E+00 1061969E+00

*3.750E.O1 1000O00E+01 3*20876E*UO 1.44590E0O0 1e.t]5?4E+O:
'...aThE+1Ii T.C GC 0E +C- 3.547330E40l 1.86068E4O0 1.997$OEO00
4o250E.O1 i0000O0E+0i 3.66781E+O0 2.21990E.0O 2015726E+00
4o530E*01 1.000OoE+O1 3*81278E*OO 2051009E+60 Z.3107'9E*0O

44*750E+01 1900000E+01 3*924tgE+0O 2073925E+00 24I6t9E+OO
5.0301E+01 toooooOE*Q1 '..01307E.2C 2.93692Eui;. 2.56412E+00

.4



SUBROUTINE DERV
CONI40N/T/TII4E,HSTOPNO4RUt4

/ Y/ y(1003
I F/ pa100)
/ ,5OTX(l11,T2X(113t93X(l1,,T4X(i13.TgX(lI
/ .C/ NGI Cl. C29 C3* Ct.. C59

7 06. all es, TI, TS19 XL
COMMON/A/ 11(113, T2(1119 T3(1119 T4(1119 15(11). T64113,

T? 1712. 16atl s111) 9~l) TO

1T7T(111,TaT(ll)9T9T(1I), TOT
C..

Coe* TRAN4SLATE THE DEPENDENT VARIABLE VECTOR X INi COHWNt4/I To THE1
Coo, PROBLEM DEPENDENT VARIABLES

jag
Do 16 IS1iNG

151) llyt53

TZ(IluY(Jl

TG(I)=Y(JI

JaJ*1l

T?(I~aY(jl

T4(IlaV(jl

10 CONTINUE

gC... SET BOUNDARY CONDITION (143
T9(IITlSl

C... COMPUTE THE FIRST DERIVATIVES WITH RESPECT TO X BY FIVE-POINT
C-. CENTERED DIFFERENCES

CALL DSSOA'.10.,XLvMGTlTtx3
CALL DSSO0'.(OeXLqN~pT2,T2Xl
CALL 055004(Oa,XLNG,T3,T3X)
CALL DSSOO'.(O.,XLqNGVI.,T4Xl

* CALL OSSQOO"(QoXLvNGTgT9Xl



Coo. ASSE"SLE THlE POES9 EQUATIONS (1) TO 91
00 1 1.1.116
T1TIIIu-C1*TIIl + C3f(T§III-,TIII
T2T(Iu CI*TZXIII # C3*fT6III-T2(133
T3T(fl=-CI*T3XtI1 + C34IT74II-T31111

TSTIIU C4*I(TIfI-T5IIII
# CS*(TI I)-TS (III

t # C56IT9411-TBIIII
T7T(Ia C4*fT3(II-TTIIII

1 # C5'IT9(IIIT7II))
TST(Il C43 IT4111 -TS (1)1
I # C5* (T9411-TO III I
T9T(I3=-CZ4T9XfII - '.*C6*T9(II

1 4 CS*(TIII)*TGIII*T7..'I.TI(Ill
I CONTINUE

Co..
C... EVALUATE THE DOE DERIVATIVES FRO" EQUATIONS (11 AND (11 AND
Coo. EQUATION (163. NOTE THAT THESE DERIVATIVES "IUST BE :Ou.PUTEO
C... AFTER THOSE FOR THE PIES

TIT( 11=616( TI-TIt III
T2T 11163.2' ITlINSI-T2(N6I
T3T( l~n92*tT2I 11-T31 1))
T'.T 11161.2' T3 (N461-TIINEI
T9TI 11=0.
TOT a6I*IT41I)1- TO)

C... TRA4SLATE THE PROBLEM DEPENDENT VARIASLE DERIVATIVES TO T14E
C... DEPENDENT VARIABLE DERIVATIVE VECTOR F IN CONNON/Ff

Ja 0
00 11II .,11

FIJI.TITII3

FIJI aT9TI

FIJIaTGTII

FIjI.T9TII
JaJ.1
FIIT3TIII
J84#1
FIJ)=TTIII
JuJ*1
FIJI .T'T(I

FIJI uT&T I
11 CONTINUE

JuJ.1
FWJxTOT

RETURN
END

A



uuCHKMIa V&Rta6LC COLONw tMOll JF LUa JS 6111 PONO Ml6ULLI

KR1ZUIVI RON N1N1 I 4101 05140! a ,KeI1.Vl ..vj ..... Vui6 1s MOMru VERTICALLY

JAOSKA" MVIIIX KLEMEW K INS NHIMP VIVO INOICES I,J Is FOR PUI/PYJ VW941 P IIMOVES A PARTIAL OCRIVATIVE

11 SSAL11£l£2*3*3336 a66666W 0666 777777?1551S1W99996

91 6

is 66 6 6

6is

16

as I6i66 1

Re #A 4

36 4' bi6
36 bob66 1

*31 b 666 22
33 b 6 1139 6 4
33 6. 66 6 6

36 b 66 6
36 b6 46 4
31 66 4
39 66 6

66 6
615 1 lb~3 l

63 6 6
b? 66

666 66

It 6"
66 4 6 £ 13 6 I
96 46

IT 6 1 5 4 6 5 6

is6 6 a 64 a 6 6

64. 66

693 6 131 6 3

Go, 6 a s6 4

*3 69 6 6

3 72 666 a

so6 '

46 666 1 %a

79 64'f

6o66f 6

93 66

66 3 6 6 22 2 3

96 9466

93 6



f& -.402 6.697663
3 -.820 8.69 7 .139 .496

* .86 .096 .61 2.891
7-.841 2.440b .839 8.696

4 .61 -2-06l .439 2.846-
2.'s8.6 .639 2.097to -.881 -11.690 .639 2.69711 -. 869 17 .11? 1.?9*u8 -. 269 ..1 11? 1.1961U .11%1.1 .112 Well9tIb -. 194, -1-744 .111 1.79It -.211 1.73 .119 1.74916 -.291 -1.73? .119 Ung11? -.409172 .114 1.791is -.216 -179.111 1.79119-.694, 1.104 .3811 1.826-416 -1.144 .369 1.8721-.6,14 1.199 .399 1.87422 .496 -1.1111 .399 1.27113 -.669 1.103 .306 1831-.469 .1.103 .366 1.2byas -. 1076 1.149 .389 &.211Re -. 4b76 -1.149 .39 1.1I7 -. 797 .737 .7386 1.46as -.?1? -. 7 .?31 1.06a9 -. 603 .78? .63a 99

Is .:643 -.?7? .633 .31 -1.88 -869 .9?3 1.89938 -1.881 -. 269 .973 1.39933 -1.9 .11#4 .994 1.Z921S4 -1.896 .1l .996 1.89639 .1919 .669 .961 1.66830 .9on -. 449 .961 1.662t3? -.841 .916 .062Uaso -.441 -.929 .808 1-6339 -.699 .392 .63? Too9
44 -. 71.198 .063731
41 -.331.18 4 .919

II -610.31 .646 .31048 -. 31% -. 41a .636 444
43 -.SIG -83 .120 *31640 -.86 -.36 .82 .316IS -. 434 -81? .761 .43946 -.899 -.863 Lab6 2621
%? -.259 -1 .?*1 -33938 -.153 -. 126 .376 .194
9A -.873 -sea .387 .194b
g3 .17S3 -169 .360.6
91-.7 .6 .610 89
it -. 03 66630-.17 AST666
3 .181 6.6664 21
9 -.0172 --Los .99 .296
06 -.013 8.61 .84.1
g1 -.?so 9.110.94.9
we -.985 .119 .992 .906,Is -.069 -. 416 .199 -161 -. 1968 .g73 .992 -914

0?-.963 -.119 .999 .993
66 -.669 .63 0.99T -94169b -.8811 *.099 .99? .901
76 -1.98? 8.648.9 .66 -993 -439 9 .9967 ".s1 -.6179 .9"aof 0.61 -617 .994 .919Go -. 497 .6119 .999 .936?I -. 93? -64 .999 .906

70 -931.602.9 .114
? -. 931F -.6?8.9 .93rob -.933 .8301 .199 .93479-.937 -. 06 .999 .93666-.931 6.6699 -

61-.933 .838 .999 .93b
?s -. 933 -. 06 .999 .936
as -. 92 .2 1.663 .92?61 -.932 -. 02 .1.6 .937
Is -.927 .681 1.666 .936No -.91 -.62? 1.666 .93667 -.929 .626 1.666 .938
66 -.926 -.627 1.666 .93669 -.9219 .86 1.401 -931
so -.921 -.6310 1.89 .931
I1 -. 923 .036 .999 .9319o -. 923 -. 31 .999 922-
st9 -. 93 .634 1.666 .921
92 -. 93 -.630 .666 .921is -.920 .626 1.003 92194 -.911 -.614, 1.666 .931
Is -. 916 6.66614 -t96 -. 9 1 6. 09 1 4 6.

99 of36 6.ON
is$ 6.606 0.466



MIXED ORDINARY/PARTIAL DIFFERENTIAL EQUATION MODEL

Cl = 1.96OE~oo C2 = 3.00DE-OL C3 = 1.300E-01 C4 = 4.760E-Ol
C5 2 4*340E-O1 C6 = 9963CE-03 81 = 5.88CE-01 82 =2*94CE-01

TIMlE Ti(X=OI T4(X=i2l TO T9(Xal2l
0. 0. 0. 0.' 00
2*5O0E40O 7.70630E*O0 6.60325E-10 1*63208E-05 2.89873E-07
S.OOOE.00 9047145E+0l0 -2*52796E-07 5.46567E-(. -5.90LTE-U5
7.5OOE+OO 9.87820E+00 3.95604E-O5 ~4.9674OE-03 S*02.064E-03
£.OOOE*O1 9.97i86E.O0 2.63610E-03 1*4033SE-02 6.30533E-02
l.250E+O1 9099357E+00 1@39411E-02 2.79863E-92 1.73425E-Ol
I.5OOE+O1 9*99S~iE+00 3o5596L4E-02 4*603?SE-02 3.10620E-O1
I.T5QE+Ol 9.965E.oo 6*54'.38E-02 6*94014E-02 '.58362E-01
2.OOOE#Ol 9.99992E+00 1.044S3E-01 1.01294E-01 6*06313E-O1
2o25c3E.O± 9999998E+00 2.54327E-2. i.42843E-2. 7.58368E-01
Z.SOOEit i*OOO00E+1. 6*36993E-Os. le92319E-O1 9ei2673E-01
2.750E.G1 i*OCOOE.O1 1.20306E+00 2.53294E-01 1.07601E+00
3.GOOE*01 i.OOOOOE+O1 1.82226Ee00 3982244E-01 1.24.983E+00
39250E+01 i.OOOE+01 2e388l4E+OO 6.406SGE-Ol 1i*i3235E*0O
3.50OE+O1 ±.00000E+O1 2.85217E.0O 1.01675Ei00 1.61969E+00
3.7SOE+01 1.00000E+01 3*20876E.OO 1*4459OE+OO 1.8O674E+00

*4.OOOE.O1 1.00OOOE.81 3*47330Ei00 i*86068E.00 t.98780E+00
4e250E4O1 ieOOOOOE*O1 3966781E+00 2.21990E+00 2*1572aEO00
4.500E+01 ioOOOOE+O1 3o8127SE+00 2.51009E+00 2.31079E*00
4.750E+01 1*OOOOOE.01 3.92419E.OO 2.73525E+00 2.44619E+00

5.OOOS.O± 1.00000E+01 £,.01307E*OO 2*90692E*O9 2.56412E+00



A MAP OF THE JACOBIAN MATRIX INDICATES:

(1) THE ODE SYSTEM OVERALL STRUCTURE
(BANDEDNESS, SPARSENESS, ETC.)

(2) ORDER OF MAGNITUDE OF THE MATRIX

ELEMENTSqr
(3) THE DETAILED RELATIONSHIPS BETWEEN

DEPENDENT VARIABLES AND DERIVATIVES

(4) THE DEGREE OF NONLINEARITY AS REFLECTED

BY CHANGES IN THE MATRIX
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THE TABULATION OF THE ODE SYSTEM EIGENVALUES

INDICATES:

(1) STABILITY

(2) TIME SCALE

(3) STIFFNESS

(4) CONTRIBUTIONS OF INDIVIDUAL ODES

(5) PARAMETER SENSITIVITIES

S
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THE NUMERICAL METHOD OF LINES

FOR ODE/PDE SYSTEMS

T

U(XTO) =O(X)

NUMBER OF PDEs = M

(U(R,T) IS AN M VECTOR)

VI(I,T), I = 0, 1, 2,..., N

NUMBER OF ODEs = MND

D = 1, 2, 3

* T(IAX,T), 1 0, 1, 2,..., N



Burger' s Equation

u t Auxx uu x

u(x,0) O (x,O)

u(0,t) = *(Olt)

O.le-A +I O.Se-B + -
e(~t = -A + e-B + e-C

A =(O.05/u) (x -0.5 + 4.95t)

B = (0.25/u.) (x - 0.5 + 0.75t)

C =(0.5/i) x - 0.375)

lo



- p

- p

I

0

~ p

I

4

I0

iiii:ttiiiiii:iigiii Iii ill llIIIIlIIIlIlIII

till lii:: itit II till iii itiiil:i 111111

111111 itiititiittitittiittiiiiiii:giiiiiii :11111111

I lllIlllIlIllIIIIllllllIIIIlllltlIlll 111111111
0

I I I I

* O.~O .25 0 '5 ~ I

x
BURCE~ S EQUATION

I

K p



0

0
0

If)

o S
m 0

0

U.,
U-,

S

aaa
a
U,

K S
z

aa
U-

Sao 'A
If)

.w.

0a
U-

'V S

aa
0

0
w.

~OO .'5C

T

NUMBER OR ODES

S



Af1

Single-solute Chromatography Equation

r

t - vcx- 1 - )/)

it

kca

SO _i cxaC

"1 (( - c)/e). ka/(1 + ka0)2 x

0 c

r
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( Solution of Stiff Equations Resulting from
Partial Differential Equations

Bruce A. Finlayson
Department of Chemical Engineering

University of Washington
Seattle, Wash. 98195

Engineers often need to solve mathematical models that are
expressed as partial differential equations. This paper des-
cribes several case studies from the author's experience, empha-

-m sizing the methods chosen to integrate the equations in the time
domain, with special regard for the constraints prescribed by the

fact that the time-dependent ordinary differential equations are
derived from partial differential equations in space and time.

There are four themes illustrated in the case studies:

1. When a partial differential equation is discretized in
the spatial domain by using a finite difference, finite
element, or global collocation method, the resulting
equations in time are stiff. The degree of stiffness
can often be estimated a rorin.

2. Integration schemes that work well for large error
tolerances are valuable. First, the spatial truncation
error may be large and it is wasteful to make the tempo-
ral truncation error very small. Secondly , the solu-
tion may have the same properties throughout the time
interval considered; that is, the type of solution
which causes the problem to be very stiff in the first

place may move as a wave through space, so that as time
proceeds the only thing that changes is the location of
the stiffness-producing feature, not the stiffness it-
self. In that circumstance, methods which rely on tak-
ing large time steps during part of the time interval to
achieve their success may be less useful.

3. Schemes and packages must be applicable to combined or-
dinary differential equations and algebraic equations,
since these often occur in practice. The time deriva-
tive must be allowed to enter the problem as a matrix

multipied by the vector of time derivatives, since that
form arises in most Galerkin finite element methods.

4. For large time-dependent problems in two and three spa-
tial dimensions, extensive codes have already been de-
veloped using schemes that may not be the best for stiff
problems. The techniques developed for stiff problems,
though, must be done in a way that the schemes can be
easily fit into those codes.
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The themes are illustrated in case studies. The first study
is for chemical reactors in the form of packed beds. While ki-
netic behavior has traditionally been stiff, the packed bed reac-
tor can become more stiff due to sharp changes in temperature.

Such reactors provide a useful and demanding testing ground for
stiff integrators. The second case study is for flow through po-
rous media. Here the problem is extremely stiff and good numeri-
cal solutions are difficult to obtain under certain conditions.
The spatial variation of the solution plays a role both in defin-
ing the stiffness and in limiting certain advantages of stiff in-
tegration codes. The final example is the convective diffusion
equation. This equation has similar difficulties to the equation
for flow through porous media, but is linear. Even so, in
two-dimensional time-dependent simulations the most sophisticated
techniques are required.

Chemical Reactors

A prototype model of a packed bed reactor is given by the
following equations.

rO

--- _ - 0 - :-

* C.C) TzF T_ o

(T r.) &- F (4)~'bI

The physical meaning of the dimensionless coefficients is given
0 elsewhere Li; One method for solving these equations is to use

the finite difference method to represent the spatial variation
of the solution and then use some other method of solution in
time, such as Runge-Kutta, trapezoid rule (giving the



PAGE 3

Crank-Nicolson method), or a GEAR package. If we divide the dis-
tance O.rfl by a uniformly space set of grid points, with spacing
h, we can write

T . - T r'n ; v- : ( -'

The differential equation (2) then becomes (for an internal point
not on the boundary):

This equation can then be written as

'it

where the matrix B.. is derived from Eq. (6). The task is then
to integrate the set of ordinary differential equations, as an
initial value problem. U

Another method of solution is to represent z:he spatial vari-
ation of the solution with a polynomial defined over the entire
domain, Or.4l. Collocation is applied at the Gaussian quadrature
points, giving the orthogonal collocation method E1,23. The re-
sult of applying this method to Eq. (2) has the same form as Eq.
(7), except that the matrix B.. is different. In particular it
is dense (every entry is non-zera) instead of banded.

If a Galerkin finite element method is applied to Eq. (2)
the result is slightly different.

c. . T.+ 2 /51 w (C q. J (8)

Notice here that the left-hand side involves a matrix multiplica-
tion. This means that explicit schemes for integrating Eq. (8)
are ruled out, or must at least involve one LU decomposition of
the matrix C... Furthermore some packages for integrating ordi-
nary differen&ia1 equations do not allow equations in such a
form, or require extra manipulation. For example, the code
LSODI, developed by Hindmarsh at the Lawrence Livermore Labors-
ton, can be applied to equations in this form, whereas the GEAR
or GEARB packages developed by Hindmarsh must be applied to the
revised equation,

L .
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I* 1 I
where the notation C- 1 is meant to denote an LU decomposition
rather than an inversion, to preserve the sparse nature of the
matrices B.. and Cij.

ii i
All methods lead to sets of ordinary differential equations

that ust be integrated in time. The various packages RKF45,
GEAR, GEARB, LSODE, LSODI can all be applied to some subset of
the problems. The finite difference method and the finite ele-
ment method lead to problems with banded matrics, whereas the or-
thogonal collocation method leads to problems with dense ma-
trices. Despite this difference it turns out that all the meth-
ods lead to stiff equations if very many grid points are used.
This point is illustrated with the diffusion equation. -

For a diffusion problem

we can apply finite difference, finite element or orthogonal col-

location methods to obtain a discretized set of equations.

Adt

The difficulty of integration of these equations depends on the
eigenvalues of the matrix, in particular:

For collocation and finite difference methods the matrix C.. is
the identity matrix. If we apply separation of variables Eq.
(9) we are led to the eigenvalue problem.

+ cx. )

If we apply collocation, finite difference, or finite element

methods to this eigenvalue problem we get Eq. (11). Thus the

first eigenvalue from Eq. (11) represents an approximation (and
usually a quite good approximation) to the first eigenvalue of

the physical problem, Eq. (12). The largest eigenvalue,K
!-SI
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however, is found to be represented by the following eq,-ation,

where the value of LB is listed in Table I for a variety of meth-
ods Wli. What this means is that the stiffness ratio for a line-
ar diffusion problem is given by

and that as h becomes smaller, when we add more grid points, the
problem becomes stiffer. These features are magnified for the
nonlinear problem, such as Eq. (1,2).

Table I. Values of LB in Eq. (13)

Method LB

Finite difference 4
* Collocation, FEM

cubic functions 36
quartic functions 98

quintic functions 222
Collocation, Hermite

cubic functions 36
Galerkin, FEM 0

linear 
12

quadratic 60
Galerkin, FEN, lumped

linear 4

quadratic 24

The implication of this informatin is that if the problem
demands a large number of finite difference grid points or finite

elements to represent the spatial changes in the solution, then
the temporal problems are guaranteed to be stiff, and integration g

methods must be used that are applicable to stiff equations.

The solution methods described above are embodied in two
computer codes, REACOL for orthogonal collocation, and REACFD for
finite difference. The temporal integration is done by one of
three methods: a fixed-time-step second-order Runge-Kutta meth-
od, a variable time-step fourth-order Runge-Kutta method, and the
GEARB package (Hindmarsh version).* The program is arranged so

*GEARB is used for orthogonal collocation only because it

was available, even though the appropriate package is GEAR.
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that the user can easily change the reaction rate expression and
the number of components to fit the situation. The advantage to
using such a code in an academic setting is that every student
can obtain results for his or her reactor model even though the
problem may be very difficult. it is very discouraging (and not
too conducive to learning) to try to solve a difficult problem ,
get unstable numerical results, and not know where the difficulty
lies - in the coding or the problem. Use of GEARB obviates that
uncertainty; if GZARB has difficulty the student may still want
to look at the coding for possible errors, but half the battle is
won.

r
As a simple example take Eq. (1,2) with

and the parameters 04' 1 1, ;I 0.3, 93 | 1 0.2, 20, Bi
= 20, Tv = 1, co 

= T0  1. Solutions obtained with the orthogo-

nal collocation method are shown in Table II. Note particularly
that if only two collocation points are used in the radial direc-
tion (a number which suffices for some problems) all the temporal
methods take about the same computation time and have comparable
errors. The error is almost entirety due to the spatial approxi-

mation, as can be seen by comparing the results for N - 2 and N =

5. For N - 5, however, the problem is stiffer, and the methods
designed for stiff equations are faster, although not any more
accurate. When the finite difference method is employed with a
fixed time step and a second-order Runge-Kutta method, the solu-
tion varies with grid spacing and time step.

There is no need to take t very small to have an accurate answer
in time when there is still some trunction error in space. tn
fact because of the cancellation of errors in Eq. (15) this
method may be more accurate than a solution derived using a vari-
able time-step Runge-Kutta method or GEAR method.

Table II. Solutions to Reaction Problem
Giving values of average concentration at one t -0.6.

N in c Method in time CPU time
orthogonal sec
collocation

2 0.8068 RK-2, t - 0.005 0.97
0.8031 RKINIT, eps - 10-5 0.97
0.8088 GEARB, eps - 10-5 1.00

5 0.9197 RK-2, t = 0.001 14.1
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0.9198 RKINIT, eps - 10-5 7.9

0.9206 GEARB, eps = 10-5 3.1

exact 0.91926

A phthalic anhydride reactor provides a real case with in-
teresting mathematical results (3,4). This time the packed bed
reactor is operated under conditions in which the temperature of
the packing need not be the same as the temperature of the fluid
flowing past the packing. This temperature difference occurs be-
cause reaction occurs on the catalytic packing and energy is
given off, raising its temperature. The energy must be trans-
ferred to the fluid, but encounters a heat transfer resistance
between the packing and the fluid. The resulting equations are
similar to Eq. (1-4), except that there are several species to
consider.

ac - 'D- (r L (116)

(TS - A ~~) Y T S) (7

The function R is a nonlinear function of concentration and pack-
ing temperature, T . Thus Eq. (18) represents an algebraic
equation to be solve1 at each position r and t. When orthogonal
collocation is applied to Eq. (16-17) one obtains a set of ordi-
nary differential equations, as in Eq. (6), coupled with a set
of algebraic equations. This type of problem can be solved using
REACOL and GEARB provided the reaction rate expression solves the
algebraic equation for Ts given the fluid temperature and all the
concentrations. This was done using Newton-Raphson to solve the
nonlinear equations. At the conference, results also will be
presented using the program LSODI.

This reactor is parametrically sensitive. Figure 1 shows
the solution when the inlet and wall cooling temperature are 620
K and 630 K. In the first case, the conversion of ortho-xylene
to phthalic anhydride is well behaved and the temperature of the
reactor remains within bounds. If the temperature is raised just
10 K, though, the temperature rises very sharply, and all the
phthalic anhydride is further reacted to form carbon dioxide.
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S
The GEAUR package is capable of performing the integration up
until the point where the reaction temperature rises precipi-
tiously; there the integration stops because it cannot proceed
with a very small required step size. This is a good example of
the power of having a robust stiff integrator available. When a
robust integrator is used and the reactor "blows up" we know that
something dramatic is happening in the physics and chemistry, be-
cause otherwise the integrator would handle the problem easily.
This same feature of reliability was especially valuable in a pi-
oneering study of the kraft pulping process. [5]. In this case
reaction and diffusion occured in a wood chip, and the equations
are similar to Eq. (1-4). The reaction rate expressions are un-
usual, however, and lead to some difficult integration problems.
The REACOL program with orthogonal collocation and GEARB per-
formed admirably and gave valuable results that otherwise might
have been clouded by numerical problems and uncertainties.

Flow Through Porous Media

The next case study concerns the movement of water through
very dry soil. The equation is= L k Af , po--

with boundary conditions appropriate to injecting 1.quid water at

one end by keeping the pressure or saturation at a fixed value.

'- p (o,C 8F'I -

p(OI44- Z BP

The initial conditions are

When the soil is very dry, the relative permeabiligy, kr can
vary over many orders of magnitude; factors of 10 are not un-
common. The derivative of a saturation with capillary pressure
can also make large variations. For the cases considered here we
take these functions as

kr , +/ pL/0- i) 4 0-48/6+L/A 1
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Typical solutions are shown in Figure 2 as a function of the ini- -
tial dryness; as can be seen, if the soil is initially very dry
the profile is very steep and the water front moves through the
porous media as a wave.

It is clear that to interpolate such a function it is neces- "
sary to have a very fine mesh near the front. Unfortunately, the
fron moves in time, so that the fine mesh must either be every-
where or else it must somehow be moved to occur in the right lo-
cation at the right time. A straightforward application of the
finite difference method to Eq. (19) gives

S d~ z~ %c _L[kk

- PC, i A#, 4'rf4'r
One method of evaluating the permeability is to take an average
value.

These equations can be integrated using a package for stiff equa-
tions, such as GZARE. At any time one can stop the integration
and determine the eigenvalues of the Jacobian of Eq. (20).
Typical values are listed in Table PII. Notice that some of the
stiffness ratios are quite large, 10

Table III. Eigenvalues of Jacobian, L - 100

BPO 11 msx EV min EV SR CR

0 -2 1.2E6 0.25 4.9E6 1.4E5
-0.5 -2 1.313 0.22 5.6E3 1.4E2
0.05 -3 1.518 0.14 1.119 1.3E8
-0.5 -3 1.2E3 0.032 3.9E4 1.2E3
0 -5 7.5E3 0.0053 1.4E7 3.0E5

We can also define a coefficient ratio as follows.

SIkr VjC1Z

This ratio can be calculated a priori since it depends only on

the pressure, and the range 6f iissure values is known at the

[S
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outset. Fortunately, it correlates very well with the calculated
stiffness ratio, as indicated in Figure 3. This coefficient
ratio than provides a guide for other problems to help identify
which problems are going to be especially stiff. It is also use-
ful for choosing a .tseable time-step for a fixed time-step meth-
od. Jensen and Finlayson 6 showlow optiral discretization can
reduce the stiffness ratio from 10 to 10 for one of these
problems.

One of the difficulties with this problem is that the pres-
sure can be positive if the soil is saturated. Under those con-
ditions the coefficient, dS/dp W 0. If the soil is initially
dry, and then one end is put in contact with water (say a layer
of water is place on top of it) then that end will be saturated.
The saturated region will move in time. The region of space
which is saturated then is governed by an equation like (19) but
with no time derivative, i.e. an algebraic constraint. Thus to
solve this problem it is necessary to have a stiff integration

package which can handle these algebraic constraints, and the
number of algebraic constraints depends on the solution and ma
change in time. A modification of the original Gear program (71
was made in order to do this.

Supposing the time dependent nature of the solution is prop-
erly handled, what type of behavior usually results? One solu-
tion is shown in Figure 4; it was generated using the Galerkin
method with some upstream dispersion and a trapezoid rule in time
with a fixed time-step. The solution is clearly in error.
Unfortunately, the errors are not caused by the time step used;
solving the problem more accurately in time leads to no better
solution. The difficulty lies with the spatial approximation.
In this case only 20 elements were used and it is clear that the
type of solution expected cannot be interpolated with 20 ele-
ments. For another problem discussed below it is possible to
show how many elements are needed for a given solution. Here we
cannot do that, but other calculations indicate something like
200 elements are needed if a cubic trial function is used, giving
601 total points. Sometimes it is not possible to compute with
this many points for economic reasons. In that case one might
try to use only 20 or 40 elements. If one does so with a stiff
integration package, the oscillations caused by the poor spatial
approximation will be carefully followed by the integration pack-
age, and large time steps will never be achieved. In such cases,
then, it does not make sense to use a small error tolerance,
since the spatial contribution to the error is large anyway, ex-
cept that the integration packages may not work except with Imall
values. The author has found that values of eps below 10 are
generally necessary for the GEARB package developed by Hindmarsh
to work efficiently for these problems.

If one is dissatisfied with a solution containing oscilla-
tions, since the oscillations are known to be due to numerical
errors, and the calculations must be performed on a fixed budget,

- - - - - - - -
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it is necessary to resort to introducing numerical dispersion.
In this problem the simpliest way to do so is to evaluate the
permeability by using the valuue of permeability at the nearest
node upstream (with upstream defined as the direction with the
largest pressure).

There are other more sophisticated and more accurate methods as
well. If one does this then the oscillations are damped; the

front is smooth but may be much smoother than the true solution.
When this approach is taken it clearly does not make sense to
solve the equations in time very accurately; the spatial contri-
bution to the error is large. Again stiff integration packages
that work well with large error tolerances are important.

Figure 5 shows the error in the pressure at a particular po-
sition and time (chosen so that the sharp front is nearby and any
errors in the position of the front cause a large error). The
finite difference method is used in space and two methods are
used in time. One uses a backward Euler method with a fixed time
step. As the time step is decreased the error decreases, but ap-
proaches an asymptote since eventually all the error is contained
in the spatial approximation. A modified version of Gear is also
used (modified to allow algebraic equations) and the problem is
solved with error tolerances of eps - 1.0 and 0.1. With these
values the solution is solved accurately in the sense that there
is very little time truncation error, but the economic cost is
high since the computation time is more than that obtained with a
simple fixed time-step method. Part of the reason the stiff in-
tegration package did no better than this is that the problem is
stiff because the pressure changes from the boundary value to the
initial value, and this leads to large variations in the coeffi-
cients. Yet the solution always makes this variation, and is al-
ways this stiff, and large time steps are not utilized in any
portion of the time integration. Furthermore, small oscillations
that appear initially (and are inevitable when there is a step
change in the boundary condition at time zero) are carefully
tracked by the stiff integration package. This example is not
meant to be presented as a failure of the stiff integration pack-
age - indeed the package made possible many solutions that were
otherwise inaccessible - but to indicate that the dramatic re-
sults achieved in other contexts do not always obtain for solving
the ordinary differential equations derived from partial differ-
ential equations.

If one wants to solve this problem really well it is neces-
sary to either use a very fine mesh or a moving mesh. This was
done by one of the author's students (61. The problem was trans-

formed to a moving coordinate system that moved with the velocity
of the front. Then the front stayed in the same position for all
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time, and the location of the boundaries moved in time. The so-
lution required defining a set of nodes and solving the problem
on a subset of nodes, and the subset kept changing in time.
Rather than trying to force such a problem into the structure of
the existing stiff integration packages (such as GEAR ) it was
easier to use the trapezoid rule, with a fixed time-step. Since
the solution hardly changed in time, large time steps could be
used; indeed the major time-saving resulting from the technique
was the large time steps possible; in the moving coordinate sys-
tem the solution appeared as if it was in steady state. While a
stiff integration package was not used in the solution, the ex-

q perience of using them on similar problems and understanding why
they did not always work well was an essential preliminary to
devising such a strategy.

Chemical Flooding

One of the methods for producing oil from existing oil
fields is to inject a solution of surfactant chemicals in water
in order to reduce the interfacial tension between the water and
oil phases. A prototype problem related to this problem is the
solution of the convective diffusion equation.

JC.{ tO

A numerical solution is shown in figure 6. This solution was ob-
tained using the finite difference equation in the form

- - I (r
44t A ldi.

The ordinary differential eqquations were than solved using
GEARB. The error criterion was set low enough that the solutions
are essentially the exact solutions of the difference equations
(21). If only 50 grid points are used, oscillations develop, as
shown. These oscillations are inherent in the spatial approxima-
tion - no better solution of the ordinary ifferential equations
is possible. The GEARB routine faithfully follows the develop-
ment and propagation of each oscillation. If 500 grid points are

3
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used, then the numerical solution is essentially exact, as shown.
Here, too, the time dependent equations are solved essentially
exactly.

Now consider the problem when the parameter Pe, the Peclet -*
number, increases by 1000 times. Then we need 500,000 points for
a good solution, and such a solution is very expensive to obtain.
Yet if fewer points are used, oscillations develop due to the
spatial approximation, and very accurate time-dependent methods
are not helpful. In this case we can introduce upstream disper-
sion by changing the convection term to the following form.

-@

Figure 6 shows the solution using this form when only 50 grid po-
ints are used. The solution is smooth, the solution to the
time-dependent equations is found very accurately by the GEARB
routine, but it is clear that the error obtained when comparing
the numerical solution to the exact solution is large. Again it
makes little sense to obtain very accurate answers to a problem
when upstream dispersion has been introduced; a stiff integrator
is needed that works well for large values of the error control U

parameter.

This problem, too, can be solved by a moving coordinate sys-
tem, and this has been done by Jensen and Finlayson L6]. Very
small meshes are used near the front, and the front is stationary
in the moving coordinate system, but the location of the boundar- 0
ies changes in time. In order to achieve economical results it
is necessary to use a method of integration which is at least
A-stable, and the trapezoid rule was used. Large time steps were
then possible. Because some of the nodes are in the solution do-
main and others are not at any particular time the stiff integra-
tion packages were not used.

For the chemical flooding application it is necessary to
solve equations like the convective diffusion equation in a two
dimensional region.

')C 4 U + Vi D L4 ~L

Typically fluid is injected in one corner of a square and removed
in the corner diagonally opposite. The Peclet number is very
large, requiring a small grid spacing to prevent oscillations.
The small grid spacing makes the calculations very expensive, and
numerical dispersion cannot be used because it changes the peak
concentration of the surfactant in an unrealistic way, which
changes the phenomenon. One solution to this problem is to solve
the equations on a moving coordinate system, this time one that

.i
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moves from the injection well to the production wll. Small fin-
ite elements are placed near the front, and the front always
stays in the region where the elements are small. To efficiently
handle the time-dependent problem, though, it is necessary to use
an integration method that is A-stable, so that large time steps
can be taken, but also one that is efficient in solving the line-
ar algebra problem which must be solved each time step. Solving
these equations with a banded solver is much less efficient than
solving with a profile or frontal routine. Thus it was necessary
to develop a method which was compatible with a frontal routine,
was A-stable, and had an automatic step control feature. In es-
sense, what was needed was a low-order, high-eps version of
GEARB.

Since a graded mesh was involved it was most convenient to
use the Galerkin finite element method since elements of differ-
ent sizes are easily handled. This means that the differential
equation (22) is in an implicit form.

/44 , + kD 9 c,

Gresho, Lee and Sani [81 of the Lawrence Livermore Laboratory
have provided an integration routine that has the features of
stiff integration packages. It uses a second-order
Adams-Bashforth method for a predictor, a trapezoid rule for the
corrector, and the difference between the predicted and corrected
value to control the step size to meet the specified error toler-

* ance. Gresho, St a l. provided both a first and second order
method, as we do here. The method used by Gresho, E atl.,
though, is based on time derivatives of the variables. Since the
equation is implicit, it is necessary to solve this implicit
equation first even to get started. Rather than doing that we
devised a method based upon extrapolation. The derivation is
given here for the first order method, and the results for the
second-order method are in the Appendix.

First we write an equation for an extrapolation of the poly-

nomial going through the solution at tnl and t (see Figure 7).

The method is illustrated for dy/dt = f(y). n

'I P .

4 °4

We next write a Taylor series for the exact solution, assuming
the exact solution is known at the beginning of a time step,
Y(tn) = yn and y(tn_) = tn_.

n n +l n...
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Subtracting this from Eq. (23) gives

Using a Taylor series for yn-1

gives

The corrector is given by the backward Euler method.

The truncation error of the backward Euler method is

The values of yP n and yC n 1  are available from

(23,25). We solve Eq. (24,26) for the unknown y(tn+ 1 ) and
" ( I). The result is •

C

Thus the truncation error is then estimated using

4- p

To summarize we use Eq. (23) to predict y 1 , Eq. (25) to cor-
rect, and Eq. (27) to estimate the truncap ion error.

The estimate of the truncation error is used to pick the
next time step.

6
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where Z: is the user-specified accuracy. In Jensen's thesis C 9
this time step was used for the next calculation. Jensen also
used the second order version for the convective diffusion equa-
tion.

In practice, of course, the estimate of truncation error may
not be a good estimate, and after picking a time step and doing
the calculations the estimate of the truncation error in the new
step may be larger than S . Consequently, Jensen LIO2 devised
the following strategy to allow recalculation when necessary.
Define the error for sets of equations as

or

bd - ( .J
If

the timestep is not accepted since the truncation error estimate
actually achieved is greater than expected from the previous
steps. The step is repeated with a step size half as big. The
value of beta is empirically chosen in the range 1 to 1.5. If

then the step is accepted. However, if

the next timestep is decreased according to

This allows the estimated error to be slightly larger than de-
sired, as large as beta x epsilon. If
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the next timestep is kept the same, and alpha is a parameter em-
pirically chosen in the range I to 10. Finally if

C--

the time step is increased according to

with a maximum ratio of 3 to prevent introducing excessive error.
The corresponding formulas based on interpolation using second
order expressions are given in the Appendix.

The time-step scheme described above is based on the same
ideas contained in the GEARB package developed by Hindmarsh, but
has the advantage that it is easily implemented in a code that
already uses the backward Euler method. The second-order scheme
in the Appendix can likewise be used in a code that now uses the
trapezoid rule, or Crank-Nicolson. The second order scheme was
applied by Jensen in his thesis to solve for the movement of
chemical in the two-dimensional flow pattern described above. He
always accepted the predicted step size, and always accepted the
solution, even if the truncation error turned out to be too
large. When the solution reached a point in which smaller time
steps had to be taken it sometimes broke down. Later he devised
the strategy given above for accepting a stepsize, and applied
this to a large code for steam injection of an oil field, where
it worked with good results L101. Approximately 30 to 50% of the
computation time was saved compared to the previous step-size
control strategy, and cases converged that had not converged with
the previous stategy. The previous strategy was one in which the
change in saturation or pressure from one time step to another
was kept below a prescribed value. Obviously this limits the
truncation error only in some vague, general sense. The schemes
discussed here, however, have a theoretical justification and
work even better.

Conclusion

The concepts of stiff integration codes can sometimes be ap-
plied directly to solve-the ordinary differential equations aris-
ing from partial differential equations. In some cases, however,
the problems are so difficult or large that a straightforward ap-
plication of the stiff integrators would be prohibitive in cost.
In such cases the principles of the stiff integrators can some-
times be incorportated with other solution techniques and tricks,
leading to a viable solution method. These principles have been
illustrated in three case studies.
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Appendix

The formulas analogous to Eq. (23-27), but for a
second-order trapezoid rule are:

1.. L.. , . .4,.

C.I  " i-n,.

+L Li.

I I

c,+ +-.- )

art 41 Ce Z (4+1 M
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STIFFNESS IN HEAT TPANSFER
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Introduction 0

Professor Aiken asked me to present an overview of stiffness as

encountered in the field of heat transfer. My primary objective will

be to draw your attention to current problems of physical reality and 0

importance in that field. I have chosen to interpret his invitation

to include energy changes from one form to another, thus encomzasiing

shock, deflagration, and detonation waves. Before considering stiff- •

ness I will digress to review the relationships between heat transfer,

mass transfer, momentum transfer and chemical kinetics.

Analogies and Couplings of Heat Transfer with Mass Transfer,

Momentum Transfer and Chemical Reactions

Mass Transfer.

The transfer of chemical species bears a close analogy to heat •

transfer, although usually further comrlicated by multicomponents and

sometimes by the self-generation of a net flow normal to the surface,

thL- so-called Ackermann effect [see, fvr example Gr~ber, Erk and

. (161 . 4,:2f, and Bird, Stcwart ani Lightfoot (i962?) p. 6:6f .

p



Also, the geometries of greatest interest in mass transfer are not in general

the same as in heat transfer. For example, convective heat transfer usually

occurs from one confined fluid stream to another through a thin solid wall,

whereas mass transfer characteristically occurs from one fluid to another in

direct contact or to a solid surface. Mass transfer often occurs simliltaneous-

ly with and coupled to heat transfer whereas heat transfer ger:eraily occurs in

the absence of mass tra;.sfer. Heat transfer with phase changes (boiling,

condensation, melting and solidification) is more important than the analogous

processes of mass transfer. On the other hand the transfer of species due to

an electric potential does not have an important analog in heat transfer.

Heat transfer by radiation has a superficial analogy with the transport of

thermal neutrons (see, for example, Chu and Churchill (1956)] as well as with

other electromagnetic radiative processes [see, for example, Kerker (1963)].

Momentum Transfer

The current of momentum (ordinarily equal to the shear stress) is a

tensor of second order as compared with the currents of energy and species

which are vectors (tensors or first or:Ier). Hence an analogy between

Momentum transfer and heat (-r mas transfer is somewhat artificlal, and

can only occur in degenerate cases. Even so, tihis concept, as first

::nceived by Reynolds and improved b Prandtl and others [see, for example,

3rcbr et al. pi:i :. 242f, 395f], :.as croven to be invaluable for tur-

bulent transrort. The prediztions base2 on this a:alogy, despito its

shaky f-undazcn, are rrobabIx' mcre r lia:l :2an the available exoerimental
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data [see, for example, Churchill (1977)]. Since it is uncertain whether

Aor not a priori solutions of turbulent transport will ever be achieved,

this useful analogy should not be scorned for its obvious empiricism.

Momentum and convective heat transfer usually have at least a one-way

U coupling, i.e., the rate of heat transfer depends critically upon the velo-

city field. Conversely, momentum transfer depends on heat transfer only

* . insofar as the viscosity and density vary with temperature. In free (un-

*confined) and natural (confined) convection owing to a density variation

and a gravity field, the equations for heat and momentum transfer are

.-. strongly intercoupled and must be solved interactively. Some free or na-

tural convection always accompanies forced convection, its relative impor-

-i tance depending on the ratio of the maximum density difference to the square

of the imposed velocity (see, for example, Churchill (1982a, 1982b)].

5Momentum and Mass Transfer
To return to mass transfer, gravitationally induced changes may also

occur, leading to analogous couplings between momentum and mass transfer,

Iand to triple couplings. The latter is an important but relatively un-

studied problem [see, for example, Seville and Churchill (1970)]. Coupled

mass and momentum transfer may also occur due to the interfacial tension

between two immiscible liquids. This is called the Marangoni effect [see,

for example, Sternling and Scriven (1959)].

Chemical Reactions

Chemical conversions in tubular reactors are invariably coupled with

momentum transfer since the assumption of plug flow is rarely justifiable.

).I
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For example, in laminar flow through an empty round tube the velocity

distribution is parabolic, and in a tube filled with packing is M-shaped.

Turbulent flow does not occur in practical reactors, with singular excep-

tions such as for the radiantly stabilized burner discussed subsequently.

Non-equimolar reactions in turn influence the velocity distribution even

for isothermal conditions.

For homogeneous reactions a velocity distribution implies a radial

concentration gradient and hence radial mass transfer. If the reaction

or reactions are significantly energetic a radial temperature gradient is

also necessarily generated. The mass, energy and momentum equations are

thus intercoupled. As evidence of the significance of this coupling, Brian

(1963) has shown that the coefficient for heat transfer to the wall of a

non-adiabatic reactor may be changed radically (as much as a factor of 10)

by chemically generated or absorbed energy.

In packed beds of catalyst particles, heat and mass interchange with

the surface of the pellets, adsorption, desorption, surface migration, and

surface reaction may all count, and in the case of porous particles, diffu- 7"

sion of heat and mass through the pores as well. The thermal conductivity

of the particle may be sufficient to justify the use of an isothermal

effectiveness factor, but temperature and composition differences between

the surface and the bulk of the adjacent fluid will generally be signifi-

cant [see, for example, Fair (1955)]. It may be possible to account for

some of these effects with adequate approximation by a lumped model, but

not those of the radial velocity, composition and temperature profiles.
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By contrast, for wall-catalyzed reactions the radial profiles of

" velocity, composition and temperature can be accounted for by lumping,

just as for individual catalyst particles.

It is concluded that tubes with a surface coating of catalyst can

be modelled by ordinary differential equations, but that homogeneous

tubular reactors and packed catalytic reactors cannot be.

Finally, tubular r: ors for endothermic processes are, as shown

* by Calderbank (1954) and others, are essentially heat exchangers. The

reaction mechanism determines the temperature level, but the local rate

of reaction is in close proportion to the local rate of heat transfer.

Having established the importance of heat transfer in chemical re-

actors I will defer to others for detailed discussion of this topic.

Behavior Generating Stiffness

Now let me return from this digression on the interrelationships

between heat transfer. and other processes, and consider stiffness. My

posture here will be as a customer rather than as a supplier of techni-

ques. Th&t is, the following will be limited to a description of ther-

mal problems which pose computational difficulties and therefore are

worthy of your expert attention. I will also try to identify the physi-

*- cal and mathematical characteristics which lead to these difficulties.

* Since I am problem-oriented rather than technique-oriented, I ask your

indulgence if some of these problems fall outside the narrow definition

of stiffness as models composed of ordinary differential equations

* giving rise to widely separated eigenvalues. I trust that you of this

highly selective audience, and particularly those of you who succeed

!to
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me at this podium, will provide guidance to the solution of this broader

class of problems. _

The more important and more difficult problems in heat transfer are

necessarily modelled by partial differential equations, representing

transient and/or multidimensional behavior. Presumably most of these prob-

lems involving partial differential equations can be transformed to ordin-

ary differential equations by standard techniques such as operational

methods, local similarity, local non-similarity, the method of characteris-

tics, the method of lines and the method of weighted residuals. Hence I

will include such problems in my discussion.

The following are then a representative set of heat transfer problems

of varying complexity which may invoke stiffness or related computational ,.

difficulties. Attention will first be directed to those problems which can be

modelled by ordinary differential equations, then to some that have both

one- and two-dimensional aspects, and finally to a few that can only be

considered as multidimensional.

Heat Exchangers

The interchange of energy between two or more confined streams can be

represented by the corresponding number of ordinary differential equations

for most geometrical configurations insofar as the effect of variable trans-

port properties can be lumped. An example of an exception is rectangular

cross-flow, which requires partial-differential modelling.

Simple analytical solutions have been obtained for concurrent and

countercurrent flow with constant heat capacities and constant heat trans-

fer coefficients. Other qeometries, developing flow, developing heat
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transfer and variations in the physical properties with temperature may

give rise to combinations of differential equations which are difficult

to integrate numerically. Most practical problems of geometrical complex-

ity only have already been solved (see, for example, Jakob (1957)1, but

only a few of the simpler cases of developing flow and developing heat

transfer have been considered. The effects of variable physical properties

on heat exchange are still not well resolved because of the lack of general

models for the temperature-dependence, and because of the strong influence

of variable viscosity and density on momentum transfer.

Laminar Thermal Boundary Layers

Heat transfer in laminar boundary layers, although a very old and

worked-over problem, still offers some challenges, as illustrated by the

following two examples.

Low Prandtl Numbers. The boundary layer equations for free convection are

numerically intractable for low Prandtl numbers, apparently because of in-

stability. Although asymptotic solutions are readily derived for a Prandtl

number of zero, numerical results have not been obtained for any boundary

condition or geometry for finite values less that 0.001. Such low values of

the Prandtl number only occur in galactic applications, but solutions would

be very useful in developing correlations for terrestrial applications in the

generalized form proposed by Churchill and Usagi (1972).

Recovery Factor. The coupled differential equations for the conservation of

momentum and energy in dissipative flow over a flat plate have apparently

-ever been solved directly despite the many practical applications, including

thermometry. Numerical solutions have been obtained from an integral formula-

tion for some particular Prandtl numbers [see, for example, GrSber, et al.

(1I61) p. 287fJ.
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Shock Waves

Supersonic compression waves can be generated by the motion of a strong

pressure pulse or the rapid motion of a piston. Their normal reflection off

a solid surface results in an even stronger wave. After full development,

shock waves and reflected shock waves can be modelled as stationary, insofar

as their decay due to dissipative processes can be neglected, by choosing

the wave front as a frame of reference. Insofar as diffusion and dissipation

are negligible, a shock wave can be modelled by a set of non-linear algebraic

equations as a step function in pressure, velocity and temperature. The

effects of diffusion and viscous dissipation on a stationary wave can be

modelled by a set of coupled ordinary differential equations representing the

conservation of mass, momentum and energy. Presumably this model is very

stiff. However, Bird, et al. (1960) pp. 333-336, present an analytical solu-

tion which is exact for a Prandtl number of 3/4. They also discuss solutions

for other conditions.

Shock waves may be generated in a tube, adding the complication of the

drag of the wall. Spherical and cylindrical waves are usually postulated to

be pseudo stationary.

Detonation Waves

Supersonic compression waves can also be generated by a rapid chemical

reaction. If diffusion and dissipation are neglected and chemical equilibrium

is assumed behind the wave the fully developed behavior can be modelled

algebraically as a step function. This idealized model provides excellent

predictions for the detonation velocity (see, for example, Moyle, Churchill

and Morrison (1960)]. Even so, computations of the effect of finite reaction

rates and diffusion are of interest. For example, Nicholls (1960) established

F-

I"

* a- * - - . . . . .
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a stationary detonation wave for a mixture of hydrogen and oxygen experi-

U mentally, and thereby determined the reaction rate.

Experimental measurements of the temperature and pressure reveal

transients which are presumed to be due to the finite rates of chemical

and thermal relaxation. Computation of these effects is a challenging

problem involving stiffness which must necessarily be modelled by partial

differential equations.

The development of a detonation wave following ignition is another

* unresolved and challenging problem involving stiffness and partial differ-

* . ential equations.

Deflagration Waves

Unconfined laminar flames produce truly stationary expansion waves,

but the postulates of chemical equilibrium and negligible diffusion are not

applicable even as first-order approximations. On the other hand the

general model for this process is only moderately stiff. Fristrom (1960)

has shown that a Bunsen flame can be modelled satisfactorily in terms of

diffusion and reaction. Hahn and Wendt (1982) have developed a numerical

solution for an opposed flat flame, taking into account the unique flow

field, diffusion and free-radical reactions.

d The transient problems of ignition and flame development provide a

further challenge. In addition radial symmetry is of more direct interest

than planar.

Radiantly Stabilized Combustion

The stationary combustion of yremixed air and fuel (either gas or an

atomized volatile liquid) in a refractory tube has been successfully modelled

* . . - - - I - -•A - - -. - . h - - - .
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by an ordinary integro-differential equation and a large set of coupled

ordinary differential equations. This complex model is characterized by

split boundary conditions as well as stiffness; the process of solution

by instability; and the solutions by multiplicity.

The physical behavior can be described as follows. In passage down

the inlet region of the tube the fuel-air mixture is heated to the point

of ignition by convection from the tube wall. Combustion then occurs with

a rapid rise in temperature. Downstream from this combustion front the

burned gas heats the colder tube wall by convection. The resulting hot

downstream wall radiates and conducts energy to the colder upstream wall

thereby providing the thermal feedback required to preheat the fuel-air

mixture. For a sufficiently large tube diameter, the stable range of oper-

ation falls in the turbulent regime. Hence the process can be modelled

with reasonable accuracy as plug flow. The model consists of separate

energy balances for the gas, liquid (if any) and solid (the wall), and

separate material balances for each of the chemical species in the gas

phase, including free radicals. The energy balance for the wall is an

ordinary integro-differential equation. The other balances are ordinary

differential equations. The energy balances for the gas and wall are coupled

through a convective boundary condition, and the energy and material balances

for the gas by the temperature- and composition-dependence of the reaction

mechanisms. In the case of liquid droplets, the mass balances as well as the

energy balan, ,s for the gas and liquid streams are also coupled through con-

vective boundary conditions. Secondary couplings occur due to physical prop-

erty dependence on temperature and composition, and the dependence of the

ccO!.-:tive coefficients on the reaction-generated energy. The inlet conditions

are known for the fuel and air, but the wall temperature at the inlet is a

dependent variable, thereby requiring a shooting method for solution.
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We have not yet been able to obtain a convergent solution without

making approximations in the model. The general problem involves a double

iteration, one for the postulated inlet temperature which satisfies the

boundary condition of overall conservation of energy and the other for the-

temperature distribution in the integral. Our initial numerical solution

(J.L.-P. Chen and Churchill (1972)], although not convergent, did yield the

correct behavior semi-quantitatively, and unexpectedly predicted the existence

of seven stable solutions. These multiple stationary states arise from

differences in the eighth significant figure of the trial value of the inlet

wall temperature. The inlet wall temperatures which lead to stable solutions

are thus equivalent to eigenvalues. (The existence of the multiple stationary

states has subsequently been confirmed experimentally for both gaseous and

liquid fuels).

We have subsequently (Choi and Churchill (1979)] obtained a convergent

solution by approximating and analytically evaluating the integral term.

However in so doing we lost five of the stable solutions. We have also

carried out calculations using an experimental wall temperature profile and

thereby avoiding the computational difficulties associated with the integro-

differential component of the model. Such calculations, although stiff in

the sense of a 25 to 1 ratio in the eigenvalues, have converged satisfactorily

[see, for example, Tang and Churchill (1981)1. The classical postulates of

quasi steady states or local equilibrium for the free radicals were not found

to be valid for these conditions.

I
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It appears from this experience that an integral term, such as that

arising from radiant interchange between surfaces may be a more serious

source of computational difficulty than widely separated eigenvalues or

split boundary conditions.

The principal idealization in the above modelling is that of plug

flow. Two-dimensional modelling with eddy diffusivities for the radial

transport of momentum, energy and species would undoubtedly be more realis-

tic. The principal advantage would be the elimination of the present uncer-

tain prediction of the reaction-dependent heat transfer coefficient for the

wall. Calculation of the transient behavior would also be of practical value

in connection with ignition, quenching and physical perturbations. Both

radial and transient modelling require the use of partial differential equa-

tions without any relaxation of the previously mentioned difficulties.

Simultaneous Radiation and Conduction in Dispersed Media

Radiative transfer through a dispersed media depends on scattering,

absorption and reradiation. This behavior can be modelled by an integro-

differential equation involving one to three dimensions and two angles. For

the overly idealized case of isotropic scattering, this integro-differential

equation can be approximated by the Poisson equation [see, for example, Chu

* and Churchill (1956) and Chu, Pang and Churchill (1963)]. However for

anisotropic scattering this approximation breaks down near the boundaries,

precisely where the results are of most interest. Lumping the radiation in

*two directions as proposed by Schuster (1905) or in three as proposed

and Churchill (1955) permits approximate modelling by a set of non-linear,

ordinary differential equations. The Farameters of the problem all vary

°

• /, -. / . - • D. ..
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with the wavelength of the radiation,.but mean values can be postulated as

E a further approximation. The transmission of solar radiation through clouds

to the surface of the earth is one application. In a thermal insulation or

packed bed, radiative transfer may also be coupled with thermal conduction.

To be rigorous, conduction in the solid and vapor phases must be considered

individually, but as an approximatio a combined, effective conductivity

may be used to represent both phases.

These simplified models for radiative transfer and combined radiative

and conductive transfer may still pose stiff problems, particularly if the

reflectivity of one or both of the boundaries is near unity (see, for

example, Larkin and Churchill (1959) and J.C. Chen and Churchill (1963)].

Thermal Regenerators

The fully developed temperature profile in a thermal regenerator can

be modelled as stationary. Tf the solid and fluid are postulated to be at

thermal equilibrium locally, and if diffusion is neglected in both phases,

the process can be modelled algebraically as a step function. K. Chen and

Schiesser (1980) solved the transient model [which they call the advection

equation] for this limiting behavior numerically, but stiffness resulted in

considerable inaccuracy. The superimposed effect of diffusion can be

modelled by one ordinary differential equation and finite convective resis-

tance by two.

This stationary model is not valid for the fundamentally transient be-

havior near the inlet and outlet of the regenerator, which requires model-

I-  ling by one partial differential equation in the case of diffusion and two

in the case of convection. Cyclic operation introduces the further compli-

cation of a different initial temoerature distribution for each cycle,

U7
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although an asymptotic initial distribution will be a p.rcached after many

cyTcies.

Abbrecht, Churchill and Chu (1957) have reviewed some of the analy-

tical solutions in series form and in terms of high-order functions.

Interestingly, the stiffness of the various models appears to have a

counterpart in the numerical evaluation of these analytical solutions.

Wave-like Mass Transfer

Ion exchange and gas-phase chromatography bear some analogy to ther-

mal regeneration but are generally more complicated.

The dispersion of CO2 and 02 in the process of respiration, as des-

cribed by Boy (1981), is also somewhat analogous, although the conical

shape of the bronchial tubes, etc., introduces a different set of compli-

cations.

Thermoacoustic Waves

A sonic compression wave is generated in an unconfined gas by a step

increase in the temperature of a bounding surface. If the gas is confined,

the wave reflects repeatedly. Ozoe and Churchill (1980) failed to obtain

a convergent numerical solution for this problem owing to stiffness, although

their computed pseudo steady-state pressures, velocities and temperatures are

self-consistent.

Forced Convection

Developing heat transfer in forced convection poses a fundamentally

...two-dimensional problem. Graetz derived a series solution for the temperature

.-field and heat transfer coefficient in fully developed laminar flow in a round tube due
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to a step in wall temperature. However, this series does not converge

for short distances from the onset of heating. Leveque used a similarity

transformation to derive an approximate solution for the inlet region,

which is correct in the limit but not for finite distances. Wors~e-Schmidt

developed a series solution in the form of a perturbation on the Levaque

model which is valid for small distances but not for large. A number of

numerical solutions have been attempted but none are accurate as the inlet is

approache owing to the ever-decreasing thickness of the boundary layer.

Many closely related problems have been considered for other geometries,

other boundary conditions and developing flow. They all have the same

limitations. More detailed description of these problems as well as refer-

ences to the original work are given by Gr6ber, et al. (1961), Churchill

and Usagi (1972) and Churchill and Ozoe (1973a, 1973b).

Transient Conduction

Transient thermal conduction in multiple solid media, such as an insu-

lated semi-infinite region subjected to a step in surface temperature (see,

fcr example, Churchill (1965)1 may pose computational difficulties.

The non-linear boundary condition provided by a phase transition, such

as in the freezing of wet soil, particularly in two or three dimensions, may

introduce computational problems related to the location of the phase

boundary (see, Churchill and Gupta (1977)].

Transient Heating of a Dispersion

The heating of a dispersion of suspende&d particles by radiation with con-

.. tion 1o t... surroun.din: air roses computational .robloms because of the
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nearly discrete shifts from single-particle heating, to a pseudo steady-

state to interparticle effects [see Sleicher and Churchill (1956)].

Instability

Physical instability may cause computational difficulties which are

similar to those associated with stiffness. For example, the mode of

. circulation for natural convection in an enclosure heated from below changes

*from multiple roll cells with axes parallel to the shorter horizontal dimen-

sion to a single circulation with its axis parallel to the axis of inclina-

-
2  tion. The computed values oscillate chaotically instead of converging for

inclinations near the critical value [see, for example, Ozoe, Yamamoto and 4

Churchill (1979)].

Summary and Conclusions

I have now completed my physical description of a representative set -

of problems in heat transfer whose numerical solution is known or suspected

to encounter computational problems. I have also noted some problems in

mass transfer which are computationally analogous and some in which heat -

transfer is coupled with momentum transfer, mass transfer and chemical re-

*2 actions. I have, however, avoided the discussion of heat transfer in laminar,

tubular and packed-bed reactors, per se, out of deference to other speakers.

Most important unsolved problems in heat transfer (as well as in mass

transfer, momentum transfer and chemical kinetics) are found to be either

transient or multidimensional.

- -, Shock, detonation, deflagration and thermoacoustic waves, thermal

regcneration, ion exchange-, gas-phase chromatography, respiration, and

radiantly stabilized combustion, with dispersion due to diffusion, chemi-

cal reactions and/or interphase transfer, whether stationary or transient,

• * . •*
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pose classical problems of stiffness. That is, the stiffness is associated

Ewith different terms with widely varying time constants or the equivalent.
The simplified model for radiative and conductive transfer through

dispersed material, and the illustrative model for transient radiant heat-

ing of a dispersion of particles are similarly stiff owing to discordant

mechanisms of heat transfer. This same effect occurs in the-transient

heating of an insulated semi-infinite media and in the freezing of a semi-

so infinite region of wet soil. (Locating the freezing front further compli-

cates the latter problem, particularly in two or three dimensions).

On the other hand the original integro-differential model for radia-

tive transfer through a dispersion and the integro-differential equation

in the model for radiantly stabilized combustion generate even more severe

computational difficulties.

USplit boundary conditions are a source of difficulty in some boundary

layer and heat exchanger problems, and also in solving the model for

radiantly stabilized combustion.

The generation of a thermoacoustic wave by a step-function in temper-

ature at the boundary appears to pose a uniquely stiff problem.

Physical instability, such as that associated with low values of the

Prandtl number in free and natural convection and with changes in the mode

of circulation in natural convection, is another severe source of computa-

tional difficulty.

In conclusion I hope that this physical description of important and

computationally difficult problems in heat transfer has provided some new

.... .n : for you.

S
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ABSTRACT

Detailed models of the flat, laminar,opposed jet diffusion flame involve

the solution of the momentum, energy and species conservation equations

*: coupled with stiff chemical kinetics. The problem has self similar solutions

and can be solved through numerical integration of a set of second order,

stiff, boundary valued, ordinary differential equations, each with a regular

first order turning post arising from convection.

Finite difference discretization (in the spatial domain) and expansion of

the reaction rate source terms in a Taylor series about the backward Iteration

* (in the temporal domain), leads to a matrix equation, the solution of which is

obtained through LU decomposition. Hodification of standard discretlsatlon to

allow convergence to be obtained with a ainima of grid points was required,

and is described in detail.

Predicted profiles of major and minor species provide useful insight into

the use of the laminar opposed jet diffusion flame configuration to

* - investigate detailed kinetic mechanisms under a wide range of conditions.

€~
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The Problem

The laminar opposed jet diffusion flame, Figure 1 is a combustion

configuration that possesses a number of useful attributes. First, it allows

a flat flame to be established In space, without direct influences of burners

gor possible catalytic surfaces; second, it allows investigation kinetic

mechanisms occurring in hot fuel rich regions and over a wide range of

conditions, which due to flammability limitations, cannot be established in

the preaixed mode; third, it may be thought to represent a prototype model of

*" laminar flamelets, each of which is strained In Its own plane, and which

represent the reaction zones important in turbulent diffusion flames. Its

usefulness as a tool to test and corroborate detailed kinetic mechanisms rests

- on its ability to be modeled and on the power of numerical procedures to

enable accurate solution of the ensuing stiff ordinary boundary valued

differential equations to be achieved.

Unlike previous work (Fendell, 1965; Krishnamurthy and Williams, 1974)

• which has focused on analytical solutions of models utilizing simplified

combustion chemistry with either infinitely rapid chemical reactions or a

simple reaction with a very high activation energy (Peters, 1978), this paper

-. focuses on numerical procedures necessary to solve the problem for an

arbitrary large set of reactions describing the free radical combustion
V

chemistry pertinent to this flame. The eauations describing the laminar

opposed jet diffusion flame comprises a severe test of any numerical

integration scheme. The problem is a boundary valued problem with

concentrations and temperature set at t. * Moreover, this is one of the

cases in nature where there is direct coupling between the energy and the

momentum balances through the changes in gas density p * An accurate

prediction of the (non linear) velocity profile is essential since this has a



-7 7 -

FUEL vr (- )or
Vz(. = -2az

Plane
rr

Flame Zone

Z vr (+w) To be determined

OXIDIZER vz (+ 1.

Figure 1. Schematic of the Laminar Opposed Jet
Diffusion Flame.
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first order influence on all other profiles. Inclusion of the effects of

Af viscosity and other dynamic effects on the overall concentration profiles,

together with chemical reaction, distinguishes this problem from that of the

one dimensional premixed flat flame, where the velocity profile can be

3 calculated from kinematic considerations alone.

The reaction zone thickness depends on a parameter, s , the rate of

stretching, and very steep spatial gradients in concentrations, temperature,

reaction rates are the norm rather than the exception. A detai-ed combustion

chemistry mechanism typically consists of many free radical reactions with

characteristic times differing by over thirty orders of magnitude at a point

in space. This naturally introduces problems associated with stiffness, and

.. special techniques must be implemented to overcome them. The purpose of this

paper is first to survey the problem qualitatively in order to present an

engineering example of where and how stiffness manifests itself in practice,

and second, to present the approaches used to solve this particular problem.

These approaches address both the problem of stiffness and that associated

with the steep gradients occurring in the spatial domain near the reaction

zone.

Self Similar Solution of the Governing Equations

A complete description of the system shown on Figure 1 involves the

simultaneous solution of the following eauations in cylindrical coordinates:

I. Continuity:

- ap ia+ (prvr) + z ) 0 (1)

3

w,
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2. r momentum:

aVr aVr aVr ap 1 a T(ee TP + PV r + PV s " r r r) " +  - (2) .
Tt- r T- Fz TF 7 r r ) r 3:

3. z momentum:

Ov 3v av 3
£ 9 aa I a ?_1 zza z V V I (rx) T + (3)

P 1t+ PVr T" + Pvz -- 3z + Z r

4. Energy:

nr

r~~~tr *3T (kA). (kA) (4)h

5. Species:

a(cxA) 1 a 1 e aA
.. + Tcx~)- (xev) .1 L(rcDAS + T- (cDA. -g-) +1R

(A 1 1 .... WS)

(5)

6. Ideal Gas Law:

P/ - IT

In the above equations, pseudo binary diffusion has been assumed and

radiative heat losses and thermal diffusion have been neglected following

Field at. al. (1967). The time dependence has been retained since we wish to

solve these equations from an initial guess at t - 0 to the steady state at

t4

4



The boundary conditions to equations (1) through (6) are: J

V - 2czz - - for all r's

SP P z - for all r's (7)

T -T z + for all r's (8)

T To z - for all r's (9)

xA  x Al z -+ for all r's (10)

xA  XA2  z - - =for all r's (11)

It can be shown that Equations (1) through (5) can be reduced to a system

or ordinary differential equations by assuming self similar solutions of the

following forms:

v- cr*(z) ; v- v(z) (12)

apa

f -(r) Tz- g(z) (13)

- p(z) ; T- T(z) ; xA- XA(Z) (14)

Furthermore, since

P 2
•- f(r) e 2 pr

5U.



it can be shown (Hahn, 1979), that the proposed self similar solution is

consistent with the equations, which now become totally independent of r. It
T- TO0

is convenient to define a dimensionless temperature as 8 - T , to yield

the following differential equations to be solved:

Mass:

.- a (pv) + 2ep* (15)
at a:-

r momentum:

-- .v) p,+  (2 .
Energy:

ae k a e 1 Ak ae 1
at 7C 30--2-+ (--- -v)-j +T- rjhj (17)

Species:

axA a2xA a axD+ (-,(cD A) + (.- -2 la -. 2v))x + R
t' aA A c A

(A- 1 .... VS)

(18)

The z momentum equation plays no role other than to calculate - P

6
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Of interest 1% the solution as t + when the left hand sides of these

equations are equal to zero. This is the desired one dimensional steady state

solution. It should be noted that all physical and transport properties are

allowed to vary with position. Simplifying assumptions with respect to

diffusion can be made, depending on which level of complication for DA D the

pseudo binary diffusion coefficient, is appropriate.

Numerical Solution
m

The equations (16) through (18) were solved numerically in a time

dependent, fully implicit and fully coupled mode. These equations have the

form

• i  a 2c ac1

at Ai(z) -+ Bi(z) +: Di(z) Ci + Ri(z)

i - 1 ... NS+2

where the coefficients are given:

At  B Di  R
i Di

1 D (cDc 1 3(cv) 1
A A c 3 A c at c 3z c A

0k I ak 01 rA
c Ccp z v T cC j j

p2 p.

P -P TZ v 0

(20)

7



If the domain in which a solution is sought is given by

- ./2 -C z 4+ t/2

the boundary conditions for all the z.and 6 values are specified, while for

1z t2

*m111z- + t/2

Continuity (Equation 15) is solved separately in the spatial domain

(pv) -2p - ap (21)

where

S"~" _ (MW)? T (22)
at R at

Stiffness in Equation (19) arises through the term RL(z) which is the forcing

function due to detailed combustion chemical reactions. The coefficient Bi(z)

changes sign in the neighborhood of the stagnation plane, causing a regular

first order turning point.

An explicit approach to solve Equation 19 is to evaluate Ai, Bi, and R.

using values of a previous iteration and solve for Ci , thus decoupling the

system of equations and leading to inversion of a series of tridiagonal

matrices. This was attempted but failed. Tyson (1964) developed a technique

for solution of systems of stiff initial valued problems in which the term

R1 (z) is expanded about the backward time step. This idea was later used by

8
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Wendt et. al. (1979) to solve system of stiff boundary valued problems and

forms the centerpiece for the solution method utilized in this work. Thus

k

R!() R + (C k+l_ C) (23)

with N - NS+2 and k refers to the time step. This expansion is performed at

each grid point p.

Standard Finite Difference Discretization

Both a collapsing and an equally spaced grid were used with standard

*. finite difference discretization. The appropriate formulas are

dCi AZp-1 Ck+I A-- - Ap+j ck+l
d:- A zj +p4l AZpl) i ,p+l " AZ p+ i,p-

Az
LP+ 1 k+ 1

fAz 1 (AZ P+ + Az 1 ) i,p-i

(24)

and

2Ck~j +1 Ck+I c+(25)

d2________ t,p+l i,p i,p ip- 1'..- 1 -, I (25
"7 Azp+ + AzpI Aze+ - p- J"

dz p+1 P-1 u+Ipi j
The finite difference form of Equation 19 now becomes

ACi k-AC,p-1 3RI~ 1C,p
aP sip - ' ACi + - AC F k (26)

TE ,p ,At i,p 2,p i~p
A CiPlp-i,p+1 AC;.
wt, P

K' 9



I [2 (27)
ip A zp1(A2p. + ap +) 2-i p

1 ~ 2 1 As P-Asp )Lp
Bjp A ++as + az z Bi pp+ p-1 p+ - p+1 p- i _

(28)

~and

S. k+ _c k (30)ACJ ,P CJ ,P ,JP

F gathers all remaining term known at the k'th time step and
t,p OR

mn'9 Oi,pq and y,, as well as -W- are also evaluated at the known k'th

step. If m is the number of grid points equations (26) represents a set of

(Nou) simultaneous algebraic equations for the values of the Lncrements

AC L p  for a time step At , The system can be rearranged, using matrix

notation, as follows (Wendt at. al., 1979):

A AC--F (31)

, where A it a (mxN) x (mxN) block tridiagonal matrix, i.e. an um matrix in

which each element is a NxN matrix. The diagonal (NxN) blocks are full,

" nondiagonally dominant (depending on At ) matrices while the off diagonal

* blocks are diagonal matrices.

Classical block tridagonal matrix inversion logic (Wendt et. al., 1979)

was not successful in solving the flame problems attacked in this work.

However, use was made of the fact that A is also a band matrix and therefore

10



the solution to (31) can be obtained employing LU decomposition, which was

found to be very efficient for this type of problem (Peaceman, 1977). This

method also saves core storage, since only the band of dimension 2Nx(mxN) need

be treated.

With the equally spaced grid, At.-, = Asp*1 and a large number of grid

points must be used when the reaction zone is thin and gradients are steep.

For example, with a CD flame, 8 species and 7 reactions and with
-1

e 10 sec , 101 grid points wre employed to obtain a solution, while 35

grid points were insufficient for proper resolution of the peaks.

Since systems involving 35 species or more are common in this type of

problem, it was clear that a discretization allowing fewer grid points was

essential. This forced utilization of a collapsing grid.

The collapsing grid is shown in Figure 2 and was automatically adjusted

as follows. The location of the peak in the temperature profile was

determined and a grid was created to the left with a specified expansion

factor. The expansion factor for the right side was then determined such that

both intervals next to the peak temperature location were equal and such that

an equal number of grid points were located on each side. This method allowed

the CO opposed jet diffusion flame to be solved with 35 grid points, provided

that the stretching rate e , was less than 7 sac- 1 . In these cases the

equally spaced grid with 35 grid points was too coarse in the neighborhood of

-1the peak temperature to allow convegence. However, at e ) 7 sac the

collapsing grid was also prone to problems due to nonsymmetric numerical

diffusion of errors, and this led to oscillations and an inability to satisfy

the boundary conditions. This is described in detail below.

The burner spacing, t, or domain in which the problem was being solved,

was automatically adjusted so that there was not net flux of heat or any

11
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Figure 2. Collapsing Grid Utilized for Finite Difference Solution.

1

12

U



species into either of the burners. Thus the distance t could be increased by

50Z if, at any iteration, any net flux had the incorrect sign at

z - + t or z - -to Likewise, £ could be automatically decreased by 2/3 if

the temperature profile indicated that greater resolution was appropriate. j
p Whenever the grid had to be ajusted, the new values of all variables were

obtained by linear interpolation between values at the previous grid points.

The original initial estimate of profiles at t - 0 was from the classical

Burke Shumann flame with an infinitessimally thin reaction zone, together with

arbitrary free radical profiles to facilitate ignition. Much computer time

. can be saved if intermediate nonconverged or converged results are saved and

used as the initial guesses for the next run. The adjustable time step was

controlled entirely by the temperature profile, allowing changes of 1% at any

point in any time interval. At convergence to steady state, determined by

* relative changes of all variables, the time step had become vary large,

greater than I sec. This typically occurred, from a 'reasonable' initial
• .: 1 -6

* guess within 200 to 400 interatLons, from an initial At -10 sec

Modified Central Difference Discretization

When solving the model corresponding to the opposed jet diffusion flame

.* with a high rate of stretching, numerical oscillations were observed in the

temperature profile, the * profile and the reactant profiles. These

undulations occur close to the boundaries of the domain and do not statisfy

*: the boundary conditions and thus prevent convergence. These instabilities

originated from the collapsing grid and diffusion of numerical errors towards

the boundaries. Yet, a collapsing grid is essential in order to handle the

sharp temperature profiles in the center with less than 35 grid points

. overall. One solution was to use 100 equally spaced grid points and this

appeared to allow convergence. However, this large number of grid points

13



constrained the program to solution of relatively small kinetic problems (due

to core storage limitations) and did not allow investigation of hydrocarbon

* plus fuel nitrogen chemistry together. Since the latter was the key aspect of

modeling in this work, these results put us on the horns of a dilemma.

This dilem was ultimately resolved by developing a modified central

difference discretization in which the first and second derivations are given

by (for equally spaced grids):

dCi w1 1 +Ici'p+1 - WI' 1p-I ciu'p-I (32)

s - 2h

d -Ci 2,p+l Ci,p+1l  2 C ip + V2,p-I p-I (33)
ds- h 2

with the weighting functions W1,p+1, W1 ,p_ 1 1 W2,p+1 and W2,p_ 1 calculated as

described in the Appendix. The essence of this approach is to approximate the

differential equations to be solved within a mash interval, rather then the

solutions to the equations. Thus, this discretization is exact for linear

ODE's with constant coefficients and constant forcing functions while the

conventional discretization is not. Since the opposed jet diffusion flame

equations are certainly not linear, the modified discretization is not exact,

but is superior as long as the solutions to the equations behave more like a

sum of exponentials than a quadratic function of z.

Implementation of the modified discretization resulted in solution of the

opposed jet diffusion flame model, with CO kinetics and with a stretching rate

1 - 10 sec "1 , with 35 grid points. This was not possible with standard

discretization with either collapsing or uniform grids, in which cases no

convergence could be achieved. With uniform standard discretization

convergence was obtained with 101 grid points. Therefore the modified

14



discretization allowed the minimum number of mesh points to be reduced from

101 to 35 and this allowed development of a general purpose laminar opposed

jet diffusion flam code.

The program also allowed the laminar opposed jet diffusion flame model

for a CH4 102 /N2 flame to be solved. This involved 16 species and 39

(reversible) reactions. Core limitations required the use of not more than 35

grid points for this case. Neither the evenly spaced grid nor collapsing grid

with standard discretization allowed a convergent solution to be found. The

modified discretization did converge, indicating again the necessity of this

approach.

General Purpose Code

The general purpose code developed allows an arbitrary reaction set

containing up to 150 reactions and 70 species to be interpreted and solved for

the laminar opposed jet flae co-figuration. Diffusion coefficients, thermal

conductivities, viscosities and thermochemical properties are supplied in the

program. These are calculated from the proper Lennard Jones and Stockaayer

intermolecular potential parameters and from the NASA enuilibrium tape.

*Appropriate mixing rules including the bifuraction approximation for

- multicouponent diffusion are incorporated. Table 1 shows a sample input for a

carbon monoxide reaction set utilized in the results presented here. This

reaction set was obtained from a recent review of CO/H2/02 kinetics by Corley

and Bowman (1982). The data can be listed in any order and a free format

input is utilized to aid in the use of the program. The program requires the

stretching rate as an input parameter and adjusts the burner spacing

automatically such that there is no net flux of any species back into either

of the burners. Appropriate velocities are calculated and this is used in the

design of the experimental configuration.

15



Table 1 Data Input to LOJDF Code

STOICHOMR IltCC 40 +1 A C02 + N
FRATCOCOR it 0.3800E+259 -3.00, 6.170v
RIATC0,CON I, 0.38191+31p -4.00,133.551,
STOICHrCOR 29 C120. + 0CO +8H + N
FIAlCOtCOR 2, 0.3310E.??, 0.00, 81.020t
RACOCOR 2, 0.19291.12, 1.00t-10.5321
STOIC0,COR 3t MC +M a N CO .14
FRATCOCUR 3, 0.1550E+151 0.00, 14.675,
RRATCUCOR 3, 0.74301+11, 1.00, -1.863,
STOICHCOR 4,9 2 N1 +1 ~H P1
FRATCOtCOR 4, 0.2000116, 0.07,103.830,
RRATCOCOR 4, 0.2203E.12, 1.07, -1.311,

ISTOICI9,COR Sp M20 +1 0 ON +8 H +N
FRA1COpCOR 5, 0.23001.25, -2.00,122.600p

*RIATC09COR 5, 0.4978E+20, -1.00, 1.905,
STOICH,COR 6, 0 + 0 +1 m 02 + M
FRATCOrCOR 6, 0.1000E+19, -1.00, 0.000,
RUATCOCOR 6, 0.6919E+23, -2.00,119.977,
STOICWCOA 7v M202 + N ON1 *ON +
FRATC09CUR 7y 0.12001+13, 0.00, 45.300p

*.RRATCOrCOR 7, 0.39939+12p 1.00, -6.505,
STOICHCO9 It H .02 +1 M M02 +1M

*FRArCOvCOff It 0.15001.16, 0.00, -1.000t
RRATCOtCORIt8 0.6035E419, -1.00, 47.332,
STOICMCOR ?t N + 02 a ON +0a
FRATCOvCOR 9, 0.45001+11, 1.00, 14.805v
RIATC0,CON 9, 0.27691+10, 1.00, -1.860,
STO!CHCOR 10, H2 + 0 amO + 14
FRATC0,CON 10, 0.16001+11, 1.00, 8.100,
RRATCO,COR 10, 0.81151+10, 1.00, 6.871v
STOICNOCOR fit 0ON + ON a H20 + 0
FRArC~pCOR fiI 0.2140E+109 1.11, 0.000v
RRATCOICOR lit 0.23221+11, 1.11v 17.383,
STOICHqCOR 12, OH + H92 N 20 + H
FRATCOCOA 12, 0.11001+10, 1.60, 3.464v

*RRATCOrCOR 12, 0.332E10, 1.60, 186
STOICNvCOR 13, H + N02 O N + ONt
FRArCOICOR f3, 0.25001.15, 0.00, f.900,
RRATCUCOR 13, 0.16231.14, 0.00, 40.194,
STOZCHCOR 14, ON + N902 £ 20 + 02
FRATC09COR 14, 0.5000[+14t 0.00, 1.000,

*RRATCOCOR 14, 0.5741E+15, 0.00, 73.343,
STOZCHCOR 15, 0 4 002 a ON + 02
FRATCOrCOR 15, 0.500144 0.00, 1.000p
RIATCOCON 15, 0.52901+14, 0.00, 55.960p
STO!CHCOR 16, 0 + H02 -02 + H2
FRATCOvCOR 16, 0.2500E+14, 0.00, 0.700v

*RRATCOtCOR 16v 0.58671.14, 0.00, 57.6899
STO1CNCOR 17t H92 + 02 + ON vN
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Table I continued ......

FRATCO,COR 17, 0.2300E 13, 0.00-39.00t
RRATC0,COR 17, 0.6935E4t1, 0.00, 20.305,
STOICHCOR 18, H02 + H2 a H202 + H
FRATCOCOR 19, 0.3000E+12, 0.00, 19.680,
RRATCOCOR 18, 0.6216E+12, 0.00, 3.638,
STOICHCOR 1?, H02 +102 RM H202 + 02
FRATCOrCOR 19, 0.2000E 13, 0.00, 0.000,
RRATCO,COR 19t 0.9725E+13, 0.00, 41.947,
STOICHpCOR 20, H202 + H H 20 + Or
FRATCOrCOR 20, 0.3000E+15, 0.00p 9.000,
RRATCO,COR 20, 0.4612E+14, 0.00, 77.690,
STOICH,COR 21, p202 + ON W 20 + 102
FRATCOCOR 21, 0.1000(+14, 0.00, 1.000p
RMATCOCOR 21, 0.2361E[14, 0.00, 31.396t
STOICHCOR 22, CO + OH C02 + H
FRATCOtCOR 22, 0.1500E+0S, 1.30, -0.763,
RRATCOCOR 22, 0.3540E+10, 1.30, 23.304,

_ STOICHCOR 23, Co + H02 C02 + OH
FRATCOCOR 23, 0.1000(+12, 0.00, 10.000,
RRATCOCOR 23, 0.1537(+13, 0.00, 72.364,
STOICH,COR 24, CO + 02 * C02 + 0 :
FRATCO,COR 24 0.6905E+0, 1.00, 34.810,
RRATCO,COR 24, 0.1003E+10P 1.00, 42.214,
STOICNCOR 25, NCO + H* CO + H2
FRATCOCOR 25, 0.2000E(15, 0.00, 0.000,
RtATCOCOR 25v 0.9053E+15, 0.00, 88.803,
STOICNCOR 26, CO + 0 * CO + OH
FRATCO,COR 26p 0.5500E 13, 0.50, O.000,
RIATCO,COR 26, 0.1122E+14, 0.50, 86.774,
STOICHCOR 27, HCO + 0 *C02 + H
FRATCOCOR 27p 0.55004+13, 0.50, 0.000,
R1ATCOCOR 27, 0.2649E+16, 0.50,110.843,
STOICHCOR 29, HCO + ON CO + H20
FRATCO,COR 28, 0.3000E[11, 1.00, 0.000,
RRATCOCOR 28, 0.6644E 12, 1.00,104.157,
STOICH,COR 29, HCO + 02 • CO + H02
FRATCOCOR 29, 0.5000E 12, 0.50, 0.834,
RRATCOCOR 29, 0.9644(412p 0.30, 32.648,
STOICHCOR 30, NCO + NCO * CH20 + CO
FRATCOCOR 30, 0.4000(14, 0.00, 0.000,
RRATCO,COR 30, 0.3290E+16, 0.00, 75.034,
STOICH,COR 31, CH20 * H HCO + H2
FRATCO,COR 31, 0.2500E011, 1.00, 3.200,
RRATCOCOR 31p 0.1376E*10, 1.00, 16.969,
STOICHCOR 32, CH20 + ON • HCO + H20
FRATCOCOR 32, 0.5000E+10, 1.00, 1.650p
RRATC0,COR 32, 0.1346E+10, 1.00, 30.773,
STOICH,COR 33, CH20 + 0 a Hco + am
FRATCOtCOR 33, 0.1300E+l, 1.00t 2.050,
RRATCOCOR 33, 0.3225E+09, 1.00, 13.790,
STOICHCOR 34, CH20 + H02 * HCO H 1202
FRATCOCOR 34, 0.1000(13, 0.00, 8.000,
RRATCOCOR 34, 0.1140E+12, 0.00, 6.727,

DILUENH(
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• ,Results

An objective of the model was to determine at the outset if and under

* which conditions it is possible to obtain a laminar opposed jet diffusion

flae with a reaction zone of sufficient thickness to allow for 4detailed

probing for species profiles. The conditions examined correspond to fairly

*low stretching rates because of limitations in gas flow rates for the

experiment proposed. The question addressed is whether it is possible to

obtain a sufficient number of sampled points to properly define gradients, and

even second derivatives in the reaction zone. This question always arises

when flat flame data is utilized to extract net rates of formation or

destruction of a particular species.

Figure 3 through 5 show profiles of temperature, velocity and the

similarity function 4 , of major and of intermediate species for a laminar

opposed jet diffusion flame with CO/H 2 0/N 2 as the fuel and 02 /N 2 as the

oxidant. The stretching rate was 3.62 sec - . Note how density changes

influence the axial velocity profile and the location of the stagnation place

(Figure 3). The flame thickness is predicted to be approximately 1 cm, which

is barely sufficient to allow for detailed in flame probing. Figure 5 shows

that the free radical profiles are present in only a similarly very narrow

region.

These results prompted further predictions to be made to determine how

the reaction zone thickness might be broadened. One approach is to operate

the flame at subatmospheric pressure. Figure 6 show the effect of decreasing

pressure on the reaction zone thickness of the same fla- at the same

stretching rate of e - 3.62 -

It is apparent that the reaction zone thickness is not greatly expanded

until the pressure is reduced to 0.2 atmospheres or below. However, sampling

18
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and analysis problems are more difficult at these low pressures. Therefore

another approach to achieve thick reaction zones was attempted.

Because helium has a large diffusion coefficient it was thought that

substitution of nitrogbu by helium as a diluent should achieve thicker

freaction zones. Figure 7 through 9 show results of predictions of a CO/H 2/02

diffusion flame in helium. Figure 7 shows a reaction zone thickness of over

: 2.5 ca, while Figures 8 and 9 indicate that at a stretching rate

c - 3.62 s , the species profiles do change over a sufficiently thick zone

to allow proper sampling, even at one atmosphere.

Conclusions

The laminar opposed jet diffusion flame can be modeled in detail and used

to corroborate and investigate combustion kinetic mechanisms under a wide

range of conditions. The ensuing equations to be solved involve stiffness

through the reaction rate terms, very steep spatial gradients because of

diffusion, and a velocity which changes sign in the domain of interest. These

equations can best be solved numerically in a fully coupled, fully implicit

manner, utilizing a modified discretization in the spatial domain that

approximates the equation within a mesh interval rather than its solution.

This approach may be relevant to many other problems involving multiple

reactions, diffusion and convection, and future work might be directed towards

* .improving the discretization to allow better approximations for the forcing

function within a mesh interval.
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NOMENCLATURE

A Block tridiagonal matrix*

Ai Variable coefficient in equation (19).

Bt  Variable coefficient in equation (19).

c Molar density (gr-mol/cm3).

C1  Genrtal dependent variable.

Cp Beat capacity (cal/gr-moloK).

DA Pseudo binary diffusion coefficent of species A in gaseous

mixture.

Di Variable coefficient In equation (19).

,p Forcing function evaluated at grid p and time k.

(see equation 26).

* Block vector of forcing functions (see equation (31).

h Mash size for modified discretization (see Appendix).

kThermal conductivity of gaseous mixture (cal/cm-secK)

Length of the domain in which numerical solution is sought.

"m Number of grid points.

MW Molecular weight of mixture.

n Number of gases in mixture.

:nr Number of chemical reactions.

NS Number of species in rection set.

N nsp + 2.

P Pressure (atm).

r Radial distance (cm).

rj Rate of reaction j (gr-mol/cm3-sec).

RA Rate of formation of species A (gr-mol/cm3 -sec).
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Ri Forcing function (see equation (30)).

t Time (see).

T Temperature (OK).

v Axial velocity (cm/see).

v Velocity vector (cm/sec).

vr Radial component of v (cu/sec).

v3  Axial component of v (cm/see).

V Ilp+ 1  Weighting factor for modified discretization (see equation 32)

and Appendix).

Wl Weighting factor for modified discretization (see equation (32)

and Appendix).

W Weighting factor for modified discretization (see equation (33)

and Appendix).

W 2 p_1  Weighting factor for modified discretization (see equation (33)

and Appendix).

xA lMole fraction of species A&

z Axial distance (cm).

Greek Symbols

'i'p Auxiliary variable (see equation 27)).

SBi,p Auxiliary variable (see equation 28)).

Yi,p Auxiliary variable (see equation 29)).

AC Block vector of corrections.

ACj Correction to variable i at point o.

Ahj Heat of reaction j (cal/gr-mol).

Az Increment of grid.

e Stretching rate (sec-1 ).
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or

8 Dimensionless temperature - T-298
298

Viscosity of mixture (g/cm-sec).

p Density (g/cm3).

4 Similarity transformation (see equation (12)).

Subscripts

- Refers to distance from flame zone.

± Refers to dependent variable i.a.

p Refers to grid point.

- Superscripts

k Refers to time step.
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APPENDIX

Development of Modif ied Discretization

if the function to be obtained is viewed to approximate the solution of

second order ODE with constant coefficients:

d C + b C+ C f (Al)
dz 2  dz

then its form will be

C aA a1  + A e 0z+ f (A2)

where a and a2may be real and distinct or complex.

From Equation (AQ)

aza h ci 2z ~h
11C Ac e +A e + f (A)

p-l 1 20

C+ AA e jsn+Ah ah eeIin (ah (A4)
p-I2 1 2

(A5)
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and

2 Cp+ _ 2 C + C a z  a hea z

dC _ d p 1 A - - [cosh (alh I 1 -  2 8 e 2
2 2 2 1 1 2 A 2

dz h h h

22
[cosh (a2h) - 1- 2

(A6)

Inserting (A3) and (A4) yields

_a2h Q2 h

•Ale 1 z  • 2s'n Cp - e Cp(_7
1 a 2 sinh - a2) h]

-alh C1h

A 2  • CpL1 CP 1 (A)
2 2 sinh [(a2 - a1 ) h]

which, on substitution in the RUS of A5 and A6 and gathering terms, yields

expressions for the weighting functions depending on whether the roots are

real and distinct, complex, or real and equal.

a) Real distinct roots a1, a2

-a [ih -h) -

S[si nh(a h)- a h] • [sinh(a2h) - *2hl

I, p+-1 i nh [(aI - 02 ) hi sinh [ 2 h(A9)

a2 h aih

a [sinh (a 1h) - alh] e [sinh(a2h) - a2h)W Il. 1  sinh [('a, a 2) h] sinh [(a2 - ail) h] (AlO)

-a2h 21h2  -alh 2 2

e [cosh~ ha)-i -LU[oshalh -1 2 [cosh (t2h) 2
2,p+ - sinh [(a1 - a2) h] sinh [(a2 - a h]

(AlI)
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h h a2h2

e e [cosh (ah) - I- ] e [cosh (a2h) - 2
W2,p I I + sinh [(CaI  q,,) 'hi sinh [(ct -a,) h]

(Al 2)

gb) Complex roots:

aI1 - aR- i 0' (A13)

a2 - cR - i (A14)

The weighting functions are:

- - 2e (M1 + M2) (A15)Wl,P+ I 1 sin (2ah)(AIS

2eM (M - M2)

S 1,p -, I + sin (2h) (A16)

and

MI - cos (aih) [ah - cosh (Vh) sin (a h)] (A17)

142 -sin (a h) [Vh- sinh (a~h) cos (cyh)] (A18)

While

-%h

. 2e (N1 - N2) (A19)N2,P+j I +1 2
sin (2 h)

S2e (N1 + N2 )  (A20)II W2,p_ 1 - sin '(23lh) (A20
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and

N oI coo (cLah) Ea h2 - sinh (ah) sin (czh)] (A21)

N2 sin (<ih) (cosh (ap) cos (,h) - 2- O h2 + (A22)

c) Eqsual roots, as

The solution now is

C A eaZ + A z •O + f (A23)

and the weighting functions for Equations (32) and (33) become

1,p+1 - - sinh(ah) cosh (ah) - ]

W , 1 + ea ' [sinh(ah) - cosh (ah) - ah + 11 (A25)

-
2 h2  .A26

W I (- [cosh(ah) + sinh(oh) - 2-- ah I] (A26)
2,p+l

Wl p_ 1 -e a h [cosh(ah) -sinh(ci) --.. + ah- 11 (A27)

Thus it can be seen that this modified finite difference formulation is exact,

with no truncation error, if the general solution for the real problem behaves

like that for linear ODE's locally. The roots o and a2 are calculated from

the actual homogeneous equation at position P. The particular integral is

also taken to be a constant locally. Since the equations for the opposed jet

diffusion flame sight fit into this category (compare Equations Al and 19) it
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would appear that the new formulation might allow a drastic reduction in the

number of grid points.

Simple Test for Comparison of Standard and Modified Discretization

For the solution of simple ODE's with constant coefficients, with 11 grid

points modified discretization was exact to with seven figures while standard

discretization was good to with 2 to 4 figures. For the equation:

z2

0.5 d 2 c + 20z - - 106 * 02
dz

2

with

BC: z - - 1.5 C - 1.0
z a + 1.5 C - 0.0

the modified discretization was stable using from 5 to 95 grid points. The

standard discretization was unstable, with oscillations at the boundaries for

less than 35 grid points and thus with total loss of accuracy at theU
boundary. However, the modified discretization, although stable at the

boundaries, was inferior to standard discretization in determing the peak

value of C. This was doubtless due to the assumption of a constant forcing

function over a mesh interval. Further improvement might be achieved by

allowing for a exponential forcing function over a mesh interval and thus

deriving a new formulation for discretization.

3
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A Master Equation Study of the Rate and

Mechanism of Vibrational Relaxation and

Dissociation of Molecular Hydrogen by Helium

John 1. Dove

Department of Chemistry and Scarborough College,

Lash Miller Chemical .Laboratories, University

of Toronto, Toronto, Ontario, Canada MSS 1l£

and Susanne Raynor

Department of Chemistry, Harvard University

12 Oxford Street, Cambridge, Mass. 02138, U.S.A.

Abstract'

In order to gain a full understanding of the basis of chemical reactivity,

it is necessary to know bow individual molecular processes influence or determine

the rates of observed chemical reactions. A widely applicable model of chemical

kinetic processes in molecular gates is to treat them as a sequence of collision-

induced transitions between the quantized energy levels of the molecules. Using

this model, and assufing that the rats constants for %he transitions between

levels are known or can be found, the prediction of the kinetic behavior requires

the solution of a set of differential equations. The time-dependent populations

of the individual energy levels of the molecules can be calculated by integrating

the system of chemical kinetic ordinary differential equations ("ater equation")

governing those populations. When the populations are known, the other time-

dependent properties of the reaction system can be calculated, and the influence

of individual molecular processes can be analyzed.

In recent theoretical studies, the 16 molecule has played an important

role. A major reason for this is that E6 has only about 370 internal (VJ)

levels, a number which is small enough for the master equation to be solved

directly by modern numerical techniques. The size of the problem can be

further reduced by confining attention to, e.g., the 176 levels of para-U,.

I,.
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Two of the mst basic chemical kinetic processes are the collsion-

*induced vibrational excitation, and the colLson-nduced dissociation, of

* Simpla molecules. We have studied these processes in pars-I3 with ]IS as

collision-partner. The 16-Be system was chosen because very good interaction

potentials are available. The calculations simulated shock wave experiments

In which the translational temtperature, of the gas to suddenly raised; the popu-

lations of the levels then relax towards equibrium. Tbe system ot differential

* equations which must he solved is very stiff. Transition rate constants amung

the various bound'-levels can differ by fifteen orders of magnitude. and some of

the rate constants for the dissociative processes are even-smailer than any of

those for transitions-among the, bound levels. ftcept at high temperatures, the

most important processes are those in which the quantum numbers v and J change

by only small amounts. The rate constant matrix can therefore be very sparse.

Zamles of these calculations will be presented and discussed. hAng the

factors which have been investigated and elucidated arem the mechanism of

vibrational relaxation, especially the relative-importance of pure vibrational-

and simultaneous vibration-rotation transitions; the relative Importance of

rotational and vibrational energ in the dissociation reaction; the contribution

of collison-nduced dissociation directly out of relatively low-lying energy

levels; departures from a Doltnmn distribution own molecular energy levels

during pseudo-steady dissociation; the factors governing the observed "anomalously"

low temperature dependence of the dissociation rate; the possibility of deviations

from a linear mixture rate law for the overall dissociation reaction.



DYNAMICS OF FIXED BED ADSORBERS

M.O.Dias,J.C.Lopes,C.A.Costa and A.E.Rodrigues*

Modelling of fixed bed adsorption is described by two different
approaches:staged and differential.
Considering first the staged approach (column viewed as a series
of perfectly mixed sorbers) we start with the study of adsorption
in a CSTR. Even for this simple case highly stiff systems occur,
with film mass transfer resistance,and provided the isotherm is
nonlinear.
Algorithms for the integration of systems of ODEs (Michelsen,Gearb)

are compared.
The differential approach leads to a system of PDEs;after using
collocation methods we obtain again stiff systems.Difficulties

associated with handling this problem is discussed in detail..
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sldayo netegrcedtoag a singlve lin wi0 towieen'aiedCeiuosDsreoSs
aint all ser for sA particlar applicgatn Siemulatio' le anwere thatnew* did net know
tis nppowc veyeI iyShw that we I try toany VSt W = rwthin aboutG simutin bto tha t w or-d
gaft the diebscotio tydigo the ipeteg ree taipl willing tolean s womIn about. ki thcupe
tionl coepl(whic he ol psibroie, andsm-o yasa whiche be havotld hiatgrtiewsbeie the panti the
fldoser ysimulaton softwia o 01FI Jfr a that ho knmne" it"ew let aothsisatich. Thea

SrIsen the ab9"Iove anticuad re iaso otin rolatln w 5a , imlyr that he did not k sath
InefIsientw coe.y eaorl han reao, aluhe I k newthingin about simt This indae he a sevre
gfull tesuotAlniy ar~ ida onering apntelaor, prola wling ta it nihingtethat themg

standardised Interface for ONE solvers, 1. do sot matheatician, even being a specialist is
agree to his standard proposal. I feel strongly memsrioa integration, des mat scam the liter.o-
about the need for zQMjG=~ the standard proposal tuwo for articles en 'aimalation', evanthough
by adding on to It an Appropriate description of these artiles amuid be as im oat to his work

*conditional termination criteria (discontinuity as ay ostribotien en 'ameariem integrationO.
twfnetions) as it shall be presented In due course.
14I addition, the standard should also be expanded Coming back to my forer ioam an dismatmaity
Is a further sense. If I currently want to main, handlings What han happened sines the Wrbana
toa a library of ODR solvers, I shall meat cer- meetng? I was glad to realize that there were at
tainly need a linear system solver In the majority lest a tow mthaeinsl around WhO toek of sni-
of them. if this (lower end) interface is net Manta seriously enoug to spend cme thogts o

*standardised; too, I hays to matali ay nmbehr th e n think of a remedisa. In faa, am rm
* of besisally ideatial h1or system solvers in my suLte my &In@"d be smrsed em.

ONU lbrary. Fee, this roeg it wauld @Me seon



1) For non-stiff problems, the diacontinuity t) iguht went to suggest the Introduction of an
handling problem had already been solved prior additional flag for Indication whether raily
to the Urban meeting by som people Like all crossings art to be detected or whether

* .Alan Pritamer Ell] and myself (53 In a fairly only positive or only negative crossings are-
general way. Applying am U-algorithm, we just Important. This to not really essential, but
have to make sure that the discontinuity taken It Is useful In may applications to formulate
place at the and of -n integration stop. Time hysteresis effects (e.g. a begn syatem in
seet$ are handled by simply reducing the at"p switched on when the temperature falls bolus
e"as It the next event Is shortly ahead. state 18 degrees oentigrado while It Is switched off
events are handled by Iterating bask to the only aftear the temperature reached 21 degrees
unknown event tim by any available nthed. neatigrad - am tee frequent awitahing aOW
Fritaker oine bi-anetin (tell whereas I re- domgn the switching uneatni). By e of Whe
sorted to inse Rrite' interloolation IS]. &%abve sentioned flag, a lot at wmeeaaavy
For obvious numerical reasons, It Is impertant context switching as be aveided which moe
JIL to oda the discontinuity itanlf In the the usner programs aborter.
00E ant but only the, state condition (e.g. by
mans of ooaiitioml termination criteria).* 3 Unfortunately, the above montioned mebeeni,
The discontinuity itself io then express"d by des o t really solve all probloma let. the
contest switching during the ensaution of the "e"On for thin is GO fellecas After a din.
event (after execution of the event, another continuity took place, the Integration maeed
got of ODE'a bein **tive). A soewnhat Rare to be restarted. In ane of tho GEA-oedee,
mathematical view of this prooedure m be this mans that the algorithm has to start
found from Ibnahbardt (163. again at an order of .m. If dincoatiMAitie

ocur at frequent rat"., the Integration 0190.
2 ) For atiff problems, ems unually wants to apply rithn needs to be restarted again and agais.

multi-stop Integration, for which the stop In thin way, one end easily up by having an
nise adjustment at least Goate" a certain eatreaely Inefficient implaatatiem of Mhe
munt'of overhead, Tihe new omamon approachi in traoeod" alo uem higher order sget me
to mAnA two Independent olok%, the Ohanee to baud upi
UmLCU simulation clock and the hAUma.
Integration cock. The Integration proceeds 6 It in quite freouet In engineering appliea-
with optimized stop nise ard order, wheres tio that the aeeuray Preqireto are set
the eymeheasatieat with the selanlt cok very Severe (e.g. owl~). ?"a ahn. efficient.
in doe by interpolating bak u"sin the low order algorithm my de a bettor job on the
UNrdbieek vooter. Thin methodolog may elan be problem.
applied to dincontinuity handling if the State
Gnndtime are formulated an an adjoist ant of 7) ?hin ems realned by Domfihard who developed a
dionmty functions now low order code for stiff Integration which

looks very promising (103. For owch an also-
&(so 0) lithe, ale. the discontinuity handling becomes

enier. (I have, hemiever Imet yet found She
with the ammSa that the siialatiea rue tor- tim to Ut my ewn hoes at thin Gode, and so
Sinatee at either the final time tfr or when I eammet give any final ju Is 6 yet.)
the first of the g functions creaes through
sore io either directom, whatever mannmo If higher accuracy requirmente are Important,
first. AcesIndng te my knowledge, we owe this a higher order Algorithm has Its advantages. A
faolation to Mike Carver (1). typical engineering application for this would

be the simulation of a coebined analeg and
* . 3)TWO of the available CZAR-ced". (em by digital cirocuitry containing nory almost@

Mike Caomer (3), and the other by Kahaner (flip flops). In such applications, it is
(1533 have meanwhile bee. upgraded to contain extremly Important to know whether spikes are
a discontinuity handling mehnnie.. At least around, and what the mziam transient
for the comaer Implemantation (which I con- volteges In ae parts of the unaleg airouit

* eider to be the best of the earroatly are. The answer to theme questions in very
* available GA&-code. .- It differs from the sensitive to paramter veriaos" and also to

Uindmarsb Implementation in that the fomr event timing. For this roase., the "ete
31F3S5 subreutim has been modularised into usually masts simi eiu1 d with a relative an.
about 20 smaller subroutines which areno emursoy ef 10 .. I0
much easier understandable and avoid all them
Odirty8 GOTO statements pointing backward in 9 After I mentioned this probles to 0111 Geart
sode I), the discotinumity mechanics mean te he realized that his algorithm amuld be
have been partly triggered by or oommnts at substantially improve If the *warsing OPP
Urban# In that Mac~ymn (who wan taking part period could be mde mor*eof ficient, that ia,

* Is thee dineussiome at arbam) produced If we ean avoid to restart after din.
shortly after that Moeue a en, version or cMoiuis at 4rder em. For thin pupoe,
the Khmr sode which am allws to specify be developed in the meame 811ntartera for
Wn adjeist met Of disceatineity functions by GEA-cods (133. Although I have met yet found
veing preisely the meehamism advertined the Use to implement cinch an algorithm paro
aem. senelly, I an fully convinced that this onas-

me a"ol a m so cede tammtil tster
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whoma ft"equet discontimuities ccur. toujas the ends provides for appropriate dim.
ielluty handling mcbheisms In the previously

10) 1wuddefinitely recommend to the Leokelms dicsehsne owever, the portion of the pro-
grou (Ha~ym) toconidertheIncoporaion gromwhlh reoin to emuer coded will still b

of such en algorithm into their code. aubstantial. We feel that, &agn the Uwe should
be relieved of that part of the ending which is

To ract, It were the remetions to ow comments oean to all the above mentioned examples. 3oft-
rained at Urbana, whish were basically responsible ware for this type of spplicatioan (that lot
for efncuraging an to sit down new and to wite variable structure simulation) Is eurrestly under
thin cmnication cmatai"n a go"d slleetiom of development at cur group, but It io not yet
aw current complaint*. finalized. Thin software shall sanin of aI;, 1021 AN eded nubroutine package CA9II (10. an
Even it a gow od ast of progress han been esatenc to the eninting pakag GASp-I 14,5,83,
achieved esne 19790 the quaeso of dineentimilty together with a PASCAL ceded preprosessor (frost
handling in by no seans nettled yet. To Illustrate end) OST M,81 to make the innr intorfees a
this statement, let mediscuss the following little ae covenient and lose eor prone.
Oappilction prcblog whisk ws Invented by so

som tine ago as a new benhmrk problem for slom
lation software (52: 3. S PAR39 LINEAR STSTM SCLY

m Given a set of domino ateos fraio a doeino
gamg (Usually 55, but ny nmber will do). Looking into the history of GZAR-oodes, the
Place these stones in a diastac ad* from eriginal code proposed by Bill Gsear himself nut-
each other. If now the flirst of those fered from smenrioally OdirtyO programeg, In
stones in pushed, all stntes fall flat. that It happened frequently during the eooutis

*The question to be answered In, at which of a problem that the progrnam suddenly died dun to
C distance Ode betwee two cnsnecutive division by sore (a preblem which I never esuld

stones the "haa volneity in maximined. Seaire w computer to handle In a ccmesot
WayI) or dun to similarly nepbommant effeets.

This Preblem In, as t hope. of a sufficiently
"green grase nature to refresh even the heart of The meat Ogenerationa of the GEAR-ode, sale.

a athematician. Nowever, the problem Is by no manted by Alan Nindmanre us. considerably bettort
menseaadomical as precinely the Gam simulation in thata
problem arisen In may Opraetcal" applications,
e.g. the heating of steel ingots in a steel a) the code was numerically slonned up - n
soaking pit and slabbing sill, or chemical batch division by zero occurred thereafter, and5 renctiosa with charging end discharging of bataft
reactors, or the traffic flow around an b) the code executed oonniderably faster, an the
Intersection where eah car any be modelled by a originally used (very primitive) linear system
mot of (discontinuous) OD's whereby nw cen way solver wan replaced by a far superior cede.
eater the considered area at ny tine while old
oars disappear from the region af ter they staye tn particular, thin latter Improemeat and the
in the system for wsca time. convenient availability of the code, made thin Is.

plementation very famous and widely used. (In
What Is coma to all these applications? Ob- fact, It Is still widely used.)
viously, whenever a discontinuity arises, the en-
tire structure of the Problem smy change, and even Meanwhile, this second Implementation han mom (at
the nmbser of 00's in varying with tise. Wo call least) two successor@, naely the previosly
them problems Ovariable structure problos. Each mentioned impiemetatica by Mike Carver (33 and
domino stone in the above presented problem has to the Implasatatloo by Dave Kahaner (15). Although
obey Newtongs law, that Is, Is represented by a I like the Enhaner Implementation beat ( for
second order system or by a not of two first order reasons of pregramming cleanness) the Carver ilm
O's. Taking the 55 stoes of the geme, we obtain pleosetatlo noys an Impertant nmrical ed-

. altogether a 110th order model. Nowever, it makes vantage.
* little mses to program the model In thin way am

only a very mol number of atones are maying Peomber that the lindars Implementation
simultaneously. San stones may have fallen A- basically difered from the original onm in that
ready down while others are still untouched. Nore- the lner system solver hod bees replaced, that
ever, the physical law, governing thle motion of Is, that portion of the node hod been replaced in
any stoe in the system, in the Game. it, there- whieh meat of the computaition Use elops.
fore, Makes Such more sense to code an entity to Mike Carver agsa sedifiod thin portion ot the
represent any umodelO stons (we could talk of a program in that nam, in addition to the formerly
Ostone type"), and allow new atosn of the pre- used liner system solver, also a &M vorvec

Smeltbed type to be generated at event tim while is available aking us of the Said sparse matria
others my he destroyed at event time. It Is routines (193. The ser my decide (through an ad-
evident that there shall exist a (Possibly even ditional switch) whether he wants to une the
continuous) Interaction between falling stones sparse version or the linear system nelvo or
which ban to be taken inte o aut. Any MR whetber he wants to sta wita abs esntean
solver, as they wre eurrently marketed, in solver.
thmetlal able te handle this situation an



Tess~for iLunen", the COlis 158 emu"m (9) asindto It, which Mktg the odive tt
rt~t suiisaitl @ased #iseretimetis Peilo" =eIeFl easy oes far engineere. UIts do free

(a 'shblm which Is by the way ML stiff -- the ths erut, the pertitioning to fully gets
stiff elgarithe withis the GUMX-mi. dewm a ter- voted sand eves edeptiveg Is thst It my vary with
rible J40 go this be& of 64 =,3*I)@ we hmv ass tim.
pups" the "ime lgerithe (within the UI-ese)
seat 6sing ePes Mtrix teeique eli em sman 6b'So§y ase lest werd is et yet geld &aea
the esauetionaI sarauith. The sperm wereion s 0019111041 partitioning, but the spores" WONm by
by a factor af 3 faster then the amietml Ouwer is dat latel a Wed stop flerward and aoe
ve"SOLe (This problem WON tried et by us afthe1 ower ftare resesic eago stil be dons.
FORI~Iatwr (33.)
Shller reutts ea be repreduced trai alest m nWKi
esemle (he it stiff or nos-stiff), as so"s as a
POC Is involved, or i seen as the erder at the
system Is larger then about 20. (Ia et pule. 912 Cerver, N. L., (1917) 9fieset adling
tUses. a break even p~t t shaout ease ea he lot Discontinuities ead Ties Delays in
teound, but this figure Is derived priearily free Ordlsry Ditferential Bilustles Systes.
storage allocation considerations - a peobles Preernedigs of the International Ceno
whiefh is Setting leas iqecrtant with th O we ad Is ferteas IUTOUIT" hald at Nastrevz@
dmdcra virtual samer systesa. It Is saw the ea- baserwle s " n1-P, i9f". (i. uns,
"ties Use Wbieh plays the hey role@ 4819 hess, ad.). pp. 'Wise9. Aets press.
spars Marix selutions hesu ottetwe" eGem as P.0.B. 394, Mae"9 soih.
lowrers.)

112 Carver, . 3. sand S. 3. Knewe, (1960)
This ispreveemat is fairly eam to s1hie0e0 odIt OAtmtie partitioning in Ordinary DiO-
In, thoeedre, surprising to e that ea of Me terestial Uquaties Iftegratiem'f. Progress
availehe emil. de iowe th" possibility. 7111 is Nsdlling end Mutaation, edowie
is preessbly I" war to gala, of f efm glob wesy press, Lesies, 1911. CF. L. Cllier, ad.).
little eftrti Ve would strongly resmenit e
Le~loge gru that theyshould seemier U"i iS. 132 Carver N. L., D. 6. Stewart, J. I. Stair
Woves fec their mest csteae. o"d V. 1. Salvador, (1916) 'The FOmmI VI

SAlgtiea Package for the £tmntei Sets-
tis er Arbitrarily Defined partial golfer

4. mUTUminT PAnnZUUZ Ordinary Dif ferential 2qustie. Systss.
____________________ fse t I. LUCL-5II. Available treat

smis Energy ft Canada Ltd, Chak liver
UIt i s o ieomus to affaypplieatieea (e.g. N uclear Laboratories, ftlk liver, Oatert.
aoiesl engineering) that em perties of the 9W lie. 154 pp.

nedal are conuiderably faster that fthers (e.g. a
eoamially reacting syatog aasiBs of rest sed 162 Cealler F. a., (1916) *?th 61W-V Susr
Of slow roetiens) * It seve istrigaisi to try to Neauls. Available tram the nother.

* reduce the overhead Involved is the noerieal.
*integraties of the slam subahen by splitting the (3 Cllier P. B., (1979) OCmbRIsed Cash-

Oses iate a fast end Into a slow parties ead by *uu/Discete Systas Mlutation by Use of
using different stop ses (end possibly eves dit- Digital Cosputerst Techniques end Tool.6
forest eLgaritan) for the two of them [173. This PhD Thesis. Report Uo. Diss 2 Me as5$3.
works quite well far ess "PplicatOss, e.g. fur Swiss federal Inuttte at Teehoology
selftuning replete"s with a (test) Inner leop mini lurith. Accepted for Pubileati as a beeak
6 a Conaiderably slower) outer adap9tatise loop. MWe by Lcaeei Proes Losion.
tried this out by use of the SIMON softwareCole .L gd A2.Bts 1O111,123.) 03 elo .L ed .3 lt,(91

On*SF.Vs A Isiversel, imulation Paskagog.
Nowever, this pertiteming sobuse is net always Preseedings of the 618 AICA Coe~e on
941 eailt"n. it requires quite ~m expertness to Shoulaties of grata, Delft, The
aasfttere such piaes. of sotigare. Moreoeor, it is Netherlands, Avaust 13-86, 1916. --

aet guarateed that suah a partitioning schae Uarth-nolusa Publiuhing company.
even eulate far a perticular stiff Byatee. Ia (L. Dekker, ad.) pp. 391-1.
fact, it the systes is nenlinear, the elgalms
of the jecebias my ave argued with tim freely, I?2 Collier F. L. ad A. P. Ovaalilat,

* and it my well happen that sen mica of the (1979) Mte CUT! liolaio Lasnse.
* system wre *fast* during ones period of tim, ProeedIngs ot the 9th 31CR Cengras go
* while they are 'ulow' durin ether periods. Again, litleties of Brtst 81aureate, Itly,

It ws *1ke Carver Who semi up with a brilliest lSOPIONNr a3-no 191. xtbon3Mll
(because extrosly sisple) idea for satensted pert- PuiinALg Ompesy.NV Me. 9~0u
titioning which he preseted In 1960 during ms L. leveatee ai L. L. Vewasseedto,
Internsaional Coaferees en SMulation held at a"m.) p. 111.1
Istarlaenes Switzerlend 123- Us limtod require
cm sige sdditiel permeeter to be user tweed,
a permster whieb eri htes em aliel fesasn
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