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Research has been carried out in the areas of (1) Collision kernels

and laser spectroscopy, (2) Laser-assisted collisions, (3) Beating and

cooling via collisionally-aided radiative excitation (4) Collisional

processes in 4-wave mixing experiments (5) Laser Spectroscopy of Na

(6) Radiative collisions involving surfaces and (T) Two-level problem

plus radiation pulse.

1. Collision Kernels and Laser Spectroscopy (P. Berman, R. Shakeshaft)

In an atomic vapor, a quantity of physical interest is the

collision kernel Wii W(' ) giving the probability density per unit time

that an atom in state i undergoes a change of velocity from '1 to V, owing

to collisions with perturber atoms. For atoms in a superposition of

states i and J there is an alalogous "kernel" Wtj (V'I-) (it need not be

definite) which describes the effects of collisions on atomic state

coherences. The coherence kernel is important in problems relating to

atomic spectroscopy where an external radiation field creates a linear

superposition of atomic states. The coherence kernel specifies the manner

in which collisions modify superposition states; in turn the collision-

induced modification alters the absorptive and dispersive properties of

the vapor. A complete analysis of the line shapes associated with laser

spectroscopy can be achieved only with an understanding of the collision

kernels. Conversely, the line shapes can be used to provide information

on collisional processes occurring within the vapor.

Formal expressions for the collision kernels exist 1 , but limited

progress had been achieved in gaining physical insight into those ex-

pressions for the case when the collisional interactions for states i and

1.-.-
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3 differ appreciably (as they ill for most electronic transition).

Classically, the i and J state populations would follow different

trajectories during a collision, and it is not obvious that a collision

trajectory can be assigned to the atomic coherence (superposition state).

Using arguments based on the uncertainty principle, we have

shorn 2*.3*. e '.5. 6 0 that collisions can be divide, roughly into two

regions. Let b be some characteristic impact parameter in the scattering

0

process. For collisions having impact parameters b<b0 , collisions may

be treated classically leading to classical population kernels and

Y=Ishina coherence kernels. The coherence kernel vanishes owing to a

spatial separation of the state i and J collision trajectories. On the

other hand, collisions having b>b0 must be treated quantum-mechanically.

These collisions give rise to diffractive scattering contributions to

both the population and coherence kernels.

The interpretation based on the Uncertainty Principle represents

the first, simple unifying explanation of the manner in which collsions

affect the physical observables associated with an atomic system. We

have shown that the diffractive velocity changes should depend only

on the active atom mass and not the perturber to active atom mass ratio.

Dramatic experimental evidence for these conclusions has been provided

by a series of experiments carried oux by Hartmann's group at Columbia

using Lis Na and TZ as the active atoms in photon echo experiments.

This work is serving to stimulate experimental efforts by other groups.

eAsterisks on references indicate that the reference Is appended to

this report.
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A comprehensive sumasry T of the physical processes underlying

collisions in atomic vapors and the corresponding implications for

spectroscopy has been prepared in conjunction with lectures given at

the 1982 Les Nouches Summer School in "New Trends in Atomic Physics."

2. Laser-Assisted Collisions (P. Berman, E.J. Robinson)

A review article on Collisionally-Aided Radiative Excitation

(CARE) and Radiatively Assisted Inelastic Collisions (RAIC) was written 8

Zn this article, simple physical arguments were given to explain the de-

tuning and field strength dependence of cross sections for laser assisted

collisions.

Recently, we predicted that final state coherences could be

created by RAIC .9 Motivated by the theory, A. Deaurre performed an ex-

periment to test its predictions. Her results1 0 provided the first ex-

perimental evidence for coherences created by MIC and were in excellent

agreement with theory.

3. Cooling or Beating via CARE (P. Berman)

Several years ago, 32 we predicted that cooling or heating of an

atomic vapor could be achieved using Collisionally-Aided Radiative Ex-

citation (CARE). In Prof. Stroke's laboratory, we are now trying to

carry out an experiment of this type. The reaction under investigation

is

Na (38112) + X + So Na (3p1/2) + X

where X is a rare gas atom.

-3-
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The energy defect between the photon energy IM and the 3Pl2-3Sl12

transition frequency Is provided by a corresponding change in the

translational energy of the Na - rare gas system. To probe this energy

change, the velocity distribution of the excited state ft atoms is moni-

tored using the transition to the WD state. Calculations were made which

indicated that heating of the Na should be detectable by this scheme using

a positive energy defect and heavy rare gas perturbers. Preliminary re-

suits1 2 0 confirm this heating effect. Work on this experiment will con-

tinue into next year.

Ia. Collisional Processes in 4-Wave Mixing (P. Berman)

Zn the past several years, there has been considerable interest in

"Yvwae mixing and in phase conjugate optics. 13 Recently, several attempts

to include collisional effects into the theory of such processes have

appeared. "New", "collision induced" resonances have been predicted and

114
observed. Although there have been some attempts at physical ex-

planations of these resonances, there appears to be room for a more

fundamental understanding of their origin. Moreover, i-vae mixing ex-

periments offer a convenient vehicle for studying the effects of velocity-

changng collisions on Zeeman coherences, a problem that continues to

elude a simple physical interpretation.

In collaboration with Dr. J Lan, we have begun a systematic study

of collision effects in I-w-ve mixing experiments. It is our hope to

- a



provide a coherent picture of the collision-induced resonances and to in-

corporate the effects of velocity changing collisions into the line shape

formulas. Calculations have begun and ve have already concluded that

the standard interpretations of some of the resonances appearing in 4-vave

mixing are in error.

5 Laser Rpectroscopy of Na (C. Feuillade)

Owing to a favorable resonance transition frequency, Na has

been the favorite choice of experimentalists in laser spectroscopic

studies. The fine and hyperfine structure of Ma leads to a multitude

of levels, even in the Ia ground state. There have been no rigorous

calculations that properly incorporate the effects of fine and ryperfine

structure, zolliuional effects and optical pumping effects with Na as

the active atom in a laser spectroscopy experiment. Hovever, it is clear

that optical pumping of the ground state, in particular, can severely

modify the laser spectroscopic line shapes.

Due to the fundamental importance of the Na system in laser

spectroscopy, we have begun a project to include all fine and hyperfine

structure of the 38, 3? and 4D levels of Na, interacting with two laser

fields. Both steady state and transient solutions will be sought, to

clearly isolate the effects of optical pumping. Iventually, collisional

effects will be included. Progress to date includes the development

of a large computer code to include all the relevant levels and allow

for arbitrary polael zation of the laser fields.

_,-5-
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6. Radiative Collisions Involving Surfaces (P. Berman, 1. Robinson)

In collaboration with Prof. Rajan (NYU), we have started some

preliminary studies of atom-surface interactions in the presence of

laser fields. Vhile some problems have been identified, little progress

has been made in developing the theory. Still, in the long term, this

appears to be a fruitful area for investigation.

T. Two-level Atom plus Radiation Pulse (E. Robinson, A. Bambini, P. Berman)

Research continues in the fundamentally important problem of a

two-level system coupled by a radiation pulse. Zn the large detuning limit,

we were able to show that certain classes of coupling pulses having the

same asymptotic Fourier transforms will yield transition probabilities that

are related to each other by a simple scaling transformation. 1 5 0 Methods

for evaluating the transition probabilities in the large-detuning limit

have also been developed.

8. Miscellaneous

Previous work has been published relating to the effects of

collisions on Zeeman coherences U*, the dressed atom picture as applied

to laser spectroscopy i, and the eigenvalue problem for the two-level
pol.18' 9

atom plus radiation pulse problem. In addition, a Coument19 , was

published correcting and clarifying some recent work2 0 yielding sub-

natural line width resolution.

i-6-
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Measurement of a Total Atomic-Radiator-Perturber Scattering Cross Sectli• (a)

R. Kachru,) T. J. Chen, and S. R. Hartmann
Columbia Radiation Laboratory. Department of Physics, Columbia Univoersity, New York, New York 10027

and

T. W. Mossberg
Department of Physics. Harvard University. Cambridge, Massachusetts 02138

and

P. R. Berman
Department of Physics, New York University, New York, New Yor k 10003

(Received 9 June 1981)

From work on the 2S-2P 1/2 transition of atomic 7L, perturbed by noble gases, and use
of the photon-echo technique, the first measurement of a "total" atomic-radiator-per-
turber scattering cross section is reported. The phase-changing, inelastic, and veloc-
Ltv-changing aspects of collisions contribute to this cross section, which is significantly
larger than the corresponding pressure-broadening cross section. Typical velocity
changes are found to be roughly one percent of the mean thermal speed.

PACS numbers: 32.70.Jz, 34.40.+n, 34.90.+q, 42.65.Gv

In most spectroscopy experiments, one moni- parameter collisions. 3 Despite the fact that state-
tors the dipole moment of the system under in- dependent trajectory effects seem to play a cru-
vestigation. The collisional perturbation of opti- cial role in determining the fate of the optical di-
cal dipoles or "optical radiators" represents an poles, for reasons to be discussed below, steady-
interesting problem, since it requires one to un- state spectroscopy experiments are not overly
derstand the way in which collisions affect a su- sensitive to such effects. Ae a result tradition-
perposition state. At first glance, it might seem al theories of pressure broadening, 5 in which col-
than any collision destroys the superposition lisions are assumed to affect only the phases of
state since the states a and b involved in the opti- the optical dipoles, have been successful in ex-
cal transition generally follow different collision plaining these experiments. Only recently has
trajectories. ,62 The notion of distinct trajector- the effect of velocity-changing collisions been put
lea, however, is a classical one which is known in better perspective. 6 To identify clearly the ef-
to fail for large- impact-parameter collisions. fects of velocity-changing collisions on optical di-
Thus the dipole moment or optical coherence is poles experimentally, coherent transient tech-
not necessarily destroyed in such large impact- niques offer unique possibilities.7

902 0 1981 The American Physical Society
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We present here results of a photon-echo study spectral line measurements. Fitting our data by
of 2S-2_P,, Li radiators perturbed by noble-gas a phenomenological collision kernel allows us to

atoms which provide the first comprehensive pic- estimate the average velocity change experienced

ture of the quantum-mechanical velocity-chang- by a radiator in those collisions which produce

ing aspect of collisions.3" We measure a total identifiable velocity changes.

radiator-perturber scattering cross section o Assume that the two photon-echo-excitation

(representing the combined effect of the inelastic, pulses propagate along ; and occur at the times

phase-changing, and velocity-changing aspects of t = 0 and I = T. The phase of a radiator residing at

collisions), and find that it is significantly larger a particular location i in the sample is givena

than the broadening cross sections deduced from (for t>T) by expl-i (W -i. )I, where

,0- o. + 7. 
(1

w0(t') 1(t'9] is the instantaneous oscillation fre-

quency [velocity] of the radiator, and K is the ity-changing effects in which the dipole moment

common wave vector of the excitation pulses. In may be preserved and the small phase changes

the absence of collisions, w(t') and ;(t') are time which occur in these collisions (which for sim-

independent so that o(t. = 2T) = 0 (i.e., Doppler de- plicity we neglect) contribute to the pressure-in-

phasing is eliminated) and an echo is emitted duced shifts in spectral profiles. We can under-

along i. stand the success of traditional theories of pres-

In the presence of collisions, the echo intensity sure broadening despite their neglect of velocity-

1, is degraded by the factor (exp[-iqp(2T)]) 2 , changing effects by noting that collisions with

where the angle brackets indicate an ensemble b > b w generally give rise only to small-angle

average. While a more detailed calculation of the (0 S X /bw << 1, where x is the deBroglie wave-

collisionally induced modification of the echo am- length of Li) diffcactive scattering. The small

plitude will be given elsewhere, we can, roughly velocity changes associated with diffractive scat-

speaking, evaluate this factor by considering col- tering do not significantly modify the output of

lisions to be divided into two groups, i.e., those most steady-state spectroscopic experiments.

having impact parameters, b, less than or great- For large T, however, photon-echo experiments

er than the Weisskop radius bW. 5 For b <bw, can be sensitive to the velocity changes resulting

classical trajectory notions are valid and because from even diffractive scattering.

of the separation-of-trajectories argument, one Thus collisions with b < bw can be viewed as

is led to the conclusion that the dipole moment is "inelasticlike" and accordingiy le~d to a decrease

destroyed in a collision. In traditional pressure- in echo intensity by the factor

broadening theories, phase changes in this re- exp(-4nvur), (2)

gion are large enough to destroy the optical co- where n is the perturber number density, ,

herence. A broadening cross section oB can be = (BkB T/rA )1 2 is the mean perturber-radiator

calculated using either theoretical picture (loss relative speed, k8 is Boltzman's constant, T is

of dipoles because of phase changes or distinct the absolute temperature, p is the radiator-per-

trajectories) and, interestingly, both approaches
leadto he amevale. or ollsios wth ~bw turber reduced mass, and aB is the 7-independentlead to the same value. For collisions with h > br.,, broadening cross section. Velocity-changing col-

the distinct-trajectory argument fails and one

must perform a quantum mechanical calculation. lisions decrease the echo intensity by the factor"

Collisions for which b > b w give rise to all veloc- exp - 4m,, a, (7)], (3a)

where

=cor( - ' fi dT' f . exp(ikT'(Ar,)]g(Av,)d(At',) 1, (3b)

a.0 is the total cross section for velocity chang-

ing collisions, k =I 1, and the collision kernel where

g(Awt) gives the probability of a particular change Oerf(T) = a + (T), (4b)
in the z component of velocity at,. Over all, the

echo intensity varies as and 1e0 is the n = 0 echo intensity. Since the root
n 0exp - 4m (mean square change in Av, is finite for any real-

istic g(As',), o(T) = rT for sufficiently small r

903
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Excitation pulses of parallel polarization, which,
0 - xe depending on r, produce echo signals 10 to 100

K, times larger than pulses of orthogonal polariza-

S2... . tion, were used for long-T measurements, where
-oradiative decay of the 2P,,2 state weakened the

4//, echo signal (by a 1600 times for T= 100 nsec).
Measurements in the intermediate-- regime re-2ro / • Ne(Xl.514J . -vealed no polarization dependence of observed

.- cross sections.
We have measured 1, vs n (maximum n = 1016

- _ -_cm "3) for various fixed T, and usea Eq. (4a) to
He calculate yetrT). In Fig. 1, we plot Oeff(T) VS T

100 - for each noble-gas perturber. We obtained val-
oI 2_ 4 ues of a by using our two shortest-- measure-0 20 40 60 8C 10OO

TInsec) ments of oeff(T) for each perturber and extrapolat-
ing, according to Eq. (5), back to a.f ( = 0) = as.

FIG. I. Plot Of aet f(T) VS T. Error bars represent These values of a are presented in Table I along
statistical uncertainty. At right we show a,. with the values of aG obtained in traditional line-

broadening experiments."0 Except in the case of
He, we find that the measurements are in.good

and agreement.
0,ff(T) =o +aT' (short T). (5) We attempt to reproduce cr.(T) [computed using

our value of a. and Eq. (4b)] and hence C(rvff() by

Here a depends on the details of g(Av,). There- inserting various g(Av,) in Eq. (31). For g(Av,)
fore, aeff(T = 0)-B aB. On the other hand, o(T - o) = (,0)- III exp(- _v,/Uo 2 ), we obtain the solid lines
= a,, which implies that aeff(T - oo) = G1 S uB + o° . shown in Fig. 1. The least-squares-fit values of

The excitation pulses used in our experiment the free parameters a,0 and uo are shown in Table
on the 6708-A 2S-2PI,/ transition of 7Li have a 6- 1. The quality of the fits is quite good. A Lo-
GHz spectral width, a 4.5-nsec temporal width, rentzian kernel of the form g (at?,) = (uo/r)/(uo,
and a peak power of a few watts. The two pulses, + 6V,2) [but with g(av,) = 0 for Av, >>u] produces
optically split from the single output pulse of an a better fit to a.(T) for Li-He collisions, but a
N2-laser-pumped dye laser, were collimated to poorer fit for the other perturbers. These re-
a 4-mm diameter, and directed through a stain- suits, as well as the ratio G,/Ga

0
2 1.0 observed

less-steel heat-pipe-type cell containing Li of in our experiment, are in qualitative agreement
natural isotopic concentrations. The cell, main- with a theory based on a quantum mechanical
tained at 525* 15 K (implying a Li pressure of hard-sphere model of collisions.

10 "' Torr), had a vapor region approximately The derived values of u. and a 0 depend some-
10 cm in length. For reasons described else- what on our choice for g(av,). We note, however,
where,3 we used excitation pulses of orthogonal that our measurements are sensitive to all veloc-
linear polarization in short-T measurements. ity changes Av,>Av, n= 1/kT, x, (7,, is our

TABLE 1. Various cross sections involved in this work (see text). The G and L in parentheses indicate results
obtained with a Gaussian and a Iorentzian collision kernel, respectively.

I (G) r 0 (L) t0 (G) Uo (L) ad a (G) a, W
Perturber () V) ') WA) (cm/see) (cm/sec) (M) (M) (A')

He 99 86(3) 34 49 1060 247 130 133 148
Ne 101 104(4) 47 90 1140 187 150 149 191
Ar 181 164(8) 145 207 1400 340 400 326 388
Kr 206 211(9) 170 236 1320 335 440 376 442
Xe 233 265(10) 200 289 1320 315 510 433 522

aThis work. cRef. 10.bScaled from 628 to 525 K according to (1/T) l '. dRef. 11.
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maximum pulse separation). Our value for Av,"" This work was supported financially by the
is less than the characteristic diffractive veloc- U. S. Office of Naval Research under Contracts
ity change vD=v,xs/'[o,. The fact that the scat- No. N00014-78-C-517 and No. N00014-77-C-0553
tering is diffractive in nature restricts our choice and by the U. S. Joint Services Electronics Pro-
of g(Av,) to functions which are relatively flat in gram under Contract No. DAAG29-79-C-0079.
the region AV, < VD. With this restriction, we do
not expect our derived value of cr.0 to differ great-
ly from those shown in Table I. If a heavier radi- (")Present address: Molecular Physics Laboratory,
ator is used, the corresponding values of uou v0  SRI International, Menlo Park, Cal. 94025.
could be smaller and the region in which velocity 'In the case of transitions between similar levels
changes are seen (i.e., ku0T> 1) might no longer (e.g., the vibrational-rotational levels of a single
be accessible. It is perhaps for this reason that molecular electronic state) collisional phase changes

do not occur, and collisional velocity changes producevelocity-changing effects were not seen in a co- marked effects. See R. H. Dicke, Phys. Rev. 89, 472
herent-transient experiment with 12 as the radia- (1953); C. J. Borde, in Laser Spectroscopy il. edited
tor.' by J. L. Hall and J. L. Carsasten (Spriger-Verlag,

Recent treatments of radiator-perturber scat- Berlin, 1977), p. 121.
tering have shown that the net polarization in a 2P. R. Berman, Phys. Rep. 43, 101 (1978), and Adv.
medium obeys a quantum mechanical transport At. Mol. Phys. 1.3, 57 (1977), and references therein.
equation.1 3,14 This equation contains a loss term 3'Ie first evidence of collisional velocity changes
whose real part, which corresponds to the time affecting an optical radiator Involving dissimilar states

was reported by T. W. Mossberg, R. Kachru, and S. R.rate of change of the polarization's magnitude, is Hartmann, Phys. Rev. Lett. 44, 73 (1980).
given by nv,(o6 + a,)/2, where a. (o) corresponds 4A method of observing the-effect of velocity-changing
to the cross section for ground-state (excited- collisions on the line shape of optical transitions involv-
state) radiator-perturber scattering. Since this Ing three coupled energy levels has recently been pro-
is the only term important to the long-time be- posed 1J. L. LeGouet and P. R. Berman, Phys. Rev.
havior of the photon echo, we equate our o with A 17, 52 (1978)1 ; however, experiments have thus far
(a. + %)/2. failed to detect the effect 1P. Cahuzac, J. L. LeGout,

The cross section a. has been measured by P. E. Tochek, and R. Vetter, Appl. Phys. 20, 83
(1979)1.atomic-beam techniques.11 In Table I, we list, 5Two recent reviews with additional references are

for each perturber, the velocity-selected value W. R. Hlndmarsh and J. M. Farr, Prog. Quantum
of a. obtained at the velocity v,. Our values of Electron. 2, 139 (1972); E. L. Lewis, Phys. Rep. 58, 1
a, =On + a,° , based on both Lorentzian and Gauss- (1980).
ian kernels, are also presented. Since the long- OS. Avrillier, C. J. Borde, J. Picant, and N. Tran
range part of the potential should, to a reason- Minh, in Spectral Line Shapes, edited by B. Wends
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Noble Gas Induced Relaxation of the U 3S-3P Transition where the cons-_,

Spanning the Short Term Impact Regime to the Long Term valuurber T

Asymptotic Regime gas pressure. -n

T.W. Mossberg', R. Kachru*, T.J. Chen, S.R. Hartmann r

Columbia Radiation Laboratory, Department of Physics, Columbia University 
o

538 W. 120th. St., New York, NY 10027, USA, and In fig. (1)" | a Off a a functt

P.R. Berman Of the Li at='-c-
Department of Physics, New York University, 4 Washington Place to a phase cna t

New York, NY 10003, USA collisions occt:
Ulsons have O u

Photon echoes have a Doppler free character which allows one to study eaff On a. Our<

relaxation processes which would otherwise be hidden in the inhomogeniously creases at a ir

broadened spectral profile. It has recently been shown, for example, that Iovels off co-!.

contrary to expection, a radiating atom in a linear superposition of dis-
similar electronic states can undergo identifiable velocity changing col- Echoes in the

lisions [1]. Studies of this nature require an examination of the sub- volume large cv -

Doppler region of the spectral line shape. The effect manifests itself, any aoex :l
In the case of photon echoes, in a dependence of the effective relaxation Preciable fracz

cross section aeff on the excitation pulse separation T. In this paper we have taken in

report measurements in Li vapor where T can be increased into the regime reinforce the

-4 where Oeff once again becomes independent of T. In the limit T-0 we mea- increases and zn

sure c0 which is the phase changing cross section as calculated by Baranger !I proceeds up ta a

while in the large T limit we measure a_ the average total scattering cross
section of the ground and the excited states. Our data at intermediate
values of T is used to determine the form of the scattering kernel and the
average velocity change per collision. These measurements are for the 25
2S-2P superposition states in atomic Li perturbed by each of the noble
gases. For He perturbers the scattering kernel is found to be Lorentzian,
for the other perturbers it is Gaussian.

-t

We use a N2 laser pumped dye laser to generate a 4.5 nsec light pulse 20
at the 6708 P 2S-2P1/2 transition of 

7
Li. The pulse which has a 6 GHz

spectral width is attenuated, split, delayed an amount T, recombined, and

directed into a cell, whose effective length is 10 cm, at 525 ± 15
0
K

containing the Li vapor (at -10-6 torr). For short values of - the polar-
izations of the photon echo excitation pulses were orthogonal in order to
reduce the effects of detector saturation which arose because of the non
instantaneous response the Pockels cell shutters used for their protection.

For a superposition state relaxing at an effective rate reff =nv 
0
eff -to

where n is the perturber density, v is the average relative velocity of the
collision partners and ceff is an effective cross section, the corresponding
echo intensity will decay according to

I - Iexp(-4r eff) (1) S

and since reff varies linearly with perturber pressure P /

1(P) - 1(O)exp(-8P) (2) I

Present Address: Dept. of Physics, Harvard University, Cambridge, MA 02138. o,
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Present Address: Molecular Physics Lab.. SRI International, Menlo Park L
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where the constant B, which we measure directly, is characteristic of the
perturber and the collision process. We determine $ at several discrete
values of T by measuring the echo intensity as a function of the perturber
Sas pressure. The value of Oeif is obtained from

off /nv - BP/4nvr. (3)
Itry

n fig. (1) we summerize our work by plotting all measured values of
a ff as a function of r. A dependence on r arises because each collision
of the Li atom with a perturber gives rise to a velocity change in addition
to a phase change of the Li superposition state. If only phase changing
collisions occured aeff would be independent of T. Velocity changing col-
lisions have a delayed effect which manifests itself in a dependence of

oaff an T. Our data indicates that at the shortest values of T Oeff in-
ly creases at a large and relatively constant rate while at higher r it
Usly levels off considerably.

lie- Echoes in the optical regime (photon echoes) are generally formed in a
volume large compared to the wavelength of the optical transition. Thus

any atom experiencing a veloelty change sufficient to displace it an ap-
* preciable fraction of a wavelength from the position it would otherwise
.on have taken in the phased array which radiates the echo will nt necessarily
. we reinforce the echo signal. As T is increased the resulting displacement

increases and the effect of a particular velocity change is enhanced. This
ea proceeds up to a point that being when T is so large that all atoms experi-
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ewing a velocity change are effectively eliminated from the echo formation An alternatq w.
processes. The data of fig. (1) at .large T shows this effect clearly in a function of t, se,
the weakening dependence of oef f on T.

In what may be called the collision kernel approximation Flusbarg [3] (af  0 )
has shown that deff may be expressed as -°0 V

T

S0 + a [I-(lIr) I dt i(kt)] (4) and we should ohtii.
yieldsao0 + 0. -.

where 0(ov) is the phase changing (velocity changing) cross section and with g(O). The al-..,
calculated from tne .

g(kt) = i-ezp(ikt6v) S(Av) d(Av). (S) Supported financl
- N00014-78-C-517 and

The collision kernel g(v) gives the probability of a particular change Av Electronics Program

In the component of the velocity along the laser pulse direction. For

aT I< k A : 6of *0  22 2
- o 0 +~~kr liv>(6)

s00-
2

Where 'lAv > is the second moment of the collision kernel. For kr >> I

0
eff " a 0 [ -w g(O)/2kT] (7) j 40

where g(O) is the amplitude of the collision kernel at Av - 0.

Our data at short T does not fit (6) well, shorter excitation pulses -3

would have been required to enter the regime where this approximation is

valid. Our data does suffice however to use (6) to estimate 00 and we

find that except for He we agree to within a few percent with measurements 
0611W

of 00 made from line broadening experiments (4]. Our estimate of o0 for qrsbKr)

He runs -10% high. 200
orb (Ar)

The solid line curves of fig. (1) were obtained using an explicit form
of the collision kernel. For all perturbers except He we have used a
Gaussian kernel2I

$(Av) - (lIrff u0)exp(-A
v 

2/u (8)

while for He we have used the Lorentzian kernel -O0__0 __0

S(AV) - (uo/)/(uo + &v). (9) EXCITA20 ON

We vary u0 and ov to obtain the best fit. All relevant parameters are

tabulated in table 1.
REFERENCE

Table 1

Perturber v 0 a a0+0 v (from fig.2) 1. T.W. Mossberg. R.
r 02. Michel Barangr,

E 99 12 49 f2  148 X2  247 cm/sec 146 3. A. Flusberg, Onc.
Ne 101 47 148 1140 146 4. N. Lwin, Thesis f-

Ar 181 145 326 1400 338 by E. L. Lewis,
Kr 206 170 376 1320 356
Xe 233 200 434 1320 - 434
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oTlition IAn. alternative proceedure for presenting our data is to plot a T asly In a funfction of T. see fig. (2). in which case we expect that from

g (3). a eff , a0+av) - o, Wg(0)/2k (0

(k) and wa should obtain an asaumptotic fit to a straight line whose elope
yields ao + av - a- and whose negative intercept yields the product of Ov

a and with g(O). The values of aOO+0v - a- so obtained are compared with that
calculated from the data of table 1.

(5) Supported financially by the U.S. Office of Naval Research (Contracts
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Collisional processes occurring within an atomic vapor can be conveniently described in
terms of collision kernels. The population kernel Wa'--V) gives the probability densi-
ty per unit time that an "active" atom in state i undergoes a collision with a perturber
that changes the active atom's velocity from V' to V. For active atoms in a linear super-
position of states i and j, there is an analogous coherence kernel Wtj(V'-V) (i/J) re-
flecting the effects of collisions on the off-diagonal density-matrix element py. In this
work, we discuss the general properties of the collision kernels which characterize a two-
level active atom which, owing to the action of a radiation field, is in a linear superposi-
tion of its two levels. Using arguments based on the uncertainty principle, we show that
collisions can be divided roughly into the following two categories: (1) collisions having
impact parameters less than some characteristic radius which may be described classically
and (2) collisions having impact parameters larger than this characteristic radius which
give rise to diffractive scattering and must be treated using a quantum-mechanical theory.
For the population kernels, collisions of type (1) can lead to a large-angle scattering com-
ponent, while those of type (2) lead to a small-angle (diffractive) scattering component.
For the coherence kernel, however, assuming that the collisional interaction for states i
and j differ appreciably, only collisions of type 12) contribute, and the coherence kernel
contains a small-angle scattering component only. The absence of a large-angle scattering
component in the coherence kernel is linked to a collision-induced spatial separation of
the trajectories associated with states i and j. Interestingly enough, the width of the dif-
fractive kernel, as measured in the laboratory frame, is found to be insensitive to the per-
turber to active-atom mass ratio. To illustrate these features, a specific calculation of
the kernels is carried out using a hard-sphere model for the scattering. The relationship
of the present description of collisions to that of traditional pressure-broadeniag theory in
which trajectory separation effects are ignored is discussed. It is explained why tradition-
al pressure-boadening theory correctly describes collision effects in linear spectroscopy,
but fails to provide an adequate description of some saturation spectroscopy and photon-
echo experiments in which velocity-changing collisions associated with the coherence ker-
nel play a significant role. An expression for the collisionally modified photon-echo am-
phitude is derived which clearly displays the role played by velocity-changing collisions as-
sociated with the coherence kernel.

I. INTRODUCTION various spectral lines. In low-density atomic va-
pors, the linewidth is determined mainly by the

Emission and absorption spectra have tradition- Doppler effect (i.e., atoms moving at different
ally provided the blueprints from which most of velocities absorb or emit Doppler-shifted frequen-
our data concerning the energy-level structure of cies), although both the natural widths of the levels
atoms and molecules could be derived. The preci- and collisions within the vapor contribute some-
sion of this data is limited by one's inability to what. One of the most exciting achievements in
resolve structure that lies within the widths of the spectroscopy over the last decade has been the
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25 COLLISION KERNELS AND LASER SPECTROSCOPY 2551

development of methods wherein the Doppler possibility of distinct post-collision trajectories
width is partially or totally suppressed. The poses no conceptual difficulties. The scattering for
development of these "Doppler-free" methods in each state i (i = 1,2) is determined by the differen-
both time (e.g., photon-echo) and frequency (e.g., tial cross section u' (0) = I f (0) 12 for the elastic
saturation spectroscopy) domain experiments has scattering of an active atom in state i by a per-
been made possible in large part by the advances in turber atom.'
laser technology. With the removal of the Doppler The populations pu, however, are not the only
broadening, the line shapes increasingly reflect the relevant quantities in considering the interaction of
effects of collisional processes occurring in the va- radiation with matter. The polarization of the va-
por. It is not surprising, therefore, that the pro- por directly influences its absorptive and dispersive
gress in laser spectroscopy has been accompanied properties. If the dipole moment operator of our
by a renewed interest in understanding (1) the two-level atom is 2 and if states I and 2 have op-
manner in which collisions modify the line shapes posite parity, then the polarization of the system is
and (2) the extent to which laser spectroscopy can proportional to (A) =912,021 +'21P12, where Wy is
be used as a probe of collisional processes in va- the ij matrix element of 2 and py is the ij density-
pors. matrix element (i.e., py =ala*, where ai is the state

In order to illustrate the role played by collisions i probability amplitude). Consequently, the absorp-
in atomic spectroscopy, we consider an ensemble of tive and dispersive properties of the medium are
two-level "active" atoms immersed in a low-density influenced by collisional perturbations of the
vapor of "perturber" atoms. The levels of each ac- "atomic coherence" P12 (or p2,).
tive atom (labeled I and 2) are coupled by a radia- Collisions appear to affect P12 in a particularly
tion field. The active atoms undergo binary col- simple way. Since the collision shown in Fig. I
lisions with the perturbers (active-atom-active- leads to a spatial separation of states I and 2, P12
atom collisions are neglected). The collisions are vanishes following the collision. Thus, using a
assumed to be adiabatic in the sense that they pos- classical picture of a collision, one is led to distinct
sess insufficient energy to induce transitions be- trajectories for the populations p I, and P22 and to a
tween the active-atom's levels. Under these condi- vanishing of the coherence P12-
tions, one may seek to determine the manner in While the classical picture of a collision given in
which these elastic collisions affect the physical Fig. I is useful in providing some insight into the
observables associated with the active atoms. effects of collisions on the various density-matrix

The problem can be approached by investigating elements, it is not sufficient to obtain a total pic-
in detail a collision between an active atom and a ture of the scattering. Using arguments based on
perturber (Fig. 1). The active atom, which is the uncertainty principle, we will show that, within
prepared in a linear superposition of its two levels certain limits, the classical picture is valid for
by a radiation field, generally experiences a colli- small-impact parameter collisions. However, for
sional interaction which is different for states I large-impact parameter collisions, the quantum
and 2. From a classical viewpoint, the collisional theory must be used. Quantum-mechanical effects
interaction (acting analogously to a Stern-Gerlach give rise to diffractive scattering contributions for
magnet) separates the populations (conveniently the populations and to nonvanishing values of P12
represented b density matrix elements PI and p22) following a collision.
along the distinct trajectories shown in Fig. I. The discussion of a single collision given above
Since the populations scatter independently, the would be appropriate to a crossed atomic-beam ex-

periment in which the center-of-mass energy is
constant for all collisions. In an atomic vapor,
however, the perturbers have some velocity distri-

A p bution which must be averaged over. For the va-
, ., por, the quantity of interest is the collision kernel

Wv("-V) giving the probability density per unit
time that an active atom in state i changes its velo-
city from V' to V in undergoing a collision with a

FIG. I. Picture of a collision between an active atom perturber. 7 e s ng rate for such colli-
A ad stationary pertutber P. Thereis so obvious cas- simns is denoted by r,(r'). The kernel is propor-
sucal trajectory to associate with the atomic colerence" tional to the differential scattering cros section
P12-
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averaged over the pertuzier velocity distribution It is shown that collisions can be divided roughly
consistent with conservation of momentum and en- into two regions. For small-impact parameter col-
ergy. For off-diagonal density-matrix elements, lisions, the scattering can be given a classical in-
one can also define a "kernel" W12(V'--+f) and terpretation; the distinct trajectories for states I
"rate" r-(V'), although these quantities, now and 2 shown in Fig. 1 then lead to a vanishing of
dependent on f f2, need no longer be positive de- P12 following the collision. On the other hand, for
finite. Formal expressions for W12(V'-*V) and large-impact parameter collisions (leading to dif-
rn(V') have been given,2'3 but there has been, with fractive scattering), the classical picture fails and a
two recent exceptions,"'5 little progress in obtaining quantum-mechanical calculation Of p 2 is needed.
a satisfactory physical interpretation or actual A specific evaluation of the coherence kernel and
evaluation of the "coherence kernel" W 12(V'-.V). 6  rates is made in Sec. III using a model potential
It is the purpose of this paper to provide a simple based on hard-sphere scattering. The various
physical picture of the scattering process that leads features discussed in Sec. 11 are illustrated by this
to an intuitive understanding of the nature of example. In Sec. IV, the role that the coherence
W12(W-V). kernel plays in affecting various spectroscopic line

It has already been noted that collisional pertur- shapes is discussed. The reason for the success of
bations of P12 affect the absorptive properties of a traditional pressure-broadening theories is ex-
medium. Thus, one might imagine that collision plained in this section. Finally, a calculation of a
induced modifications of absorption or emission collisionally modified photon-echo signal is given
line shapes are intimately connected with the in Sec. V. The role played by trajectory effects is
coherence kernel W12(W'---.). Since W12(V'---V) clearly reflected in the expression for the echo am-
is strongly influenced by the trajectory effects plitude.
shown in Fig. 1, it appears that such trajectory ef- For simplicity, the calculations carried out in
fects are critical in calculating the effects of colfi- Secs. U1-V are made assuming a high ratio of per.
sions on spectral line shapes. However, it is well turber to active atom ma. In Appendix A, the
known that traditional theories of pressure calculations are extended to allow for an arbitrary
broadening,7 which totally ignore trajectory effects mass ratio. It is shown that the width of the coher-
of the type shown in Fig. I and consider collisions ence kernel is effectively independent of the ratio of
to produce only phase changes in pl2, have been perturber to active-atom mass and depends only on
very successful in explaining most spectral profiles. the active-atom mass and collision cross section.
How, one may ask, can a theory that ignores tra- It is implicitly assumed throughout this work
jectory separation effects still produce correct re- that an impac approximation is valid. All relevant
sults? It is a second purpose of this paper to pro- frequencies (e.g., collision rates, atom-field detun-
vide an answer to this question. ings, Rabi frequencies) are assumed to be small in

(There is a range of experimental situations comparison with the inverse duration time of a
where trajectory effects are known to be impor- collisioa. The validity of the impact approxima-
tant.t In such experiments, however, the states in- tion implies that only binary collisions need be
volved in the transition (usually vibrational, rota- considered and that these collisions produce a time
tional, or rf transitions) experience nearly identical rate of change for pq which is independent of oth.
collisional interactions and, consequently, follow er contributions to 8Apj /at.
the same collisional bjectoy. Trajectory effects
lead to a narrowing of spectral lines in linear
spectroscopy and to a signal with a unique signa- II. QUALITATIVE PlCrUR OF SCATERING
ture in photon-echo experiments.9 In this paper,
however, we shall be concerned only with situa- Before discussing the effects of collisions on Pi2
tios where the collisional interaction for states I and the correponding cohrence kernel W1( i'

and 2 differs somewhat (the precise conditions are --. V), it is instructive to review some aspects of
given below) as is generally the case for electronic elastic scattering theory. Thus, we shall first con-
transitions. Only recently has an experiment been aider the dati scattering e an active atom in
performed that clearly indicates the importncen of state I. To simplify he disacu we take the per-
trajectory effects for an electronic transition.'O"I turber as stationary tratio of pertuber to active-

In Sec. II, the uncertainty principle is used to atom mam much grmter thm unity), but the re-
obtain a simple physical picture of the scattering- sults of tis section amc pWeuy SM if all vas-

LI!
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ables are taken as those in the center-of-mass sys- the scattering may be considered diffractive in na-
ten. Moreover, we neglect such effects as orbiting, ture and must be described quantum mechanically.
rainbow, and glory scattering which, although im- [For other than purely repulsive potentials, the
portant in certain cases,' 2 are not particularly 0 < Of region also has (relatively weak) contribu-
relevent to the subject matter at hand. tions from some collisions having b < bi ("glory

scattering")."2 As noted earlier, effects such as or.
biting or rainbow and glory scattering are neglect-

A. Population kend ed in this work.)
The above results imply that the collision kernel

The regions of validity of a classical picture of for elastic scattering in state i can be written as the
scattering can be established by using the uncer- sum of two terms corresponding to classical large-
tainty principle. Conider a collision characterized angle scattering and quantum-mechanical diffrac-
by an impact parameter b leading to scattering at tiye scattering, respectively.' 3 There is rec t ex-
an angle 0. For a classical picture to be valid, one perimental evidence that supports this conclusion.4

must have

Ab<b, AO<O, (1) B. Coherence kernel

where Ab and A9 are the uncertainties in b and 8, We are now in a position to discuss the effects
respectively. On the other hand, it follows from of a collision on PI2- The interaction potential is
the uncertainty principle that ApAb >1, where assumed to be state dependent and it is further as-
Ap, is the uncertainty in the transverse component sumed that there are two characteristic lengths bI
of the active atom's momentum. Since Ap, and b2 associated with the scattering for states I
=MmAvu mvAI=*kA8 (in is the active-atom and 2, respectively. For the sake of definiteness,
mass, k mv/i, and u is the active-atom speed), we take b2 >bI. The question to be answered is
the uncertainty principle requires that the following: For what scatteing angles, if any,

kAbAO> 1. (2) may a classical picture be used to describe the e-
wfect of the scattering on P12?

Setting Ab =b and AS=e, one sees that conditions The question must first be clarified since the cri-
(1) and (2) can both be satisfied provided tenon we shall use to judge the validity of a classi-

cal picture is different than that used in the case ofe>> ll~kb. (3 s4nle-Sstt elastic scattering. Scattering for P12

Let b, represent some characteristic range for will be classified as "classical" if the trajectories

scattering by the perturber of active atoms in the associated with the elastic scattering from states I
state . For typical interaction potentials, it fol- and 2 are distinct and nonoverlapping (see Fig. 1).
lows that a classical description of the scattering is A consequence of this classification is that P12 is
valid if zero following any classically described collision,

since the spatial overlap of states I and 2 vanishes
8 >> Of I I/(kb,). (4) as a result of the collision.

In fact, it is well known"- that the quantum- An uncertainty principle argument can once

mechanical expression for the differential scatter- again be used to obtain the classical region. Let el
ing cros section reduces to the corresponding clas- and 62 be the sattering angles associated with

n if cstates I and 2 for a collision having impact param-
effet d of rainbow tteris. eady, Eq. (4) is eter b. The criterion for a classical collision is

meminfnl only if kb, > 1. then

On tk A erhmad, for0<Olonecannolonger Ab<b; AO< 102-9,1 (5)
expect the classical picture of scatein to remsain
appropria. In -a atomic vapor, k is typically of where AO is the uncertainty in 9 for a collision
order 10 and bi is of orde 10 A so that with impact paramete b. The restriction imposed
60j.0.01 << 1. haeffect, the angle Ol sepra the by the uncertainty principle is till given by Eq.
scattering into two distinct regions. For 0 >> 8 (2), which may be combined with Eq. (5) to give

(co espondn to collisions having b <b), the 102-011 > i/(kb) (6)
scattering may be described classically. For
* << 60 (aconoding to ollisions having b > b,) as the distinct trajectory condition.
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Equation (6) can be given a very interesting in- A
terpetatO in terms of a parameter apparing in
conventional theories of pressure broadening. An
active atom in state i sees a potential V(r) pro-

duced by a perturber, where r is the active-
atom-pturber separation. The scattering angle
0t, calculated assuming small-angle scattering, is

f .3 , (r( 

bab
where the integral is along the time parameterized FIG. 2. Effects of collisions on P1b can be rough/)

collision trajectory r(b,v,t). Setting aV,/8b visualized as shown in this figure when kbw=bw/k
- -xb-V (x is the constant of order unity) and >> 1. For collisions having impact parameter b <bw

substituting Eq. (7) into (6), one obtains the dis- (a), the trajectories for states I and 2 are distinct and
tinct trajectory condition 5  nonoverlapping following the collision, leading to a des-

tructionofpft. For collisions with b >bw (b), scattering
f [V.b,t)-V((b,t)]dtJ>K-- (8) is diffractive in nature. The overlap of the diffractive

Af V(b)VbtdIc1scattering cones for states I and 2 leads to nondestrue-

The value of b, denoted by bw, for which the left- tive velocity-changing collisions associated with p12.

hand side of Eq. (8) equals unity is the Weisskopf
radius nf pressure-broadening theory.7 Equation in the vapor. Typically bw 5-10 A for electron-
(8) impties that the maximum impact parameter ic transitions so that kbw= 100>> 1.for which the distinct trajectory condition holds is ~ rfstoss htkw 0 1The qualitative structure of the coherence kernelb _bw; consequently, Eq. (6) is valid only for W12(V'--V) is now evident. In contrast to the po-

b <bw (9) pulation kernels, the coherence kernel vanishes in
the large-angle scattering region owing to the

(distinct trajectory condition). The consistency of separation of trajectory effects. For diffractive
the entire approach requires that scattering, a quantum-mechanical calculation of

kbw >>I . (10) W 12 (V--V) is needed. Thus, the coherence kernel
is effectively nonzero for diffractive scattering

One is led to the following result. For scattering only. The consequences of this conclusion are dis-
angles corresponding to collisions having an im- cussed in Sec. IV.
pact parameter b <bw, a classical picture is possi- In this section, a qualitative picture of the
ble provided that Eq. (10) is valid. These classical scattering process was given. In Sec. I1, a coher-
collisions result in a complete destruction of p12 ence kernel is explicitly calculated assuming a sim-
owing to the separation of trajectories for states 1 pie form for the interaction potential The calcula-
and 2. For diffractive scattering, corresponding to tion serves to illustrate the various features dis-
collisions having impact parameters b > bw, a cussed in this section. The reader not interested in
quantum-mechanical calculation is needed. In this the details of the model-potential calculation can
case, P12 does not vanish following the collision proceed to Sec. IV without loss of continuity.
(see Fig. 2). [Notice that the impact parameter
separating the classical and quantum scattering
domain differ somewhat for the populations and I. MODEL-POTENTIAL CALCULATION
the coherences. The bi associated with the popula-
tions may be calculated using Eqs. (3), (4), and (7).] The qualitative properties of the collision kernels

If kbw < 1, a quantum-mechanical approach is discussed in Sec. U are relatively insensitive to the
needed for all scattering angles. In this limit the form of the interaction potential. Therefore, for
scattering is almost identical for states I and 2 the sake of simplicity, we mme that the state i
(bw =0 for state-independent scattering) and there scattering potential can be represented as an im-
is non-negligible spatial overlap of the state 1 and penetrable sphere of radius b, (with b2 >bt). It
2 trajectories. In this work, we assume that the in- should be noted, however, that the calculations
teraction potentials for the two levels differ suffi- presented below may easily be generalized to spher-
ciently to insure that Eq. (10) holds for most atoms ically symmetric potentials of an arbitrary nature.

4

.1 ___________
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To further simplify the calculations, we assume Using some simple properties of the sherical
that the perturber is stationary, although a general- Bessel functions, one can show that Mis large and
ization of the results of this section to allow for an varie linerly with IforlI< Lj kbj and that
arbitrary active-atoin-to-perturber-mass ratio is ,vj-0very rapidly for 1> L Thus, for I<L1 the
given in Appendix A. This section is organized as temcnann Ue vnsrpdy n vrgst

follws:A. he sattrin amlitue fr hrd- zero (there is no point of stationary phase'$) while,
sphere scattering is given and an exponential ap- 91y
proximation to it, valid for diffractive scattering, is for I >L1 , (e) - 1) oz0. Equation (13) may then
obtained. B. The collision kernel Wu(V'-.-V) and be approximated by"9
the rate l'&V) for this scattering of populations areL
Calculated. C. The cherence kernel W12(V-*V) fM U I+-m )) (4
and the rate r ',(V) are evaluated. D. The cohier- 1-0 2

ence kernel and the rate are averaged over a trans- fly frigtesum (14) into an integral, one
verse velocity distribution 'to obtain a one-fial
dimensional kernel W12(V, -.V,) and rate r -,(U,) iiyotns
that appear in theories of lasw spectroscopy. fj(8)=ibjJ,(kbj8)/9, 0<«(kbj)Y" 3 . 0(15)

The differential cros section

A. Scatan amplitude J()1.IrkJ)19

The caterin amlitue fr elsti of contains a central peak and smaller oide lobes typi-
71tescaterng mpliudeforelatic attrin of cal of the diffration pattern produced by an

an active atom in state j by the perturber is opqeobet Most of the scattering is contained

fi(e) L (iU + -1 e"- )P(cos9 1) i oeo alf ang e8=1j.
ik 1-0 2Equation (15) is valid not only in the diffractive

cone 0<(#j)-', but also in a range (kb)-' <0
where the VI are the elatic scattering phase shifts. <(kb)"3. Inside the diffractive coneEq.0(5)
For hard-sphere acattring, the v/ are equal to can be approximated by

tan_',(kbj)/n,(kb1 )J, fj(9).ikbjexp(-k~bjZI) kbjO~l . (16)

where J, and ui, are spherical essel and Neumann AlhuhE.(6isvidfrifacvecte-
functions, respectively. Atog q 1)i ai o ifatv atr

If 0>(lkb 1"3 (classical region), a stndard ing, if Eq. (16) rather than Eq. (15) is used in cal-
calculation using the method of stationary phs culanhg collision rates and one-dimensional coli-
gieI2.16 sinkernels, the results may differ by as much as

20% from the true hard-spheres values. [The re-
fj(O)= -(bj 1 2)e"'", 9 (Akb)-3 suits differ because the calculations require integra-

(14 tion in a range where Eq. (16) is not strictly
where 1a) valid.) Despite this discrepancy, we shall use Eq.

(16) in subsequent calculations, owing to its simple
#j()=-kbsin 2(12b) analytical form. Given the spirit of this illustra-

*j(9)=-kbiainptive exanmple, the alight errors which are intro-
The diffavitial cossection I fj(8) I ZI bj/14 is duced are not overly significant. For completeness,
just the cloical result for hard-sphere scattering, however, results using the correct amplitude (15)
Thus, for 9 > (kb1)- ", one regain the classical are given in Appendix 3.
result, in agreement with the qugattve discussion
Of Sec. JR.

For small-angle scattering 0 <<1, one can re-
place P,(cosg) by the zero-order Bessel function
JO(I+ T)9).I Wi Vth this, substitution, Eq. 011) be-. a' enl

comesThe population density in velocity space pt( V,t)
fi()-L I+L~2*-)JW+L)).(13) satisfies a tronsport-type eqainin which the ccl-

if 2 2)ho term am ofthefon
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where N is the perturber density and 0 is the angle
apm(vt) between V and V. The delta function ensures con-

at 1U servstion of energy. The collision rate ri(v) is de-
fined as

+ f Wu(V-.V)p.(V',t)d'. r,(v)= f Wu(V--V')dV', (19)

(17) which, together with Eq. (18) yields

The first term on the right-hand side is the loss at fvHN ()
rate ri(v) of population density pu(V,t), while the
second term gives the increase of pu(V,t) resulting where
from collisions which change the velocity from V'
to V. The collision kernel W,('-.V) gives the u,(v)= f if,(v,0) 12dfl. (2Oh)
probabfity density per unit time that a collision is the total elastic state i scattering crow secti
changes the active-atom velocity from ' to V and Equation (20) is in the standard form for a colli-
is related to the differential scattering cross section sion rate.
by3  For hard-sphere scattering, the collision kernel,

WH(V'--V)=Nv Ifi(v,0)I v-2u (v -v'), (18) obtained from Eqs. (12), (16), and (18) is

WHr(V'--*V )= Nv -18v -W')

I bi,/4, 0>> (kbj)_'1 n

J(k~bt4/4)exp(-..Lkzb202), 0(b ).

It contains a part corresponding to classical scattering for 0>> (kb,) - 'I/3 and the quantum-mechanical con-
tribution of diffractive scattering for 0<(kb,) - '. The collision cross section, obtained from Eqs. (19)-(21)
is

2'b 2 (22)

a well-known result for hard-sphere scattering in the high-energy limit. The classical and diffractive scatter-
ing each contribute irb? to the total cross section."

It is instructive to use the optical theorem and Eq. (18) to rewrite Eq. (17) in the form

p, r(V2t) -- [r,(v)+ (v)pu(Vt)+Nv-' ffo(v, )J(v,0)(v -v')p(V',t)dV', (23a)
i at m

r23b 'i [~,) =- C [ri(v)+ rI(v))pi2(V't)

and f(v,O) is a forward-scattering amplitud In
general ri(v) is complex, but, for hard-sphere + f w 12(V'--*V)p, 2(V',t)dV',
scattering (25)

rl(v)=Nv(2jrb?) (24) where
is rem. W 12( V'- V )-Nvf (v)f*2 (uO)u-26(u -v') .

(26)
SC. Coeec hzad It may be noticed that Eq. (25) may be obtained

The collisional time rate of change of the coher- from Eq. (23) by the substitution i (v,0)
ce density is given by21 -. f(ve). The "rate" r"'2(v) associated with the
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coherence kernel is defuned by As predicted in Sec. II, the coherence kernel is
r =f (27a) nonvanishing only in the diffractive scattering

12( fdomain.
-Nvo,'r (V), (27b) Using Eqs. (27) and (30), one can derive a

where velocity-changing coherence cross section and rate

u (v)= ffI(v,eO).(v,O)dt,. (28) w =2b ( (• os2= 2/021 +b 2 )  (31a)

For hard-sphere scattering in the classical region r(v)=Nve. (31b)
0>>(kb) - ' 3, the collision kernel obtained from

Eqs (26) and (12), is For future reference, we also define a "total" cross

W,2(V'-.V)=Nv-'(bjb2/4)8(v -v')e'#(), section 0112 and rate Ii 2(v) by

(29a) O12=- (Or-o 2)-=r(bI +b2), (32a)where 22a

#(0)=2k(b 2-b)sin(0/2). (29b) V1(v)=Nvoi 2 , (32b)

If k(b 2 -b1)>> 1, as aMumed," W12(7'V) and a phase-interrupting cross section oa2 and rate
varies very rapidly with V' and the integral term in r v) by
Eq. (25) averages to zero. Thus, effectivef,
W|2(V'--*V) is zero in the Classical scattering re- o A = 2-- j2=r(b1 +b2)(b +b2), (33a)
gion, a conclusion reached in Sec. II using the dis-
tinct trajectory argument. On the other hand, for rF(v)=Nve . (33b)
diffractive scattering 9 < (kb) - 1, the collision ker-
nel obtained using Eqs. (26) and (16), is [The corresponding values of W (V'--V), 42,

('-)= u--,-,, and 2 obtained using the scattering ampli-
N '' -k tude (15) instead of (16) are given in Appendix B.

X exp[ - 2  +bz 2 ]. (30) They differ at most by ;w2o% from these values.)

D. One-dimeosional coherence kernel

A situation of practical importance in laser spectroscopy involves the interaction of atoms with one or
more single-mode laser fields. Assuming the fields to propagate in the +z direction, one is led to the con-
clusion that, in the absence of collisions, the density-matrix element P12(f,t) may be factored as

P|2(V~t)=p|2('fdp|2(V,t) ,(34)

where V, is a velocity transverse to the z axis. The transverse component of the density-matrix element may
be taken as constant in time since it is unaffected by the atom-field interaction. While this is no longer
riorously true when collisions occur, 2 one might still assume Eq. (34) to hold to a first approximation. In
that cu one can insert Eq. (34) into Eq. (25), and integrate over V, to obtain

aIP 2(U,,t) I
at 2(Vf_" 2(Vt)+ w12(4 -- Vkz. (V.,t)dv., (35)

where the one-(iensional kernel W 2 (v, --'v,) is defined as
We:Co;,-1-.)= f W,2(-f'-V)p,2(V WVddVr, (36)

and the one onal total collision rat is 141(v) , = -Iro,) + IP(v5 )J, wher
rj(V,)-- f r/(wouo',)av, (37)

In additin, a ow. dimensional velocity-changing coherence rate rl(u,) can be defined by

fIYN)- f I f fWIAN-V. (38)
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In order to carry out the calculations implicit in Eqs. (30)- (38), we assume pI 2(V,) is described by a ther-

mal distribution

P12(V )0( 2)-exp(_-vt/u 2 ), (39)

where u is the most probable active-atom speed. Substituting Eqs. (30) and (39) into Eq. (36) and recalling
that k =my/ , one may obtain the coherence kernel

W12(v; -,)!Nbb f vy -v')exp(-v2O/u 29)exp(-v'/u 2 VdV , (40)

where

Jt=Alu ,(41)

0-0 = 2/(b I+b) , (42)

v 2 -v 2 +v2; V,2=v+2  ,  (43)

and

COSO=VViv2 .(44)

The integrals in Eq. (40) are not overly difficult to evaluate. Writing dV, =vtdvd#g and dV; =vdvd#,
one can integrate Eq. (40) over v, to arrive at

f1vd(u (bb p/k2) 2 dq, d, fo v,dvu 2 exp(v2p/uo)exi(-v/u 2 ), (45)
4 fo, ~f0  dq f0 ( 45

where 0 is 0 evaluated at v -=, +v- 2 and terms of order (v-v 2)/u 2 are neglected owing to the dif-
fractive nature of the scattering (0<0o<< 1). For << 1, one can use Eq. (44) to obtain

(v,-v)
2  .

•"_p (46)

After Eq. (46) is substitued into Eq. (45), the remaining integrals can easily be evaluated to yield the coher-
ence kernel

I-21(v,-v)v. I " ;2 Iv(W-+) .W 12(v -v .)---Nav Oj' exp[-(vu- )2/ 2 2exp - I + +

(47)

where u 2 is given by Eq. (31). In terms of dimen- ments.
sionless variables [It is interesting to note that the kernel width

remains of order 6ou independent of the active-
x =(v-v. )/Oou , (48a) atom-to-perturber mass ratio (see discussion in Ap-

Y =V/u'vW/u, (48b) pendix A). As the perturber to active-atom mass
ratio decreases, there is a decrease in the scattering

Eq. (47) may be written angle as measured in the laboratory frame relative
__,2 )iixye. 1+2 + jXy I to that measured in the center-of-mass frame; how.

W12(XV)=N eN'e-e ever, this effect is exactly compensated by an in-
(49) crease in the diffractive scattering cone in the

center-of-mass system [the scattering angle varies
The coherene kernel (47) [or (49)], is centered at as (reduced mass)-1 2]. Thus, the kernel width is

x -(P,- )/Oou -0 and has a width I vs-v, I always of order 0Ou M [m (o 2)
2]- . A low-ms

MH « <<u if I' y < 1. (If Iy I >> 1, the width is active atom must be used to maximize the coher-
SdOriY r /yI.) For yI -Iv. I /u>>l, the encekernel width. Thefactthatthekernelwidth

kWa bsm exponential. The one-dimensional increases with decreasing a 12 is reasonable; smaller
,iP kwad is displayed in Fig. 3 for several obstacles produce larger diffraction cones.]
v a .dp ft is this type of kernel that one ex- The various one-dimensional rates can also be

-> to omI in laser spectrmcopy experi- calculated. From Eqs. (38), (49), and (31) one finds

k.I
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0 =Nu.(y) r() 4Nu+bb42) (54)

b]j+b2 "

0 I
IV. COLLISION KERNELS
IN LASER SPECTROSCOPY

It remains to determine the manner in which the
O.5 collision kernels and rates modify the observables

which are measured in various experiments. The
reason for the success of traditional pressure-0.5 1.5

Sbroadening theories in explaining many types of

spectral line shapes will emerge naturally from this
discussion.

y. 1.0 In order to observe the effects of population ker-
nels, the first step is to selectively excite (or de-
plete) a velocity subset of active atoms in state i.

I 2 This selectivity can generally be achieved by using
a narrow-band laser of frequency 1 to excite a
transition having frequency w. Only those atoms
with velocity v,=(fl-)/K, where K=Kfiis the

y. 2.0 laser propagation vector, will see a Doppler-shifted
frequency that is resonant with the transition fre-
quency. In this manner, one can excite a longitu-

2 3 dinal velocity subset of atoms with velocities v,
X centered at (Ml-w)/K having a width in velocity

FIG. 3. One-dimensional coherence collision kernel space of order uo=y/K, where y is some effective
W1 2(7V --V,) as a function of x =(v,-v )/Gou for width (natural plus collision) associated with the
several values of y = v /u. The kernel is in units of transition.
NuW- (j+y 2? that W 12 =1 at x =0. Only positive Collisions will now modify the population densi-
x and y are shown since W 12(x,y)= W2(-x,y) ty only if the collision-induced velocity changes
= W, 2(x, -y). produced within the velocity-selected state's life-

time is greater than or of the order of u0 . That is,
for collisions to produce noticeable effects, they

r 2Irb b1( = must significantly alter the velocity distribution
(,)=-Nuz(y =Nu2 (y) I b 2 +b 2 J, (5) created in the excitation process. Typically,

1 2 uo/u_0.0l, so that both large-angle and diffrac-

where u,(y) is the value of v averaged over the tive scattering can modify the population density.
transverse velocity distribution, i.e., The population density of the velocity-selected
u,(Y):(0ru2)- 1 f dV,(v, +yIu 2) Ile_,, state may be monitored by measuring the absorp-

tion of a second laser on the same or another tran-
sition containing the level in question.' 3 Such d-

Y I +(a'/2/2)e' 2 [!1 - )1, (51) fects have been observed using both steadystate23

where 4D is the eror . F . (37), and coherent transient'
24 techniques. It might be

(39), (24), (51), the aorntion.Fr s. (33), on bnoted that collision-induced changes in population(39), (24), (51), (32), and (33), one obtains dniiscnas emaue sn tnigdensities can also be measured using a standing-

r )(y)=Nu.,y)oj =Nu,(y)(21rb), (52) wave photon-echo technique.25

r,1(y)='![r(y)+ r,(Y)]--NU(YW2
Cohesace kernel• ,=u,(yt~b +b2)],(53)

It is much more difficult to detect the velocity
and changes associated with the coherence kernel
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W]2(V'--.V) than with the population kernel of a laser field E=Eocosfl't is to produce a
W#(V'--V) owing to two factors. First, the coher- "coherence" p12(V,t) which essentially follows the
ence kernel is limited to diffractive scattering, field dependence, i.e., p,(V,t)=P12(V,t)e +''. 26
whereas the population kernel contains a large- The frequency fl' seen in the atomic rest frame is
angle scattering component that is more easily equal to ftl-Kv for a laser field of frequency (I
detectable. Second, the effective lifetime for coher- and propagation vector K =Kf. Thus, pt2(V,t)
ences is generally significantly smaller than that varies as
for populations (see discussion below); consequent-
ly, there may occur too few collisions within the p12(V,t)= 2(V,t)ee - 'r t , (55)
coherence lifetime to produce a measurable effect.
Therefore, it requires some analysis to determine where P12(V,t) is generally a slowly varying func-
the feasibility of measuring velocity changes asso- tion of V and t. Assuming that 0 2 (0,t) can be
ciated with the coherence kernel, factored as in Eq. (34), one can substitute Eq. (55)

In the rest frame of the active atom, the effect into Eq. (25) and average over V, to obtain

at f W I2(v -v.)e - , 12(v,tdV (56)

which is the analog of Eq. (35). Equation (58a) is precisely the equation used in
We wish to examine Eq. (56) as it applies to traditional pressure-broadening theoriesi '-.Z

linear spectroscopy, saturation spectroscopy, and We are let to conclude that traditional pressure-
photon-echo experiments. To do so, it is useful to broadening theories give accurate results provided
draw some general conclusions concerning Eq. (56). that Eq. (58b) is satisfied. Although the theory
First, there is always some effective coherence life- presented in this work and traditional pressure-
time r associated with Pt2 which is determined by broadening theories lead to the same formal result
the natural and collisional widths of the levels, as when Eq. (58b) is satisfied, the interpretation of
well as the width of the velocity distribution rep- the result is very different in the two theories. In
resented by At2(v,,t) (T- I is approximately equal to our case, it is the separation of trajectories that
the linewidth observed in linear spectroscopy). leads to a destruction rate IVN(v)ftNvbw is (recall
Second, the coherence kernel limits (v, - v I to bw the Weisskopf radius), while, in traditional
values [see Eq. (47)] theories, it is large phase shifts for collisions hav-

ing b < bw which destroy P12. Thus, despite the
Iv.-v.l uGo- u<u, (57a) fact that the neglect of trajectory effects cannot be

(8ar)"fi justified, one is still at liberty to use the results of
-M W )I/2 " conventional pressure-broadening theories,'7 provid-

ad that Eq. (58b) is valid.23 We now anaiyze some

Consequently, if K8ul"<< I and if P 2(v,t) is typical experimental situations to determine wheth-
slowly varying compared with W12 (v, --*v,), the er or not Eq. (58) can be used and to determine
integral term in Eq. (56) may be approximated by under what conditions the velocity changes assoct-

12( if use is made of Eq. (3)Y Thus, ated with the coherence kernel may be detected.
using Eq. (54), one finds Linear spectroscopy. In linear spectroscopy,

*there is no velocity selectivity and AJ2(v,,t) is a
z(U't) ---- - ~r(v)rt2(v1,t), (58a) thermal distribution having width u. The effective
t loa= coherence time owing to this distribution is

provied r=(Ku) - ' at low pressure (leading to a width
t--" -_Ku_!Doppler width) and dereases with in-

K8u-r <<I creasing pressure. Under these conditions, Eq.

I d IdW1 2(V, -- v,) (59b) is always satisfied, implying that lia spec-
P12 dv; W2(V --N.V.) dv. " troscopy may be described using conventional

premur-broadening theories. The net effect of
(58b) collisions is a broadening of the spectral profiles.29

I -
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Saturation spectrosopy. In saturation spectro- absence of collisions and spontaneous decay, the
scopy, one selectively excites a velocity distribution photon echo signal is formed as follows2'.33:
of width UOOz (Y1i2+ r)/K, where Y,2 is the natur- (1) At t =0, a short pulse of radiation (propaga-
al width associated with the 1-2 transition. The tion vector K=Kf) creates a coherence
effective coherence time, determined by the natural
and collisional decay of p12, is of order r=(y12  P12(Z Vk'O ) = C W (V  -i

+IPf-1. Thus, the width of p 2(v,t) cmpred where C is a constant.
with that of Wj2(v, -- v,) is roughly equal to (2) Between t =0 and t =T, the coherence
(Y12 +I12)/Ku, which may be of order unity at evolves freely as
low pressures (rq <Y12 ) but grows with increasing
pressure The quantity K~ur is roughly equal to P12(Z,,t)-CW(v,)e- e
Ku/(y2+ ), which decreases with increasing where w is the transition frequency. As seen in the
pressure. Consequently, Eq. (58b) may be margi- laboratory frame, this frequency is Doppler shifted
nally violated at low lressures but should be valid by Kv,. The Doppler shifts cause the dipoles to
at pressures where 2 >> y12. At low pressures,
the velocity-changing effects could introduce dis- de(hase relative to each other.(3) A second short pulse at t --- T, also having
tortions into the saturation spectroscopy line K =", is chosen to produce a net effect 34 of
shapes. 3D In order to observe deviations from Eq. changing the sign of the (o+Kv,) phase fac-
(38a), systems having large K,3 1 small YV2, and an tor.z 9'3 Thus, at time t =T, following the second
active atom with low mass should be sought. An
attempt to observe velocity-changing effects on Pulse,+vT
optical coherences was recently carried out with Xe PJ2(zvT)C'W(v,)e- e

as the active atom. 32 Although the method used where C' is a constant. For t > T, the coherence
produces line shapes that are sensitive to velocity once again evolves freely as
changes associated with optical coherences, the -I(*+K&,)T i(u+K&,XI-n
value of K (infrared transitions) and the large mass pjz(zv,t)=C'W(v)e e e
of the Xe active atoms were not ideal for observing _j& t(-+KXr-2Tn
the effect. No direct evidence of the effects of =C.W(;)e e (59)

velocity-changing collisions associated with the The dipoles, which dephased in the period
coherence kernel WaS found.3 2  0<t<T, begin to rephase fort> T. Att=2T,

Photon echoes. The photon-echo experiment is they are all in phase an an "echo" signal is emit-
described in more detail in Sec. V. It turns out ted. Any interference of this dephasing-rephasing
that the second inequality in Eq. (58b) is always process or loss of P12 owing to spontaneous decay
satisfied. However, as described below, it is possi- results in a decrease in echo amplitude. Thus the
ble to arrange the experimental conditions such photon echo serves as a sensitive probe of the
that KSur> I. In this limit, Eq. (58a) is no longer coherence P12.
valid and the photon-echo signal reflects the effects Spontaneous decay results in a decrease of P12 by
of velocity changes associated with the coherence a factor exp(-Yi2t) and a corresponding decrease
kernel W, 2(v, -- v3 ). Recently, the first experimen- in the echo amplitude (,yj2 is the natural width as-
tal evidence of this effect on an electronic transi- sociated with the transition). The collisional time
tion was reported .'0  rate of change of p12 given in Eq. (35) also modi-

fies the echo amplitude. When the effects of both

V. PHOTON ECHO spontaneous decay and collisions are incorporated
into the calculation, the resulting expression for the

. fe e echo amplitude produced at t =2T is9'35

A photon-eho expeiment offers an excellent Arn .f W(v,)A (v,,T)dv, (60s)

method for monitoring the coherence P12. In the where

A(u,,T)-Aoexp I-2r,zT-2r12(vs)T+2 f r dt f dv; W, 2(v-.)co@[K(v, -v. )tJ (60b)
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is the contribution to the echo amplitude from and diffractive coherent scattering. The rate of
atoms having velocity v. echo decay, 1'2(v,), in the long-time domain is

Before specifically evaluating Eq. (60b) using the larger than the rate rz(v5 ) in the short-time
kernel (47), we can note several general features of domain.
the result (60b). The width of the coherence kernel As the pulse separation T is increased, the ef-
W12(v, -V,) is roughly 6u =uOo<<u. If fects of diffractive coherence scattering on the
KbuT << 1, the velocity changes associated with echo amplitude become more pronounced. For
the diffractive scattering region produce effects too KfuT>> 1, every scattering event, on average,
small to be detected. In this limit, Eq. (60b) contributes to the collisional exponential loss term
reduces to appearing in Eq. (62).

One may ask why the photon-echo method is
A(v,T)_.A 0exp[ -2[r, 2 -F-r(vz)]T1 , distinctly superior to saturation spectroscopy in re-

KBuT<< (61) vealing these effects since the effective coherence
lifetime Trrl2+r, (vA) 1 is the same in both

where Eqs. (38) and (54) have been used. For cases. The answer to this question lies in the way
times T such that diffractive scattering effects are in which the diffractive scattering affects the
negligible, the loss of echo amplitude arises from respective line shapes. In saturation spectroscopy,
spontaneous decay (Y12 term) and the destruction diffractive scattering produces corrections to
of P 2 produced by the separation of trajectory ef- linewidths of order K8u- since K~u r is generally
fect [Ir2T(v 2 ) termi. less than unity the distortion of the line shape is

On the other hand, if k 8u T > 1, the velocity usually difficult to observe. In photon-echo experi-
changes associated with the diffractive scattering ments, however, diffractive scattering produces
region lead to phase changes in P12 that are large corrections of order k8uT which may be arbitrarily
enough to further reduce the echo amplitude from large. Of course, the effective coherence lifetime is
the value (61) produced by spontaneous decay and playing a role by reducing the signal strength by a
separation of trajectory effects. In the limit that factor exp(-2T/r), which is much less than unity
KuT>> 1, the integral term in Eq. (60b) averages when KbuT>> 1. However, since echo signals are
to zero36 and the echo amplitude becomes intrinsically large, measurements in the region
A (v.,T)=AoexpJ - 2[Y12+ 12(vA) ]TJ where T/,r< 5 are readily performed; such mea-

A+ surements' 0.1t have led to a clear demonstration of

KuT >> 1. (62) the effects of diffractive scattering on coherences.
The spectral resolution of echo signals obtained

The reduction of echo amplitude is now caused by with pulse separations T > I/'Yi2 is less than the
spontaneous decay, separation of trajectory effects, natural width associated with the 1-2 transition.

B. Specific evaluation of echo amplitude

The integral appearing in Eq. (60b) is

I -f dv' W,2(v-.) sin[K(v-v )7"1 (63)
K(v,-v)

If the dimensionless variables x -=(v,-v )/&u andy =v/u.v, /u given in Eq. (48) are reintroduced and
the coherence kernel (49) substituted into Eq. (63), one obtains

l(y,e)=2Nu'uTe-' fa" dxe-'-" ,I(1+y2+x ly I )sin(Ox)/x, (64)

where

O=KuT =Oo(KuT, (65)

and 0o is defined by Eq. (42). The integrals are tabulated 7 and one may write Eq. (64) as

I(y,O)=Nuu"TY(y,e), (66)

where

4 __
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Y(j,,e)=2 1 - (67)

and D, is a parabolic cylinder function. 17 Combining Eqs. (60b) and (63)-(67), we obtain

A (yu,T)=Aoexpi -2[y,+i 2(yu)]T +2NuauTY(y,e)I . (68)

Equation (68) must now be averaged over a Maxwellian distribution in yu to arrive at the echo amplitude
(60a). The integration must be done numerically. For illustrative purposes, we present two approximate
methods for performing this average.

Method . If only a narrow range of velocities is excited by the laser pulse 37 such that I ' I << 1, one can
set y =0 in Eq. (68) and use Eqs. (68), (60a), (51), and (53) to obtain the echo amplitude

A (T)=AoCxp(-2{ ra+Nu,(o)[ -ee-V'"2(o/2)] }T), (69)

where 0 is the error function and u,(O)=u V/2 is the average value of v for v =0.33 We note that

-2jY,2+Nu,(o)(e2+ae202/l2)JT, e<< l
ln[A (7}/Ao]- -_2[1 ,+NU.(O)( z_ v /0)]T, e>> (70)

and recall that O=K&uT.
Method 2. If W(v,) is a Maxwellian distribution having width u, the assumption Iy I << I no longer

holds. As a rough approximation, however, we can average the exponent in Eq. (68) over y rather than the
exponential. In this manne, one finds"

A (T)=Aoexp 1-21r,2+NrTO 2 -0'r 2 1"2 12+)2nl IT ,' (71)

where F=2u /Vi is the average speed and the sum is a representation of the generalized hypergeometric
function 2F3(-,; - . For small and large 0, Eq. (71) may be written

ln[A(T)/Ao]- j_211Y2+NM2+-,oT 3f2/2) T T, e>>1. (72)

The results expressed by Eqs. (70) and (72) are of a quite general nature.8 For <<

In[A (7)/Ao]- -2, 2T - 2N~ujT -2cNIi|K (8u )2T 3, K8uT <<1 (73)

where c is a constant and ff some effective average speed. The T 3 dependence is a signature of velocity-
changing effects. For 0>> 1,

ln(A (Tl/A0]- - 2y 2T- 2Nir 2T - 2c'Nia'c/Kbu, KuT>> 1, (74)
where c' is a constant.

To isolate the effects of collisions, we define a quantity

B(e)- In[A (T)/Ao]+2y2 T/(2NfM T), (75)

which will have asymptotic limits

B()- 101212, e> > 1. (76)

The ratio of B(0) in the high- and low.e limits is

= ( e>> l) .12  (bI+b 2
(7

0 4

' )( 0- 1 2
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where Eqs. (53) and (54) have been used.
As a specific example, we calculate B(O) using the approximation (71) (for which u =F) and find

B(9)-- I + 2 I- - (78)b +2 (2n +l1)(2n +l 51

In Figl. 4, D (0) is graphed for several values of population-velocity distributions pN(V,t) ad the

(b,/b 2 ). For 0>> 1,B() symptoticaly ap- coherence daity pj(V,t) (1/j) produced by the
proaches the ratio . given by Eq. (77). The ratio scattering events. The processes can be character-
9t =04 2/01 v i es from I to 2 as ( b I / b2 ) varies ized by collision kernes Wj(V--a V) ad

from 0 to 1. It should be noted that the general WiS(V'--V), respectively. In this work, we have
conclusions reached in this section are model in- discussed the population kernels W(V'--V), but
dependent. In particular, the echo amplitude have concentrated our efforts in obtaining a physi-

varies as exp(-212T) for short times (KiT cal picture of the coherence kernel Wu(V'--V).
<< 1) and as exp(-212 T for o0 times To do so, we have considered a system of twolevel
(KbuT>> I). active atoms interacting with a radiation field and

The curves shown in Fig. 4 are in qualitative undergoing collisions with perturber atoms. The

agreement with recent experimental results on pho- collision interaction experienced by the atom in

ton echoes in Li perturbed by rare gases." each state was assumed to differ appreciably, as is
Velocity-changing effects were also observed with usually the case for electronic transitions.
Na as the active atom; the Na mass is small Using arguments based on the uncertainty prin-
enough to give rise to a 8u large enough (Eq. ciple, we showed that collisions can be roughly di-
(5Th)] to produce K~uT> I for the pulse separa- vided into two regions. Collisions having an im-

tions in that experiment.' ° In a coherent transient pact parameter less than some characteristic radius
experiment on an electronic transition of 12,0 only may be described classically, while large-impact
the exponential decay of the echo amplitude typical parameter collisions, giving rise to diffractive
of the abort-time domain was observed. The large scattering, must be treated using a quantum-
iodine mass leads to a small 8u [Eq. (5b)]; conse- mechanical approach. As a consequence of this re-
quently; K&UT may remain small for the time sult, the population kernel may be written as the
scales used in that experiment. sum of a large-scale (classical) scattering term plus

a term containing the effects of diffractive scattering.
The collision-induced modifications of the atom-

ic coherences produced by thew two types of cclli-

VL. SUMMARY sions are somewhat more interesting. For small-
impact parameter collisions, there are distinct

When atoms that have been created in a super- nonoverlapping trajectories associated with the

position state by a radiation field undergo elastic scattering for each atomic state. Since then is no

collisions in an atomic vapor, two distinct types of spatial overlap of states I and 2 following such

effects occur. There is a modification of both the ollisions, these collisions destroy P12 and lead sim-
ply to a decay rate for P12. Quantum mechanical-
ly, the cassical sepaation of trajectories is

2 represented by a rapid variation with angle of the
phase of the product of the amplitudes f ,f.S 0.75 Large-impact parameter collisions, on the other

oI hand, lead to overlapping diffmtive scattering for

the two states. Consequently, the coherence kernel
_ 0.0 _ W, 2(V'.-.V) possesses a diffractive component only
o to 0 arsing from these l rge-impact parameter colii-

FIG. 4. Graphof D 5(0) which c racteriza te on. The width of the coherence kernel is effec-

photon-echo uignal N. (73)) as a function a 0-KGUT tively independent of the pertuber to active-atompl~~~toa-a~~~~~bMA ratio..(T) afncio(=
fo b,/b 2-0, 0.5,0.75. The smal horizontl lines on ratio
the right side of the graph indicate the asymptotic value Trajectory effects are seem to play an important

o c (Oe) as- .4 role in determining the colloun-induced chamgs

i Id
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in the coherence P12. The coherence p12 is related importance of velocity-changing collisions associat-
to the atomic polarization, which, in turn, is ed with W 12(V'--*V. If one uses a more realistic
directly linked to the spectral properties of the interaction potential, the resulting expressions must
medium. It sems somewhat paradoxical, there- be evaluated numerically.
fore, that traditional pressure-broadening theories, It should be noted that the semiclassical ap-
in which separation of trajectory effects are proach used in this work is valid only if the de
neglected and in which collisions are assumed to Broglie wavelength of the atoms (in the center-of-
affect only the phases of the optical dipoles, are so mass reference frame) is much smaller that the
successful in describing spectroscopic line shapes. characteristic Weisskopf collision radius bw.
This apparent paradox was resolved in Sec. IV, Moreover, any effects of orbiting or of rainbow or
where it was shown that traditional pressure- glory scattering have been neglected. A rigorous
broadening may be used provided the velocity- discussion of the validity of the semiclassical ap-
changes associated with the coherence kernel are proach has been given by Avrillier, Borde, Picart,
too small to be detectable in a given experiment, and Tran Minh.4 A calculation is in progress
Thus, although the interpretations are different in which is designed to determine the conditions
the two approaches, the results can be identical. In under which our general approach to calculating
linear spectroscopy, traditional pressure-broadening the coherence kernel retains its validity.
theory is always valid, if, as assumed, the collision-
al interaction differs appreciably for the two states
between which the optical transition occurs. Trad- ACKNOWLEDGMENTS
itional pressure-broadening theory is no longer ap-
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APPENDIX A

In Appendix A, the results of Sec. IH are generalized to Allow for an arbitrary perturber to active-atom
nms ratio. The collision kernel is given by2 3

(Al)

The quantities appearing in Eq. (Al) are the product of scattering amplitudes in the center-of-mass system

FU'(v;, IV,-VI ) -f(v, [v, -v' I ).J(v,, -4, 1 ), (A2)

the perturber velocity distribution

W•p (W,2 -12S U' /UI W) •m I
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where u. is the most probable perturber speed, and the reduced mass A. Equation (Al) represents the colli-
sion kernel in the center-of-mass frame averaged over the perturber velocity distribution consistent with con-
servation of momentum and energy.

Integrating Eq. (Al1) over Vand seting

(A4)

one finds

Wq(V'--*V)=N(m/p) 3 f dV, Wp('-T,.+ if)(v,- I V,-if )v-'Foj(v,,I,). (AS)

The angular integrals can be carried without too much difficulty' '41 and one may obtain

,j(V'-.V)=N(m /p)(2),F-' w!," ~+ V q) fo dq ep( -q'/lu)Io(2p,/l,)P((q' + V ,V/)),

(A6)

where

v,=(W'/J V-V'j sin, (A)

0 is the angle between V' and V, and lo is a modified Bess function.
When the exponential approximation to the scattering amplitude (16) is used, one has

a k2 2 2 ! 2 2 2)0
Fyj(v,,) = kbbjexp[ - -Ik, (b +b ) J, (All)

where

i, -'U q, /f WA)
and

9,-2 sin-'(t/2v,) (AlO)

are the k vector and scattering angle, respectively, in the center-of-mas frame. Substituting Eqs. (AS) -
(A 10) into (A6) and assuming 9, << I (diffractive scattering region), we find

N"3 biubjexP[--,9/("°U,)2] exp t-[2 V" if I u-.,.+2+u,(..f/tj),

(All)
where

A,'mA /p,, (A12)
2= 2+U2 (13up- U(AI

and
(t)-8t4/b,+hI) << . (A14)

The varous collision ram defined by Eqs. (19), (27), (32), and (33) are emily calculated starting from Eq.
(Al). One finds

r,(v)-Nv,(vx2rb?2), (AIS.)
r(v)...N ,(v)[v(b t +b'2)], (A15b)

F~j(V)-NsayV) 2sbb (Al~c)I bI+b2 I
r ] )-N,(u | T'7.-..-.--.- T s , Ol I
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where u,(v) is the active-atom perturber relative speed averaged over the perturber velocity distribution, i.e.,

u,(Uz)= f W,(Vp)j 7- V, dV,
=Vr-1/2 ue-_:2[ 1 --21r'I2z -1(1+ 2z)e-2dD(z)], (A 1 6a)

with

z =v/up. (Al6b)

(Note that as u--*0 and --*m, one regains the results of Sec. III. If u -- 0, and Aw-*m. (perturber mass),
W12(V-. --,Th(v)8(V-- '), and u,(upz)-u,(0)=2ir- "2 u.]

To obtain the one-dimensional kernel, one multiplies Eq. (Al) by W(V) and integrates over V, and V-.
The resulting integrals can be reduced to a triple integral5 '"3.4 1 of the form

W -(v.' = , 4,r -'Iu f " ds, f7 dq f dp e -P-) 2exp[ -K-(q2 +q)]F]2((q+p2 +q2)12, '),

(Al7)

where

=ulUP =(rp/m)'1 , (A18)

K=(I +$')I$' (A19)

I=(V-')/u =1 +s", (A20)
2 -2

q2=S7 ( 1-w
2+ps,) 2 , (A21)

and

y =u. (A22)

With the kernel given by the exponential approximation (A), Eq. (Al?) may be integrated to give

X [ +8-2+y2+xy( 1- -)-x 2 ]e- t + (.-x)]

+[-!+/-2+y2Xy~I-f 
2)--x 2]e2[ I-4(y+x)]+2r-,,xe- 

2e -x , (A23)

where

X = I v.-v., I/(APu o), (A24)

y =V. lU ,

Y=Py =vu, /up, (A25)

8o=Ko. (A26)

The kernel (A23) reduces to Eq. (49) in the limit fi- oo and has a width of order 0ou for y I < 1. For
P land yjI <, the effective width of the kernel is of order f0ou =PGO0u =(1+0)1 0ou o0 u. Thus,
regardless of the ratio of perturber to active-atom mass ratio, the kernel width (for I y 1 < 1) is of order

o= 2V2ku/(b2 +b2)1/2

--= 2(21r )*/m ( 2 )' •(A27)

This somewhat surprising result arises from the cancellation of two effects. As mp /m (or 0) decreases,
there is an incream in the size of the diffraction cone in the caiter-of-mass system [recall that Or a (ur) -
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=(I +p-2)1290o]. This effect is compensated by a decrease in the scattering angle as measured in the labo-
ratory frame. Thus, the collision width depends primarily on the active-atom mass and total collision crss
section.

In Fig. 5, the kernel

W12(0--Ou6VOx)=Nu (9o)-'e -p 2, 2 ( +# 2-x 2)[ I -O(x)] +f-' lXe (A2S)

is plotted as a function of

(I +9)'nx -o 1/u9 0 =V,/6U (A29)
for several values of . The P=0. I and f= 10 curves correspond to asymptotic limits of the kanel for the
cases P< I and #>> 1 respectively; thus the kernel width is seen to vary only slightly with p. In practice,
a' normally incress with incresuing , implying a corresponding decrese in the kend width. Smaller col-
lisiom r sectio poduce a lrgr diffractive-scattering coe.

The various one-dimensional rates are still given by Eqs. (AIS) if one replaces v by v, and u,(u) by u,(v,),
where u,(u,) is the relative speed averaged over the perturber and transverse active-atom velocity distribu-
tions, i.e.,

u,(v,)= f W(V,)W(V,) I V-V IV, dV,, A0)

where

V=V, +uf.

Explicitly, 41 one finds

U,(Up)=u, &k,(Ap)+r12t0C +' ~ + 1
/
2 fa dx e X

2 /a'Dcosh(2x /vi)j I -(X Ix5Z) . (A31)

APPENDIX i

In Appendix B, we derive expressions for the various collision kernels and rates using the amplitude (15)
for hard-sphere scattering instead of its exponential approximation (16). Moreover, the crow sections are
also calculated directly using Eq. (II) to illustrate the origin of the distinct trajectory approximation
k(b 2 -bl)>> I.

Using Eqs. (A2) and (IS), we find
Fij(v,,-I) =bbjS72'Jr(k,b(O,)Jj (k,bjo,) , ED

where 0, is given by Eq. (AIO). If Eq. (E) is substituted into Eq. (A6) and the asumption , << I is used,

one may obtain (of. Eqs. (A11)-(A14)]

N fm, jbjbq,

X +,, -(V'i/ti9J, (32)

where 77=(m/pXV-V). Equation (B2) reduces where u,(v) is given by Eq. (A16). If k(b 2 -b,)
to Eq. (All) if b/uk << 1I. >> 1, the 0, integral can be repdsc by an integral

The rate obtained from Eqs. (27), (A ), and (B I) from 0 to o. In that case, for b3 > hb, one finds"7

is
rj'j(vI=Nu,(v) f dnlbb, eT2J(k,b,8,) r"(W - Nu, ( ir6) b, <bj. (B14)

Thus, the various cros setions and rates defined
xJ,(k~b9,), ( in EqL (19) and (31)-(33) are given by (b 2 >b)
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a !(+ 2 sin2 ) )sin2% 2)

LO 1-0

V_ (B7)
b0.5 where

0. 7,) = t an -  [Jh (  k , )  n (  k ) ]  (B S)

is the state-i hard-sphere scattering phase shift.
Using the properties of the spherical Bessel func-
tios,1 one can show that &] )-O exponentially for

066 1 <L, so that the cos(2s/) terms average to zero.
FIG. 5. Graphs of the one-dimensione kernel One is left with

W12(O--*V) as a function of (1 +2)lnx -vluOo for
several values of [J=u/u,=(m,/m)'1. Notice that the Li =kbi (B9)
width of the kernel is essentially independent of 0, (assuming bi <b). Equation (B7) may be rewritten
though its shape changes somewhat. The kernel is in
units of No2( )- and is normalized such that as

W 2(O-,.O)= 1.

I-0

o',-2 - IBMa) +cOB(71/J) V') (BIO)

(B b) Again, using the properties of the Bessel func-

12----b I +b2), (BSc) tions,"7 one can show that the ill are large for

ABld) <L so that the cos(2n,) terms average to zero.
2 , (B~d) One is left with

and r(v)=Nu(vG. The cross section o' can L,
differ by as much as 17% from that calculated us- a-=4rk- 2 Y IsinZ[(j/ 1 -sA)/2]. (BII}

ins the exponential approximation to the scattering 1-0

amplitude [see Eq. (31)]. For i =j, Eqs. (B9) and (BII) yield 19=2rb?, the
Integral expressions for the one-dimensional ker- quantum-mechanical result for high-energy hard-

nels and rates can be easily obtained using Eqs. sphere scattering. For i=*j, one can approximate 7

(36), (39), (Al), (BI), and (27). Without explicitly
writing expressions for these quantities, we note ' I , -- (*r-#)-l(tan#2-tan#,),
that for large enough [1-4 'I or jV,-V,itis (B12)
possible for the population kernel to have side
lobes and for the coherence kernel to go negative where
(the exponential approximation always gives a posi-
tive kernel). This feature is already seen in Eq. #

(B2). Near the "center" of the kernel, Iv,- I Since I1L, << I for most I in the sum,
<uO0, the exponential approximation (16) pro- - i ,
duces a collision kernel that has the same form as L ,

the one calculated using the correct amplitude (15).
To finish this appendix (and article), we calcu- such that

late 01- directly from Eq. (11) without using the
aumption that k(b 2 -bj)>> I. Using the defini- 12 (bz-b)tion I 1)-- ) _-k (b2-b t )+ 

12 (bj b2

S=Re f (B6) (B13)

along with Eq. (11) for fl(O), one esily derives Combining Eqs. (113) and (311) and changing the
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sum to an integral, one finally obtains If b2 =b 1, c2 = 2rb 1, but for k (b 2 -b ) >> 1,
obk2bcmbt2, in agreement with the result (B5b) de-

"C __jb . I__b-bo =wrb2+ k4b-b) b2 ]rived from diffractive scattering only. Thus, if
12 1 (b2-b t) ain 0 2 k (b2 -b) >> 1, diffractive scattering only contri-

k(b 2 -bi )(4b 2 -bi) butes to the coherence kernel.
X Cos ~. (B14)
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29 20 (1957); J. Cooper, ibid. It 167 (1967). ed than 0>>(kb) - .

SFor a discussion of this effect (often referred to as 171. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,
"Dicke narrowing [R. H. Dicke, Phys. Rev. 89, 872 Series,and Products (Academic, New York, 1965).
(1953)], see P. R. Berman, Appi. Phys. (Germany) , IsThere is no point of stationary phase provided
283 (1975), Sec. 5 and references therein. kbje << 1, (see Ref. 16). This condition limits the

P. R. Berman, 3. M. Levy, and R. G. Brewer, Phys. range of validity of Eq. (15).
Rev. A 11. 1668 (1975); B. Comasky, R. E. Scotti, "9If, for 0<< 1, one expands PI(cos9) as
and R. L. Shoemaker, Opt. Lett. 6, 45 (1981).

10 T. W. Mosberg, R. Kachru, and S. R. Hartmann, fJo(x)+(8 /4)[(2x)-'Jl(x)-J2(x)+-L (x)][
Phys. Rev. Lett. J1, 73 (1980).

t1R. Kachru, T. J. Chen, T. W. Mouaberg, S. R. Hart- (.ee Ref. 17), the leading correction to Eq. (14) can be

mann, and P. R. Berman, Phys. Rev. Lett. 42, V2 shown to be of order

(1981). k 1004 << (kb/)- '1 << I ,
12See, e.g., M. S. Child, Molecular Collision Theory

(Academic, London, 1974), Chaps. I -S. where the first inequality follows from the condition
13Population kernels of this type are discussed in A. P. stated in Ref. 18.

Kolchenko, S. 0. Rautian, and A. M. Shalagin, Nucl. %m integrating the classical contribution over solid an-
Phys. Inst. Semiconductor Phys. Internal Report (in- gle, one must exclude a region 0<(kb1 )-' /3. This ex-
published). clusion leads to corrections of order (kb,)-" << 1.

14M. Gorlicki, A. Peuriot, and M. Dumont, J. Phys. 2 1For a smoothly varying potential, the condition
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k(b 2-b)>> I would be replaced by Eq. (8). 32p. Cahuzac, J. L. LeGouit, P. E. Toschek, and R.
22For example, if atoms having a large v. are selected, Vetter, Appl. Phys. (Germany) 2&. 83 (1979).

collisions can transfer some of this "heat" to the 33See, for example, 1. D. Abella, N. A. Kurnit, and S.
transverse velocities. R. Hartmann, Phys. Rev. 141, 391 (1966); M. Scully,

23C. Brechignac, R. Vetter, and P. R. Berman, J. Phys. M. J. Stephen, and D. C. Burnham, ibid. _7., 213
Lett. (Paris) 39, L231 (1978); Phys. Rev. A 11, 1609 (1968); S. R. Hartmann, Sci. Am. 2A 32 (1968); C.
(1978); P. F. Liao, J. E. Bjorkholm, and P. R. Ber- H. Wang, C. K. N. Patel, R. E. Slusher, and W. J.
man, ibid. 2.1, 1927 (1980). Tomlinson, Phys. Rev. I7, 294 (1969); R. L.

24T. W. Hinsch, I. S. Shahin, and A. L. Schawlow, Shoemaker, in Laser and Coherence Spectroscopy,
Phys. Rev. Lett. 2 707 (1971); J. Brochard and P. edited by J. T. Steinfeld (Plenum, New York, 1978), p.
Cahuzac, J. Phys. B 9, 2027 (1976); P. Cahuzac and 197; T. W. Moassberg, R. Kachru, S. R. Hartmann,
X. Drago, Opt. Commun. 24, 63 (1978); T. W. and A. M. Flusberg, Phys. Rev. A 2a, 1976 (1979).
Mossberg, A. Flusberg, R. Kachru, and S. R. Hart- 34For simplicity, we take the pulse to be resonant with
mann, Phys. Rev. Lett. 42, 1665 (1979). the atomic transition, i.e., K =w/c.

25R. Kachru, T. W. Mossberg, E. Whittaker, and S. R. 35A. Flusberg, Opt. Commun. 2., 123 (1979).
Hartmann, Opt. Commun. IL 223 (1979); T. W. 36A somewhat more careful evaluation of Fq. (60b) in
Mossberg, R. Kachru, E. Whittaker, and S. R. Hart- the limit K6uT>> I gives
mann, Phys. Rev. Lett. 41 851 (1979); see also J. L.
LeGouit and P. R. Berman, Phys. Rev. A 2Q, 1105 A(v,,T)=expJ -2[YIz+lr1z(v,)]T

(1979), and references therein.
26We assume that I fl'-o) I /(fl'+ w) << 1, where (a is +2irKW12(V.-Vd)

the transition frequency ("rotating-wave" or resonance The last term follows from Eq. (60b) if
approximation). T

270wing to the narrow width of the coherence kernel, f cos[K(v -v,;)tldt

one can interchange v, and v, at will.
2s1f the condition k,bw >> I is violated [see Eq. (A9) for is replaced by irK &(v -v ).

the definition of k,I owing to a very small perturber 37A smooth Fourier-transform-limited pulse of duration
to active-atom mass ratio (e.g., electron perturbers), Ar excites a velocity bandwith Av =(KAr) - . If Ar
then the neglect of trajectory effects can be justified. is chosen such that Ku < Ai-< T, only a fraction of
However, if k,bw>> I as is assumed in this work, a the Maxwellian distribution is excited.
unified picture of the collisions mechanism is achieved 'STaking y =0 in Eq. (49) implies a Gaussian kernel.
only when trajectory effects are incorporated into the Equation (69) agrees with a related calculation (Ref.
theory. 9) in which a Gaussian kernel was used.

29 For scattering potentials other than hard sphere, colli- 39Rather than directly averaging the exponent in Eq.
sions usually produce a shift as well as a broadening (68), it is easier to perform the averaging in the ex-
of the profiles. ponent of Eq. (60b).

30J. L. LeGou& and P. R. Berman, Phys. Rev. A 12, 52 40R. G. Brewer and A. Z. Genack, Phys. Rev. Lett. 3,
(1978). In this paper, an approximation for the coher- 959 (1976).
ence kernel, similar in spirit to the one derived in this 41P. F. Liao, J. E. Bjorkholm, and P. R. Berman, Phys.
work, was used. Rev. A 21, 1927 (1980), Appendix. Note that a factor

3"Actually, it is combinations of the K's for the various of 2 is missing in the second term in the exponent in
transitions which enter (see Refs. 2 and 3). Eq. (A4) of this reference and that, in Eq. 0 8), one

should replace V2 by V_.
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Collision Kernels and Laser Spectroscopy nonlinear spectroscopy has been examined. It is shown that

P.. Berman collisions can be roughly divided into two categories. Collision,
having impact paramcters less than some characteristics radius h,

hymis Department, New York University. New York. NY 10003, USA can be described classically, while those collisions having impact
parameter greater than ho must be treated quantum-mechanicalih

PACS: 07.65 The large impact parameter collisions are associated with diffrac.
Collisional processes occurring within an atomic vapor can be tive scattering. As a result of this division, the population kernel

conveniently described in terms of collision kernels. One can contains components representing both large-angle and diffrae.
speak about both the population kernels W,t'--v) and coherence tive scattering. However, assuming that the collisional interaction
kernels W('-v) [i=j] associated with the vapor. The popu- for states i and j differ appreciably. thecoherence kernel 1%4V -$I
lation kernel represents the probability density per unit time that is found to have a diffractive scattering component only. Th
an atom in state i undergoes a collision taking it from velocity V to absence of a large-angle scattering component in the coherence
v; in essence, it determines the manner in which collisions affect kernel can be linked to a collisionally-induced spatial separation
the population density Qijv, t). Analogously, the coherence kernel of the i and j state collision trajectories.
can be used to describe the effects of collisions on off-diagonal Laser spectroscopy provides an effective means for measuring the
density matrix elements Jv, ); however, since Wl4v'-.v) is kernels. It is shown that steady-state nonlinear laser spectroscopy
associated with atomic state coherences, it is not positive definite provides a convenient method for determining the large-angle
and has no simple classical analogue. The collision kernels are scattering component of the population kernel, while coherent
directly related to scattering amplitudes and, as such, can provide transient techniques (e.g. delayed saturated absorption. photon
important information on collisional processes occurring within echoes, stimulated echoes) can be used to monitor both the
an atomic vapor. Moreover, new methods involving laser spec- coherence kernel and the diffractive scattering component of the
troscopy enable one to experimentally measure these kernels, population kernel. A discussion of the type of infotrr tion one can
A theoretical analysis of the general properties of the collision hope to obtain from these studies will be given. Moreover. the
kernels has been carried out. In addition, the manner in which connection with traditional pressure broadening theories -'il be
these kernels are reflected in line shapes associated with linear and noted.

Collision Studies of Highly Excited Atomic States ments of broadening in the time domain using pulsed lasers

Using a New cw Four-Wave [, 3J.
Mixing Spectroscopy Technique The analysis begins by assuming a cascade up three level system.

The geometry involves a backward pump, Eb, at frequency Q,
J. F. Lam, D. 0. Steel, ajad R. A. McFarlane (resonant with the first transition at frequency wt,) and a forward
Huthes Research Laboratories, Malibu, CA90265, USA pump, E,, and probe, E. at frequency Q., (resonant with the

second transition out of level 2 at frequency 0)32). We assume that
PACS: 07.65 the forward and backward pumps are arranged to be counterprop-

This paper describes measurements of buffer gas collision rates agating and the probe beam is nearly collinear with the forward

with high lying atomic states on sodium using a new Doppler free pump. We further assume that the level energies in the cascade-up

spectroscopy technique. The approach uses two narrow band three-level system are given by E3 > E2 > E. In this geometry the

stabilized tunable dye lasers at frequencies 0, and 1, in a two physical oirigin of the signal (which is nearly counterpropagating

photon four-wave mixing experiment. With two separate wave- to the probe wave) arises'f,-om a four-wave mixing interaction

lengths we are able to eliminate the usually large intermediate generated by a two-photon ccherencc between levels I and 3

state detuning that results when two photon resonant degenerate induced by the simultaneous interaction of E. and Eb. In collinear

four-wave mixing is used to study a three level system, By geometry tie resonance condition that must be satisfied in order

,apopriatc goometry. the signal in our.approach ix generated by for all four waves to interact with the samc velocity group is given

a pure two-quantum excitation with no stcpwise contribution. We by f 2 -fw3 2=-(k 2 /k1) (f 1-wt). Using the dcns4fy matrix

are thus able to examine collision physics affecting the final state approach and calculating the polarization using perturbation

without being obscured by intermediate state effects. We anti- theory to third order in thc fields (4) we find in the Doppler limit

cipate that this technique will be extremely powerful in investigat- the frequency response is a Lorentzian whose linewidth is given by

ing collisional effects on the Rydbcrg series. The ability for this the two-photon lincwidth y,, plus a normally small correction

technique to produce large signals even for collision studies of factor, (k2/k - I)rj, . which under certain conditions gives rise to

highly excited states overcomes sensitivity problems due to large subnatural linewidths (5].
intermediate state dctuning using degenerate two-photon absorp- Effects of dephasing collisions are included phenomenologically
lion [I]. It also provides an important laser spectroscopy to the density matrix by adding a pressure dependent complex
measurement of collisional effects giving rise to broadening and parameter , to y, *j). Ilence the presence of buffer gas (in the
Level shifts in the frequency domain in contrast to earlier measure- form of ground state noble gas perturbrs) will broaden and shift
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- - 11onec. am, Msomic physics

- -- -new developments within the field. it Is also true that there are
areas Of atomic physics which are so well understood that agreement

-- - between theory and experiment exceeds that in any other field of
- - physics. It is for the letter reasn that an area of Interplay be-

turen: atomic physics andaanotherabranth of physics can be extremely
"ow~fo 1in studying rsoth e heach. Th., for example, retacInely
-a - lnnuleart half-ives. longer then perhaps picoseconds, can he mea-

S-. eared directip. while relatively short nuclear half-lines, Shorter
NAVY PARTICLE COLLISION$ thas perhaps 10-21 seconds. can he determined hy measuring the assoc-

--- - -lted half-idth'. ..t inemediate hal-linen can be difficult to
masure. by either approach. Now the orbital period of a K-nhell elec-
tr- lea. nuleus. of atomic number Z is of order (Z-. 1ZMtZo -) or

L&M Sprch'andRobn Sakebaf' roughly 10-
1
"Zl seconds. O~ne coo then hope to deternine internd-

larr Spt~c ae Sabe Ssabshaitlate nuclear half-lines If one ran find a meancrahi effect xi the

anuclea allf naKsel lcrn oodr for eo-ethe
phireca Deporctment. fte. Yerb Unsiversity sc ttri.s thrug an ani z nteone fss rm faot
New, Tort. MY 10003 U.S.A. le r prjcil Pand a target nulu '.wth at ni umhers Zp and

T*8 setvly. The incident relative l hinet ic nryIfthyslcs Department. Universfty nf Souther. California with N the reduced nuclear mss, is assumed to be t.7r!he neilghbrhod
Lam Angeles, CA 90007 U.S.A. of a resonaxce subh a half-life At. (we will talk of inlzation. but

the ornamest would he the sa for excitation.) We let Piton) -
Pf(!.)be the ratio ofthe prb.iit1 of ho 10 1; inn Ith*

1. MIinOUC-e ON -shel electron i,. the crs of the oclear' catring proes to
the prbbIlity that there is no Ionization during the nuclear %cat-

The speaber S) Is on record a. believing that occasionally. teriog. Ionizatio loxi from the 'n'tial li)steI.It wtth nornalfoed
far al ie obou disadvantages. talks should be given by those wave function #I(;), to the ifaT cnnuum .. ttat wit nr aed

who~~ ~ -a o endel nocd if at al. in the subject to he wave function *fr1. We will find that Pilox) will depend upo tcovered.' Pc'bea n'ae incl.,ude great freedom in the choice of Weveopect a signlitcant effect It the nuc leoc uidth ll sa
taopirs, the lack of a compulsion to c Over every detail of the topics mos t ofithe order of the bind ing energy UK of the i-obelleltrn
chosen, and.an hbecIvI1y (it sor Ignorance) In accreditation. e. equ vnelenctly. if the half-life or rC-dole! Is an lestso the

Ne Ither of ashd be nbowledgeable is two of the three topics we ardor of the orbital por iod of the K-shell electron.
bverh. n To avo:Id pitfals In our treatment of the third. amy.,
metic charge transfefr,.ehv giv"s a completely qgualiitative dia-- m n scectifos I we use capital leIt.nn for nuclear ... gl. A..

tussles ol developments Is that area. met. coordinate (hut not velocities). save tucct lone, u-nd scatter-
Ing amplitudes, and smell letters (Tr the corrrsPonding electrnx I

We have obetonsely chosen areas we believe to he of particular properties. Wie have C,, 7. sod tfh for the loncident,.and errgent

I igntificance. hut having pithed three areas, we cannot begin to give relati mometa of the nud . ~i ood tf for 5he a.-i~e .ee-
the details necessary for a thorough understanding. Our primacy put- gIns. R for the P-T se;arativeond J fo h -T interaction. c, for
pose Is to interest thoe who hans met read the original papers In the Initial f-shell energy of th lectron (nandc o h

doigso. energy In Jrs finel ionled orate. and ; for the T-e- separation.
lie Introduce w via Ef-ff - f" * ef-v i. We still study the prohlem
both In the sem i-ca7sicalI !yppeoximation (SCA) and. In the coviet

It. NUCLEAR RESOANCES AND ?NM PROIABILITY OF 1-SHELL IONIZATION of quantum thtenry. in the distorted w!ave barn appyronmto an ID
We now, list a numberof appeonletions which we will mh vbt h

- If atomic physics has hees enjoyisg a renaissance becasse of SCA and the IOA, lWe swill latr list add ititonal aptproximations so he
made separately in the SCA and DWtA approximations. The approxsa-
timea which are "ade sore for convenience of discussion than owt of

Iris -research was suppergel is part by the Of fits of Naval Research dire necessity are indicated by a star. Wlith the appronimettons we
under Contracts 00001i-7-0317 and NOO0i-77-C-0553 and by the Na- 'Il mobsI the matheatics is trivial; isthe discussom hloss the
timal Se imue Fondatismi under Grsats Iffy79104f3 ad PNTSI-19010. moat difficalt step is the lmtsgretom of an esponential. The hard
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pert is of course the justification of the approximations. 3 4
1)- -R 1 1tJ- Id'.f~rBo'lr,.t)2. 1 r) . (2.2)

1) The recoil of T can be neglected.

ii) The P-e interaction can be treated as a perturbation; a The dependence of afi on a and fi (througs the presence of E(t))
necessary condition for the validity of (ii) is that Zp - ZT .  

Is often suppressed. With the changes of variables t t 6 6t. we
cnrewrite Kq. (2.1) ee

' 111) The e--e- interactions in the neutral target atom can be

gilect ed.
We note that the ejected K-shell electrons have a continuous - .I(-hIMf) la'H;i10) + I(-.O;ii)1

energy spectrum and therefore provide a poor signature for ioniza-

tion; good signature is provided by the X-ray radiation or by one + exp(h.t)(-f ai (0) + I(O;f) (2.3)
of the Auger electron lines which follow the Ionization. (Since the
X-ray in emitted by an electron whose initial state i any of a nu- iwe

bar of p-staten --- priearily the 2p state --- with equally populated
proJettboos of the angular momentum. and whose final %tate is s- 
state, the X-ray rdiation will be spherically symetric.) I(sla;K) n J exp(Iet)hR'J(.et)dt (2.4)

A. The Seni-Clasvical Approxfieaton Ve then hae

iv') The electron will be treated quantu mechanlcally. but we i 3P.0 - a (1.0)l2 (2

asse that the motions of both P and T can be described classically. K m) fi - fit

Indeed, in the lab frame, it follows from assumption (i) that T is

&Iay. st rest . To proceed further, we would ue

e 
) 
We assume further that P has an Impact parlmeter of tero

with respect to T and sovs with constant moentum Kll froKi tiue I- ti(t-I " -Z e / -K(t)l (2.6)
t to t .- -t. wt, th R(t) - Kivi(t 4it) in this interval, that

then collides with T. the two forming a conposity system (with

(t) 0) for a tine interval at' that is, until t 1- #5t. and that Since P(lon) depends upon afi which in turn depends upon it (through
I then departs with constant noenue Kfl. with R(t) - Kfvi(t-1t). the interference of the two terms In Eq. (2.3) for al). a comparison
(For inelastic nuclear scattering, one would simply replace vi by rf. of a theoretical estisate and experimental determination of P1ion)
the nutgona reelaI elocity, In tts Iast epression.) The angle gins on estieate of At.
I between Kf and Ki Is fixed by the locetion of the detector.

The electron is subject to a perturbation H' which for the 3. A Quantum Approach, in the IMSA

.nt w write simply an Ih(1,g(t)). The aplitude af that the

1letroo will beS a str In| acate £ at t I 4 if it was in an int- In addition to assuming the validity of the DIRA, we make the
tbl state i at t - o is then glino. I first order tism-depondeot foUowing assuuptions.

pe t me theory, by
iv") *The nuclear scattering process I an elastic one.

no ft me'"it;()w v ) The question of the P-T interaction V did not explicitly

arise in the SCA. In the DWBA we teed not specify V but we will

a ume that it la apln-independent and spherically symetric, that
is. that V - V(W). The effects of V(R) are contained in the exect
elatic nuclear scattering felJtude swhjch will appear; these will

denoted I general by T(g M 1). wlth R denotig m arbitrary



emergent direction, and by k f I * ) (te) for the scattering value for the direction(s) ond/or if at which the expoen 41s1 6
process of Interest. vanishes. We therefore drop the ter proportional to tap i(Ki-Kf).&

since the exponent is negligible only for 9 very *ll , region we
vi") G. the angle of scettering of P, is net sIll, he. excluded, and ve drop the term proportional to R- exp i(KKf)R.

In the oVi[ciente of the terfs tth tap t(d,.I + KfR) and
vii") The dlmension ower which the effects of V are significant *op i(-Kf" + tR). we approtismte it by 41 and by i 1. respectively.

dis lnently reasonable with radard to the nuclear component of V.
sad It Is not unreesoneble even with regerd to the Coulomb component ) 3
of V, since lerge-engle nuclear scattering is determined largely by t-Kf - (Kc)/(ti 

+ 
t 1 C20 )fk./ 

) 
2•

V(i) at somll R.

,ill-) We often neglect the difference between KI and Kf (bt Fslally, since the angle of jcettering is the seiwe us ro tational
teven when either appear* in an eponent). lnvertance to give F(-i - -Kf) - - F) ef .). the lest

step following by definition, ve drop terms in esp(* )(Ki + Kf)R
lot that, as opposed to the SCA. the OWBA preserve* comerv- f1ten having performed the angulr integretion veor di. and we approx-

tie of liner eand angular momentum end of energy. Imste I/Kf by L/A I to arrive at

se sow inokoe the DIA, as distcussed in Taylor (1172). for . t lly
e Ismpie, to write for the iontistion asplitude f(ion) I ffi(1,0) if(ion) - P (K . i

f(io() - -(I4i.h'F (f+e (l i l) d/l I"

where, in nur present ties-independent formslis. KII(b difers from Setteing t - -R/e1 in the second Integral and c - i/v in the first.the R' IR(O) of q. (2.2) only in the replacemnt o i'( fe(m) by sd introducing
the t1e-ifdependent fprp h'iri). An R I*. the exact n. clear scat-
teing wave functio 'I behave. s.

11- IK Ra 0 + - it d(o /1) .CIA.) we he",

Similarly. Si e. 4 -) . we h eon)w . e he

•. I f'* (e* i 11f .,. (2.9)
f I +where the Is, defined by Eq. (2.h). are precisely those whitch

to line with approxistion vit). only the asymptotic forms of the appeared in the SCA.
nsclear wve functions are relevant. (Note that these forms contain Vs will be toncerned with the rcse l << K1, for the probAbil-
the exrt elaetic scettering asplitudes.) The insertion of (2.8) icy of the electron picking up an energy comparable to El Is ngli-
acd (Z.9) into Eq. (2.7) gives four terms. Ve sow make peaking gible. If we are off resonance. it follows that we can approxnsate
approCxImtion: Kf by K4 end thtrefore Q hy I. so tht p(ion) is independent ot

Ixw -fe drop 411cotributioss involving exposnstials which %i(K1.
1
). o is to he epetted: with 0' treated In ftirst order pen-

meldslm xt or K, 0.4 LorE. Of nees the exponent can almost vanish, trbstioo theory, for a non-resonant nucleor reaction. the back rest-
and we "comimat*J 4 actor 14 ¢€|(k ) of such aIs expo~tial y tsl /ties of the electron as P cam be neglected, f(iM) io proportional

cc eepeice o. etrgt.K)o okc opmnllh t

.l.



C et. and P00o.) is Independent of F.I. for a resonant nuclear resonant than for tbs non-reosar cane. NIeverthelss. when &II1
reaction. an the other hand. the slight change froe El to E, can be soid And done, the contributin frnm the region ft < r wcill notm!ll;
nary important. Tn ocher word. In the time independent WSA. with be .:it seash; the monopole cntribution can be significnt. bat
ther frther approimation of using the Asymptotic forea of the nor- Its Incluslon done not Change the toe. of Eq

1
. (2.12). though a slight

aY scattering we" functions. the dependence of ?(Ion on the halt- redefinition is necessary.
life of t he compound nucleus originates in the strong Edepondenct
of VFt.S ) nearha resonance. More precisely. on physical grounds o Ws Cloen this &ettios with a few comes on the literature.
Sighct enpet the energy-zs given up to the K electron tn be of orler
I99. (formally, thin follos from the quesittaT nairixeleient Ifiil Similar processes had been consldered earlier, hut the present
for cte electros defined by Eq. (2.2) withb Er.R(t) replaced by process was first considered, in tho SCA. by Clochetti and Mtolioari
N'(f.1,. Thus. with a factor exp(-Z~r/ad) from #t4 and Is the (1965). Blair et &1. (1978) recoded. without proof, the i5.SA the.-
pfrimlatton in which #f in proportional to onp(Ib

1
*r). we expect retical result. The analysin pceented anbove foll- verv covoly

to fail off rap Il for kf larger thanZ71I.0 ) if F(,E9) is cha of Fesglo aod foobach (1SIl). A pero of the IWIA resu1s,
to nary aigeifitastly asmvre ya ~wt 9 e wthv oewla of a toot do force. has boon given hy Blair And kiho:-

r a1,,. (1982). (The, Apyrndio of this paper contains a study of vat.c~s SCA
analyses.) ic, also Ketoy ad (1dneis l982). Th. first ovynr-
seat showing the efect of tbs nuclear half -life a. tch.oirs e

C. Comparison of the SCA and the ilift probability was descrihed In the pa~er hy Blair at a'. referral to
just above. Is that experimnt n 'Oi and In a second on -Sr by

Even though eegy soecaend ou nsru are cnserved thossis at &1. (1951). protons were elstcally scattered acrossa
ia the SheA hot no1 n hC SA ther in a closrelation between the resonane for which r vas nenparoblo In agoitede no UK. and Th.e
two approaches. and ndeed we have already seen that they involve the effect wao both noyreted and so-ev. n ceplreec hobv n
Identical I inteirals. 'the analogy can be pursued further if at a1. 0 980) on the scattering of protons by "C acectssarsnne
wAt on 1. and If we can approximate ,(t,,e) - F(Ei-lsaS) by F(E.0) - the effert coo seen even though it Is not execeted. since ... ca

"-~ 8/S.eauted at E - It, so tac. using the quantum. nchav- is suth larger than UK;~ this problem basnot vet been resolved. A
.el tine dlyndefined by short but very nine revew of a ;,,%ber of eoerlwaots which deeply

involve the intetplay of atomeui and nuclear physics. not just the

- v~,8) -i~~tef.O /S ffect of a nuclear resonance on K-shell oleatico considered hore,
hsbeen givn by Mershacher (1992). Sae also "Two Vates on inc.

11" Jst before the list of references..

"m r01e wite * 1-1st. In t he :SC, we then have from Eq*. (2.5)
.s (2. 3). _rI.o the l.'ate c h an ever-all facto, enp('ui.6t) And 11l. EFFECT OP CO.LISIONS 04 THE EMISSION OF RADIATION
theeangI eWp-l"At) " 1-iw6t.

A. Introduction

41 P(ins) + (1erIf,~ 1  I(O.;i If) + icl~SI.(2.12) Consider a medium. cntaining N tuco-level o"'-elettron sins.
The s-tb atm has the noenallsed wave funti ion

To obtain PMon) in the iWsiA frem Eq. (2.12) for F(Ier) is the
SCA. ws ms c drop the last tern and replace At bynT In the first * *
temn. Th* SCA and S estimates of Plies) nmy not be qaite as close +t. t 1 ( tei n 5.t)* 2 , 3.
as they son to be. Firstly, in i- real while A, can be couples.

ecnlte 9A1Ioaun) hs no HjiOi tern. Indeed, in the SCA, short- 0  locates the center of ans of the atom and where r
0 

is the
the R I( -t .' org 'note in the P-.- interaction duriog the tine electron coordinae relative in the acomn's center of "as. Ihe pol-
7 j t R -. while is the D915 we used tha asymptotic forns of &risoctos (dipole moment density) of the madin.t at position X and

J+ and If-. which are surely Incorrect for "an1! g and to poetic'- tine is
e r an 3 *; 0. To obtais t he 1191 analog of the Hi(O) tarstone

t exps t-he alar -we funtions foot their "ayeapttit fern);ft) M p(t)4.
Ipartia waes sod study the assuepele comonent of H1. Originating isI No u;t)+CC (3.2)

in the region R r. The point is chat the Possibility of P poe.-I i
fteting the clasicaliy forbidden regin Is rather larger f or the



weewhere Iis the atcao-perturber separation and V0~.1) it their itetr- 1
"rtion. An. atm entering A collision swith moeu a. to state

fd() )(3.3) will scatter through an angle $I gives approxisetely by

end ehere. assuming notrreletin between stma, ~ is an Off- ii - - " f irdipgOne 0lemene of the ensemble average density estrix *11 (3.0)

IJ k IX.t)Aj(X.t) t 'eein the tittgrand we %&y write + b ;C. with b sand e. the
(3.4 lmacpse rttr and velocity of the incident atem. Asuming the

diffraction ngle i/fib) to he email, tho scatteriog is classical
The riarietion of the eedium or. equivalently, the "coherence" I

su (s~t. ,overns the response of the sediue to hoth an applied field
endt .... i tneus eission) to the vacuum field. $1n1 I/fib) (37

Thal ego opulteoredonatle of a e tjtest 1and 2i~ ~) * stoc islyIt this condition i. satisfied. the population ui(R.t followe
smell ~ ~ ~ ~ ~ ~ ~ ~ -et~ey rgo cetrdsXar I.)ndozxt.odclassical trajectory. The trajectories for the two popuiations aret t~tsl Itactiome Of sto In sisten I and are fo rXejpece nd elstically distinguishable ifLjo,(X.tdX. The popul tons change due to puopi n

emsin(:atural decay). Changes In populations due to collision
Ind.ted Itsi Io are neglected her*. Changes In th, coherence Is. , /fib) 0.61)

ccur bcaose of PuePlo,1 --,er&I decay. dipole dephasing between21.tome of differnt vIlccI to ( Doppler broadening), and toilislonsii hc aeteoalpo 1 ( 0 t n ~,.)i fetvldetay (pressure broadening). We Consider two-level stomC which do inwih CaeteOel apiof. Therefore, hnt the shov Inct -!

st inrt mihoe soatoth ryt whfiite ca siven sroth rlsia aqual ties hold. if so &too enters a collision in a superposition
pet rhre. Orety se nih"e engfe noteudr state. so that initially o, 0,0 the neperation of population it-

standin ot.f coll IsinosI effacts n the coherence. We describe here jectortes results In o, nenishn after the collision. ;.itile thin
the modern view of collisional effcsoo followin lsl h view differs froe the tradi tioa (ho interruption) viewa. the dif-
woek of Dermas (1975) aod Stevan et Cl.-(l9w. itgcoeytefere in got no tret when one consldero thema ebnor," In l hchte

Overlap 0,(0n~t)Aq(R,.tl vsonhen in th cIlan.ical i Iei; th . ....
t-ol &hnicel overlap acquiren a large phase which varies rapi)'

5. Q-1oltattve Mlcunsion with km, sgd the overlap vecihes when aceraged over slight naria-
tions of R_, It is Interesting to combine tqs. (3.6) sod (1.8);

frad"i "t aly the destruction of nI2 hy toliMelons is eltrib- approximating ait/3b hy nfIb. tq. (3.8) becoes
need to & 1ot. of coherence ofI the phsn for dilfereot valuea of ot
(pha.. Interruptin) of the praducts An,,(r. 

0
1,,)*. The Ited-_ I~ 2 C)-V(ldIc 1

ittonal theory In descrihed by, smo& Others, lSohel'esn (1972).) (Rdt.'109

towver. so alternative -spianaton. applicable in the alassital
r.44e. Is. that WoIisione*1 destroy 0)2 hy reducing the overlap of The value of b for which the left-hand-side equals unity is denoted

&~'(
0

,t an Af ,tI" To se: hs easm far cipict tha asb h "Weiskopf radiun". for bI bw collisions are cl-ttlnal
the aollision is iepalsiv and that the scattering angle is small mW destroy' DO through trajetory separatisa oir photo iecerreptin
compred to0 esty.I The effective potential between a active stem In sthe traditional view). For b t bw the scattering Is nonrlassiasI
Insetate I sod a perturbat it, to a first Aprsimetion, ndtdoes not destroy p,, Thus PIZ survive* colltiios only is the

diffraction so". that sfor b bm. and therefore in a narrow f or-
v~(u)- !.~;)V(;;)l~weir d scattering cone.



C. Qua,1tItative Discussion: Transport Equatlons wIhere k -tes the colponent of k perpendicular to . A. Incent.- 12
"10 over tOe variable k' say then be done sing the fact that

A mare quantitative discussion requires the use of transport O(R.) is hlihly localized - seethe sntloh* s. discussios of Taylor
e""atlon for the density mtri. To begin. v. consider a bea" of . il9)3). pes kg-Si. Setttng p1 5 (k) * p(klg the followtng tres-

ons-le.i' ato. each of mise a .od incidest velocity * scattering port equations obtained:

a rollection of perturters wLt volume. density M. The transport

equation, in the for. of tq. (3.14b) belo. could be written dts o -r(;).(;.s * +d'v(; - ;)(t'.t) (3.14a)
stth.c derIvation oipIy on the basis of physical principle.. How- Nt
nynl. - sketch a derivation hore since It facilitates the derivation Iol

of the somewhat sore complicated transport equations for two-level
etan. The asse, in the incident be". are assumed to hie- nave- stere. with o(t) denoting the total cross sactloci
packets of similar form but random impact parameteres. Thus the nor-
malled Iscom ing wefptrkt of a typical atom io i* * k) - MvjI(Z' 1 )1 k6(k-k-

)  
(3.15)

4 o sp-iW4 0  rtk) wwao~itf (t t)~ - 4-~i 6) - 14;hW(; (3.16)

there #,(k) 1. Independent of the impact paraeter i and I. sharply
paked when k equals mv. Afte a collision, an ,a is represented Sot, that k - k' in Eq. (3. j) since the perturbers do not recoil.
ky the outgoing werepacke ot(k). where (Taylor. 1972) urthr,. k . mv/1 since $o(k) Is highly Iocglized. Howver. inc.

Sq. (3.14a) is linear. It applies when 01n(kj is a superpositlon of
deelties localized 10 different regions of k-space; hence a(k.t I
may represeot a broad di.tribution in k-space. From Eqs. (3.15) and

f(Z' - ') is the scattelng amplitude. The ensemble average probe- (3.16). Eq. 0314a) can be we tten in the oe transparent form

bility densities before and after the collialon are on(l) snd t)

.awt(R) respectively, where the domain of integration is the trois - Vk)f(ht)4tvdk'If(t'°kl oli'.t). (3.14b)
em¢€tso.! area A of the Incident be". It Il

0. . 2.11) The transport equations for the density p atrx oj(;,t). with
e,(.) . (i/A)Jd~tio(it)I~ . t-" n: o t,%.k), 3. 1 gjj .t he momentum space .nalog of ol(1.t of q. (3.4). of two-

level atom% can he derived simlarly If collision Induced transi-
with a In or out. Now on average the beam encountero one penturber tiona hetsqes the two levels are neglected. we have (Barman. 19 5)
is the time interval I * 1/(NvA). Th collision rate of change of
the probability density 01,ft.t) iO (k.t) is tt.n-foro Ptdt

S p-()t .a.

Iit1
" M"Id b (( o wjt ;)I:  - fi*, (; W 1 '  " rt; " +- - 1 ;I-01 12(h 1

If E. (3.10) io "ed to subtitute for $owt it) in zq. (3.12). the + J '+f ( 
' 
" '"t) (3.17b)

Imte tation over b moy be dn b eaoiog A to be sufficiently
large that we can mass for k 0 where. if fi(t. t') is the statteriAS amplitude for a atrom is

scat* i. 1

. I . - i - . oi,)o& , . h, m Nvf>(. t,+<
6

,3- .. tlk'
3
a,-,t . (3.18)

- I



fl)-I d(3.19) 13 Lu~to. :for differ nt arguments x. and where tT 'a the comporen 14
t I -fj (o ' l oflperpnd Icular t~o the z-axis. This factorization is esuned to

- ~ (~~)~;(.;1-r(t. (.2)ho.l. first approointion. t: th: present. of c01Mt-- Sub-

be p,2(4)dk we ie
The suprscript vC denotes velocity cbog9Io I X1 hanging
collisions are neglected, that Is. I if ( 9 - Wi

1
(k)6 so50a~ t

that qd - rd Sbi . :Integral tetm aod the tam. is j "csteo 1 2 48. -jI. + r ph (.'l(.t
1. Eq, (3.17). ad the eqatons reduce to the much simpler aqua- It tcoll - -12 (4 2 t(4ls (.t
tiesc of the tradtions) pressure broadening Sincryi

soI tc) 0+1
V (k' - )o W6'.0l (3.23)

-roll (3.21a) - 1 2 ad- 12
1

I02( t ,(k. k.) - Jd 2k Jjd 1(;' )0 2 t; (3.24)

I(3.21b) rf, (k) f d
2
k~rO,(k)o,,2i) .(3.2S)

With va locity changing collisions negletted. ph is i he tradi- 9n *V ph

tion-1 v.. the collision decay rate due to ps ntruton of wee0I co h

b:ha Otc dipol. tf veoctry changing collisions are atllowed hot efldfqucy enintecsfaaofnst sI*

ifthe "cattcing amplitudes f, aod f, are equal. it follows from The fiepldr ft)uec sohnrI th res 2/c a e of an ars Ito

Eqs. (3.18)- 3. 20) and the optical th~ores htm ()-0; tu -01 Kv ( i l sift where - tetOs/c nieucy u h w

thet is phase interruption of the atomic dip11ole during the 
tol- aeIc ees p h )wl silt nSo t i ,ef~ed

Ito .o It the &too scatters as a structureless entity. Atmclvl.* ( iloclaeI i ihtefeda

p,2 cktrt)- o1 2(11;sp(Lft) 
wher. Zj,(hk.,s aries slowly with

Tow qu.1itacire andlyfi f tepesu eaeccfo1o oindcae. t' rttin& wave ;pprositestool. rotq (3.23'). we then have

that, In gener. Ii11W(t - ) vanihes in the clssical scattering (lervss et &1. *1982)
regime due to tra300tsary separation. (Mlore acurately. I sl

late, rapidl,, and the integral over the classIa region varisbes.) a ht

1?12 gives a nonvanishing contrihutios only 
In the diffraosi-e scat- ...2 5 * '.c(k r ph 4 s

tenr ~g ionl. Thum asp departur fre It aanport equation for 01, at el 12 5 12 (k0 It

of the fore of Eq. (.,lh a) rie i o. diffractive stattering. lot

a departur cay he observed by ceating o photon etho, as we now. dIV b ) (K~-~ b

breafly disus I + 2 ep 5 1 (3.26)

D.Lae Sec(NcpyMo that sinc we arhocr ehre with collisional effects, we

D. ase Ser~o~cPhen st included a tr ori I nog In (2/at)nP(Vit .1. This eb.a-
Suppse hata stigl-mot la.Irof requncy0 iterats ithtios governs the collision rate o*f change of C2 In the prece of

Sop~se hata eglesod la~r o frqueoy issrets itha single-_o laser. T.obntain the full rate of change of c~, with
theastre. _Aaco.. the laser field E propagates in the z direction. .n ti. h matapoiaioL soe.t hiapocacu a

i~..~sI~oeEsil.In th hsso olcone co ae ollision Is regarded as instantaneous compared to all othor relevant
apprpriate Initial conditions 1 (k.t0 factors Into tc. scales. Then Ipti/Dtlcoll can he simply added to the Simt der-

.1tie p2/3titad doe to toupling with the radiation field to gIve

- 1 2 ( ) 1(bN t) (3.22) the full tic derivative.

Aeve (oUn"1sg cesItiso we osa 012(x) to dewno dif ferent 0n17 the diffractive scattering contributes to the integral of



To apprcaeti tp it wl'I be usef. I to consider earlier devel- i.
Zq. (3.26). Now diffraction scattering o"curs in avery nar row for- 15 lopmats in a*sytstric and sym rc c harge transfr. Thorn hae- been
werd cone (ass ng the,,Otoms are not moving too slnvly) and so the a somberiof rslaclvely recent .enicvm in these area T gs t..ac tcnmpany ing *It' chan.e ar somall. Let av be the character- 1978; leki cc 1.. 1 i79r Shakeshasft and Spruch.199 Shkbat
Istic value of the velocity change w. - v. in the diffract i" r giss. 1982), asd we limit ourselves to areas brief commets.
A coix...nce i12 ( 0 ) which is prepared at tine t- 0 will sbse-
quntly decay: 1s.Etcn be the coherence lifetime . If Kavn, 0u I the Ws wish to consider electron capture by a projectile P (a bars
.spgn.nttia is the integrand of to9 .(3.26) may be'steultoniy nucleus of charge Zra) incident waith a high velocitry - naneta

urhr. I lk; C) Is o ct.d isnay slowly 00cr the ditff crt ive atom. The target socias T has a charge Z~o. aod th. process in
region so wae i y betaken we of the integral of Eq. (3.26) at
th le - U l ). Is thir case. tbe t-,r n is vc cereals the icite-a 3( -1)"eal ter M n tLq. (.6) educe to t he tred t tonal equation p(l p At-n P 1(7p

(3zta ) -"h ,) r. .27) One mxist and can do hotter (Brigs and Taolhjerg. 1979) hut we
it'(,li( 5

r assum that all elecroo-electron Intrecriono are negligible. In a
toll Born expansion in anon-eltivlntic cjntext. the n-th tern repre-

ph sents the contribution associated with n sctterings.. 6e ske one
loading to elm predicti17n that u 2hee the decay rato e Ife

1
, )fl reak np ttIl scactering (scactering by a targe w St no icir-

twxer isllt the natural decay rare. (It the epermenta siuin1a degree.P of freedox) hefore considering charge transfer. 'Th. Bor
inoceZ distributo of 6.. wn must average over Its and Include expansion. fcc sufficiently large Incident energy ta.nd f .in
Ihe free Ind"cio deca rate due to a relative dephaslng of atomdcptnia.isacoeetepaininpcr of t.w reVsa
dipoles with different velocities.) H~owever. suppose instead that characteritic value of V. h is oetr hrfr olae

Uve cc t. sn In 1I ti the exponential oscillates rapidly over for sufficiently large t for potential scattering.
the Siffactee region and the Integral Is Eq. (3.26) eamlass an
wm obtain (gecase et a.. 1 1982) We begin our consideration of charge transfer by -tdying the

symetr ic cI.. for I ch 77 1, 1. ro dcfrt or ten he

So, (~t) min rociht o rifinates In coonenl's of tetarget and final
1s -(rv(k.) + tp Mli (et * (23bud state cae funictions icr which the velocity of theoolec-ron is

coli ~ ~~ ~~~~~~~ .:ftmarhecth .adshu nplitudes are very sm1l1fo v.rg
sore precisely, for v AZefh a characteristi c electro, nI-

leading to the prediction of t he largercdecay rate jte~r'jc(k) + -1it ytin the in iial and final s - vni.a od forl-
yyhbl 11: 'lo nI th efetv oeec ieieo ~ ict.S dr cpture ir'n and to grun -1ates.: d'e vecond

depndsnnt~eporx ntal situation. Withu goinginto te Born tera ca h e described roughly as fcllos h loto u

dtIs of a photon echo, --- a lucid discusuios is ginee n SargontIn istialy hane a smell speed. o ti ie a sped v .s tol o i

at 1.,* 197 -sufie* it to say that in a photon echo euperimn rlocolinwthP Teeetrntes s. ntinie-

nr can be made large: the ronditiox n~ Owt I can therefore be ediate sae aiot asafe Iatl. (Th. unceraityinit
d s. done re...xtly enrg in: Viitpnhna cu aonaic drnin ota

attained and the large' d:ry rate confirmed. f1ll off asi/ v/. t h n of-h- oe hiie cn~e. 'le aE
(Mnssberg en .1.. 1960) esa bliig for t fr tine the infl Iaoe. sf diffractive scattering ox the emission sf radiation, sifIcant cori ut io.). The ele.ctron in the cutcreielantic-

ally by I, esergin -t Ith , ecitry or u.adicatr. Thsecond Burn term doxinatex over the ~first'' even toIh i ivve

IT. ASfiIETRIC CHIARGE TRANSFEtR as additional collision (and therefore an additional factor, prupor-
tionai to e2, which often suggests that the trm Involved It of

A measure ef tbe great practical Importance of t he charge trans- .higher order) because the secnnd Burn ter- does not requlre high
far pr'"ess Is the very considerable :xperimen'sl and theoretical speed csoaonncs in the initial. and final bound states. It in

effort devoted to that process . Th: aroe in which significant pro- widely belIeved, though it has not bees proved, that higher order

pema has very recently been recorded Inciude atoo capturs as well Born teemare domixated b; the second, for they suffer fr om having
seele tron captsre, the eihonsai approximation. and veons of the still furthar factors of a and they hae" no tsnnxnatng advan-

Gloier apprenimation. Uinfortunately. tpc emt ny ~ cpc ag"e sce tbe second Born term already allows low velocities In
as iop"an stp is ewr usdaestndisg of asymmetric charge tranafer



cbe Initial and (inl sttea. where A and B depend only upon atomic properties. Thin form reatinsl

o many applications of ret corret ie t hVlld even if one includes contributions from small ales of R.mal ny a plicat of rand incident s hat Now nasse. for example. that the nuclear resonant state is an srte1 ai but ; n o enrgies to Zsb that is stats, end choose 8 to be 900 so that the only relevant interferencerathere r, Iti term rfes from the monopole term. with both p and C" eerglc i
theou inbrora eoinr maitiple a -T collisions; rather, all spherically sy mestric, disa rimioe. One can then show tat Bl.t- collisions east he included. However, we can continue to Ignore If se were nor at a resc n ce. on w7oul have F er(t , hoo tht(Ef-mlatiple C--P collisions. In the present asym etric analog of the and therefore f(ion ) . 2 Peitei.OnFtuA. At rea n rce. ho... •er. Ot.second Born term in the 8ym etric case. the electron in the inter- a a ther er in p (rinc . tere atheihogcery onemedlate stare is described by a Coulomb ave rather than by a plane oa. It is.so lea r in principle. determine the Imgi ontate nong

ias. A natural starting point is to assume that the Coulomb wave A. Ih to nte e ho r tory 198 e n an o
is on the energy shell. Thin amounts to the impulse approximation, enogh to determine IsA, flee Bla t 51 *. 1978. and references
developed largely in this context by Briggs (1977) and also by Koc- therein.)
bach (1960) and Amundsen and Jakuhansa (1980). While this approach
gives good results at larger incident energies. theory and experi- R e
.ot begin to disagree at energies rather above the value at whichthe disagreement had been expected. The point is that the off-the- Amundsen, P.A. and D. Jakobassa. IM, Charge transfer in agyatric
ostary-shell component of the intermediate state wave function -h heAvy-ion coi.uo , J.Phbva ., 13:L467.non a Coulomb wave --- most be retained. The analysis Is tricky, Beau, D.7 SiC. Muherjee ard D.P. hural. 1978. Electron Cureand eeuires further appoioations. It is a major achievement that r oce ses in ion-ahre coilisions, Physicr iep c. 42:14..the final result is obtained in tractable form: the predicted asym- gelkir, ic. R. Gayer and A. Slin, 1979, 1Liec t.e .o re in high-metric charge transfer cross section differs from the impulse ep-rom-
isation predlction by a rather simple factor, one which gives con- g energy .on-atom collie ni. Ph ull _,O 112 .
eidersby better agreement with the data at lower energies. We note Rl , T. . Msber8 .,cvo .R. 0.A 19. 2.111 'llntocideetally that this work not only provides a theoretical foand&- kBr and Pserl dctrosepy, ohd.. Auiv.A, 25:255.
tin for symmetric charge transfer but also provides much deeper Blair e J.S.' P. V ru, hy rv and ni .A. Trin ora et earInsight tnto a number of earlier approaches, placing them in ahier- seare-iog rnocn ra r oton 7n .ine aa.rchy of successive approximations. See Macok and Taulbjerg (1981), sca terng resonance. 19A2. ory o. Khl., 1i:1712.
Srig b a c1bk and TuIbjge to be publishedreno ce cacern, Ph a . 2B:9r.
te be abihed. Briggs, J.S., 1977, inpant0poraneter coroulaiton of the ir:,loe

approximation for charge echa ne, Lj. Ps. . 1 :C75.
Two otes on Sec. I1: iLs, J- S. and K. Taulbjer, 1979. Charge transfer by a dle-

scattering mechanio nv i-ln target electrons,. Ilno.3,
1) Many intermediate nuclear half-lives can be determined by 12:2565.

mans independent of the measurement of P(ion) - most generally by trns r. J. vcon A . aa, r.o orys -A:mtching scattering data to the Breit-Wigner formula, but also by transfe, 9.u-chnt. A. nl. ?e:.'si, in pre,.
using spectal technique.. Such as channeling. One time interval dhen, J.F., . A Mholtu th. t 'r f-sE. otfi aid prA-

mtch sight be deterined most easily by a aaure.ment of P(ion) is bity assn the a-le er itrc-scattering rncoaon-r atthe time interval daring hh two heavy ions remain tooe another's bel .I y. acos . A 4 n :ue .'Iteighborhood in the coarse of a scattering process. Ci0chet60, .ad. cvcai :19h. t e
- Ch L. G+ and A- Ihnsri 19;1, 1 electro shall Ioiitimn

2) The argument of the first paragraph of Sec. fI can be #od nuclear reactions. Nuono C-v.C to, 403:69.
Dumbr. 0, .. va tu, adA. \,Ieha.s., 198o. imper Ioertal evilencareversed; one cam tse a detailed nowledge of the properties of a D.tkfr, t. u J. v in er-s.ell in.ation90, erient nclearfor the ln~lvcnct of tnnr-shell ionization on resonant uesmeaias resonance to determine an atomic property. Thus, let us re- scarttring, gy6ev. t., 45:2702.
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COMINED RADIATION FIELD - COLLISIONAL EXCITATION OF
ATOMS
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Place, New York, New York 10003 U.S.A.

Abstract The physical principles underlying the com-
bined radiatica field - collisional excitation of atoms

- a.. re reviewed. A discussion of both collisionally-
aided radiative excitation ("optical collisions") and
radiatively-aided inelastic collisions ("radiative
collisions") is presented.

INTRODUCTION

The purpose of this paper is to present a simple discussion

of atomic transitions induced by the simultaneous action of

a laser field and a collision..

Consider a reaction of the general form

Ai + Bi + b p Af + Bf, (i)

vhere Ai sf and Bi ssf are internal states of two atoms A and

Z B undergoing a collision and 11 is the frequency of an

applied radiation field. If, in the absence of the colli-

sloan, one finds

AD + Wf - A1

•vhile, in the absence of the external field, one has

A + B i  Ai + B1 , .

2.

I ; . . ,
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P. R. BERMAN AND E. J. ROBINSON . i

the reaction (1) is of a type that requires the simultan-

eous presence of both a collisional interaction and exter-

nal radiation field if either or both final atomic states

are to differ from the initial ones. One may then speak of

"laser-assisted collisions" or "collisionally-assisted

light absorption". These are processes which have been the
1-16focus of a large number of experimental and theoreti-

Ca -1l-4 investigations in the last decade. In this work,

we discuss the physical principles underlying such reac-

tions; more detailed theoretical treatments may be found in

the literrture.

Reactions of the form (1) may be further classified

Into two categories. The first of these we refer to as

Collisionally-Aided Radiative Excitation37 (CARE) and has

been designated by others as "optical collisions".19 The

CARE reaction is easy to visualize (see Fig. 1). An atom A

u 1  B1

A

Figure 1. A schematic representation of the CARE re-

action AI + Bl+-Afl-A 2 + BI. A laser field of fre-

quency D is incident on atom A and can drive the 1-2

transivion when atom A undergoes a collision with a.

ground state perturber B.

is irradiated by a laser field whose frequency 0 is close

2
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enough to that of an atomic transition for a two-level

approximation to be valid. The field's frequency is de-

tuned from exact resonance by an amount A which is large

compared to the natural and Doppler widths of the transi-

tion, but small compared to the thermal energy divided by -f.

With such a large detuning, the probability for the field

to excite atom A is negligibly small. However, if A under-

goes a collision with atom B while interacting with the

field, the probability for excitation can be greatly en-

hanced. The energy mismatch -A between the photon and

atomic transition energies is compensated for by a corres-

ponding change in the translational energy of the colliding

atoms.

The second class of reactions of the type (1) we refer

to as Radiatively-Aided Inelastic Collisions37 (RAIC) and

has been designated by others as "radiative collisions"
1 7

or "LICET - Laser Induced Collisional Excitation Trans-

e Atoms A and B are prepared in initial states Ai and

B and; as a consequency of the combined atom-atom and atom-

field interactions, they emerge in some new final states

Af and Bf. The process is depicted schematically in Fig. 2.

The transition between initial and final states is

assumed to be highly improbable or energetically forbidden

in the absence of the applied field. Thus, one can view

the photon as providing the energy to assist the inelastic

transition Ai + B i  Af * Bf. In general the RAIC cross-

pection will be largest if the photon frequency is chosen

to be resonant with the energy difference between initial

and final composite atomic states. However, as in CARE,

significant excitation can occur under off-resonance condi-

tions, with the energy mismatch again compensated by a

3
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ff

Figure 2. Atoms A and B undergo a collision in the pre-

sence of radiation. The field frequency Q is approxi-

mately equal to a transition frequency in the composite

AB system. The RAIC reaction is of the formAi + B + fi f -A + Be

* f

change in translational energy.
Be'fore examining CARE and RAIC in greater detail, it is

useful to review the problem of the'interaction of a radia-

tion pulse with a two-level atomic system.

ATOM + PUj.SE

In this section, wneai the interaction of a to-level

atom with a radiation pulse whose eleetrec gyeld of polarl-
zation l may be represented by syt.

E(t) = CEt)cos(slt),

The smooth pulse envelope function E (t) is assumed to

4
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vanish as t 6 , and to vary slowly in comparison with

cos(Qt). The difference 10 - wu, where w is the atomic

transition frequency, is taken to be much less than (w +

allowing one to neglect the "anti-rotating" components of

the field. For an atom which is in its lower state 1 at

t - - , we seek the probability that it is excited to

state 2 following its interaction with the pulse. Taking

the atom-field Interaction to be

where p is the atomic dipole moment operator, one may use

8chrdinger's equation to obtain the t-me evolution equa-

tioms for the state amplitudes. In the interaction re-

presentation and with the neglect of the anti-rotating

components of the field, one finds

S-iX(t) eiA t a2  (2a)

&2 r-iX(t) e"iAt (2b)
2 x~t) e a1,

where A = Q-a is the detuning, X(t) = iEo(t)/2h is the

coupling parameter, and =l 12> = u*. The frequency

X(t) is sometimes referred to as the Rabi frequency.

The problem is conveniently described in terms of the

following parameters: (1) the pulse duration T, (2) the

frequency f = t(t)/X(t) which determines the frequency com-

ponents characterizing the pulse, (3) the natural lifetimes

of states 1 and 2 which are taken to be much longer than T,

'ustifying the omission of decay terms in Eqs. (2), (4) the

detuning 4, and (5) the Rabi frequency X(t). As a simpli-

fication, we set f T 1 , which is a good approximation for

smooth pulses.

5
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.If the detuning and envelope function are such that

JAIT >> 1, the pulse contains negligibly small Fourier

components at the frequency needed to compensate for the

detuning. In this limit, the pulse is said to be adiabatic.

That is, the excitation probability following the passage

of the pulse is vanishingly small, i.e. proportional to

exp(-21AjT) for typical envelope functions. It is inter-

eating to note that the excitation probability remains

exponentially small regardless of field strength X(t), re-

flecting the fact that the Fourier components needed to

effect the excitation are essentially absent. As the field

strength X(t) increases, the excitation probability, which

is proportional to A2 = lf X(t)dt,2 for A2 << 1, exhibits
-jW 2

some type of saturation behavior for A > 1. Thus, with-

out some additional interaction, an'adiabatic pulse cannot

appreciably excite the atom. The "additional interaction"

can be provided by a collision.

Assume that the atom undergoes a colision with a perturber

during its interaction with the adiabatic radiation pulse.

This collision occurs on a time scale T (typically

10-12 sec for the thermal atoms under consideration here)

which is short compared to T (typically 10-9 sec). The

perturber can be considered as providing an effective time-

dependent potential which modifies the energy separation of

states 1 and 2 in a transient manner. If-iVi(t) is the

collision-induced modification of level i's energy, then

the instantaneous transition frequency is

W(t) - W + V Wt),

6
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wheree

vw(t) - v2(t) - Vl(t).

It is implicitly assumed that Vl(t) V v2 (t), as is gener-

a1y the case if levels 1 and 2 belong to different elec-

tronic configurationsY 7 The collisioL does not have suffi-

cient energy to couple levels 1 and 2 in the absence of

the field (see Fig. 1). I
The effect of the collision-induced transient vari-

ation of the transition frequency is to introduce appre-

ciable Fourier components into the excitation mechanism at

frequencies up to w = 1 >> t-1. These added Fourier

components lead to a new contribution to the excitation

probability which is much larger than the exp(-21AIT) term

associated with the atom-adiabatic pulse interaction. This
"collisionally-assisted" contribution leads to a CARE re-

action of the form

SA + B +-nf4n-A + B
.1 1 2 2.

The state amplitudes now evolve according to

= -X(t)exp[iAt- ifLV (t')dt' ]a2  (3a)

= -iX(t)exp[-i t+ifV L(t')dt']a1. (3b)

subject to the initial conditions

e~l--) , a, 2(.,-) - o. (3c)

In order to discuss CARE, it is useful to again refer

to the various time scales in the problem. The collision

duration, T c(b,v r) b/vr , where b is the impact parameter

and vr the interatomic speed associated with a collision, is

an Important time parameter. Although T (b,vr ) varies

7
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from collision to collision, we can define a representative

time e - Ce(b 0 ;r ) in which _r is the average interatomic

.relative speed and b0 is an impact parameter chosen to

guarantee that T is "representative". Generally speaking,

.bo will be that impact parameter for which the phase

V S (bv rt)dt takes on a value of order unity; a typi-

cal value for b is lO-T cm. The dimensionless parameters
0

which enter our considerations are IAIT which turns out to

be unimportant, IAITrc which critically categorizes the de-

tuning, X(t)T which represents the strength of the atom-

field interaction before and after the collision, and XT

which represents the strength of the atom-field interaction

during the collision. The field strength X(t) is approxi-

mately constant during a collision and X represents some

characteristic value of IX(t)j for the pulse. As noted

above, T /T << 1.

Weak Fields: yT << 1

For weak fields, the excitation probability can be calcu-

lated from Eqs. (3) using first-order perturbation theory.

The results depend critically on the value of InlTc .
If AITc << 1, the only change in state amplitude a2

during the collision arises from the level-shifting term.

The collision acts to provide a sudden change in the phase
of a2 , given by f(b,vr) = Vs(bvr,t)dt. This im-

pulse destroys the adiabatic response of the two-level

system, and gives a final state amplitude

a2  -i[; x(tt) e-i dt' + ei ' It X(t,)e_'Atdt,"

. 2[X(t c)/A]e-iAtc eti/2sin(l/2)

whereto is the time at which the collision occurs. Set-

ting IX(t )I B X, one obtains the excitation probability
prbBlt
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21&2(b,v ")1 = (X/A)2 sin 2 [ ((b,v)/2)

and the corresponding CARE cross section I

.o ( = 2wJ'7a 2 (b,v ,c)I 2 bdb (5a)
', r'I0.',' 2 2

= .2(x/,&)(bo (5)
0

The result (h-5) is known as the "impact limit" since rc is

smaller than any other time scale in the problem. The im-

pact cross-section is independent of the sign of A since

the Fourier transform of the collision interaction is flat

over the range of A represented by AIT < 1.
C

The impact result can be viewed in an alternative

manner. If we were to suddenly interrupt the atom-radi-

ation pulse interaction at any time t_, we would, on

average, find a population [X(tc)/A ]
2 in the upper state.

The CARE cross-section is equal to the product of this ex-

citation probability and the collision cross section
S2)

If IAIT > 1, the phase induced in a during the colli-
e 2

sion by the detuning is not negligible, and the impact re-

sult is not valid. As we have seen, one consequence of the

collision is to shorten the relevant time from T to T c, so

that appreciable Fourier components up to T- I are intro-c
duced. If this were all that occurred, one would expect a

CARE transition probability that varied as exp(-21l,

Tc(bvr)]. However, there is an additional effect, whose

origin may be seen in Fig. 3, which modifies this result.

In drawing the energy levels in Fig. 3, we have chosen

VLS(t) < 0; the case for arbitrary VLS(t) may be treated by

an obvious generalization of the method given below.

9
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Figure 3. Energy levels of atom A during a collision.

"Instantaneous resonances" [ w - (t)] can occur for

detunings A < 0 only; for A > 0, the collision detunes

the atomic transition further from resonance.

The CARE cross section. is a strongly asymmetric

function of A when IAIT c > 1. For a given A < 0, colli-

sions can always produce (t) a 0 for short times during

the collision;4 8 i.e., the systems become instantaneously

resonant with the field. Such times are labeled t1 and

t2 in Fig. 3. The phase of a2 varies rapidly owing to

the factor exp(-iAt), except at t1 and t2, where the

oscillation is suppressed by the factor exp [i
ftY (t')ct'J. The major contributions to the excitation
YS

amplitude are provided by these times of stationary phase.

The corresponding CARE cross-section varies as an inverse

power law in JAI, instead of the exponential that charac-

terizes other regimes. The fact that the points of

itationary phase provide the major contributions to a2 (-)

is linked to the condition IAIr c > 1. That is, the (pulse

+ collision) does not contain the Fourier components at

A to appreciably excite the atom; in this case the in-

stantaneous resonances become a critical feature. In the

10
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Impact liit, the system of (pulse + collision) does

have appreciable Fourier coefficients at A so that the

presence or absence of instantaneous resonances does not

affect the excitati.a amplitude.

In contrast to the A < 0 case, for A > 0 the colli-

sion pushes the levels further away from resonance (see

Fig. 3). The net result of this level displacement is

that the nonresonant side of the CARE cross section falls

off exponentially as a fractional power of IAIT , even

after one averages over impact parameter.
19 .46,9 50

Thus, the CARE cross-section exhibits a marked asymmetry,

with an inverse power law dependence on IAI on one side,

and an exponential decay on the other. A typical pro-

file is shown in Fig. 4.

10 "10

-6 -3 0 3 6

ATc

Figure 4. CARE cross section as a function of IAIr 0

in the weak field limit, xWc = 1.OXl0 - .O This cross

section is drawn for a level-shifting term which varies

an A-6 (B is the interatomic separation) and a value

b l.lxlO'Tcm (see Ref. 37).

11.
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It should be noted that CARE cross-section in the

weak-field regime can also be obtained using traditional

pressure broadening theories of linear absorption or
1 49-52

emission. -

Strong Fields: YT > 1

As long as X < Wnj, the previous perturbative treatment is

valid and the CARE cross-section is proportional to X2.

'If both )CT > 1 and X > JAI, the perturbation theory fails,

and a strong field theory is required. Space limitations

preclude a detailed description of such a theory, which

is conveniently developed using a quantized-field -

dressed-atom approach, but we cite some of the results.

For X > JAJ and Xrc < 1 (which implies (AfTc << I),

one is still in the impact domain since the collision

time Tc is the shortest time scale in the problem. If

the atom - radiation pulse interaction is interrupted at

some arbitrary time, one would find an upper state popu-

lation approximately equal to 1/2 since the field is

suffircently strong (XT > -i) to lead to equal populations,

on average, in levels 1 and 2. (This factor of 1/2 should

be compared with the average population (X/A) 2 found in
.-the weak field case). Thus, in this limit, the CARE

cross-section is approximately equal to wb2/2, indepen-
0

dent of both A and X.

For X > JAJ and XTc > 1, an impact theory can no

longer be used. During the collision, the field is strong

enough to lead to rapid oscillations (so-called Rabi

oscillations) in the state amplitudes. Since X > IM&,
these Rabi oscillations provide the dominant phase vari-

ation for the state amplitudes; the effective detuning in

the problem becomes X instead of 1A.I. There is no possi-

12
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bility of "instantaneous resonances" here; consequently,

the excitation probability varies as exp[-2Xc(b,vr) ].

Just as in the weak-field result for the A > 0 case, the

CARE cross-section obtained after averaging over impact

parameter falls off exponentially as a fractional power
19

. '.'. -

RAIC

A typical RAIC reaction of the form

A, + Bi +" + Af + Bf

is illustrated in Fig. 2. In going from the initial to

final state in the composite AB system, a number of inter-

mediate states may play a role. However, by summing over

these states and neglecting the effect of small variations

in nonresonant energy denominators, one may reduce the

problem to that for a two-level system coupled by an

effective operator U(t) which is proportional to the

product of the radiation field amplitude and the colli-

sional interaction. Explicitly we write

U(t) = %(x/i) Vo(t), !'

where r i& some representative frequency denominator

(G >> X) and Vc (t) is the collisional interaction. Since

U(t) - 0 in the absence of a collision, the RAIC inter-

action occurs during the collision only. Thus the pulse

time T plays no role at all in RAIC - the relevant time

scale in the problem is the collision duration T¢.

The initial and final state amplitudes for the com-

bined AB system (see Fig. 2) obey the equations

13
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- -i(/)v c(t)exP[iAt - ioftV (t')dt'] a (6a)

At- -i(X/))V(t)exp(-iAt + a I-S.

•it- A=,Sdt2 (E6b) ':

and VLS(t) is the same collisional energy level shift en-

countered in CARE. An additional contribution to level

shifts resulting from the AC Stark effect will not be dis-

cussed here, but can be included by redefining the energy

levels at their Stark-shifted values.

Weak Fields

A perturbative treatment is valid provided lar(t)I << 1,

in vhich ease I

lIaf(-)l = l(Xlr)f*' V (t)ex[-At + ift V (t')t' ]tl.

It I AJr << 1, the amplitude for excitation is independent

of A. For I'& > 1, one again finds an asymmetric line ow-

ing tothe effects of instantaneous *resonances which occur

for one sign of A but not the other.
5 3

The functional forms of Vc (t) and VLs(t) determine

where the maximum RAIC cross section occurs as a function

of A. In a typical situation, the time-dependence of

Yc(t) and VLS(t) is roughly similar and the maximum RAIC

cross section occurs for A = 0. However, the RAIC maximum

O&W occur for A # 0 if the duration associated with V C(t)

is much smaller than that associated with VLS(t), as

night be the case in RAIC charge transfer33 , where, for

an Interatomic separation R(t), VC(t) exp(-CR(t)],

Vhile V (t) [R(t)-n. Under these conditions, the

14
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collisional coupling is significant only when VLS(t) is

producing a relatively large variation in the atoms'

energy levels. Since the effective level separation of

the composite AB system is no longer E - E during thef ±
time that the collisional coupling occurs, it is not sur-

prising that the maximum RAIC cross section can be dis-

placed from A = 0.

Strong Fields

To get some idea of strong field effects, consider Eqs.

(6) in the limit that A = 0 and with the level-shifting

term set equal to zero. In that case, the upper state

probability varies as

la2 (b,v ,-)1 2 = sin2[ RCb,v),

where

,R(bVr) = (X/r)f Vc (b,Vr,t)dt.

The RAIC cross-section is equal to wb2 where b is an im-R R
pact parameter for which R is of order unity. For a

power law potential Vc(t) -[R(t)]-n, n Z 3,fR c X/bn-lvr
and bR varies as (x/v r) with a = (n - 1)- 1 .. The RAIC

cross-section, which is proportional to X2 for weak

fields, varies as X2/(n- l) L.e. as the square root of the

intensity for n=3) in the strong field limit. For strong

fields, owing to the fact that bR C Xa , large impact

parameter collisions only are importan; and VLS plays a

minor role for such collisions. The line width is de-

termined by the inverse collision time I -I = V /b0+1 -aVr rR

vr4 x ; the RAIC profile narrows with increasing field

strength.

15
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The ratio bR/b can be used as a measure of the field

strength. If bR > bo, one is in the strong field region

since the upper state amplitude saturates at radii where

the level-shifting effect is unimportant. On the other

hand, for bR << b0 , the collisional coupling can not
overcome the effects of level-shifting and a perturbative

treatment is valid. Typically , the transition from weak

to strong field occurs for field strengths of order

lOk/cm2. T e strong field effects in RAIC and CARE are

fundamentally different. In RAIC, the upper state proba-

bility is truly saturated by the field-collisional inter-

action. In CARE, on the other hand, the upper state

probability amplitude is always small if XTc >> 1. It is

the rapid Rabi oscillations that lead to a decreasing

CARE cross section with increasing X when XTc >> 1 and
x/I'AI • 1.

CONCLUSION

We have presented explanations of the physical processes

underlying combined radiation field-collisional exci-

tation of atomic systems. Alternative approaches could

involve a "dressed-atom" description or a molecular-state

basis calculation. For a meaningful theoretical des-

cription of CARE and RAIC, one must use accurate inter-

atomic potentials and average all results over the spatial

and temporal extent of the laser pulse. It may be noted,

Jiowever, that experimental investigations of CARE and

RAIC have revealed many of the qualitative features dis-

cussed above.

This work is supported by the U.S. Office of Naval

Research. The content of this paper is based, in part, on
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a lecture given by PRB at the College de France in

January, 1980.
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COMMENTS

Comment on "Observation of Subnatural probability, it appears that Shimizu, Umezu,
Linewidth in Na D 2 Lines" and Takuma' did not properly account for the

spontaneous decay in the problem. Consequently,
In a recent article,' Shimizu, Umezu, and as a function of T, their maximum excitation

Takuma proposed and demonstrated a novel new probability decays at twice the rate one should
method for obtaining subnatural linewidths. Their expect. In this Comment, a derivation of the
approach can be summarized as follows: (1) A excitation probability is given.
laser field is perpendicularly incident on an The problem is effectively solved by using a
atomic beam; the atoms are in their ground state density matrix approach. The atoms are approxi-
and the laser frequency is nearly resonant with mated by two-level systems which enter the inter-
a ground-state-excited-state transition. (2) The action volume in state 1. Using a field interaction
phase of the field is suddenly switched (at t = 0, representation and neglecting the "antirotating"
for example). (3) The excitation probability is components of the field, one obtains equations of
monitored as a function of atom-field detuning motion
A for various delay times T following the phase
switch. For fixed T, the resulting excitation A +i[ Xt P, x*(t)pu I
probability amplitude contains contributions from = -YP. -4 x(t )p., - x*(t )p 2 ],
atoms excited before and after the phase switch;
the corresponding excitation probability contains = " -(F-+iA)p, +ix(t)p-p,,),
interference fringes as a function of A having a where xt) = xe' )((t) =0 for t<0 and q't) =(

width of order 1/T. If l/T is less than the nat- for t >0, X is an atom-field coupling parameter,
ural linewidth associated with the transition, A is an incoherent pump rate, F, is the decay
this method enables one to achieve subnatural rate for state i, and - 2 = (, +y,)/ 2 . Using per-
spectroscopic linewldths. Experimental verifica- turbation theory, one can easily obtain the upper-
tion of this phenomenon was reported.' state amplitude at time T following the phase

In deriving an expression for the excitation switch to be

AA)I - e")jexpj-(y,, +iA)TI -exp(-yT)}
2Ax,/j ,(y,2 +A &2)1- 2Re I'J +iA)[ Mv - y,) - iA] (1)

To compare this result with that of Shimizu, Umezu, and Takuma,' one evaluates p,(-, 4) - P,,(T, A),
sets 4, =v, and takes y. >y, since state 1 is the ground state. The signal I(T,A) is

I(T 7, )4AX'exp(-y,7/2)cos(AT) - exp(-yT/2) (

(,L + A'I (2)
which is to be compared with the line-shape formula

I,(T, A) - 2e?(-2T) 1 sin(AT) +cos(AT) - 1) (3)

given in Ref. 1. Equations (2) and (3) qualitatively
predict the same type of subnatural linewidth (i.e., VIM) rather than that associated with the
phenomenon. However, there are important dif- population p. (i.e., y.).
ferences between the two results. First, Eq. (2) This research is supported by the U. S. Office
leads to a central fringe that is narrower and of Naval Research.
deeper than that of Eq. (3). Second, Eq. (3) pre-
dicts a peak intensity (at A = 0) which varies as Paul R. Berman
exp(-v,T) while Eq. (2) predicts one which varies Physics Department, New York University
as exp(-y 2 T/2). For 2 /y, -32 as appropriate to Nw York, Nw York 10003
the Na 3P levels, the observed peak intensity de- Received 30 November 1981
cay time of 40 ns (Ref. 1) is in reasonable agree- PACS numbers: 32.70.Jz
meat with Eq. (2). Since the line shape repre-
seats an interference effect, one expects the de- IF. Shimizu, K. Umezu, and R. Takuma, Phys. Rev.
eay rate to be that associated with the coherence Lett. 47, 825 (1981).

iebpoduchon in whole or in part is perimtted3"6 fo j, lb a& af d ,,41282 T h e American Physical Society 01te[ l d. "
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Two-lade Uasiton probabliie for asymmetric cotaplin pulse

L. LJ Robinson
PIlpeocr Drvmmat Now York Unhwifu1. 4 Waisngtm PIW4 New rork~ New Yoe* 10003

(ReCadved 2 March 1981

In a nowa paper, Dembini and Berman [A. 13ambii ad P. IL Berman, Phsu Row. A
2.2 2496 (1981)1 presented analytic solutions to a -ertain fml of o al ert- plpubes for a two-Levei system. They show, for nuresomnt uemporafy asymmetric
members of the dess, that there awe no solutions corresponding to vanishing transitio
prolabilfies. In this Comment, we examnn the problem in greate umerality ad demon-

stat that this property is the norm for asymmetric pubes, and thu a vanishng traas-
tic. probabilty is pomss1bk only if severely overdetermined conditions an satsd.

The proble of a two-level system coupled by an sudden~approximation theory sad ezaeimat.
eternal &iel es a long history in physics, doting They analyzed the afect of a smoothly varying
back to the 193WLs.2 Originally motivated by in- pulse, choosing a hyperbolic secant becam of the
vestgaton on atoms in magnetic: fields, theories of exactly solvable nature of the equation that result
such systems have mome rcently beow applied to from such a dome dependence- Foe the hyperlbolic
lase-related problens.' secant pulse one may make a change of variable

Let a I 'a2 be the amplitudes of the two states. that tranisformn the equation of motion into the hy-
We assume that the coupling poitial connecting pergemeetric equation. RoNUsoO4 has shown how
the two state is of variable amplitude and central to generalize this to the case of decaying states.
fr~equency 0I, so that, in the rotating wave approxi- Recently, Bamnbini andl Berman' have gone
'nation, the tine-dependent Schr6dinger equation beyond the Rosen-Zener problem. They sho that
becomes a pair of coupled equation for a ,a a: there is an entire class of envelope fuctions that

"i = ~t)'Aa2 (s) may be mapped into the hyperpomet equation,
io~ =~t~e~'a2 ~(Ia) of which the hyperbolic secant pulse is ***d one

(lb) member. AUl VWt in the family, other than the
i~i=V~). 1 &athyperbolic secant, are aymmetric in time, iAe,

Here A is the detuning of 1 from the atomic frec- VMO)V( -t. Bambini and Berman show that for
quency. We work in a system of units where 41= I. these asymmetric pulses, there is no case, apart

For the cose where V is a constant in tine, the from exact resonance, where there is a nonvsmsh-
solution for initial condition a I=0, a2 = I at t =O ing transition probability, a striking and surprising
is result.

-iV e'A2si[(A/4+I)12t] In the case of the RAbN problem, on the other
a=(,&2/4+ V2)1/21+V)tlJ hand, for any given detuning, there are always

values of the pulse area for which the amplitude a1
This is the RUN problem. For this to be returns to zero. In the Rosen-Zener came, the am-

relevant, the approximation that the rise time of plitude a I -Ico) goes like (sinA)/A, what A is the
the field is much shorter than other characteristic pulse area, so that here too, once the hyperbolic
times should be a good one. In their paper, Rosen secant envelope function is specified, one can find
and Zener2 considered a case where this sudden ap- values of the area of the pulse for which a I(+ ac)
proximation was not valid. They were motivated vanishes. Similar remarks hold for other sym-
by a serious discrepancy between results of the metric potentials, where solutions; have been ob-

24 2239 01981 The American Physical Society
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tained with computers." 7 It is a most remarkable Equation (3b') resembles a one-dimensional,
feature of the Bambini-Berman problem that it ad- time-independent Schr6dinger equation for a parti-
mits no asymmetric envelopes for A-0 with a ce of mass -i moving in the complex "potential"
nonvanishing transition probability. That is, it as- ia r I4 I
serts that for asymmetric pulses of the form V =- - +1i_ ---
studied, if the amplitudes a 2 = I and a =0 at 1 2

t = -ao, then at time t = + ao, the probability for where A has been set = 1.
finding the system in state I is nonvanishing, i.e., This equation is to be solved subject to the ini-
there will always be some population in state I for tial conditions that b =0 at z - -1. If the
this class of off-resonant asymmetric pulse. No dynamics of the problem permit a transition proba-
previous prediction of this kind of behavior seems bility of zero for certain pulse areas, this means
extant in the literature. It should be understood b(z = o )also vanishes for those values of A. In

tha (zl =neoe +f a )al alseroi vanshe foareevleo .I
that only envelopes of a single algebraic sipit are short, we must solve an eigenvalue problem and
being considered, so that, for example, pulses that find those values ofA 2 for which the solutions of
are completely antisymmetric in time are excluded Eq. (3b') vanish at z = ± -+. Now, for physicalfrom this discussion.

Bambini and Be an reach their concusion by pulses, only real envelopes exist. For these, A 2 isBambni nd ermml eachther cnclsio by real and positive. If none of the eigenvalues A 2
obtaining a complete analytic solution to their re and poiti on e o he aignae arproblem. Since most pulse shapes do not admit of meet this criterion, A4 will have an imaginary part

for all the eigenfunctions of Eq. (3b'), and none willclosed form solutions, it is of interest to inquire correspond to a system driven by an actual pulse,whether the nonvanishing of transtion probabilities orsndtasyem rinbynatalps,
holds for other smooth, asymmetric pulses and i.e., there will be no physically meaningful pulsehldfther hisort, caymbeestrased ind areas for which the system undergoes a transitiongeneral way, i.e., through the structure of the equa- probability of zero. In the following, we shall as-tgeneral way mot . through thes qstu of th wea sume a nonvanishing detuning. Note that the case
ions of motion. It is to this question that we ad- of exact resonance is entirely equivalent to the ele-

dress the present work. mentary quantum mechanical problem of a particle
Equations (1) may be put in the form of unco- in a box, whose eigenvalues A 2 are 2r

2
. In this

pled second-order equations way, we confirm the simple result that the transi-

di -( V/V+iA)h, + V 2a1 =0, (2a) tion probability vanishes for pulse areas that are in-
z -(V/V-i + V2412 =0 .(2b) tegral multiples of ir, if 6=0.

We should comment that if one constructs an

Defining z f f(t')dt'- -1, with A f Vdt asymmetric potential from two temporally distinct

and f = '/A, Eqs. (2) become, in the z pn, symmetric pulses, one can, by making each of the
component pulses produce a net transition ampli-

a't'---a +'Za -0, C3a) tude of zero, cause the overall probability to var-. ish. To force the components to be exactly nono-
y(b) verlapping in time requires that they be sharply cut

2+. ( off. Thus, these pulses do not conform to the
We assume, with Bambini and Beram,5 that ft Wsmoothness criterion of fambini and Berman.'

We consider now pulses where the imaginary
does not change sig, so that the transformation, term is present. We examine first the case of sym-
which diffen from theirs, is single valued. If one metric pulses. Let A 2 be a typical eigenvalue. If
transforms Eq. (3a) via the substitution we replace the imaginary term by its negative, then

b=aep [(-iA/2, fod zP)=aIm1, the resulting equation will have A2 for its eigen-
I value. Now, since f(z) is symmetric in z, jr(z) will

into an equation with the first derivative miming, be antisymmetric. Therefore, the transformation
we have z--*-z reverses the sign of the imaginary term on

"+ A....+AWI+2 [the left-hand side of Eq. (3b'), but leaves the egen-
-/+ 212 j b=O, (3a') value unchanged. Immediately,A =A ' , i.e., all

or I the eigenValUest ame rea, although not necesarily
o _ A t I larger than zero. For asymmetric pulses, the

bV+ .- - - b= b. D) transformation z-.--z does not reproduce the4f 2f: 2 complex-conjugate equation, and A 2 will not, in
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general, be the same as A .. This does not abso- If the potential V(t) is not symmetric neither
lutely rule out the possibility that for particular I/f 2 nor f,/f2 will be operators of definite parity,
f(t) and detuning, one might have one or more nor will unperturbed solutions b0 possess well-
real and positive eigenvalues, but demonstrates that defined inversion properties. Hence, both even and
it could occur only by accident. We shall show in odd terms in the perturbation expansion will be
the following that the conditions that must neces- present, and the eigenvalues A 2 will all be complex,
sarily be fulfilled for A 2 to be real for asymmetric unless there is a case where, for a specific detuning,
pulses are severely overdetermined. the odd powers of the expansion sum to zero.

To proceed, we will analyze the problem from a The latter is an extremely unlikely circumstance.

perturbative viewpoint, and assume that the entire Equation (3b') is of the form
perturbation expansion can be summed. We do not
restrict ourselves to the first few terms, but study -b"-- b=A2b . (5)
the parity-related properties of the full series. We
take the zero-order problem to be We require not only that the odd powers sum to

. zero, but that they do so for a value of ). that is ex-
41 2 bo-A~b. actly the square root of A. We cannot quite ex-

clude this possibility, but it is evidently highly

flhis is Hermitian and identical to a time- overdetermined.
independent Schrfdinger equation, which has only To summarize, we have shown that the result
real eigenvalues. The imaginary term -iAf'/2f 2  obtained for particular asymmetric pulses by Barn-
is to be considered as a perturbation. bini and Berman, 5 namely that there are no non-

We wish to contrast the case of symmetric and resonant cases for which the transition probability
asymmetric pulse envelopes. Assume f(t) to be vanishes, is the normal consequence of the general
symmetric-f (z) is also symmetric. [If f (t) were structure of the equations of motion, and applies,
not symmetric about t =0, f(z) would lack sym- apart from some remotely possible accidental cases,
metry about its origin.] For this case, the unper- to all smoothly varying, asymmetric pulses which
turbed eigenfunction b0 has definite parity, and the possess envelopes of a single algebraic sign.
perturbation -iAf'/f

2 is odd under reflection. It
follows directly that if one writes a perturbation The author is grateful to Professor P. R. Berman
series for A 2 as an expansion in the usual way, con- for valuable discussions of this problem, and for a
tributions from odd powers of the "strength" of the copy of the Bambini-Berman manuscript prior to
"interaction" will be absent. Since only the even publicatio,. He also wishes to thank Dr. R.
orders survive, and the strength parameter is pure- Salomaa for useful comments. This work was sup-
ly imaginary, the resulting eigenvalues will be real. ported by the Office of Naval Research.

11. . Rabi, Phys. Rev. 51, 632 (1937). 4R. T. Robiscoe, Phys. Rev. A 17. 247 (1978).
2N. Rosen and C. Zener, Phys. Rev. 4, 502 (1932). 5A. Bambini and P. R. Berman, Phys. Rev. A It 2496
3An extensive compilation of references is given by L. (1981).

Allen and J. H. Eberly, Optical Resonance and Tuw- 6S. Yeb and P. R. Berman (private communication).
levl Atoms (Wiley, New York, 1975). 7E. J. Robinson (unpublished).
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CompaSson between dressed-atom and bare-atom pictures
in laser spectroscopy

P. R. Bernan and Rainer Salomaa*
Phyda Dqarntnt, New York Uiversity, 4 Washington Place, New York, New York 10003

(Received 26 August 1981)

The theory of the interaction between radiation fields and atoms as applied to laser
specumopy can be approached using either a bare-atom picture (BAP) or dressed-atom
picture DAP). In the BAP, the basis states are those of the free atoms and free field
while, in the DAP, the basis states encompass some part of the atom-field interaction.
The theory of saturation spectroscopy in three-level systems is discussed using both ap-
proches. Whereas calculations are usually more easily done using the BAP, one can gain
useful insight into the underlying physical processes from the DAP. Moreover, when the
radiation field strengths (in frequency units) are larger than the relaxation rates in the
problem, the DAP equations simplify considerably and lead to line-shape expressions
which may be given a simple interpretation. The DAP is used to obtain resonance condi-
tions for traveling-wave fields interacting with three- and four-level atoms and for a
standing-wave saturator and traveling-wave probe interacting with a three-level atom. In
addition, the DAP is applied to several problems involving optical coherent transients. A
comparison is made between the various advantages of the BAP and DAP and an in-
teresting duality between the two approaches is noted.

L INTRODUCTION groups. First, there is the so-called bare-atom pie-

ture (BAP) in which the atom-field interactions are
There exists today a wide variety of "Doppler- represented in terms of a basis using the (bare)

free" methods for obtaining absorption spectra as- atomic eigestates. - " Second, there is the
sociated with atomic or molecular transitions. 1- 6  dressed-atom picture (DAP) in which all or part of
The methods are "Doppler free" in that the width the atom-field interaction is solved exactly and the
normally occurring in linear spectroscopy can be resultant atom-field eigenstates are used as the
substantially reduced or totally eliminated using basis for further calculations. 12, 9- 24 Finally there
nonlinear techniques. This suppression of the are resolvent methods which will not be discussed
Doppler width is generally achieved in one of two here.25

ways. First, one can limit those atoms participat- Most calculations were originally performed us-
ing in the absorption process to a narrow velocity ing the BAP. For two- or three-level atomic sys-
range (either by use of an atomic beam or by selec- tens interacting with two or more radiation fields,
tive excitation with a laser field) leading to a the "Doppler-free" absorption spectra were calcu-
corresponding reduction of the Doppler width. Al. lated using a density-matrix approach. It soon be-
ternatively, one can arrange for the atoms to in- came apxreciated, however, that the DAP ap-
teract with two fields such that the resultant fre- proach previously used to describe optical pump-
quency seen in the atomic frame is not strongly ing experiments,2 ' could be advantageously applied
dependent on velocity (cancellation of Doppler to laser spectroscopy experiments when one or
phases). Coherent transient spectroscopy provides more of the fields is intense. The dressed-atom ap-
another method for obtaining spectral information proach has proven to be extremely useful in obtain-
that is essentially free of the Doppler width. It is in theoretical expressions for resonance fluores-
also possible to combine the various methods. cence spectra when the exciting field is intene t 5'2 7

There exists a rich literature devoted to the It is the purpose of this paper to provide a com.
theory of nonlinear saturation spectroscopy.' -23 parison of the DAP and BAP, to indicate the rela.
The approaches can be divided into roughly three live advantages of each approach, and to apply the

25 2667 el92 ' American Physica soety
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DAP to some cases not previously considered. It approaches may be similar. It is in this sense that
is shown that the BAP equations are invariably we refer to a "dressed-atom" picture, although our
esie to solve than the corresponding DAP ones as dressed states are not the conventional ones appear-
long a one is dealing with single-mode fields in- ing in quantized-field treatments.19- 22,26

teracting with two- or three-level atomic systems. In Sec. lI the basic formalism is described and a
For multilevd atoms or multimode fields, both comparison between the BAP and DAP is given in
methods lead to equations that present considerable Sec. M. The DAP is applied to the saturation
analytical difficulties. spectroscopy of homogeneously and inhomogene-

Although the DAP equations may not provide ously broadened three-level atoms in Sacs. IV and
any analytical simplifications, they do enable one V, respectively. In Sec. VI, we discuss the manner
to obtain an interpretation of the ongoing physical in which the DAP can be applied to multilevel
; Pcesses that may be helpful in understanding the atoms or multimode fields and in Sec. VII,
atom-field interactios. When the frequency coherent transient effects are discussed using the
separation of the dressed-energy states is much DAP. Some conclusions concerning the relative
greater than the relaxation rates in the problem, an merits of the two approaches are given in Sec.
important simplification occurs in the DAP. One VIII.

can interpret multiphoton interactions of the BAP Much of the material presented in Secs. II-V is
in terms of noninterfering single-photon transitions not new, but is reassembled there to provide the
in the DAP. The positions (but not necessarily the basis for a comparison between the BAP and DAP
strengths and widths) of the various atom-field and to lay the foundation for the material that fol-
resonncare then easily and naturally predicted lows.
using the DAP.

A comparison of the BAP and the DAP also
offeas an interesting duality between the two ap- II. GENERAL FORMALISM
promches. It is shown that the roles played by the
atom-field coupling constants and the relaxation We consider an idealized three-level moving
rates are interchanged in the BAP and DAP ap- atom which interacts with a linearly polarized elec-
proahes. In coherent transient spectroscopy, what tromagnetic field of the form
appears as an optical nutation signal in the BAP E(zt)=e[Ej cos(f lt -Kiz +',)
now appears as a free-induction decay in the DAP.
Other features of the two approaches are discussed +E 2 cos(fl 21 -K 2z +qD2 )J. (2.1)
as applied to three-level spectroscopy, four-level
spectroscopy, saturation spectroscopy involving The atom-field interaction is of the form #,sE(z,t)

multimode fields, and coherent transient spectros- where -pt is the x component of the atomic di-

COPY. pole operator. It is assumed that the wave (E1 ,fl 1)
It should be stressed that the DAP discussed in couples the atomic states I I) and 12) only and

this work differs in spirit from that of convention- W2,fA2 ) the states 12) and 13) only. Within the
al theries.""'' In the conventional DAP, the rotating-wave approximation,.2 the reduced density
electromagnetic field is quantized and the dressed matrix of the atom in the field-interaction repre-

states are egenstates of the atom plus field; conse- sentation 2' obeys the master equation' 2 "'

quently, these dressed states represent linear combi-
nations of products of atomic and quantized-field =(i)-j,t1+A+A. (2.2)
eigistates. In our case, the fidd is taken to be
clamical. However, by using a field-interaction Equation (2.2) contains three contributions. The
representation for the various state amplitudes and first of these involves an effective Hamiltonian /
forming appropriate linear combinations of the and represents the atom-field interaction. The ma-
atomic-state eigestates, one arrives at equations trix H is given by
that are mathematically equivalent to the conven-
doual dressed-atom ones, provided the field -2 1  0

strengths are large enough to be treated classically. a , 0 a2 (2.3)
Thus, even though the DAP eigenstates using clas-t 0 a 2  (23
sical and quantized fields differ in a fundamental

way, the conclusions and interpretations using both where we have denoted the Doppler-shifted detun-

i I I il I
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aaby weak coupling between 12) and 13)." Many ef-
fects of the strong field are conveniently incor-

A2 1=A 2,+kjv, (2.4a) porated by transforming to a "dressed" basis de-

l =A32+k2, (2.4b) fined by

what IA)=cos 1l)-sinOI2), (2.8)

A2i=Wa2 1 -s8( 2 1 )(, IB)=sin 11l)+cosI 2), (2.8b)

A3=W"-SP(W32)a2, (2.4c) I C)= 13), (2.c)

k1=3(W~d1 ,withki =sgn(aiu)Ki wt

k 2=Wn(o32)K 2 , (2.4d) 2 1

and the Rai frequencies by (2.9a)

at= 21Ei/2A, (2.5a) cos9= I+[ i -2 ,( 22 +4a2 -/2j 1/2

a2=19"32E/ 2,1, (2.5b) (2.9b)

in which wy is the energy spacing (in units A) be- In the discussion that follows, the states I i)
tween levels i and j, It - -=s1 is the x component of (I - 1,2,3), will be referred to as states in a bare-
the ij dipole matrix element (notice pU =0), and v atom picture (BAP) and the states I a)
is the z component of the atomic velocity. The (a=A,BC), will be referred to as states in a
second term in Eq. (2.2) describes relaxation pro- dressed-atom picture (DAP).
ceases and is of the form3°  The transformation (2.8) may be written

(A d),V = j .R#;AJ ;k1 (2.6) a )=-T .,Ii) ), (2.10)

kj where the summation convention is adopted and

where the elements Rj;&i represent the effects of elements T.( are given by

spontaneous emission or collisional relaxation. The T.d=(T-').-ha). (2.11)
spontaneous emission can lead either to decay out-
side of the three-level system or to a transfer of In terms of the T matrix the transformation be-
population between some of the levels. The final tween the dressed and bare density matrices is

tam in Eq. (2.2) is an incoherent pumping matrix .j5=T-'5DT, (2.12)
whose elements are of the form

A,=A,8 1. (2.7) which is used to transform Eq. (22) into

Ile states 11) and 12) are assumed to be PD=(ii)-[/fD,Pj+PD,,h+AD, (2.13)

strongly coupled by a2, whereas a 2 provides a where

-a2-- A0 -a 2sinO

0 -Aa,++M a 2oos9 , (2.14)

-a 2ssanO a 2 co0O A32
-2 "2 I/)

*JA -(A22 +462) A.

(2.16)

[The angle 0 in Eq. (2.9) is taken to lie in the tive. With this choice, dressed state B always has
rane 0 < < r/2 such that cos8 and sinS are pool- a greater energy than dressed state A. In the limit
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hat a-.o, states IA), I8)- 11),12) if 21 >0
and IA), I B)-- 12), Il) if , <0.] - ++ - +

The transformation 7' has been chosen to diago- (2.22e)
nalize the A -B submatrix of /1D. In the limit
that a 2 --.0, M is diagonal and one has a complete Ps (~i+i2l+i&32)P3i+iajP32-a2#2,
solution to the problem. The DAP will be particu- (2.2m
lary useful when a 2 is small, enabling one to carry
out a perturbation expansion in this parameter. PU Pu' (2.225)
Although the matrix HD has a simple structure, while in the DAP, the corresponding equations
the relaxation and pumping terms are now more read:
complicated. The pumping matrix, which is diago-
nal in the BAP, has both diagonal and off-diagonal jt = AA - rATA + 20 Re( ju ) +2a A Im(c 4 ),
elements in the DAP as given in Eq. (2.18). More-
over, the relaxation terms are most naturally ex- (2.23a)
pressed in the BAP, where one can typically take Pm = AD - rjp, + 2PRe( ,4 ) + 2as Im(; 5CB)
(no sum)

(2.23b)
Rq~tl -- q61, S/,( l -61, ) OC Ac- rcicc -2a , m('pc4 )-2as m(5cR ) ,

-rfS4jfi~k 8 is +rida,6j8,,(lI-84,) (21230
(2.19)

leading to a relaxational time rate of change of = (YCA +iWCA PPCA +iaA(OCC-AA)

of the form -asBANA + Pca, (2.23d)
( ) -,J (iji:ij), (2.20) PCO = - (rCB +iCB)_C + ias (j5cc -Nss)

(Ard)a=-ri;5,J+ y, r,# (2.21) -iaAp5AN+PpCA , (2.234)
Pat =^ -JU (Y, +iMJ )PJ +O(PAA+P,)

where r, is the total decay rate of state i and I,
describes population transfer from j to i due to +ia5aBc-iap8 rA, (2.23f)
spontaneous emission or collisions. While the re-
laxational decay and coupling in the BAP given by (2.23)
Eqs. (2.20) and (2.21) is fairly simple, the where
corresponding coupling in the DAP given by Eqs. AA A cos2--A2sin2(.
(2.16)-(2.17) involves many more terms. Explicit (-.2s4
expressions for the relaxation rates are given in A =A sin 2 e+A, cos2 e, (2.24b)
Appendix A.

To c- a-pare the BAP and DAP we write down Ac---A 3 , (2.24c)
the equations of the components of the density- AjW =AA =A, -A 2 )sin2e, (2.M)
matrix elements in both representations. For sim- 2
plicity, we adopt a relaxation scheme in which 1"j -rAr cos2o+ F2sin 2 , (2.25a)
ry 0 and i -L(F,+Fj), corresponding to the
case In which each level decays to some states oth-
er than states 1, 2, or 3. In the BAP, one has rC=r", (2.2.c)

(2.22.) y.,=1(ro+r,), (2.25d)

a-A2-r a-2a M(P1) + 2az Im(i,3), a, =-a 2 sinO, (2.26.)

(2.22b) ap ,=a2 coS , (2.26b)
j3- As- r p,- 2a2 I.(P2), (2.22) P=1(r,- r,)si.2o,(2)

;2,--(h,+I,, ,+i,,(ta( -t:,,)-laa 3 I, MCA =!32 + 1121+ '(A2, +4a,)'D , (2.8k)

(2.22d) WCO X32+iA2 y(j21+4a2)1. (

- 2 2 1 (2.28b)
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ihe physical obsmevab are the populations M considered here partly hides the power of DAP. A
and tram proportional to either Re ,) or Imy) better comparison could, perhaps, be obtained by
giving the dispersion or absorption, respectively, studying a case where both pictures must be solved
for the saturator (ij -2,1) or probe (ij =3,2). Us- approximately. Some applications along these lines
ing Eqs (2.8)-(2.12), one can express these BAP are presented in Secs. VI and VII. For the present,
elemets in term of the DAP elements Pp by we consider the three-level scheme of Fig. I since

it allows for comparison with well-known re-
pitcooGpu+si 2 0p" +sin2R(Fu), swts-25

(2.29a) Regardless of the level structure, the DAP sim-
_ plifies the interpretation of the probe-absorption

P2-in
29P, M+oo n--n28Ie(P4  , spectrum when the saturating field is intense. As

(2.29b) an example, consider a three-level system for
which two peaks appear in the probe-absorption

A" (2.29c) spectrum at Z32 -0 and Z 32=-A 2 1 . Ifat is weak
these resonances can be labeled as stepwise and two

p~1n28,,,-Px)+czOsx-sinPm, photon in the BAP, but this interpretation breaks

(229d) down if aI cannot be treated in lowest-order per-
turbation theory. In the limit of large a,, however,

n---- c-a . (2.29e) the DAP allows one to interpret the two peaks as

It might be noted that the above equations, to- single-photon transitions between the dressed states
gether with the quantum regression theorem, could A -C and B-C.
also be used to calculate the spectrum of resonance One way to solve the density-matrix equations
fluorescence from these ieves.2,19,31  approximately is based on the assumption that the

off-diagonal components are small. In the BAP
this leads to ordinary perturbation solutions in

Mi. COMPARISON BETWEEN BAP AND DAP: powers of a. The expansion converges rapidly
APPROXIMATE SOLUTIONS provided that I A21 I or the relaxation constants

are much larger than a,. In the DAP, the role of
The DAP equations are more complicated than the y's and a, is interchanged; therefore, the

the corresponding BAP equations, even for the corresponding approximate solution holds in the
simplified relaxation scheme adopted in Sec. II. limit that 1 L21 1 or a, is much larger than the re-
One may, in particular, note the following features: laxation rates. Thus, for strong fields a,, a pertur-

bative approach works well in the DAP but not at
(i) In the DAP, in contrast to the BAP, the off- all in the BAP.

diagonal element Pju has a source term A,. This
disappears only when AI=A z or a1-*0.

00i All direct coupling between j5A, 5A,;",

;5m is proportional to the difference between the
r laxtion rates F, and F2. The coupling parame-
ter is of order P given in Eq. (2.27).

(iii) If we neglect AAD and 8, the DAP and BAP
equations are equivalent with the replacements
aA+*a, a04-0a 2, and A,B,C*,.I,3,2. The prom-
inent difference between the two representations is DAP
that, in the DAP,. all couplings are of order a2
(weak), whereas in the BAP, states I and 2 are PIG. I. A tree-kvel system in both the SAP and
strongly coupled by a,. These features are illus. DAP. In the BAP, there is incoherent pumping to and
trated in Fi& 1. decay from each of the states. Levels I and 2 are comu-

pled by a strong field at and levels 2 and 3 by a weak
Clearly the BAP equations are easier to solve probe field az. In the DAP, both couplings aA and aptluir those of the DAP. However, for a strong sa- between the dressed states are weak. However, there isthan the e th inite aP. va e fr asrng the- now a collisional coupling P of states A and 5 as well as

turator, there are definite advantages in using the Awhcasntpentnte

DAP. Moreover, the simple model configuration a "Peent 1unpins" AAM which is et"Clt in theBAP.
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For the present, we assume (validity conditions IV. HOMOGENEOUSLY BROADENED SYSTEMS
to be stated below) that 5oA is negligible. Then, to
zeroth order in a, it follows immediately that the We consider first a homogeneously broadened
steady-state solutions to Eq. (2.23) are system in which all the detunings Aq are indepen-

dent of v as may be the case when laser beams in-
(3.1 teract with an atomic beam such that k V-=0.

Using Eqs. (2.23) and (2.29) one obtains Once Eq. (3.2) is valid the interpretation of the
---- ia2cos o - n o)  probe-absorption spectrum is extremely simple.Pi- ' 2 oWe define the probe-absorption spectrum 1(A 32)

) cD + i j as32

+ ia 2 sin2 (n-nA) (3.2) 1(A32) IM ,321 (4.1)
YCA +i)CA a2

The steady-state value of 532, is related to the which is obtained by combining Eqs. (4.1) and (3.2)
probe-induced polarization. It can be seen in Eq. to give
(3.2) that the probe-field polarization may be rc cos2e(n° -n°)
viewed as originating from two noninteracting I(A 32 )= --

single-photon transitions between the dressed states Ca +WCB

C-B (corresponding strength a 2 COS
2 6) and C- rcA sin29(n O n° )

(strength a 2 sin 2o). + yCA 2 (4.2)
An exact solution for P32 (to first order in a 2) is C4+cA

given in Appendix B where it is shown that Eq. The two resonances are Lorentzians (which may
(3.2) is valid provided that both overlap) having the following properties:

(,4a'r (3.3a) C-B transition

and A 32 -- A 2 1 +_(A2 1 -4a2)1/2 (position),

n o -- o s62 B, .c --0 31sin +y 32 cos0 (width),
_nB B yCOS2 n O +n0

2
, - S

in o n o , I 1-A21 i (3) cOs2 (n-n /ca (height), (4.3)
nc - ,0 1 sn20>> nAAR sin 20. (3.3b)

Roughly speaking, Eqs. (3.3) are satisfied if the de- 2
cay rates are much less than the frequency separa- 2.

tion 01M between states A and B.

The widths c4, y c and the positions wca8 =0, I 11
wA =0 of the resonances given in Eq. (3.2) are ac-
curate if (3.3a) is satisfied. Equation (3.3a) enables
one to ignore any interference effects between the
two single-photon transitions of the DAP. 1
Mathematically, this assumption involves the
neglect of the gdc, and fipcA terms in Eqs. (2.23d) 4 "5-3 900
and (2.23e), respectively, which, in turn, implies O
that j5c and ¢a are decoupled. Equation (3.3b), FIG. 2. Dressed-state populations o as aon the other hand, is the requirement that terms function of the BAP-DAP transformation angle 9.involving h in Eqs. (2.23d)-(2.23e) are small The BAP populations n °1, no 2, and no =no are deter-mined by the incoherent pumping and relaxation rates.enough to be neglected. Roughly speaking Eq. The gain factors for the CA and CB transitions can be
(3.3b) is valid when (r, + I'2)/0oA << 1. This con- read directly from this graph. For the case shown
dition is not sufficient if two of the dressed-state (r, =4r2 ; noonfl:n = 1:2.1.5), region I corresponds to
populations are equal. In this case one of the reso- absorption for the CD transition and gain for CA, region
nances in Eq. (3.2) disappears, whereas in the exact 11 to gain for both the CA and CR transitions, and re-
solution, the resonance does not totally vanish but gion Ill to gain for the CB transition and absorption for
is down in magnitude by a factor of order I/rama. CA.

I • I-I
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C-A trasition nances nA, no, and no is easily carried out with

graphs like that shown in Fig. 2 which is con-
U= -- A21-(A1i2+4ai)'s (position), structed using Eqs. (2.24), (2.25), and (3.1). The

(width), linewidths always remain below maXi 32,Y311
A----V, c 0+Vn s~inO (wdhwhich implies that there is no "power broadening"

ain2 (n°-n°)/yc. (height). (4.4) in these spectra.
One can note some interesting limiting forms of

The dependence of the heights and the nature (i.e., Eq. (4.2). If field aI is very strong (a I I A21 1)
absorption or stimulated emission) of the reso- such that 0=-ir/4, then Eq. (4.2) becomes

I [A3  A2+A, I r3 +Y2, +r 3 +v2,1VlA 2)=- - F _ ,2 + I -a + 2
1 (r 3+ 2V)2+(A2+±A 2 A)2  4( 3+r 2i)2+(A32 +TA 2|+a,)2

(4.5)

which reveals two resonances of the same amplitude and same width, centered at A32 = ±al - -TA21.
On the other hand, if i <<at << I A21 , then 0<< 1 and the C-B resonance takes the form

Y32(n 3 - n )

A32+ 1+ 21( 32 ) (4.6)

which is a Lorentzian with a small AC Stark shift. plotted as a function of Z21. A distribution of ZZ,
If only the nonlinear part proportinal to a 2 is mon- is indicated schematically by the vertical-hatched
itored, the C-B resonance has a dispersionlike column; the intersection of this hatched column
shape.33  with the 014 and wB curves indicates the range of

allowed values for wA1 and wB for this specific dis-

V. INHOMOGENEOUS BROADENING

According to (3.2) the probe response is negligi-
ble except near the resonances wca =0 and wCA =0.
The frequencies wict and woc are functions of Az,
A32, and a,. Since A21 and A32 depend on the
atomic velocity which is determined by a distribu- 0 - ___

tion function and since, in principle, the value of
a, might also be determined by a distribution func-
tion, the general resonance conditions can be satis-
fied by one or several atomic subgroups in the sys-
ten. In this inhomogeneous broadening case, the - " o
atoms able to satisfy the resonance condition are
those responsible for the probe response.

Many features of the probe spectra can be FIG. 3. Dressed-state frequencies wA, wa, and wc as
Mayfeait s wi the ohe speraical ba function of detuning 121. (The scales are in arbitrary

predicted with the aid of the simple graphical frequency units.) The vertical strip gives the allowed
analysis given in Fig. 3. To use Fig. 3, it is useful values of !21 for some inhomogeneous distribution. As
to recall that wcg=Sl-wAp and wC4 -c-wA, the probe is tuned, the wc line moves vertically and its
where . is the energy of dressed state I a) in un- intersection with the toA and w, curves gives the regions
its of A given by the diagonal elements of the of probe absorption. These regions are indicated by the
Hamiltonian (2.14). In Fig. 3, op and ,A are horizontal strips in the figure.
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tribution of Fi2 . The probe frequency (assumed to the values of wa and wo present in the system.
be independent of A21) appears as a horizontal line This range, which simply represents the inhomo-
an this graph which moves vertically as the probe geneous broadening in the system owing to the
frequency is varied. The intersection of WC =--- 32  Doppler effect, is indicated by the vertical lines in
with the allowed values of ")A (or COB) gives the Fig. 4. The intersection of w with to, and w in
range over which the resonance conditions may be this region determines possible resonances of the
satisfied. These regions are indicated by the system since it corresponds to wCR = 0 or wCA =0.
cross-hatched zones of Fig. 3. As A32 is tuned, the ") curve moves vertically and

The above analysis is modified somewhat if the scans all possible resonances. The factors cos2o,
variation in 1 21 is due to the Doppler effect. 34 In sin 2 , n na, and no which appear as weight fac-
this case, a distribution of (axial) velocities tors for the resonances [see Eq. (3.2)] may be ob-

W(V)=exp(-v 2 /U 2 )/IrU (5.) tained from Fig. 5.
The velocity averaging is easily performed by

where u is the most probable speed, leads to fre- noticing that for rp<< I w I one can write
quencies

WA=--!(A,1 +kv) )ca+ocac
-'[(A21 +kq )2 +4a2]/2,

+r 8(V - UCB ),(5.2a) + I k c A v I - c
OR = - _,1U21 +k iv) &C a -Ps (5.7)

+ [(A1+klV)2 + 4a211 / 2 , (5.2b)

wc-A 32+k2v• (5.2c) where wcB(vcB)=O and a wcB/av 3 o *0 (vcy

is a simple zero of (oCB). In the case k 2 /k, >0
For the sake of definiteness, we take k, >0 and k2  (depicted in Fig. 4) the probe absorption is simply
of arbitrary sign (see Eq. (2.4)] which simply
corresponds to a choice of the direction of the po-
sitive z direction.

Inhomogeneously broadened three-level systems
have been previously analyzed using a graphical
approach. 5"" 22 We recall some well-known re- A '.

stits and then discuss features not emphasized in 2
earlier works. H

To construct a graph similar to that in Fig. 3, 0 ::i -------
we first define the dimensionless parameters -,

x =(A 2 +kv)/a, , (5.3) -2

wp/=wslat (P=A,B,C). (5.4) -4 -t--

In terms of these parameters the quantity "x

=:Y+ 2x, (5.5) FIG. 4. A curve similar to Fig. 3 in which thedressed-state frequencies wA, a, w'c (in units of aI) are
with plotted as a function of velocity through the parameter

x=(A2 +ktv)/aj. Since O varies linearly with v and,
v=&32-(k2/k ),&2j]/ajt  (5.6) consequently, also linearly with x; the curve wa(x) is a

straight line of slope kI/k and m,' intercept
is a linear function of x with slope of k2 /k, andy v=[A32-(k 2/k)A 2j]/a,. The range of allowed x, indi.
itercepterofun.tIn F. 4, wth ds onless f re /k dcated by the heavy portions of the wA and a, curves, isintercept of v. In Fig. 4, the dimensionless fre- centered at A21/a l and has a width determined by the
quencies W 4, cC are plotted versus x. For a Doppler distribution, which, in this case, is the inhomo-
given A21 there is a range of x centered about geneous broadening mechanism. Tuning the probe
x A21 /I/at of width 2k1 u/a which determines corresponds to a vertical displacement of the ud curve.
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IA) J!IWaIXat21 JC8'( [..fW aIx-A2i1 sin2 (n-nA) 1
jj--k, J iaw6 lax 1 z'" k, Il/xI -Zc l

(5.8)

where the dimensionless velocity parameter x, Eq. asymptotes of the w and ai curves). On the oth-
(5.3), has been introduced, er hand, if k2(kI +k 2 ) <0, or# resonances are pos-

Equation (5.8) together with Figs. 4 and 5 can be sible only if v > 0 and wcA resonances only if v < 0.
used to obtain some qualitative features of the There is a range of v
probe spectrum. One first determines the allowed 2 /2k2 (k +
range of x contributing to the spectrum. Using gv.-4J +k 2 ) (5.10)
Eq. (5.3) and the fact that i v I < u it is seen that x for which no resonances are possible and no probe
must fall within the range defined by absorption occurs.

_ A I ktu Figures 6-9 illustrate the various cases. In Fig.
-- < - ' "(5.9) 6 we have graphed (x,v)=O and ou (x,v)=O

a, - a, for the case k 2 > 0. As discussed above, for each

This range of x, centered at A21/a1 with width of value of x, there is one value of v for which

order 2k u/a 1, is indicated schematically by the ca--- =0 and one for which wcg =0. By mapping

heavy portions of w and wai curves in Fig. 4. out a horizontal strip giving the range of allowed x
and projecting the intersection of this strip withHaving founid the allowed range of x, one then

proceeds as follows. the w6 =0 and oB =0 curves onto the v axis, one
obtains the range of v=[A32 -(k 2 /k I )A2 1]/a t for

(1) The line eo0(x) [Eq. (5.5)] is drawn for each which significant probe absorption occurs.

value of A 32 (or, equivalently v) to determine the If ku >> a, and IA211 i < klu, then x is cen-
position, if any, of resonances x =xc(v) or tered at A2 1/aI and the strip of allowed x has a
x =xCp(v) for which wa=w or w =c, respec- large width 2ku la, >> 1 which always includes
tively. Notice that a variation of v, which x =0. In this case there is a wide range of v for

corresponds to varying the probe frequency, is which resonances occur as shown in Fig. 7(a). The
represented in Fig. 4 by a vertical translation of CA and CB resonances overlap, leading to the typi-
the w line. cal probe spectrum shown in Fig. 7(a). For this

(2) At any resonance positions xCA (v), xc,(V), case, the probe spectrum is given by (see Appendix
the corresponding weight functions cos2B, sin20, C)
n -n ° and ac°-ni are read off of Fig. 5, and the
velocity distribution W[(atx -A 2 )/k1 ] is evaluat-
ed at x=xc. or x =xca. ......

(3) The final factor contributing in Eq. (5.8), | 09

S  (a=A,), _

C 8 x W ' Z .X C .(VI ( a = A 0 >CO
ax -*c.-)- ax 1=c 4V '1 6 ,X

is the diference in slopes between the wjand w; 2
curves at the resonance positions. Using the above 2

steps, one can construct the probe spectrum for 4
various values of the parameters a , k 2 k and
Ai.

For positive slope [k 2/!1- >0] of wd(x), it is ob- I
vious from Fig. 4 that there always exists some . .. ....
values of v (i.e., probe detunings A32) leading to CA .4 2 0 2 4

and CB resonances. For k 2 negative (recall that we FIG. 5. Curves which give the weight factors sin28,
have arbitrarily taken k I > 0), both resonances still n. (Cv=ABC as a function ofx.the ih exam
occur if k 2(k, +k 2 )>0 (magnitude of the slope of pie shown, we have taken nuI:n0:n*=1:2i2.1 and
w' greater than the magnitude of the slopes of the r,:r1 -3:l.

ii
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1__ Uf6 12U A32 + 32+A2 1 2 /42
I( J2~klex TT k,+k 2 Ij

3_O) Ik 2_n

o o Ik2 1 (no ar r J
x -3- A3,-(k'/k,)A 2 j 2 +7 1/rr 2

MIAD

where
I k21 I k.+kzI-

rd:fl-- j +2 ki5.2

It consists of a broad background term representing linear absorption plus a strongly power-broadened
Lreitzian of width a,(y,1/rlr 2 )' . Although the wcB and ocA terms are not themselves Lorentzian,
their sum is. Equation (5.11) may be obtained from Eq. (24) of Ref. 13 in the limit of large a 2.

For large detunings, 1A21 1 >> a,k 1 u, the situation is depicted in Fig. T. The cocB and coCA resonances
are now nonoverlapping, leading to the spectrum shown. In this limit

2

W~cO-A 32 - I-'-- +k 2v , (5.13a)

2

OC4-A12 + A21" + A21 (kl l-k2)V ,(5.13b)

and cos20 I, ycj my32, ycA =Y31. The resulting spectrum is the sum of two Voigt profiles

A[2 1 2 0 0 2

3-2Z, I A32-a i/A2t/r32 a n-n-o o A32 .A2 t .a/A 21+ IY3
Skk 2 u I+U 21Uk,+k 2 IuZl Ik+k 2 lu

(5.14)

where Zi is the imaginary part of the plasma-dispersion function.35 The spectral components are Gaussians
if the arguments of Z have magnitude much less than unity and Lorentzians in the opposite limit.

For large intensities, I aII >> I A21 I,kIu, the situation is depicted in Fig. 7c. In this limit both the cen-
tral value and the range of x is much less than unity; the resulting spectrum arises from nonoverlapping CA
and CB resonances. For this case we have

t A1 21+klu
WcB=A32+ iA2 1-al+ kz+-¥kt2A, -- A4-+ , (5.15a)

,~~A2 + k2 2 a~n
CA = A 32 T A 21 a -I k 2 -Lk t -- ' k t  V + 2  5.15b)

2 4algal

*in20 cos20 9 -, and YrC =YcA (nY, + Y32). Two (nearly) symmetric resonances appear at
A32=- -- A21±al and the spectrum is the sum of two Voigt profiles

__ _____ A32+ A2 1 -al +iyCB 1 A32 +L 2 t +a i+iyCA
F1 r2+l, I k2++kIu I uk 2 ++kI l u jk 2+Lk, Iu

(5.16)
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2 1 \ " ,1 0a

CA ~-0 CB
CA

-0
- . ' * --- *

0- -

FIG. 6. Curves representing the resonance conditions 4 0 4

wx,v)=0 and nw 1(x,v)=0 for the case k2 >0. For a
range of allowed x determined by the detuning (A21/a I)
and Doppler width (k u/a), one can find the regions
of probe detuning (v) for which absorption can occur.

Conversely, for any value of probe detuning v, one can
determine whether or not any resonant velocity subset (b)
(x) can contribute to the signal. When k2 >0, there ex-
ists, for each value of v, values of x for which both
w6 =0 and oj =0.

which are approximately Gaussians if the magni- 50x CB

tude of the arguments of the Z functions are CA
much less than unity. [In arriving at Eq. (5.16),
we neglected the small (Ail+k 2V2)/8ai terms in 0
Eq. (5.15).] -16 -12 -8 -4

The analysis is virtually unchanged if k 2 <0 and
k2 (k, +k 2 )>0. The co,, o4 curves of Fig. 6 are
rotated by 90" about the origin, but the same type
of resonanc . conditions occur. If k 1u >> a and

I A21 I <kIu, Eqs. (5.11) and (5.12) are still valid;
rdr is now smaller than in the copropagating case
owing to some Doppler-phase cancellation. Equa-
tions (5.14) and (5.16) remain valid for the large
detuning and intense field limits. It is now possi-
ble, however, to have a narrow resonance in the ; CA CB
large detuning case, provided that k 2 - -k, 36

The remaining case k 2(kI +k 2 )<0 is represent-
ed in Fig. 8. As discussed above, there is a range
of detunings v (v2 < vr) for which no resonance 0 c
values of x may be found. For v> v, two values -1.2 -1 -0.8 0.8 1 1.2
of x correspond to the wcB resonance and, for
v < - v,,, two values of x correspond to the wCA
resonance. The'spectrum for the case ku >>a,,
I A1, <kIu is shown in Fig. 9(a). For any FIG. 7. Typi probe-tnorption spectra (in arbitrary

V ( > v., there are two velocity subgroups of units) for the case k2 = 0.6k, > 0 in the three limits (a)

atoms which contribute independently to the probe k u >a,, k1u> I A21 1. (b) A21 >a,, k u, and (c)
a >> k u,A 2, I. In drawing these curves, we have

spectrum except in a region of width 1 near taken n.:n-3=1:3:4 and rI F2 <<a. In (a), A,=0
I v I =v,, where both contributions overlap. It is and kIu = 10a; in (b), A21 = 10a, and ku =a; in (c),

just this overlap region which gives rise to the non- A2 =kju =0.la. The inserts are curves analogous to

power broadened resonances shown in Fig. 9(a). Fig. 6 and indicate the resonant-velocity subgroups
As derived in Appendix C, the spectrum for this which contribute to the probe absorption at a given

case (Iv vr) is value of v.

,oI
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10)i 1 24k) 1'Xe F IA2-.al( Ju~
j~frjk2)+ 1 +rijk k2 1  j at k, k1  3 11  J

15.17)

The large detuning and large field intensity lim-
its are depicted in Figs. 9(b) and 9(c), respectively.
Equations (5.14) and (5.16) may still be used to
describe these profiles. For the intense field case, a (a)
narrow resonance occurs if k 2 -- k 1/2.

The Doppler-free nature of the narrow reso-
nances which may occur when a >> k1u or
I&21 >> k1 u, a, arises from a cancellation of CA C8
Doppler phases. All atoms contribute equally to
these resonances; this feature is easily seen in Fig.
4. If a, >> klu, the range of allowed values of x
narrows considerably and the heavy portions of the - 0
to and oa) curves reduce to points. If thew- -2 0 ) 2 4
curve is tangent to the w, or w curves at these
points, then all atoms contribute to the resonance.
This condition is

k2 I I A21 (b)
t 2--- -- 2 (A2+4a (5.18)

leading to narrow resonances centered at 20a

A32(- 2 2+ 2 1 (5.19) CA C8

where the upper (lower) signs refer to the w' =w
W ---wA) resonance. If IA211 >>k1u, a,, the al- 0 -2 6
lowed x values are located on the asymptotes of 4 2

- 2

-

CA res. S 0
-6 _Wb

1 2 3

FIG. 9. Probe-absorption spectra for the case
FIG. 8. Resonance conditions w0(c,v)=O and k 2/kI = -0.6, but otherwise the same conditions as in

, 6(x,v)=O for the case -k, <k 2 <0. There is now a Fig. 7. Note that, owing to Doppler-phase cancellation,
range of I v j < v. for which there are no resonant- the resonances are narrower than those in the
velocity groups of atoms. corresponding spectra of Fig. 7.

I. -. ~
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the w! and w4 curves. By having k 2 = -kI, the coefficients R,,, are all proportional to differ.
*c curve coincides with these asymptotes so that ences between decay rates 17. The cop=a- D
all atoms once again* contribute. Since the reso- are the frequency separations between the dressed
nance condition is the same for all the atoms, the states. If I wa, >> r, the off-diagonal density-
resulting resonance is narrow. matrix elements are small and an approximate

On the other hand, when a, <<ku, 1A21< kIu solution to Eqs. (6.2) is
only a limited velocity subset of atoms, determined jO.. A.1 -ne, (6.3s)
by the pump intensity and detuning (i.e.,
I k v +A211 <a), contribute to the probe absorp" PP.$= -i A0+ n ° 1€o0. (6.3b)

tion. The resulting linewidths are smaller than the (6.3I)

Doppler width, reflecting the narrower range of
contributing velocity groups. Transforming back to the coordinate system £ )

we obtain the observables P,, Y21, or 32. In the
special case when all r"s are equal (P71 =r), the

V. BXTBNSIONS OF THE DAF APPROACH coupling coefficients R.,6 vanish, and the exact
solution is simply

The DAP allows one to gain physical insight
into problems involving more complicated atom- A./r, (6.4a)

field interactions. The dressed-energy levels of a ° / i . (6.4b)
multilevel atom can be solved exactly or approxi-
mately. The weight factors of the spectra which In this limit, the absorption spectrum for field a2
involve elements of the transformation matrix is
from the bare to dressed picture are generally more _ wap( 3 I a)(#j 2)A,0
difficult to obtain. For dressed-energy-level I(A 32 )= 2
separations much greater than the natural widths a 2 a.P +Q
of the levels, a rate-type solution to the DAP equa- (6.5)
tions may be used. In this section, some features of
a four-level problem and a three-level problem in- where Aa-Aa and w.=0. Once the transforma-
volving a standing-wave pump field are discussed. tion matrix elements are known this formula is
In Sec. VII some aspects of coherent transients are useful for analyzing the strong-field absorption (cf.
examined using the DAP formalism, the corresponding rather lengthy expression of the

BAP). The solution is more complicated when in-
terlevel relaxation is allowed or the decay rates

A. Strongly coupled differ greatly, Then the spectrum must be ob-
threelevel system t li.

t9.37- 41  tained using Eq. (6.2) or (6.3) together with the
transformation back to the BAP.

We first consider a three-level system in which I
one must now diagonalize the complete Hamiltoni-
an. The eigenvalue equation B. Four-level systems -

W(W+ 11( 3)- 2| 21 As shown previously, the DAP is especially
--a21(-32)=0 (6.1) transparent when one of the fields is weak and the

strongly coupled part satisfies the rate-type solu-

always has three.real roots wa (a=A,B,C). Equa- tion. This result can be applied to a four-level sys-
tions (2.23) now take the form tern in which levels 1,2,3 are strongly coupled by

fields a, and a2 and one of these levels is weakly
(6.2a) coupled by a probe field to level 4. The cor-

responding dressed states are labeled A,3,C,D
rsnn Apo-sitions where D is the weakly coupled state. To obtain the

, ,s resonance positions we have to solve Eq. (6.1). A

(6.2b) graphical solution is shown in Fig. 10 for fixed az
as a function of al. Whenever wD=w. (a=A,B,C)

where the coefficients are functions of the transfor- a probe resonance results. A rate-type solution ob-
mation matrix elements (i a). The coupling viously requires that the anticrossing in Fig. 10 is

" I -i I I I
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ABA

3C

2.

mT a L i|

10 20FIG. 11. A classification of the atom-field interac-
tions for four-level systems in both the BAP and DAP.

FIG. 10. Dressed-atom frequencies as a function of The BAP interpretation, valid only to lowest orders in
ai for a2 = 11 21 =1, and A32 =3 (all frequencies are in the fields, is (a) stepwise absorption of a,, a2, a3, (bl)
arbitrary units and it is assumed that all relaxation two-photon absorption of a, and a2 followed by absorp-
parameters have values much less than one in these un- tion of a3, 0b2) absorption of a, followed by two-photon
its). The horizontal broken lines give the dressed-atomn absorption of a2 and a3, and (c) three-photon absorption
frequencies when a1 =O. For a fixed a,, there are gen- of a,, a2, and a3. In the DAP, valid at any field inten-
erally three possible probe resonances as the probe fre- sities, there are three, single-photon processes which
quency w'jD = 1D is varied. For a 2=4, these positions contribute to the absorption. For intense fields a, and
are indicated by the points R, S, and T. a2 the single-photon processes do not interfere.

large compared to relaxation rates. depend on the number of resonant velocity sub-
If Doppler broadening is present one may ask groups contributing (i.e., one or three), but this

whether a splitting similar to the one appearing in feature has yet to be investigated. (Notice that in a
three-level systems with k2(k, I-k 2 ) <0 also occurs five-level system, the quartic eigenvalue equation
in four-level systems. In three-level systems, the can have 0, 2, or 4 real roots. The absence of real
splitting shown in Fig. 9 is caused by the absence roots signals a splitting effect similar to that
of resonant-velocity subgroups of atoms over a shown in Fig. 9.)
range of probe detunings. In a four-level system, a A comparison between the BAP and DAP pic-
resonance occurs when (1D =-,&,D +ikDv is equal to tures for a four-level system is shown in Fig. I1I in
any of the solutions w.(v of Eq. (6. 1). Using the which the probe acts between levels 3 and 4. The
Doppler-shifted values of all the detunings Aij and BAP nomenclature is valid in the small-intensity
substituting wD for w in Eq. (6. 1), one obtains a limit only. Note that the processes a and b 1 have
cubic equation for v which always has at least one the same resonance condition (A~43 = 0) and provide
real root.4 - This result implies that there is always two interfering channels for this resonance. The
at least one resonant-velocity subgroup for all -DAP consists of three noninterfering single-photon
probe detunings of the four-level system. Thus, transitions allowing for a very simple physical in-
the mechanism operative in three-level systems terpretation.
leading to the split spectrum of Fig. 9 cannot oc- In some special cases, Eq. (6.1) is easily solved,
cur here. The details of the probe spectrum may e.g.,

6i0 a 21 '=!a 2 = ; COAC-±(j+ 2)1 2 O,=0;

(iii) Z12 1 =-h 3 ,=a 2 ; WA.C=-j,2~1 2 28aI) W8 a=A1 21 .

As an example let us consider the case (ii) in which a3 =a2 =a. The transformation is now

a i + 2 1 3 (6.6a)

2n

___...j ¢
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1B) =(a I1) +a212)-a 13))/flj, (6.b)

) I I + 1 1 j l ) - - 2 + L 1 2 1 3 ) , 6 0

where flt =(A2,+2a2 )'", =fl5 , (g=-O, and coc= -f . If the probe couples levels 4 and 2 (=A= ),
if all the ),s are equal and if only level 4 is initially populated the response is simply

r(142) a L+(j42_nX2 + + a 2  J (6.7)
1-+42 +(142+fA)

The absorption spectrum consists of three Lorentzians.19

Equation (6.7) is applicable to the level scheme in Fig. 12 (k = -k2kD =k) for which

A21&=A21 IV (A 21  112-fl,) , A 32  A21 kv , A42 =-A 24-kv (A24 = u4- (12)•

If A21= =0, the conditions for (6.7) are satisfied (Z32= 1 21 =kv, a?=a2a2 ) and we get

I(A24)= a
(kv 2 +2a 2) r2 +[ A 24+kv +(k 2v 2 

+ 2a2)1/ 12

++k1. (6.a)
2 + (A 24 + kU)

2 
"

2
+[A 2 4 +kv -(kIV

2
+2a

2
)/2

2  
•

The velocity-averaged probe-absorption spectrum (assuming ku >> y) is given by

4 f 1&2
I(A )_ exp I -- 2  (6.9)

There is no narrow structure in the spectrum. The result should be contrasted with the structure obtained
when a standing-wave saturator is used (see Fig. 12 and the discussion below).

( ) ( t o - o d p m p " -
C. Standing-wave saturator

J, /.j (two-mode pump) -"

____ 2A 4 3t-'_ As is well known, the interpretation of the spec-
0 tra obtained with a standing-wave (SW) saturator is

10 0 10 considerably more complicated than the running.

wave case.46s- 3  Similar difficulties are encoun-

N J.0 2tered when the saturator is composed of two
II running-wave fields having different frequen-

cies.54- 5' The question arises as to whether or not
the DAP offers any simplifications.

In the rotating-wave approximation the equation
..0 .... . of motion of the density-matrix retains a periodic
10 0 10 time dependence owing to the beat frequency

FIG. 12. (a) A four-level scheme in which levels 1,3,4 6= n 2- (I, between the two saturator modes; in
are degenerate levels of a J = I state while level 2 is a the SW case, this beat frequency is twice the
J =0 state. The strong fields counterpropagate, are cir- Doppler shift, 8=2kIv. According to the Floquet
cularly polarized, and are resonantly tuned (A21 =0). theorem,54 the stationary solution to the system
The probe field is r polarized and acts on the 2-4 transi- contains Fourier components with frequencies
tic. The probe absorption spectrum I for this case is t0A.B(n)=A.8+n 6 (n =0,± I.... ), where WA and
flat. (b) For comparison, the probe-absorption spectrum oaB are functions of the mode amplitudes and de-
for a three-level system with a standing-wave saturator tunings and are chosen such that I w~A I < 16 1.
is shown (see Ref. 53). These frequencies are related to the eigenfrequen-
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ciesoftheDAP. Thestates jl,nl,n2 ) and -
12,m 1,m2) are nearly degeierate if 2 1

Xl+n 2=m,+m2+l=N,

where n, and m, are the number of photons in
mode i and we have assumed C,21 > 0. For a fixed 0
total number of photons N there is an "infinite" A
(c2 xN) number of bare-atom states which must
be diagonalized. The diagonalization, which can
be performed using continued fractions, is not done
here. Instead we concentrate on some qualitative
aspects of the problem.

If the mode spacing 8 is fixed, a rate-type solu-
tion in the DAP is valid provided that both /

I8-WJU I >>' and o)A >> Y (OD =OD -COA >0. - 2
Similarly to the running-wave case, probe reso-

nances are found when c =W)A,5+n, where ,- -g.10 -s 0 l 10

corresponds to the probe detuning (recall that the
probe couples to a third, unperturbed level). The FIG. 13. Dressed-state frequencies co'(n )=Wn,

heights of the various peaks generally depend in a +2nklv/a, ro'(n)-='8 +2nkjv/a, and

complicated way on the detunings and amplitudes ewc=(A3,+k2v)/a (k2=-k) as a function of klu for a

of the saturator modes. large-field detuning I A211 >> 7" Values for n are given

For a SW saturator the beat frequency 8=2kv by the integers labeling each curve. All frequencies are
expressed in units of a; the detunings are A21/a - 10

is velocity dependent. Difficulties arise since, for and 432/a=- 1. In the range y< I k v P < ) AN ), the
slow enough atoms, the energy levels in the DAP frequencies "'A(n) and wa(n) are approximately given by
form a quasicontinuum. Thus a ratf.-type solution W,(n)- -An+ k I +2nkv and wo(n)=2nkjv. The
for the DAP is clearly not applicable for diagram may be used to determine resonance conditions
1 2klu I <y. This region must be described by oth- in regions I and III, but not in region II where the rate-
er approximations. For instance, in the limit type solutions of the DAP break down. Resonant-
v-,0, the atoms are stationary and the probe velocity groups are determined by the intercept of the
response is readily calculated.5 2  wc' curve with the curves o, 8(n). In the example

Some qualitative understanding of the SW prob- shown, the major contributions to the probe response ar-

lem is obtained by constructing DAP energy-level ise from the crossings denoted by the large dots (see Fig.

diagrams similar to those of the running-wave case 4 of Ref. 53).

(see Fig. 4). Two examples are shown in Figs. 13(. 14. Equation (6.10) is not strictly applicable at anyIn Fig. 13, we display the dressed-energy levels value of k Iv where two of the eigenfrequencies areas a function of kv for a SW saturator with de- degenerate. At such points, we must use degen-tuning o A2 > a. The standing wave consists of erate perturbation theory: the net result is that the
two running-wave components labeled by crossings are transformed into anticrossings owingt , k+nkni >0) and(a, k_--k Inthe re- to the action of the saturator mode a-. The ener-
gion k+ <<-y (assuming A >0), we can, to a gy levels are sketched in Fig. 13.

first approximation, use the unperturbed energy In the region ksv>y, the roles of a4 and a.
ew are interchanged; the corresponding dressed-levelLevels wA. associated with the running wave a+ frequencies are given by Eq. (6.10) with the re-

since the *ave a- is strongly detuned and acts
only as a perturbation in the region ktv << -y. In the intermediate region -y<kv < y, the "
The dressedlevel frequencies associated with theInteierdaergon-'< <,thrate-type solution of DAP fails. There one may, as
a+ wave are given by [see Eq. (5.2)] a first approximation, use the results valid for

e),a(n) - -"L(A21+kv) v =0 discussed in Sec. IV modified to incorporate
the standing-wave nature of the saturator. In this

-+ region Eq. (6.10) is replaced by
(6.10) w 1- _ A 2 ,+'-'[A2I'+4a(Z)2]', (6.11)

wA| c--T&1- 2 6.1
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where --- - - -

a(z)= a +e 1+ae AI (6.12) 1

The inhomogeneity in WA.u, owing to the z depen. 4 .1

dence of a(z), can be treated by the methods out-
lined at the beginning of Sec. V.

Tuning the probe corresponds to moving the line

wc= 232+k 2V vertically. For each value of A32  -4
there exists an infinite number of resonant sub- - -1
groups v satisfying the condition OJC(V)-=-A.B(V,n1.

Whether these resonance subgroups really manifest -4 0 IV/ a

themselves in the probe absorption depends on the
magnitude of the various weight factors derived FIG. 14. A diagram corresponding to Fig. 13 for a
from the BAP-.DAP transformation. For exam- resonantly tuned (A21=0), standing-wave saturator. In
pie, in the case shown in Fig. 13, the two major this case, the exact dressed-level frequencies are given by
resonant-velocity subgroups are determined at the wA,B(n)=nktv/a [wA(n)= - I kl Iv +2nklv;
intersection parts of the wa and dressed states ws(n)=2nklv). We have chosen a probe with detuning
ihown in the figure. For other detunings, one can 32/a= -5 and propagation vector V2 kC such that

map out the contributing resonant-velocity sub- w'c-5+ktv/a. Some of the resonant-velocity groups

groups and obtain qualitative agreement with the indicated by the arrows manifest themselves as distinct
numerically calculated curves of Fig. 4 of Ref. 53. peaks in the velocity-dependent probe response (see Fig.numeicaly alcuate cuves f Fg. of ef.53. 2 of Ref. 53).

Figure 14 represents the case of a resonantly
tuned SW saturator (a+ =a -=a) for which the
exact DAP energy levels are given by4- 5 9 the weights associated with these resonances rep-

toAB(n)-fnkv resents a much more complicated problem. 4 -- 9

wA(n)= - I klv I +2nkiv , (n)=2nktv . The striking difference in probe response for run-
ning- and standing-wave saturators is illustrated in

The method for determining possible resonant- Fig. 12. The structure observed in Fig. 12(b) has
velocity subgroups remains the same. It should be its origin in the various harmonics which enter
stressed that this method indicates the positions of when a standing-wave saturator is used (but are ab-
possible resonant structure. The determination of sent for traveling-wave saturators).

VII. DAP TRANSIENTS

A. Two-level system

The steady-state spectra have been given a simple physical interpretation using the DAP. It is interesting
to study also transient behavior using the DAP.W° For simplicity we assume that F2 = r y in which case
the DAP equation of motion for the AB system is simply

PAA -AA-pM, (7.1a)

2 -A0 --PR, (7.1b)

PJU Ag -(y +i0,A )rp • (7.1c)

[Notice that we have assumed alamconstant; therefore, Eq. (7.1) can be applied only for stepwise changes of
ap]J

Assume that field a, is switched on at time t =0 leading to an optical nutation signal in the BAP. The
solution of the DAP equations (7.1) is

.~1( t =( A 5 /yX 1 -- e-')+ {0)e-', (7.2a)

'" ' I I
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#-IPAtW [Aw 0 -e-'r+1 1)+ (O)e-('+ ' "1  (7.2b)

The populations show a simple exponential decay towards their new equilibrium. The oscillatory nutation-

type behavior is contained in PiA. The initial conditions, obtained from (2.29) for an incoherent initial state,
are given by

PAA(O) = n 1cos20+n 2sinO, (7.3a)

gm(O)=n °l sin 2O+n ° cos2O, (7.3b)
Piu(O)=-L (n °- n2) sin20 (7.3c)

Using Eqs. (2.24) and (7.3) in Eqs. (7.2), we find

(7.4a)

Pa()-~O -no2)sin2O 0r. 1e _.'eY+iuA)t)+e(+*BA)I'1 7
2Y+iCBA)

The dressed-atom populations remain constant during the transient. If coBA >> y we can write

P (t) =P. (O)e -(YUA It (7.5)

Nutation in the BAP corresponds to free-induction decay in the DAP. In the BAP the switching on of a]
creates the coherence P21, while, in the DAP, the same change destroys the initial coherence PEA,(0). Ac-
cording to (2.29) all the observables PI1, P22, and P21 depend on PBA and, therefore, reflect the decay of ABA.

The DAP does not offer any substantial advantages over the BAP in calculating the free-induction decay
or photon echo of a two-level system (although it may be useful for nutation echoes).61 In both cases, the
field is off for a long time period between the pulses when the BAP and DAP coincide. The DAP is a
more natural approach when a strong-field -atomic-interaction occurs.

B. Three-level transients6 -?

The DAP can provide a useful description of three-level transients. For a strong pump field aI and a
weak probe a2, Eqs. (2.23) give the time evolution of the system in the dressed basis. The DAP is most use-
ful if either (1) field a, is constant and field a 2(t) undergoes some transient behavior leading to optical nuta-
tion, free-induction decay, photon echo, etc. on the BC and AC transitions (see Fig. 1) or (2) the field aI is
switched on at some time and a 2 may have an arbitrary time dependence.

We consider first the case when a, is constant and a 2 is switched on at t =0. Equations (2.23) and (2.29)
describing the probe response are (assuming r r 2=y)

AC4 -(yC, +ioc 4 pcA-ia 2sinO(PcC--pA)-ia 2cosePD, (7.6a)

pcB -(yca + iwcB )PcB 4-ia2 cosO(poc -e, ) +ia2 sinOp-°,, (7.6b)
"P32=cosOpcs-sinOpcA , (7.7)

subject io the initial conditions Pc4(0)=Pcg(0)=O.
The AP are the steady-state dressed-atom density-matrix elements. Solving Eqs. (7.6) using the steady-

state values , A./n=n°, e and P'A..0, we obtain

Y3(1) ia2 sin"9(n° -nA°) -- rCa +'MAI W ia2 cos20(n 0 - n ( -e-rca +Wca) (7.8)

YA +icoca Y +cs+ itca

The oscillatory behavior which appears in homogeneously broadened systems may disappear if inhomogene-
ous broadening is present. The oscillations may, however, remain observable if wcA or wcg depend only
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weakly on the atomic velocity. As an example let us consider the case when (5.15) is valid. The velocity-
averaged CA contribution is (taking n 0_= n o =0)

=A2M C -~ mc- f (a I exp[-(y-ia)t .kf2u2t2]Z a~i i u l 79( 3:(tl)4 = -'--'uYk' + i'u ( 7.9)

where Z (g) is the plasma-dispersion function,

k'- k2++k:I , r='(r,+r,)
(recall r=r 2), and a =A 32+a+2-A21. The time-dependent part in (7.9) disappears in a characteristic
time min[(k'u)-',r-1j. If k'u >>y, velocity dephasing is the dominant decay mechanism; in the case
k'u << y, the system behaves as a homogeneous one decaying at a rate y and oscillating with a frequency
(A 32 +a + !A 2 1).

In a second example, field a 2 is kept constant and a, is switched on at t =0. The probe response reflects
the decay of the initial ADA coherence (recall that PA and POR remain unchanged). Assuming that (7.5) is
valid, we obtain from (7.6)

- (")ct" Me " -(rcA +j)t ia 2 sinO(n°-n ) -(YCA +iwC,)
pct J=Pcd (0e --~ C~ V4+OC (1-eYCA + i-OCA

ia 2(a 1 - n 2n ) sin2 cosO (e -(Y+ioA)t_ e -(Tc. +'W))
2 ('cA - y+ ica)

0ia2 osO(n - n0)

Y + iC) CB

+ ia 2(n° - n°) sin2O sinO (e e- e (7.0b)
2(y--e,+iwacA()

with initial conditions

PcA(0)=-ia2sinO(n ° -n°)(Y32+i32) - ! 
, (7.1 a)jPc(O)=-iacos0(n3 On2l)(732+',&32)-"(7lb

The assumption r=r 2=y implies that VIII. CONCLUSION

V'cP = c. = -Fr3+ 1 y.
The velocity averaging of (7.10) is by no means The DAP offers little computational advantage

easy except in the special cases when wcA or wCB is over the BAP for most calculations. However,
nearly independent of v (Doppler-free cases). The when the frequency separations of the dressed
labeling of the various terms in (7.10) is obvious: states are much greater than the relaxation rates of
The first term gives the decay of the initial coher- these states, the equations of the DAP simplify
ence, the second one describes the transient to the considerably. In this case, it appears that the
new steady state, and the third one is due to the dressed basis is the natural one in which to do cal-
decay of the initial Pa, coherence (nutation in the culations. Interpretations of the results in both the
1.--2 system). The various terms in Eqs. (7.10) can stationary and transient regime are straightforward
be isolated by a proper choice of experimental in this representation. The positions of the reso-
parameters [e.g., by choosing a3 such that nC  nA nances in saturation spectroscopy as well as the os-
the second term in Eq. (7.10a) can be eliminated]. cillation frequencies observable in coherent tran-

The advantage of the DAP over the BAP is that sient experiments appear as fundamental parame-
the DAP gives directly the correct eigenfrequencies ters in the DAP.
ae. and wc4 (in the BAP one is required to fully When the relaxation rates are comparable with
solve the problem using Laplace-transform tech- the field strengths, the BAP is generally an easier
niques" to obtain these values), representation to use than the DAP. In some cases
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APPENDIX A: RELAXATION SCHEME
IN THE DAP

The relaxational coupling and decay in the DAP is obtained by transforming the relaxation terms of the
BAP, Eq. (2.19), with the aid of (2.8), (2.11), and (2.17). To slightly simplify the equations we assume
1"3=---31-=O (no collisional mixing of states I and 3), and find for the nonvanishing diagonal elements

R, A,At = -r ,' cos2o- r2 sin20-!-(q,- 2- r2 1)sin2 26, (Ala)

R,co 4 = p sin220 + r,12 sin 40 + ,2 C0 40  (A lb)

RM.cc =r32 sin 2o, (AIc)

RM.AB =R, .4 = 1 sin20(172 -r, +p cos2O- 2172j cos2o +2r"12 Sin 2O), (Ald)

RRM. = -q sin 220+ i 2 co'+ 1-21 sin4 0  , (A2a)

RB, 15 - r, sin2o0- r 2 cos28- 1 (,p - r12- r2) sin220, (A2b)

RBa, cc= r32 COS20, (A2)

RBB,AB =RBsA = - sin20(r 2 - r , -9, cos20 +2r 1 2 cos 2 - 2121 sin 2O), (A2d)
.Rcc~c --- PW a)

,,_r ~3,

=RcAA = r23 sin 20, (A3b)

R -= r 23 cos2 , (A3c)

RC,A =R -- i23 n20, (A3d)

where

----2 tr-l-r (A4)

gives a measure of the effect of phase-changing collisions. The nonvanishing terms involved in the off-
diagonal elements are given by

RA0,A ----- --Y21 + -L (9,- r - r) )sin20, (ASa)

RAa --- 1(o - ri2 - 120 sin2 0, (A5b)

=RAAA - !- sin29(£ - r,' +, cos20 + 2r 2i sinO- 21712 COS2 0 ), (A5c)

R4aa1 - sin2e(r 2- r, - V cos20 + 2r 2 , cos20- 2r 1 2 sin 20 ), (Ad)

R.cc- 3Pn sin20, (A5e
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RC.A = -Y3 1 cos20-Y 32sin2 e, (A6)

RCAC= c . 3 sin20-' 32 COS2e, (AW)

Rc4,c =aRc.ct = !(y3 2-r 3 )sin20, (AS)

with the remaining elements given by the symmetry property Rap.ub=RA., 8,. Note that either ri'j or I,
depending on the configuration vanishes if states i and j are not mixed by collisions. When phase-changing
collisions are absent, i.e., Yij= -j(rF+IF), and all 1">/=0, the relaxation terms are those given in (2.23). In a
general case all the terms (AI)-(A8) differ from zero, leading to a complicated relaxation scheme in the
DAP.

APPENDIX B: PROBE 1 2 1=y2 +2t4 21( I' + 1' - )
AND SATURATOR RESPONSES -2(1+4a 2

= .z(rl+ 2 2 I+4x/rrI2) (B2)
The solution of Eqs. (2.22) to zeroth order in a 2  [the last step follows from the assumption

is given by y2 1=(ri+ 2)]. The components P32 and p3,22

2a2 - 2)-, vanish. The corresponding DAP equations read
I=..-n---+ y2n21 (21-r + r (Bla)

-A0 _O" 202 _0o
(Bib)nA+"-'IA YBAn BA(6j2+F.)-1' (B3a)
-.o 20 2B A R

PBSfnB+-- Bz,,AfO)i )--A+ IA (B3b)
e3----n ° , (Blc)

A~l-- i-I n 21(Y21 - iA21)(2 +r ) (Bid) c C(13

where n9=Aj/F,, n2 1 =no -no, and PRBA=pnO (Af0" o.A)(G)B + +2)BA- (B3d)

where no = A./r. ,

nA fl8+fA+Ag 'fjWa

and f is defined by Eq. (2.27). In terms of the BAP variables, the "population inversion" nj,, and the effec-
tive width r" can be written as

_r+ll no I+ (r2-T,)2 sin 2201 (B5a)

2 r ( r, )-

ra=(r,+ 2 )2 11+ (P-r sin2 20 (B5b)

[Notice that n enters only in the product #no which is nonsingular for (r,- I'r2)=.1
To first order in a 2 we find from (2.22e) and (2.22f)

• .OA - -0

j512=1a2 lY1'Z241]P3-O2-aP1(B6)
[y 3t+i(Z3+L 2t)](, 3z+iiA2)+a6

In the DAP we obtain from (2.23d), and (2.23e)

cA = -ia2f (YCB +i(,c8)[sinO(pcc -P) +OsP ]

-IcoO(BcC-PhB)+s np'Al][(ycA +ioC )(Yca +iWC, )- 1-' , (17a)

I--I



2688 P. IL BERMAN AND RAINER SALOMAA 25

PC -1a2[(yC +Iac )[co(pacc-?W)+sineOpA]

-PISinG(PCC-eA)+coS PA1[(CA4+iWC4)(Vc, +i(CB)- 9 1-' (B7b)

which after insertion into (2.29e) yield the observ- [The corresponding solutions in the BAP would be
able 532. The DAP solution Eq. (B7) is clearly .-. o -o
much more complicated than the BAP expression Pu =nt, Pt =ilanzJ/(Ayl +i&2) ,
(B6). according to (BI).1 As =-y we see that AA is

The DAP solution simplifies considerably in the roughly a factor Y/WBA smaller than the diagonal
limit wA >> V,r rA. The lowest-order terms are elements -p . The rate-type solution (3.2) is ob-
given by tained by neglecting PDA and terms proportional to

0 in (B7). This approximation is equivalent to
-a ) Ba)2 keeping only the lowest-order terms in a power ex-

c n 0aA WSW pansion in terms of y/WBA. In the following, we

AJ - -- ilnBA /IA +0 (?A/B A ). (B8b) study in some detail the accuracy of (3.2).

Strongly coupled transition 1--,.2

If we insert (B8) into (2.29), we obtain, after going back to the BAP variables,

2

-r n 21 (A 24r21/r tr2 )  (B9b).o 0 (2 '_ o -
?P22t:_1

n 
- rY11/21 "j-4?2rt /rr2)-t (B9b)

~(B9c)

A comparison between (BI) and (B9) reveals that the approximation is good provided that

This condition is satisfied when either I A 21 1 >> y2i or a2 rjr2. Note that if we neglect (B8b) there is
no absorption of the strong field a, [the first term in (2.29d) is real and describes dispersion only].

Probe response

We can express the exact result (B6) in a form13

32=ia2 [W+(Z+ +iA 32)- ' + W_(Z_ +iA 32)- ', (BI I)

where

Zt =_-( r32+ Y31+i 21 ):+i[(2! +ir 32 -iy3s)
2

+4a'J]
2 , (B12)

W ± i-'(P33-P22)+[-,(33- eP22)(1121 -+-i 32- 1 r3 )- atlP l][ (12!+ iY32 -- I12[4 - /  
(B' .3)

An expansion of (B 12) and (B 13) in terms of the assumedly small parameter

(Y32 -Y31)/ 2 +4 1)t  (BI4)

yidds

Z+ +i!jzt!VcB + !-a, sin40e3+iojcB + -ia! sin20 2 , (B I5a)
- I . . I 1 2Z_. +iA, "yc - ;a, smn4Oe-+ iw - Tjia, sin26e2 , (B15b)

t -
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W+ , D-n° -4)cos2o+ liesin220n° + -i sin 220(A-A2)/WoW , (Bl6a)

W_ --=(nc - ) sin'0- liEsin220n° - isin 20(A - A2)/Wg • (Bl6b)

A finite value of E slightly changes the widths and positions of the resonances. The corrections are negligi-
ble when (1+4a'1)'>> 1 I 1 --'21 which is a relatively mild condition. The expressions (B16) for the

weight factors W± are accurate to order 0 (W;rr/au ;c'/aM ) and coincide with those given in (3.2) pro-
vided that I e << I and

no-n° o >> I A,_A2 I sin 20/wBA , (B7a)

-n I>> IA,-A 21 cos2O/ojsA . (Bl~l)

The correction terms given in (B16) are purely imaginary and, therefore, introduce a dispersive-type change

in the absorption spectrum (- ImA32). This change causes a small shift in the position of the resonances, but
does not appreciably affect their height.

APPENDIX C: DOPPLER-BROADENED PROBE SPECTRA

Introducing the dimensionless parameters (5.3)- (5.6) into (5.2) and solving the equations wC = w A., for x,

we obtain

2k 2 ([ 1 +k) 2k,+k+k)) 1/2
X 1.=- (2k2+k) V+ 2k2+ +k2) (Cl)

If k2(kl +k 2)>0, both the roots in (Cl) are real. The root with the plus (minus) sign satisfies the CB (CA)
resonance condition when k2 >0 (k 2 <0). If k 2(k 1 +k 2 )<O, X 1,2 are complex in the region (5.10); otherwise

both roots belong to the branch oc=O for v>v,>O and to the branch wcA=0 when v< -vc,- In all
cases the solutions (Cl) must fall within the Doppler profile [see Eq. (5.9)) so that the Doppler-distribution
function is not negligibly small.

Case k2(k, +k 2)>O

Inserting (Cl) into (5.8), we obtain after lengthy algebraic manipulations
V 0 vsgn(k2) l(°ntl~ ~ f

/)=2 1k l I I~c)(n- [v2+4k2(k,+k2)/k'j],/ k1]r2 Vl+rd r/rlr,

11_Vlk~r,-(ki+k2)r2l/k,f I + 21.r_ W(vcA)[v__,_v ] 1 2X f 1 [v+4k2(kj+k 2 )/k1 1 2l

where wcB(vc, )=0, wcA(vcA)=O, and where 7ff is defined by (5.12). Provided that

I 4k2(k, +k 2) 2k2(k,+k 2)A21  k2(k, +k 2)
2u2

V2+ k V+ k(2k2+k)a k<< 12k2 +k 2 (C)

the Gaussians in (C2) are approximately equal,

W (vC4). WvCjneep V 32 + A32+1&12/U2 nU(4
l- I k 2 k,+k 2  I/ /

and the simple result given in the text, Eq. (5.11), is valid. When (C3) is violated the dominant structure in
the absorption spectrum arises from the Gaussians, and Eqs. (5.14) and (5.16) become applicable.

IcW 2(k1 +k2 }<O

If v> v,>0, both of the roots (CD) satisfy the equation wc9 =0 (if v< -v, the equation wCA =0). Thus

<A!'
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only the CD transition contributes, and we can approximate

A32" i-2 cos20(n - n~O)(ya +iwci )- (CS)

This can be written as

P32t-- a (X)CO20(no-nBo[((X-Xl )(X-x2)+19(x)] - ', (C6)

YCD

where

g( a,k(k,+k 2 ) v+ [L +- JX + (X2+4)1/2j (C7)

The last factor can be expanded as

Im[[(x -x 1 )(x -x 2 )+ig]-1j Im I[(x 2 --x 1 ) 2 +4ig -I/2

X Ig XI--i8 (x -x1 )-g X .-11 8 (x -X 2)I, (CS)

where the complex square root has to be evaluated so that its imaginary part is positive (assume x 2 > x ).
The principal values in (C8) are negligible, because for (x 2--x)>> y/a the complex square root is real and
for X2 .--xI they cancel. Inserting (C8) into (C6), we obtain

ka Ik+k2u _2 1- I

x[n0-n(x,)] V+ k+k x, IRef x2-xI )2+4ig(x,)r-11 . (C9)

In the limit x 2 ---.xl, this gives, after insertion of the explicit expressions (Cl) for x, and x 2

IJV=I1 2ik +k,) 1 /2 J~3 )+ rflk2j (,O02- )1klu I [k~l 2n- ) F, I k~l +F2 I k, +kzl(n-

Xexp 21-al k, +2k 2 iiy12 2
Xexp - A21-Cl I 1k2(k 1+k 2 )1 l/2 /ku2

XReIv-v, I k2,3 + k+kr32 (CIO)
a, Ic k1I1

when x 2 -xi >> r/ai, Eq. (C9) reduces to

I(A32)c - / exp x-
2Jk21u II kJu

X 01302) 11+ V.2,)/

+(2-ol k2  f~,I+(, V P.2+r(kk2) -(, " 1
+(2.nzjj 1r 2  V .2 ,)/j 2 +2 ( v)'

VL kr, r kl+k 2  2 } (_')' I

(CII)
In the limit v--. o, (CII) gives just the flat background absorption. Both (CIO) and (CII) agree with the
limiting intense-field results given in Ref. 13.I
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Semiclassical picture of depolarizing collisions: Application to collisional studies
using laser spectroscopy
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An extension of the leffreys-Wentzel-Kramers-Brillouin approximation to inelastic processes is used to obtain the
scattering amplitude which describes the collisionally induced depolarization of magnetic substate cohirences. It is
found that the scattering amplitudes contain contributions from two overlapping regions. For large interatomic
separations, the different Zeeman sublevels are shifted and mixed by collisions, but follow a common collision
trajectory. For small interatomic separations, it is possible to find adiabatic eigenstates which follow distinct
collision trajectories. The theory is used to investigate the nature of the depolarizing collision kernels and rates
which enter into the analysis of laser spectroscopy experiments,

I. INTRODUCTION substates is investigated. Coherent superposi-
tions of magnetic substates (magnetic moments,

Laser saturation spectroscopy experiments are Zeeman coherences) are conveniently created and
beginning to provide an important probe of col- probed using the "three-level" system of Fig. 1.
lisional processes occurring in low pressure The 1-2 transition is excited with a nearly mono-
gases.' The elimiration of the broad Doppler chromatic laser beam and the 2-3 transition is
background encountered in standard spectroscopy probed with another colinear laser beam. Level
permits a more so-nsitive measure of the manner 2 (shown for j = 1) is (2j + 1) fold degenerate; Zee-
in which collisions perturb the energy levels and man coherences within level 2 may be produced
alter the velocity of atoms, and detected using a proper choice of the laser

A particularly interesting process :hat may be beam polarizations. Owing to the Doppler effect.
studied in such experiments is the wa,, in which the excitation-detection scheme excites or probes
collisions perturb superposition states In atoms only those atoms having a specific velocity com-
that have been created by an atom-field Interac- ponent along the laser beam direction. Thus,
tion. Since the various Internal states comprising any collision-induced modification of the Zeeman
the superposition state are generally shifted and coherences for atoms having a specific longitudinal
scattered differently in a collision, one is led to velocity can be monitored in such a systemt. The
a somew, Lt complicated description of the entire Zeeman coherences tend to be destroyed by in-
scattering process for the superposition state, separable contributions from collisional effects
especially if collisions can also couple the super- on the internal (shifting and mixing of magnetic
position levels. Formal theorles a.3 have been sublevels) and external (state-dependent scattering
developed to describe the scattering and time for the different magnetic sublevels) atomic de-
evolution of atomic superposition states via a grees of freedom. In such experiments, the col-
quantum-mechanical transport equation, but lit- lisional relaxation is determined by the number
tie progress has been made In obtaining solu- of collisions per lifetime of the level under con-
tions or physical interpretations of the results.
It is the purpose of this paper to provide a sim-
plification of the transport equation and some - 3
additional physical Insight Into the scattering pro.-
cess. Methods of semiclassical scattering theory
are used to achieve these goals.

The specific problem we choose to study in-
volves the scattering of atoms prepared In a linear e2
superposition of magnetic substates of a level FIG. 1. "Three-level" scheme for depolarizing collI-
characterized by internal-angular-momentum slon studies. Levels 1 and 3 are nondegenerate. Level
quantum number J. The way in which collisions 2 has three sabstates which, though separately indicated
couple, shift, and scatter the various magnetic in the figure, are assumed to be energy degenerate.

hluu by U4 U.. ofti of Nml Rssus rc3 ih dtoon in 13 or in part is porM14
flKu t No. IOOI4-7 . IV& ppos of UN. United Slat GQWm L
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sideration and the specific interatomic potential. and those expressions are evaluated in the various
It should be noted that collisional depolarization semiclassical limits discussed in Sec. II. In Sec.

studies are not new. Optical pumping techniques IV we return to the problem encountered in laser

have been used to investigate depolarizing col- spectroscopy and examine the semiclassical limit

lisions between optically oriented excited state of the transport equation for atomic multipoles of
atoms and ground-state perturbers. 4 However a degenerate level. A summary is given in Sec.
the general nature of such optical pumping work V.
(broadband sources, total cross-section mea- II. APPROXIMATIONS IN INELASTIC
4urements) does not lead to results that are overly SCATTERING THEORY
sensitive to velocity-changing effects. Recent
laser saturation expriments 5 based on schemes A few years ago, the development of research
similar to that shown in Fig. I provide a more in the fields of collisional rotational and vibra -

sensitive measu.e of such effects. tional excitation of molecules,7
.6 and of electronic

In attempting tu analyze the scattering process excitation and charge transfer in atoms' stimu-

for an atom in a linear superposition of magnetic lated efforts for obtaining a semiclassical descrip-
substates one is naturally led to examine the ap- tion of inelastic collisions, '1 which should be.
plicability of the classical pictures shown in Fig. by far, more tractable than a purely quantum ap-
2. The first drawing represents the single-ira- proach. Since certain procedures in these theo-
jectory limit. The dependence of the deflection ries are simiIar to those encountered in obtain-
on internal state Is negligible so that the internal ing semiclassical limits of elastic scattering,
and the translational motions are decoupled. The it Is useful to recall that two semiclassical ap-
second scheme depicts the situation where a diag- proximation sche .'es' 7 may be used to calculate
onal representation has been found. Then each the elastic scattering amplitude,
sublevel obeys the rules of elastic scattering
along a substate-labeled trajectory. When none
of these extreme situations holds, is a classical f(e) = -- (21+ 1)(e0 - 1) P, (cos) (1)
picture still possible? Answering this question 2iK

would help to complete the blanks in the third
drawing of Fig. 2. It should be noticed that the (where K Is the magnitude of the atomic wave
existence of a classie u--ture is questionable vector and il, is the phase shift of the I-labeled

since depolarizing collisions imply a coupling partial wave).
between the Internal motion, which is highly quan- (1) The first method is the semiclassical phase
tumlike due to the smallness of the electronic shift approximation, which is valid when the de
angular momentum, and the translational motion Broglie wavelength-X is much smaller than the
which can be quasiclassicaL. We shall discuss distance of closest approach r. In this form of
applicability of the various limits and approxima- the JWKB approximation, each 7,, is calculated
tions in terms of standard treatments of collision along a classical path which is characterized by
problems. the initial velocity and the Impact parameter

In Sec. II various methods available for treating (I+ 1)/K. Although the 7 are calculated along
inelastic scattering, when the de Broglie wave- classical trajectories, the classical correspond-
length of the colliding particle is much smaller ence between scattering angle 0 and impact param-

than the characteristic dimension of the interac- eter Is lost In Eq. (1) since a large range of I
tion region, are reviewed. In Sec. III exact aqua- values contribute to scattering at angle 0.
tions for the scattering amplitudes are obtained (iU) The second method, valid under the more

stringent condition X'. rr',, Is the classical tra- I
jectory limit. The condition 4V <c r-, permits

__ - _ - _ ( one to retain in Eq. (1) only those I values such
- .~ * that the Impact parameter (+ )/K corresponds

(d) (b) (6) to classical scattering at angle 6.
FIG. 2. Schematic represmntation of Atomic traJec- A number of papers have explored the conditions

torles daring a deolarlsg collision. In (a) an atom for generalizing the JWKB approximation to In-
In a superpositon state Is sattered along a trajectory elastic processes ' ' using an approach which
common to the three substats which are mixed by do was initiated by Kemble." They have concluded
collision. In (b) g distinct trajectory Is associated with that such an extension Is possible only when the
each ubstate and ne trmttion between mubstates I In- tatsch ansateion motosi nly whent
daced by the collision. In (a) doe sial-trjectory p- atomic translational motion Is nearly independent
proximatlon Is not valid and tranittons are indaced be- of the internal states. In the case when the addi-
tw substates: Whe trajectory does the tmblow? tionl condition X< Is fulfilled, the JWKB

- : .. ... .' -' . . '. i " i ... li i - I
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Erratum: Semiclassical pictum of depolarizing collisions: Application
to collisional studies using laser spectroscopy

[Phys. Rev. A 24, 1831 (1981)].

J.-L Le Gouit and P. R. Berman

Equation (2) should read

frnrev)= ou 1 -M 7,2 + 1XSMH. -8M)qMMqe2iK j

where (q,,#) are the Euler angles of a reference frame constructed on the final velocity. In the text,

fm.(O,V) stands for f~h(O,O,4).

In the next to the last line, p. 1838, the relation should read ,

where ( 
, , 

M'. 

.

Equation (36) reads

K2 I -m'IIM ' -"q

fdu,~ ...)o(~wSj ... I IiSr,- ).

Erratum: Theory of e ,xtron-hydrogep-atow Collisions in the presence

of a laser field
[Phys. Rev. A 1., 1900 (1978)]

IL S. Drandi, Belita Koiller, L. C. M. Miranda, and I. . Castro

The STAI is unsuitable to treat bound states in the presence of electromgzeic fields. All matrix ele-

merts are of the form

(,E - Eo j_ )(aI 1 1)-0 .

The numerical results of the Rds. 1-3 a listed below are wrong.

1IL S. Brandi, B. Koilke, and H. 0. P. Lias de Barros, 3L 0. P. LIm de Sam and H. S. Brandi, Procuedi

Phys. Rev. A It 1058 (1979). of the Zkwnh ICpf4C, Kyo, 1979, edited by K.

3H. 0. P. Lim de Barrot ad H. S. Brandi, Can. J. Takayanagi sad N. Odl (The Society for Atomic Cc&

Phfy .186 (1979). adw Remear* Kylmt, 1979), p. 916.
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extension is thus possible only when atoms follow operator f. , one immediately notes that, if the
the same common spatial trajectory in any of the "instantaneous" axis of quantization is taken along
coupled internal states as in Fig. 1(a). A corn- F, then the Hamiltonian is a function of 1 and j,
pletely different approach has been developed and commutes with f, (recall that [IF: =0 since F
under the name of classical S-matrix theory by is the interatomic separation and J acts in the
Miller and Marcus.10 -' 1 They treat the internal active-atom subspace). Thus using this basis,
degrees of freedom quasiclassically, retaining known as the helicity representation after Jacob
only the interference properties of quantum me- and Wick. 9 one concludes that the various mag-
chanics, since they calculate scattering ampli- netic sublevels in this representation are coupled
tudes. In these papers there is no apparent con- only by the rotatioi of the internuclear axis during
dition of common trajectory. A special mention a colAsion. Two limiting cases may be envisioned:
must be made to the work of Pechukas' which (I) If the various instantaneous magnetic sub-
bypasses the common trajectory condition at the states experience approximatively the same col-
expense of complications with a noncausal inter- lisional interaction (the explicit condition is pre-
action. scribed in the next section), then the notion of a

In light of these general methods let us examine common classical trajectory may be valid. The
the depolarizing collision problem. A ground- coupling between magnetic substates induced by
sta;te spinless particle, the perturber, collides the rotation of the internuclear axis can be sig-
with an atom having internal angular momentum nificant in this case since the "instantaneous"
I. The magnitude of j is on the order of a few eigenfrequencies differ by less than the inverse
A and is supposed to be much smaller than that duration of a collision (i.e.. the helicity repre-
of the translational angular momentum. Since sentation is not an adiabatic one in this limit).
the collision is assumed to result only in a change The caupling and scattering of the levels can be
of direction of f, the other numbers which charac- calculated using a semiclassical phase-shift ap-
terize the internal state of the active atom are proach. One expects that the limit of nearly equal
implicit. The effective interatomic potential is collisional interaction for the different substates
a function of the internuclear distance I and of is achieved for coliisions with large impact pa-
the angle (i,j). rameters.

A classical S-matrix method'*-" seems very (ii) In the other extreme, one can imagine that
tempting for so)'7ing the problem formulated in the helicity representation is an adiabatic one.
this manner. With this approach, for given nitial The various magnetic sublevels experience sig-
and final values for the variables describing the nificantly different collisional interactions and
system (internal and interparticle angular mo- are scattered independently according to ,ie equa-
menta, energy), one calculates S-matrix ele- tions of classical scattering theory. Normally,
ments classically along the trajectory connecting one requires small Internuclear separations to
these initial- and final-state values. A phase achieve this adiabatic limit.2 0

(p, = f . d /Mt evaluated along each trajectory en- It is the classical trajectory limit of these two
ables one to account for any quantum interference extreme situations which is illustrated in Figs.
effect arising from contribution of several trajec- 2(a) and 2(b). One might expect that the range
tories to a given S-matrix element. The classical of validity of the semiclassical picture could be
S matrix has the advantage of eliminating the dis- extended by combining these two approximations.
cussion about common trajectory for the various For example, In a given collision, limits (1) and
magnetic substates since it is only the Initial- (Ii) could be used for large and small internuclear
and final-state variables that det -mine the scat- separations, respectively. The precise conditions
tering process. However, the solution of the prob- of validity of these different situations are exam-
lem in the frame of classical mechanics Is rather ined in the next section.
difficult: the couple of colliding particles in the
center-of-mass system has 8 degrees of freedom ID. CALCULATION OF THE SCATTERING
and after taking account of the conservation of JI, AMPLITUDE
of the total angular momentum J, of total energy
E, one Is left with three differential equations, The calculation is performed uslrg the helicity
two of which are coupled. In general theae equa- representation which has been defined In the pre-
tions must be wived numerically, ceding section. During a collision, the z com-

If Instead, we adopt a quantum-mechanical for- ponent of the internal angular momentum changes
mulatton of the problem, certain simplifications from an initial value 1M relative to a quantizatloi
are possible. Since the interatomic potential de- axis directed opposite to the initial velocity (i.e.,
pods only on the quantm vriable F and on the in the direction of the interparticle separation

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1
-. .. , = I.-~. I I I-
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f) to a final value 9M' relative to a quantization where V,(r) is the interatomic potential in sub-
axis which is taken along the final direction o p. state M and
The scattering amplitude takes the closed form 7

f h~l )r- V, 21 + 1(S' A.(J, ') = [JJ + 1) - AT (N' * 1)111 2

"fx'(O ° = 2zK " (J2J + l)(S ,N, - 6MMw)

In the absence of coupling between the channels.
x ,(P, 6, 0), (2) Eq. ,4) reduces to

where SJ. is an S-matrix element and v,.( , 9,0)
is the rotation matrix of rank J. The internal ( fts da  Kj(J) 2,.

angular momentum j and the relative orbital angu- 2g- d- r 2  - +Vr - - (r)=0. (5)

lar momentum 1 have been coupled into the total
angular momentum J and the summation is over The general solution of this equation in the JWKB
all allowed values of j=i+J. The S-matrix ele- approximation is a linear combination of functions
ments can be obtained in terms of the asymptotic e*1QJM/6 j, where
form of the radial wave functions 0 4-(r) as (see
Appendix A)P' h 2 (1/2

19 2J __ - tlmr
Ki (6)~V~r)

-IKI 1f1e.rCr, jr,
X [6ame" - (- m 1 S ,1 e',. (3) Q f h•

This boundary condition selects appropriate solu-
tions of the radial equation This suggests that one tries solutions to Eq. (4)

A2 dA' 04)) V (r) of the form
-- ' + (u1 v / eIQXrM e

4 
" Q#

=- ~ (fIVIM')M1f(r), (4)
M, SX The standard theory of second-order differential

which is derived from the Schri5dinger equation equations states that, in addition to the boundary
(see Appendix A). In this equation, . is the re- conditions, a supplementary condition is needed
duced mass, and to determine b (r). We have chosen the follow-

V () + JV +1) 8Ming 
condition:

ro-rr-1- --?1AS b;Me'Or +Qj b-

-r2-- r (.(J, M)A j UM) , (8)
which transforms Eq. (4) into the set of first-order

- A-(j, M)Af-(J'A)O '11, differential equations

* ,i/R (b;, ,e 0 ;.- '%.w + b;,e"-',.iw;)), (9)

where and obtain
X,*= ,(JM (,) (I0) be 0 1 ;~ ,( )

and a prime indicates d/dr. Except within a N'

distance of a few 1 from the turning points where
where 61,, is close to zero, these "exact". (
equations may be simplified by using the condi- AM' 21 P,,.,)1/( - m
tions that we have imposed at the beginning. From +X-hM,)e,,(QJ,.JM)
X w r , It follows that t << 61/A and since j < J,

it follows that ,M/20',M't.)"d,,!. Using Thus, the inward wave (represented by b;) Is de-
these two Inequalities one may neglect the terms coupled from the outward wave (represented by
having rapidly varying phase factors In Eq. (9) b+). This Is the essence of the semiclassical ap-
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proximation and can be considered as an expres- (VMVM,)

sion of microscopic causality. However, the semi-
classical approximation requires, in addition, EJ
that a connection can be made between inward and
outward waves at the classical turning point. This
is accomplished provided one of the two following
conditions is fulfilled1 4 :

(i) I'? -- ',,<(I«? , .This condition per-
mits one to define a turning point, which is com-
mon to all the channels. When in addition < 0 r
a common trajectory is available. odioboic-ii J6,, -'rI>L>Xx; /2P j s~ . In this O~~~~o(ii) jInt* i/ approximation

case the A,, in Eq. l1) are very rapidly varying mngie trajectory
functions of r. Thus the substates are not sig-
nificantly mixed by collisions and the b. m are ap- FIG. 3. The spatial domains for adiabatic and single-
Proximately constant. This decoupling corresponds trajectory approximations are represented in the case
to the adiabatic approximation, of continuously decreasing I V(r) -I'M, (r)1. At ro both

These explicit requirements for a semiclassical approximations are valid.

description, correspond, as expected, to the lim-
iting situations that we have evoked in the pre-
vious section. In terms of the potential difference 1= V-(rj(t )) when t < 0, 3
between the internal states, the above conditions dt vr, 1 (t,,) when t >0,
are, respectively, transformed into

IV) jl(-V,.r)I<<( (?+ 1,,)/2M =E, (12a) where the radial speed v1,(r) is

IV(r)-Vs,.(r) xm - (6',',. 2 =E2 . (la2b) v,v(r){ P,(r)/" whenr'r, (14)
4I): v r) = (? ,(r)/when r >r,

Condition (12a) requires that the difference be- and 6T.P1 is the coordinate of the classical turning
tween the scattering potentials for different mag- point in channel M, with angular momentum 3.
netic substates be small enough to allow for a Two different situations may be examined in the
"single-trajectory" approach to the problem while limits that .' ) is larger or smaller than r
condition (12b) requires that the potentials differ r T l)-: < to. The incident particle first reaches the

enough so that the collision is adiabatic with re- radius ro at a time 11 which is M independent as-
gard to the helicity eigenstates. Except in the suming a common trajectory r, t) for -- < t < t-
vicinity of a classical turning point, E, is of the (since this interval corresponds to r >tr). In Eq.

order of thermal energy and Is much larger than (11) we replace b;,(r) by cm.(t) defined by

E, which is of the order of NlK/)±r. Therefore,
throughout the classically accessible region, at c,(t = b;(r(t)), t<t; (15)
least one of the inequalities (12) is satisfied by and find that c,(t) obeys the differential equation
any potential difference. This guarantees the
general validity of a semiclassical description of d
depolarizing collisions. - c.(Y) = HBW(t)c, W(t), t< (1)
As an illustration, we consider a simple poten- dt

tial such that IV,(r) -V,*(r)I is a monotonic, de- where
creasing function of r. Thus If ro Is a distance
such that E. << I VA,(ro) - Vm,1(ro) I< EI, the condi- BWA(t) = -X'(r()),,i +X;A(r1())6M.,..

tlions (12a) and (12b) are fulfilled, respectively,
when r>ro and r<ro. This situation is repre- xexp f [V1(r(t'))-V4r(t'))Jdt', t<t;.
sented in Fig. 3 which exhibits the overlap of the (

adiabatic and single-trajectory regions. In this (17)

situation one may transform Sq. (11) in order to In arriving at Eqs. (16) and (17), we set (6 ~,6 ),,)iP
examine the classical motion character of the - (6'., +61,)/2 - gv,(r) and evaluate the phase dif-
problem. We define a set of classical trajecto- ference (i/l) f, (6'1, -'.,t)dr' to first order in
ries using a time parameter t. The radial co- V. - V5 ,. . 0
ordinate r,(t) satisfies the equations In the region r < r, the b 5.(r) are constant owing

1 -1

-- - • . R ,, | ! I I I I
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to the adiabatic nature of the collision for r<ro. ib7m(-)=iE b*s(rH,((o))=E c,(W). (22)
There is a classical trajectory r,, which may be AV w
associated with each helicity state and a corre- This equation can be put into a more transparent
sponding classical turning point rt7. The 3WKB form if time evolution operators are introduced
connection formulas are used at the turning point such that
to relate bWN(r) and one finds
ib' ,(,r~P1),ioQ.FrMP)) = b- (r~rP) )e-'Qrv(' 1  (18a) Io-(t ( :'~ ' )iN t),t<t23a)

Since the b,"(r) are constant for r<ro, Eq. (18a)
may be written c%(t) EUg,'(t',t)c,,v.(t'), t >t*,. (23b)

ib} (rol = b;M(ro)e "Q"( ' (18b)

Connection with the time-dependent c,,() ampli- One can combine Eqs. (22), (23), and (20) to ob-

tudes is achieved by associating tain

Sb;,irv(t)), t< tL;x (19a)

iC'rQt)) t >tL+t (19b) F 1M4
2 I M,

xexpW - I 2'. (r.,(r))d)
where t. is the M-dependent time at which a clas- tI
sical particle moving along the rjN trajectory x U t;)b;M.(-o). (24)
would exit the r<r, region. Using Eqs. (19), (18),
and (6) we find

Equation (24) may be given a simple physical in-

.= (t_)exo(-! rhi f' I(rM(T ))dT \ (20) terpretation (see Fig. 4). In order to calculate
I t: t " the contribution of the Jth partial wave to the scat-

tering amplitude, one starts a collision at t =- -
Finally, for times t > t+, we are again in the r >r o  with b;..(-'). For -o < t < t-, collisions mix all
zone. Each rl, trajectory created for r <y now states along an average common trajectory and
continues into the r > ra region without further this mixing is represented by U t For
splitting. Thus, each trajectory can be labeled by t; < t < t, the adiabatic states are not mixed by
its M value in the r < ro region. For t > t*., (i.e., the collisions and one evaluates elastic scattering
r >ro) there is again coupling of the b* (r) along phase shifts along each trajectory. Finally, the
each trajectory. Defining states are again mixed along each of the final

trajectories as represented by m, , -o) (recall
that the superscriptM' labels the trajectory in

where r,,(t) Is the extension of the trajectory the adiabatic region). The time-evolution opera-
associated withM=M' in the r<ro region, one tors describe the mixing and shifting of atomic
finds that cA" obeys equations analogous to (16) substates as the atoms move along classical tra-
and (17). The final value for b* (m) is given by a jectorles. The spatial coordinates have been
sum over all trajectories, i.e., changed from quantum-mechanical variables into

time-dependent parameters. However, there sub-
sists in Eq. (24) an exponential phase factor whichr jr attests to the quantum-mechanical character of the

translational motion in the region where r < r 0 .

To get expressions for the time-evolution opera-
r t i tors, one may use Eqs. (23), (16), and (17) to ob-

+ tain

J+ dk1AC e ,Wf B..tU..t.) t<t- (25a)

FIG. 4. An atom in a superposition state enters the ± U t,,. , t) = B4..(t) f t), t> t.H,

Interaction region with an Impact parameter f/ + J)/K. (25b)
From time t; to t', or t., no transition occurs be-
tween mubstatee and their respective trajectories may subject to
part from each other. After t ,s or t,, a single tra-
jectory starts from the point reached at t N or t+,. U',(t, t) = , ,(, , , = 8,I- , (25c)

•~ N•t ti ass a I l;,.II
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where B 5 . is given by Eq. (17) and B ',,(t) is er, collapses, so that t. and t,, may be set to 0
also given by Eq. (17) with r,(t) replaced by rw,,(t) in Eq. (22) which reduces to
(recall that r1M. indicates the trajectory associated (J

with theM" helicity state in the adiabatic region). I YU rU'(- -, -)exp(i;7m. +i07. ) (28)

An expression for S-matrix elements is obtained where
by substituting Eq. (24) into Eq. (7) and making
a comparison with Eq. (3). One finds2 1  , E •

(- 1) 2 U, ,',(-, t;)U,(t:.,, ) This region corresponds to weak (large impacL
parameter) collisions.

x exp(i&J, + 2 ifl.,,), (26) This is the farthest point which can be reached
where in the direction of a semiclassical picture under

the approximation x << r. As has already been

noted in Sec. II, the classical trajectories which
71j,, lim J 1 dr'-Kr+(J+ 2)! (27a) have been hitherto considered may not be regarded

as actual paths since deflection in direction p,

and which is described by the scattering amplitude
[Eq. (2)] involves contribution from all the impact
parameters (J +)1K.

= ,N ' [V ,(T)) - V(r,(r)1]dr The final step of the semiclassical approxima-

tion is possible provided -R <<,r, it consists in
i-

1 f( ))dT using the stationary-phase method to calculate+ [VM&,(rM,,(Tl") rMr)d- (27b)
,, 'the scattering amplitude [Eq. (2)]. This calcula-

tion is performed in Appendix B. In the simplest
r (T

P) r0. In this case the time interval [t Tt], case, that of a purely repulsive interaction, one
during which the trajectories part from one anoth- obtains

fJt;)U','(t~v,, U)exp(i ," + 1iM)

/86 1/2
X -I exp .---- 1 +M)l-ii,.,O0)exp(- Mpo), (29)

where J9M" is the angular momentum giving rise 1ts actually meaningful, only when collisional ef-
to scattering at 0p for an atom following trajec- fects on observables are considered. Then scat-
tory MI in the adiabatic region. This result is tering cross sections instead of scattering ampli-
valid provided that X << r Vo and J, 6O >> 1. The tudes are involved. The aim of the next section
former condition allows one to use a stationary- is to discuss the classical trajectory picture of
phase method, and the latter condition implies depolarizing collisions on the observables which
that validity of Eq. (29) breaks down in the small- are accessible in laser spectroscopy.
angle diffractive region.

As in elastic scattering, the major contribution IV. DEPOLARIZING COLLISIONS IN LASER

In the sum over J comes from specific values of

J, linking these values and the scattering direc- In a gas cell, the quantum-mechanical state of
tion (&p). However, Eq. (24) differs from the atoms within a small domain of position-velocity
usual elastic scattering amplitude in the fact that space around (ff) is most conveniently described
for a given deflection direction 60p, a distinct im- by the density-matrix elements po.kfI) where
pact parameter (J5 ,, + 1)/FC is associated with a and a' label internal states. We shall limit the
each intermediate internal substate M". For more discussion to the case where a and a' belong to
general forms of the interaction potential, a rain- the same j level since we are interested in study-
bow angle may be defined and when 0 is smaller ing the effect of depolarizing collisions. The gen-
than it, several values of J are generally involved eral transport equation which determines the col-
in the scattering amplitude for given 0 and M". lislonal evolution of density-matrix elements of

Throughout this section mention has been made "active atoms" immersed in a perturber bath is
of classical trajectories. However, this notion given by'

a I I I III I " I i I
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Waj = - (30a)=- r. Yp , 1,~) + 130 1V(',~~,,P P,)
Uol alp,

where

and

W v,(, V, f=.N f , v (30c)

where T, is the relative velocity between active and provides some measure of the effects of de-
atom and perturber, W,(V,) is the perturber equi- polarizing collisions in level i. Integrating Eq.
librium velocity distribution, 7 = (/ /m)(l - V,), (30a) over velocity we find
N is the perturber density, and f (, s) Is the
al, V - a, VF inelastic scattering amplitude. In d ~f
our case the internal state is labeled by the mag- Wt ' I = - . " '
netic number m and the relevant scattering amoli- (32a)
tudes are f., (V, V,,A) where m and m' are taken
along a fixed quantization axis A. This scattering
amplitude may be expressed as a function of the dV (32b
scattering amplitude in the helicity representa- f' r"",="( )-,
tion by Equation (32a) does not decouple y and p; however,

an approximation that is often made2 2 is to neglect
, m(T ,A - z ) (6)f , the V dependence of the y's. In effect, one re-

iN (31) places y,";( ) by

where i ,, 0,0) and 61'= ( , 0 0;,) and 0 (
and 0 are polar angles with respect to A. ' P ." W(V)y (I)' (33)

In traditional optical pumping experiments in
which depolarizing collisions are studied, ' neither where W(V) is the active atom velocity distrlbu-

the vapor excitation nor the signal detection is tion. A good approximation to Eq. (32a) is then

velocity selective. In these experiments, the d
broadband excitation creates density-matrix Pe .. (?, 0:- (1 '" (34)
elements p',(?, , t) in a state of givenj and the dt ,, , ,t ,  (

Intensity of radiation emitted (or absorbed) from
these mm' substates in a given direction and with The -y.,'! describe the (velocity-averaged)
a specific polarization is monitored. With broad- coupling between magnetic sublevels and, as such,
band excitation and detection, the signal is a func- reflect the nature of the collisional interaction.
tion of velocity-averaged density-matrix elements Thus the structure of the ",can provide some

Insight into the collisional process. By combining
Eqs. (33), (32b), 30b), and (30c) and performing

P'..' (1,t) dvp .,(',V,t) some of the integrations, one may obtain2

rm,- Nfir(,)rw4t,. 90,Y 8w,,,. -f ns ( f dO8,,,f. V,) (35)

This expression can be written in terms of S-matrix elements If Eqs. (31) and (2) are used for the scat-
tering amplitudes. The resulting equation can be simplified by using the relation V,4,(, V, 0)

(61)Z17 .(6j') and other elementary properties of the 1 matrices. The integrals over do., and
&Z, can be carried out and, after some cancellation of terms, one is left with

-I
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.,= , 4 ' =( I)-(2J + I)2J1 +1)(2f+ 1) i , n j. f ( f) . J . f

J , f- m ' q m " M q M - q M " - M "

fdWvv"6"611 Sr., ), (36)

where the sum is over all repeated Indices (except J). Equation (36) contains the selection rule m -,n"
=m' -m" which may also be obtained from symmetry considerations. One can verify that _.y:"'" =0, re-
flecting the conservation of probability Ydp..(f, t )/dt I., = 0.

Using Eq. (26), one can write the dynamical factor appearing in Eq. (36) as

In + +o • I 'A;. , + e
U.3 (t+ , -)exp[-.(&_#,,,#,- A_,,v)] x [-2i(i.,,.,,-7,,,)]. (37)

In writing Eq. (37) we have implicitly used the selection rule 1i -XIj<.J which Is imposed by the 3 -j sym-
bols appearing in Eq. (36). Since J >>j, differences between J and J' can be neglected in all but phase fac-
tors. In the previous section it has been shown that the quantum-mechanical aspect of the translational
motion is concentrated in the factors exp[- 2i(,.,, - 77,.)]. The other factors describe the evolution of in-
ternal substates along classical paths r,,(t). Let RJo be the angular momentum for which-rp) =ro. In Eq.
(36), the sum over J may be regarded as a sum over the impact parameter (J + J)/K. In analogy with the
classical mechanics calculation. In the region where J >J0 [or r,< r T,] a common motion approximation

is valid. Since IJ -J' 1<<J, the phase difference in Eq. (37) can be expanded under the form

17, - 7):n = 17:.' -' 7,. + (' (38)(3J

where 28i,/J can be identified as the classical deflection angle 0. (see Appendix B). Then, following Eq.
(28) one reduces Eq. (37) to

" - M. , ,=,.,, - U ., .(- o *,+o)UM,.(- , +0)
xexpft i [v..,4r,(t)) + VAN4rJ(t)l V..,.(r, (t))- V,(r, (t))dt expf -,(a' - J)6~,

(39)

where (17,. - 71.,) have been expanded to lowest <r, This condition is not sufficient to regard
order In the potentials. This expression describes the atoms as wave packets of dimension much
the substate mixing along a single trajectory r,(t). smaller than the Interaction distance. Thus, in

When J<J, [or ro> %P)], it may be verified that analogy with JWKB calculations of scattering am-
1, - in,. I I and that the factor exp[- 2i(il,,., plitudes, the classical trajectories that we have
- i7,.)] averages to zero by summation over J and mentioned are not really followed by the atoms.

J' for In I* In' I. A classical trajectory r,, may A specific evaluation of y.," will be given in a
still be assigned to elements of the density matrix future work.
which are diagonal (in the helicity representation)
on entering the region r < ro but the classical plc- VyeociyeW hK iauvecrocopy

ture falls for nondiagonal elements. In other In velocity selective laser spectroscopy, the
words at r =Co the magnetic substate populations relevant quantity which describes collisional ef-

are scattered along separate trajectories fects Is the collision kernel W"!' (f', f). Calcula
r,, but the coherence between substates is lost tion of this kernel from Eqs. (Oc) and (31) re-
owing to trajectory separation. After the depar- quires the knowledge of products of differential
ture from the region r<ro, substate mixing starts scattering amplitudes of the form
again along each separate trajectory. In some
sense the images given in Figs. 2(a) and 2(b) are
valid when the interatomic distance r is, respec- The stringent condition ac4c v<< is needed to ob-
tively, larger or smaller than ro. To work out tain a semiclassical approximation of this quan-
this semiclassical picture, the only needed con- tity. We consider still the simple case of purely
ditlon on the de Broglie wavelength has been repulsive interaction for which a semiclassical

,--j u
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scattering amplitude has been calculated (Eq. 29).
Since Eq. (29) is valid only if Jejll >> 1, a supple- I
mentary assumption is needed to take into account
small-angle scattering. We suppose that the width
of p..(P. P, t) in velocity space is much larger
than the velocity change which corresponds to the
deflection angle defined by J9e = 1. Thus, the is,
collisional transport equation may be written i

4 , -rFIG. 5. The scattering of two-substate atoms at angle

0 results from the contribution of two trajectories: the
one which enters the r< r 0 region In substate I at Im-+ , .,,,t)jdv'W,,,(9',9) pact parameter (Jo + J)I( (I) and the one which enters the
r < ro region in suiltate 2 at impact parameter (Jo2
+ J)1K (11). Along each trajectory mixing between sub-+ d Y'W% > states occurs for r< r0 . The trajectories of substate 2
in I and substate I in II would lead to scattering at an(40) angle other than 0 and are, therefore, not continued In-

where W:'>"' (W,V) describes collisions which are to the r< -cr region.
such that Js,0 > 1 and W V'(9< , 9) describes the
remaining very small-angle collisions. The first
two terms may be calculated in the same way as As above, two collision regions may be distin-

guished depending on whether J9, is larger orThe semiclassical approximation of scattering smaller than J0 . When j6 , >J,, a single trajectoryamplitudes is needed to determine Wm,"'(9, 1 ). Is available and one obtains

fm* 1.,(' 0P) f'm a(o, P)= i -  
+ ( - 

-, + )

K'v sine I i]

x exp!i- f' dt[V..(ro(t)) - V..4r,W(t)) + V,4r, (t))- V(ro(t))]

x exp( i(m -1w" + M - m,)!.) (41)
for use in Eqs. (30c) and (31). This result contains the product of a semiclassical elastic differential scat-tering cross section by a factor which accounts for the MAl' transitions along this trajectory.When Jav >Jo, distinct trajectories corresponding to distinct substates may contribute to scattering at
ep and

M,(6,cp)fh (p ):MnX (o.Jo ) U.'.I.,, (- . " U (t *

x exp[- i(A_',N, M ' M

xSo 80Be ef.b, /1, •+(e-")) (42)

The last factor in Eq. (42) represents Interference f ' ')p. _.-(;')d 3", the integral over v'effects between diverging trajectories. Its angu- averages to zero for terms with InIe* In'( providedlar dependence is given by (1i/m)% IiJe', " is much smaller than the
width of p..,(f) in velocity space, where u is the( ,- )- (J9, '  .)81- J9. -Je., . active-atom mean speed.

(43) The net effect of scattering in direction &p for
a two-level system in this limit is shown in Fig.This angular dependence leads to oscillations of 5. The angular momenta Jo4 (f = 1, 2) correspond

W.*'0170, V) as a function of I and V'. In to scattering of an atom in state i through the
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angle O4. For r > r. the substates are mixed by we have shown that single-trajectory approxima-
the collisional interaction along each of the two tion and adiabatic approximation can be combined
trajectories I and U. For r < r the two states in to obtain a generally valid expression for the
each of trajectories I and II are split by the col- semiclassical phase shifts (provided-%<< r,). An
lisional interaction, but only one trajectory in explicit calculation of this phase shift has been
each leads to scattering at (&p0). Finally, the outlined in the simple case of a continuously de-
states in a given trajectory are again mixed for creasing difference of the substate dependent in-
r >r,. The Internal final state is a combination teratomic potentials. The conditions of validity
of internal states which have experienced the his- for using a semiclassical scattering amplitude
tory shown in Fig. 5. When the above conditions have been examined and the case of a purely re-
are not fulfilled, no simple picture can be given. pulsive interaction has been treated in some de-
It should be noticed that the phase factor in Eq. tail. Using semiclassical approximations to the
(42) cannot be clearly separated into a "spatial scattering amplitudes, we investigated the nature

phase shift" which would represent interference of the depolarization collision kernels and rates
effects between diverging trajectories, and an which enter into laser spectroscopic experiments.

"internal phase shift" which results from internal For these two quantities a picture of the scatter-

subetate mixing and which is present along a com- ing, in terms of classical trajectories, has been

mon classical trajectory. given. In a forthcoming paper, expressions that
Thus, the methods used to calculate y:,'" and we have obtained will be used in a numerical cal-

W..""(V', V) are perfectly consistent with the culation of the corresponding signal profiles which
JWKB and classical trajectory approximations, could be observed in laser spectroscopic experi-
respectively, that are used to calculate total and ments.
differential scattering cross sections. Assuming
X <<r., the result for can be interpreted in ACKNOWLEDGMENTS
terms of a large number of partial waves giving The authors wish to thank Professor J. Delos
rise to scattering at angle 0(p with no classical for a helpful discussion. The research of one of
correspondence between impact parameter and the authors (P.R.B.) was supported by the U. S.
scattering angle; however, the relevant phase Office of Naval Researci. This rercarch was
shifts and substate coupling are calculated along supported in part by the NSF under Grant No.

classical trajectories (just as the it are calculated INT 792 1530.
along classical trajectories in the JWKB evalua-
tion of collision cross sections). Under the more APPENDIX A: DERIVATION OF THE RADIAL
stringent condition Nr'<</-r,, the derived expres- EQUATION' 7

sion for the kernel W ,7 (V',V) can be interpreted
as arising from collisions having the appropriate A convenient set of commuting observables in
impact parameter to give rise to classical scat- the center-of-mass frame consists of the Hamil-
tering at 8qp. There may be a number of such im- tonian H, j2 , and the total angular-momentum
pact parameters reflecting the different Inter- operators j 2, J, where J, is taken along a labora-
action potentials for the various magnetic sub- tory fixed axis of quantization Oz. The corre-
states. sponding eigenfunctions are Vfif-s(?,A) where M,

We have not attempted to give an interpretation Is an eigenvalue of J, and denotes the ensemble
to ( V7'(Y',V) under the less restrictive semi- of electronic coordinates of the colliding atoms.
classical condition x << r,; in this limit the large The total Hamiltonian MI Is
number of partial waves contributing to each scat-
tering amplitude leads to a very complicated ex- H= ffo() +- + V(I?, ),
pression when bilinear products of the scattering

amplitudes are taken to form the collision kernel, where Ho(O) is the internal Hamiltonian, V(7, )
Only when total cross sections, such as those is the Interatomic potential, and
represented by ,.v.?"', are evaluated does one re- a 2(J + - 3'.)

gain a result with a simple physical Interpretation. P -= + ('-y + .

V. SUMMARY The Hamiltonan, without internuclear motion, is

In view of understanding the signal formation in H, =Ho( ) + % + V, ).
laser spectroscopic experiments when depolariz-

ing collisions are prevnnt, we have developed a Its elgenfunctions are V4.(r, ) where M' Is the
semiclassical theory ol these collisions. First simultaneous elgenvalue of J,, and j,, along the

-j I ilIl
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rotating axis of quantization I. The expansion of equation is determined by the asymptotic form of
*JsN(fc, ) in terms of PJ(r,p), and the wave func- a scattered plane wave which is

tion 4 ,(r) describing the scattering to"1

wh e '4( ) +eeetoi aefnto s

where 61 is the rotation which brings ? along Oz. where t is the electronic wave function as-

We substitute this expression into the Schridinger suming that the quantization axis is along It, and
equation fm.(,p) is the scattering amplitude in the helicity

representation. The connection between A()112K2

-- 2 H# .and ,(s) 1s

where K is the magnitude of the relative motion
wave vector. Projection on qpJ*(r, ) leads to the
radial equation Expansion of the plane -wave function in terms of

t d 2 _ N2 T K 2 +(r)spherical harmonics leads to

e2iL W ry1 KI d r'2 (2 1 1 )(2 J 1 )( x  Ye - t '(-' "( 2iKrMVM-)
( -

we _ - (M VIM')4,(r)# , (
whereJ _M,)MM

(M ' JJ+l) - 2A+j(j + Summing over I and using Eq. (2) one finally ob-
AMIVIM+ = (J + 1) 2' 22 _f/J i l tains

- 2. 2 
.[,(J, M)A,(j, M)6,...1  , -(2j+ I)[- -m _", +emNe

x.(J, M') = [j(J+ 1) -M(M' * 1)11/2, and Vm(r) is
the value of the interatomic potential In substate Since * =Th,.*'I" 0?, ), we see that the asymp-

M. In the diagonal term, the contributions which totic form of the radial wave function is 1

contain w and j(j+ 1)- 2M may be neglected as
they are of the order of-I/r.- lim ,(r - K + - -

'.1 4., 2iK""
The boundary-value condition which is necessary

to select the appropriate solution of the radial x [8-N,e - " - (- 1)i*JSe 'f "].

APPENDIX B: STAI1ONARY-PHASE
CALCULATION

The needed approximation for 5bM (q', 6.0) for large J values is given by Brussaard and Tolhoek '23

where

() = fj*i - (M + M'2 - 2 MM' cos e)/slnael'P (32)

and

_M() =i cos'o[( 2 os - MMf')/(J 2 - A e)
112 J M - -'o)' (I

- M cOS- 2[(Mcos0 - M')/silne(J2 - M')""J]
- Mw' cos' " (4w cole - M)/slne(J m - M')"/'1. (3,3)
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This approximation is valid provided Wm.(6) >> I. WNeo (6)1 = 0 which leads to

This expression is substituted into Eq. (2). The c -  
J acosO-MMF

sum of the term involving 6AM,. vanishes 1 ' and one 2 1 o ) (B6)
is left with

he[ ( -or, when M<<J,

iMK W) (B7)
(B4)

where s.. is to be given by Eq. (26). The quanti- The classical deflection angle ) is defined by

ties U',(t, fl) and exp(ia ,), appearing in Eq.
(26) are slowly varying functions of J with respect vJ B
to exp(2i%.m.). Thus, they can be taken out of where d satisfies Eq. (B7) to first order
the sum over J and evaluated at a point of maxl- in M'/J. A set of angular momenta J,,, may
mum contribution to the sum. One may use the satisfy Eq. (BB). We restrict now our calculation
stationary -phase method to calculate to the single case of a purely repulsive potential.

Then 0e and the semiclassical scattering am-
dJ exp[2iq. *iz4'1,,(0)1. (BS) plitude may be evaluated from Eqs. (B4), (22),

and (B1) using the method of stationary phase.
The stationary-phase condition is d/dJ[21, I One obtains

×i epm "), "" Oep( Mo
-M( +e)h-'... ( 9

This expression is bound to the validity of the IJ .,e sin I>> 1. (Bli)
stationary-phase approximation which requires The points of stationary phase for channels M
that and M' are well separated provided that

)-3/ 21< 
(B12

(30) . ( io 1J.(/J)12 (B12)

The fulfillment of this condition implies that the
This condition generally reduces to I/'<< v-. One wave packets in channels M and M' do not over-
has to also take account of the condition of valid- lap. When condition (B12) is not fulfilled the dis-
ity of the approximation used for D,,(0, 0, 0). To tinct wave packets coalesce into a single one, but
first order in M/J the approximation demands Eq. (BO) is still valid, since Eq. (B8) still has
that a single solution for a given value of ?".
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Abstract

The problem of calculating transition probabilities

in two-level systems is studied in the limit where the

detuning is large compared to the inverse duration of the

interaction. Coupling potentials whose Fourier transforms

VM() are of the form f(w)e- (Ib(Ol) for large frequencies

give rise to solutions -which may be classified into

families according to the form of f(w). Within each

family, transition probabilities may be calculated from

formulae that differ only in the numerical value of

a scaling parameter. In cases where the couplin& function

has a pole in the complex time plane, the families are

identified with the order of this singularity. In par-

ticular, for poles of first order, a connection with the

Rosen-Zener solution can be made.

The analysis is performed via high-order perturbation

expansions, which are shown to always converge for two-

level systems driven by coupling potentials of finite

pulse area.

II



I. Introduction

In many areas of physics, one encounters problems involving two

states of a quantum-Liechanical system coupled by a time-dependent po-

tential. 1 10  In the interaction representation, the equations of motion

for aI and a2, the probability amplitudes of levels 1 and 2, are of the

form a- 0. OILaa (la)

where w is the frequency separation of the states and V(t) is the couplin1

potential. Decay effects are neGlected in Lqs. (1) (and throughout this

paper) and we work in a system of units in which f = 1.

Equations of this type arise in many seiclassical problemzs. A

problem of current interest to which they apply is the coupling of two

levels of an atom by a laser pulse that has a temporal width which is

small compared to the natural lifetimes of the levels. The pulse, V(t)

is of the form

Vt A (1) (2)

where 0 is the central frequency of the pulse, and 2A(t) is the envelope

function of its amplit-Ae. Assuming that I << 1, one can recastQ+W

Lqs. (1) in terms of A, the detuning of the pulse from resonance (ro-

tating wave approximation)as

-2-
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Lqs. (3) or (1) are deceptively simple in form, and one might, at

first glance, believe that the system must be completely understood, so

that nothing remains to be investigated about the equations or their so-

lution. Actually, there is very little known about the overall qualitative

nature of the solutions to Lqs. (3) for arbitrary A(t). Apart from any in-

trinsic interest one might have in the dynamics of two-level systens, such

information could be useful, for example, in applications where one wished

to choose the pulse shape to maximize the excitation probability for a

given detuning A.

To appreciate that our assertion concerning the lack of knowledge

about the behavior of systems described by Bqs. (3) is valid, one need

only recognize that the answer to the following question is not known

in general. "Starting with initial conditions al(-o) = 1, a2(-w) 0, how

does the probability amplitude a 2(t) depend qualitatively on the pulse

area S, defined by

on the detuning, and on the shape of the envelope function A(t)?"

A response to this query can be made for a limited number of cases.

Analytic solutions are available if A(t) belongs 
to a class of functions

5

(including the hyperbolic secant of Rosen and Zener
2'3 ) mappable into the
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hypergeometric equation, or if A(t) = (constant) exp (-altJ) 9'1 0 or if

A(t) is a step function (Habi problem), or if the detuning is zero. In

addition, there are approximate solutions available in adiabatic4 or

perturbative limits. Yet, there remains a wide range of parameters

and pulse shapes for which an answer to the basic question cannot be

provided.

In this paper, we shall examine the solutions to Eqs. (3) in the

limit where the product of the detuning JAI and the characteristic pulse

duration T has a magnitude greatly in excess of unity. In other words,

we are assuming that the pulse does not possess the appropriate Fourier

components to significantly compensate for the detuning. In consequence,

the transition probability la.(6)l 2 will always be very small (but still

great enough to be experimentally measurable in atomic vapors of den-

sities - 10 atoms/cm,). We note that numerical solutions of Lq. (3)

in this detuning range may be possible but are very costly in computer

time and plagued with technical difficulties.

For the case IATI >> 1, we shall establish the following results:

(1) Low-order perturbative approximations for a (0) are not valid for

arbitrary pulse area 8, despite the fact that a2 (t)i
2 << 1 for all time.

(2) An iterative solution to Lqs. (1) always converges for well-behaved

envelope functions. (3) Asymptotic solutions for a2 (t), t finite, may be

easily found, but expressions for a (-) are difficult to obtain. (4)2

Asymptotic solutions for a2( ) can be obtained for a limited class of

IKaplan 7 has also considered cases where the detuning varies as prescribed

functions of the amplitude, and obtained closed-form expressions.

- .



pulse envelope functions usin6 contour integration techniques. This is

a broader set than that for which exact solutions are known. (5) The

asymptotic dependence of a2 (-) depends critically on the nature of the

sirularities of the pulse envelope function A(t), analytically continued

into the coiplex plane. (6) If two pulse functions have the same Fourier

transfcritz in the limit of large frequencies and if the doLinant dependence

of the transforlm is an exponential decay in the frequency, then the

asynmptotic forms of the solutiorsa2(-') for these functiorns in the limit

of larkge IAI are siuply related. in this papjor, we address points (3),

(2), (3), and (6); n.et.iods for actually obtaining asymptotic solutionz

(poiits (4) and (5)),ill be discussed in a future article.

I. Asymi.ptotic solutions.

As we have inuicated, the Rosen-'ener 3 (hyperbolic secant

couplir,7 pulse) problem is one of t-le few for which exact solutions .re

k-nown. in this case, a siiaple expression gives the transLition am1p"litude

as a function of detunir6 and area for all values of theze parameters.

Uaturallj, since this formula

where V is the Fourier transform of A(t), is exact, it is valid in the

special case of the asy.totic irIt.

ke shall show that there is an entire class of pulses for which the

aoyptotic trarzition az.plitude, as a function of S and A, may be written

'-5 -
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down by in-spection, once the Rosen-Zcnre proble: has been solved!. We

shiall also demonstrate that thcre are other classes of pulses whose

solutions as t - are unrelated to iiosen-Zener, but are connected

to each other in the sense that once one has been solved, the so]utions

for the entire class may be obtained by inspection.

The existence of these related solutions will be established

via ters.-by-term co4mprisoi. of nth order perturbation exza:,sions which,

unaer very generul conditions, are conver-ent i n two-level problems.

(Lee Appeeii). With suitable scaling of the coup liniq stren-th s, the

seriez for different z:nedubers of particular classes will be seen to be

identical, in the linit of largc detuninds.

The particular potentials analyzed in this paper are A(t) whose

Fourier transfornzs for large L, asstue the form p(c) cxp(-lbcl). where

p is a slowly varyir function of (, ard b a constant. It is converient

to make a variable change, such that v = JbIw aad x = t/lbl. Consequently,

the exponential decay factor in the Fourier transform beccrmes exp(-Iv)

and the equations of motion transform to

/ az = (34r(3a0')

where a : IbAl and where the dot now signifies differentiation with

respect to x. C , previously designated as S, is the pulse area. The

reduced potential function f(x) is definea such that fj(x)dx 1. The
-6-h
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pulse area is invariant under the indicrpted charge of variable. One

may also write Lqs. (3) as a pair uncoupled second-order equations

2. +%J* - (5b)

There are two aspects -Lo the solutions of Z4s. (3) or (5). These

are the cai±ulation of the wplitudes at finite and infinite tines, re-

spectivcly. The form~er are of interest if the transients are to be used

as input to other problems, such as Lultihoton ionizationI I , while the

latter, with which we are naiily concerned here, are the transition am-

plitudes, a2 (). The two te::oral re ;imes differ Creatly in the r.etnods

that must be used to perforn accurate calculations.

Apart from the Rabi pr tlem, the problem wnich has attracted

the most study is that of ±Rozen and 4enerCS, f(x) (sechn :/2)/2, for

which the solutions are

S ()(6a)

or 4 -

F- (-- 41 )

= -' (6b')

- 7-



Where a6=- = C -- - -

Aa, h Ely

and 2FI desi 6 nates the hypergeometric function. The form of a 2 given

by 1q. (Cb) is valid for all x, while that given by ka. (6b') holds only

for finite x, unless j3 corresponas to an eigenvalue, a pulse area for
6

which a2 (+ ) vanishes. 6 e recall that a 2 (-), the transition a.dlitude

for the Zosen-Zener,problen is 6iven by Eq-j. (L).

One r.,zy 6rite the solutions to L4s. (3) as perturbation series

in the usual fashion, notinG that only even orders enter the expression

for a1 , while only odd orders appear in the forsula for a2 . The expa sion

for a 2(+ o) is

In the Apj~endix, it is shown that this series converses for all finite

pulse areas.

For the rernndur of the paper we will restrict ourselves to

the case of pulses thit a e syn etric in teie and where fi a 1 --pulse ar-a-

For he rrnz~ndurof he pper e wil rstrit ouselvs t



the adiabatic or asymptotic limit. The Fourier transfora will be

symmetric in v. We shall begin by comparing the finite and infinite

time solutions of the Rosen-Zener problem, which exemplify relevant

properties of transition amplitudes induced by snooth rulses.

We may obtain the finite ti'.e solution by explicitly expandinm

the 2F1 function of Lq. (6b')

(/, ( /-_) e./,,, x +,) ...

3 - ;c4

For large a, it is sufficiunt to retain the leadirn term

This is equivalent to first-order perturbation theory in the adiabatic

limit

(, -, VW

--)

where subsequent parts integrations are neglected, since they are

O( n), n > 1. We imediately see that this sequence of parts integrations
a

is unsuitable for calculation a2 () , since each term separately vanishes

when x * I. £ven including the third - and higher-order terms in the

-9-
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perturbation series via analogoua sequences of parts integrations does

not cnable one to orbtain a non-7ero amplitude as t o. Consequently,

other methodz are necessary to calculate for a2(H.

It is elear from the preceding paragraph that for large enough

a, first-order perturbation theory is a sufficiently accurate approxi-

mnation for most purposes, provided x is finite. For infinite times, not

only does t::e adiabatic sequence of parts integratiorn lead to an in-

correct a2 (), bat even an exact evaluation of the first order integral

may be inL~ufficicnt. This is t%'pified by the exact -;icen-Zencr aL-plitude,

Iq. (4), in which the factor sins does not reduce to its first order

liiit of ,-; unless JIN is suall com.pared to unity. This failure of the

first-order theory occurs no i.atter how lar6e the detunin6 becoies. One

must retain enough terms in the perturbation expansion to accurately re-

present the sine function. Thus, for the iiosen-Lener pulse, if the

couplin; is ireat cnoujh so that saturation effects would alppear at

resonance, simple first-order theories can not be used for a nonresonant

pulse of the sa"e strur~th. A- we shall see, other smooth pulses also

possess this "saturation memory". In fact, in some cases, a higher-order

theory is necessary off resonance even for a case where a first-orcier

theory would suffice at resonance. This is exer.plified by the foriculac

of iqs. (9) below.

Since each coupling function f(x) is different, one mi&ht be

led to believe that separate calculations must be performed for each

individual case. Fortunately, as we bave stated earlier, there prove

- 10 -



I UI I II

to be classes of p-a1ses where, if one kiows the functicnal dependence

of the asymptotic transition amlitude on Lx and for one member of

the class, one hnow, it for all LecL.bers of the class, although the actual

time dependence of the potentials may bc drastically different. W;hat is

si6nificant is that their Fourier transforms assune the sa e form as

a 00 .

Mien Rosen and Zencr deriuced Lq. (4), they su6:ested that similar

for.ulae siight hold for other s"nooth pulses. This conjecture proves not

to hold in reneral. it is manifestly false for asymmetric pulses, nor is

it even valid for all syametric pulses.5'6 that we shall show is that a

kind of .osen-Zener conjecture does apply at large detunrins for pulses

in which f(x) has si:zple poles at x = i. This law does not app ]y to pulses

which have higher order ipoles at this point, althouih scalin laws for

thesQ do exist, different for each order.

The followirn theorem will be established. Let two couplirZ

pulses A(x) and A (x) have Fourier transforms V ( ) and V (V). The
o o

Fourier transforms of both approach, for large values of the arLunrent,

the same asymptotic form V (). If V is of the form, 4,(v)e - l l wherea a

,(v) is a slowly varying function of v, then the asymptotic transition

amplitudes generated by the two pulses will be the same, provided that

the pulse areas are both finite. A sufficient condition for the indicated

asymptotic behavior of the Fourier transforms is that they be equal, for

large v, to a contour integration whose value is given by the product of

the residue at x = i and the usual Cauchy factor 2vi. If two such pulses

- 11 -



are to have the same 4(V), they must possess poles of the same order at

x = i.

The contribution of order (2k+l) to the transition amplitude my be

rewritten slightly

= g (~)e JX A(xd.)e

xj

The factors e J  do not affect the inte6rals. They are used to remove

ambiGuities as x - in the treatwent below, where we express the

aplitudc in terms of integrals in the frequency dolain. The limits

X - 0 are to be taken before the x inte ration is pcrformed. Lxpress-

ing each A(x.), > 2, in terns of its Fourier transform, we have

Co ,' , , A vl) . 0

-010

Ly working in the frequency domain, we shall be able to examine the

structure of the integrals for a2 (2k ) and establish that the contri-

bution from regions where the asy.ptotic form of V is not valid is lower

by o(1) than the contributions from regions where it is valid.by

-12-
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e he inte6 rals over the x. are trivial to perform. We obtain

We now proceed to determine the asymptotic form of these amplitudes.
(3)

The analysis is easiest to follow for the third-crder contribution a2 ,

but exactly the same reasonin6 and conclusions will apply for the hidher

order terms. (The theorem is true by inspection in first-order, since

that contribution is, apart frcv, a constant multiplier, just the Fourier

transform itself. Thus, if two coupling functions have Fourier transforms

of the sane asynptotic form, their first-order transition amplitudes scale

the sace way with and a. The leadin6 non-trivial terM is a *
3 ) .

2-2

It is corvenient to make the change of variable vi = Yi a.

- 13 -



f(-(' I2 IY(~ I(4 I I)II

Ao I ev 2

A.'.

where P indicates that the inteLrand excludes infinitesiLal reGions near

Yl = -Y2 and Yl = 1. We slay formally integrate the last two terms. If,

(-l) is fcctored from 1he second of the two integrals, they combine to be-

colaie

i L; -,IT _- o VC a(V %, +; 'A

It is imnxediately obvious that if these are partitioned according to the

rule

the principal value contributiors exactly cancel, while the i7 terr.s are

proportional to e , and exponentially small compared to a 2  which de-

cays only like e -. Terms proportional to exponentials which decay more

rapidly than e do not coxitribute to the asymptotic form.

We now proceed to examine the remaining contributions to a(3)

where it is abain understood that the small regions in the neighborhood

of Y 2 -Y1 and y1 = 1 are excluded from the integrals. For all regions

- 14 -
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except where lyl < I I, where a is a number of order unity, T(cAY) .V (c)

Thus, for the entire y 1 -y 2 plane, except where yl / 0, Y2 # 0 (but not

both simultaneously) and y + y 2 
= 1, the numerator of the inte6rand is

well represented by its asymptotic form. Furthermore, since at most

one of the three Fourier transform factors departs from its asymptotic

form in any given region of space, the area in the y1 - Y 2 plane over

Pi

which one of the V both departs from its asymptotic form and decays no
-QA

more rapidly than e is 0(1/a). It is, of course implicitly assumed that

the exact and asymptotic forms of the Fourier translorns remain bounded

as their arguments - 0. For the former, this is equivalent to the re-

quirement, which we have already stated, that 0 be finite.

Now consider that portion of the y1 -y2 plane where all factors

in the numerator arc well-approxirated by their asymptotic form.s. Lxamine

in particular the exponential decay factors

e 
The only portion of the plane where the cozmbined effect of the expo-

nertial factors leads to an overall decay that is not faster than e

is the rane 0 < y 1 < 1, 0 < y 2 < l-y 1 " Thje integrand does not charge

sign in this portion of y1 -y2 space, which encompasses an area 1 1/2,

compared to the area I/a, which is the corresponding extent in which

the nonasymptotic interand decays no more repidly than e- . iiote

that there is no portion of the plane in which the integrand decays

more slowly than e - . Thus the nonasymptotic integrand contribution

- 15 -



is O(1-) compared to that of the asymptotic in',eerand.

Similar considerations enable one to deduce that one may also

replace the Fourier transforms in the higher-order integrals by their

asyraptotic forrs.

We thus conclude that if the time-dependences of two coupling

functions arc such that the asymptotic forms of their Fourier transforus

arc identical and of the inaicated form, the lar;e detuning transition

amplitudes are the same.

As we have indicated, a sufficient condition that two pulses

have the same a2 (-) for large a is that both asymptotic Fourier transforis2t
be equal to contour integrations given by (27i) (.Ies (x=i)). ;e compare

1 rx

the hyperbolic secant of Rosen and Zener, f = 1 sech M with the2 2

Lorentzian f = (l+x2 )-l. The corresponding A(x) are

-TV-

A vi(X) -wsc

The transforms for both may be calculated via contour integrations.

The Lorentzian case is trivial and applies to all ', not just large

frequencies. We choose a contour that runs alon6 the real axis from

-R to ,3 and is closed by a scmicircle in the upper half plane. The

contribution to the contour interral from the arc vanishes as R -- 0

so that the Fourier transform is identical to the contour integral,

whose value is determined by the residue at the simple pole at x - i.

- 16 -



The result is

IVi (Ta

VL-(a

For the hyperbolic secant we choose a rectan6ular contour which

runs fro," -R1 to +R along the real axis, that is continued by rectan;ular

segments parallel to the imaginary from the points (±+', 0) to the points

(±R, 2i), and is closed by a line parallel to the real axis which runs

from (R, 2i) to (-;,2i). The two vertical segments give vanishinG con-

tributions as H + -, and the horizontal seLment off the real axis goes

exponentially to zero compared to the ze.c.ent alorI the real axis as

V -+ -. Thus, for the hyperbolic secant, the Fourier transform is identical

to that of the Lorentzian in the asymptotic region. For large V it is

given by

Since the 2osen-Zener solution gives the transition amplitude for

all detunin6s, according to Eq. (4),as -i f(u) sinO, this form.ula

must be valid asymptotically also. As we have shown that the asymptotic

Fourier transforms of the Lorentzian and hyperbolic secant are proportional

for large detunin6s, the Lorentzian must induce a transition amplitude that

obeys a formula similar to Lq. (4). From Lqs. (7), we see that to con-

struct the Lorentzian and hyperbolic secant Fourier transforms so that

they are asymptotically identical, it is necessary to choose the Lorentzian

- 17 -
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pulse area L to be twice that of This immediately givcs the

large detunin scalirn law for the Lorentzian

This result has been independently obtained by carrying out an asymptotic

solution of Iqs. (3).12 One can also show that for the pulse AC =

OC cosechrx, the appropriate scaling law in

For the hyperbolic secant pulse, the transition amplitude vanishes

for pulse areas 3 = nw, n integral for all detunings. The Lorentzian,

on the other hand, has eiZenvalues = nit for zero detunin6, while those

for large detuning are = 2n7r. The eigenvalues of A co from nT atc

a= 0 to Las a

The existence of a pole at x=i is a sufficient, but not a necessary

condition that the asymptotic Fourier transform of a couplirn pulse

-,, p(w)e- W1. For example, the function (l+x2 )-3/2 has an asymptotic

Fourier transform proportional to v/2 e- . The factor v1 12 precludes

deducing the asymptotic transition amplitude from the Rosen-Zener formula.

Similarly, the squares of the hyperbolic secant and of the "orentzian each

have poles of second order at x=i, with the consequence that, for both

of these, Va fv1 ev1, so that while these will have asymptotic

transition amplitudes that are related to each other, they cannot be

obtained by scaling from Lq. (4). In our next paper, we shall show

-18-
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how to calculate asymptotic transition amplitudes when the coupling

pulse has second- and higher-order poles at x=i. For now, we merely

present the formulae for the transition amplitudes generated by the

squares of the hyperbolic secant and Lorentzian

arl [C[ (9a)

-10- (lT

where C = 1 + 1 6 + + 1.194. Lquation (9a) can be obtainea6 56 182

from Lq. (9b) by scalin6 techniques derived in this paper.

III. Lummary and Conclusion

In this paper, we have demonstrated that pulse shapes At)

whose Fourier transforms asymptotically approach the form (v)e-l ,

where 0 is slowly varying, may be categorized into families which differ

according to the function . Within each family, the transition aipli-

tudes a2 (-) are related by simple scaling laws, so that if one is able

to derive an expression for tie transition amplitude generated by one

member of the family, correspondir.6 formulae for all other members of

the family may be written down by inspection.

A sufficient condition that the Fourier transfo'm be of the

required form is that it be obtainable in the asymptotic re1ein as a

contour integral evaluated from the residue at a single pole on the

imaginary time axis. For the case where A(t) has simple poles, a2(w)

- 19 -



may be inferrea from the solution of the Rosen-Zener problem , known

for fifty years, by a trivial scalirZ operation.

Our results were obtained by examining the structure of the

terms in perturbation expansions for transition amplitudes. (We have

demonstrated that these sequences always converge in two-level problems

provided that the pulse areas are finite. Low-order approximations,

however, are frequently not useful for t -* even when they are valid

at finite times.) With suitable choices of ratios of pulse areas,

corresponding terms in the series for different members of the same

family will be identical.

12
In a future paper , we shall present methods for explicitly

calculatin6 transition amplitudes that apply to higher-order, as vell

as sirnple poles. Thus, we are not restricted in practice to writin6

scaling laws for pulses which may be compared in the asymptotic region

to the hyperbolic secant.

The authors are indebted to Dr. A. La;bini for interesting.

discussions of this and related problems. This work was supported by

the Office of Naval Research.
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Appendix - Convergence of Perturbation Theory for the Tranition

Amplitude

Wc demronstrate here that the rerturbation series for a2 conver~ez

for all finite pulse areas. The contribution of order (21+l) is

~~0( X4 (A-)

Now assurae that A(x) is of a single algebraic sign. Without loss of

encrality we may take this to be positive. V'e compare the series .i'ch

the corresponding expansion for c = 0.

,--i[( ((XI K1 X (A.-2')

Invokilr. the theorems on repeate. inte6rals of the saie function

(k+) WA ) e

and the terms are reconized as identical to those for the series -i sin5.

liow consider the series

1



to t ") _J1 K-

This is evidently the series for sinh , which converges so lonL as 8 is

finite. rence, the series of hq. (A-2) is absolutely convergent. Low

QDa?) i- *

1$ IJt xa')ecIc~77 ! edj

OO 27&+ )

4 . .I

so that the series, Lq. (A-i) is also absolutely convergent, and our

result is established.

We note that the same arguments will apply to perturbation series
x

at finite times, provided merely that f f(x')dx' = a(x) is of one sign

and finite. If f(x) changes sign, the results will still be valid pro-
x

vided the Ceneralized area '.of(x1')dx', is finite.

A simple case where the convergence theorem does not apply is the

coupling function A(x) = (const) (tanh~rx/2)/xsince is logarithmically

divergent. In addition, since the pulse area is proportional to the

-22-
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Fourier transform at zero frequency, the multiple integrals in the

frequency domain for the third- and hiaher-order contributions to the

perturbation series contain rejions where the integrands blow up, so

that the individual terms beyond first order may not even exist. (The

first-order contribution will be finite, since the Fourier transform for

this pulse exists for v 0 0. In this case, we note that the infinite

area does not imply a pulse of infinite energy, so that it theoretically

could exist. One evidently cannot use the methods developed here to

describe the dynamics. At the very least, decay would have to be in-

cluded in the analysis, and a completely non-perturbative treatrent

utilized.)
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