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Resesrch has been carried out in the areas of (1) Collision kernels
and laser spectroscopy, (2) Laser-assisted collisions, (3) Heating and
cooling via collisionally-aided radiative excitation (i) Collisional
processes in lU-wave mixing experiments (5) Laser Spectroscopy of Na
(6) Radfative collisions involving surfaces and (7) Two-level problem

plus radiation pulse.

1. Collision Kernels and Laser Spectroscopy (P. Berman, R. Shakeshaft)
In an atomic vapor, a quantity of physical interest is the
collision kernel Wii(;'*;) giving the probability density per unit time
that an atom in state i undergoes a change of velocity from ;' to ;, owing
to collisions with perturber atoms. For atoms in a superposition of
states i and § there is an alalogous "kernel" Hid(;'*;) (it need not de
definite) which describes the effects of collisions on atomic state
coherences. The coherence kernel is important in problems relating to
atomic spectroscopy where an external radiation field creates a linear
superposition of atomic states. The coherence kernel specifies the manner
in which collisions modify superposition states; in turn the collision-
1n&uced modification alters the absorptive and dispersive properties of
the vapor. A complete analysis of the line shapes associated with laser
spectroscopy can be achieved only with an understanding of the collision
kernels. Conversely, the line shapes can be used to provide information

on collisional processes occurring within the vapor.

Formal expressions for the collision kerpels existl, but limited
progress had been achieved in gaining physical insight into those ex-

Pressions for the case vhen the collisional interactions for states i and
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J differ appreciably (as they will for most electronic transitiom).
Classically, the i and J state populations would follow different
trajectories during a collision, and it is not obvious that a collision
trajectory can be assigned to the atomic coherence (superposition state).

Using arguments based on the uncertainty principle, we have

shon? ’3. ’h. ’5. ’6.

that collisions can be divide” roughly into two
regions. | Let bo be some characteristic impact parameter in the scattering
process. For collisions having impact parameters b<b°, collisions may

be treated classically leading to classical population kernels and
vanishing coherence kernels. The coherence kernel vanishes owing to a
spatial separation of the state i and J collision trajectories. On the
other hand, collisions having b>b° must be treated quantum-mechanically.
These collisions give rise to diffractive scattering contributions to

both the population and coherence kernels.

The interpretation based on the Uncertainty Princ;lple represents
the first, simple unifying explanation of the manner in which collisions
affect the physical observables asgsociated with an atomic system. We

have ahavnh that the diffractive velocity changes should depend only
on the active atom mass and not the perturber to active ator mass ratio.

Dramatic experimental evidence for these conclusions has been provided
by a series of experiments carried ouu hy Hartmann's group at Columbia
using Li, Na and T2 as the active atoms in photon echo experiments.

This vork is serving to stimulate experimental efforts by other groups.

SAsterisks on references indicate that the reference is appended to
this report.
- 2 -
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A comprehensive smry7

of the physical processes underlying
collisions in atomic vapors and the corresponding implications for
spectroscopy has been prepared in conjunction with lectures given at

the 1982 Les Houches Summer School in "New Trends in Atomic Physics."

2. Laser-Assisted Collisions (P. Berman, E.J. Robinson)

A review article on Collisionally-Aided Radiative Excitation
(CARE) and Radiatively Assisted Inelastic Collisions (RAIC) was vrittena'
In this article, simple physical arguments were given to explain the de-
tuning and field strength dependence of cross sections for laser assisted
collisions.

Recently, we predictad that final state coherences could be
created by RAIC .9 Motivated by the theary, A. Deaurre perforﬁed an ex-
periment to test its predictions. Her resultsm provided the first ex-
perimental evidence for coherences created by RAIC and were in excellent

agreement with theory.
3. Cooling or Heating via CARE (P. Berman)

| Several years aso,u we predicted that cooling or heating of an
atomic vapor could be achieved using Collisionally-Aided Radiative Ex-
citation (CARE). In Prof. Stroke's laboratory, we are now trying to
carry out an experiment of this type. The reaction under investigation

is

Na (381,2)0x+m->h (3F, ,.) +X

1/2

vhere X is a rare gas atom.
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?hc energy defect between the pho_tgn energy m and the 31"1 /2-331 /2
transition frequency is provided by a corresponding change in the
translational energy of the Na - rare gas system, To probe this energy
change, the velocity distribution of the excited state Na atoms is moni-
tored using the transition to the WD state. Calculations were made which
indicated that heating of the ¥a should be detectable by this scheme using
a positive energy defect and heavy rare gas perturbers. Preliminary re-
sultcw confirmn this heating effect. Work on this experiment will con-

tinue into next year.

k, Collisional Processes in Lk-Wave Mixing (P. Berman)
In the past several years, there has been considerable interest in

l-wave mixing and in phase conjugate optics .13

Recently, several attempts
to include collisional effects into the theory of such processes have
appeared. "New", "collision induced" resonances have been predicted and
observed.lh Although there have be-en some attempts at physical ex-
planations of these resonances, there appears to be room for a more
ﬁndnnental understanding of their origin. Moreover, h-wvave mixing ex-
periments offer a convenient vehicle for studying the effects of velocity-
ehﬁaing collisions on Zeeman coherences, a problem that continues to

elude a simple physical interpretation.

In collaborstion with Dr. J. Lam, we have begun a systematic study

of collision effects in L-wave mixing experiments. It is our hope to




provide & coherent picture of the collision-induced resonances and to in-

corporate the effects of velocity changing collisions into the line shape
formulas. Calculations have begun and we have already concluded that

the standard interpretations of some of the resonances appearing in lY-wave
mixing are in error.

5. Laser Spectroscopy of Na (C. Feuillade)

Oving to a favorable resonance transition frequency, Na has
been the favorite choice of experimentalists in laser spectroscopic
studies. The fine and hyperfine structure of Na leads to a multitude
of levels, even in the Na ground state. There have been no rigorous
celculations that properly incorporate the effects of fine and nyperfine
structure, collisional effects and optical pumping effects with Na as
the active atom in a laser spectroscopy experiment., Hovever, it is clear
that optical pwmping of the ground state, in particular, can severely

modify the laser gspectroscopic line shapes.

Due to the fundamental {mportance of the Na system in laser
spectroscopy, ve have begun a project to include all fine and hyperfine
atructure of the 38, 3P and LD levels of Ka, interacting with two laser
fields. BEoth steady state and transient solutions will be sought, to
clearly isolate the effects of optical pumping. ZIEventually, collisional
effects will be included, Progress to date includes the development
of a large computer code to include all the relevant levels and allow

for arbitrary polarization of the laser fields.

-5 -
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6. Radiative Collisions Involving Surfaces (P. Berman, E. Robinson)

In collaboration with Prof. Rajan (NYU), ve have started some
preliminary studies of atom-surface interactions in the presence of
laser fields. While seaé problens have been identified, little progress | ;
bas been made in developing the theory. Btill, in.the long term, this

appears to be¢ a fruitful area for investigation.

7. Two-level Atom plus Radiation Pulse (E. Robinson, A. Bambini, P, Berman)
Research continues in the fundamentally important problem of a

two~-level system coupled by a radiation pulse. In the large detuning limit,

we vere able to show that certain classes of coupling pulses having the

sane asymptotic Fourier transforms will yield transition probabilities that

%
are related to each other by a simple scaling tra.nsrormtion.ls

Methods
for evaluating the transition probabilities in the large-detuning limit

have also been developed,

8. Miscellaneous
Previous work has been published relating to the effects of
»
collisions on Zeeman coherem:em‘]'6 s the dressed atom picture as applied

to laser :pectroscopy”.

» and the eigenvalue problem for the two~level
o »

aton plus radiation pulse problex\\.18 In addition, a Coillentm » V&S

published correcting and clarifying some recent vorkzo yielding sudb-

patural line width resolution., -
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Measurement of a Total Atomic-Radiator-Perturber Scattering Cross Sectic

R. Kachru®) T. J. Chen, and S. R. Hartmann
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From work on the 25-2P | ,, transition of atomic "Li, perturbed by noble gases, and use
of the photon-echo technique, the first measurement of a “total” atomic-radiator—per-
turber scattering cross section is reported. The phase-changing, inelastic, and veloc-
ity changing aspects of collisions contribute to this cross section, which is significantly
larger than the corresponding pressure-broadening cross section. Typical velocity
changes are found to be roughly one percent of the mean thermal speed.

PACS pumbers: 32.70.Jz, 34.40.+n, 34.90.+q, 42.65.Gv

In most spectroscopy experiments, one moni-
tors the dipole moment of the system under in-
vestigation. The collisional perturbation of opti~
cal dipoles or “optical radiators” represents an
interesting problem, since it requires one to un~
derstand the way in which collisions affect a su-
perposition state, At first glance, it might seem
than any collision destroys the superposition
state since the states a and » involved in the opti-
cal transition generally follow different collision
trajectories.»> The notion of distinct trajector-
ies, however, is a classical one which is known
to fail for large-~impact-parameter collisions,
Thus the dipole moment or optical coherence is
not necessarily destroyed in such large impact-

parameter collisions.® Despite the fact that state-
dependent trajectory effects seem to play a cru-
cial role in determining the fate of the optical di-
poles, for reasons to be discussed below, steady-
state spectroscopy experiments are not overly
sensitive® to such effects. Ag a result tradition-
al theories of pressure broadening,’ in which col-
lisions are assumed to affect only the phases of
the optical dipoles, have been successful in ex-
plaining these experiments. Only recently has
the effect of velocity-changing collisions been put
in better perspective.® To identify clearly the ef-
fects of velocity-changing collisions on optical di-
poles experimentally, coherent transient tech-
niques offer unique possibilities.’

902 © 1981 The American Physical Society
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We present here results of a photon-echo study
of 25-2P,,, Li radiators perturbed by noble-gas
atoms which provide the fivst comprekensive pic-
ture of the quantum-mechanical velocity-chang-
ing aspect of collisions.>” We measure a total
radiator-perturber scattering cross section o,
(representing the combined effect of the inelastic,
phase-changing, and velocity-changing aspects of
collisions), and find that it is significantly larger
than the broadening cross sections deduced from |

spectral line measurements. Fitting our data by
a phenomenological collision kernel allows us to
estimate the average velocity change experienced
by a radiator in those collisions which produce
identifiable velocity changes.

Assume that the two photon-echo-excitation
pulses propagate along 2 and occur at the times
t=0andt!=7. The phase of a radiator residing at
a particular location T in the sample is given®
{for t >7) by expl —i (0 -k - F)], where

o)== [Tlot)+E-50))ar + [ o)+ K-Te)ar, )

w@’) [¥¢")] is the instantaneous oscillation fre-
quency [velocity] of the radiator, and K is the
common wave vector of the excitation pulses. In
the absence of collisions, w(t’) and V(') are time
independent so that ¢ {f, =27) =0 (i.e., Doppler de-
phasing is eliminated) and an echo is emitted
along z.

In the presence of collisions, the echo intensity
I, is degraded by the factor (expl-i¢(27)])?,
where the angle brackets indicate an ensemble
average. While a more detailed calculation of the
collisionally induced modification of the echo am-
plitude will be given elsewhere, we can, roughly
speaking, evaluate this factor by considering col-
lisions to be divided into two groups, i.e., those
having impact parameters, b, less than or great-
er than the Weisskopf radius b,,.* For b<by,
classical trajectory notions are valid and because
of the separation-of -trajectories argument, one
is led to the conclusion that the dipole moment is
destroyed in a collision. In traditional pressure-
broadening theories, phase changes in this re-
gion are large enough to destroy the optical co-
herence. A broadening cross section o, can be
calculated using either theoretical picture (loss
of dipoles because of phase changes or distinct
trajectories) and, interestingly, both approaches
lead to the same value. For colligions with b>b,,,
the distinct-trajectory argument fails and one
must perform a quantum mechanical calculation.

Gy-changing effects in which the dipole moment

may be preserved and the small phase changes
which occur in these collisions (which for sim-
plicity we neglect) contribute to the pressure-in-
duced shifts in spectral profiles. We can under-
stand the success of traditional theories of pres-
sure broadening despite their neglect of velocity-
changing effects by noting that collisions with
b>by generally give rise only to small-angle

(@ <xrp/by <1, where xp is the deBroglie wave-
length of Li) diffractive scattering. The small
velocity changes associated with diffractive scat-
tering do not significantly modify the output of
most steady-state spectroscopic experiments.
For large 7, however, photon-echo experiments
can be sensitive to the velocity changes resulting
from even diffractive scattering.

Thus collisions with »<b,, canbe viewed as
“inelasticlike” and accordingiy le.d to a decrease
in echo int=ngity by the factor

exp(- 4nv,057), 2)
where n is the perturber number density, v,
=(8kp T/nu)¥? is the mean perturber-radiator
relative speed, k, is Boltzman’s constant, T is
the absolute temperature, u is the radiator-per-
turber reduced mass, and o, is the 7-independent
broadening cross section. Velocity-changing col-
lisions decrease the echo intensity by the factor®

Collisions for which b >b, give rise to all veloc- exp ~4m, 70,(7)], (3a)
| where
o,(r)=0,{l=1" ‘foT dr [ ° explikt' (Ar,) g (Bv,)d(ar,) }, (3b)
o,” is the total cross section for velocity chang-
ing collisions, k =|k|, and the collision kernel where
) 1 ticul
glar,) gives the probability of a particular change 0u1r(T) = 0p +0,(1), 4b)

in the z component of velocity Ar,. Over all, the
echo intensity varies as

Ie("!T)::Ieoexp{'4m'vT°eff(7)]’ (4a)

and 1,° is the »n =0 echo intensity. Since the root
mean square change in Ay, is finite for any real-
istic g{av,), o,(r)=ar® for sufficiently small v
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FIG. 1. Plot of g¢f(7) vs 7. Error bars represent
statistical uncertainty. At right we show o,.

and
0 ¢i(T) =05 +a1? (short 7). 5)

Here a depends on the details of g(Av,). There-
fore, o.¢{T =0)=0g. On the other hand, o,(7~ «)
=¢,%, which implies that ¢.¢(r ~ «)=0,= 05 +0,°.
The excitation pulses used in our experiment
on the 6708-A 2S-2P,,, transition of "Li have a 6-
GHz spectral width, a 4.5-nsec temporal width,
and a peak power of a few watts. The two pulses,
optically split from the single output pulse of an
N,-laser-pumped dye laser, were collimated to
a 4-mm diameter, and directed through a stain-
less-steel heat-pipe-type cell containing Li of
natural isotopic concentrations. The cell, main-
tained at 5251 15 K (implying a Li pressure of
= 10"° Torr), had a vapor region approximately
10 c¢m in length. For reasons described else-
where,® we used excitation pulses of orthogonal
linear polarization in short-r measurements.

Excitation pulses of parallel polarization, which,
depending on 7, produce echo signals 10 to 100
times larger than pulses of orthogonal polariza-
tion, were used for long-T measurements, where
radiative decay of the 2P, , state weakened the
echo signal (by = 1600 times for 7= 100 nsec).
Measurements in the intermediate-7 regime re-
vealed no polarization dependence of observed
cross sections.

We have measured /, v8 n {(maximum n= 10
cm™?) for various fixed 7, and usea Eq. (4a) to
calculate o.\7). In Fig. 1, we plot o (1) va T
for each noble-gas perturber. We obtained val-
ues of 05 by using our two shortest-r measure-~
ments of 0,.(7) for each perturber and extrapolat-
ing, according to Eq. (5), back to g, (1= 0)= 0p.
These values of 0, are presented in Table I along
with the values of o, obtained in traditional line-
broadening experiments.!® Except in the case of
He, we find that the measurements are in.good
agreement.

We attempt to reproduce c,(7) [computed using
our value of o, and Eq. (4b)] and hence o,,((7) by
inserting various g(Av,) in Eq. (3b). For g(av,)
= (mu )" '/ exp(~ dv,*/u?), we obtain the solid lines
shown in Fig. 1. The least-squares-fit values of
the free parameters o,° and u, are shown in Table
I. The quality of the fits is quite good. A Lo-
rentzian kernel of the form g (av,) = (uy/7)/ b’
+8v,2) [but with g(av,) =0 for Av, >>u,) produces
a better fit to ¢,(7) for Li-He collisions, but a2
poorer fit for the other perturbers. These re-
sults, as well as the ratio 05/0,%~ 1.0 observed
in our experiment, are in qualitative agreement
with a theory based on a quantum mechanical
hard-sphere model of collisions.

The derived values of u, and 0,° depend some-
what on our choice for g(ar,). We note, however,
that our measurements are sensitive to all veloc-
ity changes Av, > Av, ™= 1/k7,, (T, i8 our

TABLE 1. Various cross sections involved in this work (see text). The G and L in parentheses indicate results
obtained with a Gaussian and a Lorentzian collision kernel, respectively.

a,? a‘h,c cvo ) avo &) Uy ©) Uy (L) O, d O, ) gy (L)

Perturber (X') (A?) 1%} *R? {cm/sec) {cm/sec) A 2y (1
He 99 86(3) 34 49 1060 2417 130 133 148
Ne 101 104(4) 47 90 1140 187 150 149 191
Ar 181 164(8) 145 207 1400 340 400 326 388
Kr 206 211(9 170 236 1320 335 440 376 442
Xe 233 265(10) 200 289 1320 315 510 433 522

2This work. ‘Ref. 10.

bScaled from 628 to 525 K according to (1/T)'/5, dRef. 11.
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maximum pulse separation). Our value for Ay,™"
is less than the characteristic diffractive veloc-
ity change vp=v,)5/Vo,. The fact that the scat-
tering is diffractive in nature restricts our choice
of g (Av,) to functions which are relatively flat in
the region Av, < v,. With this restriction, we do
not expect our derived value of ¢,° to differ great-
ly from those shown in Table I. If a heavier radi-
ator is used, the corresponding values of u,~v,
could be smaller and the region in which velocity
changes are seen (i.e., ku,7> 1) might no longer
be accessible. It is perhaps for this reason that
velocity -changing effects were not seen in a co-
herent-transient experiment with I, as the radia-
tor.?

Recent treatments of radiator-perturber scat-
tering have shown that the net polarization in a
medium obeys a quantum mechanical transport
equation.'>!* This equation contains a loss term
whose real part, which corresponds to the time
rate of change of the polarization’s magnitude, is
given by mv, (0, +0,)/2, where o, (0,) corresponds
to the cross section for ground-state (excited-
state) radiator-perturber scattering. Since this
is the only term important to the long-time be-
havior of the photon echo, we equate our o, with
(0, +q)/2.

The cross section o, has been measured by
atomic-beam techniques.'* In Table I, we list,
for each perturber, the velocity-selected value
of o, obtained at the velocity v,. Our values of
0,=0p+ c,°, based on both Lorentzian and Gauss-
ian kernels, are also presented. Since the long-
range part of the potential should, to a reason-
able approximation, determine the magnitude of
the scattering cross section, we expect {(at least
for Ar, Kr, and Xe) that ¢, /0, = (C.*/Cs* /3,
where C,® (C,%) is the coefficient of the Van der
Waals portion of the potential. Assuming that C,
=2¢r,°, where ¢ is the potential well depth and
7, 18 the internuclear separation at which the po-
tential is minimum [as is true of a Lennard-
Jones (6, 12) potential], we can use the potential
calculation of Baylis'® to find that (C,*/C,%)%/*
falls between 1 and 1.6, depending on the per-
turber and which of the possible excited-state po-
tentials is considered. This implies that o,
should be between 1 and 1.3 times ¢,. Our data
are reasonably consistent with this result.

Our results clearly demonstrate the role played
by velocity-changing collisions. Their contribu-
tion to the echo signal underlines the importance
of quantum mechanical scattering effects in col-
lisions undergone by an optical dipole.

This work was supported financially by the
U. 8. Office of Naval Research under Contracts
No. N00014-78-C-51T7 and No. N0O0014-77-C-0553
and by the U. S, Joint Services Electronics Pro-
gram under Contract No. DAAG29-79-C-0079.
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Noble Gas Induced Relaxation of the Li 3S-3P Transition '

Spanning the Short Term Impact Regime to the Long Term ‘

Asymptotic Regime ‘

T.W, Mossberg*, R, Kachru®, T.J. Chen, S.R. Hartmann i
]
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Columbia Radiation Laboratory, Department of Physics, Columbia University
538 W. 120th. St., New York, NY 10027, USA, and

P.R. Berman

Department of Physics, New York University, 4 Washington Place
New York, NY 10003, USA

Photon echoes have a Doppler free character which allows one to study
relaxation processes which would otherwise be hidden in the inhomogeniously
broadened spectral profile. It has recently been shown, for example, that !
contrary to expection, a radiating atom in a linear superposition of dis-
similar electronic states can undergo identifiable velocity changing col~-
lisions [1]. Studies of this nature require an examination of the sub-
Doppler region of the spectral line shape. The effect manifests itself,
1in the case of photon echoes, in a dependence of the effective relaxation ,
cross section gu.¢¢ on the excitation pulse separatiom 1. In this paper we
report measurements in Li vapor where t can be increased into the regime
wvhere Oapf OnCE again becomes independent of t. In the limit =0 we mea-
sure 0o which is the phase changing cross section as calculated by Baranger 2. 4
vhile in the large 1 limit we measure o, the average total scattering cross
section of the ground and the excited states. Our data at intermediate
values of 1t 1s used to determine the form of the scattering kernel and the
average velocity change per collision. These measurepents are for the
25-2P superposition states in atomic Li perturbed by each of the noble
gases. For He perturbers the scattering kernel is found to be Lorentzian, i
for the other perturbers it is Gaussian.

We use a N7 laser pumped dye laser to generate a 4.5 nsec light pulse |
at the 6708 § 25-2Py/; transition of ’Li. The pulse which has a 6 GHz
spectral width is attenuated, split, delayed an amount 1, recombined, and
directed into a cell, whose effective length is 10 cm, at 525 # 159K
contalning the Li vapor (at -10-6 torr). For short values of t the polar-
{zations of the photon echo excitation pulses were orthogonal in order to
reduce the effects of detector saturation which arose because of the non
instantaneous response the Pockels cell shutters used for their protection.

Yor a superposition state relaxing at an effective rate Tofg=nv geff
where n is the perturber density, v is the average relative velocity of the
collisfon partners and o.ff s an effective cross section, the corresponding
echo intensity will decay according to

I= Ioexp(-4re£f1) (1) (
and since reff varies linearly with perturber pressure P

I(P) = 1(0)exp(~8P) - (2)

-
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where the constant 8, which we measure directly, 1s characteristic of the
perturber and the collision process. We deternine 8 at several discrete
values of T by measuring the echo intensity as a function of the perturber
gas pressure. The value of Og¢¢ 18 obtained from

Ter " l"“/nv = gP/invr. - O)

In fig. (1) we summerize our work by plotting all measured values of
Oqpg 48 & funcetion of t. A dependence on T arises because each collision
o! the Li atom with a perturber gives rise to a velocity change in additiom
to a phase change of the L1 superposition state. If only phase changing
collisions occured O.¢p would be independent of T. Velocity changing col-
1isions have a delayed effect which manifests itself in a dependence of
Oeff On T. Our data indicates that at the shortest values of T Ogff in~

creases at a large and relatively constant rate while at higher t 1t
levels off considerably.

Echoes in the optical regime (photon echoes) are generally formed in a
volume large compared to the wavelenzth of the optical transftion. Thus
any atom experiencing a veloeity change sufficient to displace it an ap-~
preciable fraction of a wavelength from the position it would otherwise
have taken in the phased array which radiates the echo will rot necessarily
reinforce the echo signal. As t is increased the resulting displacement
increases and the effect of a particular velocity change is enhanced. This
proceeds up to a point that being when t is so large that all atoms experi-
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encing a velocity change are effectively eliminated from the echo formation
processes. The data of fig. (1) at .large v shows this effect clearly in
the veakening dependence of gg¢¢ On T.

In vhat may be called the collision kernel approximation Flusberg [3]
has shown that Je¢¢ may be expressed as

T
Tetg "% * % [1-(1/1) { de i(k:t)] W)

wvhere Go(dv) is the phase changing (velocity changing) cross section and
a(ke) = [ exp(ikedv) g(bv) d(&v). ‘ 8

The collision kernel g(iv) gives the probability of a particular change &v
ia the component of the velocity along the laser pulse direction. For
ky << 1 .

Ies ™ % + qv%- kztz <Av2> . (6)

wvhere <Av2> is the second moment of the collisfon kernel, For kr >>1

Tee "%+, [1 - »g(0)/2kT] ¢))]

where g(0) is the amplitude of the collision kermel at &v = 0.

Our data at short T does not fit (6) well, shorter excitation pulses
would have been required to enter the regime where this approximation is
valid. Our data does suffice however to use (6) to estimate og and we
fiad that except for He we agree to within a few percent with measurements
of dp made from line broadening experiments {4). Our estimate of og for
He runs -10Z high.

The solid line curves of fig. (1) were obtained using an explicit form
of che collision kernel. For all perturbers except He we have used a
Gaussian kernel .

glav) = (1//x uo)exp(—szlug) . (8)
while for Re we have used the Lorentzian kernel:

g(av) = (uolu)/(ug + sz). )

We vary ug and o, to obtain the best fit. All relevant parameters are
tabulated {n table I.

Table 1

Perturber % o, o_-c°+ov Yy o, °0+°v (from £ig.2)
He . 99 82 49 %7 148 82 247 cu/sec 146

Ne 101 47 148 1140 146

AT 181 145 326 1400 338

[ <4 206 170 376 1320 356

Xe 233 200 434 1320 ~ 434
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a function of t, seo

e " (ao +av)1 -
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Collisional processes occurring within an atomic vapor can be conveniently described in
terms of collision kernels. The population kernel Wy(V'—» V) gives the probability densi-
ty per unit time that an “active” atom in state i undergoes a collision with a perturber
that changes the active atom’s velocity from v’ to V. For active atoms in a linea: super-
position of states i and j, there is an analogous coherence kernel Wy (V' —¥) (i) re-
flecting the effects of collisions on the off-diagonal density-matrix element p,;. In this
work, we discuss the general properties of the collision kernels which characterize a two-
level active atom which, owing to the action of a radiation field, is in a linear superposi-
tion of its two levels. Using arguments based on the uncertainty principle, we show that
collisions can be divided roughly into the following two categories: (1) collisions having
impact parameters less than some characteristic radius which may be described classically
and (2) collisions having impact parameters larger than this characteristic radius which
give rise to diffractive scattering and must be treated using a quantum-mechanical theory.
For the population kernels, collisions of type (1) can lead to a large-angle scattering com-
ponent, while those of type (2) lead to a small-angle (diffractive) scattering component.
For the coherence kernel, however, assuming that the collisional interaction for states i
and ; differ appreciably, only collisions of type (2) contribute, and the coherence kernel
contains a small-angle scattering component only. The absence of a large-angle scattering
component in the coherence kernel is linked to a collision-induced spatial separation of
the trajectories associated with states / and j. Interestingly enough, the width of the dif-
fractive kernel, as measured in the laboratory frame, is found to be insensitive to the per-
turber to active-atom mass ratio. To illustrate these features, a specific calculation of
the kernels is carried out using a hard-sphere model for the scattering. The relationship
of the present description of collisions to that of traditional pressure-broadening theory in
which trajectory separation effects are ignored is discussed. It is explained why tradition-
al pressure-broadening theory correctly describes collision effects in linear spectroscopy,
but fails to provide an adequate description of some saturation spectroscopy and photon-
echo experiments in which velocity-changing collisions associated with the coherence ker-
nel play a significant role. An expression for the collisionally modified photon-echo am-
plitude is derived which clearly displays the role played by velocity-changing collisions as-
sociated with the coherence kemnel.

I. INTRODUCTION various spectral lines. In low-density atomic va-
pors, the linewidth is determined mainly by the
Emission and absorption spectra have tradition- Doppler effect (i.c., atoms moving at different
ally provided the blueprints from which most of velocities absorb or emit Doppler-shifted frequen-
our data concerning the energy-level structure of cies), although both the natural widths of the levels
atoms and molecules could be derived. The preci- and collisions within the vapor contribute some-
sion of this data is limited by one’s inability to what. One of the most exciting achievements in
resolve structure that lies within the widths of the spectroscopy over the last decade has been the
25 2550 ©1982 The American Physical Society
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development of methods wherein the Doppler
width is partially or totally suppressed. The
development of these “Doppler-free” methods in
both time (e.g., photon-echo) and frequency (e.g.,
saturation spectroscopy) domain experiments has
been made possible in large part by the advances in
laser technology. With the removal of the Doppler
broadening, the line shapes increasingly reflect the
effects of collisional processes occurring in the va-
por. It is not surprising, therefore, that the pro-
gress in laser spectroscopy has been accompanied
by a renewed interest in understanding (1) the
manner in which collisions modify the line shapes
and (2) the extent to which laser spectroscopy can
be used as a probe of collisional processes in va-
pors.

In order to illustrate the role played by collisions
in atomic spectroscopy, we consider an ensemble of
two-level “active™ atoms immersed in a low-density
vapor of “perturber” atoms. The levels of each ac-
tive atom (labeled 1 and 2) are coupled by a radia-
tion field. The active atoms undergo binary col-
lisions with the perturbers (active-atom —active-
atom collisions are neglected). The collisions are
assumed to be adiabatic in the sense that they pos-
sess insufficient energy to induce transitions be-
tween the active-atom’s levels. Under these condi-
tions, one may seek to determine the manner in
which these elastic collisions affect the physical
observables associated with the active atoms.

The problem can be approached by investigating
in detail a collision between an active atom and a
perturber (Fig. 1). The active atom, which is
prepared in a linear superposition of its two levels
by a radiation field, generally experiences a colli-
sional interaction which is different for states 1
and 2. From a classical viewpoint, the collisional
interaction (acting analogously to a Stern-Gerlach
magnet) separates the populations (conveniently
represented by density matrix elements p,; and p;;)
along the distinct trajectories shown in Fig. 1.
Since the populations scatter independently, the

Als ,
’ll .P " =7
7 -

FIG. 1. Picture of a collision betweer. an active atom
A and stationary perturber P. There is no obvious cias-
sical trajectory to associate with the atomic “coherence”
a-

possibility of distinct post-collision trajectories
poses no conceptual difficulties. The scattering for
each state i (i =1,2) is determined by the differen-
tial cross section o;(9) = | £;(8)|? for the elastic
scattering of an active atom in state i by a per-
turber atom.'

The populations p;, however, are not the only
relevant quantities in considering the interaction of
radiation with matter. The polarization of the va-
por directly influences its absorptive and dispersive
properties. If the dipole moment operator of our
two-level atom is fi and if states 1 and 2 have op-
posite parity, then the polarization of the system is
proportional to (f ) = ii'130 + L2015, Where [T; is
the ij matrix element of {i and p;; is the ij density-
matrix element (i.e., py =a;a;, where g; is the state
i probability amplitude). Consequently, the absorp-
tive and dispersive properties of the medium are
influenced by collisional perturbations of the
“atomic coherence” py, (or py).

Collisions appear to affect p,; in a particularly
simple way. Since the collision shown in Fig. 1
leads to a spatial separation of states | and 2, p|;
vanishes following the collision. Thus, using a
classical picture of a collision, one is led to distinct
trajectories for the populations p,; and p,, and to a
vanishing of the coherence p;,.

While the classical picture of a collision given in
Fig. 1 is useful in providing some insight into the
effects of collisions on the various density-matrix
elements, it is not sufficient to obtain a total pic-
ture of the scattering. Using arguments based on
the uncertainty principle, we will show that, within
certain limits, the classical picture is valid for
small-impact parameter collisions. However, for
large-impact parameter collisions, the quantum
theory must be used. Quantum-mechanical effects
give rise to diffractive scattering contributions for
the populations and to nonvanishing values of p;;
following a collision.

The discussion of a single collision given above
wouild be appropriate to a crossed atomic-beam ex-
periment in which the center-of-mass energy is
constant for all collisions. In an atomic vapor,
however, the perturbers have some velocity distri-
bution which must be averaged over. For the va-
por, the quantity of interest is the collision kernel
W, (V' —V) giving the probability density per unit
time that an active atom in state / changes its velo-
city from V' to V in undergoing & collision with a
perturber. The corresponding rate for such colli-
sions is denoted by I';(V’). The kemel is propor-
tional to the differential scattering cross section
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averaged over the perturber velocity distribution
consistent with conservation of momentum and en-
ergy. For off-diagonal density-matrix elements,
one can also define a “kernel” W (V' —V) and
“rate” T}5(V'), although these quantities, now
dependent on f /3, need no longer be positive de-
finite. Formal expressions for W,(V'—V) and
T'13(¥') have been given,™* but there has been, with
two recent exceptions,** little progress in obtaining
a satisfactory physical interpretation or actual
evaluation of the “coherence kernel” W,(V’'—¥).
It is the purpose of this paper to provide a simple
physical picture of the scattering process that leads
to an intuitive understanding of the nature of

W, (V' —V).

It has already been noted that collisional pertur-
bations of p,, affect the absorptive properties of a
medium. Thus, one might imagine that collision
induced modifications of absorption or emission
line shapes are intimately connected with the
coherence kernel Wy,(V'—¥). Since W 3(¥'—¥)
is strongly influenced by the trajectory effects
shown in Fig. 1, it appears that such trajectory ef-
fects are critical in calculating the effects of colli-
sions on spectral line shapes. However, it is well
known that traditional theories of pressure
broadening,’ which totally ignore trajectory effects
of the type shown in Fig. 1 and consider collisions
to produce only phase changes in p;,, have been
very successful in explaining most spectral profiles.
How, one may ask, can a theory that ignores tra-
jectory separation effects still produce correct re-
sults? It is a second purpose of this paper to pro-
vide an answer to this question.

[There is a range of experimental situations
where trajectory effects are known to be impor-
tant? In such experiments, however, the states in-
volved in the transition (usually vibrational, rota-
tional, or rf transitions) experience nearly identical
collisional interactions and, consequently, follow
the same collisional trajectory. Trajectory effects
lead to a narrowing of spectral lines in linear
spectroacopy and to a signal with a unique signa-
ture in photon-echo experiments.” In this paper,
however, we shall be concerned only with situa-
tions where the collisional interaction for states 1
and 2 differs somewhat (the precise conditions are
given below) as is generally the case for electronic
transitions. Only recently has an experiment been
performed that clearly indicates the importance of
trajectory effects for an electronic transition.'®!']

In Sec. 11, the uncestainty principle is used to
obtain a simple physical picture of the scattering.

It is shown that collisions can be divided roughly
into two regions. For small-impact parameter col-
lisions, the scattering can be given a classical in-
terpretation; the distinct trajectories for states {
and 2 shown in Fig. 1 then lead to a vanishing of
P12 following the collision. On ihe other hand, for
large-impact parameter collisions (leading to dif-
fractive scattering), the classical picture fails and a
quantum-mechanical calculation of p,; is needed.
A specific evaluation of the coherence kernel and
rates is made in Sec. III using a model potential
based on hard-sphere scattering. The various
features discussed in Sec. II are illustrated by this
example. In Sec. IV, the role that the coherence
kernel plays in affecting various spectroscopic line
shapes is discussed. The reason for the success of
traditional pressure-broadening theories is ex-
plained in this section. Finally, a calculation of a
collisionally modified photon-echo signal is given
in Sec. V. The role played by trajectory effects is
clearly reflected in the expression for the echo am-
plitude.

For simplicity, the calculations carried out in
Secs. 11—V are made assuming a high ratio of per-
turber to active atom mass. In Appendix A, the
calculations are extended to allow for an arbitrary
mass ratio. [t is shown that the uidth of the coher-
ence kernel is effectively independent of the ratio of
perturber to active-atom mass and depends only on
the active-atom mass and collision cross section.

It is implicitly assumed throughout this work
that an impact approximation is valid. All relevant
frequencies (e.g., collision rates, atom-field detun-
ings, Rabi frequencies) are assumed to be small in
comparison with the inverse duration time of a
collisios. The validity of the impact approxima-
tion implies that only binary collisions need be
considered and that these collisions produce a time
rate of change for p;; which is independent of oth-
er contributions to dpy, /3t

II. QUALITATIVE PICTURE OF SCATTERING

Before discussing the effects of collisions on oy,
and the corresponding coherence kerne W (V'
—»V), it is instructive to review some aspects of
elastic scattering theory. Thus, we shall first con-
sider the elastic scattering of an active atom in
state i. To simplify ihe discvssion we take the per-
turber as stationary (ratio of perturber to active-
atom mass much greater than unity), but the re-
suits of this section are purfectly general if all vari-
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ables are taken as those in the center-of-mass sys-
tem. Moreover, we neglect such effects as orbiting,
rainbow, and glory scattering which, although im-
portant in certain cases,'? are not particularly
relevent to the subject matter at hand.

A. Population kernel

The regions of validity of a classical picture of
scattering can be established by using the uncer-
tainty principle. Consider a collision characterized
by an impact parameter b leading to scattering at
an angle 8. For a classical picture to be valid, one
must have

Ab <b, AO<HO, (1

where Ab and A@ are the uncertainties in b and 6,
respectively. On the other hand, it follows from
the uncertainty principle that Ap,Ab > #, where
Ap, is the uncertainty in the transverse component
of the active atom’s momentum. Since Ap,
=mAv, =mvAG=~AkAG [m is the active-atom
mass, k =muv /#, and v is the active-atom speed],
the uncertainty principle requires that

kAbAO>1. b))

Setting Ab =b and A@=4, one sees that conditions
(1) and (2) can both be satisfied provided

0>> 1/(kb) . 3)

Let b, represent some characteristic range for
scattering by the perturber of active atoms in the
state i. For typical interaction potentials, it fol-
lows that a classical description of the scattering is
valid if

0>>6/=1/(kb,) . @

In fact, it is weil known'? thai the quantum-
mechanical expression for the differential scatter-
ing cross section reduces to the corresponding clas-
sical one if condition (4) is satisfied (neglecting any
effects of rainbow scattering). Clearly, Eq. (4) is
meaningful only if kb, > 1.

On th: sther hand, for 6 < 6f one can no Jonger
expect the classical picture of scattering to remain
appropriate. In an atomic vapor, k is typically of
order 10° cm=" and b, is of order 10 A 0 that
0/ n0.01 <<1. In effect, the angle 6f separates the
scattering into two distinct regions. For 0>>6f
(corresponding to collisions having b <b,), the
scattering may de describedt classically. For
0 << & (corvesponding to collisions having b > b,)

the scattering may be considered diffractive in na-
ture and must be described quantum mechanically.
[For other than purely repulsive potentials, the

6 < 67 region also has (relatively weak) contribu-
tions from some collisions having b < b; (“glory
scattering™).'> As noted earlier, effects such as or-
biting or rainbow and glory scattering are neglect-
ed in this work.]

The above results imply that the collision kernel
for elastic scattering in state i can be written as the
sum of two terms corresponding to classical large-
angle scattering and quantum-mechanical diffrac-
tive scattering, respectively.!* There is recent ex-
perimental evidence that supports this conclusion.'

B. Coherence kernel

We are now in a position to discuss the effects
of a collision on p|,. The interaction potential is
assumed to be state dependent and it is further as-
sumed that there are two characteristic lengths b,
and b, associated with the scattering for states 1
and 2, respectively. For the sake of definiteness,
we take b, > b;. The question to be answered is
the following: For what scattering angles, if any,
may a classical picture be used to describe the ef-
fects of the scattering on py;?

The question must first be clarified since the cri-
terion we shall use to judge the validity of a classi-
ca) picture is different than that used in the case of
single-state clastic scattering. Scattering for pj;
will be classified as *“classical” if the trajectories
associated with the elastic scattering from states 1
and 2 are distinct and nonoverlapping (see Fig. 1).
A consequence of this classification is that p,; is
zero following any classically described collision,
since the spatial overlap of states 1 and 2 vanishes
as a result of the collision.

An uncertainty principle argument can once
again be used to obtain the classical region. Let 6,
and 0, be the scattering angles associated with
states 1 and 2 for a collision having impact param-
eter b. The criterion for a classical collision is
then

Ab <b; AB<)0,—0,|, (5)

where A@ is the uncertainty in 8 for a collision
with impact parameter b. The restriction imposed
by the uncertainty principle is still given by Eq.
(2), which may be combined with Eq. (5) to give
10;—6,] > 1/(kb) (6)

ss the distinct trajectory condition.

e A e,
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Equation (6) can be given a very interesting in-
terpretation in terms of a parameter appearing in
conventional theories of pressure broadening. An
active atom in state i sees a potential ¥ (r) pro-
duced by a perturber, where r is the active-
atom — perturber separation. The scattering angle
6;, calculated assuming smali-angle scattering, is

oV, (r
9,=v,/v=——;7‘- —al‘bf—) t,
where the integral is along the time parameterized
collision trajectory r{b,v,1). Setting 3V, /3b
= —xb "'V, (x is the constant of order unity) and
substituting Eq. (7) into (6), one obtains the dis-
tinct trajectory condition'’

)]

%l [ b~V sk-i=1. @

The value of b, denoted by by, for which the left-
hand side of Eq. (8) equals unity is the Weisskopf
radius of pressure-broadening theory.” Equation
(8) impiies that the maximum impact parameter
for which the distinct trajectory condition holds is
b~by; consequently, Eq. (6) is valid only for

b<by (9

(distinct trajectory condition). The consistency of
the entire approach requires that

kb >>1. (10

One is led to the following result. For scattering
angles corresponding to collisions having an im-
pact parameter b < by, a classical picture is possi-
ble provided that Eq. (10) is valid. These classical
collisions result in a complete destruction of p;;
owing to the separation of trajectories for states 1
and 2. For diffractive scattering, corresponding to
collisions having impact parameters b > by, a
quantum-mechanical calculation is needed. In this
case, p;; does not vanish following the collision
(see Fig. 2). [Notice that the impact parameter
separating the classical and quantum scattering
domains differs somewhat for the populations and
the coherences. The b, associated with the popula-
tions may be calculated using Egs. (3), (4), and (7).]

If kby < 1, 8 quantum-mechanical approach is
needed for all scattering angles. In this limit the
scattering is almost identical for states 1 and 2
{by =0 for state-independent scattering) and there
is non-negligible spatial overlap of the state 1 and
2 trajectories. In this work, we assume that the in-
teraction potentials for the two levels differ suffi-
ciently to insure that Eq. (10) holds for most atoms

%

R

(9}

1
A—-——‘—ﬁ' ')lvz

P

®)

FIG. 2. Effects of collisions on p;; can be roughly
visualized as shown in this figure when kby=by /X
>> 1. For collisions having impact parameter b < by
(a), the trajectories for states 1 and 2 are distinct and
nonoverlapping following the collision, leading to a des-
truction of p;;. For collisions with b > by (b), scattering
is diffractive in nature. The overlap of the diffractive
scattering cones for states 1 and 2 leads to nondestruc-
tive velocity-changing collisions associated with p;,.

in the vapor. Typically by ~5—10 A for electron-
ic transitions so that kby =100>> 1.

The qualitative structure of the coherence kernel
W1,(V'—V) is now evident. In contrast to the po-
pulation kernels, the coherence kernel vanishes in
the large-angle scattering region owing to the
separation of trajectory effects. For diffractive
scattering, a quantum-mechanical calculation of
W12(V'—V) is needed. Thus, the coherence kernel
is effectively nonzero for diffractive scattering
only. The consequences of this conclusion are dis-
cussed in Sec. IV.

In this section, a qualitative picture of the
scattering process was given. In Sec. IIl, a coher-
ence kemel is explicitly calculated assuming a sim-
ple form for the interaction potential. The calcula-
tion serves to illustrate the various features dis-
cussed in this section. The reader not interested in
the details of the model-potential calculation can
proceed to Sec. IV without loss of continuity.

IIl. MODEL-POTENTIAL CALCULATION

The qualitative properties of the collision kernels
discussed in Sec. II are relatively insensitive to the
form of the interaction potential. Therefore, for
the sake of simplicity, we assume that the state /
scattering potential can be represented as an im-
penetrable sphere of radius b, (with b, > b;). It
should be noted, however, that the calculations
presented below may easily be generalized to spher-
ically symmetric potentials of an arbitrary nature.




25 COLLISION KERNELS AND LASER SPECTROSCOPY 2585

To further simplify the calculations, we assume
that the perturber is stationary, although a general-
ization of the results of this section to allow for an
arbitrary active-atom-to-perturber-mass ratio is
given in Appendix A. This section is organized as
follows: A. The scattering amplitude for hard-
sphere scattering is given and an exponential ap-
proximation to it, valid for diffractive scattering, is
obtained. B. The collision kernel W (V'—V) and
the rate I';(¥) for this scattering of populations are
calculated. C. The coherence kemel W, (V' —V)
and the rate ['{5(V) are evaluated. D. The coher-
ence kernel and the rate are averaged over a trans-
verse velocity distribution to obtain a one-
dimensional kernel W;(V; —¥,) and rate T'}5(v,)
that appear in theories of laser spectroscopy.

A. Scattering amplitude

The scattering amplitude for elastic scattering of
an active atom in state j by the perturber is

fi®=- 3+ 3xe"-npcod),  an

1=0

where the #{ are the elastic scattering phase shifts.

For hard-sphere scattering, the 77/ are equal to
un"[j,(kb,)/n,(kb,)] ,

where j; and n; are spherical Bessel and Neumann
functions, respectively.

If 9>> (1/kb;)'” (classical region), a standard
calculation using the method of stationary phase
siv“ll.ld

£118)=—b, /2", 055 (kb))

where (120

[
7"
The differential cross section | f;(8) | *=b}/4 is
just the classical result for hard-sphere scattering.
Thus, for 0>> (kb;)~'”, one regains the classical
result, in agreement with the qualitative discussion
of Sec. 11

For small-angle scattering 6 << 1, one can re-
place P/{coef) by the zero-order Bessel function
Joltl +3)0)."" With this substitution, Eq. (11) be-
comes

/(0=

¢,(0)=—2kbysin (12b)

L 3 usre-nnw+ o, an
=0

Using some simple properties of the spherical
Bessel functions, one can show that 7] is large and -
varies linearly with [ for I <L;=kb, and that i
1{—»0 very rapidly for ! > L;. Thus, for I <L; the ,
term containing eu" varies rapidly and averages to

zero (there is no point of stationary phase'®) while,

for 1> L, €™ —1)=0. Equation (13) may then

be approximated by'®

L
f/8)as(i /k) S Ui+ 0. (4
=0

By transforming the sum (14) into an integral, one
finally obtains'®

SOV =ibdy(kbs8)/8, 8<<(kb)~'. (i5)
The differential cross section
| £)(0) | *=b}{J,(kb,0)]*/6*

contains a central peak and smaller side lobes typi-
ca! of the diffraction pattern produced by an
opaque object. Most of the scattering is contained
in a cone of half angle 8=4/kb,.

Equation (15) is valid not only in the diffractive
cone 8 < (kb;)~", but also in a range (kb;)~' <8
<(kbs)~'%. Inside the diffractive cone, Eq. (15)
can be approximated by

£)\8)= Jikbjexp(— 7kb]6%) kbo<1. (16)

Although Eq. (16) is valid for diffractive scatter-
ing, if Eq. (16) rather than Eq. (15) is used in cal-
culating collision rates and one-dimensional colli-
sion kernels, the results may differ by as much as
20% from the true hard-spheres values. [The re-
sults differ because the calculations require integra-
tions in a range where Eq. (16) is not strictly
valid.] Despite this discrepancy, we shall use Eq.
(16) in subsequent calculations, owing to its simple
analytical form. Given the spirit of this illustra-
tive example, the slight errors which are intro-
duced are not overly significant. For completeness,
however, results using the correct amplitude (15)
are given in Appendix B.

B. Population kernels

The population density in velocity space p;(¥,1)
satisfies a transport-type equation in which the col-
lision terms are of the form®
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V.1) where N is the perturber density and 8 is the angle
OpulV,t) =~ (v)py(¥V,1) between V and V'. The delta function ensures con-
o jeal servation of energy. The collision rate I';(v) is de-
fined as

+ [ W@ Vipy(V,0d V"
17
The first term on the right-hand side is the loss at

= [ W7, (19)
which, together with Eq. (18) yields

rate T';(v) of population density py(¥,t), while the Fi(v)=Nvo,(v), (20a)
second term gives the increase of p,(V,?) resulting where

from collisions which change the velocity from V' .

to V. The collision kernel W, (V'—¥) gives the o= [ |£v,0)|2d0, (20b)

probability density per unit time that a collision
changes the active-atom velocity from V' to V and
is related to the differential scattering cross section

is the total elastic state / scattering cross section.
Equation (20) is in the standard form for a colli-
sion rate.

For hard-sphere scattering, the collision kernel,
Wy(¥'—>V)=Nv | fi(v,0) | v~ 28(v —v’), (18) obtained from Eqgs. (12), (16), and (18) is

Wy(¥' —V)=Nv~'5(v —v")

b}/4, 6>>(kb)~'/?

X |k} /adexpl — Lk276%), 0.<(kb) " . an

It contains a part corresponding to classical scattering for 6>> (kb;)~!/* and the quantum-mechanical con-
tribution of diffractive scattering for 8 < (kb,)~!. The collision cross section, obtained from Egs. (19)—(21)
is

o, =2mb}?, 22)

a well-known result for hard-sphere scattering in the high-energy limit. The classical and diffractive scatter-
ing each contribute b’ to the total cross section.?”
It is instructive to use the optical theorem and Eq. (18) to rewrite Eq. (17) in the form

3u(V,0)

> d=_%[r,(u)+r7(u)]p.,(v,:)+1vu—‘ [ 110,017 (6,080 —v")py (V',1MV" , (23a)
|
where %
uWJ) 1
I, (v)=No (4 /ik)f (6,0) (23b) o | TNV
and f(v,0) is a forward-scattering amplitude. In
general T';(v) is compliex, but, for hard-sphere + f W2 (V' = Vp(V',0)d V',
scattering
@9)
I,(v)=No(25b) (24)  Where
is real. W (V' —7)=Nof 1 (0,0)f3 (v,800 ~38(v —0v') .
26)
C. Coherence kernel
It may be noticed that Eq. (25) may be obtained
The collisional time rate of change of the coher- from Eq. (23) by the substitution /3 (v,6)
ence density is given by’ —f3(v,6). The “rate” I'}3(v) associated with the
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coherence kemel is defined by As predicted in Sec. 11, the coherence kernel is
ishi in the diffracti tteri
()= f W (V=¥ MV @7a) :onvnfm‘ahmg only in the ve scattering
=NvalS(v), (27b) Using Eqs. (27) and (30), one can derive a
where velocity-changing coherence cross section and rate
oi)= [ £1v,0)/3(0,0Md0, . (28) o5 =2mb2b3 /(b3 +53) 3ta)
For hard-sphere scattering in the classical region I5(0)=Noos . G1b)

0>> (kb;)~'7, the collision kernel obtained from
Egs. (26) and (12), is

Wi (V' —T)=Nv~Y(b,b,/4)5(v —v’)e'¥® |

where (292)

&(0)=2k(b; — by xin(6/2) . (29b)

If k(by—by)>> 1, as assumed,?! W (V' —V)
varies very rapidly with V' and the integral term in
Eq. (25) averages to zero. Thus, effectively,
W13(V'—7) is zero in the classical scattering re-
gion, a conclusion reached in Sec. II using the dis-
tinct trajectory argument. On the other hand, for
diffractive scattering 8 < (kb,)~"', the collision ker-
nel obtained using Eqs. (26) and (16), is

W (V%)= +No~8(p —p" Mk 3 1b3
x exp{ — kb3 +63)%].  (30)

For future reference, we also define a “total” cross
section o, and rate T'{5(v) by

oy=Flo+o)=mlbi+b}), (322)
l“,g(v)=Nva‘|; ’ (32b)

and a phase-interrupting cross section of; and rate
I§i(v) by

oy =0l —ali=mlb} +b) /(b3 +b3), (33a)

) =Nvoft . (33b)

[The i values of Wu(V'—-’V), Uﬁ.
o', and of; obtained using the scattering ampli-
tude (15) instead of (16) are given in Appendix B.
They differ at most by ~20% from these values.]

D. One-dimensional coherence kernel

A situation of practical importance in laser spectroscopy involves the interaction of atoms with one or
more single-mode laser fields. Assuming the fields to propagate in the +z direction, one is led to the con-
clusion that, in the absence of collisions, the density-matrix element p,,(¥,?) may be factored as

P12V, ) =p12(V,)p1a(0,,0) ,

(34)

where V, is a velocity transverse to the z axis. The transverse component of the density-matrix element may
be taken as constant in time since it is unaffected by the atom-field interaction. While this is no longer
rigorously true when collisions occur,? one might still assume Eq. (34) to hold to a first approximation. In
that case one can insert Eq. (34) into Eq. (25), and integrate over ¥, to obtain

3012(vy, 1)
at

=~ Thatputenn+ [ Wl oo, 0d; , (35)

where the one-dimensional kernel W,(v;, —v,) is defined as

Wialv; =)= [ Wip(¥'—=V)p(V,)d7,d7, ,
and the one-dimensional total collision rate is [';(v),
Tiw)= [ Nivpp(¥,)d9, .

(36)

(o) +T3(v,)], where

(37

In addition, a on: dimensional velocity-changing coherence rate I'}5(v,) can be defined by

Iig)= [ IEopa(V,)d¥,= [ Wi(n,—0)d; .

(38)
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In order to carry out the calculations implicit in Eqs. (30)—(38), we assume p,(V,) is described by a ther-
mal distribution

P12V ) =(mu?)"lexp( —v2/u?) , (39)

where u is the most probable active-atom speed. Substituting Eqgs. (30) and (39) into Eq. (36) and recalling
that k =mv /#, one may obtain the coherence kernel

Wia(v; —v,)= N (mu®)"' (5363 /%) [ 8o —v") expl —v?6%/u’6) expl —v'} /uMd ¥, dV, , (40)
where
A=#/u, (41)
G =8x/(b} +b3) <<1, (42)
vi=vi+u; o= 4%, 43)
and
cosf=V-V"/v?. {44)

The integrals in Eq. (40) are not overly difficult to evaluate. Writing d¥, =v,dv,d¢, and dV, =v, dv,d¢;,

one can integrate Eq. (40) over v; to arrive at

2 2 ©
W o) —v)= 5N (mu*)~ (b33 /2% fo'd.p, fo'dcp; fo v,dv,v? expl —v 2 /u ) expl —oi/u?),  (45)

where § is 6 evaluated at v; > =v;+v}—1;? and terms of order (v} —v;?)/u? are neglected owing to the dif-
fractive nature of the scattering (8 <8, <<1). For 8 <<1, one can use Eq. (44) to obtain

(o, —v; * o}
F=—"—+—lp ¢\ ).
b, v

(46)

After Eq. (46) is substitu:ed into Eq. (45), the remaining integrals can easily be evaluated to yield the coher-

ence kernel

W 2(v; —v,)=No'505 " expl — (v, —v; Y2 /63u*] exp

where o}; is given by Eq. (31). In terms of dimen-
sionless variables

x =(v;—v; )/6pu , (48a)

y=t/us=n/u, (48b)
Eq. (47) may be written
W.;(x,y)aNo‘l'SOJ'e“ze‘“"'(%+y2+ Ix¢]).
(49)

The coherence kernel (47) [or (49)], is centered at
X ==(v, —v; )/0pu =0 and has a width |v, —v; |
mubg<<uif |y| <1. (If |y| >>1, the width is
of order u6y/{y|.) For |y|=|v; | /u>>1, the
kernel becomes exponential. The one-dimensional
coherence kernel is displayed in Fig. 3 for several
values of p. M is this type of kernel that one ex-
posts 10 emcounter in laser spectroscopy experi-

f_z](u,—::,')u,' I ]l%+£,'_2+ Jvg (o, —up )|

Oou u? Oou? ’

47

ments.

[It is interesting to note that the kernel width
remains of order 6yu independent of the active-
atom-to-perturber mass ratio (see discussion in Ap-
pendix A). As the perturber to active-atom mass
ratio decreases, there is a decrease in the scattering
angle as measured in the laboratory frame relative
to that measured in the center-of-mass frame; how-
ever, this effect is exactly compensated by an in-
crease in the diffractive scattering cone in the
center-of-mass system [the scattering angle varies
as (reduced mass)~'/?). Thus, the kernel width is
always of order Opu « [m (0};)/2]~!. A low-mass
active atom must be used to maximize the coher-
ence kernel width. The fact that the kernel width
increases with decreasing o', is reasonable; smaller
obstacles produce larger diffraction cones.]

The various one-dimensional rates can also be
calculated. From Eqgs. (38), (49), and (31) one finds

-————
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FIG. 3. One-dimensional coherence collision kernel
W2(¥, > V,) as a function of x =(v, —v, ) /8ou for
several values of y =v; /u. The kernel is in units of
NoTi05 (3 +y?) so that Wy;=1 at x =0. Ouly positive
x and y are shown since W,,(x,y)=W,( —x,y)
=W (x,—y).

F15(0)=Nuy(p)ot3=Nu,(p) (50)

2nbib3
bi+dl |’
where u,(y) is the value of v averaged over the
transverse velocity distribution, i.c.,

~o}/u?

u (M =(mu)~" [ d¥, (w2 +y*ud) %

=|y| +(# 22 1= |y )], (s1)

where @ is the error function. From Egs. (37),
(39), 24), (51), (32), and (33), one obtains

T,(y)=Nus(y)o,; =Nu,(yN27b}) , (52)
a9 =3 [T+ Ty =Nu,(y)ot,
=Nu,(pla(b} +b3)], (53)
and
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- TR =TH0 -5 =Nu,(ylof}
b} +b3)

54,
b} +b2 54

=Nu,{y)

IV. COLLISION KERNELS
IN LASER SPECTROSCOPY

It remains to determine the manner in which the
collision kernels and rates modify the observables
which are measured in various experiments. The
reason for the success of traditional pressure-
broadening theories in explaining many types of
spectral line shapes will emerge naturally from this
discussion.

In order to observe the effects of population ker-
nels, the first step is to selectively excite (or de-
plete) a velocity subset of active atoms in state i.
This selectivity can generally be achieved by using
a narrow-band laser of frequency {2 to excite a
transition having frequency . Only those atoms
with velocity v, =(Q —w)/K, where K=K%'is the
laser propagation vector, will see a Doppler-shifted
frequency that is resonant with the transition fre-
quency. In this manner, one can excite a longitu-
dinal velocity subset of atoms with velocities v,
centered at ((Q —w)/K having a width in velocity
space of order uy=7y/K, where y is some effective
width (natural plus collision) associated with the
transition.

Collisions will now modify the population densi-
ty only if the collision-induced velocity changes
produced within the velocity-selected state’s life-
time is greater than or of the order of uy. That is,
for collisions to produce noticeable effects, they
must significantly alter the velocity distribution
created in the excitation process. Typically,
uo/u~0.01, so that both large-angle and diffrac-
tive scattering can modify the population density.
The population density of the velocity-selected
state may be monitored by measuring the absorp-
tion of a second laser on the same or another tran-
sition containing the level in question.>* Such ef-
fects have been observed using both steady-state?
and coherent transient'*?* techniques. It might be
noted that collision-induced changes in population
densities can also be measured using a standing-
wave photon-echo technique.?®

Coherence kernel

It is much more difficult to detect the velocity
changes associated with the coherence kernel
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W2(V'—V) than with the population kernel
Wy(V'—V) owing to two factors. First, the coher-
ence kernel is limited to diffractive scattering,
whereas the population kernel contains a large-
angle scattering component that is more easily
detectable. Second, the effective lifetime for coher-
ences is generally significantly smaller than that
for populations (see discussion below); consequent-
ly, there may occur too few collisions within the
coherence lifetime to produce a measurable effect.
Therefore, it requires some analysis to determine
the feasibility of measuring velocity changes asso-
ciated with the coherence kernel.

In the rest frame of the active atom, the effect

of a laser field E=iE,cosf)'t is to produce a
“coherence” p5(V,) which essentially follows the
field dependence, i.c., pn(V,t) =5|2(V,l)¢ +is 26
The frequency {)’ seen in the atomic rest frame is
equal to N —Ku, for a laser field of frequency 2
and propagation vector K =K£. Thus, p,5(V,?)
varies as

Pl 0 =Pa(V, e e ™" | (55)

where 5,,(V,1) is generally a slowly varying func-
tion of V and . Assuming that 5,,(V,?) can be
factored as in Eq. (34), one can substitute Eq. (55)
into Eq. (25) and average over ¥V, to obtain

" —~ — —_ ’
@:Tf"_) =T Palat+ [ Wil —ue ™ Bl iy, (56)

which is the analog of Eq. (35).

We wish to examine Eq. (56) as it applies to
linear spectroscopy, saturation spectroscopy, and
photon-echo experiments. To do so, it is useful to
draw some general conclusions concerning Eq. (56).
First, there is always some effective coherence life-
time 7 associated with 5, which is determined by
the natural and collisional widths of the levels, as
well as the width of the velocity distribution rep-
resented by pi;(v;,¢) (r~! is approximately equal to
the linewidth observed in linear spectroscopy).
Second, the coherence kernel limits [v,—v; | to
values [see Eq. (47)]

|v,—v; | Subp=du <<u , (57a)
(8m) 2%
SH=W . (57b)

Consequently, if K8ur << 1 and if ps(v; ) is
slowly varying compared with W,(v; —v,), the
integral term in Eq. (56) may be approximated by
I'T3(v, )p1a(v,,t) if use is made of Eq. (38).7 Thus,
using Eq. (54), one finds

B0t
M-_) = —rgg( Uy )ﬁlz(vp’) ’ (58‘)
ot coll
provided
K8ur<<l;
_1 dpn 1 dW (v, —v,)
Py dv; Wia(v, —u,) dv,

(58b)

-
Equation (58a) is precisely the equation used in
traditional pressure-broadening theories!>*

We are let to conclude that traditional pressure-
broadening theories give accurate results provided
that Eq. (58b) is satisfied. Although the theory
presented in this work and traditional pressure-
broadening theories lead to the same formal result
when Eq. (58b) is satisfied, the interpretation of
the result is very different in the two theories. In
our case, it is the separation of trajectories that
leads to a destruction rate I'{i(v) = Nvby, is (recall
by the Weisskopf radius), while, in traditional
theories, it is large phase shifts for collisions hav-
ing b < by which destroy p\;. Thus, despite the
fact that the neglect of trajectory effects cannot be
justified, one is still at liberty to use the resuits of
conventional pressure-broadening theories,’ provid-
ed that Eq. (58D) is valid.®® We now analyze some
typical experimental situations to determine wheth-
er or not Eq. (58) can be used and to determine
under what conditions the velocity changes associ-
ated with the coherence kernel may be detected.

Linear spectroscopy. In linear spectroscopy,
there is no velocity selectivity and 5,,(v,,) is a
thermal distribution having width u. The effective
coherence time owing to this distribution is
r=(Ku)~" at low pressure (leading to a width
~1~'~Ku~Doppler width) and decreases with in-
creasing pressure. Under these conditions, Eq.
(58b) is always satisfied, implying that linear spec-
troscopy may be described using conventional
pressure-broadening theories. The net effect of
collisions is a broadening of the spectral profiles.”’
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Saturation spectroscopy. In saturation spectro-
scopy, one selectively excites a velocity distribution
of width ug=(7,,+ I')/K, where 7y, is the natur-
al width associated with the 1—2 transition. The
effective coherence time, determined by the natural
and collisional decay of p3, is of order r=(y;
+Tf)~). Thus, the width of py;(v,,1) compared
with that of W,,(v; —v,) is roughly equal to
(12+ T'2)/K8u, which may be of order unity at
low pressures (I'f} <y,,) but grows with increasing
pressure. The quantity Kbu7 is roughly equal to
K8 /(y)3+4T%2), which decreases with increasing
pressure. Consequently, Eq. (58b) may be margi-
nally violated at low pressures but should be valid
at pressures where I'f; >> 71;. At low pressures,
the velocity-changing effects could introduce dis-
tortions into the saturation spectroscopy line
shapes.’ In order to observe deviations from Eq.
(58a), systems having large K,*' small 7,,, and an
active atom with low mass should be sought. An
attempt to observe velocity-changing effects on
optical coherences was recently carried out with Xe
as the active atom.’? Although the method used
produces line shapes that are sensitive to velocity
changes associated with optical coherences, the
value of K (infrared transitions) and the large mass
of the Xe active atoms were not ideal for observing
the effect. No direct evidence of the effects of
velocity-changing collisions associated with the
coherence kernel was found,>?

Photon echoes. The photon-echo experiment is
described in more detail in Sec. V. It turns out
that the second inequality in Eq. (58b) is always
satisfied. However, as described below, it is possi-
ble to arrange the experimental conditions such
that KSur> 1. In this limit, Eq. (58a) is no longer
valid and the photon-ecko signal reflects the effects
of velocity changes associated with the coherence
kernel W,3(v; —sv,). Recently, the first experimen-
tal evidence of this effect on an electronic transi-
tion was reported.'®!!

V. PHOTON ECHO

A. General features

A photon-echo experiment offers an excellent
method for monitoring the coherence p;;. In the

absence of collisions and spontaneous decay, the
photon echo signal is formed as follows™>®33;

(1) At ¢ =0, a short pulse of radiation (propaga-
tion vector K =K£) creates a coherence

P122,0,,0)=CW (v, Je — 1K |

where C is a constant.
(2) Between ¢ =0 and ¢ =T, the coherence
evolves freely as
p,z(z,v,,t)=CW(v,)e""e““’x"" ,
where @ is the transition frequency. As seen in the
laboratory frame, this frequency is Doppler shifted
by Kv,. The Doppler shifts cause the dipoles to
dephase relative to each other.
{3) A second short pulse at t =T, also having
K =K3, is chosen to produce a net effect™ of
changing the sign of the (w+ Kv,) phase fac-
tor.2%3} Thus, at time ¢ =7, following the second
pulse,
Plz(z’v:9T) _—_CI W(U, )C _[K‘e-‘(0+K§' 7T ,

where C' is a constant. For ¢ > T, the coherence
once again evolves freely as

p,Az,v,,t):C’W(v,)e“’“e -I(»+Ku,)Tel(.+Kv,)(l—1'l
=C’W(v, )C _mel(U+KI,

The dipoles, which dephased in the period
0<t <T, begin to rephase for t > T. At =2T,
they are all in phase an an “echo” signal is emit-
ted. Any interference of this dephasing-rephasing
process or loss of p;; owing to spontaneous decay
results in a decrease in echo amplitude. Thus the
photon echo serves as a sensitive probe of the
coherence P12

Spontaneous decay results in a decrease of p,; by
a factor exp( —y,2t) and a corresponding decrease
in the echo amplitude (y), is the natural width as-
sociated with the transition). The collisional time
rate of chaage of py, given in Eq. (35) also modi-
fies the echo amplitude. When the effects of both
spontancous decay and collisions are incorporated
into the calculation, the resulting expression for the
echo amplitude produced at 1 =27 is*3*

A= f:_ W (v, )4 (v, T)dy, , (60a)

where

M= (59

T -
Aoy, D= Agexp 20T 205007 +2 [ de [ o W,3t0; v, sl K (0, —5; 4] (60b)
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is the contribution to the echo amplitude from
atoms having velocity v;.

Before specifically evaluating Eq. (60b) using the
kerael (47), we can note several general features of
the result (60b). The width of the coherence kernel
W,(v, —v,) is roughly 8u =u@y<<u. If
KduT << 1, the velocity changes associated with
the diffractive scattering region produce effects too
small to be detected. In this limit, Eq. (60b)
reduces to

Ao, T)=Agexp{ —2{y12+TH(v)]T] ,
KduT <<1 (61)

where Eqs. (38) and (54) have been used. For
times T such that diffractive scattering effects are
negligible, the loss of echo amplitude arises from
spontaneous decay (y,;; term) and the destruction
of py; produced by the separation of trajectory ef-
fect [T§3(v,) term).

On the other hand, if k8uT > 1, the velocity
changes associated with the diffractive scattering
region lead to phase changes in p,, that are large
enough to further reduce the echo amplitude from
the value (61) produced by spontaneous decay and
separation of trajectory effects. In the limit that
KbuT >> 1, the integral term in Eq. (60b) averages
10 zero®® and the echo amplitude becomes

A(v:vT'):AoexP[ "2[712"’[‘12(":)]1'} ’
KbuT>>1. (62)

The reduction of echo amplitude is now caused by
spontaneous decay, separation of trajectory effects,

B

and diffractive coherent scattering. The rate of
echo decay, [';(v,), in the long-time domain is
larger than the rate I'3(»,) in the short-time
domain.

As the pulse separation T is increased, the ef-
fects of diffractive coherence scattering on the
echo amplitude become more pronounced. For
KbuT >> 1, every scattering event, on average,
contributes to the collisional exponential loss term
appearing in Eq. (62).

One may ask why the photon-echo method is
distinctly superior to saturation spectroscopy in re-
vealing these effects since the effective coberence
lifetime =[y;,+ If5(v,)] =" is the same in both
cases. The answer to this question lies in the way
in which the diffractive scattering affects the
respective line shapes. In saturation spectroscopy,
diffractive scattering produces corrections to
linewidths of order Kbur; since Kbur is generally
less than unity the distortion of the line shape is
usually difficult to observe. In photon-echo experi-
ments, however, diffractive scattering produces
corrections of order k8uT which may be arbitrarily
large. Of course, the effective coherence lifetime is
playing a role by reducing the signal strength by a
factor exp{ — 27T /r), which is much less than unity
when KduT >> 1. However, since echo signals are
intrinsically large, measurements in the region
where T'/7 <5 are readily performed; such mea-
surements!%.!1 have led to a clear demonstration of
the effects of diffractive scattering on coherences.
The spectral resolution of echo signals obtained
with pulse separations T > 1/, is less than the
natural width associated with the 1—2 transition.

B. Specific evaluation of echo amplitude

The integral appearing in Eq. (60b) is
sin[K (v, —v; )T

I= " dv; Wyv,—
f_. vy Wialvg —v,) K(o,—07)

(63)

If the dimensionless variables x =(v, —uv; )/8u and y =v,; /u~v; /u given in Eq. (48) are reintroduced and
the coherence kernel (49) substituted into Eq. (63), one obtains

1,0 =2NoTuTO™" [ “dxe~*'~21rl(3 +y2+x |y | win(Ox)/x , (64)
where

©=KbuT =64 KuT) , (65)
and 6 is defined by Eq. (42). The integrals are tabulated'” and one may write Bq. (64) as

1(9,0)=Nua}iTY(5,0), 66)

where
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Yp.0)=2 3 [ 92] = +1[2"”D—(2-+|)(‘/5|.V|)+ Iy 1D_ulvV3y )], (67

n=0
and D, is a parabolic cylinder function.!” Combining Eqgs. (60b) and (63)—(67), we obtain
Ay, TV =Aoexp{ — 212+ Faw)]T + 2Nuo§TY (5,0))} . (68)

Equation (68) must now be averaged over a Maxwellian distribution in yu to arrive at the echo amplitude
(608). The integration must be done numerically. For illustrative purposes, we present two approximate
methods for performing this average.

Method 1. If only a narrow range of velocities is excited by the laser pulse’” such that |y | << 1, one can
set y =0 in Eq. (68) and use Eqs. (68), (60a), (51}, and (53) to obtain the echo amplitude

A(T)=Agexp( —2{ 12+ N, (0) 0}, — o130~ V7O /2))iT) , ' (69)

where @ is the error function and u,(0)=u V7 /2 is the average value of v for v, =0.3% We note that
—2[112+ Nuy (0Xofs +0150%/12)]T, O <<
In{4(T)/Ao]~ [—z[y.z+Nu,(O)(a:,—a.,ﬁ/euT, 05>1
and recall that ©=KbuT.
Method 2. If W(v,) is a Maxwellian distribution having width u, the assumption |y | << ! no longer

holds. As a rough approximation, however, we can average the exponent in Eq. (68) over y rather than the
exponential. In this manner, one finds®

S - D U
oh 012.§o 2 | @n4+D2n 410

(70)

2iy2+NU

where 0=2u /\/17- is the average speed and the sum is a representation of the generalized hypergeometric
function ;Fz( 5.1 1, 3 1._.0%/4). For small and large ©, Eq. (71) may be written

~2y+ N +0507/18)]T, O<<1

(12)
—2[y1;+NBlo},—ol3m220)]T, ©>>1.

In[A(T)/Ag]~
The results expressed by Egs. (70) and (72) are of a quite general nature.® For © << 1
In[A(T)/Ao)~ — 2y, T —2N@ofT —2cNiio (5K 4(8u *T?, KbuT <<1 (713)

where ¢ is a constant and & some effective average speed. The T dependence is a signature of velocity-
changing effects. For 6>> 1,

In{4(T)/Ao)~ — 22T ~2Niio},T —2c'Nito\5/Kbu, KsuT>>1, (74)
where ¢’ is a constant.
To isolate the effects of collisions, we define a quantity

B(©)=—{In[4 (T)/Ao]+2y,,T} /(2NGoR2T) , (71%)
which will have asymptotic limits
1+c(o}5/0fh0? 0<<1
BO)~ |1 /ot ©5>1. (76)

The ratio of B(©) in the high- and low-© limits is

g BOKO>> 1) _dia_ (b14+b1F an

B(OXO<<l) off  bi+d}

T e it
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where Eqgs. (53) and (54) have been used.

i3

As a specific example, we calculate 8(9) using the approximation (71) (for which 4 =) and find

2b1b} e2
B(B)=1 -
©=t+r ' 2 n+1

In Fig. 4, B(O) is graphed for several values of
(b,/b,). For ©>> 1, B(O) ssymptotically ap-
proaches the ratio # given by Eq. (77). The ratio
R=0',/0% vaies from 1 to 2 as (b,/b,) varies
from 0 to 1. It should be noted that the general
conclusions reached in this section are model in-
dependent. In particular, the echo amplitude
varies as exp( —2T'§8T) for short times (K5uT
<< 1) and as exp(—2I'},7) for long times
(KbuT >>1).

The curves shown in Fig. 4 are in qualitative
agreement with recent experimental results on pho-
ton echoes in Li perturbed by rare gases.'!
Velocity-changing effects were also observed with
Na as the active atom; the Na mass is smail
enough to give rise to a 5u large enough [Eq.
{57b)] to produce K5uT > 1 for the pulse separs-
tions in that experiment.'® In a coherent transient
experiment on an electronic transition of I, only
the exponential decay of the echo amplitude typical
of the short-time domain was observed. The large
iodine mass leads to a small u [Eq. (57b)]; conse-
quently; KbuT may remain small for the time
scales used in that experiment.

V1. SUMMARY

When atoms that have been created in a super-
position state by a radiation field undergo elastic
collisions in an atomic vapor, two distinct types of
effects occur. There is a modification of both the

2 L b/ .2
0.7%

0.3

FIG. 4. Graphk of B(©) which characterizes the
photon-echo signal [Eq. (78)) as & function of ©=K5uT
for b, /b; =0, 0.5, 0.75. The small horizonts] lines on
the right side of the graph indicate the asymptotic value
of B{©)ss O 0.

H2n + 1

] (78)

T

population-velocity distributions py(V,t) and the
coherence density py(V,2) (i+4/) produced by the
scattering events. The processes can be character-
ized by collision kernels Wy(V'—V) and

W, (V'— V), respectively. In this work, we have
discussed the population kernels Wy (V'—¥), but
have concentrated our efforts in obtaining s physi-
cal picture of the coherence kernel W (V'—V).

To do so, we have considered a system of two-level
active atoms interacting with a radistion field and
undergoing collisions with perturber atoms. The
collision interaction experienced by the atom in
each state was assumed to differ appreciably, as is
usually the case for electronic transitions.

Using arguments based on the uncertainty prin-
ciple, we showed that collisions can be roughly di-
vided into two regions. Collisions having an im-
pact parameter less than some characteristic radius
may be described classically, while large-impact
parameter collisions, giving rise to diffractive
scattering, must be treated using a quantum-
mechanical approach. As a consequence of this re-
sult, the population kernel may be written as the
sum of a large-scale (classical) scattering term plus
a term containing the effects of diffractive scattering.

The collision-induced modifications of the atom-
ic coherences produced by these two types of colli-
sions are somewhat more interesting. For small-
nonoverlapping trajectories associated with the
scattering for each atomic state. Since there is no
spatial overlap of states 1 and 2 following such
collisions, these collisions destroy p;; and lead sim-
ply to a decay rate for p;;. Quantum mechanical-
ly, the classical separation of trajectories is
represented by a rapid variation with angle of the
phase of the product of the amplitudes £, f3.
Large-impact parameter collisions, on the other .
hand, lead to overlapping diffractive scattering for )
the two states. Consequently, the coherence kernel
W.z(‘v"—»'v’) possesses a diffractive component only
srising from these large-impact parameter colli-
sions. The width of the coberence kernel is effec-
tively independent of the perturber to active-atom
mass ratio.

Trajectory effects are seen to play an important
role in determining the collision-induced changes
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in the coherence p;;. The coherence p,, is related
to the atomic polarization, which, in turn, is
directly linked to the spectral properties of the
medium. It seems somewhat paradoxical, there-
fore, that traditional pressure-broadening theories,
in which separation of trajectory effects are
neglected and in which collisions are assumed to
affect only the phases of the optical dipoles, are so
successful in describing spectroscopic line shapes.
This apparent paradox was resolved in Sec. IV,
where it was shown that traditional pressure-
broadening may be used provided the velocity-
changes associated with the coherence kernel are
too small to be detectable in a given experiment.
Thus, although the interpretations are different in
the two approaches, the results can be ideatical. In
linear spectroscopy, traditional pressure-broadening
theory is always valid, if, as assumed, the collision-
al interaction differs appreciably for the two states
between which the optical transition occurs. Trad-
itional pressure-broadening theory is no longer ap-
plicable if the velocity changes associated with the
diffractive coherence kernel W ,(V'— V) can be
caperimentally measured. Such effects should be
marginally observable in saturation spectroscopy
and have Geen observed for the first time in
photon-echo experimnents.'®!!

To illustrate various features of the problem, we
adopted a simple model of hard-sphere scattering
to describe the collisions. The resuits, however, are
quite general and can be easily extended to arbi-
trary potentials. The hard-sphere model enabled us
to obtain closed-forni expressions for the various
collision kernels and rates. In addition, we used
the model to zalculate an expression for the
photon-echo amplitude, which clearly indicates the

importance of velocity-changing collisions associat-
ed with W,(V'— V). If one uses a more realistic
interaction potential, the resulting expressions must
be evaluated numerically.

It should be noted that the semiclassical ap-
proach used in this work is valid only if the de
Broglie wavelength of the atoms (in the center-of-
mass reference frame) is much smaller that the
characteristic Weisskopf collision radius by, .
Moreover, any effects of orbiting or of rainbow or
glory scattering have been neglected. A rigorous
discussion of the validity of the semiclassical ap-
proach has been given by Avrillier, Borde, Picart,
and Tran Minh.* A calculation is in progress
which is designed to determine the conditions
under which our general approach to calculating
the coherence kernel retains its validity.
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APPENDIX A

In Appendix A, the results of Sec. III are generalized to allow for an arbitrary perturber to active-atom

nass ratio. The collision kernel is given by*’
3

W,y (7' —¥)=N [;‘"1

de: de,W,(V'—VL)s ’v’,—‘v’;—%(v-v') v, 8, —v, WFyloy, | ¥, —¥, ).

(A1)

The quantities appearing in Eq. (A1) are the product of scattering amplitudes in the center-of-mass system
FIJ(”"' ¥, =2 | )= folo;, 1V, ~7, | )ﬁ("r'v %= 1), (A2)

the perturber velocity distribution
W, (V) =(xud) = Rexpk ~ v} /u}) ,

(A3)

v ik v B b
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where u, is the most probable perturber speed, and the reduced mass u. Equation (A1) represents the colli-
sion kernel in the center-of-mass frame averaged over the perturber velocity distribution consistent with con-
servation of momentum and energy.

Integrating Eq. (A1) over ¥, and setting

T=(m/u)v-v"), (A4)
one finds
Wy (V' —V)=N(m/pp [ dV, Wy (T =7, + 8o, — | ¥,— 7 | o, Fylv,,m) . (AS)

The angular integrals can be carried without too much difficulty!*4! and one may obtain
Wy (V'—V)=Nm /uP 2~ W,($ §+7") [.” g dg expl—g*/ulMo( 20, /D (g2 + 9 2 )

(A6)

where

v,=(w'/|¥—V'|)sind, (A7
0 is the angle between ¥V’ and ¥, and 7, is a modified Bessel function.

When the exponential approximation to the scattering amplitude (16) is used, one has

Fylo,,m)=k2blbjexpl — s k2b}+b}6?] , (A8)
where

kK, =uv,/4 (A9)
and

6,=2sin""(7/2v,) (A10)

are the k vector and scattering angle, respectively, in the center-of-mass frame. Substituting Egs. (A8)—
(A10) into (A6) and assuming 8, << 1 (diffractive scattering region), we find

* blbfexpl —n*/(65u, 1]

W”(V'—>V)==-‘g.— n

2
- l%‘fu ] o ]“r"lv"+%n’+u}—(7""f/v)’l ,
7 Uy

L 4kfu,q *p
(ALl

where

F=(m/pX¥—-Vv),

X, =#/uu, , (A12)

u,’:u’+u,2 , A
and

(053 =8R7 /(b +b}) <<1 . (A14)

The various collision rates defined by Eqs. (19), (27), (32), and (33) are easily calculated starting from Eq. g
(Al). One finds

[(0)=Nu,(vX2%b}) , (Al15%)

I;(v)=Nid, (o) 203 + 5] , (A15b)
2abib3

I'o)=Nu, () sienl |’ (A15c)

Wy it cos bt = -«
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abt+b3)
5w =Nu,0) | ———— |, (A15d)
b +b1

where u,(v) is the active-atom perturber relative speed averaged over the perturber velocity distribution, i.e.,
v (2= [ W,(¥,)|7-7,|d7,
=y e 14202~ N1 4222 D)) , (A16a)
with
z=v/u,. (A16b)

[Note that as «, —0 and u—m, one regains the results of Sec. IIl. If 4—0, and u—m, (perturber mass),
W (V' V) ~T3(0)8(V = V"), and u,(up2) ~u,(0)=27"""u, )

To obtain the one-dimensional kernel, one multiplies Eq. (A1) by W(V;) and integrates over v, and V,.
The resulting integrals can be reduced to a triple integral®'**! of the form

Wy(v; —v)=4n="7px [~ ds, [ da [7_dpe=BP " expl —x~\ (g +adIFullad +p2+a} 2 M),

(A17)
where
B=u/uy=(my/m)'?, (A18)
x=(14+p%/8, (A19)
E=(V-V')Vu=%,+57%, (A20)
ad=sHgus"4ps, (A21)
and
y=uv/u. (A22)
With the kernel given by the exponential approximation (A8), Eq. (A17) may be integrated to give
Wa(v; —u,)= TNoT36)) e -Fs?
X{[5+B87 24y +x7(1 -~ —x]le~ 1+ (7 —x)]
+[%+ﬂ'z+y2-—x7(l-—B"z)—leez"[l—Q(P'+x)]+21r""zxe"2e"2] , {A23)
where
x=|v—v; | /(Bubl), (A24)
y=u/u,
=By =v; /u, , (A25)
8,=x0, . (A26)

The kernel (A23) reduces to Eq. (49) in the limit B— o and has a width of order 8ou for |y | <1. For
B<<1and |y| <1, the effective width of the kernel is of order B0%u =xBou =(1+5%)"*65u = 6gu. Thus,
regardless of the ratio of perturber to active-atom mass ratio, the kernel width (for |y | <1) is of order

u0,=2V2%u /(b +b})/?
=202m)"#h/m(0};)' . (A27)

This somewhat surprising result arises from the cancellation of two effects. As m,/m (or §) decreases,
there is an increase in the size of the diffraction cone in the center-of-mass system [recall that 0, « (pu, )"

B e TS
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=(148"2)176,). This effect is compensated by a decrease in the scattering angle as measured in the labo-
ratory frame. Thus, the collision width depends primarily on the active-atom mass and total collision cross
section.

In Fig. S, the kernel

W 12(0—Bubhx)=No5(0)~'e ~#="((5 + B2 —x[1—Dx)]+ 7~ 2xe ') (A28)
is plotted as a function of
(1482 =v, /uBy=v,/5u (A29)

for several values of 8. The B=0.1 and B=10 curves correspond to asymptotic limits of the kernel for the
cases S << 1 and B>> 1 respectively; thus the kernel width is seen to vary only slightly with 8. In practice,
o’ normally increases with increasing B, implying a corresponding decrease in the kernel width. Smaller col-
lision cross sections produce a larger diffractive-scattering cone.

The various one-dimensional rates are still given by Egs. (A15) if one replaces v by v, and «,(v) by «,(v,),
where u,(v,) is the relative speed averaged over the perturber and transverse active-atom velocity distribu-
tions, i.e.,

uv)= [ W)W, (V,)| V-7, d¥,d¥, (A30)
where
V=V, +0,f.
Explicitly,*! one finds
uslup) = [By OBy 45127 14072 [” dx e =5 conniaye VRN 1 —0tx xBY | | (A3D
APPENDIX B

In Appendix B, we derive expressions for the various collision kernels and rates using the amplitude (15)
for hard-sphere scattering instead of its exponential approximation (16). Moreover, the cross sections are
also calculated directly using Eq. (11) to illustrate the origin of the distinct trajectory approximation
k‘bz—b|)>> 1.

Using Egs. (A2) and (15), we find

Fylo, m)=b,b,07%1,k,b,0,M,(k,b,8,) , (B1)

where 0, is given by Eq. (A10). If Eq. (B1) is substituted into Eg. (A6) and the assumption 8, <<1 is used,
one may obtain (cf. Eqs. (Al11)—(A14)]

3 2
N | m | bbsu, b by
W (¥ V= — | =

”( ) V;’ B “"" H { “'k' Jl ll,k,

X {expl— (3 0+ VT /P /ulllu, v + 2 +u} = (-7 /0], (B2)
r
where 77 =(m /u{V —¥). Equation (B2) reduces where u,(v) is given by Eq. (A16). If k,(b;—b,)

to Eq. (A1) if by/u,X, << 1. >> 1, the 6, integral can be replaced by an integral
The rate obtained from Egs. (27), (A1), and (Bf) from 0 to . In that case, for b, > b,, one finds'’

T (v)=Nu,(w)Xsd}) b <b, . (B4)
Tij(v)=Nu,(v) [ dQ,b;b;07%,(k,b6,) y (o) =Nu uXadi} b <Y

Thus, the various cross sections and rates defined
xJ1(k,b,6,) , B3)  in Equ. (19) and (31)—(33) are given by (5, > b,)
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FIG. 5. Graphs of the one-dimensionel kemne!
W ,3(0—u,) 88 a function of (1+8%)"/2x =v, /u8 for
several values of B=u /u,=(m,/m)'%. Notice that the
width of the kernel is essentially independent of B, al-
though its shape changes somewhat. The kemnel is in
units of No5(65) =" and is normalized such that
W(0-0)=1.

o;=2wb} , (BSa)
ol=nb}, (BSb)
oly=mbl+b3), ;1%
ot =nbl, (B5d)

and ['(v)=Nu,(v)o. The cross section o3 can
differ by as much as 17% from that calculated us-
ing the exponential approximation to the scattering
amplitude [see Eq. (31)].

Integral expressions for the one-dimensional ker-
nels and rates can be easily obtained using Eqgs.
(36), (39), (A1), (B1), and (27). Without explicitly
writing expressions for these quantities, we note
that for large enough |¥—¥'| or |¥,—¥; |, itis
possible for the population kernel to have side
lobes and for the coherence kernel to go negative
{the exponential approximation always gives a posi-
tive kernel). This feature is already seen in Eq.
(B2). Near the “center” of the kernel, | v, —u; |
< u6y, the exponential approximation (16) pro-
duces a collision kernel that has the same form as
the one calculated using the correct amplitude (15).

To finish this appendix (and article), we calcu-
late o3 directly from Eq. (11) without using the
assumption that k(b, —b,)>> 1. Using the defini-
tion

off=Re [ £1(6)f}(6MD2 (B6)

along with Eq. (11) for £;(6), one easily derives
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o =4wk 2 i (I + 3 ) 2 sin’y} sin*n{>
=0

+ 7 sin(27{Msin(29{"] ,

(B
where

7§ =tan='Ljs(kb, ) /m; kb)) ®8)

is the state-i hard-sphere scattering phase shift.
Using the properties of the s &)hmcd Bessel func-
uons"’onecannhowthatn )0 exponentially for
1 <L; so that the cos(2n}) terms average to zero.
One is left with

L‘ = kbl (Bg)

(assuming b; <b;). Equation (B7) may be rewritten
as

olf=2mk -2’20 I{ 1 —cos(2n{") —cos(2n}")

+cos(ni—9").  (BI1O)

Agam using the properties of the Bessel func-
tions,'” one can show that the 7} are large for

I <L; so that the cos(27}) terms average to zero.
One is left with

Ll
off=4mk =2 Y lsin?[(n{"~n{"/2].  (BID)
=0
For i =j, Eqs. (B9) and (B11) yield 0, =2mb}, the
quantum-mechanical result for high-energy hard-
sphere scattering. For izj, one can approximate'’

7~ 01" =1(,—~ )~ (tang, ~tang,) ,
(B12)
where
$,=cos"(l/L,) .
Since //L; << 1 for most ! in the sum,
x | L
*‘ m*lzz_ul—l ’
such that
2 (b,—by)
(B _ gD — _ it B 14
m ] k(bz b|)+ 2 kbbz
(B13)

Combining Egs. (B13) and (P11) and changing the
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sum to an integral, one finally obtains
4mbib, [kb,(bz—b,)]
sin

oli=wbl+

k(b;—b,) 4,
k(by—by)(4by—b,)
x cos | 02 =61)45, ‘] (B14)
4b,

i

If b,=b,, o}5=2mb?, but for k(b;—b,)>>1,
ol5~wb?, in agreement with the result (B5b) de-
rived from diffractive scattering only. Thus, if
k(b,—b;)>> 1, diffractive scattering only contri-
butes to the coherence kernel.
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2p. R. Berman, Adv. At. Mol. Phys. 13, 57 (1977), and
references therein.

3P. R. Berman, Phys. Rep. 43, 101 (1978).

4S. Avrillier, C. J. Borde, J. Picart, and N. Tran Minh,
in Proceedings of the Sth International Conference on
Spectral Line Shapes, edited by B. Wende (de Gruyter,
Berlin, 1981}, and (unpublished).

35. Avrillier, Doctorat D’Etat thesis, University of Paris,
North, 1978 (unpublished).

SAn attempt to explain the coherence kernel for the
magnetic substates of a given level has been given re-
cently. See, J. L. LeGouét and P. R. Berman, Phys.
Rev. A 24, 1831 (1981),

7See, for example, R. G. Breene, Jr., The Shift and
Shape of Spectral Lines (Pergamon, New York, 1961);
M. Baranger, in Atomic and Molecular Processes, edit-
ed by D. R. Bates (Academic, New York, 1962),
Chap. 13; H. R. Griem, in Plasma Spectroscopy
{(McGraw-Hill, New York, 1964), Chap. 4; J. T. Jef-
fries, Spectral Line Formation (Blaisdell, Waltham,
Massachusetts, 1968); 1. 1. Sobelman, Introduction to
the Theory of Atomic Spectra (Pergamon, New York,
1972); S. Y. Chen and M. Takeo, Rev. Mod. Phys.
29, 20 (1957); J. Cooper, ibid. 39, 167 (1967).

8For a discussion of this effect (often referred to as
“Dicke narrowing  [R. H. Dicke, Phys. Rev. 89, 872
(1953)], see P. R. Berman, Appl. Phys. (Germany) 6,
283 (1975), Sec. 5 and references therein.

9. R. Berman, J. M. Levy, and R. G. Brewer, Phys.
Rev. A 11, 1668 (1975); B. Comasky, R. E. Scotti,
and R. L. Shoemaker, Opt. Leit. 6, 45 (1981).

10T. W. Mossberg, R. Kachru, and S. R. Hartmann,
Phys. Rev. Lett. 44, 73 (1980).

IR, Kachru, T. J. Chen, T. W. Mossberg, S. R. Hart-
mann, and P. R. Berman, Phys. Rev. Lett. 42, 202
(1981).

128¢e, e.g., M. S. Child, Molecular Collision Theory
(Academic, London, 1974), Chaps. 1 —S5.

13Populstion kernels of this type are discussed in A. P.
Koichenko, S. G. Rautian, and A. M. Shalagin, Nucl.
Phys. Inst. Semiconductor Phys. Internal Report (un-
published).

14M. Gorlicki, A. Peuriot, and M. Dumont, J. Phys.

Lett. (Paris) 41, L275 (1980).

1SEquation (8) is strictly true only for smoothly varying
potentials for which the impulse approximstion may
be used. For hard-sphere scattering, condition (8) is
rephced by k(bz—b|)>> 1.

19The stationary phase method is valid only if kb,6®
>> 1. This result may be obtained by using the
asymptotic expansion

Py(cos8)~cos[(l + 310 —7/4]
and an approximation form for the phase shifts

m=(+5)NB—tanf)~n/4,
valid for kb; >> 1 [the angle B is defined by cosf
=(I ++)/kbj). The net phase appearing in Eq. (11)
becomes

$=—U+FK0—28+2tanB)+7/4 .

The point of stationary phase is given by (I + 1)
=kb, cos(8/2) (classical result). If kb8 <1 << kb8,
then the phase ¢ is a linear function of [ and there is
no point of stationary phase (equivalently, the third
derivative term neglected in the stationary phase
method is not negligible). Consequently, Eq. (12) is
valid in the range 8> > (kb;)~'/, which is more limit-
ed than 8>> (kb))~".

171, S. Gradshteyn and 1. M. Ryzhik, Tables of Integrals,
Series,and Products (Academic, New York, 1965).

1¥There is no point of stationary phase provided
kb,@ << 1, (see Ref. 16). This condition limits the
range of validity of Eq. (15).

191f, for @ << 1, one expands P;(cosf) as

{Jolx) +(62/)[(2x)~"T,(x) = Jy(x) + ¢xJ3(x)]}

(.ee Ref. 17), the leading correction to Eq. (14) can be
shown to be of order

kb1t << (kb)) <<,

where the first inequality follows from the condition
stated in Ref. 18.
01n integrating the classical contribution over solid an-
gle, one must exclude a region 6 < (kb,)~'. This ex-
clusion leads to corrections of order (kb,)~*?<<1.
ZlFor a smoothly varying potential, the condition




28 COLLISION KERNELS AND LASER SPECTROSCOPY

k(by—by)>> 1 would be replaced by Eq. (8).

2For example, if atoms having a large v, are selected,
collisions can transfer some of this “heat” to the
transverse velocities.

BC. Bréchignac, R. Vetter, and P. R. Berman, J. Phys.
Lett. (Paris) 39, L231 (1978); Phys. Rev. A 17, 1609
(1978); P. F. Liao, J. E. Bjorkholm, and P. R. Ber-
man, ibid. 21, 1927 (1980).

24T. W. Hinsch, I. S. Shahin, and A. L. Schawlow,
Phys. Rev. Lett. 27, 707 (1971); J. Brochard and P.
Cahuzac, J. Phys. B 9, 2027 (1976); P. Cahuzac and
X. Drago, Opt. Commun. 24, 63 (1978); T. W.
Mossberg, A. Flusberg, R. Kachru, and S. R. Hart-
mann, Phys. Rev. Lett. 42, 1665 (1979).

25R. Kachru, T. W. Mossberg, E. Whittaker, and S. R.
Hartmann, Opt. Commun. 31, 223 (1979); T. W.
Mossberg, R. Kachru, E. Whittaker, and S. R. Hart-
mann, Phys. Rev. Lett. 43, 851 (1979); see also J. L.
LeGouét and P. R. Berman, Phys. Rev. A 20, 1105
(1979), and references therein.

26We assume that | Q' —w | /(D' +w) << 1, where o is
the transition frequency (“rotating-wave” or resonance
approximation).

270wing to the narrow width of the coherence kernel,
one can interchange v, and v; at will.

281f the condition k, by >> 1 is violated [see Eq. (A9) for
the definition of k,] owing to a very small perturber
to active-atom mass ratic (e.g., electron perturbers),
then the neglect of trajectory effects can be justified.
However, if k,by >> 1 as is assumed in this work, a
unified picture of the collisions mechanism is achieved
only when trajectory effects are incorporated into the
theory.

29For scattering potentials other than hard sphere, colli-
sions usually produce a shift as well as a broadening
of the profiles.

303, L. LeGouét and P. R. Berman, Phys. Rev. A 17, 52
(1978). In this paper, an approximation for the coher-
ence kernel, similar in spirit to the one derived in this
work, was used.

3 Actually, it is combinations of the K’s for the various
transitions which enter (see Refs. 2 and 3).

32p, Cahuzac, J. L. LeGouét, P. E. Toschek, and R.
Vetter, Appl. Phys. (Germany) 20, 83 (1979).

33See, for example, 1. D. Abella, N. A. Kurnit, and S.
R. Hartmann, Phys. Rev. 141, 391 (1966); M. Scully,
M. J. Stephen, and D. C. Burmnham, ibid. 171, 213
(1968); S. R. Hartmann, Sci. Am. 218, 32 (1968); C.
H. Wang, C. K. N. Patel, R. E. Slusher, and W. J.
Tomlinson, Phys. Rev. 179, 294 (1965); R. L.
Shoemaker, in Laser and Coherence Spectroscopy,
edited by J. T. Steinfeld (Plenum, New York, 1978), p.
197; T. W. Mossberg, R. Kachru, S. R. Hartmann,
and A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).

MFor simplicity, we take the pulse to be resonant with
the atomic transition, i.e., K =w/c.

35A. Flusberg, Opt. Commun, 29, 123 (1979).

36A somewhat more careful evaluation of Eq. (60b) in
the limit KduT >> 1 gives

Ao, T)=exp| —2[y12+Thav)]T
+20K W (o, -0, )] -
The last term follows from Eq. (60b) if
forcos[K(v,—v.' )tlde

is repiaced by 7K ~'8(v, —v; ).

37A smooth Fourier-transform-limited pulse of duration
Ar excites a velocity bandwith Ay, ~(KA7)~'. If Ar
is chosen such that Ku < At << T, only a fraction of
the Maxwellian distribution is excited.

38Taking y =0 in Eq. (49) implies a Gaussian kernel.
Equation (69) agrees with a related calculation (Ref.
9) in which a Gaussian kernel was used.

39Rather than directly averaging the exponent in Eq.
(68), it is easier to perform the averaging in the ex-
ponent of Eq. (60b).

40R. G. Brewer and A. Z. Genack, Phys. Rev. Lett. 36,
959 (1976).

4P, F. Liao, J. E. Bjorkholm, and P. R. Berman, Phys.
Rev. A 21, 1927 (1980), Appendix. Note that a factor
of 2 is missing in the second term in the exponent in
Eq. (A4) of this reference and that, in Eq. (4 8), one
should replace v'2 by V7.

257




App. Physics 28B, 190 (1982)

Laser Spectroscopy

’

Collision Kernels and Laser Spectroscopy

P. R. Berman
Physics Department, New York University, New York, NY 10003, USA

PACS: 07.65 -

Collisional processes occurring within an atomic vapor can be
conveniently described in terms of collision kernels. One can
speak about both the population kernels W/ (v'~v) and coherence
"kernels W,(v'—v) [i+] associated with the vapor. The popu-
lation kernel represents the probability density per unit time that
&n atom in state i undergoes a collision taking it from velocity v’ to
v; in essence, it determines the manner in which collisions affect
the population density ¢,{v. ). Analogously, the coherence kernel
can be used to describe the effects of collisions on off-diagonal
density matrix elements g,{v,z); however, since W (v'—v) i3
associated with atomic state coherences, it is not positive definite
and has no simple classical analogue. The collision kernels are
directly related to scattering amplitudes and, as such, can provide
important information on collisional processes occurring within
an atomic vapor. Moreover, new methods involving laser spec-
troscopy enable one to experimentally measure these kernels.
A theoretical analysis of the general properties of the collision
kernels has been carried out. In addition, the manner in which
these kernels are reflected in line shapes associated with linear and
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nonlinear spectroscopy has been examined. It is shown thy
collisions can be roughly divided into two categories. Collisions
having impact parameters less than some characteristics radius h
can be described classically, while those collisions having impac
parameter greater than b, must be treated quantum-mechanically
The large impact parameter collisions are associated with diffrac.
tive scattering. As a result of this division, the popufation kernel
contains components representing both large-angle and diffrac.
tive scattering. However, assuming that the collisional interaction
for states i and j differ appreciably, the coherence kernel W, (v —y
is found to have a diffractie scattering component only. The
absence of a large-angle scattering component in the coherence
kernel can be linked to a collisionally-induced spatial separation
of the i and j state collision trajectories.

Laser spectroscopy provides an effective means for measuring the
kernels. It is shown that steady-state nonlinear laser spectroscopy
provides a convenient method for determining the large-angle
scattering component of the population kernel, while coherent
transient techniques (e.g. delayed saturated absorption. photon
echoes, stimulated echoes) can be used to monitor both the
coherence kernel and the diffractive scattering component of the
population kernel. A discussion of the type of inforr~ :tion one can
hope to obtain from these studies will be given. Moreover, the
connection with traditional pressure broadening theories wul be
noted.

.

Collision Studies of Highly Excited Atomic States
Using a New cw Four-Wave

Mixing Spectroscopy Technique

J. F. Lam, D. G. Steel, and R. A. McFarlane

Hughes Résearch Laboratories, Malibu, CA 90265, USA

PACS: 07.65

This paper describes measurements of buffer gas collision rates
with high lying atomic states on sodium using a new Doppler free
spectroscopy technique. The approach uses two narrow band
stabilized tunable dye lasers at frequencies 2, and Q, in a two
photon four-wave mixing cxperiment. With two separate wave-
lengths we are able to eliminate the usually large intermediate
state detuning that results when two photon resonant degenerate
four-wave mixing is used to study a three lcvel system, By
- + JAppropriate gecometry. the signal in our.approach is gencrated by
& pure two-quantum excitation with no stepwisc contribution, We
are thus ablc to examine collision physics affecting the final state
without being obscurcd by intermediatc state effects. We anti-
cipate that this technique will be extremely powerful in investigat-
ing collisional cffccts on the Rydberg serics. The ability for this
technique to produce large signals even for collision studies of

highly excited states overcomes scnsitivity problems duc to large .

intermediate state detuning using degenerate two-photon absorp-
tion [1). It also provides an important laser spectroscopy
measurement of collisional cffects giving risc to broadening and
level shifts in the frequency domain in contrast to carlier measurc-

ments of broadening in the time domain using pulsed lasers
(23]

The analysis begins by assuming a cascade up three level system.
The geometry involves a backward pump, E,, at frequency Q,
(resonant with the first transition at frequency w, () and a forward
pump, E,, and probe, E,. at frequency Q, (resonant with the
sccond transition out of level 2 at frequency w,,). We assume that
the forward and backward pumps are arranged to be counterprop-
agating and the probe beam is nearly collinear with the forward
pump. We further assume that the level energies in the cascadc-up
three-level sysiem are given by E, > E, > E,. In this gcometry the
physical oirigin of the signal (which is nearly counterpropagating
to the probe wave) arises f-om a four-wave mixing intcraction
generated by a two-photon ccherence between levels 1 and 3
induced by the simultaneous interaction of E, and E,. In collincar
geometry tic resonance condition that must be satisfied in order
for all four waves to interact with the same velocity group is given
by Q,-w,;=—(k,/k,) (Q,—w,,). Using the density matrix
approach and calculating the polarization using perturbation
theory to third order in the ficlds {4] we find in the Doppler limit
the frequency response is a Lorentzian whose linewidth is given by
the two-photon lincwidth y,, plus a normally small correction
factor, (k,/k, = L)y, ;. which under certain conditions givcs rise to
subnatural linewidths (5].

Effects of dephasing collisions are included phenomenologically
to the density matrix by adding a pressure dependent complex
parameter yf} to y,{i # j). Hence the presence of buffer gas (in the
form of ground state noblc gas perturbers) will broaden and shift
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1. IKTRODUCITON

The speaker (IS) s on record as believing that occasionally,
for all its obvious disadvantages, taiks should be given by those
who had not been deeply involved, 1f at all, in the subject to be
covered. Possible advantages include great freedom in the choice of
topics, the lack of & compulsion to cover every detail of the topics
chosen, and an objectivity (if some ignorance) in accreditation.
Wefther of us had been knowledgeable in two of the three topics we
have chosen. To avoid pitfalls in our treatment of the third, asym=
wetric charge transfer, we have given a completely qualitative dia-
cuselon of developments in that sres.

Ve have obvicusly chosen areas we believe to be of particular
significance, but having picked thres aress, we cannot begin to give
the detafls necessary for 8 thorough understanding. Our primary pur=-
pose is to faterest those who have not read the original papers in
doing so.

IX. WNUCLEAR RESONANCES AND TRE PROSADILITY OF K-SNELL IONIZATION
1f atomic physics has been enjoying a rensissance because of
This rescarch vas supported in part by the Office of Naval Research

wnder Contracts NO0O!4-76-:-0317 and NOOO14-77-C~0553 and by the Na-
tional Science Foundstios under Crants PHY-7910413 aod PHYS(~19010.
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nev developments within the field, 1t is also true that there are
areas of atomic physics which are so well understood that sgreement
between theory and experiaent exceeds that in any other fileld of
physfcs. It is for the latter reason that an ares of interplay be-
tween atomic physics and another branch of physics can be extremely
useful in studying that other branch. Thus, for example, relatively
long nuclear half-lives, longer than perhaps picoseconds, can be mea-
sured directly, while relatively short nuclear half-lfves, shorter
than perhaps 10~2} geconds, can be determined by wmeasuring the assoc-
iated hali-width, but intermediate half-lives can be difffcult to
measure by either approach. Now the orbital period of a K-shell elec-
tron in a nucleus of atomic number I {s of order (2%a, 12)/(Ze* 'R) or
roughly 10~ 15727 geconds. One can then hope to dc(ernlnr intermed-
iate nuclear half-1ives if one can f{nd a measurable effect of the
nuclear half-1{fe on a K-shell electron. Consider, for exasnrle, the
scattering through an angle 8 in the center of mass frade of & nuc-
lear projectile P and a target nucleus T, with atomic numbers Ip and
1-[. respectively. The incident relative kinetic energy Eq = H‘%vi.

th M the reduced nuclear mass, {5 umed to be {n the neighborhood
of a rescnsnce with & half-life at. (We w{ll talk of tonization, but
the argument would be the same for excitation.) We lat P(ton) =
Pei(E ,8) be the racfo of the prodabilfty of the tonization of the
K-shell electron {1 the course of the nuclear scattering process to
the probability that there is no jonization during the nuclear scat-
tering. lonfzation {s frow the Initial (is) state §, with noraaliced
wave function 0‘(r), to the final continuum state with nornalized
wave functfion 0'(') we will find that P(1nn) will depend upon At.
We expect & significant effect {t the nuclear width [ * &/it 1s at
most of the order of the binding energy Ug of the K-shell electron,
or, equivalently, {f the half-life or tize-delay s at least of the
order of the orbital period of the K-shell electron.

In section 11 we use capital letters for nuclear energies, mo-
menta, coordinates {but not velacities), wave functions, and scatter-
ing smplitudes, and snan—Tez(er; fgr the cortesponding electronte
properties. We have Klﬁ - MV, and X¢h for the incldent and e-crgent
relatiye momenta of the nucle{. Ey and E¢ for the assoclated ener-
gies, R for the P-T separation and V for the P-T interaction, L for
the fnitial K-shell energy of the electron (e”) and cg for the e~
energy in its finel ionized state, and 7 for the T-e~ separation.
¥e introduce w via E(~Fy = fw @ cg—rq., We will study the prodles
both in the semi-classical approximation (SCA) and, in the context
of quantum theory, in the distorted wave Born approximation (IWBA).
We nov 1ist & number of approxixations which we will make in both the
SCA and the DWBA. We will later list additfonal spproximations to be
made separately in the SCA and DWBA approximations. The approxima-
tions which are made sore for convenience of discussfon than out of
dirs necessity are indicated by a star. With the approximations we
will make, the mathematics s trivial; fn the discussion below the
most difficult step is the & fon of sa exp 1al. The hard




part 1s of coutrse the justification of the approximations.
1) .TM tecoll of T can be neglected.

11) The P-e¢”~ interaction can be treated as & perturbation; a

oecessary conditfon for the valfdity of (ii) fs chat Zp << Zq.

“ 111) The e™-¢~ fnteractions in the neutral rarget atom can be
paglected.

We note that the ejected K-shell electrons have a continuous
evcergy spectrum and therefore provide a poor signature for foniza-
tion; a good signature is provided by the X-ray radiation or by one
of the Auger electron lines which follow the ionization. (Since the
X-ray is emitted by an electron whose initfal scate is sny of a num—
ber of p-states --~ primarily the 2p state -+- with equally populated
projections of the angular momentus, and whose final state {s an s~
state, the X-ray tadiation will be spherically symmetric.)

A. The Semi-Classfcal Approximatfon

iv’) The electron will be treated quantum mechanically, but we
assuse that the wotions of both P and T can be described clasaically.
Indeed, in the lab frame, it follows from assumption ({) that T is
alvays st rest.

wv') Ve sssume further that P has an impact pargmeter of zevo

with respect to T and sovgs with constant momentum Kih from time
t = — tot = -hat, vith R(t) = Kyv (¢t + 4¢t) in this {nterval, that

then collides with T, the two forming a composity system (with

{t} = 0) for a time interval at, that 1s, untfl t = + &ic, and thae
P then departs with constant momentum K¢h, with R(t) = I(tvi(hhﬂl).
{For inelastic nuclear scattering, one would s{mply replace v, by vg,
the cutgoipg telagive velocity, in this last expression.) The angle
¢ between K¢ and Ky {s fixed by the location of the detector.

The electron is subject to a perturbation H' which for the
woment ve write stmply as W'(¥,RK(t)). The amplitude ag; that the
electron will be in » f5na) state f at t = 4+ ® {f 1t was in sn {inl-
tial state 1 at t = —= {3 then given, in firet order time-dependent
porturdation theoty, by

Mag = ’-'

ey fiole (2.1}

vhere

.

w (hee)) = @ rg(EmERioe, @ . 2.2

The dependence of ayq on & end E, (through the presence of LT3}
1s often suppressed. mg the changes of varisbles t = t £ iir, wve
can rewrite Eq. (2.1) as

tha, = exp(-himst) Mg (0) + I(=,05k)]
+ np('sut)[-h“u;l(o) + 1Okl 2.3
whare
N 8 . e
1(a,8:K) & [ exp(iwe)B, (kv e)de . 2.4)
a
Ve then have
2
P(ton) = P, (8, ,0) = l.“(z‘.a)l . 2.9

To proceed further, we would use

R'[T.R(0) = -zpa’/l?-?(:)l . (2.6)

Since P(ion) depends upon ag¢ vhich in cturn depends upon 3t (through
the interference of the two terms in Eq. (2,3) for ag4). 8 comparison
of a theoretical estimate and experimental determination of P(jon)

. gives an estimate of At.

B. A Quantum Approach, fn the DWBA

In addition to assusing the validity of the DWBA, ve make the
following assuwptions.

iv") *The nuctear scattering process is sn elastic one.

v*) “The question of the P-T interaction V did not explicitly
arise in the SCA. In the DWBA we need not specify V but we will
assume that it is spin-independent and spherically symmetric, that
1s, that ¥V @ ¥(R). The effects of V(R)} are contained in the exact
elastic nuclear scattering ssplitudes vhich vill appear; these will

denoted iu general by F(R = K}, with R denoting an arbitrary




ewergent direction, and by l(i, -~ i‘) ] r“(:,o) for the scattering
process of interest.

vi") 8, the angle of scacttering of P, {e not small.

vii") The dimension over vhich the effects of V are significant
i{a very small compared to the dimension aoll., of the K-ghell. This
13 eninently reasonable with vegard to the nuclear component of V,
and 1t is not unmi onsble even with regsrd to the Coulomb componenc
of V, since large-sngle nuclear scattering {s dececmined largely by
¥(R) at small R.

vi11") We often neglect the difference between Xy and K' (bue
never vhen either appesrs in an exponent).

Note that. as opposed to the SCA, the DWBA preserves conserva-
tfon of linear and angular womentum snd of energy.

Ve now fnvoke the DWBA, as discussed in Taylor (1972), for
exemple, to write for the fonization amplitude f{ion) 2 f“(l‘,o)

2 ) * - . (4} .
Lson) = -(M/2eN )«vé"(u)ﬂhu)]vi’u)» . @.n

where, {n our present time-independent formalism, Il" & gt_(hu from
the R [R(t)] of Eq. (2.2) only in the replacement n* (T, R(t)] by
the (!n-tn“nnden( ({1 H'(r,R). As R~ w, the exact nuclear scat-

tering vave function ¥3*) behsver o8
iK% KR
$re U ereie . 2.9
1

-8
Similarly, since vs‘ ) - v(;,. we have

. -
e -1X_-R X R

e ke R0 T (2.9
[ {

In line with approximation vii®), only the asymptotic forws of the
nuclear vave functions ere relevant. (Note that these forms contain
the exsct elastic scattering amplitudes.) The insertion of (2.8)
and (2.9) into Eq. (2.7) gives four terma. We now make & pesking
approxisstion:

1x") .Ih drop al] comtributions involving exponencials which
contata l‘ or Ky snd or K¢ unless the exponent csn almost vaufsh,
snd vo sppreximste any factor .(li.l‘) of such an exponential by it

value for the direction(s) 'Ki and/or Ky at which the exponenf a)mosg
vanishes. Ve therefore drop che term proportional to exp 1(K{~Kg)-R
since the exponent is negligible only for 8 very small, s region we
have excluded, and we drop the cers proportional to R “exp i(ltd‘)l.
In the coefficients of the terms with exp 1(K;-R + K¢R) and

axp 1(-&- + KyR), we approximate & by -k; and by K¢, respectively.
Further, we use

2 2 2 -
LI (lt‘-l:()/(:‘ + 1‘) X (2 M/ (2K) wleg .

Piaally, since the angle of scattering is the same, we use rotational
tovariance to give F(-Kg « -Kg) @ F(Kg + K¢) = Fop(Eg\8), the last
step following by definition, ve drop terms in exp(t 1)(Ky + Ke)R
after having performed the angular integratfon over dR, sad we spprox-
imate 1/K¢ by 1/X4 to arrive at

-, ., et/
1K£(ton) = ru(:‘.o){’ Ho (RR)e afv,

Iv
L, .

- . ™
+ v“(zt.o){ Byy (ke A

Setting t = -R/vtl in the second fntegral and t = R/v {n the firsc,
and introducing

Qe l‘.(l‘.O)/P“(!‘.O) , €2.10)
ve have

?
P(ion) « [E(10a)/F, (B 00 =
- . 2
1300,m3k,) + Q1e~=,0:K )] m? [ERTH

wvhere the I's, defined by Eq. (2.4), are precisely those which
appeared in the SCA. .

Ve will be concerned with the case fw << By, for the probabil~
ity of the electron picking up an energy comparable to E5 fs neglfi~
gible. 1f we are off resonance, it follows that we can spproximate
Ke by l; and therefore Q by i, so that P(ion) is independent of
Ye2fE;,8), a8 {s to be expected: with H' treated in firat order per-
turbation theory, for a non-resonant nuclear resction, the back reac-
tion of the electron oa P can be neglected, f(lon)} s proportfocaal




to Foy, and P{ion) is independent of Fep- For a resonant nuclesr
Tesction, on the other hand, the slight change from €y to Eg can be
very fuportant. In other words, in the time independent DWBA, with
the further spproximation of using the saysptotic forms of the auc-
lear acattering wave functions, the dependence of P({ion) on the half=-
life of the compound nucleus originates {n the strong E dependence
of F(£,8) near & resonance. More precisely, on physical grounds we
aight expect the energy s given up to the K electron to be of or*-r
Ug. (Formally, this follows from the quantum matrix element Ilh( 1
for che electron defined by Eq. (2.2) with W'[¥,R(t)] replaced by
w'(f.R]. Thus, with s factor exp(-Zpr/a,) from ¢4, and in the
.?prixlnt(on In which 4¢ {3 proportional to exp(iks-T), we expect
Bgy(R) to fall off rapidly for %¢ larger than Zy/e,.) 1f F(E,8) is
to vary significantly as E varies by an amount Uy, one sust have
redu,.

- K

€. Comparison of the SCA and the IWBA

Even though energy, momentum and angular womentum are conserved
in the DWBA but not in the SCA, there ia a close relation between the
two approaches, and indeed we have already seen that they involve the
identical I (ntegrals. The analogy can be pursued further if
wit << 1, and {f we can approximate P(E¢,0) « F(E;~tw,9) by F(E,8) -
WAT(E,0)/IE, evaluated at E = Ey, so that, using the quantum mechan-
fcal time delay t defined by

T« t(L,8) = ~INILAF(EB)/3E

we can vrite Q » I-iwr. In the SCA, we then have from Eqs. (2.5)
ond (2.3), writing the latter with an over-all factor exp(lsivdt) and
then using exp(-iudt) ¥ 1-fesr,

«'p(t0n) = Ha-1aae)1(—=,0:k) + x(o,-;i‘) + ““;1“”‘,' (2.12)

To obtain P(fon) in the DWBA from Eq. (2.12) for P(fon} in the
$CA, we must drop the last term and replace At by 1 in the first
term. The SCA and DWBA estimates of P(ion) may not be quite as close
as they seem to be. Firstly, 4t is real while At can be complex.
Secondly, the DWEA P(fon) has no Hg (0} term. Indeed, in the SCA,
the K“(O) tern originates in the P-e~ {ntevaction during the time
PigatRe ?. while in the DWBA ve used the asymptotic forms of
Vr and IE' + which are surely fncorrect for small R and in parcic~
ular at R = 0. To obtain the DWBA analog of the Hy,(0) term, one
must expand the nuclear wave functions (not their asysptotic Corms)
in partial vaves, and study the monopole component of H', originating
in the region R < r. The polal is that the possibility of P pene-
trating the claseically forbidden regioa is rather larger for the

resonant than for the non-resonsnt case. MNevertheleas, wvhen all is L ]
said and done, the contribution from the region R < r will normally

be quite small; the monopole concribution can be significant, but

1ta inclusion does not change the form of Eq. (2.12), though & slight
redefinition is necessary.

We close this section with a fev cosments on the literature.

Similar processes had been considered earlier, but the present
process was first considered, in che 5CA, by Clochetti and Melinari
(1965). Blair et al. {1978) recorded, vithout proof, the DWBA theo-
retical result. The analysis presented above follows very clicsely
that of Feagin and Kochach (1981). A proof of the DW3A result,
somewhat of a tour de force, has been given by Biafr and Anholt
(1982). (The Appendix of this paper contains a study of varicus SCA
analyses.) See also McVoy and Weldenmuller (1982). The first experi-
went showing the effect of the nuclear half-1ife on the {ontzation
probability was described in the paper by Blair et a'. referred to
Just above. In that experiment on 'aNi and in a secord on "Sr by
Chenin et al. (1981}, protons vere elestically scattered across a
resonanca for which T wes comparsble in megnitude to Uy, and the
effect was both expected and seen. In an experiment by Duinker
et al. (1980) on the scattering of protons by '7C acrcss & resomance,
the effect was seen even though 1t is not expected, since here T
is much larger then Uy; this problem has not vet been resolved. A
short but very nice review of a nusber of experiments which deeply
involve the interplay of atomic and nuclear physics, not just the
effect of a nuclear resonance on X-shell ifonization constdered here,
has been given by Merzbacher (1982). See slsa "Twe Notes on Sec.
11" just before the list of teferences.

I11. EFFECT OF COLLISIONS ON THE EMISSION OF RADIATION
A. Introduction
Consfder s medium containing N two-level one-electron atoms.
The n-th atowm has the normalized wave function
a~+ * a,* > n,* >
AL LN (l..t)t)(rn) + Az(‘..")'z('n) . 3.0
-
where R, locates the center of msss of the atom snd wvhere :n is the
electron coordinate relative to the atom's center of mass. The pol-

arization {(dipole moment density} of che medium at position X and
time t 1s

- - -
P(x,¢) - I"“o"(x-‘) +ce (3.2)

———




where
?“ - !‘:"(:):vz(;)' N 3.3)

and vhere, assuming no correlations becween atoms, 0y, 18 an off-
dipgonal element of the ensemble sverage density matrix:

)]
- 1 s e e
NCIORT ‘ZIA‘;(x,nA‘J‘(x.z) . 3.4

The golarization of the medium or, equivalently, the "coherence”
vu(x.:). governs the response of the wediua to both an applied field
» {(as in spontanecus emission) to the vacuus field,

The population densigies of scgtes 1 and 2 in a macroscopically
onall regton centered ac X are oy Xet) and 0,,(X,t), regpectively.
The total fractions of atoms tn states 1 and s are fox (X,t)dX and
]n z(x.l)dx. The populations change due to pumping una fpontaneous
ui-llcn {natural decay). Changes in populations due to collistion
induced transitions are neglected here. Changes in the coherence
0y occur because of pumping, natural decay, dipole dephasing becween
stoms of different velocities (Doppler broadening), and collisjonal
decay (pressure broadening). We consider two-level atoms which do
not interact with one another, and which can emft and absorb radia-
tion and scatter from stationscy (infinitely magsive structureless)
perturbers. Recently, new {nsight has been gained fnto the under-
standing of collisional effects on the coherence. We describe here
the modern view of collisfonal effects on p,,. following closely the
work of Bersan (1975) and Berman et al. (19“).

8. Qualftat{ve Discussion

Traditionally, the destruction of 912 by collisfions is ateribe
uted ro & loss of coherence of the phases for different values of n
{phase interruption) of the products A?(R",K)A"(Rn.!)'. (The trad~
Stional theory s desccribed by, among others, ‘Sobel'man (1972).)
Hovever, an alternative explanation, applicable in the classical
vegime, is that gollistons destroy 0., by reducing the overlap of

PRyst) and AD(R,,0)%. To see this,’ve assume for simplicity that
the collisfon “{s {mpulsive and chat the a ttering angle {s small
compared to unity. The effective potential betveen an active atom
in state { and a perturber is, to a first approximatfon,

Y@ - fo v e, 0.9

wvhere % 1s the stom-perturber separation and V(‘r.i) is their inter- 10
action. An atom entering & collisfon with momentum d% fn state 1
will scatter through an sngle 8 1 given approximately by

1
01-',‘1[.7;_!! . (3.6)

* - -
vhere in the integrand ve may write Rebs Vt. with b aand v the
impact parameter and velocity of the incident atowm. Assuming the
diffraction angle 1/(kb) to be small, the scattering is classical
it

l‘ »» 1/(kb) . 3.7)

It this condition is sacisfied, the population u,‘(i.:) follovs a
classical trajectory. The trajectories for the two populations ave
classically distinguishable if

o -0 | > 1/(xb) (3.6)
21

-
in which cage the overlap of A';(Rn.z) and A:‘(;\,.t) is effectively
zero after the collfsfon. Therefore, assuring that the above {n-
equalities hold, 1f an atom enters a collfsion in & superposition
state, so that {nitially 0y, ¢ 0, the separation of population tra=
Jectories resgults in o vanishing after the collision. While this
view differs from the traditional (phase interruption) view, the dif-
ference is Qot so great vhen one considers the manner in which the
overlap A"‘(R“.t) “(Rn.t)' vanfshes in the classtcal limit; the quan=-
tum-pechanical overlap acquires & large phase which varies rapid’y
vwith apd the overlsp vanishes when averaged over slight varia-
tions of R,. It is interesting to combine Eqs. (3.6) and (3.8);
approximating avtln by V‘/b. Eq. (3.8) becomes

vy - v mla] > 1. .9

The value of b for which the left~hand-side equals unity is denoted

as b, the "Weisskopf radius”. For b < b, collistons are clessical

and destroy 0,, through trajectory eeparatioa (or phsse (aterruption

1in the tnduloml viev}. For b > b, the scattering is nonclassical .
and does not destroy Prat Thus py, survives collisions only in the
diffractive zone, that is, for b » b, aad therefore 1o a narrov for-

ward scattering cone.




€. Quantitative Discussion: Transport Equations

A mwe quantitative discussion requires the use of transport
equstions for the density matrix. To begin, we consider a beam of
one-leve’. atoms, esch of mass m and incident velocicy ?c, scattering
Trom & collection of perturbers with volume density N. The transport
equation, in the form of Eq. (3.14b) below, could be written dem
witho:t derivation simply on the basis of physical principles. How~
evel, we sketch a derivation here since ft facilitates the derivation
of the somevhat more complicated transport equations for two-level
atoms. The atoms in the incident beam sre sssumed Co have vave-
packeta of similar form but random impact parameters. Thus the nor-
walized ifncoming wavepacket of a typical atom {is

- .o
O“(k) - cxp(-lb'k)oo(k)

where 0,(;) s independent of the impact parameter P and s sharply
peaked when k equals w¥/n. Altei a collision, an atom is represented
by the oucgotng vavepacket ¢ (k). vhere (Taylor, 1972)

) - Y s k2 e Ch + b Ty,
.wx(k) Qh‘(i) + (ll')fdk S(R ~k*IE(R" + k)oh(k ) 3.10)

- -
t(k’ + k) 1s the scattering amplitude. The ensemble average proba-
bifty densities before and after the collialon are oy (k) and

0oyt (k), respectively, where the domain of integration is the cross
aecticcz2] area A of the tncidenz beanm,

- 2 - 2 - . 2
9,(k) = (UMf&'ble (I]° , [20, (B = fo,0]] , Gab

with o in or out. Now on average the beam encounters one perturber
ia the time interval t = 1/(NvA). The collision rate of change of
the prodability density n“(f.x) 2 p(k,t) 1s th:-vfore
0) -
. [ -om(lv.)
k3

-
plk,t)

h eoll

2 + 2 - 2
- Nvfa' mm(k)i ol LR O3 1 I {3.12)

If Eq. (3.10) 1 used to substitute for Ow;(;) in Eq. (3.12), the
iategration over b may be done by sssuming A to be sufficiently
large that we can use, for k ¥ k'

[t & @) - @@ - Tpeldoe,® . an

u where l‘ni aotes the cogponent of ¥ perpendtcular to V. An integra-
*dop over the variable k' may then be done using the fact that
0o(k*) 13 highly localized ~— ses_ the nnixnowu discussioa of Taylor
. (1972), pages 49-51. Secting pyg(k) @ p(k,t), the following trana-
port equation is obtained:

ll;%ﬁll o rek,e) ¢ [aw@E « e, . Gusa
coll

where, with g(¥) denoting the total cross section,

- - - 2
Wkt o B e Nk - B K e(ex) [EWTH)

rk) = en(M/mmt(k » ¥) = Nwo(R) « [aRwE -k . (3.16)

Nots that k = k' in Eq. (3.}és) since the perturbers do not recot]l.
Further, k « mv/f since ¢,(k) is highly localized. However, since
Bq. (3.148) (s linear, 1t applies when 0n(k) 18 a superposition of
deastcies localized in different reglons of k-~space; hence o{k,t)
may represent s broad distribution in %-space. From Eqs. (3.15) and
(3.16), EQ. (3.14a) can be written in the zore transparent fora

pk.o

. - - . 2
2 ~ Ny (K, e[ dk ] £ (kK)o ke 0) .

coll

(3.14b)

The transport equations for the density matrix ou(k.t). with
au(‘.t) the momentun space analog of og¢(R,t) of Eq. "(3.4), of two-
level atomy can be derived similarly 1f Collision {nduced transi-
tions betveen the two levels are neglected. We have (Berman, 1975)

”u‘t")
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vhere, if 't(t * %) 1s the scattering smplitude for an acom fo
state 1,

"u‘:' -8 e (R - 1)1;(1' < IUan |, IRTY)
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rzj(t) - fat-uu(t -k 3.19)
A - cznnea/me, (K - Dk« D)) . (3.20)

The superscript vc denotes velocity changing If !elosit {Mngin.
collisions gre neglected, that 1s, 1f Vyy(kek') = Wy (k)83 (k" -k) 0
that T35(K) = 3 4(k), the {nzegral terw and the term in r{§ cancel
in £qs.7(3.17), #nd these aqustions reduce o the much simpler equa~
tions of the traditional pressure brosdening thoory:

o, &0
2 ’ -0 , . (3.210)
coll
%»,,(%,0 " -
=12 e Pl e . (3.218)
i coll 127772
ph

Vith velocity changing collisions neglected, Iy, is, in the tradi-
tional view, the collision decay rate due to Lgl'" interruption of
the atomic dipole. If velocity changing collizions are allowed but
1f the scattering amplitudes f, and f. are equal, it follows from
Eqs. (3.18)-(3.20) and the optical théorem that rgg‘(i) = 0; thus
there is nn phase interruption of the atomic dipole durlng the col-
lision 1f the atom scatters as a structureless entity.

The quaiitative anaiysis of the previous subsect{on indlcates
that, in general, H\.',(I + k') vanishes in the classical scattering
regime due to trajectory separation. (More accurately, W, oscil~
lstes rapidiy and the {ntegral over the classical region varishes.)
W, gives a nonvanishing contribution only in the diffracti-e scat-
tering reglon. Thus any departure from a cransport equation for o,
of the form of Eq. (3.2ib) arises from diffractive scattering. Suc;‘
a departure msy be observed by creating a photon echo, as we aow
briefly discuss.

D. Laser Spectroscopy

Suppose that s siagle-mode luir of frequency 2 interacts with
the atgms. Assume the laser field E propagates in the z direction,
f.a., L~ !ocel(xz-at). In the abgence of collisions and under
sppropriate initial conditions o"( +t) factors into

i) =0 odo, (L0 (.22

where, following convention, we usa p,,(x) to denote different

13

fungtions for different arguments x, and vhere tT is the comporent 14
of k perpendicular to the z-axis. This factorization {s assumed to

hold, to & first approximation, {n the presenge of collisions. Sub=
oticuting into Eq. (3,17b), integrating over ky, and def{ning the
normalization of p z("T) ~=- it {s oot defined by £4q. (3.22) -— teo

be [p12(Kp)dy = 12 ve fiad

.,k ,¢) )
12 - qr’e b
o Lm ArTs0) « PR (L0
~ .
+ Ldk;‘l”(kt < ko (kt) Q.2
. 2 2. >, » >t
LR SRS K fd LSS CUE ST I (3.28)
] . 2 8 .+ -
Ty, 0] kgfy (R0, (k) (3.29)

where 8 {5 vc or ph.

The field frequency seen in the rest frase of an atom {s 4 =
8 - kv, (Doppler shift) where K = i/c and v, = Nk, /m. If
Q- w << Tﬂ + ul, where @ (s the trarsition frequeacy for the two
atonfc levels, p,,(k,,t) will oscillate {n tive with the f1eld as
piﬁk ot} = an({‘.:s-xp(mn) where §,,(k,,t) varies slowly vith
t irouting wave approximation). From Eq. (3.23), we then have
(Berman et sl., 1982)

3B (k‘.!)
(3

I L ph -
coll {0y, (k) + Pl (R D1G (x o)

+ Ldk;ll"(k; + kJexpl 1R(v v hel5, (klLe) (3.26)

(Note that since we are concerned here with collisional effects, we
have not included a term originating in (3/3t)exp(iit).) This equa-
tion governs the collision rate of change of ¢, in the presence of
& single-mode laser. To obtain the full rate oi change of oy with
fime, the izpact spproximation is assumed. In this approximatioc &
collision is regarded as instantaneous compared to all other relevant
time scales. Then 3p,,/3t|col) can be simply added to the time der-
ivative 3p,,/dt] 4 due to coupling with the radiacion field to give
the full ctime derivative.

Oaly the diffractive scattering coantributes to the tntegral of
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2q. (3.26). Mow diffractive scattering occurs in & very narrow for- 15
ward cone (assuming the atoms are not moving too slowly) and so the
accompanying velocity changes are small. Let 5v be the character-
fotic value g( the velocity change v; = v; in the diffractive region.
A coherence n”(k,.o) which is prepared at time ¢ = 0 will subse-
quently decay: let t. be the coherence lifetime. If “‘"c << 1 the
expgnentisl in the integrand of Eq. (3.26) wmay be set squal to unity.
Purther, 5, (h;,t) is expected to vary slowly over the diffractive
regton so that it may be taken wut of the integral of Eq. (3.26) at
the velue 51 (k ot). In thisn case, the term in r‘,“ cancels the inte-
gral term q. (3.26) reduces to the zu-ﬂuon.i equation

%, (x_ .t}
1272 « PR -
3 l""(k')au(k‘.!) . 1.27)

lcnll
leadiag to the prediction that é, has the decay rate !efrh(k‘)ovl .
where v is the natural decay rate. (If the uperl-nni nuuuion
tnvolves a distribution of k,, we wust average over k, snd include
the free Inductlon decay rate due to & relative dephasing of atomic
dipoles with different velocities.) However, suppose instead that
Kiwr_ >> 1. Tor t>1/(Kév) the exponential oscillates rapidly over
the §Ufracuvc tegion and the integral ia Eq. (3.26) vanishes so
we obtain (Berman et al., 1982)

3%, 0k, .t)

- ve ph -
-{l'n(hl) + Tu(k.)]o“(k'.t) . (3.28)

coll

leading to the prediction of the larger decay rate u(r‘,’i(k,) +
I‘r;‘(k,)] +vy,. Now t., the effective coherence lifetime of o,,,
depends on the experimental situatfon. Without going into the
details of a photon echo --- a lucid discussion {s givea in Sargent
et a}., 1974 --- suffice it to say that in a photon echo experiment
t. can be wade large; the condition KSvt. >> | can therefore be
sttained and the larger decay rate confirmed. This was done recently
(Mossberg et al., 1980), establishing for the first time the inflw
ence of diffrective scattering on the emission of radfstfon.

IV, ASTMMETRIC CHARGE TRANSFER

A measure of the great practical importance of the charge trans- .
fer process {s the very consi{derable experimental and theorecti{cal
effort devoted to that proccss. The areas in which significant pro~
gress has very recently been recorded {nclude atom capture as well
an electron capture, the eikonal approximation, and versions of the
Glauber approximation. Unfortunately, space permits only ecae topic,
an tmportant step in our uaderstending of asymsstric charge transfer.

To apprecilate this step, it wi'' be useful to consider earlier devel- 16
opments in asymmettic and syx ric charge transfer. There have been

& number of relatively recent .eviews in these areas (Basu et al.,

1978; Belkii et al., 1979: Shakeshaft and Spruch, 1979; Shakeshaft,

1982), and we limit ourselves to some brief comments.

We wish to consider electron capture by a projectile P (a bdare
Bucleus of charge Z,e) incident with a high velocity ¥ on & neutral
atow. The target aucleus T has a charge l.re. and the process is

) (z 1)

z
PP satom— P P 4+ 10nM)

One must and can do better (Briggs and Taulblerg, 1979) but we
assume that all electron-electron interacrions are negligible. In s
Born expansion in a non-relativistic c.ntext, the n-th terna repre-
sents the contribution associated with n scatterings. We make one
remark on potentfal scattering {scattering by a target with no inter-
nal degrees of freedom) before considering charge transfer. The Born
expansion, for sufficiently large incident energy E_and f. - sany
potentials, iz a convergent expansion in powers of V/E, vhere V is a
character{stic value of V. The first Born term therefere Jdozinates
for sufficiently large E for potential scacrtering.

We begin our consideration of charge transfer by studving the
sysmetric case, for which Z, = Z; = Z, In the first Born tern, the
main contribution originates In components of the target an¢ f{i{nal
bound state wvave functions for which the velocity of the eleciron s
comparable with ¥, and those aa;li(udes are very saall for v large
~-=~ more precisely, for v >> Ze‘/h, a characteristic electron vel-
ocity in the inftial and final state --~ even {f, as we do for sim—
plicity, we constder capture from and to ground states. The srcond
Born term can be described roughly as foilows., The electror can
tnictially have & small speed, for it is given a speed clice to v in
a close collision with P. The electron then noves, {n this i-ter-
mediate atate, almost as a free particle. (The uncertainty in ics
energy 1s 3E.pip/metiv/a, with a an atomic dimension, so trat *E/E
fells off as 1/v, but the off-the-energy shell component gives a
significant contribution). The electron is then scatterel elastic-
ally by T, emwerging with velocity close to v, and is capturec. The
second Born term dominates over the {irsc even though 1 {nvolives
an additional collision {and therefore an additfonal factor, propor-
tionsi to e?, which often suggests that the term inwolved (c <f
higher order) hecause the second Bora terw does not requite high
speed components in the initial and final bound states. It is
widely believed, though it has not been proved, that higher order
Sorn terms are dominated b; the second, for they suffer from having
still furcher factors of e, and they have no compensatring advan~
tages since the second Born term already allows low velocities in




the tottial end fioal stsces, b4

Pot many applications of great current interest, one has Z,
small, say unity, but Iy 2 3, and incident energies E such thnpv is
tather large compared to Zpe/f but not compared to Zrel/m. 1c s
llnu inappropriate to ignore multiple e -T collisions; rather, all
¢ -T collisions must be included. However, ve can continue to ignore
wultiple ¢ -P coilisions. 1In the Present asymmerric analog of the
second Born term in the syemetric case, the electron in the inter-
sediate state is described by a Coulomb wave rather than by a plane
vave. A natural starting point is to assume thag the Coulomb wave
is on the energy shell. This amounts to the impulse approximation,
developed largely in this context by Briggs (1977) and alsc by Koc-
bach (1960) and Azundsen and Jakubassa (1980). While this approach
gives good results at larger incident energies, theory and experi-
ment begin to disagree at energles rather sbove the value at which
the disagreesent had been expected. The polat 1is that the off-the-
eoergy-shell component of the intermediate state wave function ~—
sow a Coulomd wave --~ must be retatned. The analysis is tricky,
and requires further approximations. It is a major achievement that
the final result is obtained in tractable form: the predicted asym~
metric charge transfer cross section differs from the iwpulee approx-
imatfon prediction by a rather simple factor, one which gives con-
siderably better sgreement with the data at lower energies. We note
incidentally that this work not only provides a theoretical founds-
tion for asymeetric charge transfer but also provides much deeper
insight into a number of earljer approaches, placing them in a hier~
archy of successive approximations. See Macek and Taulbjerg (1981},
Sriggs, Macek and Taulbjerg, to be published, and Mscek and Alston,
to be published.

Two Notes on Sec. 1I:

1) Many intermediste nuclear half-lives can be determined by
®eans independent of the measurement of P(ion) --- most generally by
satching scattering data to the Breje-Wigner formula, but aiso by
using special techniques, such as channeling. One time interval
vhich might be determined most easily by a measurement of P(ion) is
the time interval during vhich two heavy ions remain in ome another's
Beighborhood in the course of & scattering process.

2)  The srgument of the first psragraph of Sec. I can be
Teversed; one can use a detatled knowledge of the properties of a
suclear resonance to detertine sn atomic property. Thus, let us re-
weite the equation above Eq. (2.10) s

f{ion) = P“(l‘..)A + Y.l(l‘.C)l

——— e e e

where A and B depend only upon atomic properties. This fora rezains
valid even if one includes contributions from small values of R.

How assume, for example, that the nuclear rescnant state i{s an s
state, and choose & to be 30° 80 that the only relevant interferénce
tern arises fros the monopole term, with both P and e~ emergzing ia
spherically symmetric distributions. One can then show that BeA®.
If one were mot at & resonance, one would have Fo,(Eg,§) * F (Eg.8),
and therefore f(ion) v 2 Fgp(E(,8)ReA. At resonance, hovever, one
can also, at lessc ia principle, deternine the {maginary componeat
ef A. 1 is nor clear however if theory and expetiment ate now good
enough to determine ImA. (See Blair ot al., 1978, and references
therein.)
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Abstract The physical principles underlying the com~
) bined radiatica field - collisional excitation of atams
“ 31 are reviewed, A discussion of both collisionally-
aided radiative excitation ("optical collisions") and
radiatively-aided inelastic collisions ("radiative
collisions") is presented.

i . i
INTRODUCTION 1 'i.

The purpose of this paper is to present a simple discussion
of atomic transitions induced by the simultaneous action of
a laser field and a collision.

Consider a reaction of the general form

- _

. A +B 2+ A, + B, (_1)

vhere Ai 2 and Bi ¢ are internal states of two atoms A and
- » »

B undergoing a collision and Q is the “requency of an

applied radiation field. If, in the anvsence of the colli-

sion, one finds .

Ai'l-ﬁﬂ"Ai

B

y 480+ B, L i

- vhile, in the abzence of the external field, one has

Ay + By > A + By,

Reproduction in whola or in part is pesmitted
for any purpose of the Umited States Government.
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the reaction (1) is of & type that requires the simultan-
eous presence of both a collisional interaction and exter-
nal radiation field if either or both final atomic states
are to differ from the initial ones. One may then spesk of
Mlaser-assisted collisions” or "collisionally-assisted
light sbsorption”. These are processes which have been the

focus of & large number of experimentall_l6 and theoreti-

ca117T-46

we discuss the physical principles underlying such reac-

investigations in the last decade. In this work,

tions; more detailed theoretical treatments msy be found in
the literature.

Reactions of the form (1) may be further classified
into two categories. The first of these we refer to as
Collisionally-Aided Radiative Excitations! (CARE) and has
been designated by others as "optical collj.sions".19 The

CARE reaction is easy to visualize (see Fig. 1). An atom A

. A Cortar liea . ;o
'

. 2 |
Q w B,

A

Figure 1, A schematic representati&n of the CARE re-
, action Al + Blf-hﬂ > A, * Bl. A laser field of fre-
quency 2 is incident on atom A and can drive the 1-2
transivion vhen atom A undergoes a collision with a

ground state perturber B.

is irradiated by a laser field vhose frequency R is close
2

et e s e = - ——— - ~—————
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enough to that of an atomic transition for a two-level
approximation to be valid. The field's frequency is de-
“tuned from exact resonance by an amount A which is large
compared to the natural and Doppler widths of the transi-
‘tion, but small compared to the thermal energy divided by 4.
With such & large detuning, the probability for the field
‘to excite atom A is negligibly small. However, if A under-
i‘goes a collision with atom B while interacting with the
field, the probability for excitation can be greatly en-
hanced. The energy mismatch 1A between the photon and
atomic transition energies ié compensated for by a corres-
ponding change in the translational energy of the colliding
atoms,

: The second class of reactions of the type (1) we refer
to as Radiatively-Aided Inelastic Collisions>! (RAIC) and
has been designated by others as "radiative collisions"T
or "LICET - Laser Induced Collisional Excitation Trans-

fer"

.~ Atoms A and B are prepared in initial states Ai and
B1 and, as a consequency of the combined atom-atom and atom-
field interactions, they emerge in some new iinal states
Ar and Br.
‘The transition between initial and final states is
aessumed to be highly improbable or energetically forbidden
in fhe absence of the applied field. Thus, one can view
the photon as providing the energy to ussist the inelastic
transition A1 + Bi g Ar + Bf. In genersl the RAIC cross-
gection will be largest if the photon frequency is chosen
to de resonant with the energy difference between initial

and final composite atomic states, However, as in CARE,

The process is depicted schematically in Fig. 2.

significant excitation can occur under off-resonance condi~
tions, with the energy mismatch again compensated by a
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Figure 2. Atoms A and B undergo a collision in the pre-~

A :

- . . .

sence of radiation. The field frequency Q is approxi-
mately equal to a transition frequency in the composite
AB system. The RAIC reaction is of the form "

~ . |
. IS T T B .
A1+Bi+‘ﬁ9-*Af+Bf. '

!
I

change in translational energy.

Before examining CARE and RAIC in greater detail, it is
useful to review the problem of the.interaction of a redia-
tion pulse with a two-level atomic system.

ATOM + PUILSE '

In this section, we examine the interaction of a two-level
atom with a radiation pulse whose electric field of polari-
zation € may be represented by \

.

E(t) = €E_(t)cos(ft),

The smooth pulse envelope function E o(t) is assumed to
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]

cos(ft). The difference |{? - w|, where w is the atomic
ftransition frequency, is taken to be much less than (w + ),

.allowing one to meglect the "anti-rotating” components of
‘the field. For en atom which is in its lower state 1 at
t = « @, ve seek the probability that it is excited to

state 2 following its interaction with the pulse. Taking )
the atom-field interaction to be T

1
)

o - ¥(e) = —peE(t),

: Right-hamiann
where 4 is the atomic dipole moment operator, one may use
Schrodinger's equation to obtain the time evolution equa-
tions for the state amplitudes. In the interaction re-
presentation and with the neglect of the anti-rotating
components of the field, one finds

!
' iAt )
a'], = ~iX(t) e 32 - Dol Centar dwie . .(23)

&, = ~1x(t) e~iat s o (2v)

- .

where A = Q-w is the detuning, x(t) = qu(t)/an is the
coupling parameter, and u = <1|p*€|2> = u®. The frequency

~ x(t) is sometimes referred to as the Rabi frequency.

The problem is conveniently described in terms of the
following parameters: (1) the pulse duration T, (2) the
frequency £ = %(t)/x(t) which determines the frequency com-
ponents characterizing the pulse, (3) the natural lifetimes
of states 1 and 2 wvhich are taken to be much longer than T,
‘justifying the omission of decay terms in Egs. (2), (L) the
detuning A, and (5) the Rabi frequency x(t). As a simpli-
fication, ve set f = T'l, which is a good approximation for
suooth pilses.
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tIf the detuning and enveiope function are such that

lAIT >> 1, the pulse contains negligibly small Fourier
‘components at the frequency needed to compensate for the

detuning. In this limit, the pulse is said to be adiabatic.
That'is, the excitation probability following the passage
of the pulse is vanishingly small, i.e., proportional to

‘exp(-2]A|T) for typical envelope functions. It is inter-
‘esting to note that the excitation probability remains

exponentially small regardless of field strength x(t), re-
flecting the fact that the Fourier components needed to
effect the excitation are essentially absent. As the field
strength X(t) increases, the excitation probability, which
is proportional to A% = Ifjnx(t)dtl2 for A% << 1, exhibits

some type of saturation behavior for A2 > 1l. Thus, with-

.out some additional interaction, an-adiabatic pulse cannot

appreciably excite the atom. The "addit;onal interaction"

can be provided by a collision.
. - f

CARE ~ *

"Asaume that the atom undergoes a collision with a perturber

during its interaction with the adiabatic radiation pulse.

" This collision occurs on a time scale T, (typically

lo-lasec for the thermal atoms under consideration here)

which is short compared to T (typically 10%sec). The
perturber can be considered as providing an effective time-
dependent potential which modifies the energy separation of
states 1 and 2 in a transient manner. If‘ﬁvi(t) is the
collision-induced modification of level i's energy, then
the instantaneous transition frequency is

N(t) = o + Vm(t).
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vhere .. . R — - T

.vm(t) =V (t) - V,(t). | i
It is implicitly assumed that V,(t) # V,(t), as is gener-
ally the case if levels 1 and 2 belong to different elec~-
tronic configurations .“7 The collisiom does not have suffi-
cient energy to couple levels 1 and 2 in the absence of
‘the field (see Fig. 1). b

The effect of the collision-induced transient vari- "
ation of the tramnsition frequency is to introduce eppre-
ciable Fourier components into the excitation mechanism at
frequencies up to w_ = T:l >> T}, These added Fourier
components lead to a new contribution to the excitation
probability which is much larger than the exp(-2|A|T) term
associated with the atom-adiabatic pulse interaction. This
"eollisionally-assisted”" contribution leads to a CARE re-
action of the form .

+8Q + A+ B ’

A+ By 2B

The state amplitudes now evolve according to

&) = -ix(tlexpl1dt- 1S EV (t')at )a, (3a)
."‘2 = -ix(t)exp[-iAti-if:VLs(t')dt']a.l. (3v)

subject to the initiel conditions
8,(-=) =1, a,(=) =0, (3c)

’ In order to discuss CARE, it is useful to again refer
to the various time sceles in the problem. The collision
duration, T c(b’vr) = b/vr. vhere b is the impact parameter
and Ve the interatomic speed associated with a collision, is
an important time parameter. Although T c(b,vr) varies

7
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. from collision to collision, we can define a representative

time T = tc(bo,vr) in vhich v _ is the average interatomic

_relative speed and b, is an impact parameter chosen to

guarantee that Tc is "representative". Generally speaking,

: bg Will be that impact parameter for which the phase
'I:; VLs(b.Vr,t)dt takes on a value of order unity; a typi-

7

~eal value for b_ is 10" 'cm. The dimensionless parameters
_vhich enter our considerations are |A|T which turns out to
"be unimportant, IAltc which critically categorizes the de-

tuning, X(t)T which represents the streugth of the atom-
field interaction before and after the collision, and XT
vhich represents the strength of the atom-field interaction
during the collision. The field strength X(t) is approxi-
mately constant during a collision and X represents some
characteristic value of |x(t)| for the pulse. A4s noted

“above, T /T << 1,

Weak Fields: YT << 1 - .

s . -2

For weak fields, the excitation probability can be calcu-
lated from Egs. (3) using first-order perturbation theory.
The results depend critically on the value of |A|Tc.

fIr IAITc << 1, the only changé in state amplitude a,
during the collisicn arises from the level-shifting term.

"The collision acts to provide a sudden change in the phase

o A
¢ of a,, given by ¢(h,vr) =/, VLS(b,vi,t)dt. This im-
pulse destroys the adiabatic response of the two-level
system, and gives a final state amplitude

. t [} o0

a, = 'i[fa: x(t') eibt at’ + & lt x(t')e'iAt'dt']
[

« - 2tlx(t ) /ale A 142505 (072)

vheretcia the time at yhich the collision occurs. Set-
ting lx(tc)l Z X, one obtains the excitation probability

8
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o -
|. (b,v_,=) | %= W(x/8)%s1n®(6(b,v_)/2] (b)

t K

1 P
)

,and the corresponding CARE cross section

; -°c(vr) = 2nf”|a (o,v, ,w)labdb ‘ (52)
T D). )

i

The result (L-5) is known as the "impact limit" since T, 1s
smaller than any other time scale in the problem. The im-
pact cross-section is independent of the sign of A since
the Fourier transform of the collision interaction is flat
over the range of A represented by lAlrc << 1.

The impact result can be viewed in an alternative
mannef. If we were to suddenly interrupt the atom-radi-
ation pulse interaction at any time t ot Ve would, on
average, find a population [x(t )/A] 1n the upper state.
The CARE cross-section is- equal to the product of this ex-
citation probability and the collision cross section
(= m2).

If IAIT > 1, the phase induced in &, during the colli-
sion by the detuning is not negligidle, and the impact re-
sult is not valid. As we have seen, one consequence of the
‘'collision is to shorten the relevant time from T to Tc, 80
that appreciable Fourier components up to 121 are intro-
duced. If this were all that occurred, one would expect a
CARE transition probability that varied as exp(-2|4|
Tc(b.vr)]. However, there is an additional effect, whose
origin may be seen in Fig. 3, which modifies this result.
In drawving the energy levels in Fig. 3, we have chosen
Vis(t) < 0; the case for arbitrary VLs(t) may be treated by
an obvious generalization of the method given below.

- »r
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':F{gﬁre 3. Energy levels of atom A during a collision.

"Instantaneous resonances” [ = w(t)] can occur for
detunings A < 0 only; for A > 6, the collision detunes
the atomic transition further from resonance.

The CARE cross section. is & strongly asymmetric
function of A when |alT, > 1. For a given A < 0, colli-
sions can always produce w(t) = § for short times during
the collision;h8 i.e., the syétems become instantaneously
resonant vith the field. Such times are labeled tl and
t2 in Fig. 3. The phase of 8,

varies rapidly owing to
the factor exp(-iAt), except at t. and t,, where the

1l

- -oscillation is suppressed by the factor exp [i

ffVLs(t')dt']. The major contributions to the excitation
amplitude are provided by these times of stationary phase.
The corrésponding CARE cross-section veries as an inverse
power law in IAI, instead of the exponential that charac-
?erizes other regimes. The fact that the points of
stationary phase provide the major contributions to a2(°)
is linked to the condition |A]T, > 1. That is, the (pulse
+ collision) does not contain the Fourier components at

A to appreciably excite the atom; in this case the in-
stantaneous resonances become a critical feature. In the

10
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impact limit, the system of (pulse + 'coi]:is.idx;) does
have appreciable Fourier coefficients at A so that the
'presence or absence of instantaneous resonances does not
_affect the excitatica amplitude, '
‘ "In contrast to the A < 0 case, for A > 0 the colli-'
sion pushes the levels further away from resonance (see
Fig. 3). The net result of this level displacement is
that the nonresonant side of the CARE cross section falls
off exponentially as a fractional pover of [A[T., even
after one averages over iﬁpact parameter.lg’hs’ﬁg’so
Thus, the CARE cross-section exhibits & marked asymmetry,
vith an inverse power law dependence on |A] on one side,
and an exponential decay on the other. A typical pro-~
_file is shown in Fig. 4.

.. _10°F -
*
<
o] _
10’10r d
6 -3 O 3 6

Figure 4, CARE cross‘section as a ﬁmztion of |A|'r¢=
in the veak field limit, xr_ = 1.0x10" . This cross
gsection is drawn for a level-shifting term which varies
as R'6 (R is the interatomic separation) and a value
b, = 1.1x20" Tem (see Ref. 37).

11
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It should be noted that CARE cross-section in the
veak-field regime cen also be obtained using traditional
‘pressure broadening theories of linear absorption or
lemission k9-52 . o ' “
Strong Fields: XT > 1 '_ E
As long as X < |A|, the previous perturbative treatment is
‘valid and the CARE cross-section is proportional to xz.

‘If both X? > 1 and X > 4|, the perturbation theory fails,
and a strong field theory is required. Space limitations

preclude a detailed description of such a theory, which
is conveniently developed using a quantized-field -
dressed-atom approach, but we cite some of the results.
For x > [A]| and XT, < 1 (vhich implies IA[r << 1),
~one is still in the 1mpact domain since the collision
time 1 is the shortest time scale in the problem. If
the atom - rediation pulse interaction is interrupted at
some arbitrary time, one would find an upper state Popu~
lation approximately equal to 1/2 since the field is
sufficiently strong (XT > 1) to lead to equal populations,
‘on average, in levels 1 and 2. (This factor of 1/2 should
be compared with the average population (x/A) found in

- - the wesk field case). Thus, in this limit, the CARE

cross~section is epproximately equal to nb§/2, indepen-
dent of both A and Y.

For x > [A] and XT, > 1, en impact theory can no
longer be used. During the collision, the field is strong
fnough to lead to rapid oscillations (so~called Rabi
oscillations) in the state amplitudes. Since x > |4,
these Rabi oscillations provide the dominant phase vari-
ation for the state amplitudes; the effective detuning in
the problem becomes X instead of |A|. There is no possi-

S 12
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i Y
bility of "instantaneous resonances" here; consequently,

the excitation probability varies as exp[-axtc(b,vr)].
Just as in the weak-field result for the A > O case, the
CARE cross-section obtained after averaging over impact
parameter falls off exponentially as a fractional power
of XTC. R U P 2 €
RAIC i
A tyﬁical RAIC reaction of the form
'Ai-fBi-wlm-'Af-fo .
is illustrated in Fig. 2. In going from the initial to
final state in the composite AB system, a number of inter-
mediate states may play a role, However, by summing over
these states and neglecting the effect of small variations
in nonresonant energy denominators, one may reduce the
problem to that for a two-level system coupled by an
effective operator U(t) which is proportional to the
product of the radiation field amplitude end the colli-
sional interaction. Explicitly we write i

u(t) = n(x/w) vc(t), !

vhere W is some representative frequency denominator

(w >> x) end Vc(t) is the collisional interaction. Since
U(t) = 0 in the absence of a collision, the RAIC inter-
action occurs during the collision only. Thus the pulse
time T plays no role at all in RAIC - the relevant time
scale in the problem is the collision duration Teo

The initial and final state amplitudes for the com-
bined AB system (see Fig. 2) obey the equations

13
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‘1 = -1(x/a)vc(t)exp[mt - iffvm(t')dt'] a, (6&)‘

"t - -1(x/G)Vc(t)exp[—iAt + if:VLs(t')dt'] e, (5'5)

o - ,

‘where { |

-

-'A = A - (Ef - Ei.) o i

[

and \?Ls(t) is the same collisional energy level shift en-
countered in CARE. An additional contribution to level
shifts resulting from the AC Stark effect will not be dis-
cussed here, but can be included by redefining the energy
levels at their Stark-shifted values, '

Weak Fields l
A perturbative treatment is valid provided la (2)] << 2,
'in vhich case s . j

‘Ia (@) = (/&) v (t)exp[-iAt + Utv (t*)at" ]dtl

it lAlt << 1, the amplitude for excitation is 1ndependent

of A, For |A|'t > 1, one egain finds an asymmetric line ow-

ing tothe effects of instantaneous ‘resonances which occur
for one sign of A but not the other.53
- The functional forms of Vc(t) and Vm(t) determine
vhere the maximum RAIC cross section occurs as a function
of A, Ina typical situation, the time-dependence of
.Vc(t) and VLs(t) is roughly similar and the maximum RAIC
eross gsection occurs for A = 0, However, the RAIC maximum
‘may occur for A ¥ 0 if the duration associated with V (t)
i3 much smaller than that associated with V 1s(t)s as

might be the cese in RAIC charge transrer33 where, for
an interatomic separation R(t), Vc(t) = exp(-CR(t)],

vhile vm(t) « [R(t)]™. Under these conditions, the

14
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'collisional coupling is significant only when VLs(t) is

producing a relatively large variation in the atoms'
energy levels. Since the effective level separation of
the composite AB system is no longer Ef - E, during the

i
time that the collisional coupling occurs, it is not sur-

_prising that the maximum RAIC cross section can be dis-

placed from A = O, : ,

'Strong Fields

- -and b varies as (x/v

To get some idea of strong field effects, consider Egs.
(6) in the limit that A = O and with the level-shifting
ternm set equal to zero. In that case, the upper state

probability varies as ; |
lay(b,v,.,) |2 = sin®l4g(v,v,)), ' i

vhere

-

Canter Jine . i

ik(b,vi) = (x/@)s7, vc(b,i;,t)dt.

The RAZXC cross-section is equal to nbg where b is an im-
pact parameter for which ¢ is of arder unity. For a
power lew potential V_(t) « [R(£)]™, n 2 3 ¢R « /6"
°)2% with a = (n - 1) .. The RAIC
cross-section, which is proportional to x for weak
fields, varies as x2/(n°l)(_,g, as the square root of the
intensity for n=3) in the strong field limit. For strong
fields, owing to the fact tha£ bR « xu, large impact
Parameter collisions only are importen: and vLS plays a
minor role for such collisions. The line width is de-
termined by the inverse collision time T'l = v /b

v %*1,~®. the RAIC profile narrows with 1ncreasing tield

1‘

r
strength.

15
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The ratio bR/bo can be used as a measure of the field
strength. If bR > bo’ one is in the strong field region
gince the upper state amplitude saturates at radii where
the level-shifting effect is unimportant. On the other
hand, for bR
overcome the effects of level-shifting and a perturbative
treatment is velid. Typicallyh, the transition from weak
to strong field occurs for field strengths of order
loew/cma. Te strong field effects in RAIC and CARE are
fundamentally different. In RAIC, the upper étate proba-
bility is truly saturated by the field-collisional inter-
action. In CARE, on the other hand, the upper state
probability amplitude is slways small if XTe >> 1. 1t is
the rapid Rabi oscillations that lead to a decreasing
CARE cross section with increasing ¥ when Xt >> 1 and
x/|al > 1.

<< bo' the collisional coupling can not

- . Comur line ) i

CONCLUSION

We have presented explanations of the physical processes
underlying combined radiation field-collisional exci-
tation of atomic systems. Alternative approaches could
" 4nvolve a "dressed-atom” description or a molecular-state
basis calculation. For a meaningful theoretical des-
eription of CARE and RAIC, one must use accurate inter-
atomic potentials and average all results over the spatial
'and temporal extent of the laser pulse. It may be noted,
however, that experimental investigations of CARE and
RAIC have revealed many of the qualitative features dis-
cussed above. '
This work is supported by the U.S. Office of Naval
Research. The content of this paper is based, in part, on
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Comment on *‘Observation of Subnatural
Linewidth in Na D, Lines”

In a recent article,' Shimizu, Umezu, and
Takuma proposed and demonstrated a novel new
method for obtaining subnatural linewidths, Their
approach can be summarized as follows: (1) A
laser field is perpendicularly incident on an
atomic beam; the atoms are in their ground state
and the laser frequency is nearly resonant with
a ground-state —excited-state transition. {2) The
phase of the field is suddenly switched (at ¢=0,
for example). (3) The excitation probability is
monitored as a function of atom-field detuning
A for various delay times T following the phase
switch. For fixed 7, the resulting excitation
probability amplitude contains contributions from
atoms excited before and after the phase switch,
the corresponding excitation probability contains
interference fringes as a function of A having a
width of order 1/T. If 1/T is less than the nat-
ural linewidth associated with the transition,
this method enables one to achieve subnatural
spectrosgcopic linewidths, Experimental verifica-
tion of this phenomenon was reported.’

In deriving an expression for the excitation |

probability, it appears that Shimizu, Umezu,

and Takuma' did not properly account for the
spontaneous decay in the problem. Consequently,
as a function of T, their maximum excitation
probability decays at twice the rate one should
expect. In this Comment, a derivation of the
excitation probability is given.

The problem is effectively solved by using a
density matrix approach. The atoms are approxi-
mated by two-level systems which enter the inter-
action volume in state 1. Using a field interaction
representation and neglecting the “antirotating”
components of the field, one obtains equations of
motion

F;u =A -~y ‘”1. Xt )pa, = x*(¢ )pm],

ﬁizz = =Y3aP22 ~ i[ X(t)Pm - x*(¢ )p,,] ’

P13 =gy * = =(713 +18)pyg +iX(t Nppaa = w11)
where x(t)=xe'®*), @¢(t)=0for ¢<0 and ¢{t)=¢
for t >0, xis an atom-field coupling parameter,
A is an incoherent pump rate, y, is the decay
rate for state i, and y,,=(y, +7;)/2. Using per-
turbation theory, one can easily obtain the upper-

state amplitude at time T following the phase
switch to be

pn(T, A)= ZAXzYm/l 7172(7122 + A’)] -2Re Axf(l -e“’)@@l"(?’n +iA)T1—eXP(-)’JT)J . (1)

nlre+id) iy -7) —ia)

To compare this result with that of Shimizu, Umezu, and Takuma,’ one evaluates p.,{=, A) ~ ps,(7, 4),
sets ¢ =7, and takes y,>>y, since state 1 is the ground state. The signal I(T,A) is

4Ax2 exp(~7,7/2)| cos(AT) —exp(-y,T/2)]

Hr, )= Tl () + a7

which is to be compared with the line-shape formula
*exp(-7.7) (12 )
1,.(1,8)= Z‘—)T:I’TL-\%’-—(A sin(AT) +cos(AT) -1

given in Ref. 1. Equations (2) and (3) qualitatively
predict the same type of subnatural linewidth
phenomenon. However, there are important dif-
ferences between the two results. First, Eq. (2)
leads to a central fringe that is narrower and
deeper than that of Eq. (3). Second, Eq. (3) pre-
dicts a peak intensity (at A =0) which varies as
exp{(-y,T) while Eq. (2) predicts one which varies
as exp(-y,T/2). For 2/y, 32 ns appropriate to
the Na 3P levels, the observed peak intensity de-
cay time of 40 ns (Ref. 1) is in reasonable agree-
ment with Eq. (2). Since the line shape repre-
sents an interference effect, one expects the de~
cay rate to be that associated with the coherence

(2)

3

Py (i.e., 7y,) rather than that associated with the
population u,,; (i.e., 7).

This research is supported by the U, S, Office
of Naval Research.
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Two-level transition probabilities for asymmetric coupling pulses

E. J. Robinson
Physics Department, New York University, 4 Washington Place, New York, New York 10003
(Reocived 2 March 1981}

In & recent paper, Bambini and Berman (A. Bambini and P. R. Berman, Phys. Rev. A
23, 2496 (1981)] presented amalytic solutions to a certain family of coherent-coupling
pulses for a two-level system. They show, for nonresonant temporally asymmetric
members of the class, that there are no solutions corresponding to vanishing transition
probabilities. In this Comment, we examine the problem in grester generality and demon-
strate that this property is the norm for asymmetric puises, and that a vanishing transi-
tion probability is possible only if severely overdetermined conditions are satisfied.

The problem of a two-level system coupled by an
external field has 2 long history in physics, dating
back to the 1930s.'? Originally motivated by in-
vestigations on atoms in magnetic fields, theories of
such systems have more recently been applied to
laser-related problems.’

Letal,azbethelmplitudaofthetwostatu.
We assume that the coupling potential connecting
the two states is of variable amplitude and central
frequency 13, s0 that, in the rotating wave approxi-
mation, the time-dependent Schrodinger equation
becomes a pair of coupled equations for a,,a,:

ia,=V(te'da, , (1a)
ici,=V(t)¢'“’a| . (1b)

Here A is the detuning of Q) from the atomic fre-
quency. We work in a system of units where fi=1.
For the case where V is a constant in time, the
solution for initial conditions a; =0, a;=1 at t=0

is
... | A
(A% /44 VY2
This is the Rabi problem. For this to be
relevant, the approximation that the rise time of
the field is much shorter than other characteristic
times should be a good one. In their paper, Rosen
and Zener® considered a case where this sudden ap-
proximation was not valid. They were motivated
by a serious discrepancy between results of the

a, '8 sin[(A2/44 V)] .

u

sudden-approximation theory and experiment.
They analyzed the effect of 2 smoothly varying
pulse, choosing a hyperbolic secant because of the
exactly solvable nature of the equations that result
from such a time dependence. For the hyperbolic
secant pulse, one may make a change of variable
that transforms the equation of motion into the hy-
pergeometric equation. Robiscoe* has shown how
to generalize this to the case of decaying states.

Recently, Bambini and Berman® have gone
beyond the Rosen-Zener problem. They show that
there is an entire class of envelope functions that
may be mapped into the hypergeometric equsation,
of which the hyperbolic secant pulse is sitrely one
member. All V(¢t) in the family, other than the
hyperbolic secant, are asymmetric in time, i.e.,
V(t)s£V(—t). Bambini and Berman show that for
these asymmetric pulses, there is no case, apart
from exact resonance, where there is a nonvanish-
ing transition probability, a striking and surprising
result.

In the case of the Rabi problem, on the other
hand, for any given detuning, there are always
values of the pulse area for which the amplitude 2,
returns to zero. In the Rosen-Zener case, the am-
plitude @,/ -- o) goes like (sind )/4, where A is the
pulse area, so that here too, once the hyperbolic
secant envelope function is specified, one can find
values of the area of the pulse for which a(+ «)
vanishes. Similar remarks hold for other sym-
metric potentials, where solutions have been ob-

2239 ©1981 The American Physical Society
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tained with computers.*” It is a most remarkable
feature of the Bambini-Berman problem that it ad-
mits no asymmetric cuvelopes for A£0 with a
nonvanishing transition probability. That is, it as-
serts that for asymmetric pulses of the form
studied, if the amplitudes a, =1 and a, =0 at

t = — o0, then at time t = + o, the probability for
finding the system in state 1 is nonvanishing, i.e.,
there will always be some population in state 1 for
this class of off-resonant asymmetric pulse. No
previous prediction of this kind of behavior seems
extant in the literature. It should be understood
that only envelopes of a single algebraic sign are
being considered, so that, for example, pulscs that
are completely antisymmetric in time are exciuded
from this discussion.

Bambini and Berman® reach their conclusion by
obtaining a complete analytic solution to their
problem. Since most pulse shapes do not admit of
closed form solutions, it is of interest to inquire
whether the nonvanishing of transtion probabilities
holds for other smooth, asymmetric pulses and
whether this property can be demonstrated in a
general way, i.e., through the structure of the equa-
tions of motion. 1t is to this question that we ad-
dress the present work.

Equations (1) may be put in the form of uncou-

pled second-order equations
al—(V/V+1A)a|+Va1=0 (2a)
d1—(V/V=iA¥y+Via,=0. (2b)

Deﬁmngz-—f S(ehHdr' ~;,w1thA f_.Vd:
and f =V /A, F.qs (2) become, in the 2 plane,

_‘._A_a;_‘_;‘ 22,=0, (3a)
f
a;+1—}a',+,42a,=o ) (3b)

We assume, with Bambini and Berman,’ that £(¢)
does not change sign, so that the transformation,
which differs from theirs, is single valued. If one
transforms Eq. (3a) via the substitution

b=a,exp [(~iar2) [, dr'/f (20 ) =aie= 2,

into an equation with the first derivative missing,
we have

AY iAf .

b A} |b=0, (3a"
+ 4f,+ T+

# “A ‘ ' 2 G

by | SO _IAL Ny 4 (3v)
M YY)

Equation (3b’) resembles a one-dimensional,
tlme-mdependcnl Schrodmger equation for a parti-
cle of mass 7 moving in the complex “potential”

2 . a )
V=-— _é~+'_AL L,
s "2 |2

where fi has been set =1.

This equation is to be solved sul Pﬂ to the ini-
tial conditions that b =0 at z =~ 5. If the
dynamics of the problem permit a transmon proba-
bility of zero for certain pulse areas, this means
b(z= ) also vanishes for those values of 4. In
short we must solve an eigenvalue problem and
find those values of A2 for which the sofutions of
Eq. (3b') vanish at z =+ % Now, for physical
pulses, only real envelopes exist. For these, 47 is
real and positive. If none of the eigenvalues A4?
meet this criterion, 4 will have an imaginary part
for all the eigenfunctions of Eq. (3b°), and none will
correspond to a system driven by an actual pulse,
i.e,, there will be no physically meaningful pulse
areas for which the system undergoes a transition
probability of zero. In the following, we shall as-
sume a nonvanishing detuning. Note that the case
of exact resonance is entirely equivalent to the ele-
mentary quantum mechanical problem of a particle
in a box, whose eigenvalues 42 are n?r2. In this
way, we confirm the simple result that the transi-
tion probability vanishes for pulse areas that are in-
tegral multiples of , if A=0.

We should comment that if one constructs an
asymmetric potential from two temporally distinct
symmetric pulses, one can, by making each of the
component pulses produce a net transition ampli-
tude of zero, cause the overall probability to van-
ish. To force the components to be exactly nono-
verlapping in time requires that they be sharply cut
off. Thus, these pulses do not conform to the
smoothness criterion of Bambini and Berman.’

We consider now pulses where the imaginary
term is present. We examine first the case of sym-
metric pulses. Let 42 be a typical eigenvalue. If
we replace the imaginary term by its negative, then
the resulting equation will have 4% for its eigen-
value. Now, since f(z) is symmetric in 2, f*(z) will
be antisymmetric. Therefore, the transformation
2— —Z reverses the sign of the imaginary term on
the left-hand side of Eq. (3b"), but leaves the eigen-
value unchanged. Immediately, 42=4, i.c., all
the eigenvalues are real, although not necessarily
larger than zero. For asymmetric pulses, the
transformation z— -2z does not reproduce the
complex-conjugate equation, and 42 will not, in
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general, be the same as A2*. This does not abso-
lutely rule out the possibility that for particular
f(t) and detuning, one might have one or more
real and positive eigenvalues, but demonstrates that
it could occur only by accident. We shall show in
the following that the conditions that must neces-
sarily be fulfilled for 42 to be real for asymmetric
pulses are severely overdetermined.

To proceed, we will analyze the problem from a
perturbative viewpoint, and assume that the entire
perturbation expansion can be summed. We do not
restrict ourselves to the first few terms, but study
the parity-related properties of the full series. We
take the zero-order problem to be

—bg~ | A \pg=nip @
0 3’ o=A00o -
his is Hermitian and identical to a time-
independent Schradinger equation, which has only
real eigenvalues. The imaginary term —iAf'/2f*
is to be considered as a perturbation.

We wish to contrast the case of symmetric and
asymmetric pulse envelopes. Assume f{(1) to be
symmetric—f (2) is also symmetric. [If f(¢) were
not symmetric about ¢ =0, f(z) would lack sym-
metry about its origin.] For this case, the unper-
turbed eigenfunction by has definite parity, and the
perturbation —iAf"/f* is odd under reflection. It
follows directly that if one writes a perturbation
series for 42 as an expansion in the usual way, con-
tributions from odd powers of the “strength” of the
“interaction” will be absent. Since only the even
orders survive, and the strength parameter is pure-
ly imaginary, the resulting eigenvalues will be real.

If the potential V'(r) is not symmetric neither
1/f2 nor f'/f? will be operators of definite parity,
nor will unperturbed solutions b, possess weli-
defined inversion properties. Hence, both even and
odd terms in the perturbation expansion will be
present, and the eigenvalues A2 will all be complex,
unless there is a case where, for a specific detuning,
the odd powers of the expansion sum to zero.

The latter is an extremely unlikely circumstance.
Equation (3b') is of the form

ASf!
b1t

We require not only that the odd powers sum to
zero, but that they do so for a value of A that is ex-
actly the square root of u. We cannot quite ex-
clude this possibility, but it is evidently highly
overdetermined.

To summarize, we have shown that the result
obtained for particular asymmetric pulses by Bam-
bini and Berman,® namely that there are no non-
resonant cases for which the transition probability
vanishes, is the normal consequence of the general
structure of the equations of motion, and applies,
apart from some remotely possible accidental cases,
to all smoothly varying, asymmetric pulses which
possess envelopes of a single algebraic sign.

—b"— b=4% . (5
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Comparison between dressed-atom and bare-atom pictures
in laser spectroscopy
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The theory of the interaction between radiation fields and atoms as applied to laser
spectroscopy can be approached using cither a bare-atom picture (BAP) or dressed-atom
picture (DAP). In the BAP, the basis states are those of the free atoms and free field
while, in the DAP, the basis states encompass some part of the atom-field interaction.
The theory of saturation spectroscopy in three-level systems is discussed using both ap-
proaches. Whereas caiculations are usually more easily done using the BAP, one can gain
useful insight into the underlying physical processes from the DAP. Moreover, when the
radiation field strengths (in frequency units) are larger than the relaxation rates in the
problem, the DAP equations simplify considerably and lead to line-shape expressions
which may be given a simple interpretation. The DAP is used to obtain resonance condi-
tions for traveling-wave fields interacting with three- and four-level atoms and for a
standing-wave saturator and traveling-wave probe interacting with a three-level atom. In
addition, the DAP is applied to several problems involving optical coherent transients. A
comparison is made between the various advantages of the BAP and DAP and an in-

teresting duality between the two approaches is noted.

1. INTRODUCTION

There exists today a wide variety of “Doppler-
free” methods for obtaining absorption spectra as-
sociated with atomic or molecular transitions.!—¢
The methods are “Doppler free” in that the width
nomnally occurring in linear spectroscopy can be
substantially reduced or totally eliminated using
nonlinear techniques. This suppression of the
Doppler width is generally achieved in one of two
ways. First, one can limit those atoms participat-
ing in the absorption process to a narrow velocity
range (cither by use of an atomic beam or by selec-
tive excitation with a laser field) ieading to a
corresponding reduction of the Doppler width, Al-
ternatively, one can arrange for the atoms to in-
teract with two fields such that the resultant fre-
quency seen in the atomic frame is not strongly
dependent on velocity (cancellation of Doppler
phases). Coherent transient spectroscopy provides
another method for obtaining spectral information
that is essentially free of the Doppler width. It is
also possible to combine the various methods.

There exists a rich literature devoted to the
theory of nonlinear saturation spectroscopy.! -
The approaches can be divided into roughly three

3
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groups. First, there is the so-called bare-atom pic-
ture (BAP) in which the atom-field interactions are
represented in terms of a basis using the (bare)
atomic eigenstates.”~!® Second, there is the
dressed-atom picture (DAP) in which all or part of
the atom-field interaction is solved exactly and the
resultant atom-field eigenstates are used as the
basis for further calculations.'>'*~* Finally there
are resolvent methods which will not be discussed
bere.

Most calculations were originally performed us-
ing the BAP. For two- or three-level atomic sys-
tems interacting with two or more radiation fields,
the “Doppler-free” absotption spectra were calcu-
lated using a density-matrix approach, It soon be-
came appreciated, however, that the DAP ap-
proach, previously used to describe optical pump-
ing experiments,?® could be advantageously applied
to laser spectroscopy experiments when one or
more of the fields is intense. The dressed-atom ap-
proach has proven to be extremely useful in obtain-
ing theoretical expressions for resonance fluores-
cence spectra when the exciting field is intense.!’

It is the purpose of this paper to provide a com-
parison of the DAP and BAP, to indicate the rela-
tive advantages of each approach, and to apply the
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DAP to some cases not previously considered. It
is shown that the BAP equations are invariably
easier to solve than the corresponding DAP ones as
long as one is dealing with single-mode fields in-
teracting with two- or three-level atomic systems.
For multilevel atoms or multimode fields, both
methods lead to equations that present considerable
analytical difficulties.

Although the DAP equations may not provide
any snalytical simplifications, they do enable one
to obtain an interpretation of the ongoing physical
processes that may be he’pful in understanding the
stom-field interactions. When the frequency
separation of the dressed-energy states is much
greater than the relaxation rates in the problem, an
important simplification occurs in the DAP. One
can interpret multiphoton interactions of the BAP
in terms of noninterfering single-photon transitions
in the DAP. The positions (but not necessarily the
strengths and widths) of the various atom-field

resouances are then easily and naturally predicted

using the DAP.

A ocomparison of the BAP and the DAP also
offers an interesting duality between the two ap-
proaches. It is shown that the roles played by the
stom-field coupling constants and the relaxation
rates are interchanged in the BAP and DAP ap-
proaches. In coherent transient spectroscopy, what
appears as an optical nutation signal in the BAP
now appears as a free-induction decay in the DAP.

"Other features of the two approaches are discussed

as applied to three-level spectroscopy, four-level

spectroscopy, saturation spectroscopy involving
multimode fields, and coherent transient spectros-

copy. .

It should be stressed that the DAP discussed in
this work differs in spirit from that of convention-
al theories.!"~2-2 In the conventional DAP, the
electromagnetic field is quantized and the dressed
states are cigenstates of the atom plus field; conse-
quently, these dressed states represent linear combi-
nations of products of atomic and quantized-field
cigenstates. In our case, the ficid is taken to be
classical. However, by using a field-intezaction

. - representation for the various state amplitudes and

forming appropriate linear combinations of the
atomic-state eigenstates, one arrives at equations
that are mathematically equivalent to the conven-
tional dressed-atom ones, provided the field
strengths are large enough to be treated classically.
Thus, even though the DAP cigenstates using clas-
sical and quantized fields differ in a fundamental
way, the conclusions and interpretations using both

approaches may be similar. It is in this sense that
we refer to a “dressed-atom” picture, although our
dressed states are not the conventional ones appear-
ing in quantized-field treatments.!?~3%26

In Sec. II the basic formalism is described and a
comparison between the BAP and DAP is given in
Sec. II1. The DAP is applied to the saturation
spectroscopy of homogeneously and inhomogene-
ously broadened three-level atoms in Secs. IV and
V, respectively. In Sec. VI, we discuss the manner
in which the DAP can be applied to multilevel
atoms or multimode fields and in Sec. V11,
coherent transient effects are discussed using the
DAP. Some conclusions concerning the relative
merits of the two approaches are given in Sec.
VIIL

Much of the material presented in Secs. II-V is
not new, but is reassembled there to provide the
basis for a comparison between the BAP and DAP
and to lay the foundation for the material that fol-
lows,

II. GENERAL FORMALISM

We consider an idealized three-level moving
atom which interacts with a linearly polarized elec-
tromagnetic field of the form

Blz,0)=6,[E, cos(Qut —Kyz +¢y)
+E; cos(Qyt — Kz +¢,)] . .1)

The atom-field interaction is of the form u, E(z,1)
where —p, is the x component of the atomic di-
pole operator. It is assumed that the wave (E;,Q,)
couples the atomic states | 1) and |2) only and
(E;,02,) the states |2) and |3) only. Within the
rotating-wave approximation,?® the reduced density
matrix of the atom in the ficld-interaction repre-
sentation®® obeys the master equation'>?

p=if)"'[HB)+Pm+A . Q2

Equation (2.2) contains three contributions. The
first of these involves an effective Hamiltonian &
and represents the atom-field interaction. The ma-
trix H is given by

—-Kﬂ a, 0
H=#|a, 0 a|, Q.3
0 ay A;;

where we have denoted the Doppler-shifted detun-
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ings by weak coupling between |2) and |3)." Many f-
e e ol
By=Aptkw, (2.4b) fined by

where [A)=cos8|1)—sind|2) , (2.80)
Agy =g —sgn(ay)Q, | | BY=3in6| 1) 4cos|2) , (2.8b)
Agyz=05n—sgn(eyn)Q; , (2.4¢) [C)={3), (2.8¢)
ky=sgn(oy )X, , - with
ky=sgnlwy)K, , \ 4d) sin0={ (1 ~B8(&} +4aD)- 1212,

and the Rabi frequencies by (2.92)
ay=pnE /2%, @.50) cosf={ 71+ By (K} +4a}) =122
ay=pnE) /28, ' (@.5b) - (2.9b)

in which wy is the energy spacing (in units #) be-
tween levels i and j, p; =p is the x component of
the ij dipole matrix element (notice p13;=0), and v
is the z component of the atomic velocity. The
second term in Eq. (2.2) describes relaxation pro-
cesses and is of the form™®

Braly= %R,,;uﬁu , 2.6)

where the elements Ry, represent the effects of
spontaneous emission or collisional relaxation. The
spontaneous emission can lead either to decay out-
side of the three-level system or to a transfer of
population between some of the levels. The final

In the discussion that follows, the states | i)
(i =1,2,3), will be referred to as states in a bare-
atom picture (BAP) and the states |a)
(a=A,B,C), will be referred to as states in a
dressed-atom picture (DAP).

The transformation (2.8) may be written

la)=Tuli), 2.10)

where the summation convention is adopted and
elements T, are given by

T,,=(T"),¢=(n’|a) . 2.11)

In terms of the T matrix the transformation be-
tween the dressed and bare density matrices is

term in Eq. (2.2) is an incoherent pumping matrix e
whose elements are of the form Pe=T"PoT, @12
Ay=Ady, an which is used to transform Eq. (2.2) into
=y . .
The states |1) and |2) are assumed 1o be Po=R) " HpPol+PptAp, Q13
strongly coupled by a;, whereas a, provides a | where o
I?,,sTﬂ,T"aﬁ 0 —-;-Z,|+%0M acosd |, 2.14)
- sind a;coca z”
ogq=(B} +4a})', {2.1%)
Pp,mt)ap™=(Rp)ap, 6P )ye » 2.16)
(Ap).‘ﬂ TdT.A‘ . (2-]‘)

(The angle 8 in Eq. (2.9) is taken to li¢ in the
range 0 <0 < 7/2 such that cosd and sind are posi-

tive. With this choice, dressed state B always has
8 greater energy than dressed state A. In the limit
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that @,—0, states |A4),|B)— |1),]2) if &3>0
and [4),|B)—|2),|1) if &5 <0]

The transformation 7’ has been chosen to diago-
nalize the A — B submatrix of Hp. In the limit
that a,—0, Hp is diagonal and one has a complete
solution to the problem. The DAP will be particu-
larly useful when a; is small, enabling one to carry
out a perturbation expansion in this parameter.
Although the matrix Hp has a simple structure,
the relaxation and pumping terms are now more
complicated. The pumping matrix, which is diago-
nal in the BAP, has both diagonal and off-diagonal
clements in the DAP as given in Eq. (2.18). More-
over, the relaxation terms are most naturally ex-
pressed in the BAP, where one can typically take
(no sum)

Ry =—1y88,(1-8,)

~Fy8yy8,x8,1 4+ TayBy ;85 1 (1-5,5)
2.19)

leading to a relaxational time rate of change of
of the form

By =—1yPy GH), 2.20)
Bradu=—TiPu+ 3 Typy 2.21)
J£D

where T; is the total decay rate of state / and T
describes population transfer from j to i due to
spontancous emission or collisions. While the re.
laxational decay and coupling in the BAP given by
Eqs. (2.20) and (2.21) is fairly simple, the
corresponding coupling in the DAP given by Eqs.
{2.16)-{2.17) involves many more terms. Explicit
expressions for the relaxation rates are given in
Appendix A.

To cr-apare the BAP and DAP we write down
the equations of the components of the density-
matrix elements in both representations. For sim-

plicity, we adopt a relaxation scheme in which

Ty=0and 7U=%(l“,+l",), corresponding to the
case in which cach level decays to some states oth-
er than states 1, 2, or 3. In the BAP, one has

ﬁll'Al—r-ﬁll‘fhll‘n(ﬁzl) ' (2.220)

Pa=A1—T1pn—2a; In(py )+ 20, Im(Byy) ,
2.22v)

P=A;-T3pp—2a; Im(By) , (2.22¢)

Pu= ~(ra+i8y By +ia\ (P —py)—iaypy ,
(2.224)

Pu= -(Yn+izn)ﬁn+l'a1(§n~ﬁn)+ia{5;| ,

@220
Pu==(rn+iky+iZ2)py +ia) Pr—iayPy ,

2.220)
Py=px", 2.229)

while in the DAP, the corresponding equations
read:

Pas=As~TPas+2BRelpy, Y420, Im(pe,) ,

. (2.23a)
Pes=Ap—T 3pps+2BRe(ppy)+2ay Im(fey)
(2.23b)
Poc=Ac—T cPoc—2a, Im(Pey)—2ap Im(pey)
.23¢)

Pea = —(¥eu +ioed ey +;‘a4 Boc—Paa)

~iappps+Bpca » 2.23d)
Pes=—(rcs +ivcs )3@ +iag(Foc ~Pas)

—iasPap+BPcu (2.23¢)
Pra =Apa ~ (V84 +i0n4 W +BBos+Pn)

+ia ppc—iagpey , 2.23h)
Papg=Ppa" » 2.23g)
where
A=A c0s?0+ A,sin’ , (2.24a)
Ag=A,sin¥0+A,cos0 , (2.24b)
Ac=A,, Q.24c)
Apy=Ap=7(A)~A,)in20 (2.24d)
T, =Ic0820+,sin% , 2.25a)
Iy=T,sin’04T;cos%0 , (2.25b)
Fc=T;, (2.250)
Yep=3{Ta+Tp) , @.25d)
ay=—a,8inf , (2.26a)
ag=a,cosd , (2.26b)
B=+(I;—T)%in20 , 227)
ocy =83+ 38y + (B +4a))2, (2.28)
ocp =Ry + 38y — +(B} +4ad) 2, (2.28b)
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The physical observables are the populations 5
and terms proportional to cither Re(g,)) or Im(g;)
giving the dispersion or absorption, respectively,
for the saturator (i,j =2,1) or probe (i,j =3,2). Us-
ing Eqs. (2.8)—(2.12), one can express these BAP
elements in terms of the DAP elements jgg by

Pr1=c08’0p 14+ 8in’60 Fpg +3in20 Relfip, )

(2.292)
Pra=tin07,4,+0080ss —sin20 Relpp,) |
(2.29b)
Pr=Pcc » 2.29)
P =7 5in20(5ps —Pas)+c08?0Pp, —5in’0F s ,
' (2.299)
Pr=c080pcy —sinlpc, . (2.29¢)

It might be noted that the above equations, to-
gether with the quantum regression theorem, could
also be used to calculate the spectrum of resonance
fluorescence from these levels.'>1%3!

III. COMPARISON BETWEEN BAP AND DAP:
APPROXIMATE SOLUTIONS

The DAP equations are more complicated than
the corresponding BAP equations, even for the
simplified relaxation scheme adopted in Sec. IL
One may, in particular, note the following features:

(i) In the DAP, in contrast to the BAP, the off-
diagonal element Gy, has a source term Ag,. This
disappears only when A=A, or a;—0,

(i) All direct coupling between 54, Pus> Paas
Paa is proportional to the difference between the
relaxation rates I'; and I';. The coupling parame-
ter is of order B given in Eq. (2.27).

(iii) If we neglect A p and B, the DAP and BAP
equations are equivalent with the replacements
G +e>a), apera,, and 4,8,C+1,3,2. The prom-
inent difference between the two representations is
that, in the DAP, all couplings are of order a,
{weak), whereas in the BAP, states 1 and 2 are
strongly coupled by a;. These features are illus-
trated in Fig. 1.

Clearly the BAP equations are easier to solve
than those of the DAP. However, for a strong sa-
turator, there are definite advantages in using the
DAP. Moreover, the simple modef configuration

- ,

considered here partly hides the power of DAP. A
better comparison could, perhaps, be obtained by
studying a case where both pictures must be solved
approximately. Some applications along these lines
are presented in Secs. VI and VII. For the present,
we consider the three-level scheme of Fig. 1 since
it allows for comparison with well-known re-
.un'.l-ls

Regardless of the level structure, the DAP sim-
plifies the interpretation of the probe-absorption
spectrum when the saturating field is intense, As
an example, consider a three-level system for
which two peaks appear in the probe-absorption
spectrum at Ay;~0 and Aj;~—A,,. If a, is weak
these resonances can be labeled as stepwise and two
photon in the BAP, but this interpretation breaks
down if a; cannot be treated in lowest-order per-
turbation theory. In the limit of large a;, however,
the DAP allows one to interpret the two peaks as
single-photon transitions between the dressed states
A-Cand B-C.

One way to solve the density-matrix equations
approximately is based on the assumption that the
off-diagonal components are small. In the BAP
this leads to ordinary perturbation solutions in
powers of a,. The expansion converges rapidly
provided that { A, | or the relaxation constants
are much larger than a,. In the DAP, the role of
the ¥’s and «a, is interchanged; therefore, the
corresponding approximate solution holds in the
limit that | A;; | or a; is much larger than the re-
laxation rates. Thus, for strong fields a,, a pertur-
bative approach works well in the DAP but not at
all in the BAP.

2]

/J,_../
re

8ap DAP

%
]
1

]

FIG. 1. A three-level system in both the BAP and
DAP. In the BAP, there is incoherent pumping to and
decay from each of the states. Levels 1 and 2 are cou-
pled by a strong field a; and levels 2 and 3 by a weak
probe field a;. In the DAP, both couplings a, and ap
between the dressed states are weak. However, there is
now a collisional coupling B of states 4 and B as well s
a “coherent pumping™ A, which is not present in the
BAP.
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For the present, we assume (validity conditions
to be stated below) that 5, is negligible. Then, to
zeroth order in a, it follows immediately that the
steady-state solutions to Eq. (2.23) are

Pas={Aa/Ta)80,s=n300,p . (ERY
Using Egs. (2.23) and (2.29) one obtains
iaycos’nd—n)

Yca t+ioce
fay sin’@(nd—n?)
Yautiog

The steady-state value of pj,, is related to the
probe-induced polarization. It can be seen in Eq,
(3.2) that the probe-field polarization may be
viewed as originating from two noninteracting
single-photon transitions between the dressed states
C-B (corresponding strength a;cos?6) and C-4
{strength a, sin’6).

An exact solution for s, (to first order in a,) is

given in Appendix B where it is shown that Eq.
{3.2) is valid provided that both

(33,+4a}) 255 3 | T,y | (3.30)

Pu=

(3.2)

and

|n&—nd | cos?,

| n@—n |sin?0>> + sin20 . (3.3b)

|A1—Ay]
@Dpy

Roughly speaking, Eqgs. (3.3) are satisfied if the de-
cay rates are much less than the frequency separa-
tion wpg, between states A and B.

The widths yc4, Yca and the positions wcp =0,
¢y =0 of the resonances given in Eq. (3.2) are ac-
curate if (3.3a) is satisfied. Equation (3.3a) enables
one to ignore any interference effects between the
two single-photon transitions of the DAP.
Mathematically, this assumption involves the
neglect of the Bpcp and B4 terms in Eqs. (2.23d)
and (2.23e), respectively, which, in tum, implies
that 5, and S are decoupled. Equation (3.3b),
on the other hand, is the requirement that terms
involving gy, in Egs. (2.23d)—(2.23¢) are small
enough to be neglected. Roughly spesking Eq.
(3.3b) is valid when (T, 4+ I'3)/wg, << 1. This con-
dition is not sufficient if two of the dressed-state
populations are equal. In this case one of the reso-
nances in Eq. (3.2) disappears, whereas in the exact
solution, the resonance does not totally vanish but
is down in magnitude by a factor of order I" /wp,.

IV. HOMOGENEOUSLY BROADENED SYSTEMS

We consider first a homogeneously broadened
system in which all the detunings 4,; are indepen-
dent of v as may be the case when laser beams in-
teract with an atomic beam such that k - ¥=0.
Once Eq. (3.2) is valid the interpretation of the
probe-absorption spectrum is extremely simple.
W:z define the probe-absorption spectrum I(Aj,)
as

A= m(py) , @1
a;

which is obtained by combining Eqgs. (4.1) and (3.2)
to give
Ycg c0s?0(nd —ng)

Yo +0ts

Yca sin?0(nd —n2)
Yea + 0

The two resonances are Lorentzians (which may
overlap) having the following properties:
C-B transition

Byy=-— %Az,+-}(A§,+4af}"’ (position) ,

I(Ap)=

4.2)

Ycs =V315in°0+y32c08%0 (width) ,
c0s’6(nl —n3)/ycs (height), @.3)

FIG. 2. Dressed-state populations n3,n3,n2 as a
function of the BAP— DAP transformation angle 6.
The BAP populations n$, n%, and n3=n2 are deter-
mined by the incoherent pumping and relaxation rates. ,
The gain factors for the CA and CP transitions can be
read directly from this graph. For the case shown
(T'y=4T;; nf:n%:n%=1:2:1.5), region I corresponds to
absorption for the CB transition and gain for CA, region
I to gain for both the CA and CB transitions, and re-

ion II1 to gain for the CB transition and absorption for
CA.
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C-A transition

Ap=—3Ay—3(A}+4a})'”? (position) ,

Yoa =731 60820+ 75, 8in’0 (width) ,

3in’0(n2 —n3)/yc. (height) . 44

The dependence of the heights and the nature (i.c.,
absorption or stimulated emission) of the reso-

- 2673

nances on nJ, nJ, and n? is easily carried out with
graphs like that shown in Fig. 2 which is con-
structed using Egs. (2.24), (2.25), and (3.1). The
linewidths always remain below max{7ys;, 73}
which implies that there is no “power broadening”
in these spectra.

One can note some interesting limiting forms of
Eq. (4.2). If field a, is very strong (a@;>> {4y |)
such that 6=m/4, then Eq. (4.2) becomes

_
1 1Ay A+A Fy+ya T3+vn
I(A;z):z*‘- T Tar : 3 1 7+ 3 : — |
3 2+1 T(T3+7)+(A5+ 4 —a)) T(Dst+ru)l+(An+ ;A2|+a|)
4.5)
which reveals two resonances of the same amplitude and same width, centered at Ay~ +a — -;-A;,.
On the other hand, if T'; <<a; << | 43|, then 8 << 1 and the C — B resonance takes the form
2 )2}1-1
Ml
1Ay cp~vnlni —nd) | i+ A”—Zz—l ]
Ya(n3—n3) + 2a}A;,
T Yhtah Ay(ha+43) |’
' 4.6

which is a Lorentzian with a small AC Stark shift.
If only the nonlinear part proportinal to a} is mon-
itored, the C-B resonance has a dispersionlike
slmpe.”

V. INHOMOGENEOUS BROADENING

According to (3.2) the probe response is negligi-
ble except near the resonances wcp =0 and w¢y =0.
The frequencies wcy and wc, are functions of 4,
Aj, and a,. Since A, and A3, depend on the
atomic velocity which is determined by a distribu-
tion function and since, in principle, the value of

" ay might also be determined by a distribution func-

tion, the general resonance conditions can be satis-
fied by one or several atomic subgroups in the sys-
tem. In this inhomogeneous broadening case, the
atoms sble to satisfy the resonance condition are
those responsible for the probe response.

Many features of the probe spectra can be
predicted with the aid of the simple graphical
analysis given in Fig. 3. To use Fig. 3, it is useful
to recall that wcp =o¢c —wp and wey =wc—w4,
where o, is the energy of dressed state |a) in un-
its of # given by the diagonal elements of the
Hamiltonian (2.14). In Fig. 3, ws and w, are

—
plotted as a function of Ay,. A distribution of Ay,

is indicated schematically by the vertical-hatched
column; the intersection of this hatched column
with the w, and wp curves indicates the range of
allowed values for w, and wp for this specific dis-

FIG. 3. Dressed-state frequencies w4, @y, and ac as
a function of detuning &;,. (The scales are in acbitrary
frequency units.) The vertical strip gives the allowed
values of A, for some inhomogeneous distribution. As
the probe is tuned, the o line moves vertically and its
intersection with the v, and wy curves gives the regions
of probe absorption. These regions are indicated by the
horizontal strips in the figure.
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tribution of &;;. The probe frequency (assumed to
be independent of A;;) appears as a horizontal line
on this graph which moves vertically as the probe
frequency is varied. The intersection of wc =4,
with the allowed values of @, (or wg) gives the
range over which the resonance conditions may be
satisfied. These regions are indicated by the
cross-hatched zones of Fig. 3.

The above analysis is modified somewhat if the
variation in A, is due to the Doppler effect.’* In
this case, a distribution of (axial) velocities

W (v)=expl —v%/u®V/7'u , (5.1)

where u is the most probable speed, leads to fre-
quencies

Wy=— ';‘(Az|+k|v)

— (A + kP +4a}]' 2,

(5.2a)

@p=— -;-(A;, +kv)
++{(Ag + k0P +4ad] 2, (5.2b)
@c=Ap+kw. (5.2¢)

For the sake of definiteness, we take k; >0 and k,
of arbitrary sign [see Eq. (2.4)] which simply
corresponds to a choice of the direction of the po-
sitive z direction.

Inhomogeneously broadened three-level systems
have been previously analyzed using a graphical
approach.'>!"2 We recall some well-known re-
sults and then discuss features not emphasized in
carlier works.

To construct a graph similar to that in Fig. 3,
we first define the dimensionless parameters

x =(Ay+k)/ay, (5.3)
ag=wg/a, (B=4,B,C). {5.4)
In terms of these parameters the quantity
ki
we=v+—x , (5.5
ky
with )
'V=[A31-(k2/k|)A2|]/a| (5.6)

is a linear function of x with slope of k,/k, and y
intercept of v. In Fig. 4, the dimensionless fre-
quencies w) wpwe are plotted versus x. For a
given A;, there is a range of x centered about

x = Ay /a; of width 2k,u /a, which determines

the values of w) and wj present in the system.
This range, which simply represents the inhomo-
geneous broadening in the system owing to the
Doppler effeci, is indicated by the vertical lines in
Fig. 4. The intersection of w¢ with o) and w} in
this region determines possible resonances of the
system since it corresponds to weg =0 or wey =0.
As Aj; is tuned, the o curve moves vertically and
scans al] possible resonances. The factors cos’0,
sin®9, n2, n3, and n$ which appear as weight fac-
tors for the resonances [see Eq. (3.2)] may be ob-
tained from Fig. 5.

The velocity averaging is easily performed by
noticing that for y,g<< |w,g| one can write

T
* Toca 700 Ty mag, 0 Ve

5.7
where WCB(UCB)=0 and | chg/av l ""’Cl# (ch

is a simple zero of wcg). In the case k,/k; >0
(depicted in Fig. 4) the probe absorption is simply

e
s

-2 Y

-4 % o )
S

FIG. 4. A curve similar to Fig. 3 in which the
dressed-state frequencies wy, &y, ¢ (in units of a,) are
plotted as a function of velocity through the parameter
x =(Ay+kw)/a;. Since ll)'c varies linearly with v and, ,
consequently, also linearly with x; the curve wc(x) is 8
straight line of siope k2/k, and o’ intercept
v=[A;3;—(ky/k)Ay ) /a,. The range of allowed x, indi-
cated by the heavy portions of the w), and wjy curves, is
centered at Ay /a; and has a width determined by the
Doppler distribution, which, in this case, is the inhomo-
geneous broadening mechanism. Tuning the probe
corresponds to a vertical displacement of the we curve.
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"An)=L W ax —Ay 0@29('"%-'"2) W ax —Ay, Sinza(,ng—llg) :
ky ky |8wcs /8% | [xmxcy ky N T
(5.8)

where the dimensionless velocity parameter x, Eq.
(5.3), has been introduced.

Equation (5.8) together with Figs. 4 and 5 can be
used to obtain some qualitative features of the
probe spectrum. One first determines the allowed
range of x contributing to the spectrum. Using
Eq. (5.3) and the fact that |v| <u it is seen that x
must fall within the range defined by

Au k.u
- p.

<—. . (5.9)

ay .
This range of x, centered at A,;/a; with width of
order 2k u /a,, is indicated schematically by the
heavy portions of w; and wp curves in Fig. 4.
Having found the allowed range of x, one then
proceeds as follows:

(1) The line wc(x) {Eq. (5.5)] is drawn for each
value of A;; (or, equivalently v) to determine the
position, if any, of resonances x =x¢((v) or
x =xcp(v) for which we =w) or we=wj, respec-
tively. Notice that a variation of v, which
corresponds to varying the probe frequency, is
represented in Fig. 4 by a vertical translation of
the w¢ line.

(2) At any resonance positions xq.(v), xcz(v),
the corresponding weight functions cos?6, sin6,
n2—ng and nd —nJ are read off of Fig. 5, and the
velocity distribution W[(a;x —A,))/k,] is evaluat-
ed at x =Xcq OT X =Xcp.

(3) The final factor contributing in Eq. (5.8),

B A
ox :-:c,(v)— ax X s xeo(v)

(a=A,B),

is the difference in slopes between the w¢ and w,
curves at the resonance positions. Using the above
steps, one can construct the probe spectrum for
various values of the parameters a,, k,/k, and
4;.

For positive slope (k3 /% > 0] of wc(x), it is ob-
vious from Fig. 4 that there always exists some
values of v (i.e., probe detunings A;,) leading to CA
and CB resonances. For k, negative (recall that we
have arbitrarily taken k, > 0), both resonances still
occur if ky(k; +k;)> 0 (magnitude of the slope of
wg greater than the magnitude of the slopes of the

r
asymptotes of the wp and w) curves). On the oth-
er hand, if k,(k; +k,) <0, wrp resonances are pos-
sible only if v> 0 and w¢, tesonances only if v<0.
There is a range of v

v2<vi=4|kolk, +k;)| 7k} (5.10)

for which no resonances are possible and no probe
absorption occurs.

Figures 6—9 illustrate the various cases. In Fig.
6 we have graphed wg,(x,v)=0 and wcp(x,v)=0
for the case k, >0. As discussed above, for each
value of x, there is one value of v for which
wcq =0 and one for which wcy =0. By mapping
out a horizontal strip giving the range of allowed x
and projecting the intersection of this strip with
the we, =0 and wgg =0 curves onto the v axis, one
obtains the range of V=[A32—(k2/k| )A"]/al for
which significant probe absorption occurs.

If k\u >>a; and | Ay | <k,u, then x is cen-
tered at A,;/c; and the strip of allowed x has a
large width 2k,u /a;>> 1 which always includes
x =0. In this case there is a wide range of v for
which resonances occur as shown in Fig. 7(a). The
CA and CB resonances overlap, leading to the typi-
cal probe spectrum shown in Fig. 7(a). For this
case, the probe spectrum is given by (see Appendix
(&)

FIG. 5. Curves which give the weight factors sin6,
©08%0, n (a=A4,B,C) as a function of x. In the exam-
ple shown, we have taken n%:n3:n3=1:2:2.1 and
l‘.:l‘,=3:l.

———
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Ay  Ayu+ay .
Iy [ [ ik /4 ]
123 0 aiver
(n§—nN+——3-n)
X |{n3—n3 Y na=r [Ajz—(k2/k|)Az;]z'f')éﬂa%/rlrz
(5.11)
where
k k:+ky,| ~
m=l‘n'k" +Ty ’: 2l ° (5.12)
1

It consists of a broad background term representing linear absorption plus a strongly power-broadened
Ycrentzian of width a)(¥2y/I",T;)!2. Although the wcy and we, terms are not themselves Lorentzxan,
their sum is. Equation (5.11) may be obtained from Eq. (24) of Ref. 13 in the limit of large a}.

For large detunings, | A, | >>a),k,u, the situation is depicted in Fig. 7b. The wcz and wc, resonances
are now nonoverlapping, leading to the spectrum shown. In this limit

2

ocpby— -El-+kzv , (5.13a)
71]
a
ﬁ’a-“—'An+A2|+’A—+(k|+kz)v , (5.13b)
21

and cos’@x=1, ycs =¥32 Yca =73 The resulting spectrum is the sum of two Voigt profiles

a  n3-a} [ s+ 8y +al/By+ivs
YT APL] B Para b

) 2 .
—n; Ap—ai/Ay+iyy
I(A )_ Z;

» lkzl [ | k2 |u

(5.14)

where Z; is the imaginary part of the plasma-dispersion function.?® The spectral components are Gaussians
if the arguments of Z; have magnitude much less than unity and Lorentzians in the opposite limit.

For large intensities, |a,| >> | Az |,k,u, the situation is depicted in Fig. 7c. In this limit both the cen-
tral value and the range of x is much less than unity; the resulting spectrum arises from nonoverlapping CA
and CB resonances. For this case we have

Ay Ad +k{?
oOcp~Byn+ Ay —a1+ |ky+ k)~ —ky fo 20 (5.152)
ca~8y+ 740 —a) rhrki—g K 8,
bt Mg bart (ka4 22, [y 4 SRR (5.15b)
Oy~ a v ———, .
ca==8y a+ay 2 1+, 2,
n’9=oos’8z 3+ and Yep = ¥cs = 7(¥31+732). Two (nearly) symmetric resonances appear at .
Ap=—5 2 Aj+a; and the spectrum is the sum of two Voigt profiles
Hau)e Ay AtA 1 A+ 38, —~ay+ivcs A+ TAn+a +ive
w3 |f- DTy | [yt thilu || lkat 1k |u 1tttk lu ’
. (5.16)
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FIG. 6. Curves representing the resonance conditions
wei(x,v)=0 and wegix,v)=0 for the case k; >0. For a
range of allowed x determined by the detuning (A, /ay)
and Doppler width (k,u /a,), one can find the regions
of probe detuning (v) for which absorption can occur.
Conversely, for any value of probe detuning v, one can
determine whether or not any resonant velocity subset
(x) can contribute to the signal. When k; >0, there ex-
ists, for each value of v, values of x for which both
®eq =0 and wes =0.

which are approximately Gaussians if the magni-
tude of the arguments of the Z; functions are
much less than unity. [In arriving at Eq. (5.16),
we neglected the small (A2, +k2v?)/8a, terms in
Eq. (5.15).]

The analysis is virtually unchanged if k, <0 and
ky(ky+k;)>0. The o), wp curves of Fig. 6 are
rotated by 90° about the origin, but the same type
of resonancc conditions occur. If k u >>a, and
| Ay | <kyu, Egs. (5.11) and (5.12) are still valid;
Yerr is now smaller than in the copropagating case
owing to some Doppler-phase cancellation. Equa-
tions (5.14) and (5.16) remain valid for the large
detuning and intense field limits. It is now possi-
ble, however, to have a narrow resonance in the
large detuning case, provided that k,~—k,.%

The remaining case k,(k,+k,) <0 is represent-
ed in Fig. 8. As discussed above, there is a range
of detunings v (v} <v2,) for which no resonance
values of x may be found. For v> v two values
of x correspond to the wcp resonance and, for
¥ & — V¥, two values of x correspond to the w¢,
resonance. The'spectrum for the case kyu >> a,,
| Az | <kyu is shown in Fig. 9(a). For any
|v] > v there are two velocity subgroups of
atoms which contribute independently to the probe
spectrum except in a region of width ~I" near
{v| =v,, where both contributions overlap. It is
just this overlap region which gives rise to the non-
power broadened resonances shown in Fig. 9(a).
As derived in Appendix C, the spectrum for this
case (| v] >v) is
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FIG. 7. Typica! probe-sbsorption spectra (in arbitrary
units) for the case k3 =0.6k, >0 in the three limits (a)
kiu>>a, ku> Ay, ® |An| >>a, k4, and (c)
a;>>kyu,|Ay|. In drawing these curves, we have
taken n9:n3:n3=1:3:4 and I') =Ty <<a;. In @), 4;,=0
and k,u = 10a;; in (b), Az =10a; and k,u =ay; in (c),
Ay =k,u =0.1a;. The inserts are curves analogous to
Fig. 6 and indicate the resonant-velocity subgroups
which contribute to the probe absorption at a given
value of v.
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n
1 2wtk +ky)
Iv=g o l T exp [~ [85—a,

(1]

(ky+-2k;,)

(iks | (ky+k2)]'2

z/kfu’] :

Ty k2| (nd—a) k ky 4k -t
X[("g—"g)'l' ks (3 —ns ]RCHIVI—V“—;{,—[II::' Y3+ lk‘ z‘r‘sz” .

Pylky| 42| ky+k;y |

_ The large detuning aad large field intensity lim-
its are depicted in Figs. 9(b) and 9(c), respectively.
Equations (5.14) and (5.16) may stili be used to
describe these profiles. For the intense field case, a
narrow resonance occurs if ky~—k, /2.

The Doppler-free nature of the narrow reso-
nances which may occur when a;>> k,u or
|31 ) >> kyu, a, arises from a cancellation of
Doppler phases. All atoms contribute equally to
these resonances; this feature is easily seen in Fig.
4. If a;>> kyu, the range of allowed values of x
narrows considerably and the heavy portions of the
wj and o curves reduce to points. If the oz
curve is tangent to the o), or wp curves at these
points, then all atoms contribute to the resonance.
This condition is

k; 1.1 Ay

I PO N | B (5.18)
k, 272 (A3 +4a)'?

leading to narrow resonances centered at
Ap=—7Ay+ (A} +4a]) 2, (5.19)
where the upper {(lower) signs refer to the v =0}

(wc=w)) resonance. If | Ay | >> k,u,ay, the al-
lowed x values are located on the asymptotes of

T oo
. a0 e
r.
2} 1
RILE
2} , \
4l i) NO H
CA res, ce
-B
R R S
1%

FIG. 8. Resonance conditions we,(x,v)=0 and
ocp(x,v)=0 for the case —k <k <0. There is now a
range of |v| < v, for which there are no resonant-
velocity groups of atoms.

(5.17

@
r &
=z
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0 i F— . " —3
-4 -2 0 2 4
v
T i o L X ¥ ¥
b ,
| v 4
)
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FIG. 9. Probe-sbsorption spectra for the case
ky/k = —0.6, but otherwise the same conditions as in
Fig. 7. Note that, owing to Doppler-phase cancellation,
the resonances are narrower than those in the
corresponding spectra of Fig. 7.




.

23 COMPARISON BETWEEN DRESSED-ATOM AND BARE-ATOM. .. 2679

the o) and wj curves. By having k, = —k,, the
wg curve coincides with these asymptotes so that
all atoms once again contribute. Since the reso-
nance condition is the same for all the atoms, the
resulting resonance is narrow.

On the other hand, when a, <<kyu,] Ay | <k,u
only a limited velocity subset of atoms, determined
by the pump intensity and detuning (i.e.,

Jkyv +44 | <ay), contribute to the probe absorp-
tion. The mulung linewidths are smaller than the
Doppler width, reflecting the narrower range of
contributing velocity groups.

VL. EXTENSIONS OF THE DAP APPROACH

The DAP allows one to gain physical insight
into problems involving more complicated atom-
field interactions. The dressed-energy levels of a
multilevel atom can be solved exactly or approxi-
mately. The weight factors of the spectra which
involve elements of the transformation matrix
from the bare to dressed picture are generally more
difficult to obtain. For dressed-energy-level
separations much greater than the natural widths
of the levels, a rate-type solution to the DAP equa-
tions may be used. In this section, some features of
a four-level problem and a three-level problem in-
volving a standing-wave pump field are discussed.
In Sec. VII some aspects of coherent transients are
examined using the DAP formalism.

A. Strongly coupled
three-level system'?13.1%,37-41

We first consider a three-level system in which
one must now diagonalize the complete Hamiltoni-
an. The eigenvalue equation

w(m+Az| )(w—An)—az(w'FZN)
—aflw~2A5;)=0 (6.1)

always has three. real roots @, (a=A4,B,C). Equa-
tions (2.23) now take the form

304: =Aq— rai"u + ZR ac;cb-ﬁob ’ {6.2a)

o
3¢=A¢-(Ynﬂ+iwaﬁ)ﬁap+2f¢naﬁu ,
oy

(6.2b)

where the coefficients are functions of the transfor-
mation matrix elements (i {a). The coupling

coefficients R,z .5 are all proportional to differ-
ences between decay rates I';. The w,p=w,~wy
are the frequency separations between the dressed
states. If |w,p| >> Ty, the off-diagonal density-
matrix elements are small and an approximate
solution to Egs. (6.2) is

Poa=Ao/Tq=nd, (6.3a)

ﬁ°¢,= —i [Agg+ S Ropoond ]m;,' . (6.3v)
(4

Transforming back to the coordinate system |i)
we obtain the observables gy, §2), or §3;. In the
special case when all I''s are equal ([; =), the
coupling cocfficients R qg,,s venish, and the exact
solution is simply

Poa=AalY, (6.49)
Pag=Aug/\y+iwgg) . (6.4b)

In this limit, the absorption spectrum for field a;,
is

I(Ay)= 15 rz+0).2.3

(6.5

where A=A, and w,,=0. Once the transforma-
tion matrix elements are known this formula is
useful for analyzing the strong-field absorption (cf.
the corresponding rather lengthy expression of the
BAP). The solution is more complicated when in-
terlevel relaxation is allowed or the decay rates
differ greatly. Then the spectrum must be ob-
tained using Eq. (6.2) or (6.3) together with the
transformation back to the BAP,

1

B. Four-level systems* -4

As shown previously, the DAP is especially
transparent when one of the fields is weak and the
strongly coupled part satisfies the rate-type solu-
tion. This result can be applied to a four-level sys-
tem in which levels 1,2,3 are strongly coupled by
fields @, and a, and one of these levels is weakly
coupled by a probe field to level 4. The cor-
responding dressed states are labeled 4,B,C,D :
where D is the weakly coupled state. To obtain the
resonance positions we have to solve Eq. (6.1). A
graphical solution is shown in Fig. 10 for fixed a,
as a function of a;. Whenever wp =a), (a=4,8,0)
a probe resonance results. A rate-type solution ob-
viously requires that the anticrossing in Fig. 10 is
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FIG. 10. Dressed-atom frequencies as a function of
a for ay=1, An=1, and Ay,=3 (all frequencies are in
arbitrary units and it is assumed that all relaxation
parameters have values much less than one in these un-
its). The horizontal broken lines give the dressed-atom
frequencies when a,=0. For a fixed a;, there are gen-
erally three possible probe resonances as the probe fre-
quency wp=2p is varied. For at=4, these positions
are indicated by the points R, S, and T.

large compared to relaxation rates.

If Doppler broadening is present one may ask
whether a splitting similar to the one appearing in
three-level systems with &,(k; +k,) <0 also occurs
in four-level systems. In three-level systems, the
splitting shown in Fig. 9 is caused by the absence

“ of resonant-velocity subgroups of atoms over a

range of probe detunings. In a four-level system, a
resonance occurs when wp =Ap +Kkpv is equal to
any of the solutions w,(v) of Eq. (6.1). Using the
Doppler-shifted values of all the detunings A;; and
substituting wp for @ in Eq. (6.1), one obtains a
cubic equation for v which always has at ieast one
real root.** This result implies that there is always
at least one resonant-velocity subgroup for all -
probe detunings of the four-level system. Thus,
the mechanism operative in three-level systems
leading to the split spectrum of Fig. 9 cannot oc-
cur here. The details of the probe spectrum may

(i) By =8y=0; v c=2tla}+ad'? wp=0;

(i) &y =Bpat=a} w4c=+B%+2ah"? wp=0;
(iii) Ay=-Bpal=a}; wsc=—78n+7(a%+8aD'? wp=—K;.

As an example let us consider the case (ii) in which a,

-~

|A>=%[l——‘-— 1D+ (243

R

4

DAP
8 c
PR S

FIG. 11. A classification of the atom-ficld interac-
tions for four-level systems in both the BAP and DAP.
The BAP interpretation, valid only to lowest orders in
the fields, is (a) stepwise absorption of ay, a3z, a3, (b))
two-photon absorption of @; and a; followed by absorp-
tion of a;, {b,) absorption of a; followed by two-photon
absorption of a; and a3, and (c) three-photon absorption
of a;, a,, and a;. In the DAP, valid at any field inten-
sities, there are three, single-photon processes which
contribute to the absorption. For intense fields a, and
a, the single-photon processes do not interfere.

depend on the number of resonant velocity sub-
groups contributing (i.e., one or three), but this
feature has yet to be investigated. (Notice that in a
five-level system, the quartic eigenvalue equation
can have 0, 2, or 4 real roots. The absence of real
roots signals a splitting effect similar to that

shown in Fig. 9.)

A comparison between the BAP and DAP pic-
tures for a four-level system is shown in Fig. 11 in
which the probe acts between levels 3 and 4. The
BAP nomenclature is valid in the small-intensity
limit only. Note that the processes a and b; have
the same resonance condition (A4;=0) and provide
two interfering channels for this resonance. The
DAP consists of three noninterfering single-photon
transitions allowing for a very simple physical in-
terpretation.

In some special cases, Eq. (6.1) is easily solved,
eg.,

=ay=a. The transformation is now

K2|
+34, ]D). (6.60)
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|BY=(a|1)+&y|2)—a|3))/Qy, _ (6.6b)

a a
IC)—-—[H- 2 ]|1>-———12)+ [1-—"—l|3). (6.6c)

where 0 =(A},+20))'2, 0, =0, wp =0, and wc=—Qy. If the probe couples levels 4 and 2 (wp=24,,),
if all the ¥’s are equal and if only level 4 is initially populated the response is simply

al & a’
1E=3r f+(A4,—n, ey T P+(Ba+0g) ] €N
The absorpuon spectrum consists of three Lorentzians."®
Equation (6.7) is applicable to the level scheme in Fig. 12 (k; = —k; =k, =k) for which
&y=Adyn+h (Ayy=0p—0), Bp=—A8y+kv, Bo=—Ay—kv (Ay=wy—0,) .
If Ay =0, the conditions for (6. 7) are satisfied (A3, =4y, =kv, a}=c}=a? and we get
a
I(8y)= (k% 2+2a2 P+[Ay+kv + (k2 +2a?) 2P
2
* Y’+(’Z::,+kv)2 TP btk -a(zkzv2+2a2)‘”]’ 68
The velocity-averaged probe-absorption spectrum (assuming ku >> 7} is given by
Haw=""2 o [-f%‘; ] 69)

There is no narrow structure in the spectrum. The result should be contrasted with the structure obtained
when a standing-wave saturator is used (see Fig. 12 and the discussion below).

C. Standing-wave saturator
{two-mode pump)*—%

As is well known, the interpretation of the spec-
tra obtained with a standing-wave (SW) saturator is
considerably more complicated than the running-
wave case.*s=33 Similar difficulties are encoun-
tered when the saturator is composed of two
running-wave fields having different frequen-
cies.*~% The question arises as to whether or not
the DAP offers any simplifications. .

In the rotating-wave approximation the equation
of motion of the density-matrix retains a periodic
time dependence owing to the beat frequency
8=0Q,—11, between the two saturator modes; in
the SW case, this beat frequency is twice the
Doppler shift, §=2k,v. According to the Floquet

FIG. 12. (a) A four-level scheme in which levels 1,3,4
are degenerate levels of a J =1 state while level 2 is a
J =0 state. The strong fields counterpropagate, are cir-

cularly polarized, and are resonantly tuned (A =0). theorem,* the stationary solution to the system
The probe field is 7 polarized and acts on the 2-4 transi- contains Fourier components with frequencies
tion. The probe absorption spectrum I for this case is w4p(n)=wyp+nd(n=0,+1,...), where w, and
flat. () For comparison, the probe-absorption spectrum wp are functions of the mode amplitudes and de-
for a three-level system with a standing-wave saturator tunings and are chosen such that (@] < [8].
is shown (see Ref. 53). These frequencies are related to the eigenfrequen-

.
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cies of the DAP. The states | 1,n,n,) and
|2,my,m, ) are nearly degeuerate if

mtny=mi+my+1=N,

where n; and m; are the number of photons in
mode i and we have assuriued w,; >0. For 2 fixed
total number of photons N there is an “infinite”
(=<2 X N) number of bare-atom states which must
be diagonalized. The diagonalization, which can
be performed using continued fractions, is not done
here. Instead we concentrate on some qualitative
aspects of the problem.

If the mode spacing 5 is fixed, a rate-type solu-
tion in the DAP is valid provided that both
|6—wps | >>7 and 05 >>y (Wpy =wg—a, >0).
Similarly to the running-wave case, probe reso-
pances are found when w¢c=w g +n8, where -
corresponds to the probe detuning (recall that the
probe couples to a third, unperturbed level). The
heights of the various peaks generally depend in a
complicated way on the detunings and amplitudes
of the saturator modes.

For a SW saturator the beat frequency 8==2k v
is velocity dependent. Difficulties arise since, for
slow enough atoms, the energy levels in the DAP
form a quasicontinuum. Thus a rate-type solution
for the DAP is clearly not applicable for
{2kv | <7. This region must be described by oth-
er approximations. For instance, in the limit
v—0, the atoms are stationary and the probe
response is readily calculated.>

Some qualitative understanding of the SW prob-
lem is obtained by constructing DAP energy-level
diagrams similar to those of the running-wave case
(see Fig. 4). Two examples are shown in Figs. 13
and 14,

In Fig. 13, we display the dressed-energy levels
as a function of kv for a SW saturator with de-
tuning | 4] >a. The standing wave consists of
two running-wave components labeled by
lay, k,.=k;>0)and (a_, k_=—k,). In the re-
gion kv << — ¥ (assuming A,,; >0), we can, to &
first approximation, use the unperturbed energy
levels w4 p associated with the running wave a,
since the wave a_ is strongly detuned and acts
only as a perturbation in the region kv << —7.
The dressed-level frequencies associated with the
a, wave are given by [sec Eq. (5.2)]

4 p(n)~ — %(An +ky0)
F30(Ay+k 0P +4a 124 20k o .
{6.10)

R

§ 10

FIG. 13. Dressed-state frequencics wj(n)=w)
+2nk,v/a, wpln)=wg+2nkv/a, and
we=(Ay+kvi/a (ky=~—k,) as a function of k,v for a
large-field detuning [ Az { >>y. Values for n are given
by the integers labeling each curve. All frequencies are
expressed in units of a; the detunings are A, /a=10
and Ay /a=~—1. Intherange y< | k| < |B2y]}, the
frequencies w,(n) and wy(n) are approximately given by
wn)=—B83+ | k| +2nkw and wp(n)=2nk,v. The
diagram may be used to determine resonance conditions
in regions I and II1, but not in region II where the rate-
type solutions of the DAP break down. Resonant-
velocity groups are determined by the intercept of the
we curve with the curves w) z(n). In the example
shown, the major contributions to the probe response ar-
ise from the crossings denoted by the large dots (see Fig.
4 of Ref. 53).

Eguation (6.10) is not strictly applicable at any
value of kv where two of the eigenfrequencies are
degenerate. At such points, we must use degen-
erate perturbation theory: the net result is that the
crossings are transformed into anticrossings owing
to the action of the saturator mode a_. The ener-
gy levels are sketched in Fig. 13.

In the region kv >> ¥, the roles of ¢, and a_
are interchanged; the corresponding dressed-level
frequencies are given by Eq. (6.10) with the re-
placement of k; by —k; anda, by a_.

In the intermediate region —y <kv <7, the
rate-type solution of DAP fails. There one may, as
a first approximation, use the results valid for
v =0 discussed in Sec. IV modified to incorporate
the standing-wave nature of the saturator. In this
region Eq. (6.10) is replaced by

w4~ 1A T 7IAN +4al(2)) 2, 6.11)
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where

(6.12)

The inhomogeneity in w4 5, oOwing to the z depen-
dence of a(z), can be treated by the methods out-
lined at the beginning of Sec. V.

Tuning the probe corresponds to moving the line
@c=~A3+k,v vertically. For each value of Ay,
there exists an infinite number of resonant sub-
groups v satisfying the condition ec(vi=w, pl{v,n).
Whether these resonance subgroups really manifest
themselves in the probe absorption depends on the
magnitude of the various weight factors derived
from the BAP—DAP transformation. For exam-
ple, in the case shown in Fig. 13, the two major
resonant-velocity subgroups are determined at the
intersection parts of the wc and dressed states
shown in the figure. For other detunings, one can
map out the contributing resonant-velocity sub-
groups and obtain qualitative agreement with the
numerically calculated curves of Fig. 4 of Ref. 53.

Figure 14 represents the case of a resonantly
tuned SW saturator (a, =a_=a) for which the
exact DAP energy levels are given by*6—*

alz)= |a+e_u"+a_e”‘"| .

@4 g{n)=nk,v
w4n)=—|kw)+2nkv, wgln)=2nk .

The method for determining possible resonant-
velocity subgroups remains the same. It should be
stressed that this method indicates the positions of
possible resonant structure. The determination of

Paa=As~"Pus s
Pra=As—1Pms ,
Pra=An~y+iog, P -

a,.]

ok

FIG. 14. A diagram corresponding to Fig. 13 for a
resonantly tuned (4,,=0), standing-wave saturator. In
this case, the exact dressed-level frequencies are given by
app(r)=nkw/a [ws(n)=— |k | +2nkv;
wp(n)=2nkp]. We have chosen a probe with detuning
Ay /a=—35 and propagation vector k;~k, such that
@c=~~—5+kv/a. Some of the resonant-velocity groups
indicated by the arrows manifest themselves as distinct
peaks in the velocity-dependent probe response (see Fig.
2 of Ref. 53).

the weights associated with these resonances rep-
resents a much more complicated problem.*6—%°
The striking difference in probe response for run-
ning- and standing-wave saturators is illustrated in
Fig. 12. The structure observed in Fig. 12(b) has
its origin in the various harmonics which enter
when a standing-wave saturator is used (but are ab-
sent for traveling-wave saturators).

VII. DAP TRANSIENTS
A. Two-level system
The steady-state spectra have been given a simple physical interpretation using the DAP. It is interesting

‘to study also transient behavior using the DAP. For simplicity we assume that [';=I;=y in which case
the DAP equation of motion for the AB system is simply

(7.18)
{7.1b)
{7.1c)

[Notice that we have assumed a;==constant; therefore, Eq. (7.1) can be applied only for stepwise changes of

Assume that ficld a, is switched on at time t =0 leading to an optical nutation signal in the BAP. The

solution of the DAP equations (7.1) is
Pacl)=(Ag/YN1-—€~7) 4 Fpal0)e T,

(7.2a)
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Aga

— (1—e~T+oa¥ L5 (O ~ty+img (7.2b)
24

Pralt)= [

The populations show a simple exponential decay towards their new equilibrium. The oscillatory nutation-
type behavior is contained in Sg,. The initial conditions, obtained from (2.29) for an incoberent initial state,
are given by

Pas(0)=n% cos?0+n)sin’d , (7.30)

Pas(0)=n)sin?0+n3 cos’6 , . (1.3b)

Pra(0)= -;(n. —nJ)sin20 . (7.3c)
Using Egs. (2.24) and (7.3) in Egs. (7.2), we find

Pac!)=Paal0) , (7.42)

Pralt)=+(n8—n)sin20 | —L—(1—e~THosYy mrHIOn | (7.4b)

y+iopy

The dressed-atom populations remain constant during the transient. If wg, >> ¥ we can write

Paa(t)=pga(0)e " THOB" (7.5)
Nutation in the BAP corresponds to free-induction decay in the DAP. In the BAP the switching on of a;
creates the coherence p,(, while, in the DAP, the same change destroys the initial coherence pg,(0). Ac-
cording to (2.29) all the observables f,;, §;, and Gy depend on Jg, and, therefore, reflect the decay of 5g,.

The DAP does not offer any substantial advantages over the BAP in calculating the free-induction decay
or photon echo of a two-level system (although it may be useful for nutation echoes).®! In both cases, the
field is off for a long time period between the pulses when the BAP and DAP coincide. The DAP is a
more natural approach when a strong-field —atomic-interaction occurs.

B. Three-level transients®?-72

The DAP can provide a useful description of three-level transients. For a strong pump field @, and a
weak probe a,, Egs. (2.23) give the time evolution of the system in the dressed basis. The DAP is most use-
ful if either (1) field a; is constant and field a,(1) undergoes some transient behavior leading to optical nuta-
tion, free-induction decay, photon echo, etc. on the BC and AC transitions (see Fig. 1) or (2) the field a, is
switched on at some time and a, may have an arbitrary time dependence.

We consider first the case when a, is constant and a, is switched on at ¢t =0. Equations (2.23) and (2.29)
describing the probe response are (assuming I'y=T',=%)

. ﬁa =—(yeq +iocy Pcu —~iay sine(ii%c —ﬁo,“ )—ia, cosﬁpou s (7.62)
Pes=—ycp +iwcs g iy cosO(Pec —Pos) +ia; sinbpys , (7.6b)
’ ﬁn = coseﬁ CB — Sil'lo"'c‘ y .7

subject to the initial conditions ¢4 (0)=pcg(0)=0.
The Pap are the steady-sta:e dressed-atom densny matrix elements. Solving Egs. (7.6) using the steady-
state values p,,-A /r-—n,, pA,~0 and pM ~0, we obtain
2 o 2
iaysin?0(nd —n$) - oy cos?0(nd—n ) -
Paall)= 2 -c A) (] e~ Taa+ingsh) 2 C=Ra) | tras+imcaiy
Yo Hioey Ycs +iwcy
The oscillatory behavior which appears in homogeneously broadened systems may disappear if inhomogene-
ous broadening is present. The oscillations may, however, remain observable if wcy or wcp depend only

(7.8)

e—
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weakly on the atomic velocity. As an example let us consider the case when (5.15) is valid. The velocity-
averaged CA contribution is (taking nd=n?=0)

[ [
(5,,(:))a=_§k’l,§[z “—k*fl —expl —(y—iaht —+k*2u??)Z ": {.-k'ur“ , (7.9

where Z (£) is the plasma-dispersion function,
k'=|ky+ 1k}, y=5(T3+T)

{recall I';=T)), and @ =Ajy+-a,+ %A,,. The time-dependent part in (7.9) disappears in a characteristic
time min[(k'u)~',y~'). ¥f k'u >> ¥, velocity dephasing is the dominant decay mechanism; in the case
k'u <<y, the system behaves as a homogeneous one decaying at a rate ¥ and oscillating with a frequency
Ay+ay+ 5 Au)

Ina second example, field a, is kept constant and a; is sthched on at t =0. The probe response reflects
the decay of the initial 534 coherence (recall that py pM and pm; remain unchanged). Assuming that (7.5) is
valid, we obtain from (7.6)

—trey gy _ iaysin@(nd —n3)

Pcal)=pc4(0)e T A (e~ Waatio )l)

Yo +iodcy
iaz(n?—ng)sinzecose (e —(y+ioget
Z(Ya —Y+ia)c3)

Pca(t)=pcp(0)e
pee pee Ycp+iocs

iay(n$ —n3)sin20sind o
Uycp—v+io) :
with initial conditions

Pcal0)=—ia;sin(n] —ndNys+ikyy)"",
Pesl0)=iaycos8(nd —nd)yp+ily)~!.

_(,.c,+1.,,cn,,+ iaycos8(nl — ng)(

—e Waatocty (7.10a)

~(yep+iocpht
1—e~ Tooti®c)

—e ~Tartioaly (7.10b)
(7.11a)
(7.11b)

-

The assumptxon l‘l =[",=v implies that
Yea=Yeu=3T3+37.

The vcloclty averaging of (7.10) is by no means
easy except in the special cases when o, or wcp is
nearly independent of v (Doppler-free cases). The

“labeling of the various terms in (7.10) is obvious:

The first term gives the decay of the initial coher-
ence, the second one describes the transient to the
new steady state, and the third one is due to the
decay of the initial g, coherence (nutation in the
12 system). The various terms in Eqgs. (7.10) can
be isolated by a proper choice of experimental
parameters [e.g., by choosing a, such that nd=n
the second term in Eq. (7.10a) can be eliminated].

The advantage of the DAP over the BAP is that
the DAP gives directly the correct eigenfrequencies
ocp and wcy (in the BAP one is required to fully
solve the problem using Laplace-transform tech-
niques’' to obtain these values).

VHI. CONCLUSION

The DAP offers little computational advantage
over the BAP for most calculations. However,
when the frequency separations of the dressed
states are much greater than the relaxation rates of
these states, the equations of the DAP simplify
considerably. In this case, it appears that the
dressed basis is the natural one in which to do cal-
culations. Interpretations of the results in both the
stationary and transient regime are straightforward
in this representation. The positions of the reso-
nances in saturation spectroscopy as well as the os-
cillation frequencies observable in coherent tran-
sient experiments appear as fundamental parame-
ters in the DAP.

When the relaxation rates are comparable with
the field strengths, the BAP is generally an easier
representation to use than the DAP. In some cases
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APPENDIX A: RELAXATION SCHEME
IN THE DAP
. The relaxational coupling and decay in the DAP is obtained by transforming the relaxation terms of the
BAP, Eq. (2.19), with the aid of (2.8), (2.11), and (2.17). To slightly simplify the equations we assume
I'j3=T"3;=0 (no collisional mixing of states 1 and 3), and find for the nonvanishing diagonal elements
R4 =—Tcos?0—T,s5in%0— +(@—j—ay)sin’26 (Ala)
R4 p5=1@sin20+ T ;sin*0+ Ty, cos'd , (A1b)
RM.Cc=r3z sinze ’ (Alc)
Ruu a8 =Rya 54 =7 $in20(T, — T, +p c0s20 — 2T, c0s?0 4+ 2T sin%0) , (A1d)
Rpp s =T@sin?20+ 'y cos*0+ Ty sin'd (A2a)
Ry pp =~y sin?0— T c0s?— +(p — T3~ Ty, ) sin226 (A2b)
Rgpcc=T3c08%0 , (A2¢)
ng,‘g =R33'n4 = ‘:‘ sin26( rz - Fl —~@ cos29+21"|2 cos’G—ZI‘zl sinze) ’ (A2d)
Recee =—T, (A3a)
) RCC,M = rn sin20 ’ . (A3b)
ch BB =r23¢0829 » (Adc)
Recap=Reep=—3T 8020, (A3d)
where
¢=2y~T'i~-T, (A%
gives a meagure of the effect of phase-changing collisions. The nonvanishing terms involved in the off-
diagonal elements are given by
Rpomi=—7u+3(@—T—Ty)sin®20 , (ASa)
Rps48=1(@—T13—Ty)sin220 , (ASb)
Rpgau =7 8in20(F; ~ I, + @ c0s20+ 2T, 5in%0 — 2T, cos?0) (A5c)
Ry 0= 8in20(T; — ', — 9 c0820 42T, c0s0 — 2T, sin’4) , (A5d)
Ru'a- = - %I‘n sin28 N (ASe)

IR T TN IR
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Rey,co=~13 00820 —yy,sind (A6)
Rep,cp=—7v3 sin?0—yy 00870, (A7)
Resca=Resca=7{yn—7vy)sin20, (A8)

with the remaining elements given by the symmetry property Rap 05 =Rpgss,- Note that either I'; or T,
depending on the configuration, vanishes if states i and j are not mixed by collisions. When phase-changing
collisions are absent, i.e., yy=7(I';+ ), and all I';;==0, the relaxation terms are those given in (2.23). Ina
general case all the terms (A 1)—(A8) differ from zero, leading to a complicated relaxation scheme in the
DAP.

—
APPENDIX B: PROBE D=9+ 2y, 4+ Y
AND SATURATOR RESPONSES = H(Cy+ Ty %1 +4ad/TyTy) ®2)

The solution of Egs. (2.22) to zeroth order in a, [the last step follows from the assumption

is given by . -yz,=-;-( I+ T,)]. The components g3, and p?,
2a ~ vanish. The corresponding DAP equations read
Rr=nl+ oy n(BL+TH,  (Bla) poncing Bar e
r, ~0 0, 28 0 (.2 2 -1
2 Paa=na+1paneal@pa+T307",  (B3a)
B T DU Y7 < T T 4
Pr=n3— r 72|n21(A2,+r ) , (B1b) 232
. Pop=nj+ T Venbalafa+Th) ™', (B30)
Pyu=n3, (Blc) B
. -0 _ o
ﬁ?,:ia,n?,(n,-—iAzl)(Ag;+l"2)"' , (B1d) poec=nc (B3c)
where n’=A; /T, n3; =n3—n$, and Poa=Bn3i(raemsoniofy +Th) ™", (B3)

where n%=A,/T,,
ndy=nd+nl+Ay v (B4a)
P =7 — 282507 4+ T35 )= Dy + T, N1 —482/T, T3) ' (B4b)

and B is defined by Eq. (2.27). In terms of the BAP variables, the “population inversion” n3, and the effec-
tive width ', can be written as

r+T (F—T,)? -
0 2 1 0 2 1 2
n == - n l 29 »
BA I‘, — r' i+ 4r'r2 sin ] (BSa)
—1
2 __l_ 2 (rl_rl)z )
Tha= HOTY? |1+ = sint20 | (BSb)

[Notice that n3, enters only in the product Bng, which is nonsingular for (I'y~TI;)=0.]
To first order in a, we find from (2.22¢) and (2.22)

[y +i(Ry+ 8y )EH—pR) ~iaph

‘ﬁ =1a1 T = = (B6)
? lrsi+iAs5y+ 8,00 y3+ils5) +a}
In the DAP we obtain from (2.23d), and (2.23¢)
Pea = —iaa{(rcp +iwcy [sin0(pEc —phy)+cos6pa)
— Blcosd{pec —Pas)+s n0p%s 1} [(Yea +ings (ves +ioeg)—B1-!, (B7a)




-“____

2688 P. R. BERMAN AND RAINER SALOMAA 23
Poa=ia|(Yeu +iocy cosO(Pec —Pipn ) +sindps)
| ~Blsinpgc —Pias) +c0s0P34 N[ (yeu +iwea W¥ep +ioes)~B17" (B7b)

which after insertion into (2.29¢) yield the observ-
able p3;. The DAP solution Eq. (B7) is clearly
much more complicated than the BAP expression
(B6).

The DAP solution simplifies considerably in the
limit wpq >> ¥p4, T pq. The lowest-order terms are

given by

—
[The corresponding solutions in the BAP would be

Pa=nl, Pu=ian} yn+idy),

according to (B1).] As B~y we see that p5, is
roughly a factor y/wp, smaller than the diagonal
elements i)ﬂa. The rate-type solution (3.2) is ob-
tained by neglecting ﬁ%‘ and terms proportional to
B in (B7). This approximation is equivalent to

bo =n%+0(y /o), (B8a) keeping only the lowest-order terms in a power ex-
‘_o‘"' ¢ . , pansion in terms of y/wg,. In the following, we
Pa=—iBnds /g +O (¥ wps) . (B8b) study in some detail the accuracy of (3.2).

Strongly coupled transition 1«+2

If we insert (B8) into (2.29), we obtain, after going back to the BAP variables,

2a? -
Phand+ "F;Yzl"gl(A§|+4Y§|a%/rnrz)" ,

(B9a)
-0 o 2a} 0 (%2 2 -
Pzz’—‘—'"z——I:‘)’zl"zl(Azn-i-“Yixax/rlrz) ' (B9b)
Piiand (ry —iBy NBY +413,03/T )" . (B9c)
A comparison between (B1) and (B9) reveals that the approximation is good provided that
A} +4alh /T T >> 7 (B10)

This condition is satisfied when either [A,; | >> 75 or a2 >> %I‘,I‘z. Note that if we neglect (B8b) there is
no absorption of the strong field a, [the first term in (2.29d) is real and describes dispersion only].

Probe response

We can express the exact result (B6) in a form!?

Pu=ia) W (Z, +iky) '+ W_(Z_+iby)~"], (BI1)
where
Zy =3yt ra+iky) T TillBy +ivn~ivs)? +42i]?, (B12)
Wy =3 (s =) 2 [ 10H~PN By +ivn—ivs) —a @il By +ivsy—ivs ) +4ad] 2. (B13)
An expansion of (B12) and (B13) in terms of the assumedly small parameter .
e=(yn—1u)/(8} +4a})” (B14)
yields
Z, +iByoycp+ 70y $ind0E +iocp + Tia, sin20€? (B15a)
Z_ +iByy~ycy — +a, 80406 +iwcy — Tia, sin20€? , (B15b)
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W,, =(n2—nf) cos?0+ iesin?20n2 + +i sin20(A,— Ay)/wpy _ (Bl6a)
~AnQ —n2)sin?0 — ziesin20n2 — i sin®20(A, — A;)/wp, . (B16b)

A finite value of € slightly changs the widths and positions of the resonances. The corrections are negligi-
ble when (A2|+4a,)"2>> 7 | T1—T;| which is a relatively mild condition. The expressions (B16) for the
weight factors W, are accurate to order O (€%;ey/wp4;7*/why) and coincide with those given in (3.2) pro-
vided that |€| << 1 and

[ng—np | >> [Aj—A;|sin’6/wp, , (B17a)
|#2—n3 | >> | Aj—A;] cos?0/wy, - (B17b)

The correction terms given in (B16) are purely imaginary and, therefore, introduce a dispersive-type change
in the absorption spectrum (~Impy,). This change causes a small shift in the position of the resonances, but
does not appreciably affect their height.

APPENDIX C: DOPPLER-BROADENED PROBE SPECTRA

Introducing the dimensionless parameters (5.3)—(5.6) into (5.2) and solving the equations w¢c =w,, s for x,
we obtain

(cy

A T Dgky k) T 2k ky +K) K

If ky(k, +k3) >0, both the roots in (C1) are real. The root with the plus (minus) sign satisfies the CB (CA)
resonance condition when k, >0 (ky <0). If ky(k,+k3) <0, x| ; are complex in the region (5.10); otherwise
both roots belong to the branch wgy =0 for v> v, >0 and to the branch wc =0 when v < ~v. In all
cases the solutions (C1) must fall within the Doppler profile [see Eq. (5.9)] so that the Doppler-distribution
function is not negligibly small.

ky(2ky+ky) k? [ aky(ky+ky)
X2

Case ky(k; +k3)>0
Inserting (C1) into (5.8), we obtain after lengthy algebraic manipulations

vsgn(k,) LY Yt
IW)=—T—Wicp) |(n}~nd) |1~ 2-n9)
Tkay ¥ e (73~ "’l ERVTRTRIR Y 1l R L SR Ry
vk Ty —(ky +k))03) 7Ky Verr
X 11— W ——v],
TR +2Ik| (wea ) [v— —v] [lor))

where wcglvcy =0, wcq(ves )=0, and where v, is defined by (5.12). Provided that

4kylky+ k) 2k, (kg +k,)A k3(k,+ky ) u?
¥ it 12 2 2k +K,)4, 2Ky +K, i (C3)
k3 ky(2k; +ky)a, ky)2ky+k,|a)
the Gaussians in (C2) are approximately equal,
: Ay A32+A21
| 4 o~ o~ 172
(veg )W (vcp ) ~exp kz k|+k2 /4u /1r u (C4)

and the simple result given in the text, Eq. (5.11), is valid. When (C3) is violated the dominant structure in
the absorption spectrum arises from the Gaussians, and Eqs. (5.14) and (5.16) become applicable.

Case kz(k|+k;)<0

If v> v >0, both of the roots (C1) satisfy the equation wcy =0 (if ¥ < —v,, the equation ¢4 =0). Thus
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oaly the CB transition contributes, and we can approximate

Procviay cos?0(n —nd)yes +ives) ! . (CS)
This can be written as
p3;~-?a—g(x)cos 9n2 —nd){(x —x\ Nx —x)+iglx)] ", (C6)
ca
where
. YCBkl ha 2 __ 12
g(x)——alkz(kl'i'kz) [ + x+7 ~(x244) {og)]

The last factor can be expanded as
Im{[(x —x;Nx —x3)+ig) " }=Im |[(x;—x,)* +4ig]~'7?

P

X L —ind(x —x\)—22 L
x

—imblx —x;) ] ] ’ (C8)
x —xy ~X3

where the complex square root has to be evaluated so that its imaginary part is positive (assume x; > x).
The principal values in (C8) are negligible, because for (x; —x;)>> y/a; the complex square root is real and
for x,~x; they cancel. Inserting (C8) into (C6), we obtain

klﬂ.lﬂ 2 2]

S exp [ — ax; — Ay
k| L ki +ky | u /&
ki+k
X[n&—nd(x;)] [v+ ! : 2% ]Re([(x1—x|)’+4ig(x,)]“”} . (C9)
. 1

ICB('V)‘Z k.u
1

In the limit x,-—x,, this gives, after insertion of the explicit expressions (C1) for x, and x,

2
1 | 2wtk +k;) 0_.0 Nk | ng—n?
1 |2ntky k) _ —ny)
L= { ™ (n3—~n2)+ r,|k1l+l‘zlk:+k2| '
ky+2k,
% A k2 2
exp [ 21 a‘(lkz(kl+k2)l)l,2 / g ]
k ky+k 2
XRe [v—va—-— ! 2‘ 731 1: 21’32 ]' (cio
1
when x; —x; >> y/a;, Eq. (C9) reduces to
lxz—Azl
”A”’“zul P { H
o_,0 1 -y
X {{n3 ﬁz)‘ +(\;__‘é)m
v v
+(nd— "l)kzn[ ke \I+ 5 a7 ]+r’(k'+k’) = '

N .2 rf'_fl‘l SR (P (e )2
+ 'k,+1 Py rr, +tem[(v' —v,) F o — (Vi —vg) 7]

(C11)
In the limit v— oo, (C11) gives just the flat background absorption. Both (C10) and (C11) agree with the
limiting intense-field results given in Ref. 13,
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An extension of the Jeffreys-Wentzel-Kramers-Brillouin approximation to inelastic processes is used to obtain the
scattering amplitude which describes the collisionally induced depolarization of magnetic substate cohcrences. It is
found that the scattering amplitudes contain contributions from two overlapping regions. For large interatomic
separations, the different Zeeman sublevels are shifted and mixed by collisions, but follow 2 common collision
trajectory. For small interatomic separations, it is possible to find adiabatic eigenstates which follow distinct
collision trajectories. The theory is used to investigate the nature of the depolarizing collision kernels and rates
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which enter into the analysis of laser spectroscopy experiments.

1. INTRODUCTION

Lasger saturation spectroscopy experiments are
beginning to provide an important probe of col-
lisional processes occurring in low pressure
gases.! The elimiration of the broad Doppler
background encountered in standard spectroscopy
permits a more sansitive measure of the manner
in which collisions perturb the energy levels and
alter the velocity of atoms.

A particularly interesting process “hat may be
studied in such experiments is the wa; in which
collisions perturb superposition states in atoms
that have been created by an atom-field interac-
tion. Since the various internal states comprising
the superposition state are generally shifted and
scattered differently in a collision, one is led to
a somewt it complicated description of the entire
scattering process for the superposition state,
especially if collisions can also couple the super-
position levels. Formal theories®-® have been
developed to describe the scattering and time
evolution of atomic superposition states via a
quantum-mechanical transport equation, but lit-
tle progress has been made in obtaining solu-
tions or physical interpretations of the results,

It is the purpose of this paper to provide a sim-
plification of the transport equation and some
additional physical insight into the scattering pro-
cess. Methods of semiclassical scattering theory
are used to achieve these goals.

The specific problem we choose to study in-
volves the scattering of atoms prepared in a linear
superposition of magnetic substates of a level
characterized by internal-angular-momentum
quantum number j. The way in which collisions
couple, shift, and acatter the various magnetic

substates is investigated. Coherent superposi-
tions of magnetic substates (magnetic moments,
Zeeman coherences) are conveniently created and
probed using the “three-level” system of Fig. 1.
The 1-2 transition is excited with a nearly mono-
chromatic laser beam and the 2-3 transition is
probed with another colinear laser beam. Level
2 (shown for j=1) i8 (2j +1) fold degenerate; Zee-
man coherences within level 2 may be produced
and detected using a proper choice of the laser
beam polarizations. Owing to the Doppler effect.
the excitation-detection scheme excites or probes
only those atoms having a specific velocity com-
ponent along the laser beam direction. Thus,

any collision-induced modification of the Zeeman
coherences for atoms having a specific longitudinal
velocity can be monitored in such a gystern. The
Zeeman coherences tend to be destroyed by in-
separable contributions from collisional effects
on the internal (shifting and mixing of magnetic
sublevels) and external (state-dependent scattering
for the different magnetic sublevels) atomic de-
grees of freedom, In such experiments, the col-
lisional relaxation is determined by the number
of collisions per lifetime of the level under con-

~./
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FIG. 1. “Three-level” scheme for depolarizing colli-
sion studies. Levels 1 and 3 are nondegenerate. Level
2 has three substates which, though separately indicated
in the figure, are assumed to be energy degenerate.
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sideration and the specific interatomic potential.

It should be noted that collisional depolarization
studies are not new. Optical pumping techniques
have been used to investigate depolarizing col-
lisions between optically oriented excited state
atoms and ground-state perturbers.®* However
the general nature of such optical pumping work
(broadband sources, total cross-section mea-
suraments) does not {ead to results that are overly
sensitive tc velocity-changing effects. Recent
laser saturation experiments® based on schemes
similar to that shown in Fig. 1 provide a more
sensitive measu~e of such effects,

In attempting t analyze the scattering process
for an atom in a linear superposition of magnetic
substates one is naturally led to examine the ap-
plicability of the classical pictures shown in Fig.
2. The first drawing represents the single-tra-
jectory limit. The dependence of the deflection
on internal state is negiigible so that the internal
and the translational motions are decoupled. The
second scheme depicts the situation where a diag-
onal representation has been found. Then each
sublevel obeys the rules of elastic scattering
along a substate-labeled trajectory. When none
of these extreme situations holds, is a classical
picture still possible? Answering this question
would help to complete the blanks in the third
drawing of Fig. 2. It should be noticed that the
existence of a classicss . iure is questionable
since depolarizing collisions imply a coupling
between the internal motion, which is highly quan-
tumlike due to the smaliness of the electronic
angular momentum, and the translational motion
which can be quasiclassical.® We shall discuss
applicability of the various limits and approxima-
tions in terms of standard treatments of collision
problems.

In Sec. II various methods available for treating
inelastic scattering, when the de Broglie wave-
length of the colliding particle is much smaller
than the characteristic dimension of the interac-
tion reglon, are reviewed. In Sec. HI exact equa-
tions for the scattering amplitudes are obtained

T —

="=z==== ®
(4 b) (e)

PFIG. 2. Schematic representation of stomic trajec-
tories during a depolartzing collision. In (z) an atom
in 8 superposition state is scattered along a trajectory
common to the three substates which are mixed by the
collision. In (b) ¢ distinct trajectory is assoclated with
each substate and no transition between substates is in-
duced by the collision. I (c) the single-trajectory ap-
proximation is not valid and transitions are induced be-
tween substates: What trajectory does the stom follow?

and those expressions are evaluated in the various
semiclassical limits discussed in Sec. II. In Seec,
IV we return to the problem encountered in laser
spectroscopy and examine the semiclassical limit
of the transport equation for atomic multipoles of
a degenerate level. A summary is given in Sec.
V.

II. APPROXIMATIONS IN INELASTIC
SCATTERING THEORY

A few years ago, the development of research
in the fields of collisional rotational and vibra-
tiona) excitation of molecules,”*® and of electronic
excitation and charge transfer in atoms® stimu-
lated efforts for obtaining a semiclassical descrip-
tion of inelastic collisions,!’-*® which should be,
by far, more tractable than a purely quantum ap-
proach. Since certain procedures in these theo-
ries are similar to those encountered in obtain-
ing semiclassical limits of elastic scattering,
it is useful to recall that two semiclassical ap-
proximation sche mes!” may be used to calculate
the elastic scattering amplitude,

(0 =5 X @1+ 1™ - 1)P, (cos6) (1

(where K is the magnitude of the atomic wave
vector and 7, is the phase shift of the I-labeled
partial wave),

(i) The first method is the semiclassical phase
shift approximation, which is valid when the de
Broglie wavelengthX is much smaller than the
distance of closest approach r.. In this form of
the JWKB approximation, each n, is calculated
along a classical path which is characterized by
the initial velocity and the impact parameter
(1+4)/K. Although the 5, are calculated atong
classical trajectories, the classical correspond-
ence between scattering angle ¢ and impact param-
eter is lost in Eq. (1) since a large range of }
values contribute to scattering at angle 8.

(ii) The second method, valid under the more
stringent condition VX « /7,, is the classical tra-
jectory limit, The condition VX « /7, permits
one to retain in Bq. (1) only those [ values such
that the impact parameter ({+4)/K corresponds
to classical scattering at angle 6.

A number of papers have explored the conditions
for generalizing the JWKB approximation to in-
elastic processes™ " using an approach which
was initiated by Kemble.'* They have concluded
that such an extension is possible only when the
atomic transliational motion is nearly independent
of the internal states. In the case when the addi-
tional condition ¥X << /7, is fultilled, the JWKB

.
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Errata

Erntum: Semiclassical picture of depolarizing collisions: Application
to collisional studies using laser spectroscopy
[Phys. Rev. A 24, 1831 (1981)].
J.-L. Le Gouét and P. R. Berman

Equation (2) should read
\ N )
S (¢.9.¢)=i—"f— 2(21 +1XStne — 8300 ) D lare 9, 0.9)

whene(:p,at)mtheEula’mglaofarefmefnmecomtnwtedontheﬁnalvdoclty In the text,

fi54-(6,9) stands for f1l,(0,0,).
In the next to the last lme, p. 1838, the relation should read Fin(@,0,$)= 3 Dl s (') D l-uA X),

where (¢,0,¢)=""'..

Equation (36) reads
o ‘4'2" — 1 m QAT L AN+ 12 +1) [I ] f] [ —:x fl
Jor sy f !
x M —M‘ Q M —M' Q Ml' _M'll Ql M” _M'” Ql

X [ dv, W, (0,10} Brcae-Bserse—SieaeSieae’) -

Erratum: Theory of e.cctron —hydrogen-stom collisions in the presence
of a laser field
[Phys. Rev. A 17, 1900 (1978)]

H. S. Brandi, Belita Koiller, L. C. M. Miranda, and J. J. Castro

The STA1 is unsuitable to treat bound states in the presence of electromagnetic ficids. All matrix ele-
ments are of the form

(a|F| B)~(al|Ho,BIIB) .

*% | Be-EptaisiBr=0.

The numerical results of the Refs. 1—3 as listed below are wrong.
3H. G. P. Lins de Barvos and H. S. Brandi, Proceedings

'H. $. Brandi, B. Koiller, and H. G. P. I.insdem
Phys. Rev. A 19, 1058 (1979). of the Eleventh ICPEAC, Kyoto, 1979, edited by K.
Takayanagi snd N. Oda (The Society for Atomic Col-

3. Q. P. Lins de Barros and H. 8. Bnndl,Cln.I

Phys. 31, 1886 (1979). tision Research, Kyoto, 1979), p. 916. -
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extension is thus possible only when atoms follow
the same common spatial trajectory in any of the
coupled internal states as in Fig. 1(a). A com-
pletely different approach has been developed
under the name of classical S-matrix theory by
Miller and Marcus.!°:*' They treat the internal
degrees of freedom quasiclassically, retaining
only the interference properties of quantum me-
chanics, since they calculate scattering ampli-
tudes. In these papers there is no apparent con-
dition of common trajectory. A special mention
must be made to the work of Pechukas!® which
bypasses the common trajectory condition at the
expense of complications with a noncausal inter-
action,

In light of these general methods lei us examine
the depolarizing collision problem. A ground-
state spinless particle, the perturber, collides
with an atom having internal angular momentum
j. The magnitude of j is on the order of a few
#i and is supposed to be much smaller than that
of the translational angular momentum, Since
the collision is assumed to result only in a change
of direction of ]', the other numbers which charac-
terize the internal state of the active atom are
implicit. The effective interatomic potential is
a function of the internuclear distance ¥ and of
the angle (f,j‘ ).

A classical S-matrix method®!! seems very
tempting for sc)ving the problem formulated in
this manner. With this approach, for given initial
and final values for the variables describing the
system (internal and interparticle angular mo-
menta, energy), one calculates S-matrix ele-
ments classically along the trajectory connecting
these initial- and final-state values. A phase
@.= [ § *dT/% evaluated along each trajectory en-
ables one to account for any quantum interference
effect arising from contribution of several trajec-
tories to a given S-matrix element. The classical
S matrix has the advantage of eliminating the dis-
cussion about common trajectory for the various
magnetic substates since it is only the initial-
and final -state variables that det. :mine the scat-
tering process. However, the solution of the prob-
lem in the frame of classical mechanics is rather
difficult: the couple of colliding particles in the
center-of-mass system has 8 degrees of freedom
and after taking account of the conservation of [J],
of the total angular momentum J, of total energy
E, one is left with three differential equations,
two of which are coupled. In general these equa-
tions must be solved numerically.

If instead, we adopt a quantum-mechanical for-
mulation of the problem, certain simplifications
are possible. Since the interatomic potential de-
pends only on the quantum variabie T and on the

operator J T, one immediately notes that, if the
“instantaneous” axis of quantization is taken along
F, then the Hamiltonian is a function of ¥ and j,
and commutes with f, (recall that {F,j| -0 since
is the interatomic separation and j acts in the
active-atom subspace). Thus using this basis,
known as the helicity representation after Jacob
and Wick," one concludes that the various mag-
netic sublevels in this representation are coupled
only by the rotation of the internuclear axis during
a col.ision. Two limiting cases may be envisioned:

(i) If the various instantaneous magnetic sub-
states experience approximatively the same col-
lisional interaction (the explicit condition is pre-
scribed in the next section), then the notion of a
common classical trajectory may de valid. The
coupling between magnetic substates induced by
the rotation of the internuclear axis can be sig-
nificant in this case since the “instantaneous”
eigenfrequencies differ by less than the inverse
duration of a collision (i.e.. the helicity repre-
sentation is not an adiabatic one in this limit),
The coupling and scattering of the levels can be
calculated using a semiclassical phase-shift ap-
proach. One expects that the limit of nearly equal
collisional interaction for the different substates
is achieved for coliisions with large impact pa-
rameters,

(i) In the other extreme, one can imagine that
the helicity representation is an adiabatic one.
The various magnetic sublevels experience sig-
nificantly different collisional interactions and
are scattered independently according to .ie equa-
tions of classical scattering theory. Normalily,
one requires small internuclear separations to
achieve this adiabatic 1imit.*°

It is the classical trajectory limit of these two
extreme situations which is illustrated in Figs.
2(a) and 2(b). One might expect that the range
of validity of the semiclassical picture could be
extended by combining these two approximations.
For example, in a given collision, limits (i) and
(ii) could be used for large and small internuclear
separations, respectively. The precise conditions
of validity of these different situations are exam-
ined in the next section.

II. CALCULATION OF THE SCATTERING
AMPLITUDE

The caiculation is performed usirg the helicity
representation which has been defined in the pre-
ceding section. During a collision, the z com-
ponent of the internal angular momentum changes
from an initial value AM relative to a quantization
axis directed gpposite to the initial velocity (i.e.,
in the direction of the interparticle separation
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¥) to a final value FM’ relative to a quantization
axis which is taken along the final direction g¢.
The scattering amplitude takes the closed form'’

(= ¥-v ’
Fau6,9)= Z:(z“ D(Shy =)
x Dyl (e, 6,0), @
where Sf,. is an S-matrix element and Df,.(¢, 6,0)

is the rotation matrix of rank J. The internal
angular momentum j’a.nd the relative orbita] angu-
lar momentum 1 have been coupled into the total
angular momentum J and the summation is over
all a2llowed values of 3:f+j°. The S-matrix ele-
ments can be obtained in terms of the asymptotic
form of the radial wave functions ¢ {/(r) as (see
Appendix AP?

2J+
2iK

hm i = VRUNTY)

X [5_.,'2-11’7 - (_ l)yq»lsz,.eu’r] . (3)

This boundary condition selects appropriate solu-
tions of the radial equation

2
(-EL B avim)oire
== 2 MIVIMWEG), @
M =N
which is derived from the Schridinger equation

(see Appendix A). In this equation, y is the re-
duced mass, and

o\vinMy = (v.( )+J‘*’*”n=)o..'

2
= 3z 0, MR, M)

= A (G, M, MOy 041],
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where V,(r} is the interatomic potential in sub-
state M and

AT, M) = [JU 1) -M M £ 1)

In the absence of coupling between the channels,
Eg. ‘4) reduces w

)41 Jr)=0. (5)

+V,( )+J(J+l)
2ur

The general solution of this equation in the JWKB
approximation is a linear combination of functions
2?9 /@12 where

1/2
e,,=(n=x=-=l“-’-r¥lﬁ=_zuv,(r>) :

(6)
Q,' f —J'ﬁ(r_)d ’

This suggests that one tries solutions to Eq. (4)
of the form

e R

2= b,,,(r) +b,.(r)—;a— . (7
Iﬂ

The standard theory of second-order differential

equations states that, in addition to the boundary

conditions, a supplementary condition is needed

to determine b},(r).** We have chosen the follow-

ing condition:

’
b},’,en" + b;,',e “Qn %gj: (b;'e‘q;u + b;,,e""l") =0,
®

which transforms Eq. (4) into the set of first-order
differential equations

brulr)= _u.b,.e'm,, 3 lt(&, ‘p”u) (Do 18O + b, 10 1 Cun109w))
KX, -
+ W(b;'_le«o”.m 70 + By 1o Q1) (9
|
where and obtain
X 5y =2, MG /R (10) ,
we * h:;ﬂ;n'b;r- (1)

and a prime indicates d/dr. Except within a
distance of a few X from the turning points
where ®,, i8 close to zero, these “exact”
equations may be simplified by using the condi-
tions that we have imposed at the beginning, From
X «7,, it follows that ®,, «&},/¥ and since j«J,

it follows that KX,,/2(@,®,y.,)'* « @, /K. Using
these two inequalities one may neglect the terms
having rapidly varying phase factors in Eq. (9)

where
"
A;l' =% 21“’,.0’,,.)‘ (x}nbu'nm
*X Oy y 4)9“(0:" )

Thus, the inward wave (represented by b;,) is de-
coupled from the outward wave (represented by
%x). This is the essence of the semiclassical ap-
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proximation and can be considered as an expres-
sion of microscopic causality. However, the semi-
classical approximation requires, in addition,

that a connection can be made between inward and
outward waves at the classical turning point. This
is accomplished provided one of the two following
conditions is fulfilled*:

(L) |P,y = ®pya; | <@y +@,y,,. This condition per-
mits one to define a turning point. which is com-
mon to all the channels. When in addition vX «<V7_,
a common trajectory is available.

(1) |0 = Pruar |5 X2/ 2@, P pet)*?. In this
case the A,,. in Eq. (11) are very rapidly varying
functions of ». Thus the substates are not sig-
nificanfly mixed by collisions and the §j, are ap-
proximately constant. This decoupling corresponds
to the adiabatic approximation.

These explicit requirements for a semiclassical
description, correspond, as expected, to the lim-
iting situations that we have evoked in the pre-
vious section. In terms of the potential difference
between the internal states, the above conditions
are, respectively, transformed into

qu(r)— V,,.l(r)|<< (5’,. +0""1)2/2p_=E1, (123)

V() = Vius(r) |»x;.3"£ é’ﬁs—:}; =E,. (I2b)

Ji

Condition (12a) requires that the difference be-
tween the scattering potentials for different mag-
netic substates be small enough to allow for a
“single-trajectory” approach to the problem while
condition (12b) requires that the potentials differ
enough so that the collision is adiabatic with re-
gard to the helicity eigenstates. Except in the
vicinity of a classical turning point, F, is of the
order of thermal energy and is much larger than
E, which is of the order of #°K/ur. Therefore,
throughout the classically accessible region, at
least one of the inequalities (12) is satisfied by
any potential difference. This guarantees the
general validity of a semiclassical description of
depolarizing collisions.

As an illustration, we consider a simple poten-
tial such that |V, (r) - V,,,(r)] i8 2 monotonic, de-
creasing function of ». Thus if 7, is a distance
such that E, << | V,(r,) = Vyu(r,) |[<E,, the condi-
tions (12a) and (12b) are fulfilled, respectively,
when r>7, and y <r,. This situation is repre-
sented in Fig. 3 which exhibits the overlap of the
adiabatic and single-trajectory regions. In this
situation one may transform Eq. (11) in order to
examine the classical motion character of the
problem. We define a set of classical trajecto-
ries using a time parameter ¢{. The radial co-
ordinate r,,(!) satisfies the equations

(Vi-Vipd A
Ey
€,
0 o r
adiabatic
approximation

single trajectory

FIG. 3. The spatial domains for adiabatic and single- *

trajectory approximations are represented in the case
of continuously decreasing |V, (r) =V (r)|. At ryboth
approximations are valid.

(13)

—t;d7r(t) whent<0,
a

army _
V7 () when t>0,
7’Jll(o) = r&TuP) 1
where the radial speed v, (r) is
Ugy\¥/7 = { P"'(r)/“ vhen <. (14)
vAr)=(Pp r)y/u wheny>ry,
and FLP) is the coordinate of the classical turning
point in channel M, with angular momentum 3.
Two different situations may be examined in the
limits that TP is larger or smaller than »,.
r7P <r,. The incident particle first reaches the
radius r, at a time ¢; which is M independent as-
suming a common trajectory r,(f) for —o<<t;
(since this interval corresponds to » >7,). In Eq.
(11) we replace b;,(r) by c (1) defined by

ct)=bokr (), t<t; (15)
and find that c,,(¢) obeys the differential equation

;%c,,(th 3 Bl Wcp ), t<t; (16)
"
where

Bl (1) = %(x‘n‘r,(t))ﬁ,.,,, +X7hr ANy ]

H t
xexpé f‘_ [Vdr (N =Vl (' D) ar, t<t;.
! an
In arriving at Eqs. (16) and (17), we set (€@ )"
& Py +@py)/ 2 up,(r) and evaluate the phase dif-
ference (i/K) [7 @,y -®,,)dr’ to first order in
Ve~ Ve 0
In the region » <7,, the b},(») are constant owing

ek wl -

————— ——

I
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to the adiabatic nature of the collision for r <r,.
There is a classical trajectory r,, which may be
associated with each helicity state and a corre-
sponding classical turning point #{”. The JWKB
connection formulas are used at the turning point
to relate b3,(r) and one finds

. Trp) (TP),
ib3 TP e R i ) = b5 (rEP)e ™ 0. (18a)

Since the b;,(r) are constant for » <r,, Eq. (18a)
may be written
xp)
b5y (ro) =byylrode *Fnt oy ). {18b)
Connection with the time-dependent c,,(:) ampli-
tudes is achieved by associating

badrath, t<ila (19a)
)= .
BT ), t>'4f—"2—t‘"IL (19b)

where t}, is the M-dependent time at whicha clas-
sical particle moving along the »,, trajectory
would exit the r <, region, Using Eqs, (19), (18),
and (6) we find

i (e
enttsn) = eptislexp(~ ¢ [ Lkradehr) - o)
1

Finally, for times ¢ >¢},. we are again in the » >,
zone. Each r, trajectory created for » <y, now
continues into the » >», region without further
splitting. Thus, each trajectory can be labeled by
its M value in the v <7, region. For t>t}, (i.e.,

r >7,) there is again coupling of the 5%,(r) along
each trajectory. Defining

Al =ity AL, >3, (21)

where 7,,(t) is the extension of the trajectory
associated with M =M’ in the  <r, region, one
tinds that c¥ obeys equations analogous to (16)
and (17). The final value for b},(=) is given by a
sum over all trajectories, i.e.,

FIG. 4. An atom in a superposition state enters the
interactfon region with an impact parameter ¢/ + 4)/K.
From time 5 to § ;4 or ¢}, no transition occurs be-
tween substates and their respective trajectories may
part from each other. After ¢}, or t},, a single tra-
Jectory starts from the point reached at t}, or t},.,.

i) =i 3, by (N =2, clyl0). (22)
(S 4

This equation can be put into a more transparent
form if time evolution operators are introduced
such that

)= 2o Ulhw gt Depunt)), 115 (23a)
'"

c‘,’,’,(t)=;’:0ﬂff,(t',t)c, ), t>th..  (23b)

One can combine Egs. (22), (23), and (20) to ob-
tain

ib5u(=) = 'Zu UR(thurs =)

i ity
xexp(;; f e, (r_,,.(f))d‘f)
ty

X Ufwy{=0,t7)b5yn{(~w). (24)

Equation (24) may be given a simple physical in-
terpretation (see Fig. 4). In order to calculate
the contribution of the Jth partial wave to the scat-
tering amplitude, one starts a collision at { = -~
with b, »(—=). For —w<t<t;, collisions mix all
states along an average common trajectory and
this mixing is represented by Ugw,.(~«,t;). For
t;<t<tyy, the adiabatic states are not mixed by
the collisions and one evaluates elastic scattering
phase shifts along each trajectory. Finally, the
states are again mixed along each of the final
trajectories as represented by Ug¥, (!}, =) (recal
that the superscript ' labels the trajectory in
the adiabatic region). The time-evolution opera-
tors describe the mixing and shifting of atomic
substates as the atoms move along classical tra-
jectories. The spatial coordinates have been
changed from quantum-mechanical variables into
time-dependent parameters. However, there sub-
sists in Eq. (24) an exponential phase factor which
attests to the quantum-mechanical character of the
transiational motion in the region where »<»,.

To get expressions for the time-evolution opera-
tors, one may use Egs, (23), (16), and (17) to ob-
tain

4

dtUﬂ:,(t’,t)=;Bﬂ,u(t)vi-.»(t',t), t<t;  (25a)

d o : ,
U, 0= 2: B (DUM By 1), >t

(25b)
subject to

Ul )= 8uye s Uluw 21 8540) = Oyru » (26¢)

————— e
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where Bj,. i8 given by Eq. (17) and BX.(t) is

also given by Eq. (17) with ,{t) replaced by »,.(t)

{recall that » . indicates the trajectory associated

with the M ” helicity state in the adiabatic region).
An expression for S-matrix elements is obtained

by substituting Eq. (24) into Eq. (7) and making

a comparison with Eq. (3). One finds*!

SLyn=(=1Y ; U (=0 65U Ergr )

X explEally + 2in,,.) , (26)
where
noertim [ S g e ganT @ra)
M el R 22
e

and

-
Ai"hl; f T [Veelr 3 = Vi S Ddr

—co

+é_— fj (Vilr g TN =~ Vilr iy (T D), (27h)
(,uu

rIF)> re. In this case the time interval [¢;,t5,],
during which the trajectories part from one anothJ-

er, collapses, so that t; and tj, may be set to 0
in Eq. (22) which reduces to

S{y'.=(- ly(/’:,(—“’,n)exp(in,‘,'+i7],,). (28)

where

U=, @)= D Ulyoyul=0, 00U (0, ).
'y

This region corresponds to weak (large impac:
parameter) collisions.

This is the farthest point which can be reached
in the direction of a semiclassical picture under
the approximation A < r,. As has already been
noted in Sec, II, the classical trajectories which
have been hitherto considered may not be regarded
as actual paths since deflection in direction &g,
which is described by the scattering amplitude
[Eq. (2)] involves contribution from all the impact
parameters (J + $)/K.

The final step of the semiclassical approxima-
tion is possible provided VX «v7_. It consists in
using the stationary-phase method to calculate
the scattering amplitude [Eq. (2)]. This calcula-
tion is performed in Appendix B. In the simplest
case, that of a purely repulsive interaction, one
obtains

e (’ 1)’ ” - B, 3 M
M8, 0) = o ;an)”’(l{,%u(—w,fl)ulw (s =lexplia 28 w2, ue)
ag \'2 i . L .
x expl - - i’ +M)z = id g n 0 Jexp{- iMyp), (29)
BJQ," 2 2

where Jgy~ i8 the angular momentum giving rise
to scattering at 6y for an atom following trajec-
tory M” in the adiabatic region. This result is
valid provided that VA « Vr; and J4,6> 1. The
former condition allows one to use a stationary-
phase method, and the latter condition implies
that validity of Eq. (29) breaks down in the small-
angle diffractive region.

As in elastic scattering, the major contribution
in the sum over J comes from specific values of
J, linking these values and the scattering direc-
tion (6p). However, Eq. (24) differs from the
usual elastic scattering amplitude in the fact that
for a given deflection direction gp. a distinet im-
pact parameter (J,,. + ;)/K is associated with
each intermediate internal substate M”. For more
general forms of the interaction potential, a rain-
bow angle may be defined and when 6 is smaller
than it, several values of J are generally involved
in the scattering amplitude for given 6 and M".

Throughout this section mention has been made
of classical trajectories. However, this notion

ris actually meaningful, only when collisional ef-
fects on observables are considered. Then scat-
tering cross sections instead of scattering ampli-
tudes are involved. The aim of the next section
is to discuss the classical trajectory picture of
depolarizing collisions on the observables which
are accessible in laser spectroscopy.

IV. DEPOLARIZING COLLISIONS IN LASER
SPECTROSCOPY

In a gas cell, the quantum-mechanical state of
atoms within a small domain of position-velocity
space around (¥, ¥) is most conveniently described
by the density-matrix elements p_,-\F,¥) where
a and o’ label internal states. We shall limit the
discussion to the case where o and o’ belong to
the same j level since we are interested in study-
ing the effect of depolarizing collisions. The gen.
eral transport equation which determines the col-
lisional evolution of density~matrix elements of
“active atoms” immersed in a perturber bath is
given by?

e

b
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o], 7= 2T O B0 3 [ #owsd @ 08,90, (30a)
where
a'f? - 2nk .
raf (V)-Nfd’u,W,(V,) E[fga'(v,,v,)ﬁgg'-fun(v,yv,)baa'] (300)
and
W:',,“'W',V)=Nfd°v, fd‘v,.b(V'—V-?W.(V-v;+Y)6(u'—v;)v:‘f,,a(V;.V,)_f;.B(V;,V,), (30c)

where ¥, is the relative velocity between active
atom and perturber, w,(V,) is the perturber equi-
librium velocity distribution, ¥ =(u/m)}(¥:-%,),

N is the perturber density, and f,.,(¥/,¥,) is the
a’,¥ - a,, inelastic scattering amplitude. In
our case the internal state is labeled by the mag-
netic number m and the relevant scattering amnli-
tudes are f,,..(¥/,9,,A) where m and m’ are taken
along a fixed quantization axis 4. This scattering
amplitude may be expressed as a function of the
scattering amplitude in the helicity representa-
tion by

Fume (B2 9,0 A) = 3 OISR Dl R 02,9,
I' 'l
A1)

where 6 = (¢, , 6,,,0) and ®’ = (¢, 6,;,0) and ¢
and ¢ are polar angles with respect to A.

In traditional optical pumping experiments in
which depolarizing collisions are studied,* neither
the vapor excitation nor the signal detection is
velocity selective. In these experiments, the
broadband excitation creates density-matrix
elements p! _.(¥,¥,¢) in a state of given j and the
intensity of radlation emitted (or absorbed) from
these mm’ substates in a given direction and with
a specific polarization is monitored. With broad-
band excitation and detection, the signal is a func-
tion of velocity-averaged density -matrix elements

p{wm'(r’ t)= ffl! p;.,(f,v, t)

and provides some measure of the effects of de-
polarizing collisions in level j. Integrating Eq.
(30a) over velocity we find

%p!.,,,(f,t)‘ LT Z; fdv,:;r'”(v)p{_.,,,.,(f,v.t),
(32a)

where
yaur™ =rar"® - [ dwt @, %), (320)

Equation (32a) does not decouple y and p; however,
an approximation that is often made?? is to neglect
the ¥ dependence of the y’s. In effect, one re-
places y7.™" (¥) by

yanr™ = [ AowEnmr @), (33)

where W (%) is the active atom velocity distribu-
tion, A good approximation to Eq. (322) is then

%p'llm'<?,t)l " - Z 7’:;?’.9:‘"#"(?,“- (34)

mim

The y7.»" describe the (velocity-averaged)
coupling between magnetic sublevels and, as such,
reflect the nature of the collisional interaction.
Thus the structure of the 52, """ can provide some
insight into the collisional process. By combining
Eqs, (33), (32b), (30b), and (30c) and performing
some of the {ntegrations, one may obtain?

- 2
7:'!" =Nfd’vrwr(vr)vr(i_;[fu"-(v"vv)bn’n‘ -f:"’n'(vr’ vr)bun”]- fmv,vfu"n(v;’vr)f:”’m’(vlvvr)) . (35)

This expression can be written in terms of S-matrix elements if Eqs. (31) and (2) are used for the scat-
tering amplitudes. The resulting equation can be simplified by using the relation Df,.(0,¢,0)

=Y g Diy~ B D ?y»(®’) and other elementary properties of the D matrices. The integrals over 4q,, and
dg,, can be carried out and, after some cancellation of terms, one is left with
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v ATN C S o )
yan® =T"(f‘Z(—n«(zm)m'n)(zfu)(’ ; f)(’ ] f)(’ i ’)(J I ’)
m -m' q/ \m" -m"” q/ \M ~M' q/\M* -M" gq
Jd Jf
*\ p” -M" g fdl’va(vr)”s"(bll'bu'u'”-sz"uslll:"‘ll')' (36)

where the sum is over all repeated indices (except j). Equation (36) contains the selection rule m - m”
=m’ -m"™ which may also be obtained from symmetry considerations. One can verify that Z,y:;""" =0, re-
flecting the conservation of probability 3~ ,dpum(F, t }/dt | =0.

Using Eq. (26), one can write the dynamical factor appearing in Eq. (36) as

By Sywsg =Sk yrShyo = g bugrew ~ 2 U2 G me(= 0y £ U7 o~ 0, 45 IS5 00, +0)
»m

X U255y +)eXp] ~ (8 Gy = ATG) €XP[ = 2l =1, ). AT)

In writing Eq. (37) we have implicitly used the selection rule |J ~J’| <j which is imposed by the 3 - j sym-
bols appearing in Eq, (36). Since J>j, differences between J and J’ can be neglected in all but phase fac-
tors. In the previous section it has been shown that the quantum-mechanical aspect of the translational
motion is concentrated in the factors exp| - 2i(n,.,. ~7,,)]. The other factors describe the evolution of in-
ternal substates along classical paths r,,(t). Let AJ, be the angular momentum for which »75’ =»,. In Eq.
(368), the sum over J may be regarded as a sum over the impact parameter (J + })/K. in analogy with the
classical mechanics calculation. In the region where J>J, [or r,< r‘f,’ '] a common motion approximation

is valid. Since |J ~J’|«J, the phase difference in Eq, (37) can be expanded under the form

) B
Nom' = Nyn=Nyn =Ten *+ (I’ -J)—:’)fIL ’

where 297,,./8J can be identified as the classical deflection angle 6, (see Appendix B). Then, following Eq.

(28) one reduces Eq. (37) to

(38)

BureuBunyy =SkburShny=byraybyny =Ullmy (=0, +0)UL ., (==, +w)

X exp i f: (Vo (O + Vi L, D ~ V_ydr, (1)) = V,tr, ()t expl -i(a’ ~ D)6, ],

where (n,, ~n,,:) have been expanded to lowest
order in the potentials. This expression describes
the substate mixing aiong a single trajectory »,(¢).
When J <J, [or 7,>%P)], it may be verified that
1n,, =Nya |>> 1 and that the factor exp[ - 2i(n,.,.
-1n,,)] averages to zero by summation over J and
J’ for |rn|#|n’|. A classical trajectory y,, may
still be assigned to elements of the density matrix
which are diagonal (in the helicity representation)
on entering the region » <y, but the classical pic-
ture fails for nondiagonal elements. In other
words at y =7, the magnetic substate popujations
Psnsn are scattered along separate trajectories
r,, but the coherence between substates is lost
owing to trajectory separation, After the depar-
ture from the region r <r,, substate mixing starts
again along each separate trajectory. In some
sense the images given in Figs. 2(a) and 2(b) are
valid when the interatomic distance r is, respec-
tively, larger or smaller than »,. To work out
this semiclassical picture, the only needed con-
dition on the de Broglie wavelength has been

(39)

[xt<rc. This condition is not sufficient to regard
the atoms as wave packets of dimension much
smaller than the interaction distance., Thus, in
analogy with JWKB calculations of scattering am-
plitudes, the classical trajectories that we have
mentioned are not really followed by the atoms.
A specific evaluation of 2. ™" will be given in a
future work.

Velacity selective laser spectroscopy
In velocity selective laser Spectroscopy, the
relevant quantity which describes collisional ef-
fects is the collision kernel W2, (¥*,¥). Calcula
tion of this kernel from Eqs. (30c) and (31) re-
quires the knowledge of products of differential
scattering amplitudes of the form

£ 0, 0, )0, (02, 9,).

The stringent condition VX « V7, I8 needed to ob-
tain a semiciassical approximation of this quan-
tity. We consider still the simple case of purely
repulsive interaction for which a semiclassical

I

— .
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scattering amplitude has been calculated (Eq. 29).
Since Eq. (29) is valid only if Joy8>1, a supple-
mentary assumption is needed to take into account
small-angle scattering. We suppose that the width
of p_..(F.¥.¢) in velocity space is much larger
than the velocity change which corresponds to the
deflection angle defined by J4,6=1. Thus, the
collisional transport equation may be written

L/ ;\: =T (B)p e men (B, B, 8)

A G W

+ Z pm.,m..,(?,v,t)fd’v’W:‘,:""(m(V’,V)
-t

* mZ_:f d o' W (¥, Dp e (B, ¥, 1) |
“0)

where Wi %" (¥, ¥) describes collisions which are
such that Jo,6>1 and W2, ™" (¥, ¥) describes the
remaining very small-angle collisions. The first
two terms may be calculated in the same way as
Yomr

The semiclassical approximation of scattering
amplifudes is needed to determine W'n" (¥, %),

35000, 0) FiR (6, 0)=

46

6

K®z sing

}3

, 1
F————
e
I-‘ez T o

FIG. 5. The scattering of two-substate atoms at angle
6 results from the contribution of two trajectories: the
one which enters the r < r, region In substate 1 at Im-
pact parameter (J; + 3k (I) and the one which enters the
7 < 7y reglon in substate 2 at impact parameter (Jay
+4)/K (). Along each trajectory mixing between sub-
states occurs for r <7,. The trajectories of substate 2
in [ and substate 1 in II would Iead to scattering at an
angle other than 0 and are, therefore, not continued fn-
to the r < 7, region.

As above, two collision regions may be distin-
guished depending on whether Jgy i8 larger or
smaller than J,. When Jg,>J,, a single trajectory
is available and one obtains

e 0 (=, 1)U (= 0, +0)

X exp ’-,‘[i f: at[V_ynlr , IN ~V_y 18N+ Vi dr () = V.(r,e(t))]

X exp (— WM™ -M"+ M~ M')’zl) (41)

for use in Eqs. (30c) and (31). This result contains the product of a semiclassical elastic differential scat-
tering cross section by a factor which accounts for the MM’ transitions along this trajectory.
When Jgo, >J,, distinct trajectories corresponding to distinct substates may contribute to scattering at

8¢ and

. R/ 4
F82(6,0) £, (6, «:)=—,——‘—2 (Tond on!)*PUG (=0, 710U S0 1 (= 0, 408" ()., ) UZT™ (85, )
nn

K*n 8ing

x exp[-i(a’em, . - A‘Z‘:,".l't,')]exp(- iM” = M’ ~ M” + M) %ﬂ'(M’ —Mkp)

-1/2
x( 26 “’) €XD{24(05 e =15 ) +i(J g ~doys)6) . (42)

8J g, 8d g,

The last factor in Eq. (42) represents interference
effects between diverging trajectories. Its angu-
lar dependence i8 given by

d
"{5[2('7:,”,.' - Tbo'n) = (Jen' —Je")0]= JOn "JOn' .

(43)

This angular dependence leads to oscillations of
Wae (¥, %) as a function of ¥ and %. In

)
S W @, ¥)pma=¥')d%’, the integral over v’
averages to zero for terms with [n|* |’ | provided
(n/mm |Jg,=Jgnr| ! is much smaller than the
width of p,.¥) in velocity space, where u is the
active-atom mean speed.

The net effect of scattering in direction 6¢ for
a two-level system in this limit is shown in Fig.
5. The angular momenta J4,(i = 1, 2) correspond
to scattering of an atom in state § through the
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angle 6p. For r>r, the substates are mixed by
the collisional interaction along each of the two
trajectories [ and II. For r <7, the two states in
each of trajectories I and II are split by the col-
lisional interaction, but only one trajectory in
each leads to scattering at (6p). Finally, the
states in a given trajectory are again mixed for

v >r,. The internal final state is a combination
of internal states which have experienced the his-
tory shown in Fig. 5. When the above conditions
are not fulfilled, no simple picture can be given.
It should be noticed that the phase factor in Eq.
(42) cannot be clearly separated into a “spatial
phase shift” which would represent interference
effects between diverging trajectories, and an
“internal phase shift” which results from internal
substate mixing and which is present along a com-
mon classical trajectory.

Thus, the methods used to calculate y7."" and
wrar" ($7,9) are perfectly consistent with the
JWKB and classical trajectory approximations,
respectively, that are used to calculate total and
differential scattering cross sections. Assuming
A<«7,, the result for y*.*" can be interpreted in
terms of a large number of partial waves giving
rise to scattering at angle 9¢ with no classical
correspondence between impact parameter and
scattering angle; however, the relevant phase
shifts and substate coupling are calculated along
clagsical trajectories (just as the », are calculated
along classical trajectories in the JWKB evalua-
tion of collision cross sections). Under the more
stringent condition VA « V¥, the derived expres-
sion for the kernel W2, (¥, ¥) can be interpreted
as arising from collisions having the appropriate
impact parameter to give rise to classical scat-
tering at §¢. There may be a number of such im-
pact parameters reflecting the different inter-
action potentials for the various magnetic sub-
states.

We have not attempted to give an interpretation
to W=.7” (#/,%) under the less restrictive semi-
classical condition A «<7,; in this 1imit the large
number of partial waves contributing to each scat-
tering amplitude leads to a very complicated ex-
pression when bilinear products of the scattering
amplitudes are taken to form the coilision kernel,
Only when (otal cross sections, such as those
represented by y2."", are evaluated does one re-
gain a result with a simple physical interpretation.

V. SUMMARY

In view of understanding the signal formation in
laser spectroscopic experiments when depolariz-
ing collisions are preasnt, we have developed a
semiclassical theory of these collisions, First

we have shown that single-trajectory approxima-
tion and adiabatic approximation can be combined
to obtain a generally valid expression for the
semiclassical phase shifts (provided X «<r,). An
explicit calculation of this phase shift has been
outlined in the simple case of a continuously de-
creasing difference of the substate dependent in-
teratomic potentials. The conditions of validity
for using a semiclassical scattering amplitude
have been examined and the case of a purely re-
pulsive interaction has been treated in some de-
tail. Using semiclassical approximations to the
scattering amplitudes, we investigated the nature
of the depolarization collision kernels and rates
which enter into l1aser spectroscopic experiments.
For these two quantities a picture of the scatter-
ing, in terms of classical trajectories, has been
given. In a forthcoming paper, expressions that
we have obtained will be used in a numerical cal-
culation of the corresponding signal profiles which
could be observed in laser spectroscopic experi-
ments.
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APPENDIX A: DERIVATION OF THE RADIAL
EQUATION!

A convenient set of commuting observables in
the center-of-mass frame consists of the Hamil-
tonian g, §*, and the total angular-momentum
operators J,J,, where J, i8 taken along a labora-
tory fixed axis of quantization Oz. The corre-
sponding eigenfunctions are ¥7/%/(¥,5) where M,
is an eigenvalue of J, and 5 denotes the ensemble
of electronic coordinates of the colliding atoms.
The total Hamiltonian ¥ is

n=u06)+§+m,a>.

where H,(7) is the internal Hamiltonian, V(#,75)
is the interatomic potential, and

_ ot (J."‘.‘ﬁ'i)
Peopt L

The Ramiltonian, without internuclear motion, is

no=n.,(5)+%', V(R B).

Its eigenfunctions are ¢4.(r, 5) where M’ is the
simultaneous eigenvalue of J,, and j,, along the
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rotating axis of quantization ¥. The expansion of
w74(F, 5) in terms of ¢ (r,?), and the wave func-
tion ¢ £.(r) describing the scattering is!’

,,,-,a,5)=}§;s{,; AN R

where & is the rotation which brings ¥ along Oz,
We substitute this expression into the Schrodinger
equation

2gr2

’Lz_I:_‘ Jlﬂ,(f, “)) =H¥ Jlll(r, 5) ,

where K is the magnitude of the relative motion
wave vector. Projection on ¢i*(r,5) leads to the
radial equation

=_ 2: MIVIM)YSE. (),
e
where

7= [ dooirtr Bl oktr.3).

J(J+1) <20 +§(j+1
<M(v(M')=(V.(r)+ (s+1) 2“":: i+ ’n’)o.w

n .
- m[),(", M)A’(], j{){ﬁ,.,_x
+2 (G, M _(J, M)y il

Ald, M) =[J(I+1) =M (M £ 1)]'/%, and Vy(r) is
the value of the interatomic potential in substate
M. In the diagonal term, the contributions which
contain # and j(j+1) -~ 2M* may be neglected as
they are of the order of A/r,.

The boundary-value condition which is necessary

to select the appropriate solution of the radial

equation is determined by the asymptotic form of
a scattered plane wave which is

- iKr
¥ - e TTpE)+ 3 S ik 6,90l B)

where p4(p) is the electronic wave function as-
suming that the quantization axis is along K, and
fi.(6,4) i8 the scattering amplitude in the helicity
representation. The connection between $L(5)
and @ (~,p) 18
243)= 3l B)g). (=, 5) .
]

Expansion of the plane -wave function in terms of
spherical harmonics leads to

ey r4 _._l_.. ixr _(_ -ixr
e* 4B~ 3355 ; (24 1)2T + 1)(e®" — (= 1)e-i7)
J

% (l i J) (l j J)
oM - 0 M -M
X D7 _y g Ry, B} .
Summing over ! and using Eq. (2) one finally ob-

tains
V- le(_r_ ; @I+ 1)[= (=118, _ye =" + 8} pe'F)

x (= DV-2'DLs. R)ph (=, ).

Since ¥ =Y, % //¥'(F,5), we see that the asymp-
totic form of the radial wave function is?

2J+1 v
PPl A NNy BV L
lim¢ {0r} %K (-1

[T

X [8_ et X" = (= 1/* 5] pre'®"].

APPENDIX B: STATIONARY-PHASE
CALCULATION

The needed approximation for D,,.(#, §,0) for large J values is given by Brussaard and Tolhoek,*

-1/
04,0, 6,0) = (’% smak(a) . sln(%'rMﬂ + W{w(a)) ) (B1)
where
2(6) =[J® - (M*+ M - 2MM’ cosg)/sin* g/ (B2)
and
Wiy (8) =d cos-![(J? cos6 - MM')/(J? = M) J* - M7*)M2]
- Mcos~H{(Mcosg - M')/sine(J* - M*)#] = M cos~*{(M” cosg - M)/sing(J* - M'*)V/?]. (BY)
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This approximation is valid provided W,.(6) > 1
This expression is substituted into Eq. (2). The
sum of the term involving &,,. vanishes'’ and one
is left with

(l)

(6, 9)= 2; (20 + 1)S{y D43 (0, 6,0,

(B4)

where S}, is to be given by Eq. (26). The quanti-
ties U44.(¢,¢') and exp(iaf¥y), appearing in Eq.
(26) are slowly varying functions of J with respect
to exp(2in,,~). Thus, they can be taken out of

the sum over J and evaluated at 2 point of maxi-
mum contribution to the sum. One may use the
stationary-phase method to calculate

Why:(6)]=0 which leads to

o e _ . J?cosg - MM
2y rcos '((J' =M - M'=>"’)

(B8)

or, when M«J,

’ 12
2—1"!— t9+0(¥:‘,ﬁ'}[¥" L}—) (B7)

The classical deflection angle © is defined by

=g Moy~
e=2%ar, (B8)

where dn,,./dJ satisfies Eq. (B7) to first order
in M’/J. A set of angular momenta J o, » may
satisfy Eq. (B8). We restrict now our calculation
to the single case of a purely repulsive potential.
Then g=6 and the semiclassical scattering am-

fdlexp[Zm,,- + Wiy, (0)]. (BS) plitude may be evaluated from Eqs. (B4), (22),
and (B1) using the method of stationary phase.
The stationary-phase condition is d/d/[2n,,~ One obtains
hel 1 e (88 Y e, b5 )U’eu"”’ (tty n , = Vex] (tAJ"' "+ 2% )
S8, ¢)=W 'E (I gyn) Jonn u Y (~ N P Nrgunu”™
X exp(—i-;- —-iM' +M)%-iJﬂ,,9)exp(- iMy). (B9)
This expression is bound to the validity of the ! [Jymp 8INB{> 1 . (B11)

stationary-phase approximation which requires

that
PY (8 9) ~-3/2
a7 \ag «1
This condition generally reduces to VX<« V7,. One
has to also take account of the condition of valid-
ity of the approximation used for ©J,0, 8,0). To
first order in M/J the approximation demands

that

(B10)

The points of stationary phase for channels M
and M’ are well separated provided that

[Jyo =dyol> (06/8J)3/2. (B12)

The fulfillment of this condition implies that the
wave packets in channels M and M’ do not over-
lap. When condition (B12) is not fulfilled the dis-
tinct wave packets coalesce into a single one, but
Eq. (B9) is still valid, since Eq. (B8) still has

a single solution for a given value of M".
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Abstract

The problen of calculating transition probabilities
in two-level systems is studied in the limit where the
detuning is large compared to the inverse duration of the
interaction. Coupling potentials whose Fourier transforus

V(w) are of the form f(w)e'(lbwl)

for large freguencies
give rise to solutions which may be classified into
families according to the form of f(w). Within each
family, transition provabilities ray be calculated from
formulae that differ only in the numerical value of
a8 scaling parameter. In cases where the coupiing function
has a pole in the complex time plane, the families are
identified with the order of this singularity. In par-
ticular, for poles of first order, a connection with the
Rosen-Zener solution can be made.

The analysis is performed via high-order perturbation

expanéions, which are shown to-always converge for two-

level systems driven by coupling potentials of finite

pulse area.




I. Introduction
In nany areas of physics, one encounters problems involving two

states of a guantum-uechanical system coupled by a time-dependent po-

tential.lblo In the interaction representation, the equations of motion
for &y and a5 the probvability amplitudes of levels 1 and 2, are of the
form
, ® 3 ‘wt
/a2, = Ve a,, (1a)
: ~-.wt
,a,= Ve a,, (1b)

where w is the frequency separation of the states and V(t) is the coupling
potential. JDecay effects are neglected in igqs. (1) (and throughout this

paper) and we work in a systen of units in which 4 = 1.

Equations of this type arise in many semiclassical problemns. A
problem of current interest to which they apply is the coupling of two
levels of an atonm by a laser pulse that has a temporal width which is
small compared to the natural lifetimes of the levels. The pulse, v(t)

is of the form

VI£)= QA(t) Cos L&, (2)

where Q is the central frequency of the pulse, and 2A(t) is the envelope
function of its amplit.ue. Assuming that l%fﬁl << 1, one can recast

kgs. (1) in terms of A, the detuning of the pulse from resonance (ro-

tating wave approximation)as




o | AT

, "O.At
Ja, = e a,. (30)

Egs. (3) or (1) are deceptively simple in form, and one might, at
first glance, believe thaf the system must be completely understood, so
that nothing remains to be investigated about the equations or their so-
lution. Actually, there is very little known about the overall qualitative
nature of the solutions to &qs. (3) for arbitrary A(t). Apert from any in-
trinsic interest one night have in the dynamics of two-level systeus, such
information could be useful, for exarple, in applications where one wished
to choose the pulse shape to maximize the excitation probability for a

given detuning A.

To appreciate that our assertion concerning the lack of knowledge
about the behavior of systems described by Egs. (3) is valid, one need
only recognize that the answver to the following question is not known
in general. "Starting with initial conditions al(-m) =1, az(—w) = 0, how
does the probability amplitude az(t) depend gualitatively on the pulse

area S, defined by

S= S Aamddt,

LN
on the detuning, and on the shape of the envelope function Alg)

A response to this query can be made for a limited number of cases.
Analytic solutions are available if A{t) belongs to a class of functionss.

(including the hyperbolic secant of Rosen and Zener2'3) nappable into the
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hypergeometric equation, or if A(t) = (constant) exp (-altl)g’lo or if
A(t) is a step function (Rabi problew), or if the detuning is zero.* In
addition, there are approximate solutions available in adiaba.tich or
perturbative limits. Yet, there remains a wide range of parameters

and pulse shapes for which an answer to the basic gquestion cannot be
provided.

In this paper, we shall éxamine the solutions to Egqs. (3) in the
linmit where the product of the deturning ’A[ and the characteristic pulse
duration T has a magnitude greatly in excess of unity. In other words,
ve are assuming that the pulse does not possess the appropriate Fourier
components to significantly compensgte for the detuning. In consequence,
the transition probability IaQ(W)lz will always be very small {but still
great enough to be experimentally measurable in atomiclvapors of den-
sities ~ 1012 atoms/cm3). We note that nucerical solutions of Eq. (3)

in this detuning range may be possitle but are very costly in computer

time and plagued with technical difficulties.

For the case |At| >> 1, we shall establish the following results:
(15 Low-order perturbative approximations for ae(w) are not valid for
arbitrary pulse area S, despite the fact that laz(t)lz << 1 for all time.
(2) An iterati?e solution to Egs. (1) always converges for well-behaved

envelope functions. (3) Asymptotic solutions for a,(t), t finite, may be

easily found, but expressions for az(”) are difficult to obtain., (4) !

Asymptotic solutions for aa(m) can be obtained for a limited class of

7

»
Kaplan' has also considered cases where the detuning varies as prescribed

functions of the amplitude, ancd obtained closed-form expressions.

-l -
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pulse envelope functions using contour iutegration techniques. This is

a broader set than that for which exact colutions are known. (5) The
asymptotic dependence of a2(w) depends critically on the naturec of the
sirgularities of the pulsc'cnvclOPe function A(t), analytically contirued
into the camplex plane. (6) If two pulse functions have the same Yourier
transforns in the limit of large frequencies and if the dorinant dependence
of the transform is an exporential decay in the frequency, then the
asyptotic forms of the solutionsag(M) for these functions in the limit
of large IAI are siuply related. 1n this paper, we address points (]),‘
(), (3), and (6); retueds for actually obtaining asymptotic solutions

{points (L) and (5))will be discussed in a future article.

II. Asyuptotic solutions.

As we have incicated, the Rosennzener2’3 (hyperbolic secant
coupling pulse) probler is one of tue few for which exact solutions ore
rnown. dn this case, a simple expression gives the trancition aumplitude
as a function of deturirg and arez for all values of these parameters.

Hatﬁrallj, since this formula
A s/mnS
Ay (N ==,z V(4 75 (1)

~
where V is the Fourier transform of A(t), is exact, it is valid in the

special case of the asyuptotic lirit,

ke shall show that there is en entire class of pulses for which the

sytiptotic trancition axplitude, as a function of § and A, may be written

-5 -
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down by inspection, once the Rosen-Zener problem has been solved., ke
shall also demenstrate that there are other classes of pulsec viose
solutions as t - © are unrelated to fosern-Zener, but are counected

to each other in the sense that once one has bLeen sclved, the solutions

for the entire class may be obtained by inspection.

The existence of these related solutions will be establishe

. . R th . . . .
via terui-by-terw comparison of n order perturbation exparsions which,

i

1

unaer very gereral conditions, are convergent in two-level problems.,
(bec Apperais). With suitable scaling of the coupling strengths, the
scries for different menvers of particular classes will be seen to be

identical, in the linit of large detunings.

The particular potentials analyzed in this vaper are A(t) whos
Fouricr transforins for large « assutte the form plc) expl-]vw|), where

p is a slowly verying function of w, and b a constant. It is convenient

to make a variable change, such that v = Iblw arnd x = t/]b]. Consequently

the exponertial decay factor in the Fourier trarnsforr beccumes exp(—lvl)

and the eguations of motion transiorm to
o 1ol X
/ CZ/ ey (3 _F)(>(j) e Cl:z)
(3a')
*® —;dx
) a, = (5"2()()8 CLH (3u1)

where o = |bA] and where the dot now signifies differentiation with
recpect to x. [, previocusly designated as 8, is the pulse area. <The

reduced potential function f(x) is definea such that {:f(x)dx = 1. The
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pulse area is invariant under the indiceted chance cof variable. One

uway also write rgs. (3) as a pair uncoupled second-order eguations
Ll

‘e 3 g 2 2
Q|"(:_g_" +'°()a| +(3_Cal:0) )

: ; *ra.=o

o L4 ‘F —-—
Q —(;E_‘O(\Qz_fﬁ - (50)

a £

There are two aspects o the solutions of gs. (3) or (5). These

are the calculation of the auplitudes at finite and intinite times, re-
spectivcly. The former are of interest if the transients are to be used

. . . T4 e A R O B
as input to other probleuws, suck as Lultithoton iornization™™, while the
latter, with vwhich we are mainly concerned here,are the transition an-
plitudes, ae(w). Yhe two tenporal regiwmes differ greatly in the nethods

that must be used to perforn accurate calculations.

Apart from the Rabi prcllem, the problen wnich has attracted
] s i

the most study is that of Rosen and Zener<’2, £(x) = (sechn x/2)/2, for

which the solutions are

a, = R (o, b c, =),

(Ga)

_ 'K"-C*F(-C*‘b ) 2-C 2:)
Gy =-iNZ [&-C ) brc 4] > =), (Cb)

or
»
\~-c c-a-

—a. 1-b. 2-¢, 2

Qa=~i1K%Z (1-2) LE(‘ a5 ’ >’ (6b)




e e+ 2 .

where —6_-:_7_?_) C;_—o’z
Y, -+ 1

~Fank ZX
z= i ) k"" ‘77/‘61-

and 2Fl designates the hypergeometric function. The form of a, &iven
by ikg. (€b) is valid for all x, while that siven by tg. (Gb') holds only
for finite », unless { corresponus to an eigenvalue, a pulse area for
which a2(+ ) vunishes.G We recall that ag(m}, the trensition w.plitude
for the Rosen~iener, proilem is given by Ly. (k).

One ray write the solutions to Lys. (3) as perturbation series
in the usual fashion, noting that only even orders enter the exprossion
for a)s while only odd orders appear in the formula for ay. The cxpension

for &,(* «) is
[

k) 2R+ R

ci C(a /_’) (—-!)’ where

=© J
-a - 241 K- ;(“)Mx ‘
(2924»0‘ S At )edx'olx Tr S; A (xd)e J)g )

In the Appendix, it is shown that this series converges for all finite

pulse areas.

For the remninder of the paper we will restrict ourselves to

the cnse of pulses that ave symmetric in time and where |a| >> ] -~

-8 -
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ithe adiabatic or asymptotic limit. The Fourier transform will be
symnetric in v. We shall begin by comparing the finite and infinite
time soluticns of the Rosen-Zener problem, which exemplify relevant

rroperties of transition amplitudes induced by snooth pulses.

We nay obtain the finite tiue solution by explicitly expanding

the JF, function of lq. (Cu')
- lb()(
Q, = ___/__@,___,__ S@ck%xf /I *

C/+ 3)(/- /3)(,#4”4 TX 1) + j

3~ r ol
Q7T
For large a, it is sufficivnt to retain the leading tern
B X o TX
G, ~ — e Sech —
2 P Qe

Yhis is equivalent to first-order perturbation theory in the adiabatic

limit
. - .o(x / vix)~ (X
() & e
aa - j V(X>€ d X ol >

vhere subsequent parts integrations are neglected, since they are

of %), n > 1, Ve immediately see that this sequence of parts integrations
o

is unsuitable for calculation ae(N), since each term separately vanishes

when x + «, Lven including the third - and higher-order terms in the

-9 -
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perturbation series via analogous sequences of parts integrations does
rnot cnable orne to obtain a non-zero amplitude as t + o, Consequently,

other methods are rnecessary to calculate for az(w).

It is clear from the preceding paragraph that for large enough
o, first-order perturbation theory is a sufficiently accurate approxi-
nation for most purposes, provided x is finite. For infinite times, not
only does tie adiabatic sequence of parts integraeticrclead to an in-
correct az(w), but even an exact evaluation of the first order integral
may be irsufficient. Yhis is typified by the exact Roesen-Zener earplitude,
&q. (), in which the factor sin® does not reduce to its first order

linit of f# unless |B] is swall compared to unity. This failure of the

first-order thieory occurs no matter how large the detuning becoies, One
must retuin enough terms in the perturbation cxpansion to accurately re-~
present the sine function. Thus, for the HRosen-CZener pulse, if the
coupling is great enough so that saturation effects would appear at
resonance, simple first-~order thecories can not be useé for a nonresonant
pulse of the sale strength. Ao we shall see, other smooth pulses also
possess this "saturation memory". In fact, in some cases, a higher-order
theory is necessary off resonance even for a case where a first-order
theory would suffice at resonance. This is exerplified by the fornulae

of kgs. (9) below.

Since each coupling function f(x) is c¢ifferent, one night te
led to believe that separate calculations nust be performed for each

individual case. Fortunately, as we have stated earlier, there prove

- 10 -




to Le classes of pulses where, if one krows the furncticnal dependence

of the asymptotic transition amplitude on « and f for one member of

the class, one knows it for all nmetbers of the cless, ulthough the wetual
tirne cependence of the potenticls may te drastically different. %hat is
significant is that their Fourier transforms esswre the sa e form as

Q> .

Vhen Rosen and Zener deruced Lg. (L), they suggested that similar
foruiulee night hold for other siooth pulses.2 This conjecture proves not
to hold in general. It is manifestly false for asymmetric pulses, nor is
it even valid for 21l syumetric pulses.s’6 What we shall show is that a
kind of Jlosen-Zener conjecture does apply at large dctunings‘for pulses
ir which f(x) has sirple poles at x = i, This law dces not aprly to pulses

which have higher order ucles at this pelut, although scaling laws for

these do exist, different for each order.

The following theorem will be estublished. Let twe coupling
pulses 4{x) and Ao(x) have Fourier transforms V(v) and Vo(v). The
Foufier transforms of voth approach, for large values of the argurernt,
the same asymptotic form Va(v). Ir Va is of the form, ¢(v)e-lv‘ where
¢(v) is a slowly varying function of v, then the asyrptotic transition
amplitudes genecrated by the two pulses will be the same, provided that
the pulse areas are both finite. A sufficient condition for the indicated
asymptotic behavior of the Fourier transforus is that they be equal, for
large v, to a contour integration whose value is given by the product of

the residuc at x = 1 and the usual Cauchy factor 2wi. If two such pulses
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are to have the same ¢(v), they must possess poles of the same order at

x=1i.

The contribution of order (2k+1l) to the transition amplitude my be

rewritten slightly

o . - J.
’ldX| L‘ .
g (ate  dx, | ayo ) Alg)e o,
oY R c;:nQ o -

A, x

JJ do rot affect the irtegrals. They are used to remove

The factors e
ambiguities as xJ+ - © 1n the treatment below, where we express the
auplitude in terwms of integrals in the freguency domain. The limits

Aj + 0 arc to be taken before the X, integration is performed. Lxpress-

1
ing each A(x ), > 2, in terms of its Fourier transform, we have
(z-ku) \ - i X, M} im
A CAxye dx,
Q, (_TW)QQS J=3 )\-%O
' X °°~ |( ¢ 4 (=1 )JO(-'A)
Sax ( UFe "4
-0 60

Ly working in the fregquency domain, we shall be able to examine the

(2kx+1)
2

o
bution fram regions where the asyrmptotic form of V is not valid is lower

structure of the integrals for a and establish that the contri-

by 0(%) than the contributions from regions where it is valid.




The integrals over the xi are trivial to perform. Ve obtain

L IDIEE | > ~ 3B e
a, = 530 Gmrd 3 4B @ T VI3, %)

g
é=1T .(Qﬂ(-l)f-:}\l) ’

R=akad—y
We now proceed to determine the asymptotic form of these amplitudes,

(3)
2 ?

but exactly the same reasoning and conclusions will 2pply for the higher

The analysis is easiest to follow for the third-crder contribution a

order terms. (The theorew is true by inspection in first-order, since
that contribution is, apart fras o constant multiplier, just the Fourier
transfornm itself. Thus, if two couplirg functions hLave Fourier transforms

of the sare asynptotic fornm, their first-order transition amplitudes scale

(3)
2, .)

I i 452 VOIV(3+9,-) d3,d%
Qa = wmo ﬁg % (Qu“’("'A)('\)z-*Q.-'l)\) .

- -

the sare way with R and o. The leading non-trivial term is
v

It is convenient to make the change of variable vi = yi a.

- o3 ~ zNo( vir e J‘Jz
0(::)____ ;,\%_J:i?w VYV () VDY Ya-1]dY, dy _

2230 (H= =i (Vi Y- i)
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(1 yy V1) Y (4TY, Y- 1) dy, dya

r—i"_\:r FS (Y,“) (Yi+Ya) B

vm(’\‘/’(am)’ VAN
+ |"T')~-ao _(0’)11 {4 )l,_..;)\ﬁ * “Ya—1I- i» ].3

vhere P indicates that the integrand excludes infinitesital regions near
¥y =y, and ¥ = 1. We ray forumally integrate the last two terms. If,

I
(-1) is factored from the sccond of the two integrals, they combine to be~

Heo) bl
colie oa

' [
L}::o SAS&V@()(\/(D(YJ)D \ +\aa_-.) - \+gz.‘. A

It is immediately obvicus that if these arc partltlored according to the

rule

Lim ( 90X (x) dx — PSC!P(XMJY . i'ﬂ"‘b(xo))

>0 ) %X- X-'\E X~Xo

the principul value contrivutiors exactly carcel, while the im terrs are
proportional to e-3a’ and exponertially small compared to aé‘), which de-
cays only like %, Terms proportional to exponentials which decay more

rapidly than e do not contribute to the asymptotic form.

(")

We now proceed to examine the remaining contributions to a
where it is again understood that the small regions in the neighborhood

of Yo = ¥y and ¥, = 1 are excluded from the integrals. For all regions

-1k -




-~ ~
except where |y| < |§1, vwhere a is a number of order unity, V(W) -» Va(ay)

Thus, for the entire y,-y, plane, excert vhere y, ~ 0, y, ~ 0 (but not

both simultaneously) and ¥y + Yo = 1, the numerator of the integrand is

well represented by its asymptotic form. Furthermore, since at riost

one of the three Fourief transform factors departs from its asymptotic
form in any given region of space, the area in the Yy - ¥s plane over
which one of the V voth departs from its asymptotic form and decays no
more rapidly than e is 0(1/a). It is, of course implicitly assuzed that
the exact and asymptotic forms of the Fourier transiorms remain tounded

as their arguments + 0. TFor the former, this is eqguivalent to the re-

guirement, which we have already stated, that B be finite.

ow consider that portion of the ¥Yi17¥o plane vwhere all factors
in the nunerator arc well-approximated by their asymptotic forms. Lxamine

in particular the exponential decay factors

-ily ] -w 1Yal ~x b Y+ Yo -t
c e e

The only portion of the plane where the corbined effect of the expo-
nertial factors leads to an overall decay that is not faster than e-u
is the range 0 < Yy <1, 0 < Yo < 1—¥r The integrand does not change
sign in this portion of ¥,-¥, space, which encompasses an area as 1/2,
comparcd to the area 1l/a, which is the corresponding extent in which
the nonasymptotic integrand decays no more repidly than e *. liote
that there is no portion of the plane in which the integrand decays

more slowly than e—a. Thus the nonasymptotic integrand contribution

-15 -
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is O(i) compered to that of the asymptotic invegrand.

Similar considerations enable one to deduce that one may also
replace the Fourier transforms in the higher-order integrals by their

asynptotic forus.

We thus conclude that if the time-dependences of two codpling
functions are such that the asymptotic forus of their Fourier transforus
arc identical and of the inaicated form, the lar;e detuning traunsition

amplitudes are the sane,

As we have indicated, a sufficient condition that two pulses
have the sane ag(m) for large o is that both asymptotic Fourier transforms
be equal to contour integrations given by (2mi) (Res(x=i)). We compare
the hyperbolic secant of Rosen ard Zerer, f = %-sech %5-V1th the

Lorentzian f = % (1#x°)"L. The corresponding A(x) are

A(x) = —_%- (rex®) )
X
An) = & sech T

The transforms for both may be calculated via contour integrations.

The Lorentzian case is trivial and applies to all v, not just large
frequencies. We choose a contour that runs along thc real axis from
-R to 43 and is closed by a semicircle in the upper half plane. The
contribution to the contour integral from the arc vanishes as R + =
so that the Fourier transform is identical tc the contour integral,

vhose value is determired by the residue at the sinple pole at x = i,

- 16 =

<, e T o St

—




The result is

(Ta)

~voB =19
W= ¢

For the hyperbolié secant we choose a rectangular contour which
runs frow =R to +R along the real axis, that is continued by rectangular
segments parzilel to the imaginary from the points (&R, 0) to the points
(#R, 2i), and is closed by a line parallel to the real axis which runs
from (R, 2i) to (-R,21). The two vertical segments give vanishing con-
tributions as R + «, and the horizontal scgmert off the real axis goes
exponentially to zero compared to the cegment along the real axis as
v + «, Thus, for the hyperbolic secant, the Fourier transform is identical
to that of the Lorentzian in the asymptotic region. For large v it is
given by
~ a2 -]
VH — = €

J&T\' .

bince the Rosen-Zerer solution gives the transition amplitude for

(7o)

all detunings, according to Eq. (4), as -iven £(u) sinB, this forrula

nust be valid asymptotically also. As we have shown that the asymptotic
Fourier transforms of the Lorentzian and hypervolic secant are proportional
for large detunings, the Lorentzian must induce a transition amplitude that
obeys a formula similar to Eq. (k). From igs. (7), we see that to con-
struct the Lorentzian and hyperbolic secant Fourier transforhs so that

they are asymptotically identical, it is necessary to choose the Lorentzian

- 17 -




pulse area EL to be twice that of Eh. This immediately gives the

laree detuning scaling law for the Lorentzian

v
an=-iﬁo'l‘ﬁ_(o()8m-—5. (8a)

This result has been irdependently obtained by carrying out an asymptotic

solution of kqs. (3).12  One can also show that for the pulse A, =

Bc cosechnx, the appropriate scaling law is

N/ .
N Eny > B (80)
Qlcz'\*—a—‘ o \X Sin )
For the hypervolic secant pulse, the transition amplitude vanishes
for pulse areas 3 = n7W, n integral for all detunings. The Lorentzian,
on the other hand, has eigenvalues B = nm for zero detuning, while those

for large detuning are B = 2nw. The eigenvalues of Ac go fron nm at

nw
a=0 to E— as a + «,

The existence of a pole at x=i is a sufficient, but not a necessary
condition that the asymptotic Fourier transform of a coupling pulse

~ p(w)e-lwl. For example, the function (l*xz)-3/2 has an asymptotic

Fourier transforu proportional to v1/2 e-v. ‘The factor v1/2 precludes
deducing the asymptotic transition amplitude from the Rosen-Zener formula.
Similarly, the squares of the hyperbolic secant and of the Lorentzian each
hﬁve poles of second order at x=i, with the consequence that, for both

o -
of these, V, ~ v eVl , SO that while these will have asymptotic

transition amplitudes that are related to each other, they cannot be

obtained by scaling from Eq. (k). In owr next paper, we shall show

- 18 -
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how to calculate asymptotic transition amplitudes when the coupling
pulse has second- and higher-crder poles at x=i. For now, we merely
present the formulae for the transition amplitudes generated by the

squares of the hyperbolic secant and Lorentzian

-1t ’

Q, (HQ)—"I :ZCTZ- ed Sm[C@JSthECJE:(Fﬁ_’J (9a)
-l

0, =~ & sinCTEED JomhEJERT]

1l 1 1
) = LA R S
where C 1 G 56 182

from iq. () by scaling technigues derived in this paper.

+ =~ 1,19k, Yquation (9a) can be obtaineu

III, Suwmmary and Conclusion

In this paper, we have demonstrated that pulse shapes A(t)
vhose Fourier transforms asyuptotically approach the form ¢(v)e—|vl,
where ¢ is s.owly varying, may be categorized into families which differ
according to the function ¢. Within each family, the transition aupli-
tudes a2(w) are related by simple scaling laws, so that if one is able
to derive an expression for tue trapsition amplitude generated by one

uember of the family, correspondirg formulee for all other members of

the fahily may be written down by inspection.

A sufficient condition that the Fourier transform be of the
required form is that it be obtainable in the asymptotic regi~n as a

contour integral evaluated from the residue at a single pole on tlLe

inaginary time axis. For the case where A(t) has simple poles, az(w)

- 19 - \

li -




’ A
may be inferrea from the solution of the Rosen-Zener problem“*”, known

for fifty years, by a trivial scaling operation.

Our results wvere obtained by examining the structure of the
_terms in perturbation expansions for trunsition amplitudes. (We have
demonstrated that these sequences always converge in two~level problens
provided that the pulse areas are finite. Low-order approximations,
however, are frequently not useful for t + ® even when they are valid
at finite times.) With suitable choices of ratios of pulse areas,
corresponding terms in the series for different members of the same

family will be identical.

In a future paperlg, we shall present methods for explicitly
calculating transition amplitudes that apply to higher-urder, as well
as siuple poles. Thus, ve are not restricted in practice to writing
scaling laws for pulses which may be compared in the asymptotic region

to the hyperbolic secant.

The authors are indebted to Dr. A. lawbini for interesting
discussions of this and related problems. This work was supported by

the Office of Naval Research.
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Apvenaix - Convergence of Perturdbation Theory for the Transition
Amplitude

we demonstrate herc that the perturbation series for a, converges

for all finite pulse arex The contribution of order (2h+l) is
(JM 2R+ (2%-0!)
— - “3 pomad
‘ L]
X,

_.«x. S l(-lw’(d (A=1)

a4} A
-,'(5 =1 X'F\XOP )é

Now assume that A(x) is of a single algebraic sign. Withcut loss of

generality we ray take this to be positive. Ve compare the series witch

= 0.
2%+t Kj-i

l;‘o l(g)&-” 1) S‘F(X')axw .F(Xd)c’ d" (a-2)

=d =
IR dx- e

CE SR Y
B =) S\-(-’(x.\ly\x, v H’(X ) M (h-21)
- ti:.ﬂ - O
Invoking the theore:ns onzrteiiated intgb‘rals gi‘che saue functi?k*l
h@“_ -1 B _ (1) S@(x}dx
o T (@)l = oo >

and the terms are recognized as identical to those for the seriesz -i sin3.

ihe correspording expansion for a

low comsider the series




241 O 2%+

(
F(B)= T_\ M z(amn),l Sofﬁx)dx

2841
-7 NCE
- @&+

This is evidently the series for sinhR, which converges so long as B is

QRz+

finite. nrence, the series of kq. (A-2) is absolutely convergent. Low
2@+ X§-1
by = |
) t’=l o
2841 )<‘
2k4 i

Lp lg | £0x |dx, Eﬁ S lf(mux

l(&\l

so that the series, kq. (A-1) is also absolutely convergent, and our

result is established.

We note that the same arguments will apply to perturbation series
x
at finite times, provided merely that [ f(x')dx' = B(x) is of one sign
and finite. If f(x) changes sign, the results will still be valid pro-

x
vided the generalized area J [r(x')|dx’, is finite.

A simple case where the convergence theoren does not apply is the
coupling function A(x) = (const) (tanhmx/2)/x,since 3 is logarithmicelly

divergert. In addition, since the pulse area is proportional to the

- 22 -
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Fourier transform at zero frequency, the multiple integrals in the
frequency dozain for the third- and higher-order contributions to the
perturbation series contein regions where the integrands blow up, so
that the individual terms beyond first order mey not even exist. (The
first-order contribution will be finite, since the Fourier transform for
this pulse exists for v # 0. In this case, we note that the infinite
area does pot imply & pulse of infinite erergy, so that it theoretically
could exist. One evidently cannot use the methods developed here to
describe the dynamics. At the very least, decay would have to be in-
cluded in the analysis, and a canpletely non-perturbative treatrent

utilized.)

- 23 -
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0'ROURKE™, and S. M. MUDARE, Genrxia Instirate of Tech-
nology. *®-~The resonance Faman protiles ot 4 number of
vibrational lines of copper tetr.phenvipacphvrin (n &
nitrogen oatrix have heer measured throughout the Q(0-u)
and Q(0-i) absorption rewinm,
analysis, tne nltrogen matvix provides an environment
approuximating the pus phace,l  The major festures {n the
excitation peofiles can te analyzed usink a simple adia-
batic theory.2 From spectra taken with excitition near
the Soret band, it is possible to explain tre strong
ephancement of the 39: cm~! profile at frequencies 1200-
1600 cm™
Teller (HT) coupling of the 392 em~ ! mode and strong HT
coupling of these higher freaquencies,

392 cem”

effect for this mode.

Additlonal structure cbservea in

A thys

Based on absorption spectra

removed from the Q(0-0) band as weik Hertzberg-

The strergth of the
Raman intensity is due te a strong Franck-Condon

the profiles is attributed to interference between funda-

mental and combination cerme in the scattering intensity
:q\ution.

Current address:
*supported by NSF Grant DMR-7907758.

E. [. Dupont Savannah River Laboratory.

lp, ¢. 0'Shea, P. E. O'Rourke and S. M. Mudare, Paper KE2,

San Francisco APS Meeting.
2p, 2. 0'Rourke and D. C. 0'Shea, this session.

BH 14

Radiative Mean Lifetimes of the Excited

States of the Hydrogen-Like Atoms.

K. OMIDVAR,

NASA/Goddard Space Fliaght Center--Using Kramers'

semi-classical formula for the oscillator
strength of the hydrogen-like atoms!, it is

shown that the mean lifetime of an excited state

with a principal quantum number n behaves with

respect to n as (u2*) 'n%/in(n), where u is the

atomic reduced mass, and 2 is the effective

charge of the point charge coulomb field acting

on the running electron. Using this result,
is shown that the mean lifetime of a state

it

specified by the principal and angular momentum

quantum numbers n and £ behaves as (uZ®) 'nlt?,

Agreement with selected measured mean lifetimes

of the excited and rydberg states of He and
alkalide atoms will be shown.

1u. Rupgostadeby thonliS, 6il57 ofsfaedeRaseanchy .
under Contract No. NG0014-77-C-0353,

BH1S Collistonally Aided fsdiative Excitation Stu-
dieg in Sodium®, M. TAWIL, P.R. LERMAN, E. GIACOLINOT,

O. REDI, H.H. STROKE, R. VETTER{Y, YU - A study {a
being made of the interaction of lignt from a ring dye .
laser vwith Na undergoing collisions, to unierstand
better the physics of the proceases beyoad the impact
region leading to line asymmetry snd possible heating
and coolirg. In one experizment, the LD state vas ex-
cited far off resonance in & tvo-photon transition
(576.7 om) vith Ar at pressures p=0=55 Torr. For W0,
fluorescence waa cbservable for detuning 10 Doppler
vidths. At ¥20 Torr small (.ia,?7) peaks were observed
in the wings. They vanished vithout Ar. In a second
experiment, stepvise excitation vith Z photons from e

single laser (505.4 nm) is used to populate the LD
level in the presence of Ar or lie. The intermediate 3P
atoms appear to be heated in the process. The vidth is
studied by the hole sade in the IP-3S fluorescence as
the 3P-4D transition ie scanned, or by the 4LP-3S cas-
cade transition. Resuits are compared to theorstical
predictions by one of us (PPL).
WSUpported in part by NSP grantas PHY-T909173/02 and INT-
7921530, and by the Office of laval Research.
tPermanent adaress: szcole Nomale Supertgure.uf_‘_g;ﬁ_;d
‘ o o] Y ¥ '

fog anv puipeis cotn: buiked Gutes Geret Ak
BH 16 5’-"~'~_'i~~£_f surement Of Static Flectric Fleld
lontzatton 1) ot Hoifum 0 gn g R0 Rydherg States
Prefiminary Resuirs.® 0.R. MARIANI, W. VAN Je WATER,
P.M. KOCH, Yale I'iv.~=Aa experiment 18 in progress to
megsure precisely the F-dependence of Tp(F) over the
range 10° - 107 3~1 near the "saddle-point” tonization
linit n®*“F > 1,16 au. The fast-deam, 22C 180, ew laser
spectrosconic method {s similar to that ucm!'pvevloullyl

473

S..-;_, )-_z’__ ‘(’ ¥s k/(l "7’1—/

to measure M1(F) for individual Stark substaces of
hvdrngen, which tontze at larcer values of n*F20n.1-0,3
au.  We have .Idagced progrims xindly furnished by
Zimmerman et al.® to calculate needed He Stark maps.
T1(F) {s extracted from least-squares computer fits to
signal-averaged lonization curves. “He(l:nu)’S; Ty(F)-
curves on semilog plots rise rapldly between 10°-10 s},
but bend over between 107 - 10° ¢~! much more than those
for H Sctark substates. Data for these and other states
will be presented and interpreted.

*Supported by NSF Grant PHYB0-26548

'p.M. Knch and D.R. Mariani, Phys. Rev. Lett. 46,

1275 (1931).

2M,L. 2immerman et al., Phys. Rev. A20, 2251 (1979).

BH 17 Microwave Multiphoton Ionization of Rvdberg
Atoms: Helium Compared to Hydrogen. P .M, xOCH, W. VAN

de WATER, and D.R. MARIANI, Yale U.*--An experiment is
in progress to measure with high relative precision the
Fy-dependences of the rate W (over the range 10°-17%371)
of the microwave ionization of 12¢1€0, laser-excized
helium and hydrogen Rydberg atoms (20 <n <60) {a s fast
beam (>6 keV). UWe use a microwave electric field F(t)e
Focosut (linearly polarized parallel to the beam axis)
at discrete frequencies «w/2x between 8 and 12 GHz.
Slopes k of log-log plots of W vs. Foz can be draratgi-
cally different for H and He atoms with nearly the same
binding energy; e.g. at w/23=9.91 GHz, k[H(n=.2)])>20
where as k[He(ls-’.ls)3Sll $2., Additional data for other
R and He states and for other frequencies (especially
near observed hydrogen "resonance” frequencies!) will
be presented and interpreted.

*Supported by NSF Grant PHYB0-26548

13.E. Bayfield, L.D. Gardner, and P.M. Koch, Phys. Rev.
Lete. 39, 76 (1977),
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SESSION BXs: HEAVY ION REACTIONS |
Monday afternoon, 26 April 1982

Empire Room at 2:00 P.M.
BXal
Velocity Measurements of Evaporation Residues.

. . W, HY, R. STOK3iAD, 1. iSLA°UYA,
Lawrence Berkeley Laboratory; A. BUDZANOWSKI,
LBL and TNP, "Cracow, and ¥, Blann Lawrence
1vermere .*~=The vclocities of the Een{
products from the reactions '*0+27A1,%%Ca,*°Ni
were measured with a TOF spectrometer and beams
of '%0 at 140, 217 aad 313 MeV from the LBL
88~Inch Cyclotron. Evaporation-residue-like
products for !50+*°Ca at the higher encrgies
show mean velocities less than those expected
for complete fusion and equilibrium decay.

A similar effect has been reported for
2°Se+Ca,' The energy, mass, and angular
dependence of the mean velocities wiil be
discussed,

*This work was supported by the Director,
Office of Energy Research, Division of Nuclear
Physics of the High Energy and Nuclear Physics
and by Nuclear Sciences of the Basic tnergy
Sciences Program of the U.S. Department of
Energy under Contract No.W-7305-ENC-48.

1) D. G. Kovar et al. BAPS 26, 1133 (1981).

BXa2 Systematics of Light lon Emission from Aea
lon Reactions. J.B. BALL, R.U, RURLE, F. ¥, 0~
T.H, FUCMET, 1., LEE, R.L. ROBINSON, P.M. STILSLY, .
Qak Ridge National Laboratory*, D.L. HENORIE, Lawrerce
Berkeley Laboratury, M. ﬁzuiﬁ. H.D. HOLMGREN, ana J.o.
STLX, University o; Maryland--Energy spectra of 2=1,2
particles from 51, 100, 147 MeV/amy }®0-iniuced resc-
tions have been measured using beams from the LBL
Bevalac. At E(160) = 100 MeV/amu, targets of Al, M1,
Sn, and Au were used to study target mass (Ar) effects.
High energy proton yields are found to vary as Ayi’? at
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