Detection Performance Characteristics for a System With Quantizers, Or-ing, and Accumulator

Albert H. Nuttall
Surface Ship Sonar Department

Naval Underwater Systems Center
Newport, Rhode Island / New London, Connecticut

Approved for public release; distribution unlimited.
Preface

This research was conducted under NUSC Project No. B12014, Subproject No. S0219-AS, AN/BQQ-5 Passive Systems Engineering, Principal Investigator Seymour M. Kessler (Code 3213), Program Manager CAPT Van Metre, NAVSEA (PMS 409). Also, this research was conducted under NUSC Project No. A75205, Subproject No. ZR0000101, Applications of Statistical Communication Theory to Acoustic Signal Processing, Principal Investigator Dr. Albert H. Nuttall (Code 3302), Program Manager Mr. Robert M. Hillyer, Naval Material Command (MAT 05).

The Technical Reviewer for this report was Seymour M. Kessler (Code 3213).

Reviewed and Approved: 1 October 1982

W. A. VonWinke
Associate Technical Director
for Technology

The author of this report is located at the New London Laboratory, Naval Underwater Systems Center, New London, Connecticut, 06320
DETECTION PERFORMANCE CHARACTERISTICS FOR A SYSTEM WITH QUANTIZERS, OR-ING, AND ACCUMULATOR

Albert H. Nuttall

Naval Underwater Systems Center
New London Laboratory
New London, Connecticut 06320

Naval Material Command (MAT 05)
Washington, D.C. 20360

Approved for public release; distribution unlimited.

The false alarm and detection probabilities of an N-channel system subject to L+1 level quantization, or-ing, and accumulation of M time samples, are evaluated exactly, with no Gaussian assumptions, for arbitrary values of N, L, M, and for a quantizer with arbitrary breakpoint locations. The channel noises are independent but can have arbitrary statistics. The signal occupies one unknown (possibly changing) channel, if present. Two FFTs suffice to sweep out a complete detection probability vs. threshold curve.
The optimum placement of quantizer breakpoints, for a fixed total number of levels, \(L+1 \), is a subtle one and is shown to depend on \(N, M \), and the desired level of performance; a simple rule-of-thumb is presented which yields near-optimum capability over the useful range of the operating characteristics. A brief comparison with the optimum processor is made.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations</td>
<td>iii</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>System Description and Assumptions</td>
<td>3</td>
</tr>
<tr>
<td>Analysis of Performance</td>
<td>9</td>
</tr>
<tr>
<td>Quantizer Breakpoint Locations</td>
<td>13</td>
</tr>
<tr>
<td>Input Statistics</td>
<td>17</td>
</tr>
<tr>
<td>Results</td>
<td>19</td>
</tr>
<tr>
<td>Discussion</td>
<td>47</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>A. Interrelations Between Characteristic Functions and Probability</td>
<td></td>
</tr>
<tr>
<td>Density Functions of Discrete Random Variables</td>
<td>49</td>
</tr>
<tr>
<td>B. Alternative Input Statistics</td>
<td>51</td>
</tr>
<tr>
<td>C. Program for False Alarm and Detection Probabilities</td>
<td>55</td>
</tr>
<tr>
<td>D. Analysis for General Quantizer</td>
<td>61</td>
</tr>
<tr>
<td>E. Derivation of Optimum Processor</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>65</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Nonlinear System</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>General Quantizer Characteristic</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Specific Quantizer Characteristic</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>A Quantizer Fit to $\tanh(x)$ for $L = 7$</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Equivalent Nonlinear System</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>Probability Density Function of $y(m)$</td>
<td>7</td>
</tr>
<tr>
<td>7.</td>
<td>Probability Density Function of z</td>
<td>7</td>
</tr>
<tr>
<td>8.</td>
<td>Probability Density Functions of w in figure 5</td>
<td>14</td>
</tr>
<tr>
<td>9.</td>
<td>Desirable Quantizer Characteristics</td>
<td>14</td>
</tr>
<tr>
<td>10.</td>
<td>Compromise Quantizer Characteristic</td>
<td>14</td>
</tr>
<tr>
<td>11.</td>
<td>Probability Density Function of w for $N = 3$</td>
<td>19</td>
</tr>
<tr>
<td>12.</td>
<td>Probability of False Alarm vs. Threshold J</td>
<td>21</td>
</tr>
<tr>
<td>13.</td>
<td>Operating Characteristics for ${y_r} = 1.4(.45)4.1$</td>
<td>22</td>
</tr>
<tr>
<td>14.</td>
<td>Operating Characteristics for ${y_r} = 1,1,1,1,1,1,2$</td>
<td>23</td>
</tr>
<tr>
<td>15.</td>
<td>Operating Characteristics for ${y_r} = 1,1,2$</td>
<td>25</td>
</tr>
<tr>
<td>16.</td>
<td>Operating Characteristics for $M = 16, {y_r} = 0(1/3)2$</td>
<td>26</td>
</tr>
<tr>
<td>17.</td>
<td>Operating Characteristics for $M = 16, {y_r} = .5(.5)3.5$</td>
<td>27</td>
</tr>
<tr>
<td>18.</td>
<td>Operating Characteristics for $M = 32, {y_r} = 0(1/3)2$</td>
<td>29</td>
</tr>
<tr>
<td>19.</td>
<td>Operating Characteristics for $M = 32, {y_r} = 0(.5)3$</td>
<td>30</td>
</tr>
<tr>
<td>20.</td>
<td>Operating Characteristics for $M = 32, {y_r} = 0(.7)4.2$</td>
<td>31</td>
</tr>
<tr>
<td>21.</td>
<td>Operating Characteristics for $L = 7$</td>
<td>32</td>
</tr>
<tr>
<td>22.</td>
<td>Operating Characteristics for $L = 3$</td>
<td>33</td>
</tr>
<tr>
<td>23.</td>
<td>Operating Characteristics for $L = 1$</td>
<td>34</td>
</tr>
<tr>
<td>24.</td>
<td>Operating Characteristics for $N = 1$</td>
<td>35</td>
</tr>
<tr>
<td>25.</td>
<td>Operating Characteristics for $N = 5$</td>
<td>36</td>
</tr>
<tr>
<td>26.</td>
<td>Operating Characteristics for $N = 10$</td>
<td>37</td>
</tr>
<tr>
<td>27.</td>
<td>Operating Characteristics for $N = 20$</td>
<td>38</td>
</tr>
<tr>
<td>28.</td>
<td>Operating Characteristics for $N = 40$</td>
<td>39</td>
</tr>
<tr>
<td>29.</td>
<td>Operating Characteristics for $M = 1$</td>
<td>41</td>
</tr>
<tr>
<td>30.</td>
<td>Operating Characteristics for $M = 2$</td>
<td>42</td>
</tr>
<tr>
<td>31.</td>
<td>Operating Characteristics for $M = 5$</td>
<td>43</td>
</tr>
<tr>
<td>32.</td>
<td>Operating Characteristics for $M = 10$</td>
<td>44</td>
</tr>
<tr>
<td>33.</td>
<td>Operating Characteristics for $M = 20$</td>
<td>45</td>
</tr>
</tbody>
</table>

Reverse Blank
LIST OF SYMBOLS

\(N \) number of input channels
\(m \) sample time
\(x_n(m) \) \(m \)-th time sample of \(n \)-th channel input waveform
\(M \) number of time samples accumulated
\(L \) number of quantizer abscissa breakpoints; \(L+1 \) is the number of quantizer output levels
\(q(j) \) quantizer nonlinear characteristic
\(b_L \) \(L \)-th quantizer breakpoint location
\(y(m) \) input to accumulator
\(z \) output of accumulator; decision variable
\(w(m) \) output of or-ing device in figure 5
\(p(0)_x \) cumulative distribution function of input \(x \) for signal absent
\(p(1)_x \) cumulative distribution function of input \(x \) for signal present
\(H_0, H_1 \) hypotheses 0 and 1: signal absent and present, respectively
\(P_w \) cumulative distribution function of random variable \(w \)
\(\alpha_x \) area of impulse at \(x \) in the probability density function of random variable \(y \)
\(\beta_n \) area of impulse at \(n \) in the probability density function of random variable \(z \)
\(f_z, f_y \) characteristic functions of \(z \) and \(y \), respectively
\(N_f \) size of discrete Fourier transform; \(N_f \geq ML+1 \)
\(J \) integer-valued threshold
\(w_0, w_1 \) characteristic points of probability density function of \(w \); figure 8
\(m_0, m_1 \) means of input \(x \) under \(H_0, H_1 \), respectively
\(\sigma \) standard deviation of \(x \)
\(\Phi \) Gaussian cumulative distribution function; (17)
\(d_i \) input deflection statistic; (18)
\(y \) normalized quantizer breakpoint; (20)
\(v \) normalized variable; (23)
\(P_D, P_F \) detection, false alarm probabilities, respectively
DETECTION PERFORMANCE CHARACTERISTICS FOR A SYSTEM WITH QUANTIZERS, OR-ING, AND ACCUMULATOR

INTRODUCTION

Practical realizations of desired systems often incorporate approximations to the ideal processor or devices, for the sake of reduced expense and equipment complexity. In particular, quantization is frequently employed, since it facilitates data handling and processing in terms of storage and execution time. In addition, the large number of alternatives for signal presence and location that must be considered often dictates that data reduction procedures, such as or-ing, be adopted. Both of these suboptimum approaches, quantization and or-ing, degrade system performance, and it is important to know the extent of the degradation. Alternatively, it is desirable to know how much the received signal strength must be increased in order to maintain a specified level of performance.

The effects of or-ing by itself were analyzed in ref. 1, where the required input signal-to-noise ratio for specified false alarm and detection probabilities was evaluated as a function of the number of input channels and the observation time. In ref. 2, the additional degradation caused by the inclusion of quantization was derived, where the number of levels and breakpoint locations of the quantizer were completely arbitrary. Both of these analyses, however, were limited to second-order moments of the decision variable, and were therefore most appropriate to the situation of large observation time and moderate false alarm probabilities. That is, the Gaussian presumption played a prevalent role in the analysis. A cursory study of good quantizer breakpoint locations was also given in ref. 2.

Numerical evaluation of the or-ing losses, based upon the derivations in refs. 1 and 2, were given in refs. 3 and 4, and a more extensive investigation of quantizer characteristics was conducted in ref. 5, which corroborated the results given in ref. 2. But again, all results were based on a second-order moment approach.
Here we will derive exact results for the false alarm and detection probabilities of a system with quantization, or-ing, and accumulation-in-time, for arbitrary input signal and noise statistics. Surprisingly, it turns out that inclusion of the additional nonlinearity (quantization) actually simplifies the analysis, and the judicious use of FFTs (fast Fourier transforms) makes the numerical evaluation of the probabilities an efficient and accurate procedure.
SYSTEM DESCRIPTION AND ASSUMPTIONS

The system of interest is depicted in figure 1. There are \(N \) input channels, each of which is subject to noise statistically independent of the other channel noises. A signal is either present on one (and only one) unknown input channel or it is not present at all; we wish to make a decision on presence versus absence with good quality. The input signal (if present) need not be additive to the input noise; all that is required is knowledge of the probability density function of the input channel random variable \(x_n(m) \) (at sample time \(m \)) for signal present. By setting the signal strength to zero, we obtain the probability density function for noise-only, of course.

It is presumed that the signal, if present, remains so for all \(N \) discrete time samples accumulated at the or-ing output. However, the signal could remain in one channel, or it could wander over any number of channels in a deterministic or random manner, from time sample to time sample.

The probability density functions of inputs \(\left\{ x_n(m) \right\} \) are arbitrary except that they must be identical for all the noise-only channels. Extension to non-identically distributed channel noises appears possible but has not been pursued. No Gaussian assumptions are made at any point of the system of figure 1, for the general analysis to follow. However, the numerical example that we eventually pursue is for Gaussian inputs, although this could easily be replaced by a different case of interest; in fact, some candidate examples are listed later in an appendix.

Each channel input \(x_n(m) \) is subject to memoryless quantization, where the quantizer output \(q\left(x_n(m)\right) \) has a total of \(L+1 \) levels, and the \(L \) quantizer abscissa breakpoints are arbitrary; see figure 2. A general analysis for this most-general quantizer is possible and will be outlined later. We confine our attention here to the less-general quantizer depicted in figure 3, where the ordinate (output) levels are limited to the equi-spaced values \(0, 1, 2, \ldots, L \), but the abscissa (input) breakpoints \(\left\{ b_l \right\} \) are arbitrary, except that \(b_1 \leq b_{L+1} \) for \(1 \leq l \leq L-1 \), without loss of generality.
Figure 1. Nonlinear System

Figure 2. General Quantizer Characteristic

Figure 3. Specific Quantizer Characteristic
This limitation on the possible quantizer output levels is not as restrictive as first appears. Reference to figure 1 quickly reveals that if the quantizer output levels were at equi-spaced values \(h_0 + l \Delta h \), for \(0 \leq l \leq L \), the operating characteristics, namely detection probability versus false alarm probability, would be completely independent of \(h_0 \) and \(\Delta h (> 0) \). That is, \(h_0 \) and \(\Delta h \) affect the absolute scale of \(y(m) \) and \(z \), but they can be absorbed in a modified threshold at the system output. In fact, if one wants to approximate a given nonlinearity (such as \(\tanh(x) \), for example) by a quantizer, \(L \) can be selected large enough, \(h_0 \) and \(\Delta h \) chosen without restriction, and the \(\{ \frac{b_i}{x^0} \} \) selected for a good fit. Then the analysis, as contained here for the quantizer of figure 3, applies directly, where \(h_0 \) and \(\Delta h \) (determined from the nonlinear fit) are discarded. \(h_0 \) and \(\Delta h \) are temporarily used for the fitting procedure, but are not fundamental to the system operating characteristics.

An example of a fit to \(\tanh(x) \) is given in figure 4 for \(L = 7 \), where the

![Diagram of quantizer fit to \(\tanh(x) \) for \(L = 7 \)]

Figure 4. A Quantizer Fit to \(\tanh(x) \) for \(L = 7 \)
maximum ordinate error has been minimized and equalized at all the steps, and both functions approach 1 as \(x \) tends to \(\pm \infty \). The best locations of the breakpoints are at

\[
 b_k = \frac{1}{2} \ln \left(\frac{\frac{1}{2} - \frac{k}{L}}{\frac{1}{2} + \frac{k}{L}} \right) \quad \text{for} \quad 1 \leq k \leq L ,
\]

for this example. We also have \(h_0 = -1 \), \(\Delta h = 2/L \).

The or-ing device in figure 1 is subject to \(N \) inputs at each discrete time sample \(m \). It selects the largest of these \(N \) random variables at each \(m \) and emits it to the accumulator as variable \(y(m) \).

The accumulator adds up \(M \) input time samples to yield the decision variable

\[
 z = \sum_{m=1}^{M} y(m) .
\]

This output \(z \) is compared with a threshold. If the threshold is exceeded, a signal is declared present at the input to the system; otherwise, no signal is declared. For present analysis purposes, it is presumed that the discrete time samples (which can actually take place on the input channels) are sufficiently separated in time that the \(N \) random variables entering the accumulator are statistically independent.

When quantizer \(q \) in figure 1 is monotonically nondecreasing, the nonlinear system in figure 1 is equivalent (for all inputs) to that shown in figure 5, where the quantization and or-ing operations have been interchanged.* The random variable \(y(m) \) in figure 5 is identical to that in figure 1. We have added another random variable, \(w(m) \), in figure 5 that has no counterpart in figure 1, for purposes of analysis. This interchange of operations is valid whether the quantizer of figures 2 or 3 is used.

Extensions of the above assumptions to more general situations, such as statistically dependent inputs or dependent accumulator samples, are discussed in ref. 2. However, the analysis there is limited to second-order moments, not threshold-crossing probabilities as considered here.

*See refs. 2 and 4 for two different proofs.
Figure 5. Equivalent Nonlinear System

Figure 6. Probability Density Function of \(y(m) \)

Figure 7. Probability Density Function of \(z \)
ANALYSIS OF PERFORMANCE

In this section, we evaluate the false alarm and detection probabilities of the system in figure 5. The cumulative distribution function of an individual channel input, for signal absent, is $p_x^0(u)$, where

$$p_x^0(u) = \text{Probability } (x < u|\text{signal absent}) \quad (3)$$

The cumulative distribution function of the channel input with signal-present is p_x^1. Both of these cumulative distribution functions are presumed known. The superscript will denote either hypothesis H_0 (no signal present) or hypothesis H_1 (signal present on that channel). Notice there is no restriction on the forms of p_x^0 or p_x^1; thus arbitrary input statistics (including nonadditive signals) are allowed. However, the noise-only channels are identically distributed.

Since the or-ing output in figure 5 is

$$w(m) = \max\{x_1(m), ..., x_N(m)\} \quad \text{for } 1 \leq m \leq M \quad (4)$$

the cumulative distribution function of $w(m)$ is, for any time instant m,

$$p_w(u) = \begin{cases}
\left[p_x^0(u)\right]^N & \text{for } H_0 \\
\left[p_x^0(u)\right]^{N-1}p_x^1(u) & \text{for } H_1
\end{cases} \quad (5)$$

since the signal (if present) is in only one (arbitrary) input channel. In fact, the occupied channel can change from sample m to $m+1$, in a random or deterministic fashion, and (5) is still applicable.

The output $y(m)$ of the quantizer in figure 5 is limited to the $L+1$ values $\lambda = 0, 1, 2, ..., L$; see figure 3. Therefore the probability density function of random variable $y(m)$ is impulsive, as shown in figure 6, where the area A_λ of the impulse at λ is given by
Here \(\{b_l\}_1^L \) are the \(L \) abscissa breakpoints of the quantizer, and \(P_w \) is the cumulative distribution function of \(w \), given by (5).

The output of the accumulator in figure 5 is called the decision variable and is given by the sum of \(M \) statistically independent random variables according to

\[
z = \sum_{m=1}^{M} y(m) .
\]

(7)

Since \(y(m) \) can only take on the values 0, 1, 2, ..., \(L \), the decision variable \(z \) can only take on the values 0, 1, 2, ..., \(ML \). Thus the probability density function of \(z \) is also impulsive, as depicted in figure 7; the area of the impulse at \(n \) is denoted by \(\beta_n \).

We now need to relate the \(\{\beta_n\} \) of figure 7 to the \(\{\alpha_l\} \) of figure 6. To accomplish this, we resort to the characteristic functions of \(y(m) \) and \(z \). Using the statistical independence of the \(\{y(m)\} \), the characteristic function of \(z \) is

\[
f_z(\xi) = \exp(\text{i} \xi z) = \left[\exp(\text{i} \xi y) \right]^M = \left[f_y(\xi) \right]^M ,
\]

(8)

where \(f_y \) is the characteristic function of random variable \(y(m) \). But by use of figures 6 and 7, we have

\[
f_y(\xi) = \int_{-\infty}^{\infty} du \ p_y(u) \ \exp(\text{i} \xi u) = \sum_{\lambda=0}^{L} \alpha_\lambda \ \exp(\text{i} \xi \lambda) ,
\]

(9)

and

\[
f_z(\xi) = \int_{-\infty}^{\infty} du \ p_z(u) \ \exp(\text{i} \xi u) = \sum_{n=0}^{ML} \beta_n \ \exp(\text{i} \xi n) .
\]

(10)
Substitution of (9) and (10) in (8) yields

\[f_z(y) = \sum_{n=0}^{ML} \beta_n \exp(i2\pi n) = \left[\sum_{\lambda=0}^{L} \alpha_{\lambda} \exp(i2\pi \lambda) \right]^M. \] \hspace{1cm} (11)

Now the results of appendix A indicate that the set of numbers \(\{\beta_n\}_0^{ML} \) can be recovered directly by an \(N_f \)-point DFT (discrete Fourier transform) of the set of characteristic function samples

\[f_z(2\pi n/N_f) \quad \text{for} \ 0 \leq n \leq N_f-1, \] \hspace{1cm} (12)

provided that

\[N_f \geq ML+1. \] \hspace{1cm} (13)

And from (11), we have the required characteristic function samples as

\[f_z(2\pi n/N_f) = \left[\sum_{\lambda=0}^{L} \alpha_{\lambda} \exp(i2\pi n\lambda/N_f) \right]^{-M}. \] \hspace{1cm} (14)

The sum on \(\lambda \) here is the conjugate of an \(N_f \)-point DFT of the \(L+1 \) real nonzero numbers \(\{\alpha_{\lambda}\}_0^L \) augmented by zeros. When this DFT is raised to the \(M \)-th power, it constitutes the required \(N_f \) samples of the characteristic function \(f_z \) that are needed for the DFT that leads to \(\{\beta_n\} \).

To summarize, (5) yields the cumulative distribution function of \(w \), and (6) gives the impulse areas \(\{\alpha_{\lambda}\}_0^L \). An \(N_f \)-point DFT of this sequence (augmented with zeros) is taken, then conjugated and raised to the \(M \)-th power. Another \(N_f \)-point DFT is then taken and the results divided by \(N_f \). The end result is impulse areas \(\{\beta_n\} \). The values returned (by the second DFT) for \(\beta_{ML+1}, \ldots, \beta_{N_f-1} \) should all be zero, as should all the imaginary parts.

Although any value for \(N_f \) that satisfies (13) is permissible, the smallest power of 2 is most reasonable since then we can employ two FFTs above; this time-saving feature is employed here.
The probability that decision variable \(z \) equals or exceeds integer value \(J \) is, from figure 7,

\[
\text{Probability} \left\{ z \geq J \right\} = \sum_{n=J}^{ML} b_n \quad \text{for} \quad 0 \leq J \leq ML.
\]

(15)

The above analysis for the exceedance probability in (15) is exact. When signal is present, (15) is the detection probability, whereas when signal is absent, (15) is the false alarm probability. The fundamental input statistics, \(p(0) \) and \(p(1) \), required in (5), are arbitrary.
QUANTIZER BREAKPOINT LOCATIONS

For a given number, \(L+1 \), of quantizer output levels, the selection of the \(L \) breakpoints \(\{b_k\} \) should be done so as to optimize the performance of the system, that is, maximum detection probability for a specified false alarm probability. The equivalence of the two processors in figures 1 and 5 is the guide to good selection of the breakpoints; namely \(\{b_k\} \) should lead to a maximum difference in outputs \(y(m) \) for hypothesis \(H_1 \) vs. \(H_0 \). However, as figure 5 shows, this selection of \(\{b_k\} \) is governed by the probability density functions of quantizer input \(w \), not \(x \); that is, the quantizer should take account of the or-ing nonlinearity and the number of input channels, \(N \).

A problem arises here, however, in that the probability density functions of \(w \) under \(H_1 \) and \(H_0 \) depend on the particular value of input signal-to-noise ratio that obtains. Thus, the quantizer design should take the input signal-to-noise ratio into account. This situation is frequently encountered in likelihood ratio processing, in which the optimum processor often requires knowledge of absolute levels of input signal and noise. Since this knowledge is almost always lacking, a design that is good for representative values of input signal-to-noise ratio, that is, which correspond to adequate levels of performance, should be adopted. If the input signal-to-noise ratio is larger than these representative values, improved performance will result; if smaller, inadequate performance is expected anyway, regardless of quantizer breakpoint placements.

To get at the quantizer design, consider the probability density functions in figure 8 for random variable \(w \) under \(H_1 \) and \(H_0 \). \(w_0 \) is a point beyond which there is a small chance of \(w \) ever reaching under \(H_0 \); \(w_1 \) is a point below which \(w \) hardly ever reaches under \(H_1 \). Generally \(w_1 < w_0 \) for cases of practical importance; otherwise near-perfect performance is possible at this signal-to-noise ratio. Under \(H_0 \), we would like to locate the first breakpoint \(b_1 \) greater than \(w_0 \); then the false alarm probability would be substantially zero, regardless of the remaining \(\{b_k\} \). On the other hand, under \(H_1 \), we would like to locate the last breakpoint \(b_L \) less than \(w_1 \); then the detection probability would be essentially 1.
Figure 8. Probability Density Functions of w in figure 5

Figure 9. Desirable Quantizer Characteristics

Figure 10. Compromise Quantizer Characteristic
These desirable quantizer characteristics under H_0 and H_1 are depicted in figure 9. It is immediately seen that the desired features of both cases can be realized for $w < w_1$ and $w > w_0$; that is, choose $q=0$ for $w < w_1$, and choose $q=L$ for $w > w_0$. However there is an inherent conflict in the intermediate region $w_1 < w < w_0$. The only way to strike a reasonable compromise is to make q small near w_1 and make q large near w_0. That is, locate the breakpoints in w_1, w_0, as indicated in figure 10. We shall make them equally spaced on the input w, that is, $b_{L+1} - b_2$ independent of L; nonuniform abscissa spacings, such as in figure 4, are possible and could give slightly better performance. However, sample computer runs have demonstrated that for $L > 4$, essentially optimum performance is attained via uniform breakpoint spacing. Also, for the larger values of input signal-to-noise ratio, it will be shown that the optimum processor of the available inputs takes precisely the form of figure 5, where the quantizer is replaced by a linear gain.

The best quantizer placements in figure 10 obviously depend on the number, N, of input channels and the input signal-to-noise ratio, since the probability density functions of w displayed in figure 8 depend on these quantities. But there is an additional less-obvious dependence on M, the number of samples accumulated at the quantizer output. For larger M, the separation of the probability density functions of z under H_0 and H_1 will become better, if the input signal-to-noise ratio is held fixed. But often, the larger values of M are employed so that lower input signal-to-noise ratios can be tolerated and yet realize adequate performance levels; thus, the probability density functions of w in figure 8 generally overlap more for the larger values of M. This means that w_1 will be smaller and therefore the breakpoints should be relocated. Further discussion of quantizer breakpoints is deferred until the numerical investigation is undertaken.
INPUT STATISTICS

Up to now, the statistics of inputs \(\{x_n\} \) in figures 1 and 5 have been arbitrary. We now specialize to the case of Gaussian noises; some other candidate statistics are given in appendix B. In particular, the cumulative distribution functions under \(H_0 \) and \(H_1 \) are

\[
p_x^{(0)}(u) = \Phi \left(\frac{u - m_0}{\sigma} \right), \quad p_x^{(1)}(u) = \Phi \left(\frac{u - m_1}{\sigma} \right),
\]

respectively, where \(\Phi \) is the Gaussian cumulative distribution function

\[
\phi(x) = \int_{-\infty}^{x} dt \frac{1}{\sqrt{2\pi}} \exp(-t^2/2) = \int_{-\infty}^{x} dt \phi(t).
\]

The means of \(x_n \) are \(m_0 \) and \(m_1 \) under \(H_0 \) and \(H_1 \), respectively, while the standard deviation is the common value \(\sigma \) in both cases. For later use, we define the deflection statistic of the inputs as

\[
d_i = \frac{m_1 - m_0}{\sigma}.
\]

Reference to (5) and (6) indicates that we need the quantities

\[
\begin{align*}
p_x^{(0)}(b_\ell) &= \Phi \left(\frac{b_\ell - m_0}{\sigma} \right) = \Phi (v_\ell) \quad \text{for } 1 \leq \ell \leq L, \\
p_x^{(1)}(b_\ell) &= \Phi \left(\frac{b_\ell - m_1}{\sigma} \right) = \Phi (v - d_i)
\end{align*}
\]

where we have used (16), (17), and defined the normalized breakpoints of the quantizer as

\[
v_\ell = \frac{b_\ell - m_0}{\sigma} \quad \text{for } 1 \leq \ell \leq L.
\]

Then (5) and (19) yield
These are the quantities needed in (6) for the areas $\{a_2\}$ in figure 6. If the noise standard deviations were σ_0 and σ_1 under H_0 and H_1, instead of the common σ in (16), the only changes would be to replace $\chi - d_i$ in the second line of (19) and (21) by $\frac{\sigma_0}{\sigma_1} (\chi - d_i)$. The results in the next section are based upon this Gaussian noise example.
RESULTS

By combining the general result for the cumulative distribution function of \(w \) in (5) with the Gaussian example in (16), we obtain

\[
P_w(u) = \Phi^{-1}(\frac{u-m_0}{\sigma}) \Phi\left(\frac{u-m_1}{\sigma}\right)
\]

\[
= \Phi^{-1}(v) \Phi(v-d_i)
\]

(22)

where we define normalized variable

\[
v = \frac{u-m_0}{\sigma}
\]

(23)

and have used (18). The probability density function of \(w \) under \(H_1 \) is

\[
p_w(u) = \frac{d}{du} P_w(u) = \frac{1}{\sigma} \frac{d}{dv} \left\{ \Phi^{-1}(v) \Phi(v-d_i) \right\}^2
\]

\[
= \frac{1}{\sigma} \left\{ (N-1) \Phi(v-d_i) \Phi(v) + \Phi(v) \Phi(v-d_i) \right\} \Phi^{-2}(v)
\]

(24)

where we used (17). This probability density function is plotted in figure 11.
for \(N=3 \) and several values of \(d_i \). If we select, for example, \(d_i=5 \), the points \(w_1 \) and \(w_0 \) in figure 8 correspond approximately to \(v = 1.4 \) and 4.1 in figure 11. The curve for \(d_i=0 \) is the probability density function of \(w \) under \(H_0 \).

The false alarm probability, as given by (15) et seq., is plotted in figure 12 for an example with

\[
\begin{align*}
N=3 \text{ input channels}, \\
M=5 \text{ time samples accumulated}, \\
L=7 \text{ quantizer breakpoints}, \\
\{y_i\} = 1.4(0.45)4.1, \text{ normalized breakpoints}.\end{align*}
\]

(Since \(L+1=8 \) here, this is called a 3-bit quantizer.) Since threshold \(J \) can only take on integer values, the false alarm probability is only defined at those values, and is so indicated by crosses in figure 12. The detection probability \(P_D \) is plotted vs. the false alarm probability \(P_F \), in figure 13, by eliminating the parametric dependence of both on \(J \). Again, both \(P_D \) and \(P_F \) are only defined at discrete points, as indicated by crosses; straight lines have been drawn between these points for ease of association of values. (In the curves to follow, these crosses are suppressed.) The program for the generation of figures 12 and 13 is given in appendix C.

The choice of breakpoints in (25) has realized near-optimum performance for \(L=7 \) and \(d_i=5 \), in the upper-left corner of the plot. The curves for the smaller values of input signal-to-noise ratio, that is small \(d_i \), are more crowded together; this reflects the usual small-signal suppression that is characteristic of nonlinear processors.

To demonstrate the effects of a bad choice of quantizer breakpoints, the previous example in (25) is rerun, with normalized breakpoints

\[
\{y_i\} = 1, 1, 1, 1, 1, 2,
\]

instead of the uniform spacing. The results in figure 14 illustrate much poorer performance than figure 13, in addition to a very erratic appearance.

* The notation \(a(b)c \) denotes the sequence \(a, a+b, a+2b, \ldots, c-b, c \).
Figure 12. Probability of False Alarm vs. Threshold J
Figure 13. Operating Characteristics for \(v_\alpha = 1.4(0.45)4.1 \)
Figure 14. Operating Characteristics for $\{Y_x\} = 1,1,1,1,1,2$
The curves for constant d_i must have a nonnegative slope, and never cross, but can have a wide variety of shapes. A similar bad placement for a 2-bit (L=3) quantizer is given in figure 15. This jagged behavior of the operating characteristic is typical when the breakpoints are bunched together instead of being uniformly spaced.

The next example is for

$$N=3, M=16, L=7, \{v_1\} = 0(1/3) 2,$$ \hspace{1cm} (27)$$

and is displayed in figure 16. This can be compared directly with the results of ref. 2, figure 5. Both require $d_i=1.22$ for $P_F=10^{-3}, P_D=.5$, and both require about $d_i=1.75$ for $P_F=10^{-6}, P_D=.5$. Thus the simplified analysis in ref. 2 is very reliable for large M, where it is reasonable to expect Gaussian statistics to hold.

In order to see if better performance is attainable by modifying the breakpoints, we return to the probability density function in figure 11 (for $N=3$) and observe that if we want to optimize for $d_i=3$ (i.e., top left corner of figure 16), we should choose $w_1=0, w_2=4$. However, the narrowing effect on the decision-variable probability density function, due to the averaging caused by large M, indicated (by trial and error) that the best normalized breakpoints were

$$\{v_1\} = .5(.5)3.5.$$ \hspace{1cm} (28)$$

The corresponding operating characteristic is displayed in figure 17; it is slightly better than figure 16. Thus the significant modification in normalized breakpoints from figure 16 to figure 17 did not yield significantly better performance, for this example with $L=7$.

The next example is run for comparison with ref. 2, figure 8. Namely we have

$$N=3, M=32, L=7,$$ \hspace{1cm} (29)$$

and three different quantizer breakpoint sets:
Figure 15. Operating Characteristics for $\{\lambda\} = 1,1,2$
Figure 16. Operating Characteristics for $M = 16$, $\{y\} = 0(1/3)2$
Figure 17. Operating Characteristics for $M = 16, \{a_k\} = .5(.5)3.5$
The results in figures 18 through 20 are in almost perfect agreement with the simplified analysis in ref. 2. The normalized breakpoints in figure 19 are best in the intermediate range of detection probabilities; figure 18 is just slightly better for the high performance region of $d_1=2.2$.

We now present a series of comparisons where some of the parameters are held constant, while the remainder are varied in order to determine the effect upon the operating characteristics. The first comparison is for $M=5, N=10,$ and the quantizer varied as follows:

$$ L=7, \quad \{x_p\} = 1.4(.45)4.1 \quad \text{in figure 21} $$
$$ L=3, \quad \{x_p\} = 2(1.75)3.5 \quad \text{in figure 22} $$
$$ L=1, \quad x = 2.75 \quad \text{in figure 23} $$

These correspond to 3-bit, 2-bit, and 1-bit quantizers respectively, where the normalized breakpoints have been chosen in each case so as to optimize the performance for $d_1=4$. Increasing L beyond 7, and changing the breakpoints, failed to improve the operating characteristic noticeably above that of figure 21. The increase in the input deflection, d_1, needed to maintain the same performance at $P_F=1-P_D=10^{-3.5}$ is approximately $4.5/4$ for $L=1$ vs $L=7$. If inputs $\{x_p\}$ are interpreted as voltages, this corresponds approximately to a 1 dB degradation for the hard clipper, $L=1$.

The next series is for $M=5$ and the quantizer fixed at the 3-bit characteristic in the first line of (31). N is varied over the values 1, 5, 10, 20, 40 in figures 24–28, respectively. The slight improvement in performance, that might ensue from modifying the breakpoints at each N, was not investigated in this comparison. The effect of increasing N is to degrade the performance, since the or-ing must select one of the input channels for accumulation, and it will not always pick the signal-bearing channel. The increase in d_1 required to maintain $P_F=1-P_D=10^{-5}$ is approximately $5.25/4 = 2.35$ dB for $N=40$ vs $N=1$.
Figure 18. Operating Characteristics for $M = 32, \lfloor \sqrt{d} \rfloor = 0(1/3)2$
Figure 19. Operating Characteristics for $M = 32, \{y_i\} = 0(.5)^3$
Figure 20. Operating Characteristics for $M = 32$, $[v_x] = 0(.7)4.2$
Figure 21. Operating Characteristics for $L = 7$
Figure 22. Operating Characteristics for \(L = 3 \)
Figure 23. Operating Characteristics for L = 1
Figure 24. Operating Characteristics for $N = 1$
Figure 25. Operating Characteristics for N = 5
Figure 26. Operating Characteristics for N = 10
Figure 27. Operating Characteristics for $N = 20$
Figure 28. Operating Characteristics for N = 40
The last series investigates the effect of varying M. In figures 29 through 33, M takes on the values 1, 2, 5, 10, and 20, respectively. The effect of increasing M is to realize better performance with smaller input signal-to-noise ratios. The decrease in d_1 allowed, in order to maintain $P_F=1-P_D\approx 10^{-3}$, is approximately $2.4/6.8 = -9$ dB for $M=20$ vs $M=1$. When M is made large, the approximate analysis in ref. 2 can be used with confidence; this is fortunate, since in the case of very large M, the DFT size, $N_f \geq ML+1$, required here may not be easily attainable on some computer setups.
Figure 29. Operating Characteristics for $M = 1$
Figure 30. Operating Characteristics for $M = 2$
Figure 31. Operating Characteristics for M = 5
Figure 32. Operating Characteristics for $M = 10$
Figure 33. Operating Characteristics for $M = 20$
DISCUSSION

The large number of possible combinations of values of \(N, M, L, \) and \(\frac{\sigma^2}{\nu} \) precludes an exhaustive compilation of results. Instead we have presented some representative examples and give a program in appendix C by which the user can investigate his particular situation and alternatives. This program gives exact results for any quantizer, provided only that \(ML \) is not too large and that round-off errors do not get out of hand. For extremely large \(M \), a Gaussian approximation for the decision variable is justified and the analysis of ref. 2 is applicable.

If the quantizer is not specialized to the equal ordinate spacings of figure 3, but is of the general form depicted in figure 2, the performance analysis is more difficult. However, the characteristic function of the decision variable is still capable of a closed form expression; see appendix D. Evaluation of the cumulative distribution function of the decision variable is possible via one FFT, according to the methods given in refs. 6 and 7. No numerical investigation has been undertaken of this case.

In appendix E, the form of the optimum processor operating on \(N \) input channels, of which only one may contain a signal, is derived and then specialized to the Gaussian input example of (16). This optimum processor, in general, requires knowledge of the absolute levels of the input signal and noise. However, for \(d_j > 2 \), the form of the optimum processor approaches that of figures 1 or 5, where the quantizer is replaced by a linear device, and the absolute level knowledge is no longer required. Thus the performance of the system considered here should be nearly optimum for large \(L \) and well-placed breakpoints.

Exact analysis of the system of figures 1 or 5, with a linear gain instead of a quantizer, is more difficult than that given here. A simplified second-moment analysis was presented in ref. 1; an exact analysis is possible and will be presented by the author in a future report.
TR 6815

A detailed comparison of the exact performance results obtainable via this report, with the second-moment results given in refs. 1-5, has revealed excellent agreement over a wide range of parameter values. However, until an extensive thorough investigation of the two approaches is made for a wide range of values of \(N, M, L, \{v_k\}, P_F, \) and \(P_D \), it is difficult to state exactly where the earlier approximate analyses can be used with full confidence. This time-consuming investigation has not been undertaken; however, the program in appendix C affords the mechanism whereby this comparison can be conducted. The statements here regarding large \(M \) and moderate \(P_F \) can only be made quantitative after this study is completed.
Appendix A

INTERRELATIONS BETWEEN CHARACTERISTIC FUNCTIONS AND
PROBABILITY DENSITY FUNCTIONS OF DISCRETE RANDOM VARIABLES

Suppose random variable x is limited to the integer values $0, 1, ..., N$, and that the probability of taking on value n is a_n. That is, the probability density function of x is

$$p_x(u) = \sum_{n=0}^{N} a_n \delta(u-n). \quad (A-1)$$

The characteristic function of x is then

$$f_x(\xi) = \int_{-\infty}^{\infty} du \exp(i\xi u) p_x(u) = \sum_{n=0}^{N} a_n \exp(i\xi n); \quad (A-2)$$

this function has period 2π in ξ.

Now let integer M be selected such that

$$M \geq N+1. \quad (A-3)$$

Then consider M samples of characteristic function f_x at increment $2\pi/M$; that is, consider the set of samples

$$f_x(m2\pi/M) \quad \text{for } 0 \leq m \leq M-1. \quad (A-4)$$

Now let us take an M-point DFT of these samples, and scale by $1/M$; that is, for $0 \leq k \leq M-1$. \hspace{1cm}
Here, in the second line, we used expression (A-2) for the characteristic function, and in the last line, we used (A-3).

Expression (A-5) states that the scaled M-point DFT of the set of characteristic function samples, (A-4), yields precisely the areas \(\{a_k\} \) of the impulses in probability density function \(p_X\), provided that \(M \geq N+1\). The values returned by the DFT for \(a_{N+1}, ..., a_{M-1} \) should all be zero.

More generally, if random variable \(x \) is limited to the values

\[h_0, h_0 + \Delta h, ..., h_0 + N \Delta h, \]

the characteristic function takes the form

\[f_X(\xi) = \exp(i\xi h_0) \sum_{n=0}^{N} a_n \exp(i\xi n \Delta h). \quad (A-7) \]

In this case, the sample set that must be subjected to an M-point DFT is not (A-4), but rather

\[f_X(\frac{2\pi m}{M\Delta h}) \exp\left(-i \frac{2\pi m}{M\Delta h} h_0\right) \text{ for } 0 \leq m \leq M-1. \quad (A-8) \]

When scaled by \(1/M \), this DFT yields areas \(\{a_n\} \) directly.
Appendix B

ALTERNATIVE INPUT STATISTICS

Here we give the equations for two other typical random processes that
could serve as candidates for inputs to the nonlinear system of interest. No
numerical results have been evaluated for either of the following.

CHI-SQUARED RANDOM VARIABLES

This case could correspond to Gaussian noise with additive Gaussian
signal, after passage through a square-law device and summation. That is,
under H_1, consider the signal-bearing channel input to be the sum

$$x(m) = \sum_{k=1}^{2D} \left[s_k(m) + n_k(m) \right]^2,$$

where $\{s_k(m)\}$ and $\{n_k(m)\}$ are independent zero-mean Gaussian random
variables with variances σ^2_s and σ^2_n for the signal and noise, respectively.
x is a Chi-squared variate with $2D$ degrees of freedom.

Letting $\sigma^2_1 = \sigma^2_s + \sigma^2_n$, the probability density function of x is given by

$$p^{(1)}_{x}(u) = \frac{u^{D-1}}{(D-1)! \left(2\sigma^2_1\right)^D} \exp\left(-\frac{u}{2\sigma^2_1}\right)$$

for $u > 0$.

The cumulative distribution function of x is, via repeated integration by
parts, given by

$$p^{(1)}_{x}(u) = 1 - \exp\left(-\frac{u}{2\sigma^2_1}\right) e_{D-1} \left(\frac{u}{2\sigma^2_1}\right)$$

for $u > 0$.

where (ref. 8, 6.5.11)

$$e_{D-1}(t) = \sum_{n=0}^{D-1} \frac{1}{n!} t^n$$

51
is the first D terms of exp(t).

The cumulative distribution function of x under H_0 follows immediately from (8-3) by setting \(\sigma_s^2 = 0 \) and identifying \(\sigma_0^2 = \sigma_n^2 \):

\[
\begin{align*}
 p_x^{(0)}(u) &= 1 - \exp\left(-\frac{u}{2\sigma_0^2} \right) e_{D-1} \left(\frac{u}{2\sigma_0^2} \right) \quad \text{for } u > 0 .
\end{align*}
\]

In fact, (8-3) and (8-5) could be used as input statistics for the analysis contained here in the main body of the report, without the need for interpretation (8-1); (8-1) merely lends the physical interpretation of x as the sum of a number of diversity inputs.

According to (5) and (6), we need the quantities

\[
\begin{align*}
 p_x^{(0)}(b_l) &= 1 - \exp\left(-\frac{b_l}{2\sigma_0^2} \right) e_{D-1} \left(\frac{b_l}{2\sigma_0^2} \right) \quad \text{for } 1 \leq l \leq L ,
 \\
 p_x^{(1)}(b_l) &= 1 - \exp\left(-\frac{\sigma_0^2}{\sigma_1^2} b_l \right) e_{D-1} \left(\frac{\sigma_0^2}{\sigma_1^2} b_l \right) .
\end{align*}
\]

where now the normalized breakpoints are defined as

\[
b_l = \frac{b_l}{2\sigma_0^2} \quad \text{for } 1 \leq l \leq L .
\]

Of course, we should always select \(b_l \geq 0 \), since x is never negative.

NONCENTRAL CHI-SQUARED RANDOM VARIABLES

This case corresponds to Gaussian noise with additive deterministic signal, after passage through a squarer and summation. Under H_1, let the input be composed as follows:

\[
x(m) = \sum_{k=1}^{2D} \left[c_k(m) + n_k(m) \right]^2 ,
\]

where \(\{c_k(m)\} \) are constants, and noises \(\{n_k(m)\} \) are independent zero-mean Gaussian random variables with variance \(\sigma_n^2 \). For example, x(m) corresponds to
the sum of D squared-envelopes of the output of a narrowband filter subjected to a sinewave and Gaussian noise. The probability density function of \(x \) in (B-8) is

\[
p^{(1)}_{x}(u) = \frac{1}{2\alpha_n^2} \left(\frac{\alpha}{\sigma_n} \right)^{D-1} \exp \left(-\frac{a^2}{2\sigma_n^2} \right) I_{D-1} \left(\frac{\alpha u}{\sigma_n} \right) \quad \text{for } u > 0, \quad (B-9)
\]

where

\[
a = \frac{1}{\sigma_n} \sum_{k=1}^{2\alpha} c_k^2(m) \quad (B-10)
\]

is a measure of the total signal-to-noise ratio of random variable \(x(m) \). (\(a \) is generally a function of \(m \).) The cumulative distribution function is

\[
p^{(1)}_{x}(u) = 1 - Q_D \left(\frac{\alpha u}{\sigma_n} \right) \quad \text{for } u > 0, \quad (B-11)
\]

where the \(Q \)-function is (ref. 9)

\[
Q_D(a, b) = \int_b^{\infty} dt \left(\frac{t}{\alpha} \right)^{D-1} \exp \left(-\frac{t^2 + a^2}{2\alpha^2} \right) I_{D-1} (at) \quad (B-12)
\]

The probability density function and cumulative distribution function under \(H_0 \) follow from (B-9) and (B-11) by setting \(a = 0 \), where we presume that \(\{c_k(m)\} \) represent the signal components in (B-8); there results

\[
p^{(0)}_{x}(u) = \frac{u^{D-1}}{(D-1)! \left(2\alpha_n^2 \right)^{D-1}} \exp \left(-\frac{u^2}{2\sigma_n^2} \right) \quad \text{for } u > 0 \quad (B-13)
\]

and

\[
p^{(0)}_{x}(u) = 1 - \exp \left(-\frac{u^2}{2\sigma_n^2} \right) e_{D-1} \left(\frac{u^2}{2\sigma_n^2} \right) \quad \text{for } u > 0. \quad (B-14)
\]

According to (5) and (6), we need

\[
\begin{align*}
p^{(0)}_{x}(b_\chi) &= 1 - \exp \left(-\chi^2 \right) e_{D-1} \left(\chi \right) \\
p^{(1)}_{x}(b_\chi) &= 1 - Q_D \left(\chi, \sqrt{2\chi} \right)
\end{align*}
\quad \text{for } 1 \leq \chi \leq L, \quad (B-15)
\]

where normalized breakpoints

\[
\chi = \frac{b_\chi}{2\sigma_n^2} \quad \text{for } 1 \leq \chi \leq L. \quad (B-16)
\]

Again \(b_\chi \geq 0 \) since \(x \) in (B-8) can never be negative.
Appendix C

PROGRAM FOR DETECTION AND FALSE ALARM PROBABILITIES

10 ! DETECTION CHARACTERISTICS FOR QUANTIZERS, GREATEST-OF, AND ACCUMULATOR
20 ! QUANTIZER OUTPUT (ORDINATE) LEVELS ARE SET AT 0,1,...,L; L+1 LEVELS
30 ! QUANTIZER ABSCISSA BREAKPOINTS ARE ARBITRARY; L BREAKPOINTS
40 M=5 ! NUMBER OF TIME SAMPLES ACCUMULATED: M>=1
50 N=3 ! NUMBER OF INPUT CHANNELS SUBJECT TO OR-ING: N>=1
60 L=7 ! NUMBER OF NON-ZERO QUANTIZER OUTPUT LEVELS: L>=1
70 ! NORMALIZED ABSCISSA BREAKPOINTS OF QUANTIZER (L NUMBERS):
80 DATA 1.4,1.85,2.3,2.75,3.2,3.65,4.1
90 Dimax=4.5 ! MAXIMUM VALUE OF Di OF INTEREST
100 Distep=.5 ! INCREMENTS IN Di OF INTEREST
110 Np=6 ! SMALLEST PROBABILITY OF INTEREST IS 10^-Np
120 DIM X(1:1024),Y(1:1024),Axis(1:19)
130 DIM V(1:10),S(1:10),Pw(1:10),Pfa(1:1024)
140 REDIM V(1:L),S(1:L),Pw(1:L),Pfa(1:M*L)
150 READ V(*)
160 PRINT "NUMBER OF TIME SAMPLES ACCUMULATED: M =";M
170 PRINT "NUMBER OF INPUT CHANNELS SUBJECT TO OR-ING: N =";N
180 PRINT "NUMBER OF NON-ZERO QUANTIZER OUTPUT LEVELS: L =";L
190 PRINT "QUANTIZER OUTPUT (ORDINATE) LEVELS ARE SET AT 0,1,...,L."
200 PRINT "QUANTIZER NORMALIZED (ABSCISSA) BREAKPOINTS ARE AT:"
210 FOR J=1 TO L
220 PRINT V(J);
230 NEXT J
240 PRINT "INPUT VOLTAGE-SNR Di VARIES FROM 0 TO";Dimax;" IN STEPS OF";Distep
250 PRINT "THE GRAPH BELOW GIVES THE (FALSE ALARM) PROBABILITY THAT THE"
260 PRINT "SYSTEM OUTPUT IS GREATER THAN OR EQUAL TO J, FOR J = 1 TO M.L."
270 PRINT "THE INPUT SIGNAL-TO-NOISE RATIO IS ZERO FOR THIS GRAPH."
280 M0=M*L
290 M1=M0+1
300 M2=M/2
310 N1=N-1
320 FOR J=2 TO 10
330 NF=2^J
340 IF NF>M0 THEN 420
350 NEXT J
360 PRINT "ARRAYS X,Y,Pfa ARE NOT DIMENSIONED LARGE ENOUGH"
370 STOP
380 REDIM X(1:NF),Y(1:NF)
390 FOR J=1 TO L
400 S(J)=FNPHI(V(J))*N1
410 NEXT J
420 FOR Di=0 TO Dimax STEP Distep
430 FOR J=1 TO L
440 Pw(J)=S(J)*FNPHI(V(J)-Di) ! EQUATIONS 5 AND 21
450 NEXT J
460 NEXT J
470 MAT X=ZERO
MAT Y=0
X(1)=Pw(1)
FOR J=2 TO L
X(J)=Pw(J)-Pw(J-1)
NEXT J
X(L+1)=1-Pw(L)
CALL Fft(NF,X(*),Y(*))
FOR J=1 TO NF
T=(X(J)^2+Y(J)^2)^M2
A=M*FNArg(X(J),Y(J))
X(J)=T*COS(A)
Y(J)=-T*SIN(A)
NEXT J
CALL Fft(NF,X(*),Y(*))
FOR J=1 TO M1
X(J)=X(J)/NF
NEXT J
IF DI>0 THEN 1220
PLOTTER IS "GRAPHICS"
GRAPHICS
Np1=Np+1
Np2=Np+2+1
Axis(Np1)=0
FOR J=1 TO Np
T=FNInvphi(.1^J)
Axis(Np1-J)=T
Axis(Np1+J)=-T
NEXT J
SCALE 0,M0,Axes(1),Axes(Np2)
FOR J=0 TO M0 STEP 5
MOVE J,Axes(Np2)
DRAW J,Axes(1)
NEXT J
FOR J=1 TO Np2
MOVE 0,Axes(J)
DRAW M0,Axes(J)
NEXT J
PENUP
T=0
FOR J=M1 TO 2 STEP -1
T=T*X(J)
I=J-1
IF (T>1E-11) AND (T<1E-11) THEN 960
Pfa(I)=100
GOTO 1050
A=FNInvphi(T)
Pfa(I)=A
PLOT I,A
GOTO 1050
TO ELIMINATE CROSSES, INSERT THIS INSTRUCTION
MOVE I,A-Axes(Np2)*.008
1010 DRAW I,A+Axis(Np2)*.088
1020 MOVE I-.004*M0,A
1030 DRAW I+.004*M0,A
1040 PLOT I,A
1050 NEXT J
1060 PENUP
1070 DUMP GRAPHICS
1080 PRINT LIN(1)
1090 PRINT "THE GRAPH BELOW IS A PLOT OF DETECTION PROBABILITY VERSUS"
1100 PRINT "FALSE ALARM PROBABILITY, FOR THE VALUES OF Ii GIVEN ABOVE."
1110 GCLEAR
1120 SCALE Axis(1),Axis(Np2),Axis(1),Axis(hp2)
1130 FOR J=1 TO Np2
1140 MOVE Axis(1),Axis(J)
1150 DRAW Axis(Np2),Axis(J)
1160 NEXT J
1170 FOR J=1 TO Np2
1180 MOVE Axis(J),Axis(Np2)
1190 DRAW Axis(J),Axis(1)
1200 NEXT J
1210 PENUP
1220 T=0
1230 FOR J=MJ TO 2 STEP -1
1240 T=T+X(J)
1250 IF (T<1E-11) OR (T>1-1E-11) THEN 1360
1260 B=Pha(J-1)
1270 IF ABS(B)>7 THEN :1360
1280 A=FNInvph(T)
1290 PLOT B,A
1300 GOTO 1360 ! TO ELIMINATE CROSSES, INSERT THIS INSTRUCTION
1310 MOVE B,A-Axis(Np2)+.008
1320 DRAW B,A+Axis(Np2)+.008
1330 MOVE B-Axis(Np2)+.008,A
1340 DRAW B+Axis(Np2)+.008,A
1350 PLOT B,A
1360 NEXT J
1370 PENUP
1380 NEXT Di
1390 DUMP GRAPHICS
1400 PRINT LIN(6)
1410 PRINTER IS 16
1420 END
1430 !
1440 DEF FNArg(X,Y) ! PRINCIPAL ARGUMENT OF X+iY
1450 IF X=0 THEN A=.5*PI*SGN(Y)
1460 IF X<0 THEN A=ATN(Y/X)
1470 IF X>0 THEN A=ATN(Y/X)
1480 RETURN A
1490 FNEND
1500 !
1510 DEF FNPhi(x) ! CUMULATIVE GAUSSIAN DISTRIBUTION
1520 IF ABS(x)>5.14 THEN 1780
1530 A=282842712475*x
1540 C=COS(A)
1550 S=SIN(A)
1560 B=2*C
1570 A=B=C=-1
1590 C=A*(1.533423425E-16+B*1.01649277E-17+C)
1600 C=A*(1.36760444757E-14+B*1.681364636E-15+C)
1610 C=A*(8.89786526722E-13+B*8.0606883945E-14+C)
1620 C=A*(4.22616144318E-11+B*4.4696225249E-12+C)
1630 C=A*(1.46600614234E-9+B*1.8084397810E-10+C)
1640 C=A*(3.72252349369E-8+B*5.34275027603E-9+C)
1650 C=A*(.6.91927520325E-7+B*1.1533099044E-7+C)
1660 C=A*(9.4328116938E-6+B*1.82066316364E-6+C)
1670 C=A*(9.44909268810E-5+B*2.1048483673E-5+C)
1680 C=A*(6.97183792408E-4+B*1.79228813255E-4+C)
1690 C=A*(3.881050767985E-3+B*1.1086064532E-3+C)
1700 C=A*(.8153965726157+B*+.0587986961220+C)
1710 C=A*(.8467755234325+B*+.0172439625887+C)
1720 C=A*(.108630245923+B*+.849773381941+C)
1730 C=A*(.201339747265+B*+.8869894549959+C)
1740 C=A*(.330801521917+B*+.144227226362+C)
1750 C=7.63225802744+B*.247255168140+C
1760 Phi=.5+.458158158079*X+.5*S*C
1770 GOTO 1920
1780 IF x>7 THEN 1910
1790 N=MAX(6,INT(69/ABS(x)),INT(525/X^2))+1
1800 A=1
1810 S=1
1820 B=1/X
1830 C=B*B
1840 FOR J=1 TO N
1850 A=(1-2*J)*A+C
1860 S=S*A
1870 NEXT J
1880 Phi=.399942208001*EXP(-.5*X*X)*ABS(B)*S
1890 IF X>0 THEN Phi=1-Phi
1900 GOTO 1920
1910 Phi=1
1920 RETURN Phi
1930 FNEND
1940 !
1950 DEF FNInvPhi(Z) ! INVERSE CUMULATIVE GAUSSIAN DISTRIBUTION
1960 X=2*Z-1
1970 DIM T(0:20),A(0:20)
1980 DATA .992885376619,.120467516143,.0160781993421,.00268670443716
1990 DATA .4996347382.E-3,.988982186E-4,.2039181276E-4,.43272162E-5
2000 DATA .93800141E-6,.20673472E-6,.461597E-7,.1041663E-7,.23715E-8
2010 DATA .54393E-9,.12555E-9,.2914E-18,.679E-11,.159E-11,.37E-12
2020 DATA .91215883418,.0162662818677,.4335647295E-3,.21443857007E-3
2030 DATA .262575108E-5,.302109105E-5,.1240606E-7,.6240661E-7,.54012E-9
2040 DATA -.14232E-8,.3438E-10,.3358E-10,.146E-11,.81E-12,.5E-13,.2E-13
2050 DATA .956679709020,.0231070043091,.00437423609751,.57659342265E-3
2060 DATA -.1096102231E-4,.251085470E-4,.106233607E-4,.275441233E-5
2070 DATA .432484506E-6,.2053034E-7,.4369154E-7,.1768401E-7,.399129E-8
2080 DATA .93888141E-7,.26673472E-6,.43272162E-5,.1E-7,.204E-11
2090 DATA -.965E-12,.22E-12
2100 B=ABS(X)
2110 IF ABS(X)>.8 THEN B=SQR(-LOG((1-X)*(1+X)))
2120 IF ABS(X)<.8 THEN 2220
2130 IF ABS(X)<.9975 THEN 2180
2140 Nmax=20
2150 RESTORE 2050
2160 Y=-.559457631330+B+.28791571626
2170 GOTO 2250
2180 Nmax=15
2190 RESTORE 2020
2200 Y=1.54901304237+.256549012315
2210 GOTO 2250
2220 Nmax=18
2230 RESTORE 1980
2240 Y=X*X+.125-1
2250 REDIM A(0:Nmax)
2260 READ A(*)
2270 Y2=Y*2
2280 T(0)=Y
2290 T(1)=Y
2300 FOR N=2 TO Nmax
2310 T(N)=Y2*T(N-1)-T(N-2)
2320 NEXT N
2330 R=0
2340 FOR N=Nmax TO 0 STEP -1
2350 P=R*A(N)*T(N)
2360 NEXT N
2370 InvPhi=SGHC(X)*B*R*.41421356237
2380 RETURN InvPhi
2390 FNEND
2400 1
2410 SUB FFT(N,X(*),Y(*)) ! FFT SUBROUTINE HERE
Appendix D

ANALYSIS FOR GENERAL QUANTIZER

The characteristic function of decision variable z is still given by (8) in terms of f_y, the characteristic function of y. But now, from figures 5 and 2,

$$f_y(\xi) = \exp(i\xi y) - \exp(i\xi q w) = \int_{-\infty}^{\infty} du \ p_w(u) \ \exp(i\xi q w(u))$$

$$= \exp(i\xi h_0) \int_{-\infty}^{b_1} du \ p_w(u) + \ldots + \exp(i\xi h_L) \int_{b_L}^{\infty} du \ p_w(u)$$

$$= \exp(i\xi h_0) \ p_w(b_1) + \sum_{k=1}^{L-1} \exp(i\xi h_k) \left[p_w(b_{k+1}) - p_w(b_k) \right]$$

$$+ \exp(i\xi h_L) \left[1 - p_w(b_L) \right], \quad (D-1)$$

where p_w is the cumulative distribution function of random variable w, as given by (5). The inputs for this calculation of characteristic function f_z are $M, N, L, \{b_k\}_0^L$ and $\{b_{k+1}\}_1^L$. Again, input cumulative distribution functions $p(0)$ and $p(1)$ in (5) are arbitrary.

One problem with this quantizer is that P_D and P_F are stepwise functions of the decision threshold (which need not be integer now) at irregular points. A large DFT size would be necessary to track this behavior. However, operating characteristic plots of P_D vs. P_F would be smoother functions.
Appendix E

DERIVATION OF OPTIMUM PROCESSOR

We allow the signal, if present, to jump randomly and independently between input channels on each time sample. Let

\[Y(m) = \left\{ x_n(m) \right\}_{n=1}^{N} \text{ for } 1 \leq m \leq M. \]

(E-1)

Under \(H_1 \), the probability density function of \(N \)-vector \(Y(m) \) is

\[
p^{(1)}(Y(m)) = \frac{1}{N} \left[p^{(1)}(x_1(m)) p^{(0)}(x_2(m)) \cdots p^{(0)}(x_N(m)) \right. \\
+ p^{(0)}(x_1(m)) p^{(1)}(x_2(m)) \cdots p^{(0)}(x_N(m)) + \ldots \\
\left. = \prod_{n=1}^{N} \left\{ p^{(0)}(x_n(m)) \right\} \frac{1}{N} \sum_{n=1}^{N} \frac{p^{(1)}(x_n(m))}{p^{(0)}(x_n(m))} \right] \text{ for } 1 \leq m \leq M. \]

(E-2)

Therefore the joint probability density function is

\[
p^{(1)}(Y(1) \ldots Y(M)) = \prod_{m=1}^{M} \prod_{n=1}^{N} \left\{ p^{(0)}(x_n(m)) \right\} \prod_{m=1}^{M} \left\{ \frac{1}{N} \sum_{n=1}^{N} \frac{p^{(1)}(x_n(m))}{p^{(0)}(x_n(m))} \right\}. \]

(E-3)

The likelihood ratio follows immediately as the last product in (E-3); the log-likelihood ratio is therefore

\[
\ln \text{likelihood ratio} = \sum_{m=1}^{M} \ln \left(\frac{1}{N} \sum_{n=1}^{N} \frac{p^{(1)}(x_n(m))}{p^{(0)}(x_n(m))} \right). \]

(E-4)

This result holds for arbitrary inputs with probability density functions \(p^{(0)} \) and \(p^{(1)} \).

When we employ the Gaussian example in (16), (E-4) simplifies to
where data-independent scale factors have been absorbed in the threshold. Exact analysis of (E-5) is conceivable, but is exceedingly tedious. Also \(d_i \) and \(\sigma \) must be known in order to realize (E-5).

For \(d_i > 2 \), it may be shown, to a good approximation, that

\[
\sum_{n=1}^{N} \exp \left(\frac{d_i}{\sigma} x_n(m) \right) \approx \exp \left(\frac{d_i}{\sigma} \max \{ x_n(m) \} \right) . \tag{E-6}
\]

Substitution in (E-5) yields the approximate likelihood ratio test

\[
\sum_{m=1}^{M} \max_{n} \{ x_n(m) \} < \text{threshold} . \tag{E-7}
\]

Knowledge of \(d_i \) and \(\sigma \) is now not required. Processor (E-7) is just figure 1 or 5, with the quantizer replaced by a linear gain. This special case of (E-5) is very important, because decent performance can be obtained for \(d_i > 2 \), and this is exactly where (E-7) is virtually optimum. A good approximation to the performance of (E-7) is afforded by the results contained herein, if \(L \) is chosen large and the breakpoints are well-placed. Some approximate results via second-moment approaches are given in refs. 1, 10, 11, 12.
REFERENCES

<table>
<thead>
<tr>
<th>Addressee</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN (RE&S)</td>
<td>1</td>
</tr>
<tr>
<td>OUSDR&E (Research & Advanced Technology)</td>
<td>2</td>
</tr>
<tr>
<td>Deputy OUSDR&E (Res & Adv Tech)</td>
<td>1</td>
</tr>
<tr>
<td>OASN, Dep Assist Secretary (Res & Adv Tech)</td>
<td>1</td>
</tr>
<tr>
<td>ONR, ONR-100, -102, -200, -400, -410, -422, -425, -425AC, -430</td>
<td>9</td>
</tr>
<tr>
<td>CNM, MAT-00, -05, SP-20, -24, ASW-12, -11, -13, -14, MAT-03621, Systems Project Office (PM-2) Trident, Surface Ships Project Office (PM-18)</td>
<td>11</td>
</tr>
<tr>
<td>DIA, DT-2C</td>
<td>1</td>
</tr>
<tr>
<td>NRL</td>
<td>1</td>
</tr>
<tr>
<td>NRL, USRD</td>
<td>1</td>
</tr>
<tr>
<td>NRL, AESD</td>
<td>1</td>
</tr>
<tr>
<td>NORDA</td>
<td>1</td>
</tr>
<tr>
<td>USOC, Code 241, 240</td>
<td>2</td>
</tr>
<tr>
<td>SUBBASE LANT</td>
<td>1</td>
</tr>
<tr>
<td>OCEANAV</td>
<td>1</td>
</tr>
<tr>
<td>NEC</td>
<td>1</td>
</tr>
<tr>
<td>NWOC</td>
<td>1</td>
</tr>
<tr>
<td>NAVOCEANO, Code 02, 3400, 6200</td>
<td>3</td>
</tr>
<tr>
<td>NAVELECSYSCOM, ELEX 00, 03, 320</td>
<td>3</td>
</tr>
<tr>
<td>NAVSEASYSCOM, SEA-00, -05R, -611, -613, -62R, -63R-1, -631Y, -631Y (Surface Sys Sub-Gr), -92R, PMS 409-531 (W. Johnson)</td>
<td>10</td>
</tr>
<tr>
<td>NAVAIRDEVCEN</td>
<td>1</td>
</tr>
<tr>
<td>NAVAIRDEVCEN, Key West</td>
<td>1</td>
</tr>
<tr>
<td>NOSC</td>
<td>1</td>
</tr>
<tr>
<td>NOSC, Code 6565 (Library)</td>
<td>1</td>
</tr>
<tr>
<td>NAVWPNSCEN</td>
<td>1</td>
</tr>
<tr>
<td>NCSC</td>
<td>1</td>
</tr>
<tr>
<td>NAVCIVENGRLAB</td>
<td>1</td>
</tr>
<tr>
<td>NAVSMC</td>
<td>1</td>
</tr>
<tr>
<td>NAV SURFACE WEAPONS CENTER, WHITE OAK LAB</td>
<td>1</td>
</tr>
<tr>
<td>NAVTRADEQUIPCENT Technical Library</td>
<td>1</td>
</tr>
<tr>
<td>NAVPGSCOL</td>
<td>1</td>
</tr>
<tr>
<td>NAVAIRTESTCEN</td>
<td>1</td>
</tr>
<tr>
<td>APL/UW, SEATTLE</td>
<td>1</td>
</tr>
<tr>
<td>ARL/PENN STATE, STATE COLLEGE</td>
<td>1</td>
</tr>
<tr>
<td>CENTER FOR NAVAL ANALYSES (ACQUISITION UNIT)</td>
<td>1</td>
</tr>
<tr>
<td>DTIC</td>
<td>1</td>
</tr>
<tr>
<td>DARPA</td>
<td>1</td>
</tr>
<tr>
<td>NOAA/ERL</td>
<td>1</td>
</tr>
<tr>
<td>NATIONAL RESEARCH COUNCIL</td>
<td>1</td>
</tr>
<tr>
<td>WEAPON SYSTEM EVALUATION GROUP</td>
<td>1</td>
</tr>
<tr>
<td>WOODS HOLE OCEANOGRAPHIC INSTITUTION</td>
<td>1</td>
</tr>
<tr>
<td>ENGINEERING SOCIETIES LIB, UNITED ENGRG CTR</td>
<td>1</td>
</tr>
<tr>
<td>ARL, UNIV OF TEXAS</td>
<td>1</td>
</tr>
<tr>
<td>MARINE PHYSICAL LAB, SCRIPPS</td>
<td>1</td>
</tr>
</tbody>
</table>
INITIAL DISTRIBUTION LIST (CONT'D)

<table>
<thead>
<tr>
<th>Addressee</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERMETRICS INC. EAST LYME, CT</td>
<td>1</td>
</tr>
<tr>
<td>MAR, INC. EAST LYME, CT</td>
<td>1</td>
</tr>
<tr>
<td>EG&G WASHINGTON ANAL SER CTR, INC. (T. Russell)</td>
<td>1</td>
</tr>
<tr>
<td>HYDROTRONICS INC. (D. Clark)</td>
<td>1</td>
</tr>
<tr>
<td>ANALYSIS & TECHNOLOGY, INC., N. STONINGTON (T. Dziedzic)</td>
<td>1</td>
</tr>
<tr>
<td>EDO CORPORATION, NY (J. Vincenzo)</td>
<td>1</td>
</tr>
<tr>
<td>TRACOR CORP., AUSTIN, TX (J. Wilkinson)</td>
<td>1</td>
</tr>
<tr>
<td>Dr. David Middleton, 127 East 91st Street, New York, NY 10028</td>
<td>1</td>
</tr>
<tr>
<td>Prof. Louis Scharf, Dept. of Electrical Engin., University of Rhode Island, Kingston, RI 02881</td>
<td>1</td>
</tr>
<tr>
<td>Prof. Donald Tufts, Dept. of Electrical Engin., University of Rhode Island, Kingston, RI 02881</td>
<td>1</td>
</tr>
<tr>
<td>S. L. Marple, The Analytic Sciences Corp., 8301 Greensboro Drive, McLean, VA 22102</td>
<td>1</td>
</tr>
<tr>
<td>T. E. Barnard, Chesapeake Instrument Div., Gould Inc., Glen Burnie, Md 21061</td>
<td>1</td>
</tr>
<tr>
<td>Prof. P. M. Schultheiss, Dept. of Electrical Engin., P.O. Box 2157, Yale University, 15 Prospect Street, New Haven, CT 06520</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Allan G. Piersol, Bolt, Beranek, and Newman, 21120 Van Owen St., P.O. Box 633, Canoga Park, CA 92305</td>
<td>1</td>
</tr>
<tr>
<td>Prof. Y. T. Chan, Dept. of Electrical Engin., Royal Military College, Kingston, Ontario, Canada K7L 2W3</td>
<td>1</td>
</tr>
<tr>
<td>Jim Hughen, EGG, 8809 Sudley Rd., Manassas, VA, 22110</td>
<td>1</td>
</tr>
</tbody>
</table>