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ABSTRACT

We discuss several ways in which molecular absorption and scattering
spectra can be computed ab initio, from the fundamental constants of nature.
These methods can be divided into two general categories. In the first, or
sequential, type of approach, one first solves the electronic part of the
Schrédinger equation in the Born-Oppenheimer approximation, mapping out
the potential energy, dipole moment vector (for infrared absorption) and polari-
zability tensor (for Raman scattering) as functions of nuclear coordinates. Hav-
ing completed the electronic part of the calculation, one then solves the nuclear
part of the problem either classically or quantum mechanically. As an example
of the sequential ab initio approach, the infrared and Raman rotational and
vibrational-rotational spectral band contours for the water molecule are com-
puted in the simplest rigid rotor, normal mode approximation. Quantum tech-
niques, are used to calculate the necessary potential energy, dipole moment,
and polarizability information at the equilibrium geometry. A new quick, accu-
rate, and easy to program classical technique involving no reference to Euler
angles or special functions is developed to compute the infrared and Raman
band contours for any rigid rotor, including asymmetric tops. A second, or
simultaneous, type of ab initio approach is suggested for large systems, particu-
larly those for which normal mode analysis is inappropriate, such as liquids,
clusters, or floppy molecules. Then the curse of dimensionality prevents map-
ping out in advance the compiete potential, dipole moment, and polarizability
functions over the whole space of nuclear positions of all atoms, and a solution
in which the electronic and nuclear parts of the Born-Oppenheimer approxima-
tion are simultaneously solved is needed. A quantum force classical trajectory
(QFCT) molecular dynamic method, based on linear response theory, is
described, in which the forces, dipole moment, and polarizability are computed
quantum mechanically, using gradient techniques step by step along a classical
trajectory whose path is determined by these quantum forces. We believe the
QFCT method to be a more practical ab initio route to spectral band contours
for large molecules, clusters, and solutions, and it can be equally applied to




equilibrium and non-equilibrium systems. It is pointed out that a similar ab ini-
tio QFCT molecular dynamic approach could be used to compute other types of
spectra, for example electronic absorption, as well as other parameters such as
transport properties and thermodynamic functions and their quantum correc-
tions. For parameters not depending on momenta, a parallel ab initio Monte
Carlo approsch would use electronic energies and other parameters of interest
generated quantum mechanically, and “classical” trial moves of the nuclei.
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I. INTRODUCTION

With increased computer power and improved computational techniques, such as the gra-
dient methods described in Sections III and IV below, it is becoming practical to compute spec-
tra ab initio, from the fundamental constants of nature, for systems of increasing complexity.
Such an approach is appealing not only because of the usual academic desire to elegantly derive
observed phenomenas from first principles, but also because of the practical desire to be able to
experimentally identify and understand transient species or states (such as those existing during
the course of chemical reactions) whose spectral properties cannot be deduced from equilibrium
measurements. Therefore in this paper we explore several possible ab inirio approaches to spec-
tra, specifically focusing on infrared and nonresonance Raman. Many of the points discussed
can, however, also be extended to other types of spectra such as electronic absorption and reso-
nance Raman.

We discuss two approaches, sequential and simultaneous. The sequential approach, in which
first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation
is solved, is appropriate for small systems. The simultaneous approach, in which the electronic
and nuclear parts are solved at the same time, is more appropriate for many atom systems.
Then we review the newer quantum gradient techniques which greatly simplify ab initio calcula-
= tions of spectra. As a simple illustration of a sequenrial ab initio calculation, we compute the
infrared and Raman spectral band contours for the water molecule using a rigid rotor, normal
mode approach. The vibrations are handled quantum mechanically, but in order to make the
- connection to liquid state spectra in which the individual rovibrational lines have usually
E merged, we compute here the band contours. While this could be done, as illustrated else-
t‘ where, 1.2 by broadening the quantum rovibrational lines,3-4 we choose instead in this paper to
-

{
|

explore another path, computing the band contours classically in the rigid rotor limit, with the
aim of eventually gaining a more intuitive understanding of the relation among moments of
inertia, dipole and polarizability derivatives, temperature, and band contour shape. The classical
technique we have developed is a simple, quick, and easy way to compute band contours, and
might be used, for example, to conveniently explore the dipole and polarizability components
< consistent with measured spectra. Once the rotational correlation functions have been

The authors provided phototypeset copy for this paper using REFER | TBL | EQN | TROFF ON UNIX.




computed from the moments of inertia and Fourier transformed, one could compute band con-
tours immediately for any combination of dipole and polarizability derivatives simply by weight-
ing these transformed correlation functions by the appropriate dipole or polarizability com-
ponents and summing. An on-line visual matching of theoretical to experimental infrared and
Raman band contours is quite possible and might be very instructive in understanding the phy-
sical besis of observed spectra, for exampie the symmetries and directions of dipole moment
and polarizability changes associated with different vibrations. This can be carried out even in
the absence of potential energy surface information of sufficient accuracy to match line spectra.
In this way, for example, one could use crude ab initio dipole and polarizability parameters to
, help resolve the usual experimental sign uncertainties and then refine the parameters by more
bt detailed comparison with experimental band contours. We derive the appropriate equations to
- compute infrared and Raman spectra and present our ab initio sequential rigid rotor, normal
mode band contour results for H;O and compare with experiment. Finally we describe in more
= detail our proposed ab initio simultaneous approach, which can in principle allow the computation
J" of spectra and many other properties for larger systems using a close linking of quantum
3 evaluation of forces and other parameters with classical trajectory integration.

IL. SEQUENTIAL VERSUS SIMULTANEOUS APPROACHES

In the usual sequential approach, the electronic part of the Bom-Oppenheimer approxima-
- tion is first solved for the potential energy V as a function of the positions of the nuclei, and
[" for the connection to the radiation field, for example the dipole moment vector u for infrared
|-~ spectra and the polarizability tensor P for Raman spectra. The least complicated sequential ab
initio approach, which we illustrate here by a calculation of the infrared and Raman spectral
- band contours for the water molecule, is to search for the minimum of the potential energy
. surface and then to eéxpand V, g, and P in Taylor’s series about this minimum. At the sim-
o plest level, a rigid rotor, normal mode approximation can be made for the nuclear rotational -
S vibrational (rovibrational) wavefunctions and the derivatives of s and P with respect 1o the

normal coordinates can then be used to compute the intensities of the various rovibrational
transitions. 1- 2. 5.6 Higher derivatives in the Taylor's series for V, », and P can be used in more
accurate calculations. An even more accurate seguential solution, applicable if the molecule is
quite small, is to solve for V, u, and P over all the necessary coordinate space and then
< numerically to solve for the rovibrational eigenfunctions and energy eigenvalues, and finally

numerically to solve for the transition intensities. An interesting and instructive discussion of
g various theoretical approaches to the computation of infrared spectra with particular application
[ to water monomers, dimers, and liquid water has recently been given by Coker, Reimers, and
A Watts.” An intriguing ab initio calculation for the N, molecule has been carried out by Svendsen
g and Oddershede? who use the frequency dependent polarizability tensor instead of the usual
- static one. Several other types of semiclassical sequential approaches could also be carried out in
e an ab initio fashion.% 10

-~ For molecular systems of more than a few atoms, the simultaneous approach to ab initio
o calculations is preferred. As the size of the system increases, it becomes increasingly impracti-
cal to link quantum mechanics to experimental observables through the complete multidimen-
sional computation and storage of intermediate functions of nuclear coordinates such as poten-
tial energy V, dipole moment u, and polarizability P. As the number N of atoms grows, the
*curse of dimensionality” makes the explicit computation as well as the fitting and storage of
such functions infeasible. For example, if 10 grid points are needed for sufficient accuracy in
each dimension, then 10°¥ evaluations are needed to specify the full function, or 10% if a
dozen atoms are involved. Clearly, no experimental measurement contains or can require this
much information, and a different theoretical approach is called for. An alternative is statistical
sampling, for example using a molecular dynamics or Monte Carlo approach. Specifically, as
one of us has suggested,!! classical molecular dynamics may be integrated with ab initio quan-
tum force evaluation, so that at each time step the force on each nucleus is evaluated quantum
mechanically and then used to integrate forward one step at a time the classical trajectory. One

would follow the trajectory in time, sampling the force F, = o the dipole moment u, and
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the polarizability P only at specific nuclear configurations through which the trajectory passes,
and then apply the techniques illustrated in previous papers!-2 to derive the infrared and
Raman spectra from the power spectra of the time histories of u(r) and P(r). While this sam-
pling may build up over the course of many trajectories a continuously improving estimate of
the entire V, u and P functions over the accessible volume of configuration space, we do not
initially require a giobal representation of the functions, and in systems of many atoms we are
likely to achieve sufficient accuracy t0 compare with experiment long before such a global
representation could be computed. With an average over the proper ensemble of initial nuclear
positions and momenta, observables ranging from thermodynamic functions to spectra to chem-
ical reaction properties to transport properties could be computed in this way. An alternative
approach, for phenomena which are not explicitly time dependent, is a Monte Carlo procedure
in which at each trial nuclear configuration step the energy is evaluated quantum mechanically,
and for accepted steps the other variables of interest are then computed.

Two initial calculations of this type, which for the molecular dynamics case we will call
Quantum Force Classical Trajectory (QFCT), have been carried out by Warshel and Karplus!2
and by Leforestier.!3 Warshel and Karplus!2 use forces given from analytical first derivatives in
a semiclassical technique to integrate the equations of motion for cis-trans photoisomerization
from the triplet state of butene-2. Leforestier!] studied the gas phase nucleophilic substitution
reaction - + CH,—CH,+ H-. He derived his forces using an ab initio approach which will
be reviewed below and integrated the classical trajectories outward from an initial state
corresponding to the transition state for the reaction.

Thus, classical statistical mechanics plus an ab initio QFCT method can be used to predict
spectral observables, computing the time evolution of the dipole moment vector u(r) and the
polarizability tensor P(7), and, as we have previously demonstrated, from ensemble averages of
their power spectra the infrared! and Raman? spectra. This can be extended to computing
infrared and Raman spectra for more complex systems, such as clusters and liquid sotutions,
and transient spectra during chemical reactions, !4 or in other words to situations for which only
band contours may be observable experimentally and for which trying to quantize nuclear
motion would be too difficult theoretically. We emphasize i) that other spectral and transport
phenomena could also similarly be derived through calculation of their proper correlation
functions, 1318 ji) that thermodynamic variables and their quantum corrections could be com-
puted, !? and iii) that the parallel Monte Carlo approach for properties independent of momenta
would be quantum evaluation of energy (plus force20-22 if desired) at each trial step followed by
evaluation of other variables to be averaged for those configurations which are accepted.

III. QUANTUM POTENTIAL ENERGY, FORCE, AND EQUILIBRIUM GEOMETRY

The emergence of gradient methods in recent years allows the use of very efficient
methods for the calculation of forces, the location of equilibrium structures and the evaluation
of harmonic force constants and vibrational frequencies.23-30 More recently, one of us has sug-
gested that the power of these methods also be used to evaluate the dipole and polarizability
derivatives.3!.32 (For an example of infrared vibrational properties computed without gradient
techniques see Person, Brown, Steele, and Peters.33-34 ) In Sections IIl and IV we summarize
the salient points of the gradient approach and show how these methods are used to evaluate
the relevant quantities required in the example sequential ab initio spectral analysis for the H,0
infrared and Raman band contours presented below. The molecular calculations reported here
are all performed at the SCF level with the GRADSCF program system.3$

In many chemical applications one needs to evaluate a molecular wavefunction from
which the energy, dipole moment and other relevant properties are calculated. It was recognized
a number of years ago?6-39 that often a knowledge not only of the energy U, but also of its first
derivatives with respect to the nuclear coordinates can considerably enhance the scope of chem-
ical computational investigations. Over the past decade efficient means of evaluating the first
derivatives of the energy have been developed, first for semiempirical?¢ and eventually for ab
initio wavefunctions.23. 28.40 [n these applications both the energy and the gradient are evaluated
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simultaneously. The derivation of the gradient expression for a variety of wavefunctions has
been extensively discussed in the literature23. 28.40 and will not be repeated here.

If we expand the energy as a function of the nuclear coordinates in a Taylor’s series we
find that

UX) = UXy +8'(X — Xo) + (X - Xp'Q(X - Xo) 3.1)
where X is the vector of Cartesian nuclear coordinates, g is the gradient vector whose elements
are defined as g, = _G_ll' and Q is the Hessian, or matrix of second derivatives. The geometry

ax;
optimization is performed by employing the following algorithm,

X=X,—aQls, (G.2)

where a is a scale factor. The specific minimization algorithm which we use is that of Mur-
taugh and Sargent 4! where the matrix Q is initially approximated by a unit matrix and updated
after each successive step to form the inverse to the true Hessian. Convergence in the
geometry optimization is deemed satisfactory if the largest component of the gradient is less
than 4x10~* hartree/bohr.

The force constants are evaluated by the finite difference techniques described
previously.25-27 By numerically differencing the gradient vector we are able to evaluate a
column of the matrix of second derivatives for esch displacement of the nuclear coordinates.
The force constants are evaluated in a Cartesian representation and the frequencies and normal
modes are determined by diagonalizin 2|'th¢= mass weighted force constant matrix.3-25-27 We also
evaluate the appropriate B matrix3-6.28 which in tumn is used to transform the force constants
from a Cartesian to an internal symmetry coordinate representation. This transformation serves
rigorously to project out any translation and rotation from the vibrational modes and yields six
true zero frequency modes.

The water molecule resuilts for the equilibrium geometry, moments of inertia, and vibra-
tional frequencia derived from harmonic force constants are shown in Table 1. Here r is the
H distance, @ is the H-O-H angle, I, is the aa component of the moment of inertia tensor,
is Angstrom, deg is degrees, amu is atom:c mass units, and cm™! is wavenumbers in inverse
centimeters. Figure 1 shows the Cartesian axis system chosen for the water molecule,*? and
Fig. 2 shows the normal modes.42 The symmetric stretch corresponds to », and q,, »; and q
correspond to the symmetric bend, and v; and q; correspond to the asymmetric stretch, in
which »; denotes the ith normal mode frequency and q; is the ith normal coordinate.

TABLE L. 4b initio parameters computed for H;O molecule.

I

r 0 I I, Vi v vy

A @ep @mul) @ul) @ulH em™H emhH mH

0943 1060 1.720 0.5766 1.1434 3197 1740 3902
e

IV. QUANTUM DIPOLE MOMENT AND POLARIZABILITY TENSOR

The dipole and polarizability derivatives with respect to the normal modes are computed
using a very efficient new method which has been reported previously.31.32 We seek for the
infrared spectrum the quantities

([T
dq
where u,, a = X,y,z, are the three components of the molecule fixed dipole moment vector u

and the q; are the normal mode coordinates. For the polarizability derivatives we seek the
analogous quantities

@.n
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where the P, are the components of the molecule fixed polarizability tensor, in which a and
B = x,y,z and again the q; are the normal coordinates. The dipole moment vector and the
polarizability tensor are the first and second derivatives of the energy U(E) in the presence of
an applied external electric field E. We can therefore write the derivatives of the elements of
the dipole moment vector and polarizability tensor with respect to the Cartesian components X;

of the positions of the nuclei in the following manner, in which as before g; = & y
e 9 QJU(E) 9 QUE) ___d8
aX;  9X; aE, 3E.  oX o€, &(E) 4.3)
and
2 2
P ___9 JUE ____3  JUE) ?_ @ o

aX; 9X; OE,0E,  OE,9E, 08X, OE.dE,

The final terms in both equations result from the interchange in the order of
differentiation. These final expressions involve the derivatives of the gradient of the energy
with respect to the components of an applied electric field. If we now transform the resulting
gradient vector from a Cartesian to a normal coordinate representation we arrive at the desired
quantities shown in Egs. (4.1) and (4.2). The simplicity and efficiency of the method lies in
the fact that the introduction of the electric field involves only a one electron perturbation to
the molecular Hamiltonian. We write the Hamiltonian as

H(E) = Hy + H'(E) 4.5)
where

nuciel
H'(E) = eYE-ri —-e E Z ER; 4.6)
i=l j=1
in which e is the magnitude of the electron charge, E is the applied electric field, r; is the posi-
tion of the ith electron, the first sum is over the electrons, Z; is the charge of the jth nucleus,
R; is its position, and the second sum is over the nuclei. For the computation of the energy
this Hamiltonian requires the addition of a term which includes the appropriate dipole moment
integrals. It is important to realize that the variation of the field is independent of the nuclear
coordinates. In all of our calculations for the water molecule presented here the molecule is
held fixed at the equilibrium geometry and SCF calculations are performed for a set of applied
electric fields. For any polyatomic system, the dipole derivatives require at most six SCF calcu-
lations: two variations of the applied field in each of the three Cartesian directions. The polari-
zability derivatives require a total of 12 SCF calculations, since these require a two dimensional
difference formula for the finite difference equations. All of these calculations use the same set
of one and two electron integrals. Furthermore, the evaluation of the gradient is performed
only once. In the absence of an applied field the gradient calculation yields one vector. Once we
apply the field in all of the required directions, the gradient calculation yields either six or
twelve vectors.

These gradient vectors, which are now a function of the electric field, are then
transformed from a Cartesian to a normal coordinate representation. The resulting values are
numerically differentiated to yield the dipole and polarizability derivatives.

In the geometry and force constant calculations for the water molecule we use a split-
valence polarized basis which was originally developed by Pople and co-workers.43 This basis set
is described as a (10s4p1d/3s1p) contracted to a [3s2pld/2sl1p) basis and often referred to as a
6-31G** basis. The geometries and vibrational frequencies calculated with this basis are close to
the limit attainable at the SCF level. The d-type polarization functions on the oxygen atom have
an exponent of 0.8, while the p-type polarization functions on the hydrogen atoms are given
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exponents of 1.1,

The calculation of the water dipole and polarizability derivatives requires a much more
extensive basis set. It has previously been shown that a large and flexible basis set is needed to
describe accurately the interaction of 2 molecule with an applied electric field. To this end we
employ a triple-zeta plus double polarization basis (TZPP) for the dipole and polarizability
derivatives. This basis set provides a near Hartree-Fock description of the molecular bonding,
plus a set of diffuse functions of sufficient flexibility to interact with the applied field. In these
calculations we employ a Huzinaga basis of (11s6p/S5s) as contracted by Dunning* to a
[Ss3p/3s] basis on the oxygen and the hydrogen atoms. This basis is augmented by two sets of
d functions on the oxygen with exponents of 0.8 and 0.078, and two sets of p-type polarization
functions on the hydrogens with exponents of 1.1 and 0.116. The magnitude of the applied
field is chosen to be 1.0x10~? au. The results of the calculation are presented in Tables II and
I11, in which u, is the « component of the dipole moment vector, P,, is the aa diagonal ele-
ment of the polarizability tensor P, D is debye, and A is angstrom. Extensive comparison with
experimentally derived values of these parameters will not be presented in this paper, and we
only briefly note here that the dipole parameters may be compared with the experimental values
of Camy-Peyret and Flaud*S and the polarizability parameters with the work of Murphy.46-48

TABLE II. Non-zero ab initio equilibrium dipole moment
and polarizability components.

[ 2] P xx P, » P, z
(D) A3 A3 A
-2.02 1.0566 1.2845 1.1702

TABLE 111. Ab initio dipole and polarizability derivatives.

9 9 9
on 9q; aqs
-1 -1 -1
® A'amu V) ®A'amu V) D A'amu )
. 00 00 00
Ky 0.0 00 1.4663
B 0.5538 1.5355 00
-1 1 -1
A2amu ) A2amu 7) A2amu ?)
0.40349 00 0.0 0.0252 0.0 0.0 0.0 0.0 00
P 00 2.03936 0.0 00 0.18969 0.0 0.0 0.0 1.1048
0.0 00 1.3186 0.0 00 . -0.29568 | 0.0 1.1048 00

V. CLASSICAL ROTATIONAL TRAJECTORIES

Given the moments of inertia computed from the equilibrium coordinates of the water
molecule as shown in Section IIl above, we could straightforwardly compute the rotational spec-
trum3. 5.6 quantum mechanically in the rigid rotor approximation. Instead, in order to gain
more intuitive insight into the physical basis of infrared and Raman band contours, and to
make more evident the connection to the liquid state, we compute the band contours from clas-
sical mechanics, using a method improved over the asymmetric rotor techniques pioneered by
Bratos, Guissani, and Leicknam.49-56 The methodology presented in Sections V-VII allows the
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rapid and accurate calculation of classical rigid rotor infrared and Raman band contours for any
molecule, including asymmetric rotors like water. (For examples of earlier less general treat-
ments for linear, spherical, and symmetric tops, see St. Pierre and Steele5? and references
therein as well as references in the asymmetnc rotor papers of Bratos, Guissani, and
Leicknam.49-56 ) The method presented here is simple and direct, involving no reference to
Euler anglu or special functions. Approximate sets of infrared and Raman contours can be
computed in one minute on a VAX58 11/780 and very accurate sets in 15 minutes. The rota-
tional functions discussed here require only a 250 line program plus standard integration and
fast Fourier transform routines. In the rest of this section we develop the techniques to
efficiently compute the necessary rotational properties.

In order to calculate rotational trajectories we choose a set of body fixed axes coinciding
with the principle axes of the molecule, those axes of a rigid body for which the moment of
inertia tensor is diagonal. The center of mass is at the origin of both the space fixed and body
fixed coordinate systems; thus, the relationship between the two sets of axes is specified by
their relative orientation. This orientation is usually expressed in terms of the Euler angles ¢,0,
and ¥, but for our purposes (particularly the numerical aspects) it is more convenient to use
the Cartesian rotation matrix D in terms of direction cosines (for an alternative treatment using
Euler angles and special functions, see the work of Bratos, Guissani, and Leickman4%-56 ). If a
is a vector in terms of the space fixed axes, and a’ is the vector in terms of the body fixed axes,
then a is related to a’ by a = Da’. Similarly, if T is a tensor, we have T = DT'D~!. The time
history of the orientation of the molecule is given by D(¢).

We now derive equations of motion for D(r). While the resuits are not new, the follow-
ing derivation is simple and serves to introduce the notation used in later parts of the paper.
Let &, i=1,2,3, be the unit vectors in the x, y, and z space fixed directions, and similarly let
E (1), a=1,2,3, be the time varying body fixed unit vectors. Note that we use lower case
Roman letters for indices taking on values associated with the space frame, and lower case
Greek letters for body frame indices. The components of D(r), D, (), are given by

Do (1) =&, E,(0) . .1

Let @(¢) be the angular velocity vector and w,(¢) be its components in the body frame, so that,
adopting here and in the rest of the paper (except where otherwise noted), the convention that
repeated indices on different symbols are to be summed over, @(r) = w,()E (¢). If we let L
be the angular momentum, and I be the moment of inertia tensor, then L = le, or

L = I sws(NE, (1), (5.2)

where /5 are the components of I in the body axes, and thus do not vary in time in our rigid
body approximation. Since for our isolated system there are no external torques,

L do (') 28R (1) + w() oE. (') -0 (5.3)
Since the E, are fixed in the body frame,
T" = wxE, = w,€,.,E, . (5.49)

Here ¢,,, is the permutation symbol or Levi-Civita density,? defined to be zero if any two of
its lndloes are equal, and otherwise +1 or —1 according to whether uay is an even or odd per-
mutation respectively of 1,2,3. Using this relationship and Eq. (5.3) we obtain

d:
laﬂ—:‘a + I gwgw,€,yq = 0. (5.5)

For our chosen set of body axes the inertia tensor is diagonal, so this reduces to Euler's equa-
tions of motion for a rigid body free of external torques:

d
=X 4wl = 1,) =0,

L dr




Y

L a1

-

R Y
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P————
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1,,1-:& + @y, (ly = 1) =0, (5.6)

1.%—'— + e,y = ) = 0.

We similarly obtain from Eqgs. (5.1) and (5.4)
d d
ZD;. - ‘,';t. - U‘(”‘D,, - (5.7)

as the equations of motion for D,,.

In order to calculate infrared and Raman rotational and vibrational-rotational spectral band
contours with this classical rigid rotor method, we will show in Sections VI and VII below that
we must separate an ensemble average of an autocorrelation function of the dipole moment u
for the infrared case and the polarizability tensor P for the Raman case into a product of
ensemble averages. One of these ensembie averages is an average over vibrational states of an
autocorrelation function of s or P, and the other is a rotational ensemble average of elements
of a rotation matrix over initial angulsr velocity and initial orientation. With Eqgs. (5.6) and
(5.7) we have at all that we need, in principle, to calculate numerically the rotational ensemble
averages necessary to compute the rigid body rotational part of the spectra, but we can save
ourselves a large amount of computer time and increase our understanding of the dependence
of band shape on the moment of inertia tensor and temperature by doing part of the problem
analytically.

With Egs. (5.6) and (5.7), D(r) is determined by the initial values of D and e, i.c. D°
and &° while & (¢) is determined solely by &°. Thus we write D(¢,D%? and w(r,«%. If the
pair D(¢,D°% &% and w(7,e° together satisfy the equations of motion, then by the isotropy of
space, so do RD(7,D% % and «(r,e°), where R is any rotation. Accordingly we introduce a
rotational Green’s function G(r) with the following definition:

G(1,0% = D(1,1,0% . (5.8

in which 1 is the unit matrix. It follows that since D(¢,D%#° and DG (7,e°) satisfy the same
equations of motion, and have the same initial conditions, then

D(+,D% &% = D%G(1,a") . (5.9)

G(r) may be viewed as a rotational propagator acting on the initial orientation D°. G(¢) is the
rotation matrix as a function of time assuming that the initial body fixed axes coincide with the
space fixed axes. DP then rotates this trajectory to make it coincide with the actual initial orien-
tation. This separation will allow us to analytically perform ensemble averages over initial
orientations, as we will show in Sections VI and VII below. The rotational ensemble average
for G then reduces 10 an ensembie average over o°.

As we will show below in Section V1, in order to calculate infrared spectra we need to cal-
culate the time history of <G,(r)>. Here < > indicates an ensemble average over a
Boltzmann distribution of initial angular velocities. For Raman spectra, as we will show in Sec-
tion VII, we need to calculate the time history of <G,s(¢)G,4(t)>. Using Egs. (5.6) and
(5.7) we could calculate these elements as they stand. A naive approach would be to choose a
grid in e space of initial @'s, calculate the various elements and products of G(¢) for a set of
t’s, weight them by the appropriste Boltzmann factor and then sum. (Note that the equations
of motion for G and D are the same, since they differ only by initial conditions.) Although the
averaging over initial orientations is done analytically, the computer time required for this cal-
culation would be large, but fortunately a variety of simplifications are possibie.

Our ensemble average over initial angular velocity is given by

<6(0> = [ [ Pl o?Gl.e"dwlduldw? , (5.10)

-~
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where G(r) stands for a term of the form G,g(¢) for infrared spectra or G,s(1)G,s(t) for
Raman spectra, and P(w?w?.w) is the Boltzmann probability density, which as we show in
Appendix A, is given by

Plwled) = Cexp[-{-ﬁ[lx,(m,‘,’)zi- L)+ 1,(«..,")21] . s.1)

where C is a normalizing constant, B=(ks T) !, kp is Boltzmann’s constant, and T is the tem-
perature. We can simplify this probability density by changing variables to u, = \/7,.w, (no
summation). We then have

Pluyuy ;) = C'exp[— 18(u? + u? + u,’)] , (5.12)

in which C’ is a new constant. This probability distribution is now spherically symmetric, so we
let u? = u? + u? + u2, and change variables agail: to get

Pu.Q) = C* ulexp[-lfpu’] , (5.13)

where 0 is the solid angle, i.e. orientation, of the vector (u,,u,,4;). The ensemble average
then becomes

* -1g,2
<G> = ¢* fue?*" fGuu,0)dn @, (5.14)
0

where G(t,u,0)) is G(¢) with the initial value &° specified by v and Q. This change of vari-
ables in the probability density means that we separate the integration over the magnitude of &°
from the integration over the direction of @°. This in turn will allow us to use the scaling pro-
perties of @ and G to change the integral over the magnitude of @ to an integral over time,
which will mean that the work in calculating the time history of G(r) and doing the integral will
overiap.

We do this as follows: we first note that solutions to our equations of motion are unique
for given initial conditions. If we have two solutions which have the same initial conditions,
then they must be equal. Using this property, we will derive scaling relations between ¢ and &°,
first for @, and then for G.

Suppose @ (r,a?) satisfies Egs. (5.6). Then it is not difficult to check that aes(at,e? also
satisfles Eqs. (5.6), where a is an arbitrary scalar constant. The initial conditions for e tell us
that ae (0,0° = ae®. By definition, #(7,ae?) is the solution to Egs. (5.6) for the initial value
ae®. We conclude that

w(t,ae?) = awl(ar,e’) . (5.15)

The intuitive picture for this is as follows: suppose we allow two identical rigid bodies to rotate
subject to the same initial conditions, except that one starts with an initial angular velocity in
the same direction as the other but with a magnitude larger by a factor a. This equation tells
us that the two bodies will follow the same rotational trajectory through es-space, except that
one will trace its path more quickly by the factor « and its magnitude will be greater by the fac-
tor . Using this relation we can in a very similar manner show that

Glat, 0 = G(1,a0?) . : (5.16)

This relationship tells us that our two identical bodies with different initial @'s will trace the
same path through orientation space (without scaling the magnitude of G), except that one will
trace its path more quickly by the factor a. We now change variables in Eq. (5.14) from v to
£, with u = u%, where £ is a unitless integration vaﬁable}and where we choose u; to be the

value of u at the maximum of P(u,(1), so that uy = (2/8) °. We obtain

- “lg2e
<G()> = C'{u&f’e aude fG(r,uof.ﬂ)dndf. 5.17)
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where the left integral is over £ from 0 to oo and the right integral carries 2 over the sphere.
Eq. (5.16) tells us that

G(tugt, Q) = G(Et,ugQ) , (5.18)
so we have
- 1guae
<G> = (-2%-)*] were T 4 [ Gerunnranae, (5.19)
°

where we now explicitly write out the normalizing constant C". Written in this way, the work
necessary to compute the time history and to compute the time integral overlap almost com-
pletely.

By various symmetry arguments relating to the molecule’s inertia tensor (which are valid
because in the body frame the inertia tensor is diagonal) we show in Appendix B that the off-
diagonal elements of <G,4(1)> are zero. We also show that the only non-zero elements of
<G g(t)G,4(¢)> are those having indices which come in pairs, i.c., if any index is unique and
not matched by some other index, then <G 4(t)G,4(1)> = 0. Another result of these sym-
metry considerations is that one need only do the integration over the sphere for two adjacent
octants, saving a factor of four in computation time.

We carry out our computation as follows: first we perform the integration over Q). Using
a product Gaussian quadrature method for numerical integration on the sphere,50 we choose a
set of initial directions Q) for the scaled initial angular velocity, restricting the integration to two
adjacent octants. For esch direction 2 we compute the time histories of the elements
G.p(€t,up ) using Eqs. (5.6) and (5.7) and a variable order, variable time step numerical
integrator®! for the single selected ug, adding together the different time histories corresponding
to different Qs with their proper weights,% averaging them together as we proceed to form a
single set of time histories G,,(£f,up) for the infrared case and G,g(£1,uq) G,4(€1,ug) for the
Raman case, i.c., we evaluate

Goalbtit) = [ Goalét,up.0)d02 (5.20)
.m B
G.,(ft.uo)G,;(El.uo) - fG.p(f‘;llo,ﬂ)G,;(f'.l‘o.n)dn . (5.21)

To compute the final <G,,(1)> and <G,4(1)G,(r)> we now integrate the stored
<G, {€t,ug)> and <G,g(£1,up) G, 4(£1,up)> over £ as shown in Eq. (5.19).

These free rotor results may also be extended*?-36 to treat various rotational diffusion
models.

In Fig. 3 we present <G, (1)> for a = x,y,z, along with their Fourier transforms, for
H;0. All relevant parameters for the molecule are calculated ab initio, the moment of inertia
tensor being derived from the ab initio equilibrium geometry. The fact that G,, does not tend
to zero for large t indicates that a3 water molecule can rotate for long periods about its smallest
moment of inertia, which is then reflected in the delta function Q branch seen in its Fourier
transform, also shown in Fig. 3.

VL. INFRARED SPECTRA

We now derive the appropriate equations for ab initio computation of infrared spectral
band contours. While nothing in this section is basically new (for example see the work of
Gordon,16. 18 of Brstos, Guissani, and Leicknam,4%-56 and our earlier papers,|-2 ), we derive
here in one place the various equations needed for the different approaches discussed in this
paper. We first obtain equations appropriate for a simufraneous full quantum force classical tra-
jectory (QFCT) spectral computation, and then derive equations for the separation of vibration
and rotation and the treatment of rotation in a fully classical rigid rotor approximation, for both
simultaneous and sequential approaches. Finally we show the equations for the sequenvial rigid
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rotor, normal mode approximation.

We start with the following linear response theory equations from Gordon!-16.18 giving
the equilibrium infrared spectrum as

alw) = “’"‘"[;1" m”"’l 1), ©.1)

1) = Qo [ dr e <505 (0> , 6.2)

in which a(w) is the absorption cross section as a function of frequency w (not to be confused
with the angular velocity vector @), B=(kg 7)~! in which k, is Boltzmann’s constant and T the
temperature, W=4/2% in which A is Planck’s constant, c is the speed of light, » is the index of
refraction of the medium, /{w) is defined as the absorption lineshape and is evaluated for an
isotropic medium, and </ (0)-&(r)> is the ensemble average of the space fixed dipole
moment time autocosrelation function. We now use tildes over the dipole moment vectors &
to differentiate these space fixed dipole moments from the body fixed dipole moments to fol-
low, which we will write without the tilde, as x. Denoting the Fourier transform by F, we can
write /(w) as

I(w) = Qu)'F(<a0)-a()>), 6.3)
where we define the Fourier transform as

Frin=fesoa. (6.4)
We can also express Eq. (6.2) in terms of the power spectrum!
I{w) = 2%)~'<lim zl S Ua e"""ﬁ,(t)r >, (6.5)
T LT jexy.dr

where an average is assumed over a proper ensemble of trajectories. Given an ensemble of
time histories of & (¢)from simultaneous QFCT calculations, we can use Egs. (6.1) and (6.2) or
(6.5) to compute the infrared spectrum.!

We now take the rigid rotor, vibrator approximation that the dipole moment can be writ-
ten as @&(r) = D()u(s), where @(r) is the space fixed dipole moment, D(¢) is the rotation
matrix transforming a vector relative 10 the body fixed frame 10 a vector relative to space fixed
axes, and u(7) is the dipole moment in the body frame. Expressing this in terms of com-
ponents, we have (again using the summation convention that repeated indices on different
symbols are to be summed over)

i, (1) = D, (Du,(1), (6.6)
Hw) = Qu) ' FI<D,q (0, (0) Dg()ug (1) >} . 6.7)

We note that because of the linearity of both the Fourier transform and the ensemble average,
we are free to take the implied summations in Eq. (6.7) wherever we wish.

We take the rigid rotor, vibrator approximation that vibration and rotation are uncouplied
and uncorrelated, and thus we may take their ensemble averages separately

1) = Q@) F(<D,, (0)D,g(1)> <1, (Opug(r)>) . (6.8)

In order 1o take advantage of the rotational isotropy of space as discussed in Section V
above, we write D(?) as

D(r) = D(0)G(r) . 6.9)
We now have
lw) = Qr)' F l<D..(0)D,,(0)G,,(l)><p.,(0)u,(r)>l . (6.10)

A A b i m mioa-
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Because D is orthogonal, D,,D;, = 3,,, and we have
1) = Q@) FI<Gug(1)> <o (0pug(r) >} . (6.11)

As we show in Appendix B, the off-diagonal components of < G,z(r)> are zero. Accordingly,
we have (making the summation explicit now)

Iw) = Q27)' T FI<Gu()><pu, 0 (0)>) . 6.12)

asx.y,2

This can also be written in the following two ways:62

[w)=Qx)!' T FI<G()>)*Fl<u, 0, (t)>) 6.13)
a=x.y.z
and
lw) =Q2%)"' Y F{<G..(l)>}*<limzl ljdle""u,(l)r> . 6.14)
a=x.y,z eiT B,

where * denotes convolution defined as

S*s @ =00 [ [0 -w)gw)de’ . 6.15)

Egs. (6.1) and (6.13) or (6.14) are appropriate for a simulraneous QFCT rigid rotor, vibra-
tor approach in which we compute the classical vibrational trajectories u(¢) in body fixed coor-
dinates and then convolve with the rigid rotor rotational band shapes F{<G,..(t)>]. In order
to carry out a sequential rigid rotor, normal mode analysis, in Appendix C we evaluate the
vibrational correlation function F{<pu,(0)u,(r)>) in terms of normal coordinate derivatives.
Using those results, we obtain

l(ﬂ) - 2 Fl<G¢u(')>]*

amx.y.2

TP S(w, —w)
2 2 )
[(y.,“) S (w) + jg( P ) 2w, 1 exp(—Alia) | 6.16)

where u is the equilibrium value of ., 8(w) is the Dirac delta function, g; is a normal coordi-

nate, and w, is the frequency of the jth normal mode. The factor to the left of the * in the
convolution is responsible for the bandshapes, while the factor in brackets to the right specifies
the frequencies and intensities of the pure rotational and vibrational bands.

It is necessary to apply a detailed balance quantum correction! to the classical rotational
results for all the approaches given above. The infrared rotational and vibrational-rotational
bands for equilibrium systems thus are corrected by multiplying the intensities by

explgm(Aw)/2) , 6.17

in which 8 = (kg T)"!, kg is Boltzmann’s constant and Aw is the displacement from the rota-
tionless band center (Aw = w for pure rotational). No quantum corrections are necessary for
the vibrational intensities when they are calculated quantum mechanically as in Eq. (6.16). If
the vibrational motion is treated as a classical trajectory, as in Egs. (6.3), (6.5) or (6.14), then
the vi!lmtioml rotational band intensities can be multiplied by the harmonic quantum correction
factor

o
1 -exp(—fTw) ' . ©6.18)

part of which cancels out a similar factor in Eq. (6.1).
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VII. RAMAN SPECTRA

We proceed in the Raman case as we did for the infrared. First we derive equations
appropriate for a simultaneous QFCT calculation, then from this we obtain equations appropriate
for a separation of rotational from vibrational motion and finally we derive the equations for the
more usual rigid rotor, normal mode sequential calculation following the lines described by Bra-

tosiﬁuli:sgli, and Leicknam.49-36 We begin with the linear response equations for Raman spec-
tn ', '

[er,’ Lo ] = @m [ & expl-iwn}<Te[p=@P=()]> .1
%0 -
[x,x,’ ‘Jf;‘%] = @0 [ dr expl-ion) <Te[P= @~ 0)]> , (1.2)

in which Eqgs. (7.1) and (7.2) are the differential cross sections for scattering into angular fre-
quency range dw and solid angle range dQ} for the isotropic and anisotropic Raman spectra,
respectively, weighted by X,, in which 2oX; is the wavelength of the incident radiation, and by
xJ, in which 2aX, is the wavelength of the scattered radiation.3 P is the space fixed Cartesian
polarizability tensor, P = P*1 is its isotropic part, where P* = }(TrP) and 1 is the identity
tensor, P = P — P is its anisotropic part, Tr indicates trace, and it is understood that the
correlation functions in Egs. (7.1) and (7.2) are averaged over the desired ensemble. We now
use tildes over the polarizability tensors P to differentiate these space fixed polarizabilities from
the body fixed polarizabilities to follow, which we will write without the tilde, as P. We can
also express Egs. (7.1) and (7.2) in terms of the power spectrum?

[x,'x,’ 4:2 z ] - 2m)-'<lim T‘f-Lfa et P‘*(r)r> : (1.3)
i T T
3 __diﬂ'_ - -1 H _1_ h —iwl P
lx,*x, Zwd 0 L Q27) §<'an_|. 3; 'w e P,j'(r)r> s (7.4)

where averaging over the proper ensembie of trajectories is assumed. Given an ensembie of
P(¢) time histories from simultaneous QFCT calculations, we can use Egs. (7.1) and (7.2) or
(7.3) and (7.4) to compute the Raman spectrum.

For both the isotropic and anisotropic cases we wish to evaluate time correlation functions
of the form <Tr{P(0)P(r)1>. Employing the summation convention once again, we write

<TrlPOP()]> = <P 0V P, (D> . (1.5
As in the infrared case, we take the rigid rotor, vibrator approximation and write

By(1) = D, ()P,s() D (1) , (7.6)
where P is the space fixed and P is the body fixed polarizability tensor. Then

<Tr(POP(1)]> = <D, (0)P,4(0) D5} (0) D, (1) P, (1) D' (1) >. mn
Separating vibration and rotation as before, we have

<Te[P(OB(1)]> = <D, (0)D;!(0)D,, (1) D' (1) > < Py () P, (1)> . (1.8)

As in the infrared case, we may write D(r) = D(0)G(¢), where G(¢) is the rotational Green's
Function. Making use of the fact that, because rotation matrices are orthogonal,
D} (1) = Dyy(1), we write

<TrBOP()]> = <D, (0D} (0D, (0)G,,(1)D,(0)G,4()> < PgO)P,4(1)>
= <D,,(0)D5}(0)D,,,(0)D,.(0)><G,,(NGs(N><PyOP,4()>. (19

Since D~'(0)D(0) = 1, the unit matrix, Dg(0)D,,(0) = 3,,, and because D is orthogonal,
D,(0)D, (0) = 3,,, and thus we have




<TePOP()])>= <Gy ()G, s(1)><Pg(0)P5(1)> . (7.10)
We now make use of the relation P,g = P8 4 + P25 to write Egs. (7.1) and (7.2) as

[""" Yo ] = 6m)'F{ <Gy (N Gos()> < P (0)8,5P* (1)5,5> | .11
iso

[-x;x’ —“.—',"—] = )~ 'F{ <G, ()G s ()> <P (0P (1)> ) . (7.12)

lm,’ T ] = (6m'F <G, (D Gos()>) *F(<P®(O)8,,P*(N8,,> ). (1.13)

lx,x’ —f—"-] = 27)'F{ <G, ()Gos(1)>) * F<PZ (0) PG (0>} . (7.14)

[1,1:,’ d—:;ln— L = (6m)7'F{ <G, (1) G,4(1)>) *

r—-2‘r

<lim = |f dre~iwt piw (t)lza.,&,,> . (7.15)

2 L.
l"ﬂfs’ ﬁﬁ-] = (22)"'F{ <Gp, ()G (1)>} *

T # T
<'|_l_l'l.l.% lidte"“’?.‘,ﬁ(l)l Ldte""" P;z(t)'> . (7.16)

where the 7 is used here to indicate complex conjugation.

Egs. (7.13) and (7.14) or (7.15) and (7.16) are appropriate for a simultaneous QFCT tra-
jectory calculation in which the vibrational part is computed from P(¢) along trajectories for
rotationless molecules, and the band contours are computed from F{<Gyg,(1)G.4(t)>]). For
our simple normal mode analysis, in Appendix C we evaluate the vibrational correlation func-
tion F(<P,5(0)P,4(+)>} in terms of normal coordinate polarizability derivatives. Using those
results, we obtain

3 _do - =1} ¢ po.1s0r2 P>’ n $w; - w)
[x,x, Zudl L (2x) I(P‘“") ts(«»)+§‘,| 30| 20, T-expCam) (717
['ka.’ d:z:n L = F{ <G, (1)G,s(1)>}*
Py AP% 8w, —w)
0.en p0.an —-—aB J
lr., POS8(w) + ,f-. B o T l (7.18)

where the superscript 0 indicates the value at the equilibrium position, g; is the jth normal
coordinate, and w, is the frequency of the jth normal mode.

Quantum corrections to Raman spectra? can be made exactly as for IR spectra (see the
discussion at the end of Section VI). Egs. (7.1) to (7.4) and Egs. (7.15) and (7.16) can be
quantum corrected? for rotation and harmonic vibration by Egs. (6.17) and (6.18), while Eqgs.
(7.17) and (7.18) require quantum correction only of the rotational motion, using Eq. (6.17).
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VIII. SEQUENTIAL INFRARED AND RAMAN APPROACH FOR H,0

We now compute the infrared band contours for dilute water vapor as an example of an
ab initio sequential approach using the data from Tables I to Il from Sections III and IV and
Egs. (6.1), (6.16), and (6.17) along with the <G,,(1)> eclements evaluated as shown in Sec-
tion V. Rotation is computed classically from the quantum derived equilibrium moments of
inertia and vibration is treated quantum mechanically in the normal mode (harmonic) approxi-
mation to produce the infrared spectral band contours for the water molecule in the lowest rigid
rotor, normal mode approximation. Figure 4 shows the infrared spectral band contours. The
upper trace is generated by broadening the water lines from the Air Force Geophysics Labora-
tory (AFGL) tape®.65 until they merge into band contours. The AFGL data is derived from
experimental measurements with considerable help from theoretical calculations. The lower
trace is our simple ab initio rigid rotor, normal mode computation of the infrared band contours.

The presence of a Q branch in the infrared spectrum depends upon the value of
F{<G..>) st @ =0. The value of a Fourier transform at w = 0 depends simply on the
integral over all time of the untransformed function. If this area is infinite, then the Fourier
transform has a delta function at w = 0. A delta function in F <G,,> becomes a Q branch
when put in Eq. (6.16) if there is a nonzero dipole derivative in the a direction. The area
under <G, (¢)> is infinite if

lim < Go(N> % 0. @D

< G,o(t)> can be viewed as the ensemble averaged autocorrelation function of a unit vector
fixed in the molecule in the direction of the a principle axis. If rotation about one of the prin-
ciple axes is very stable, then condition (8.1) can hold, and there will be an infrared Q branch
associsted with each normal mode that has a dipole derivative component in the direction of
that principle axis. In general, rotation about intermediate moments of inertia is very
unstable,5? so that one would not expect? any Q branches associated with them. Rotation
about the large and the small moments of inertia is generally more stable. Asymptotic formulae
for <G, (1)> are discussed by Guissani, Leicknam, and Bratos.4? For the case of H,0, rota-
tion about the smallest moment of inertia, the y axis as shown in Fig. 1, satisfies condition
(8.1), as shown in Fig. 3. We obtain a limiting value for that axis of 0.344 and thus the
Fourier transform has a delta function of area 2wrx 0.344. Since, as shown in Table 1], the v,
vibration has a dipole derivative component in the y direction, we obtain & Q branch centered
at »;. As can be seen from comparing with the experimental spectra in Fig. 4, this rigid rotor
central Q branch has an intensity that is 100 large. We surmise that various effects present in
real systems, but not in our ideal rigid rotor, serve to alter the long term behavior of
< G,,(1)> and thus the shape of the Q branch in the real spectrum. For instance, the coupling
between vibration and rotation or collisions could serve to disturb the ordered rotational effects
which lead to condition (8.1). This would allow <G,,(1)> eventually to die off, resulting in a
less intense Q branch more in accord with the experimental spectrum. The », symmetric
stretch vibrational rotational band is very small in comparison with the v; band, and is hardly
seen. The », symmetric bend band has no Q branch because its non-zero dipole moment
derivative is along the intermediate moment of inertia axis and rotation about this axis is
unstable. The difference between the theoretical and experimental ratios of the P and R type
branches in the », band is at the moment unexplained. For a different approach, in which an ab
initio dipole moment function is used to compute the strengths of vibration - rotation lines see
the work of Carney.6

Figure S shows the isotropic and anisotropic rigid rotor, normal mode Raman spectral
band contours of dilute water vapor as given by our ab initio calculations, using the data from
Tables I-11I and Egs. (7.17), (7.18), and (6.17) with the elements of <G, (r)G,4(1)> com-
puted as shown in Section V. Note that in our computed Raman spectra, the OH stretching
region has strong contributions from both the totally symmetric stretch », and the asymmetric.
stretch »;, as is seen experimentally, 46 while the infrared stretching region is dominated by the
asymmetric stretch »;. The results for the isotropic case from our calculations are actually delta
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Figure 4. Comparison of measured and computed infrared spectral band contours for H,0 va-
por at 296 K. The “experimental® spectrum is derived by broadening the spectral lines from the
Air Force Geophysics Laboratory tape, and is plotted with its baseline raised by
15x10~-2* m? molecule™! for clarity. The ab initio sequential theoretical spectrum is computed in

- the rigid rotor, normal mode approximation using quantum mechanical normal mode vibration

with a classical calculation (from the quantum derived equilibrium moments of inertia) of the
band shapes arising from rotational motion. The left and tallest peak is pure rotation, the mid-
dle peaks at spproximately 1500 to 2000 cm~! are the v, bending mode and the peaks on the
right at approximately 3500 to 4500 cm~! are the OH stretching, the v, symmetric stretch being
so weak 23 to be hardly seen and the v; asymmetric stretch *yus dominating the stretching re-
gion. The sharp peak in the stretching region of the theoretical spectrum is the v3; Q branch,
which can be seen to be much broader and weaker in the experimental spectrum, indicating
that the real long term vectorial correlation dies off more quickly than the rigid rotor one. Note
that the theoretical vibrational rotational peaks occur at higher frequencies than the experimen-
tal ones because anharmonicity was not included in this normal mode calculation.
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[ Figure S. Ab initio sequential isotropic and anisotropic Raman spectral band contours for H,0
] vapor. The spectra are computed in the rigid rotor, normal mode approximation using quantum
mechanical normal mode vibration with a classical rotational calculation of the band contours
from the quantum equilibrium moments of inertia. The temperature is 296 K. The overall band
| contour in the Raman OH stretch region, 3500 to 4500 cm=', has significant contributions from
e both the symmetric stretch », and the asymmetric stretch »;, in contrast to the infrared OH
3 stretch region, which is dominated by »;. The sharp Q branch peak in the Raman stretching re-
gion is due to »;, while that for the infrared region is due to v;. Due to space limitations, the
heights of the anisotropic Q branches for pure rotation and for v, are cut off at the upper mar-
gin of the figure. The anisotropic spectrum is plotted with a vertical offset of
1 1.5%10-7 m2ster=', in which srer means steradians. Note that the experimental vibrational rota-
! tional bands will be somewhat lower in frequency than the normal mode frequencies shown
here due to vibrational anharmonicity.
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functions at 0, »,, and v»;. There is nothing for »; in the isotropic spectrum because the
corresponding isotropic polarizability derivatives along the diagonal in Table III are zero. We
have broadened the deita functions so as to be able to present them graphically. Although
experimental Raman line spectra of water vapor have been measured,46-48.67.68 the available
experimental band contours 47 are of low signal to noise ratio and make accurate comparison
with our calculations difficult. Water vapor pressurized by an inert gas could provide lines
appropriately broadened and merged into 2 band contour for an experimental comparison with
this calculation. A comparison with quantum theory could be made by broadening the line
spectrum from an accurate quantum calculation.47. 48

Several points can, however, be deduced from the available Raman band contour and line
spectral data,46-48.67.68 A is also seen experimentally,48.67 our pure rotational anisotropic band
at approximately 0 to 500 cm~! is indeed much weaker than the corresponding pure rotational
band2 for N,. Our computed equilibrium polarizability matrix elements given in Table II, which
produce the rotational spectrum, compare quite well with those deduced experimentally by
Murphy, 48 when his axis convention is converted to ours42 by x—z, y—~x, z—y. The com-
puted ¥, bending band at approximately 1500 to 2000 cm™' is indeed much weaker than the OH
stretch region, as is found experimentally,*7-67 and, as well as we can judge from the published
figures, the computed », band shape at least qualitatively resembles that of the observed line
spectrum,47 except that our v, Q branch appears somewhat sharper than the experimental one.
The computed OH stretch region (the 3500 to 4500 cm™! band) also resembles the available
survey band spectrum of Penney and Lapp$’ and, as well as we can judge from the published
figures, also resembies the line spectrum measured by Murphy.46 In Murphy’s line spectrum46
we see the strong »; Q branch as in our spectrum (although the experimental Q branch is
broader), as well as the major contribution from »; with no Q branch as we also observe in our
calculation.

Note that the computed infrared and Raman vibrational rotational bands are at higher fre-
quengcies than the experimental ones because only the harmonic forces were used in this simple
normal mode calculation, and the anharmonicity which we did not compute lowers the real fre-
quencies.

IX. SIMULTANEOUS QUANTUM FORCE CLASSICAL TRAJECTORY APPROACH

In addition to the sequential approach illustrated in the H,0O example presented in Section
VIII above, a simultaneous quantum force classical trajectory (QFCT) approach can also be
taken which is likely t. be more practical for many atom systems. Given the force F, on each
atom / at position r;, from the quantum gradient technique described in Section III, we can in
principle integrate forward one step in time the classical equations of motion

dx,
T’:,i-l.....N O.n

Fi=m,
for the N atoms. (For nearly harmonic systems such as isolated molecules, the trigonometric
polynomial fitting routine of Gautschi®? may be of interest.) Then, given the new set of posi-
tions, we can derive from the quantum part of our calculation new values of the F,, and of
whatever quantities such as g (for the infrared spectrum), and P (for the Raman spectrum) we
wish in addition.

From an ensemble of the time histories u (1) and P(1), we can derive the infrared! and
Raman? spectra, using Egs. (6.1) to (6.5) and (7.1) to (7.4), in either the correlation function
or power spectrum forms. The appropriate simple quantum corrections shown in Egs. (6.17)
and (6.18) are discussed in other papers.!-2.14 As illustrated elsewhere, these techniques can be
extended to calculate the infrared and Raman spectra of non-equilibrium and time dependent
systems.;“v 70 a5 well as the electronic absorption spectra of equilibrium and non-equilibrium
systems.

Because the computational demands of a many atom simultaneous approach are high, care-
ful thought is warranted as to how to efficiently average over the ensemble of interest. For an
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equilibrium ensemble, we can start a series of runs by approximating the initial phase space dis-
tribution in the following manner. If the system in question were completely harmonic, on the
average its total internal energy would be equally divided into kinetic and potential energy. If
we start our atoms at the equilibrium positions, but give them velocities chosen randomly from
a Boltzmann distribution corresponding to twice the temperature, we would give the molecule
the correct distribution of total energy for the true temperature if it were truly harmonic. One
could remove angular momentum by adding on a rotational term to the velocities correspond-
ing to a coordinate system rotating in the opposite direction to the initial angular velocity, and
then rechoose a rotational angular momentum for the system corresponding to the real tem-
perature of interest. For an anharmonic system this is only an approximation; in addition,
starting each run at the equilibrium position for even a multidimensional harmonic oscillator
may not sample all of phase space. One therefore would use this method only for the first
equilibration run. For each run thereafter, one would use the final positions in the previous
run as initial positions, and give a new set of random initial velocities chosen from the
Boltzmann distribution corresponding to the true temperature. After a number of such runs,
the system would be equilibrated at the desired temperature, and one could begin to take data.

An advantage of the simultaneous QFCT ab initio molecular dynamic approach described
above is its simplicity. No separation of translational, rotational, and vibrational motion and no
normal mode approximations are needed. The computation may equally well be carried out for
gases of individual molecules, clusters, liquids, solutions, or solids. Many other measurables
besides infrared, Raman, and electronic spectra may also be computed in a parallel QFCT
manner, by quantum mechanically calculating parameters along the trajectory and then per-
forming the appropriate averages over an ensemble of trajectories. For example, thermo-
dynamic variables such as energy, heat capacity, free energy, and entropy can be computed in a
QFCT manner from quantum evaluation of the potential energy seen by the nuclei and classical
evaluation of the nuclear kinetic energy with averaging over proper ensembles of trajectories. !9
In addition, by keeping track of velocities along the classical paths and power spectral transfor-
mation to velocity spectra, the quantum corrections to these thermodynamic variables may also
be computed.!?

In cases in which the above approach is too demanding in terms of available computer
power, again, as in the sequential case, a rigid rotor vibrator approximation can be made and the
effect of the rotational motions handled entirely classically once the quantum equilibrium
geometry is known. For example, to compute infrared spectra in this way one would use Egs.
(6.1), (6.12) to (6.15), (6.17) and (6.18) and to compute Raman spectra Egs. (7.11) to (7.16),
(6.17) and (6.18), choosing either the convolution or power spectral methods.

X. DISCUSSION AND CONCLUSION

We have shown that a judicious combination of quantum mechanics and classical mechan-
ics can be used to compute ab initio infrared and Raman spectral band contours. Two different
approaches are discussed. In the first, one sequentially solves the electronic and then the
nuclear parts of the Born-Oppenheimer approximation, and in the second they are solved simul-
taneously. We have presented an example at the simplest rigid rotor, normal mode level for the
sequential approach. The accuracy of this simplest approach is not exceptional, but it could cer-
tainly be considerably improved by bringing in effects beyond the rigid rotor, normal mode
level such as centrifugal distortion, vibration rotation interaction (for example Coriolis effects)
and anharmonic effects. In addition, the effects of terms beyond the linear expansion for the
dipole moment and polarizability tensor could be considered.

In developing the methodology for the sequential rigid rotor, normal mode approach, we
have worked out an improved, simple, accurate, and fast technique to compute pure rotational
and vibrational - rotational classical rigid rotor infrared and Raman band contours for any
molecule, including asymmetric tops. Comparison with the pioneering work on asymmetric
rotors by Leicknam, Guissani, and Bratos#%-6 shows agreement at intermediate and higher dis-
placements from the band center, but some quantitative disagreement nearer the band centers
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where we believe we were able to achieve higher accuracy. The overall qualitative picture is the
same, but we achieve it with a simple and rapid calculation which avoids complexities such as
reference to Euler angles and special functions.

We discuss a second simultaneous approach, which we call Quantum Force Classical Tra-
jectory {QFCT), which is more appropriate for many atom systems such as large molecules,
clusters, and liquids. In this latter approach, which closely follows the spirit of our earlier
molecuiar dynamics approaches to infrared! and Raman? spectra, there is no need to separate
vibrational, rotational, and translational motion or to make normal mode approximations. The
generality of the approach is such that it can in principle be applied to gas, liquid or solid sys-
tems, composed of stable or unstable species, in equilibrium or not.!4 The QFCT method could
also be employed to compute other spectral (for example electronic absorption’! ) and transport
properties derivable from correlation functions, to deduce thermodynamic quantities,!? and to
study chemical reactions, as has already been demonstrated by Warshel and Karplus!2 and by
Leforestier.!3 A parallel Monte Carlo approach in which energies are computed quantum
mechanically at each trial step and other measurables computed at the accepted steps might be
used in the computation of parameters which do not depend on momenta.
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APPENDIX A

In the classical statistical mechanics of a rigid body, we are required to calculate equili-
brium averages by integration over phase space, using the canonical volume element
dT = dg'dq?dq’dp,dp,dp;, where ¢®(o = 1,2,3) are coordinates in the rotation group (eg.,
Euler angles) and p, are the canonically conjugate momenta. In practice, it is often easier to
use the volume element dV dl,dldl;, where I, (u = 1,2,3) are the components of the angular
momentum in the body frame, related to the angular velocity by /, = /,,w, (/,, is the moment
of inertia tensor in the body frame and we again in this appendix use the summation notation),
and dV is the invariant volume element in the rotation group. We have not found an adequate
reference for this procedure, so we justify it here.

The connection between ¢ and w is given by the rotation matrix D,,(q) [see Eq. (5.7)]

D, = 2%‘;7(,5’1 @° = w,e0,.D15(a) , (A1)
so that the angular velocity w in the body frame, is related to the configurational velocity ¢ by
0, = teguaDip(q) aDa';f,") i = A @)d (A2)
(The second equality defines the matrix A.) The Lagrangian is

L=1%l,00,, (A3)
so the canonical momenta are

pom Lm0, B Ly h = A, (A4)

e~ g
The canonical phase space volume element is
dT = dq'dq?dg*(det A)dl,dl,dl;
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= dV dl\dlydl; (AS)
» with dV = (det 4)dq'dg?dg®, which, we claim, is the invariant volume element in the rotation
@ group.
B Define the differential forms A, = 4,,dq”, so that d¥ = A\Ajh; (exterior product). The ]
s forms A, are left invariant:
o aD,.(q) N
. A, ™= Awdﬂc ;(,ND,‘(Q)——wO - ,e,,.D,p(q)dD,.(q). (A6)
! For fixed r,
‘ - ASrg) = %eg,.Dm(m)dD:.(m)
g = L¢p,aD; () D;5(q) D (r)dD;,(q) (A7)
r.
[ - %‘ﬂnolﬂ(q)dol-(q) - M(Q) . (A8)
E‘ where we use the orthogonality of D, (). Since the A, are left invariant, so is their exterior
' product dV.
The probability distribution in phase space is dT'exp(—gH), where H is the Hamiltonian.
We have
o H=310, =410, (A9)
and
dl = dyﬂ|d2‘3 - det(l)dVdmldw;dog ’ (A10)
so the averaging procedure of Eq. (5.10) has been justified,
APPENDIX B: SYMMETRY IN THE INERTIA TENSOR
We can take advantage of symmetry in the molecule’s inertia tensor to show that most of
the elements and products of <G> are zero. Consider a rotation R which commutes with the
inertia tensor I, so that IR = RI . We will now show that if & (7,e? satisfies the equations of
motion, then so does Re(7,0%. We have, using the summation notation,

d
log S (Re)g = LgRg,—2 ®1)
d
Raﬁ’ﬁu—:‘f' (B2)
1
- —R,,lww“w,e,,, » (83)
L}
- in which ¢,, is again the Levi-Civita density. Since R is orthogonal, R,.R,, =3§,, and
R.,R,,; = §,,, SO we can write
| IopL Re)g = = Rogh,n:8, ¢ yplruw,0, (B4)
1
X = —R.gRs, Ry R R, € 5l 0,0, . (BS)
' Using the definition of a determinant and the fact that R is orthogonal one can show that
RnﬂRov'Rfy"v'y'ﬁ = &aor detR = €a07 » (36)
: where det is the determinant. This leads to
' | d’(kn)g = ~Ro, R, €00:1 0,0, (B

= ~to0r]r,(RW), (Rw), (B8)
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which is just Eq. (5.5) with Re in place of @. Because w(r,Re? and Re (7,0 satisfy the
same equations of motion and have the same initial conditions, they must be equal, so that
«(t{,Re?) = Ru(r,e?.

We will now show that if the set D(r),@(?) satisfies the equations of motion, then so does
D(/)R-! Re(s). Putting D(¢)R! into Eq. (5.7), we have

2 (DR, = wptgu, Diy e (B9)
= RygRouR,y €5,y RogR, Dy, (B10)
= €garRopwsDiyR,, (B11)
= €,qr; (Rw),(DR7Y),, . (B12)

For any given solution of Egs. (5.6), the solution of Eq. (5.7) is unique, for given initial condi-
tions. When we are dealing with G, however, the initial conditions are always the same:
G (0,09 = 1. By definition, G(7,Re?) is a solution to Eq. (5.7) given that the solution to Egs.
(5.6) is Re®. Similarly, we have just obtained that D(¢/)R"! is a solution subject to the same
solution for @. The initial conditions do not match however, but since D(s)R"! is a solution,
by the isotropy of space, so is RD(s)R-!, which matches initial conditions. This implies that

G(1,Re?) = RG(1,a”)R"! . (B13)

For the infrared case 4%-5¢ we can use Eq. (B13) to show that <G(r)> is diagonal. I in
the body frame commutes with each of the following 180° rotations:

1 00 —l 00 -1 00
o,=10 -1 0}; 01 0]ie:=]0 -1 0]. (B14)
0 0 -1 0 0-1 0 01

For any off diagonal element of G, G, with a#B, (¢,Ga;").g = —G,s (no summation), so
putting this into Eq. (B13)

Gopt,0,0% = -G 41,67 . (B15)
For a Boltzmann distribution of angular velocities equal weight is given t0 @ and o ,@, SO
<G¢5(f)> - -<G¢p(‘)> - 0. a#B "’ (B16)

and we conclude that <G(1)> is diagonal.

In order to calculate Raman spectra we need to calculate <G,sG,s>. If some one of
{a.B,7,8} is unique, say B8 (i.e., 8=y, B*a, and B=38), then application of &g as above will
change the sign of G,4G,s and we will get <Go5G. .> = 0. Therefore the indices must come
in pairs, and the nonzero elements are of the form <G>, <G,pGpg,>, O <GooGpyp>.

Because with the application of each of the rotations in Eq. (B14) one can generate the
entire sphere from any two adjacent octants, and one need only do the averaging over the
sphere for two adjacent octants.

APPENDIX C: DERIVATION OF THE VIBRATIONAL CORRELATION FUNCTIONS
Given two observables A and B, we wish to evaluate
F(<A4©)B()>) (o4 ))

in terms of normal coordinates. In this appendix we will not use the summation notation. For
the infrared case we take 4 = B = 4, and for the Raman case 4 = P,; and B = P, We
approximate A and B in a Taylor’s series in terms of normal coordinates g;, keeping only terms
to first order, obtaining

AQ) =A%+ a4 = 40+ T84, () (o))
7 9q
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- B() = B+ AB() = B+ T38 4 (1) )
! ( ' g'aq/ v
, / where A° and B° denote the values of 4 and B at equilibrium, and the derivatives are
' evaluated at equilibrium.

From the fluctuation-dissipation theorem!$ and the Kubo formula, !$ we have
FI<A4(0)B()>) = 28w 48" + 3— prryarw) Fl<[a4(0),aB(N)>), (co
where [] denotes commutation. Using (C2) and (C3) we can write

24 3B
(44(0),A8(1)) Z34 Ba lq;(0),q, (0] . (CS)

In the harmonic approximation, g, (¢) in the Heisenberg representation is the same as the clas-
sical solution for a simple harmonic oscillator

—g T

& (1) = ¢, (0)cosw, 1 + £ ()
o

sinw, ! , (C6)
where p, is the momentum corresponding to the kth normal mode. Using this, we obtain

”i ' lg;(0),q, ()] = 8, %sinu,,: . n
Putting this back in Eq. (C4), and using the relations

iwg ! ~iwyl
et —e "t

) Sinw,! = — (C8)

and

&

r8(w) = fe""" dr (C9)

p— ey

we obtain
FI<A@B()>) = 2n{8()A°8°

1 N _94 9B
t1= exp(—piw) zj:hj 9q, 9q;

For the infrared case, we then have
- Fl<u,Ou, (0>} = 2n[s(@)|u)’

1 JRERSE

[8(0 - ﬂ/) - 5(@ + (IDJ)] . (CIO)

LS A A h s a2

1 A avarae oy
t To o) =5, B, ) 0@~ @) 8(~+~,)l|. 1

o where 0 is the a component of the equilibrium dipole moment, and w, is the angular fre-
4 4 quency of the jth normal mode.

For the Raman case we have
FI<P4P4(>] = 2n(8(w) P3PS,

L + 1 N 3P,z 3P,
- 1 - exp(—-Bfw) T 2w, dq; dgq

where PJ; is the a8 component of the equilibrium polarizability tensor.

Blw - w) - 8w+ w,)]l ' (C12)
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In both cases, the delta functions centered at —w; play no role in our calculations because
the rotational spectrum is very narrow compared 10 w;.
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