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Abstract
’ :

Mackworth’s gradient space has pfoven to be a useful tool for image understanding. However,
descriptions of its important properties have been somewhat scattered in the literature.

Th)’s paper develops and summarizes the fundamental properties of the gradient space under
orthography and perspective, and for curved surfaces. While largely a recounting of previously
published results, there are a number of new observations, particularly concerning the gradient

. space and perspective projection. In addition, the definition and use of vector gradients as well as
surface gradients provides concise notation for several results. '

The properties explored in the paper include the orthographic and perspective projections
themselves; the definition of gradients; the gradient space consequences of vectors ’»dges)
belonging to one or more surfaces, and of several vectors being contained on a single surface; and
the relationships between vanishing points, vanishing lines, and the gradient space.

The paper is intended as a study guide for learning about the gradient space, as well as a reference
for raseqchers working with gradient space. __
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: Gradient Space Under Orthography
: and Perspective

! Introduction

The gradient space has proven a useful tool for image understanding. Since its proposal by
c Mackworth [12] based on Huffman's dual space [5], the gradient space has been used for defining
' consistency of line-labelings [6,7), relating surface orientation to image intensity[3, 4, 16], and
relating surface orientation to image geometry [8, 9, 10, 13, 15].

The descriptions of important gradient space properties, however, have been scattered throughout
the literature. In this paper, the gradient space is defined and its fundamental properties are e
summarized. This presentation is especially useful because its assignment of gradients to vectors as :
well as surfaces allows concise statements of important properties.

This paper is primarily a summary and re-statement of important gradient space properties, but aiso
includes statements of some new properties. It is intended that the paper provide a reference for
people working with the gradient space, as well as a study guide for researchers being introduced to

the gradient space.
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Coordinate System
in these equations, the coordinate system being used is Mackworth’s [12): the x and y
axes in the scene are aligned in the image (x horizontal, y vertical), and the z axis points
towards the viewer (i.e. a right-handed coordinate system) (figure 1). The eye (center of
lens) is at the origin (0,0,0), and the image plane isz = -1 (i.e. the focal planeisz = 1,
which is rotated around the origin to the image plane, z = -1, to preserve the sense of
"up”, "down", "left”, and "right” from the scene). '

Orthography
In orthographic projection, the scene point (x, y, z) is mapped onto the image point (x, y).
Thus, the image point (x, y) represents the set of scene points (x, y, 2) for all values of z.

Perspective i
In perspective projection, the scene point (x, y, z) is mapped onto the image point (- x/z,

-y/z). The image point is the point at which a line through the origin (eye) and (x, y, 2) A
intersects the image plane. The unit of measure in the coordinate system is the focal S

length of the camera lens. This is similar to Kender's coordinate system, but with the

direction of the z-axis réversed [11]. An image point (x, y) corresponds to the set of

scene points (ax, ay, - a) for all values of a. S
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Figure 1: Coordinate System

Gradient Space and Orthography
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in this section important relationships between surfaces, vectors, and gradients are described. In
addition, several important observations concerning orthographic projection are noted.

-
PAH

1. Definition of Surface Gradient
Suppose a surface is defined as -z = f(x, y). Then its gradient (p, q) is defined by [12]:

BN Y )
» q %’ ayl ( ™ ] Ay )

The set of all gradients (p, q) is the gradijent space.

4

Corollary to this result is:
1. In any direction u, the tangent vector to the surface is:

du'du’ ox du  dy du’  du' du
The tangent vectors in the directions u=x and u =y are thus (1, 0, -p) and

(0. 1, -q) respectively. Their cross product, (p, g, 1), is therefore a surface

normal.

- 2. Gradient of a Plane . 1
Suppose a plane is defined by Ax + By + Cz + D = 0. Then its gradient is: N
s (6.9 = (o) ;
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Coroliary to this result is:

1. Since D has no effect on p and q, parallel planes have the same gradient.
Each point (p, q) thus represents the gradient for a family of parallel planes.

3. Gradient of a Vector
Suppose a vector is (Ax, Ay, Az). Then its gradient can be defined as:

Ax Ay
(P, Q) = ( Az (] A2 )
(This is not Huffman's dual line [5]; the dual is the line described below in section 7.)

Althouéh the term gradient technically refers to a property of differentiable surfaces, it is
used here for vectors because the gradient space can represent 3D orientation in
general, not just orientation of surfaces.

A T
’ ) Gs = Gv

\2

Figure 2: Gradient of Surface and Surface Normal

Corollaries of this result are:

1. Parallel vectors have the same gradient. The gradient of a line can be
defined as the gradient of any vector contained in the line.

2. The gradient of a surface is the same as the gradient of its surface normal
vectors (figure 2).

3. Under orthography, the vector (ax, Ay, Az) is seen in the image as an edge E
= (Ax, Ay). If the vector's gradient is G, then G = E / Az. The line in gradient
space from the origin through G is thus paraliel to the edge in the image
(figure 3). “os
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», q, 1).(“9AY- AZ) =0
PAX + QAy + Az = 0

Theretfore,
(P, q) " (ax, dy) = -Az
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Figure 3: Gradient of a Vector Under Orthography '4
4. Vector Contained on a Surface ff
Suppose the vector (Ax, Ay, Az) is contained on a surface whose gradient is (p, g). : =
Since the surface normal (p, g, 1) must be orthogonal to the vector,
‘ A

I e
A A
") ot

Corollary to this result is:

1. Under orthography, the vector (Ax, Ay, Az) is seen in the image as the edge E
= (Ax, Ay). lfitis contained on a surface with gradient G, then

G°'E= =-A2

This is one of the most important relations in orthography, since polyhedral
scenes contain surfaces bounded by many edges.

5. Vector Contained on Two Surfaces
Suppose the vector (ax, Ay, Az) is the boundary between two surfaces with gradients G,
= (p,, q,) and G2 = (pz. qz) (figure 4). Further, define E to be (Ax, Ay).

Then:
-4z = (p,,q,) " (ax,ay) = (p,, q)) “(ax,Ay) = G, "E = G,°E
0=(G, -G E
(@, -Gz).LE

G,- Gzisthevactorfrome to G, in the gradient space. Thus, the vector £ is
perpendiculartothe line comainingG and G, in gradient space.

.........
.......
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Figure 4: Vector Contained on Two Surfaces

As a corollary:

1. Under orthography, with the above definitions, the edge in the image is E.
Therefore, the edge in the image is perpendicular to the line containing G,
and G, (Thisis Mackworth’s relation involving connect edges [12].)

8. Two Vectors Contained on a Surface _
Suppose the two vectors (ax,, ay,, az,) and (ax,, Ay,, 4z,) both lie on a surface whose
gradientis G = (p, q). Further, letE, = (ax,, ay,) and E, = (ax,, Ay,) correspond to the
x-y components of the two vectors (figure 5). ‘

E1
g2

Figure 5: Two Vectors Contained on a Surface

Then: P

-4z = E1 G "}1
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-az,=E,"G
2 2 .
These can be combined into a single matrix equation, in which the upper row is the first
aquation above, and the lower row is the second equation:

SN
el

F This expresses the surface gradient G as a function of the x, y, and z components of two -

R vectors contained on the surface. ' ::1
L As a corollary: o
S ) . :]
T! 1. Under orthography, vectors E, and E, have the same coordinates in the "'
image that they have in the scene. So, given the Az values for two vectors on 3
a surface, the gradient of the surface can be found using the image. -
7. Gradients of Perpendicular Vectors and Planes
| Suppose two vectors (ax,, oy,, Az )and (ax,, Ay,, Az,) are perpendicular (in the scene), A
*f and that their gradients (as deflned above) areG = (p,. q,) and G, = (p,, q,) (figure 6).
: Then: <
]

\ an -
a1 \ L/ e
\\ ‘7 ™
\"2] v2 < > o
’KQT\ o -
/ g N |

v . ’
Figure 6: Gradients of Perpendicular Vectors -
. * -4
(AX,. AY,- AZ1) "szv AV:- Az2) =0 k
Ax,Ax, + Ay, Ay, + 42,02, = O v

Dividing by az,az,, '
p1p2"'q1q2"'1-o
G1 'G2 s -1 '1
e
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Suppose that G, is given. Then, the above equation is a line L in gradient space, which is

the loci of the possible locations of Gz- in fact,
o L is perpendicular to the line from G, to the origin

o the distance from L to the origin is the reciprocal of the distance from G, to
the origin

o L is on the opposite side of the origin from G,.
The line L is Huffman's dual line (for a line in the image whose gradient is G,) (5].

This result has two coroliaries:

1. If two planes are orthogonal, their gradients obey the above relationship,
since their surface normals are perpendicular.

2. If a plane contains a vector, the gradients of the plane and vector obey the
above relationship, since the vector is perpendicular to the surface normal.

8. Rotation of the Image and Gradient Space

Suppose a surface is defined by -z = f (x, y) and has gradient (p, q).

If we rotate the x-y axes around the z-axis through some angle 4 to new (x-y) axes

'(ﬁgure7).thon:
VNA., « NN,
\ \
l = o | ¢ Y >
2// \ x k// \ P
\ \
L\ Iy

Figure 7: Rotating the image and the Gradient Space

(x",y) = (xcos @ + ysin8, ~xsin@ + ycos §)

(x,y) = (x'cos @ - y'sin@,x'sin@ + y'éos 8)
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This amounts to rotating the p-q axes by 8 to determine the p’-q’ axes. Thus, rotation of
the image corresponds to identical rotation of the gradient space.

Now,
-2 = -z=f(x,y)=f(x"cos@ - y’'sin8,x’sin@ + y’ cos 8)
Using
df(x, y) of dx af dy
du ox du ay du
we have:
of of of -
p'=——=c0s8— +sin§— =pcos@ + gsin@
ax’ ox dy '_J
f af B
q'=—a-=-sin0—+cosﬂ—= -psin@ + qcos @ e
oy’ ox oy
-

Perspective

In this section, perspective projection is assumed and its consequences in gradient space are
described. While most of the resuits were presented by Kender [11], some new results are included in
sections 12 and 13. This paper does not deal with scene transformations (such as rotation) and their
effects in the image under perspective projection [14], nor with camera models [1, 2]. Instead, it
describes the relationship between the scene, the image, and gradient space under perspective
9. Vanishing Point of a Line i
! Suppose a line in the scene is defined by (x, y, z) + a (ax, ay, Az) for all values of a, where
. (x, vy, 2) is any point on the line and (Ax, Ay, AZ) is a direction vector of the line (i.e. any

vector contained in the line). For any a, the corresponding point on the line is (x + aax,
y +aAy, z + aAz) and ite ‘mage point P is:

-X -aAx -y - ady

P =
V2482 z+aAz

PR |

As a grows larger, the image point P, converges to some point V in the image (figure 8):

-Ax =AYy
V= |im P & (—— —)
a—oo Az Az

The image point V is called the vanishing point of the line.

D AP AR A

The assumption has been made here that Az » 0, i.e. that the line is not parallel to the
image plane.

! C_orollaries of this definition are:

v v
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Figure 8: Vanishing Point of a Line
1. If a line (or vector) has gradient G and vanishing point V, thenG = - V.

2. Since V depends only on the direction vector (Ax, Ay, Az), parallel lines have
the same vanishing point. Thus, each point in the image is the vanishing
point for a family of parallel lines.

3. If a line passes through the origin, then its vanishing point is the point at
which it intersects the image plane (z = -~ 1).

4. The vanishing point V of a vector must lie on the image line L containing the
image of the vector (figure 8). The vector's gradient G must therefore lie on
the line -L in gradient space, where - L is theline:

e parallel to L
¢ at an equal distance from the origin as L
¢ on the opposite side of the origin from L.

Two additional observations concering G are:
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a. The vanishing point of a vector cannot be in the midgie of its image, so
if £ is the image of the vector, then V cannot be within £ and G cannot
be within - £ (figure 8).

b. If the vector in the scene is paraliel to the image plane, it has no
vanishing point (i.e. V is infinitely far away on L); it has no gradient (i.e.
G is infinitely far from the origin, in the direction paraliel to L).

10. Vanishing Line of a Surface
Suppose a surface S has gradient Gg. For any vector L on S with gradient G.Gg G =
-1, as shown in section 7. Since the vanishing point of L is Vo= - GL (by corollary 1 of
section 9),

GS'VLS 1

Suppose that Gg is given. Then the above equation defines a line Vg in the image,
containing the vanishing points V for all vectors L contained on S (figure 9). In fact,

4 \ 4
Figure 9: Vanishing Line and Gradient of a Surface

oVg is perpendicular to the line from Gg to the origin

o the distance from Vg to the origin is the reciprocal of the distance from Ggto
the origin ’
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The line Vg is called the vanishing line of the surface; it is the locus of vanishing points for
all vectors on the surface.

Corollanes of this definition are:

1. Since Vg depends only on Gg parallel surfaces have the same vanishing line.
Thus, each line in the image is the vanishing line for a family of paralle!
surfaces.

2. if a surface passes through the origin, its vanishing line is the line along
which it intersects the image plane (z = - 1).

3. Suppose L is a line in the image. There exists a family of parallel surfaces for
which L is the vanishing line. These surfaces all have the same gradient,
which might be called the vanishing gradient for L, denoted G, . Let L be the
set of points (x,y) defined by the equation: 1 = ax + by = (a,b) " (x,y). Then
by section 10, since (x.y) is a spoint on L, (a,b) must be the gradient of the
surfaces for which L is the vanishing line, i.e. G" = (a, b). Thus, for any line
L in the image, we can determine the associated vamshmg gradient G -- the
gradient of the surfaces for which L is the vanighing line.

4. Suppose edge E is the image of some vector V with gradient Gy IfS is the
surface through the origin and E, then £ is the vanishing line of S (by
corollary 2 above) and the gradient of S is G (by corollary 3 above). V must
be contained on the surface S, so by corollary 2 of section 7,

G Gv = -1

This is the relaﬁonshlp between a vector and the vanishing gradient of its
image.

Point Contained on a Surface _
Suppose a surface S has gradient G = (p, q) and intersects the z-axis at z=D (i.e. the
plane is definedby px + gy + z - D = 0). Let P = (x, y) be a point in the image; it must
correspond to some point X on surface S in the scene (figure 10).
Since the image of X is P, X = (ax, ay, ~ a) for some value of a. Since X also lieson S,

p(ax) + qlay) + (-a) =D =0

Solving this equationforayieldsa =D/ (px + qy - 1) =D/ (P"G - 1) and

8 ——— Y, =1
PG-1 by =1)
X is sometimes called the back-projection of image point P onto surface S [11].

Thequantity D / (P -G ~ 1) is the distance from X to the x-y plane (z = 0). If this value is
negative, then X is not in the scene (i.e. it is behind the viewer), and P does not
correspond to any point on the image of S.
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The assumption has been made here that P - G - 1 » 0, i.e. that P does not lie on the §
vanishing line of S. ’
’ -
12. Vector Contained on a Surface '
Suppose a vector V has gradient G,, and lies on a surface S with gradient G4. Then by ffj‘
corollary 2 of section 7: 7:31

¢ vas

Now suppose that V is visible in the image as some edge £ (figure 11). By corollary 4 of
section 10, if G'g is the vanishing gradient of £,

G "Gy = -1 -

: »

These equations can be combined into a single matrix equation, in which the upper row is ~
the first equation, and the lower row is the second equation: :'Eil'i
T

-1 T N
][ ] - [ ]

"_"'ﬂ

.1

AR ;

Since G' is determined by the edge E in the image, this equation relates the gradient G,, N
davecto:withhoimagesofmevectorandthegmdhme of a surface containing the !1
‘-iij
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vector.

Corollary to this result is:
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-1. Combining the two equations in a different manner:
g 0= (Gg"G,) - (G'¢"6,) = (Gg - G'p) "Gy
: Gg - G’ L G,

't!. So the line L in gradient space contaming Ggand GY, g i8 perpendicular to the
. line through the origin and G\, (figure 11).

-, 2. There is an interesting restriction on line L in corollary 1. As shown in
. corollary 1, L must pass through G'g. Its slope depends on the gradient G,
' ' of V. G, isdescribed i in corollary 4 07' section 9: it must lie on the line -E, but
- not wnthm the line segment -~ E corresponding to the edge itself. This
L.j constrains the orientation of L such that the line through G"; perpendicular
g to L cannot pass through the line segment -E (figure 12). Hence, the
- position and length of an edge in the image constrain the gradients of
surfaces containing the corresponding vector in the scene.

13. Vector Contained on Two Surfaces
Suppose a vector with gradient G, is the boundary between two surfaces gradients
G, and G, (figure 13). lfmevectorappemasmedgesmmenmage, M G is the
vanishing gradient of E, then by corollary 1 of result 12,

N MV d
aw | 4o/
\\///
DI X
VA NI¢
. / a2 | \
/ ‘61 *
/Y \
Figure 13: Vector Contained on Two Surfaces Under Perspective

(G, - G%) LG,
(G, - G'9) LG,
So, (G, - G'9) | (G, - G"p) e G'¢, G, and G, are collinear in gradient space.

sme'smmmhodbymuocaﬂonofmedgoﬂnmm the constraint
providodonG de is that they lie on a line which passes through G'_.. This line is the
‘m-meorolluiu1md20fsection12 mditsaihmﬁonhﬁmmdtoeamm
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anqles depending on the location and size of the image edge E.

This is the connect edge relanon under perspective; lt is the perspective counterpart to
. corollary 1 of aoction §.

Curved Surfaces and Arcs

in these sections, the gradient is defined for an arc in the scene. Then, using calculus, the
fundamental resuits are developed concerning curved arcs and surfaces. The results are very similar -
to those of sections 4, 5, and 6; this is because surface and arc gradients capture the same (first- ,r
order difterential) information contained in tangent lines and planes, which obey the results of
sections 4, 5, and 6.

14. Gradient of an Arc r‘
Suppose an arc A is defined (in parametnc form) by (x(s). y(s), z(s)). Then its gradient "4
can be defined as: -

d dy.  dx ds dy ds i
R et el e ey :

Note that both p and q are themseives functions of s. ° ' - 4

/,x e.[ i
< : > .
/ ;

\ 4
Figure 14: Gradient of an Arc and a Tangent Vector
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1. At any point on an arc defined as above, the tangent vectors are defined by:

A " dr dy dz

3 T = 8 (—, =, —

3 O(d' ™ do) for el a

4 L J
1 3
Y }
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Figure 15: Gradient of an Arc Under Orthography

2. Thus, the gradient G, of an arc A is the same as the gradient G of a tangent
vector T to the arc (figure 14).

3. If the gradient of an arc is (p, q), then the vector (p, g, 1) is tangent to the arc.

4. Under orthography, the tangent vector to an arc is visible as the edge £ = a
(dx/ds, dy/ds) for some value of a (figure 15). If the gradient of the arc is G
= (dx/dz, dy/dz), then G = (E/a) (ds/dz). In other words, the line in
gradient space from the origin to G is parallel to the tangent vector £ seen in
the image. :

15. Arc Contained on a Surface

.........

Suppose an arc A = (x,(s), y,(s), Z,(s)) is contained on a surface S defined by -z = f (x,
y)- Let the arc gradient be G, = (p,, q,) = (dx,/dz,, dy,/dz,), and let the surface
gradientbe Gg = (pg, qg) = (0f/9x, at/dy). Then for ali s,

—ZA(S) = f(X A(s)v YA(s»
We can differentiate using the rule:

df(x,y) of dx . of dy
ds Ox ds Oy ds

to yield: 4
dz of dx of dy dx dy dx, dy
e A, — A p —A g —A 2 G, (—A,—A
3 " ox ds Oy ds "P8Tas T g "G % )
Corollaries to this resuit are:

1. With the above definitions, the above equation can be multipiied by ds/dz, to
yield: :
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Figure 16: Arc Contained on a Curved Surface

= Gg'G,

So, G, and Gg obey the relationship of section 7 (figure 16).

2. If (ax, Ay, A2) is tangent to arc A at point X, and A is contained on a surface
whose gradient at X is G, then —-Az = G * (Ax, Ay). Thus.therosultsof
section 4 apply to the tangent vector 1o an arc.

16. ArcContainedonTwoCurvedSudwu
Suppose an arc A = (x(s), yis), z(s)) with gradient G, is the boundary between two
surfaces S, and S, wuthgradientsG andG (ﬁgure17) At any point on A, we have (by

e by I

3

v

coroliary 1 ofsection 185):
q
¥ d
- a1 l
5‘ \ : / .
& a2 >
: <=7\ 3 %
P-. ( . 1
3 o \ R
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8 Figure 17: Arc Contained on Two Curved Surfaces v
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-1=G,"G;=G,"G, /
0=G, (G, - G |
G,L1(G, -Gy . ' . ,4
"y
So the line containing G, and G, in gradient space is perpendicular to the line from the N
originto G,.
Corollary to this is: - ' ' '_j
1. Under orthography, we can combine the above result with corollary 3 of
section 14 to conclude that the line containing G, and G, in gradient space is ) 3
perpendicular to the tangent to the arc in the image. This is the counterpart 7
to the connect edge relationship for curved surfaces and arcs. ']
17. Two Arcs Contained on a Curved Surface 5
SupposearesA,mdAawimgmdiemsG,andGzarecontainedonawrfmwim i
gradient Gg (figure 18). .
e |
':.
-1

Figure 18: Two Arcs Contained on a Curved Surface
At a point of intersection of A, and A,, we have (by corollary 1 to section 15):
-1= G1 :GS

These can be combined into a single matrix equation to yield:
[ e
= G
[“ G} ®
v T.a G, || -
o =[5 ][

N .
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This allows us to compute the gradient of a surface from the gradients of two intersecting
arcs on the surface.

Corollary to this is:

1. Under orthography, suppose that edges £, and £, in the image are tangent to
the images of arcs A, and A, atapointwhmﬂwymmuct.andmatE and
E, correspondtoscene vectors (ax,, ay,, 42,) and (ax,, Ay,, az,). IfA and
A are contained on a surface with gradient G4, then:

-4z, = E,"Gg

o[y )
&, -Aazy
Thus, under orthography, the gradient of a surface can be computed from

the Az values for two vectors tangent to arcs on the surface, at a point where
the arcs intersect.

Summary

in this paper, we have defined the gradient for surfaces, planes, arcs, and vectors, and we have
seen that the gradient and Az attribute of an object are mutually constrained. We have aiso seen that
knowledge about the gradient (or Az-component) of a surface can be used to determine the gradient
of a vector or arc on that surface, and that knowledge about the gradients of two such vectors or arcs
can be used to uniquely determine the surface gradient. in addition, features in the image can be
combined with gradient or Az information to yield three-dimensional reconstructions of scene objects,
under both perspective and orthographic projections.

This collection of theorems and definitions includes a recounting of resuits from Huffman [5],
Mackworth [12], and Kender [11] as well as some new notation and resuits. The definition and use of
arc and vector gradients as well as surface gradients has provided a more concise notation for
several of these resuits.
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