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Abstract

Mackworth's gradient space has proven to be a useful tool for image understanding. However,

descriptions of its important properties have been somewhat scattered in the literature.

This paper develops and summarizes the fundamental properties of the gradient space under

orthography and perspective, and for curved surface& While largely a recounting of previously

published results, there are a number of new observations, particularly concerning the gradient

space and perspective projection. In addition, the definition and use of vector gradients as well as

surface gradients provides concise notation for several results.

The properties. explored in the paper include the orthographic and perspective projections

themselves; the definition of gradients;, the gradient space consequences of vector& '-lges) .

belonging to one or more surfaces, and of several vectors being contained on a single surface; and

the rel4tionships between vanishing points, vanishing lines, and the gradient space.

The paper is intended as a study guide for learning about the gradient space, as well as a reference

for researchers working with gradient space. -
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Gradient Space Under Orthography
and Perspective

Introduction

The gradient space has proven a useful tool for image understanding. Since its proposal by

Mackwo [12 based on Hufman's duat space [5o, the gradient space has been used for defining

consisteny of line-labelings 6, 7], relating surface orientation to image intensity [3,f4 16, and

relating surfaceorientation to image geometry [8, 9, 10, 13, 15].

The descriptions of important gradient space properties, however, have been scattered throughout

the literature. In this paper, the gradient space is defined and its fundamental properties are

summarized. This presentation is especially useful because its assignment of gradients to vectors as

well as surfaces allows concise statements of important propertlee.

This paper is primarily a summary and re-statement of important gradient space properties, but also

includes statements of some new properties. It is Intended that the paper provide a reference for

people working with the gradient space, as well as a study guide for researchers being introduced to

the gradient space

Preliminary Definitions

Coordinate system
In these equations, the coordinate system being used is Mackworth's [12]: the x and y
axes in the scene are aligned in the image (x horizontal, y vertical), and the z axis points
towards the viewer (i.e. a right-handed coordinate system) (figure 1). The eye (center of
lens) is at the origin (0,O,0), and the image plane is z a - 1 (i.e. the focal plane is z = 1,
which is rotated around the origin to the image plane, z - -1, to preserve the sense of
"up", "down", "left", and "right" from the scene).

Orthography
In orthographic projection, the scene point (x, y, z) is mapped onto the image point (x, y).
Thus, the image point (x, y) represents the set of scene points (x, y, z) for all values of z.

Prspec t i ve
In perspective projection, the scene point (x, y, z) is mapped onto the image point (- x/z,
- y/z). The image point is the point at which a line through the origin (eye) and (x, y, z)
intersects the image plane. The unit of measure in the coordinate system is the focal
length of the camera lens. This is similar to Kender's coordinate system, but with the
direction of the z-axis reversed [11]. An image point (x, y) corresponds to the set of
scene points (ax, ay, - a) for all values of a.
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Figure 1: Coordinate System

Gradient Space and Orthography

In this section important relationships betwe surfaces, vectors, and gradients we described, In

addition, severa important observations concerning orthographic projection we noted.

1. Definition of Surface Gradient
Suppose a surface is defined s -z t (x. y). Then its gradient (p, q) b defined by [121:

The Set Of algade ts (p, q) ite r 8in ae
(p, q) a -- 8 1 -8 B

Corollary to this resuit Ir.

1. In any direction u, the tangent vector to the surface iesI
dx dy at dx at dy dx dy dx dy
du du 8x du ay du ddu du du

The tange- vetr in the directions u =x and u -y we thus (1, 0, -p) and
(0, 1, - q) respectively. Their cross product, (p, q. 1), is therefore a surface

1.:. normal.

Z Gradient ofa Plane
KSuppose asplaneIs defined byAx + By + Cr D 0. Then Its, gradient le

AB8K,, ~ ~(p.q) C-)
C C
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Corollar to this result :

1. Since D has no effect on p and q, parallel planes have the same gradient.
Each point (p, q) thus represents the gradient for a family of parallel planes.

3. Gradient of a Vector
Suppose a vector Is (Ax, Ay, Az). Then its gradient can be defined as:

* Ax Ay
(p, q) , 1--)

AZ At

(This is not Huffman's dual line [5]; the dual is the line described below in section 7.)

Although the term gradient technically refers to a property of differentiable surfaces, it is
used here for vectors becaus the gradient space can represent 3D orientation in
general, not just orientation of surfaces.

q
Vv W,

p

Figure 2: Gradient of Gurface and Surface Normal

Corollaries of this result are.

1. Parallel vectors have the same gradient. The gradient of a line can be
defined as the gradient of any vector contained in the line.

2. The gradient of a surface is the same as the gradient of its surface normal
vectors (figure 2).

3. Under orthography, the vector (Ax, Ay, Az) is seen in the image as an edge E
- (Ax, Ay). If the vector's gradient is G, then G a E / Az. The line in gradient
space from the origin throughO 3 is thus parallel to the edge in the Image
(figure 3).

I-
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Figure 3: Gradient of a Vector Under Orthography

4. Vector Contained on a Surface
Suppo0e the vector (ax, Ay, az) is contained on a surface whose gradient is (p, q).

Since the surface normal (p, q, 1) must be orthogonal to the vector,
(p, q, 1) *"(Ax, Ay, Az) -0

pax + qAy + A- , 0

Therefore,

(p,q)"(Ax,Ay). -At

Corollary to this result Is:

1. Under orthography, the vector (Ax, Ay, Az) is seen In the image as the edge E
- (Ax, Ay). If it is contained on asurface with gradient G, then

G "E -Az

This is one of the most important relations in orthography, since polyhedra
scenes contain surfaces bounded by many edges.

5. Vector Contained on Two Surfaces
Suppose the vector (Ax, Ay, Az) is the boundary between two surfaces with gradients G1
S(pl, q) and G2 - (P2' q,) (figure 4). Further, define E to be (Ax, Ay).

Then:

-Az- (Pl, qj) (Ax, Ay) ( (P2 , q2 ) (Ax, Ay) - G1 "Ei- G2' E

o0 (G, - Gd-E

(G1 -G).LE

G -G Is the vector from Gt to G In the gradient space. Thus, the vector E Is
perpendicular to the line containing G and G In gradient space.

L-]
.I . . . . .,
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Figure 4: Vector Contained on Two Surf aces

As a corollary.

1. Under orthography, with the above definitions, the edge in the image is E.
Therefore, the edge in the image is perpendicular to the line containing G I
and G. (This is Mackworth's relation involvng connect edges [12].)

6Two Vectors Contained on a Surface
Suppose the two vectors (Ax,, Ay,, , z,) and (Ax2, Ay2, Az2) both lie on a surface whose
gradient is G - (p, q). Futther, let El - ("XI, AY,) and E2 (&X2, Ay2) correspond to the
x-y components of the two vectors (figure 5).

El E2 0

Figure 5: Two Vectors Contained on a Surface

Then:

AZ 1 E G



7

-Az2 =E2.G

These can be combined into a single matrix equation, In which the upper row is the first
equation above, and the lower row is the second equation:L-,. [,-o 1 GT

T -[ AZ]

This expresses the surface gradient G as a function of the x, y, and z components of two
vectors contained on the surface.

As a corollary:.

1. Under orthography, vectors E1 and E2 have the same coordinates in the
image that they have in the scene. So, given the Az values for two vectors on
a surface, the gradient of the surface can be found using the image.

7. Gradients of Perpendicular Vectors and Planes
Suppose two vectors (Ax( , I y1, AZl) and ( AY 2 ' z2). are perpendicular (in the scene),
and that their gradients (as defined above) are G1  (pl q, ) and G2 = (p2 , q2) (figure 6).
Then:

G2'

/ \ p

/\

Figure 6: Gradients of Perpendicular Vectors

(AX1, AY,, AZ 1) (AX2, AY2' AZ 2) " 0

AXlAX2 + Ay1Ay2 + AZlAZ2 - 0

Dividing by az

plp2 + qlq2 + 1 - 0

1 2  -1

". . . S . .



Supposeethat Gis given. Then, theabove equation Is aline Lin gradient space, which is
F:: the loci of the possible locations of G . In fact, 22

e*L is perpendicular to the lne from G, to the origin
* the dstance from Lto theorigin is threciprcal of the ditance from G to

the origin

eL is on the opposite side of the ouigin from 01.

The line L is, Huff man's dual ine (for a line In the image whose gradient is Gj [5].

This resuIt has two corollaries:

1. If two planes are orthogonal, their gradients obey the above relationship,
since their surface normals are perpendicular. o

2. If a plane contains a vector, the gradients of the plane and vector obey the
above relationship, since the vector is perpendicular to the surface normal.

& Rotatfion of the Image and Gradient Space
Suppose a surface is defined by - z -I (x, y) and has gradient (p, q).

If we rotate fth x-y axes around the z-axis through some angle 6 to new (x'-y) axes
(figure 7), then:

K P .
Figure 7: Rotating the Image and the Gradient Space 7

(x', yj - (xcos 0 + ysln 0, -x sin + ycoaD0)

and
(x, y) -(x'coa90 - y'ln 0, x'sinD0 + y'cos 0)
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Now,
Z' -z (x, y) =t (x'cos ' y'sin , x'sin + y' cos9)

Using
df(x,y) at dx at dy

du ax du ay du

we have:

at at at
p'= = cOS I .+ sin OT p cos 9 + q sin e

and

at at a
q' =- -sin 0- + cs- - psin + qcosl5Y' ax ay

This amounts to rotating the p-q axes by 9 to determine the p'.q' axes. Thus, rotation of
the image corresponds to identical rotation of the gradient space.

Perspective

In this section, perspective projection is assumed and its consequences in gradient space are

described. While most of the results were presented by Kender [11], some new results are included In

sections 12 and I& This paper does not deal with scene transformations (such as rotation) and their

effects in the image under perspective projection (14], nor with camera models [1, 2]. Instead, It

describes the relationship between the scene, the image, and gradient space under perspective

projection.

9. Vanishing Point of a Une
Suppose a line in the scene is defined by (x, y, z) + a (Ax, ay, Az) for all values of a, where
(x, y, z) is any point on the line and (Ax, &y, Az) is a direction vector of the line (i.e. any
vector contained in the line). For any a, the corresponding point on the line is (x + aAx,

y + aAy, z + aAz) and itp;mage point Pa is:

-x-aSx -y-a y

z+ az' z+ aBz

As a grows larger, the Image point Pa converges to some point V in the image (figure 8):

V. tim Pa=(
a-.ooAZ A

The image point V is called the vanishing point of the line.
7-1

The assumption has been made here that Az 0., i.e. that the line is not parallel to the
image plm.

Corollaries of this definition are:

. .... o'.
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Figure 8: Vanishing Point of a Une

1. If a line (or vector) has gradient G and vanishing point V, then G - - V.

2. Since V depends only on the direction vector (Ax, Ay, AZ), parallel lines have
the same vanishing point. Thus, each point in the image is the vanishing
point for a family of parallel lines.

3a If a line passes through the origin, then its vanishing point is the point at
which it intersects the image plane (z - -1).

4. The vanishing point V of a vector must lie on the image line L containing the
image of the vector (figure 8). The vector's gradient G must therefore lie on
the line - L in gradient space, where - L is the line:

o parallel to L

e at an equal distance from the origin as L

- on the opposite side of the origin from L.

Two additional observations concerning G are:
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a. The vanishing point of a vector cannot be in the midc1vs of its image, so
if E is the image of the vector, then V cannot be within E and G cannot
be within - E (figure 8).

b. If the vector in the scene is parallel to the image plane, it has no
vanishing point (i.e. V is infinitely far away on L); it has no gradient (i.e.
G is infinitely far from the origin, in the direction parallel to L).

10. Vanishing Line of a Surface
Suppose a surface S has gradient Gs. For any vector L on S with gradient GL, GS GL ,
- 1, as shown in section 7. Since the vanishing point of L is VL = -GL (by corollary I of
section 9),

G5 VL - 1

Suppose that Gs is given. Then the above equation defines a line VS in the image,
containing the vanishing points VL for all vectors L contained on S (figure 9). In fact,

LS

Y q Aq

\ p

FIgure 9: Vanishing Une and Gradient of a Surface

" Vs is perpendicular to the line from G. to the origin

" the distance from V8 to the origin is the reciprocal of the distance from G to
the origin

* Vs is on the same side of the origin asG.

U
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The line V. is called the vanishing line of the surface; it is the locus of vanishing points for
all vectors on the surface.

Corollaries of this definition are:

1. Since VS depends only on G., parallel surfaces have the same vanishing line.
Thus, each line in the image is the vanishing line for a family of parallel
surfaces.

2. If a surface passes through the origin, its vanishing line is the line along
which it intersects the image plane (z , -1).

3. Suppose L is a line in the image. There exists a family of parallel surfaces for
which L is the vanishing line. These surfaces all have the same gradient,
which might be called the vanishing gradient for L, denoted GV Let L be the
set of points (x,y) defined by the equation: 1 - ax + by = (a,b) "(x,y). Then
by section 10, since (x,y) is a spoint on L, (a,b) must be the gradient of the
surfaces for which L is the vanishing line, i.e. GvL = (a, b). Thus, for any line
L in the image, we can determine the associated vanishing gradient GVL - the
gradient of the surfaces for which L is the vanishing line.

4. Suppose edge E is the image of some vector V with gradient Gv. If S is theV",
surface through the origin and E, then E is the vanishing line of S (by
corollary 2 above) and the gradient of S is GvE (by corollary 3 above). V mut
be contained on the surface S, so by corollary 2 of section 7,

Gv GV" -I

This is the relationship between a vector and the vanishing gradient of its
image.

11. Point Contained on a Surface
Suppose a surface S has gradientG (p, q) and intersects the z.axis at z D C.e. the
plane is defined by px + qy + z - D -0). Let P , (x, y) be a point in the image; it must
correspond to some point X on surface S in the scene (figure 10).

Since the image of X is P, X (ax,ay, - a) for some value of a. Since X also lies on S,

p(ax) + q(ay) + (-a) -D,0

Solving thisequation fora yieldsa - D/(px + qy - 1) - D/(P'G - 1)and

D
X (x, y,-1)P'G-1

X is sometimes called the back-projection of image point P onto surface S [11].

The quantity D / (P G - 1) is the distance from X to the x.y plane (z a 0). If this value is
negative, then X is not in the scene (i.e. it is behind the viewer), and P does not
correspond to any point on the Image of S.

i'1
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/oblique view

Figure 10: Back-Projection of a Point Onto.a Surface

The mumption hasbeen madeherehat P G - 1 ., L.e. that P does not lieonthe
vanishing line of S. 5

12. Vector Contained on a Surface
Suppose a vector V has gradient Gv and lies on a surface S with gradient G8 . Then by
corollary 2 of section 7:

Gs Gv -1

Now suppose that V is visible in the image as some edge E (figure 11). By corollary 4 of
section 10, if WE is the vanishing gradient of E,

GVE • GV - -1

These equations can be combined into a single matrix equation, in which the upper row Is
the first equation, and the lower row is the second equation:

ZI] [G *

Since GvE is determined by the edge E In the image, this equation relates the gradient Gv

of a vector with the image E of the vector and the gradient G. of a surface containing the

44 . . ,. '. -
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Corollary to this result s
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1. Combining the two equations In a different manner

0 M (Gs Gv,) - (GvE GV~) w '(Gs - GVE) G

(G - vE) .L Gv

So. the line L In gradient apace containing G8 and GvE is perpendicular to the
line through the origin and GV (figure 11).

2. There is an interesting restriction on line L In corollary 1. As ahown I
corollary 1, L must pas through Gv .Its slope depends on the gradient G Vof V. GVis described in corollary 4 of section 9: it must lie on the line - E. but I
niot within the line segment - E corresponding to the edge Il. This
constrains the orientation of L such that the line through GvE perpendicular
to L cannot pass through the line segment - E (figure 12). Hence, the
position and length of an edge in the image constrain the gradients of
surfaces containing the corresponding vector In the scene. o

I& Vector Contained on Two Surfaces
Suppose a vector with gradient Gv Is the boundary between two surfaces vlth gradients

G, anG (figure 13). If the vector appears as an edge E in the image, OdGVE is the
vanishing gradient of E. then by corollary 1 of result 12,

G2l 
'3

V

GK'E

P

/ 2 0

Rowure 13: Vector Contained on Two Surf aces Under Perspective

IG - GVE) I 1.

(G2 - GVE) -L GV

So. (G, - GV) 1  we~ - V,~.0 5 G 1 nG coilinr In gradint pmoe.
prvddn~n GVitaE'lieVOnandwlhaastru~ Ths0nis1

Since GvE was determined by the location of the edge E In the Image, the constrait
pro on andG i tht tey ie n alin whch awnthrughGv hislin isth

2 an 2 f s cti n 1 , a d is oitn ati n I to cerair
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angles depending on the location and size of the image edge E.

This is the connect edge relation under perspective; it is the perspective counterpart to
corollary 1 of section 6.

Curved Surfaces and Arcs

In twe sections, the gradient Is defined for an arc in the scene. Then, using calculus, the

fundamental results are developed concerning curved arcs and surfaces. The results are very similar

to thos of sections 4, 5, and 6; this is because surface and arc gradients capture the same (first-

order differentia!) Information contained In tangent lines and planes, which obey the results of

sections 4, 5, and&

14. Gradient of an Arc
Suppoes an arc A is defined (in parametric form) by (x(s), y(s), z(s)). Then its gradient
can be defined a:

dx dy dx dody do
GA (P-q)- -- -dz dwisdz dodr

Note that both p and q are themelves functions of s.

Tq

A A

Figure 14: Gradient of an Arc and a Tangent Vector

Corolltare:

1. At any point on an ac defined a above, the tangent vector are defined by:

dir dy dr
T *a(- (± :± ) for aa

do d o

" " " " ": " '"" " . . . ... . .... . .." . ' . ".i . : . ': . " i" . ' 2

r.: . -: . .: . - '. - '.- : . - . -- . - . . , - " .1. " . . . - . .
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I E,

Figure 15: Gradient of an Arc Under Orthography

2. Thus, the gradient G of anarc AIs the samneas the gradient G ofa tngent
vector T to the arc (figure 14).

If lthe gradient of an arc Is(,q), then thevector (p, q. 1) Is tangent to the amc

4 Under orthography, the, tangent vector to an arc is visible asthe edge E = a
(dx/ds, dy/ds) for some value of a(figure 15). If the gradient of the arcis G

-(dx/dz, dy/dz), then G - (El.) (ds/dz). In other words, the line In
gradenapce from the origin to G is parallel to the tangent vector E sae in

thenage.

15. Arc Contained on a Surface
Suppose an arc A - (xA(), yA(), zA(s))Is contaned on asurface S donned by - z f x
y).- Let the arc gradient be GA m (PA, qA -dA/dZA. dyA/dzA), and let the surface
gradient be G- (Ps, qs) = (at/ax, at18 y). Then for all s,

ZA(&) - t(xA(a), AS)
We can dIfferentiate using the rule:,

df(x,y) at dx at dy

to yield:

dz +..-t!..dA pS d&+q -d-v GS *(.J. =;&)
dis ax do ayci 8 do do dod

Corolaries tothis resultarec

1. With the above definitins the above equation can be multiplied by *e/&A WO

dx do dydn

do diA dod A
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Figure 16: Arc Contained on a Curved SurfaceJ

So G and G. obey the relationship of section 7 (figure 18).

2. If (Air, &y, Az) is tangent to arc A at point X, and A is contained on a surface
whose gradient at X is G, then - Az - G6 (Ax, Ay). Thus, the results of

sqI-d p lyt h a g ntv c o t n a

16. Arc Contained on Two Curved Surfaces
Suppose an arc. A - (x(s), y(s), z(a)) with gradient G Is the boundary between two
surfaces S, and S 2 with gradients G I and G 2 (figure 17). At any point on A, we have (by

corollary 11 of sction 15): ,

GII
110

Figure 17: Arc Contined on Two Curved Surfaces W
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-1 G A GAG*

o '(G - Gd)

GA .L (GI - G2)

So the line containing G1 and G2 In gradient space Is perpendicular to the line from the
origin to G

Corollary to this hc

1. Under orthography, we can combine the above result with coroNary 3 of
section 14 to conclude that the line containing G1 and G2 in gradient space is
perpendicular to the tangent to the arc in the image. This is the counterpart
to the connect edge relationship for curved surfaces and arcs.

17. Two Arcs Contained on a Curved Surface
Suppose arcs A1 and A2 with gradients G, and G2 are contained on a surface with
gradient Gs (figure 18).

I

Fgur 18: Two Arcs Contained on a Curved Surface

At a point of intersection of A1 and A2, we have (by corollary ito section 15):

-1 :G

These can be combined Into a single matrix equation to yield:

G T



This allows us to compute the gradient of a surface from the gradients of two intersecting

arcs on the surface.

Corolary to this is

1. Under orthography, suppose that edges E1 and E2 in the image are tangent to
the images of arcs A1 and A2 at a point where they intersect,and that E-ad
E2 correspond to scene vectors (Ax 1 , Ayl, Az 1) and (Ax2, Ay2, Az2 ). If A1 and
A2 are contained on a surface with gradient G5 , then:

- A 1 - E1 "G5

-AZ 2 - E2 G

Thus, under orthography, the gradient of a surface can be computed from
the Az values for two vectors tangent to arcs on the surface, at a point where
the arcs intersect.

Summary

In this paper, we have defined the gradient for surfaces, planes, arcs, and vectors, and we have

seen that the gradient and Az attribute of an object are mutually constrained. We have also seen that

knowledge about the gradient (or Az-component) of a surface can be used to determine the gradient

of a vector or arc on that surface, and that knowledge about the gradients of two such vectors or arcs

can be used to uniquely determine the surface gradient In addition, features In the image can be
combined with gradient or Az information to yield three-dimensional reconstructions of scene objects,

under both perspective and orthographic proectons.

This collection of theorems and definitions includes a recounting of results from Huffman [5J,

Mackworth (1 2, and Kender D[11 as well as some new notation and results. The definition and use of

arc and vector gradients as well as surface gradients has provided a more concise notation for

several of these results.
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