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_ SIMMARY
v

A computational algorithm utilizing the free vibration modes of a
structure is presented for calculating receptances. The usual eigen-
system computed for large structural models is incomplete; hence the
receptances are approximate. The formulas developed here increased
receptance accuracy compared to classical spectral representations.
Receptances are used extensively in eigensolution reanalysis. design
and synthesis and also for forced harmonic response studies. In these
areas receptance approaches offer a popular alternative to Rayleigh
Ritz subspace type methods. Structural models represented by non-
symmetric mass, damping and stiffness matrices, which occur frequently
in rotating structures, may be treated using the receptance formulas
presented. The receptance matrix derived is applicable to general,

2nd degree, square lambda matrices. This generalizes the receptance

matrix commonly associated with matrix pencils.
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INTRODUCTION

In the terminology of vibration theory the receptance, or
dynamic flexibility influence coefficient, between degrees of freedom
i and j is defined as
Gij(w) = complex amplitude of the steady state displacement
at dof i due to a unit sinusoidal force of frequency

w applied at dof j.

= {Cu? v C KT (1)

Receptances have been extensively used in dynamic reanalysis, that is
in the efficient solution of the matrix eigenvalue problem for a struc-
ture undergoing physical modifications. Receptances are also used in
optimized design and structural damage studies as well as in the svn-
thesis of structures possesing prescribed eigenvalues. 1In the latter
case this procedure is referred to as eigensolution design or "pole
placement." Modal synthesis, i.e., the computation of eigensolutions
of a segmented system from the eigensolutions of its component substruc-
tures, has also been presented from a receptance standpoint. The recep-
tance methods can in some cases provide much better computational
efficiency and accuracy than a standard Rayleigh Ritz subspace approach.
In reanalysis this is particularly evident if the subspace dimension
of the Rayleigh Ritz method is much larger than the number of degrees of
freedom directly affected by the physical modification.

Bishop et. al. systematically utilized receptances in vibration

1,2,3 To calculate individual elements of a

theory and experimentation.
receptance matrix for an undamped system, these authors utilized its

spectral representation
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This relationship permits any element of the receptance matrix to
be computed at various forcing frequencies (w), without repeatedly in- L
verting large matrices. Since the modal characteristics calculated for
complex structural models are usually incomplete, the summation in
equation (2) extends only over the L lowest modes. Typically, ;

0.1 < L/N<O0.3 (3)

Hence the spectral representation of the receptance matrix is aporoximate.

Receptance investigations have sought to improve the representation
of equation (2) for L/N values in the range of equation (3). Hirai and
Yost:imura4 developed an alternative receptance formula useful in eigen-
solution reanalysis of locally modified, structural svstems. Their

"hybrid” representztion is

Gw)={L K Tt (K 2+ L+ @) Tt K

T
N $. 9.
r R o3 ——J—J———~2R 2 (4)
=1 m. Q5 (Q-w? )
j=1 mJQJ ( 5 w<)

for R = 1,2,...
They demonstrated that the accuracy of G (w) improves as R increases, ;
for a fixed value of L. Leung5 utilizes receptances in forced harmonic
response analyses and eigensolution reanalysis of structural systems
subjected to mcdified boundary conditions. His improvement to the

receptance-spectral representation of equation (1) resembles the R = 2




form of equation (4).

6 . . .
Imbert separates equation (2) into two series

L o., 0. N 6,900
6 = 5 —2 3t , 5 i (5)
J 2=1 m (@2 - w?)  £=Ll+1 m Q (1
2 2
Assuming that w << 92 +° equation (5) becomes
b.9 0. L ¢., 0.
G, . (W= ; 2 h oo p A2 (6)
£2=1 m (Q w?) 2:1 mgag
since
_ N ¢., 0.
&y = 2 —i%——ii (7)
2=1 22

It can be shown that equation (6) and the R = 1 form of equation (4) are
equivalent. The last two terms in equation (6) are referred to as the
residual flexibility, and take into account the static effects of the
missing higher order modes. Childs?, in a study of transient modal
rotordynamic models, has recently applied the residual flexibility
approach.

The present work deals with-the more general receptance formed as

the second degree, lambda matrix inverse
F(A) = (AZM#AC+K) ) NXN (8)
where M, K, and C are square, generally nonsymmetric matrices. The

scalar X is in general a member of the complex number field. The matrix

F will be referred to as a generalized receptance matrix. The generalized

receptance is useful in vibration theory while examining rotating struc-
turess, structures with rotating elements, and structures with discrete

dampers. This last category is gaining increasing importance due to a
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9,10

growing interest in active vibration contrcl systems
MATHEMATICAL FORMULATION

We begin the study of equation (8) by considering the quadratic

eigenvalue problem

(@M+oa, C+KIA =0 (NX1)

and the corresponding left eigenvector problem

@2y’ va ¢tk 8 =0 (NX1)

- . - 12
These equations are expressed in first order form as

T T
ro= -
((Xk “_\.1 +.B.1)'_k 9 ’ (uk él + El)Ik "9
Moo c K
élz —--L--— r. B_l= —-—+—-—
0 K Ko
or alternatively as
(o, &, + B,)T. =0 (o AT + BT)X =0
k-2 =2-k = k -2  -274k =
0o | n o
Ay=|-Teg-c| , B = |~c-t--_-
R R Polo ok

The modal matrices associated with equations (9) - (14) are

= ' i) = Y T
Q = [Ay 1 By Hond » V=180 8,0 5on!
C= 000 o iy [_‘-i%‘iti_-‘_"_l
Q

. ' ' 1 vV di R
Y= ' X! :IZN] = [;— 218 (dl)

[y,

(9

(10)

(11)

(12)

(13)

(14)

{15)

(16)
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Assume that each eigenvalue o, is distinct wiith an eigenspace of dimen-

sion one. The Dbiorthogonality conditions13 satisfied by these eigen-

vectors then are

T _ T _;
(4 Dy =825 (F By Dyy =858 (18)
. . -
By Dy =88y 0 (X By D)y, = -8, 8y 0, (19)
a,. = 8(2a.M+ CA. ,a,. =a.a o #0 (20)
2i = LR T DLy 2y T Ay i
Define the matrix pencil
= 2
P=AA, +B, , Ata (21)

The inverse of this pencil is obtained using equations (16) - (20)

QQE&{ ﬁ_.}vT{Qd_xia % _}YT
3y (A-a) | \321 (A-0y)
pTl = ———-———-——~+ ——————————— (22)
Q diag % V7 : Q diag 1 YT
aZi(A-a ) ; a, (A-di)

Substitute equations (14), (21), (22) into the identity

PP =1, (23)

This yields the conditions

-M Q diag vI + A M Q diag 1 vi=o (20
(A a,) a,, (A-a)

N Qdiag [ % \vT+ (Ace)Q diag A
aZi(A-ai) ( )

i
[t
z

(25)

2y; (A-ay
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Multiplying equation (24) by A and adding the results to (25) provides

the spectral representation of the generalized receptance matrix

2N A

E(A) = 3 U R (26)
i=1 a,.(A-a.)
) 2j J
When the structure is constrained and unable to undergo a rigid body
displacement in any vibratory coordinate direction, all 2N eigenvalues

(ai) are non-zero. In the limit as A approaches zero equation (8) and

(26) imply
L W A6
K ' =-3 L4 (27)
j=1 A
170 %25 %
Consider the following finite expansion
SRS WP S CIN
A-a. Y
J J Ctz CL,3 CV.H
J } ]
R-1 R
- -2 'R A (28)
o, o, (l-a,
J J( J)
R=1, 2, ..., R finite
Substitute equation (28) into (26)
2N A, 88 aNaA, 8T 2N A, 6
F(A) = - % ;JL__J -Ay oy LT
-= . . .= z . -= a 3
j=1 723 73 3112303? Jleaj
NA ST R N AS LN AS
-A3 3 —l——l: - - A b3 x* A2 — =l (29)
j=1 a2j o j=1 a2j aJ j=1 a, orj()\-uj)

It follows from equation (27) that the first term in this series equals

the inverse of the stiffness matrix. Likewise, the first R terms of
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These expressions are obtained by equating the spectral representation

(29) may be expressed in terms of the M, K and C property matrices.

for
-1 -1,R-2
>
B" (A, B]) R>2 (30) ‘
A
to its representation as defined by equations (12). The spectral repre- ' L
sentations for éil and EI are derived using equations (18) - (20). ?1
-1 -1 1
The spectral representations for él and §1 are derived using equations
(18) - (20). "
!
aZ A, 6% a. A, 8 ?
J 7371 )1 7) X
______ + ——————
!
-1 1 T2 %% —§ ' Ajﬁ J
= 1 = ! - _
dp = Ddiag (o——) ¥ =, T (31)
J 2] j 23
¢ T ! T ’
a2 A, S 1a. A, S, ]
J =33 0 3 7))
S B
2N T ! T
- . _ o, A6, A, 6,
By = -1 diag {_1*, yT = - 21 I A Tt e (32)
2 1=
at a,, J 2
32 ¥ Ay

In deriving equivalent expression in terms of M, K, and C for the
summations in equation (29), only the "2,2" submatrix of equation (30)

need be examined. The hvbrid spectral-property matrix representations

for the generalized receptance matrix for R equal to 1 through 4 are

(33)
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R=1,«.#0 ;
it E
-1 2N A _G_T . 3
F(A) =K " +A 33— (34) 3
=1 .o, (A-a,
J aZJ J( J) 9
.
K
R=2,a #0
x # |
U T VY- -
F(A) = {Iy - A CIKT! + A2 3 ——J;L—— (35) A
i=1 a,. «Z(A-x -
175 4 ( ) ]
R=3,«, #0
J # ;
PV = (LK Te-A? (KT uek e KT he 4
2§ A, 6
+A% 3 — ) (36)
=1 a,, «3(A-«
j 2 J( J) ]
R=4, o, 0 ]
i #
F()={1,-A T e-A2 R -k e k)
Ak le KK K ek e K Te KTk
N A, 6T
+At 3 8 i
=1 a,. o (A-a.) (7 {
2j J

These equations (34) - (37) each have the form
F(A) = Property Matrix Contribution + Modal Contribution

For large systems the modal contribution is normally incomplete since the

higher order modes are not calculated. Tau practice the summa-

tions 1in equations (33) - (37) only extend over the 2L lowest modes
(including complex conjugate modes) where L typically is in the range of
equation (3). If the eigensystem employed is complete all of these

formulas will yield the exact receptance matrix defined by equation (8).
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IMPROVING THE COMPUTATIONAL ACCURACY +

The iateger R in equations (29) and (33) - (37) can be referred to
as a "higher mode factor." To investigate why increasing R reduces the
importance of the higher mode contributions to the summations Iin equaticns

(33) - (37) consider the ratio

oo coefficient of An én i} gl | a2l(A - al) ) Ny

n coefficient of 41 Q{ o aZn(A - an) :
Arrange the eigensolutions according to

Ia1| < ‘uzl < ]“3‘ < la"\ laZN_ll < ‘dzN\ (39 )

where the equality holds only if uj+1 = &j' This implies that
%
3 3 <n <2N

n

Consequently equation (38) shows that as R increases, r decreases for n
greater then three (3). Hence the higher mode contributions to the
summations in equations (33) - (37) are increasingly less important for
larger values of R. Since these modes are not usually calculated in the
analysis of large structure models the accuracy of the elements of F(A)

will improve as R increases.

Consider the contribution of the mth mode to the rec.ptance

matrices in equations (33) - (37), i.e.,
R=0 A 5T
“m -m - ¢
aom(k—am) “m
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etc.
Clearly the magnitude of the contribution from the mth mode will de-

crease as R increases if

This shows that if only q eigcensolutions are utilized in equations

(33) - (37) then

2
am |

is a necessary condition for the R = 1,2,3... receptance formulas co produce

more accurate results than the R = 0 formula. Therefors, the (R < 1) receptance

formulas for F(A) should only be used if |X] < |aqT.
APPLICATION TO SPECIAL SYSTEM TYPES
The generalized receptance formulas given by equatioms (29), and

(33) - (37) can be simplified for several common types of vibrational

systems. Gyroscopic systems satisfy

M>o0, k>0, ¢ =-c (41)
. . 14,15 .
These frequently occur in models of rotating structures . For this
system type13
6. = 53., Re(a;) =0, Re(a,.) = 0 (42)

]
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The eigenvectors of general, symmetric systems

1=

>0, €20, K>0

satisfy

Proportionately damped vibratory systems are defined by

2L, Q m.

M >0, K>0, 0 Co =8

ij i

T
i
In this case equations (29), (33) - (37) reduce to

T
9, 9,

= 2 2
1 my (A% + 2§k Qk A+ Qk)

I+ K U-AZM - A Q) + ...

1

+

K1 Az - A Rl

R T

O ' S T
- = 2 R 2 2
k=1 m (A 02)% (A% + 20, QA + 02)

+ (-A%)

USE OF THE GENERAL RECEPTANCE MATRIX

(43)

(45)

(46)

(47)

Use of the receptance matrix derived here typicallv requires that

only a small submatrix of F be evaluated, i.e.,

f(A) =F [k, k. """k \ = {‘r . F, .
= - .12 .S k.j k.j
(Jl AP Jp) 1¥1 142
F, . F .
kpdy kplp
F. . F. .
kle ksJZ

s <<N, p<<N

(48)
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Consider a system model where
(ky Ky kg k) = () Jp Gg d,) = (6789
The R = 1 formula from equation (34) implies
— -
-1 -1 -1 _-1 R L L .
Kee Ko7 Koz Koo 866 267 B8 269
N TS T e B 1 1 a1 1
EA) = | K Kpp Kog Kog | *A | By B85 D55 By
-1 sl -l -l 1 1 1 1
Kgo Xg7 Kgg Kgg 836 237 S8 %39
‘1 ‘1 '1 "1 1 1 1 1
Koo X7 Kogg I599_J B36 237 B9 Bgg
e S p—
N AL S,
2 %5
al = 5 = ] (49)
ij 251 a5 0(2()\ 012)
The R = 2 formula from equation (35) becomes
[ S TS R
Koo K67 Kog Kgo
N S T S S
E) =1 Kr6 Ky7 Kog Kog
-1 -1 -1 -1
Kge Kg7 Kgg Kgg
11 -1 -1
| %96 K97 Ko Kyg
~ 7~ - — -
-1 ' ! ' 2 2 2 2
R o b D61 D68 “69
= s :
- -1 St NS G | 2 2 2 2 2 ‘
MEGTE] % s K % M TR PR TR
z-1 | ' 2 2 2 2 ‘
X T A5 %87 %8 ‘g9 !
g1 ‘ [ ! 2 2 2 2 7
R . __A96 By Bgg A99_ ;
H
b
where ;
N A B,
A2 = 3 2t (50)




and Enl and K;l are the nth row and column of 5-1, respectively,
Similar formulas for R greater than 2 are also easily derived. Note
that the property matrix - submatrices in equations (49) and (50) need
be evaluated and stored only once. These submatrices may then be re-

trieved to evaluate f(A) for any value of A.

APPLICATION OF THE RECEPTANCE FORMULA

A useful application of receptance formulas is in dynamic reanalysis.

Suppose that modifications to a structure result in the formation of the

new mass, damping, and stiffness matrices

M =M+A4 (N x N) (51)
t=c+ac )
K = K +AK (53)

The quadratic matrix eigenvalue pro?lem for the modified systerm Liecomes
(xi(g_ +AD A (CH B0+ (R AR)Y =0 (54)

From equation (54) define the modification matrix

SO0 = A2 M+ AC + MK (55)

Suppose that the modification involves relatively few elements in the
property matrices, in other words, AM etc., is very sparse. The sparse-
ness of the modification is quantified by considering the non-null rows
(or columns) of S(A). These row numbers are entered in the set

T

1= 3y 3y oen 3Y) px1 (56) ;

A local modification to the structure is defined as a modification with
a p/N ratio much less than 1. Appendix I1 demonstrates that a form

i
|
of the modified system's characteristic equation is "
l
|
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g(An) = determinant (lp + §(An) E(An)) =0 (57)
where
An: zeroes of g(A) (eigenvalues of the modified structure)
S(A) = S (J1 Jp oo Jp) PXp (58)
iy 3 e 8

= condensed modification matrix

F(N) LAY I PR PR Jp pXp (59)
iy dg e,

condensed receptance matrix

I

Iy unit matrix of order p

Equations (58) and (59) utilize the notation of equation (4R). As scen
above, the generalized receptancs matrix enters into the reanalvsis pro-
cedure through the matrix i(k). The zeroes of g(}) are obtained iteratively,
using either the Newton Raphson or Muller approach. During the iteration

the condensed receptance matrix E(\) must be repeatedly evaluated for each
guess of A. In addition a search for an optimal structural design requires
computation of the eigenvalues for each trial design. These designs result
in the formation of AM, AK, and AC modification matrices and consequently

in the formation of condensed effective modification matrices é. This
emphasizes the requirement for computation of E(k) for many values of A.

The eigensolution reanalvsis procedure is therefore a reasonable application

for the approximate receptance formulas previously derived.

NUMERICAL EXAMPLE

The uniform beam model in Figure 1 can be used to demonrnstrate the

accuracy and efficiency of the receptance approach to an eigenvalue reanalvsis




as outlined in Appendix II. This NASA model is a crude continuum repre-
sentation of a large space truss. The objective is to determine the
optimal location for an "active' damper (c) to dampen transient vibrations
resulting from maneuvers, dockings, and other dynamic loadings.

Classical root locus plots are constructed, varying the damper
strength (c) from 0.1 to 4.0 1lb. sec. in-.-1 (0.0175 < ¢ £ 0.70 kN sec. m_l),
in 0.1 1b. sec. in?l (0.0175 kN sec. m_l) increments. For each damper
value the lower portion of the beam's eigensystem, as determined from
the imaginary part of the eigenvalues, is computed. These plots are
generated for various damper locations and consequently may mandate the
computation of the partial eigensvstem for hundreds of cases.

In this particular example the syvstem has 50 dof, i.e., N = 50
and the generalized displacement vector is

A= X 8 X, 8, .. Xo B0)

Suppose a damper is added at node 11, then p = 1 and J = (j]) = (21).

The general equations of the previous scction reduce to

S(A) = )\zAgi_ + AAC + AK =XAC

since
~

= MK =0, AC = (&0)

1% >

21,21~ ¢

Also, for this case

EAY = (g1 .01 = Fo1,m

For this case, equation (75) of Appendix II yields the following form
for the modified system's characteristic equation

g(A) =1+ XcF (x) =0

21,21
Since the initial system is undamped and is described by symmetric

M

and K matrices, the receptance F21 21 is computed, for each guess
Y

of A, by using equations (46) and (47)

—d

~

N
[ A NI, I NI SR

S SO




] 2
L ¢
~ =1 2 21,k
= 4 - T —_—2
F21,21m LS )21,21 A =1 ;mz(}‘zwz)
%k %

where typically L < < N, i.e. an incomplete eigensystem is used, and
¢1,, 5j and Qj are modal properties of the undamped system. The zeroes
of g()) are eigenvalues of the damped svstem, and are obtained with
Muller's method. Root locus plots for a damper at node 11, are shown

in Figure 2. Optimum damper and optimum damping ratio (7) values are
listed for each mode. Twelve (L = 12) original svstem modes were
employed in the receptance formulas (F21,21)’ above. Figure 2 shows
results for both the R = 0 and R = 1 receptance formulas. The eigenvalue
solver EISPACK16 was used to judge the accuracy of the approximate re-
analysis results. EISPACK conditions the input matrix (é;l 32, see
equation (13)) with subroutine BALANC, reduces the conditioned matrix

to Hessenberg form17 with subroutine ELMHES, and then computes the
eigenvalues of this similar matrix with the QR algorithm, utilizing sub-
routine HQR. Table I shows the maximum percent error for each of the
eight (8) lowest modes, for damper values in the set {0.1, 0.2, 0.4,
0.7, 1.1, 1.2, 1.4, 1.5, 4.0} 1b sec. in-..1 (0.0175, 0.035, 0.07, 0.1925,
0.21, 0.245, 0.2625, 0.70 kN sec. m¢l). Note by comparison with Figure

2 that this set of (c) values encompasses all of the optimum dampers,

and the minimum and maximum damper values. The results clearly show




that the computation of the receptances by the R = 1 formula provides
substantially improved eigenvalue reanalysis accuracy, as compared to
the R = Q0 receptance computation results. Table !l shows a computa-
tion time efficiency comparison for the exact (EISPACK) and approximate
(reanalysis) methods. A large computer time reduction is seen to result
with the approximate reanalysis method. For instance, the average re-
analysis time per value of C for the R = 1 approach is 0.4725 cp. secs..
while the same computation requires 37.6 cp. secs. with EISPACK. This
represents a computation time reduction by a factor of 79.6.

This numerical example only includes eigenvalue computations since

the root locus plots do not require eigenvectors.
CONCLUDING REMARKS

A representation for the approximate calculation of the receptance
elements for a general second degree, square lambda matrix has been
presented. The computational efficiency of solving for a submatrix of
the receptance is increased, in particular when the submatrix ic evaluated
for many distinct values of A. The submatrices are useful in eigensolution
reanalysis, design, or component synthesis schemes, as well as in forced
harmonic response analvses. The accuracy of the receptances are shown
to be improved relative to a classical spectral representation when em-
ploying only an incomplete eigensystem. Previous receptance formulas
were shown to be special cases of the general results derived. These
prior works apply only to undamped, nonrotating structures, with symmetrical
property matrices. i

1t was assumed in equations (18) - (20) that the eigenvalues of the

structural model are all distinct. 1In addition, in equation (63) the




assumption was made that no eigenvalue is left invariant during a structural
modification. Because of the lack of ideal symmetry characteristics, both
of these conditions are satisfied in many structural models. These
limitations on the applicability of the formulation are subjects of ongoing

research.
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APPENDIX I: NOTATION ]

General Notation

_ = matrix-vector quantity 4
5-1 = inverse of matrix A r
A>0 = A symmetric, positive definite
A>0 = A symmetric, positive semi-definite
diag ( ) = diagonal matrix
z—; = complex conjugate
$ij = Kronecker delta
Re () = real part of
{
; i = J-1
E éT = transpose of matrix A
E él' 51’ 52, §2 = first order forms of system property matrices
! a1i0 3y T modal normalization constants
C = damping matrix NXN
f(A) = a submatrix of F, equation (48)
F = generalized receptance matrix
G = classical receptance or dynamic flexibility influence
coefficient matrix
n = stiffness matrix NXN
L = number of system eigensolutions available for use in a

spectral type representation of F or G

!
} M = mass matrix NXN
|
F
E
E




F
;
E
F
;

Y

o I0 to

(<<

[Ram]

ij

modal normalization constant

my = 0 1 O
total number of system model degrees of freedom
2N X 2N matrix pencil
N X 2N right eigenvector modal matrix
receptance higher mode factor
N X 2N left eigenvector modal matrix
ith complex eigenvalue of a general vibratory system
2N X 2N modal matrix of right eigenvectors from a
first order system formulation
kth column of T
2N x 2N modal matrix of left eigenvectors from a
first order system formulation
kth column of y
ith modal darmming constant for a proportionately
damped system, with symmetric M, K, C
ith modal damping constant for a symmetric,
proportionately damped system
ith complex right eigenvector of a general vibratory
system
a complex scalar
nth generalized coordinate vector for a modified
structural system

ith element of £
=n

jth eigenvecétor of an undamped vibratory system
model, with symmetric M, K

ith component of Qj

N v ey igh AP ,,- ot lc, .




nth right eigenvector of a modified structural
system

forcing frequency

jth eigenvalue of an undamped vibratory system

model, with symmetric M, K




APPENDIX ITI: REANALYSIS THEORY

The free vibration problem for a modified structural system is

expressed by ‘1
') -
(Xn(g + AM) + An(g'+ AC) + (K + Ag))@n =0 (N x1) (60)

An effective modification matrix mav then be defined as

SO = A2 + AAC + AK (61)

Assume that matrix S is very sparse. This sparsity is quantified through

the integer set

I=3Uy 3 e 1) (p x 1) (62)

where ji are the non-null row (or column) numbers of 5. A local
modification to the structure is defined as one which has a P/N ratio
much less than 1. Define the generalized receptance matgix as

FOO = Ql+ac+p! (63)

which exists as long as X\ is not an eigenvalue of the unmodified svstem.
Substitute the change of basis

Qn = E(An)gn(kn) (N x1) (64)
into equation (60). This yields

(I, +SODEQ NE, =2 (N x 1) (65)

By the definition in equation (62) it follows that

gkn = 0, k ¢ (j1 A PR jp) (66)
‘ and
} - _
4 =0, y 2, ... 67
l Ejr“ + éjr E_é_n 0 r (1, 2 p) (67)

P S 4 * s .',,'sq.:




where
S, =j_ row of § (68)
! 3 -
r
F=(F)f1 2 N (N x p) (69)
31 I ]p
" T
r = 4 4
i (Ejln 5i.n .o ;jpn) (70)

Taking advantage of the sparsity of the columns of S, equation (67)

condenses further to

(L, + SOOEQIE = 0, ( x 1) (71)

where (in the notation of equation (48))

_S_= (_S_) Jl j2 ¢ jp
] J -]
1 2 . p
L2 . .
=A@ [y, i, i, + A0 [y 3, I\ 5,3, s
i, 3, i, i, 1, iy iy 3, 1
{(p x p) (72)
f_ = (E) jl j2 jP (p x P) (73) W
VR g
Equation (71), accompanied bv
wn = E.én (N x 1) (74)

represents the final condensed form of the quadratic eigenvalue problem

(60) for the modified system. The rank of the coefficient matrix in

equation (71) must be less than p, for a nontrivial null space to exist.

This implies that




g(x) = det(l + SA)E(G)) =0 (75)

The zeroes of g(An) are eigenvalues cof rhe modified structural system.
Consequently, g(A) is a form of the modified system's characteristic

equatiocn.
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Table I Accuracy Comparison: Approximate (Reanalysis)
Versus Exact (EISPACK) Eigenvalues for a Damped

Beam*
R=0 R=1 R=0 R=1
Re(}) Re (}) Im(A) Im(})
Max % error Max % error Max 7% error Max 7 error
Al -0.008 0.000 0.000 0.000 N
Az -0.016 0.000 0.000 0.000
X3 -0.073 0.000 0.016 0.000
AA -0.458 0.000 0.042 0.000
AS -1.440 ~0.005 0.125 0.000
A6 -2.17 -0.024% 0.248 0.003
X7 -9.83 -0.318 0.016 2.000
As -7.82 ~-0.387 0.804 0.038

*

Data shown is the maximum percent error with C € {0.1, 0.2, 0.4, n.7,
1.1, 1.2, 1.4, 1.5, 4.0} 1b. sec. in._ (0.0175, 0.035, 0.07, N.1925,
0.21, 0.245, 0.2625, 0.70) kN sec. m 1

VNP A -




Table II Computation Time Comparison: Approximate (Reanalysis)
Versus Exact (EISPACK) Approaches

(a)

(b)

(c)

(d)

Formation of K, M and computation of original system eigensolutions:
19.46 cp. secs.

R = 0 reanalysis for ¢ € {0.1, 0.2, ... 4.0}, 40 values of ¢ and 10
Ai per value: 16.8 cp. secs., average: 0.42 sec/damper value

R = 1 reanalysis for ¢ ¢ {0.1, 0.2, ..., 4.0}, 40 values of ¢ and 10
Ai per value: 18.9 cp. secs., average: 0.4725 sec/damper value

EISPACK solution for 9 values of ¢ and 10 X, per value ¢ ¢ {0.1, 0.2,
0.4, 0.7, 1.1, 1.2, 1.4, 1.5, 4.0}: 338.0 cp. sec., average: 37.5556
sec/damper value
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10 x 106 Ib/in2 (68.93 GN/m”), Alluminum

0.1 < ¢ <€ 4.0 lh.sec./in (0.0175 < ¢ <€ 0.70 UN.sec/m)

Original system natural frequencies: Ql = 2.065 rad/sec, 21, = 3.804,
Q) = 12.504, Q& = 32.472, Qs = 63.211, 96 = 104.332, 97 = 155.792,
08 = 217.587

Figure 1 FEuler Bernoulli beam model feor
space structure reanalysis




R=0 R=1
MODE OPTIMUM DRAMPER CPTIMUM ZETA MODE OPTIMUM DAMPER OPTIMUM ZETA

1 . 100 .71318 1 . 100 .71822
2 .100 .01470 2 .100 01470
3 . 200 .18230 3 .200 . 18243
4 .400 .07575 y 400 .07602
S . 700 .07624 9 .700 .07723
g . 700 . 10437 [ .700 . 10665
7 1.400 .00190 7 1.500 . 00201
8 1.100 .08778 8 1.200 .095(C8

+ 300.000

o
. R=0 2=0.05 4 250,000
e R=1 |
% )
200.000
o IM(LAMBOA}
7 150.000
7=0.20
100.C00
7=0.30
50.000

KO P
4 | 1 1 1 ) ~':§
i

Lo o o I i
-24.000  -20.000  -16.000  -12.000 -8.000 -4.C00
RE (LAMBDA)

RUN NO. 40781.200
DAMPER NODE NO, 11

NO. DAMPER VALUES 40 1

SMALLEST DAMPER(%) .100 LB.SFC.IN Y (0.0175 kN.SEC.m™})
)

1 1

DAMPER INCREMENT .100 LB.SEC.IN * (0.0175 kN.SEC.m

MODES FOR RECEPTANCE 12

Figure 2 Root locus plot for space structure beam
model utilizing cigenvalue reanalysis
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