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ScLMARY

A computational algorithm utilizing the free vibration modes of a

structure is presented for calculating receptances. The usual elgen-

system computed for large structural models is incomplete; hence the

receptances are approximate. The formulas developed here increased

receptance accuracy compared to classical spectral representations.

Receptances are used extensively in eigensolution reanalysis. design

and synthesis and also for forced harmonic response studies. In these

areas receptance approaches offer a popular alternative to Rayleigh

Ritz subspace type methods. Structural models represented by non-

symmetric mass, damping and stiffness matrices, which occur frequently

in rotating structures, may be treated using the receptance formulas

presented. The receptance matrix derived is applicable to general,

2nd degree, square lambda matrices. This generalizes the receptance

matrix commonly associated with matrix pencils.

DT: T4,DI

U peti.,

ty.



INTRODUCTION

In the terminology of vibration theory the receptance, or

dynamic flexibility influence coefficient, between degrees of freedom

i and j is defined as

G.. (w) = complex amplitude of the steady state displacement

at dof i due to a unit sinusoidal force of frequency

w applied at dof j.

=(-W 2 M + iw C + K) -li j

Receptances have been extensively used in dynamic reanalysis, that is

in the efficient solution of the matrix eigenvalue problem for a struc-

ture undergoing physical modifications. Receptances are also used in

optimized design and structural damage studies as well as in the syn-

thesis of structures possesing prescribed eigenvalues. In the latter

case this procedure is referred to as eigensolution design or "pole

placement." Modal synthesis, i.e., the computation of eigensolutions

of a segmented system from the eigensolutions of its component substruc-

tures, has also been presented from a receptance standpoint. The recep-

tance methods can in some cases pro-Tide much better computational

efficiency and accuracy than a standard Rayleigh Ritz subspace approach.

In reanalysis this is particularly evident if the subspace dimension

of the Rayleigh Ritz method is much larger than the number of degrees of

freedom directly affected by the physical modification.

Bishop et. al. systematically utilized receptances in vibration

theoryand . 1,2,3
theory and experimentation. To calculate individual elements of a

receptance matrix for an undamped system, these authors utilized its

spectral representation



G..(w) = {(-w 2M + K)-..
G ( W ) ( - W( ) •

N 2(2)

P=1 M (Q2-wj2 )

This relationship permits any element of the receptance matrix to

be computed at various forcing frequencies (w), without repeatedly in-

verting large matrices. Since the modal characteristics calculated for

complex structural models are usually incomplete, the summation in

equation (2) extends only over the L lowest modes. Typically,

0.1 < L/N < 0.3 (3)

Hence the spectral representation of the receptance matrix is aporoximate.

Receptance investigations have sought to improve the representation

of equation (2) for L/N values in the tange of equation (3). Hirai and

Yostimura 4 developed an alternative receptance formula useful in eigen-

solution reanalysis of locally modified, structural systems. Their

"hybrid" representation is

G(w){IN+w2K-IM+4(KI)2+...+(2)R-(KIM)R-1 K I

N 
T

+ 2R I j (4
- 2R 2 2(4j=l m i 0 R(0 i-W

for R 1,2,...

They demonstrated that the accuracy of G (w) imDroves as R increases,

5
for a fixed value of L. Leung utilizes receptances in forced harmonic

response analyses and eigensolution reanalysis of structural systems

subjected to mcdified boundary conditions. His improvement to the

receptance-spectral representation of equation (1) resembles the R = 2



form of equation (4).

6
Imbert separates equation (2) into two series

L Oik Oj N 2
G .(w) = + i (5)13 Q 2 m (Q2 - W2 ) Q=L+I-

Assuming that w << Q.,+l' equation (5) becomes
L ki @£ K-1) L i2,

G ij(w)= I + _ (K ). - (6)

2e=1 22Q-2)k1M

since

N ij = 1  (7)

- £= m

I 2

It can be shown that equation (6) and the P = 1 form of equation (4) are

equivalent. The last two terms in equation (6) are referred to as the

residual flexibility, and take into account the static effects of the

missing higher order modes. Childs 7, in a study of transient modal

rotordynamic models, has recently applied the residual flexibility

approach.

The present work deals with the more general receptance formed as

the second degree, lambda matrix inverse

F(X) = (X2M+AC+K)-  NXN (8)

where M, K, and C are square, generally nonsvmmetric matrices. The

scalar A is in general a member of the complex number field. The matrix

F will be referred to as a generalized receptance matrix. The generalized

receptance is useful in vibration theory while examining rotating struc-

8
tures , structures with rotating elements, and structures with discrete

dampers. This last category is gaining increasing importance due to a



9,10
growing interest in active vibration controL systems

MATHEMATICAL FOR.ULATION V"

We begin the study of equation (8) by considering the quadratic

eigenvalue problem

(2 M_ + a. C + K) A. 0 (NI) (9)

and the corresponding left eigenvector problem

(a2 T + + T) 6. =0 (NXI) (10)
_ 1- - - - -

12

These equations are expressed in first order form as

(at A T B B' T T (0
k AI1 l _ (ak  I + B) = O (11)

3 (12)

or alternatively as

T + BT ( 3
(ek A2 + B2 )ik = O (elk 2 + T = O (3)

A , (14)
2 -2 = [ - -

The modal matrices associated with equations (9) - (14) are

-1s' I_ 2 52--
=A A ' ... A , V 1 , "" .. a (15)

- r 2  -r Qdia 1oi)Q ] (16)

= 2 I2N = --dia (-i)](17)

1~ ~ 12 -1N



Assume that each eigenvalue a. is distinct WiLh an eigenspace of dimen-1

13
sion one. The biorthogonality conditions satisfied by these eigen-

vectors then are

T T
(TAI )j = 6ij ali (T BI  )ij -6ij al i (18)

(iT 2 I)ij = 6ij a2 i (T B = -6.. a2 i i (19)

a2i = 6T(2aM t+ C)A , a, = a at (20)2i. §i i i2i i 0(0

Define the matrix pencil

P = X A, + B 2 a. (21)

The inverse of this pencil is obtained using equations (16) - (20)

dia V T Qdiag 1f VT
1i(i-Ii 2i -f

p--- 
(22)

Substitute equations (14), (21), (22) into the identity

pp 1 =1 (23)
-2Nj

This yields the conditions

-Nqdiag _____ V + A M Q diag ( j VT 0 (24)
2i (aX-Ori) (2iI(X-(y i )

QM diag (a(a VY + (XC+K)q diag C i(I VT IN(5
(T ai( -Ii -  2i(X- i (25)

-%ii ~ ~~~~~~~~~~ ~~. . _ ,. .::- ,,, ...- ,,.



. - -. . - ........... .....

Multiplying equation (24) by A and adding the results to (25) provides

the spectral representation of the generalized receptance matrix

2N A. T

F(X) = I - - (26)
j=l a2j (-aj)

When the structure is constrained and unable to undergo a rigid body

displacement in any vibratory coordinate direction, all 2N eigenvalues

(a.) are non-zero. In the limit as A approaches zero equation (,) and

(26) imply

2N A. 6T.
K- 1 _ j i/__L 27)

j=l a2j a.

Consider the following finite expansion

X X 2 X3

cc 2 .
R-i i R

-X-R-' + a'k (28)
R Ra. i .(A -a)

R 1, 2, ..., R finite

Substitute equation (28) into (26)

T1 TT2N A. 6. 2N A. 6. 2N A. 6TF (k) Y - 1 j Y- _J j -X2 I J -

j=l a 2 j 'j j=1 a 2 j ? j=l a2j c 3

TT T
2N A. 6 R-1 2N A. 6 R 2N A. 6.

_A
3  

y A -I _j j R + X a_; R_-3 (29)
j1 2j j=l a2j . j=l 2j (A-a )

It follows from equation (27) that the first term in this series equals

the inverse of the stiffness matrix. Likewise, the first R terms of



rt

(29) may be expressed in terms of the M, K and C property matrices.

These expressions are obtained by equating the spectral representation

for

-1 (A -1 )R-2 R>2 (30)
B1  (A1 -1 _

to its representation as defined by equations (12). The spectral repre-

sentations for A 1 and are derived using equations (18) - (20).

The spectral representations for A and B1 are derived using equations

(18) (20).

U2 A. Tia a. A. 6T

gj1 E: - -
J - (31)

- 1_ _ _ T 2 N a . A I A . 6 T
t-j Ci al'

C . I . A. 6.

diag 2N T 5T.
r T -. -.- (3 22i)

In deriving equivalent expression in terms of M, K, and C for the

summations in equation (29), only the "2,2" submatrix of equation (30)

need be examined. The hybrid spectral-property matrix representations

for the generalized receptance matrix for R equal to 1 through 4 are

R=0

2N A. 6T
F(A) I j -J - (33)

j=l a2j (i)

I



R -, =. 0

2N A. 6
T

F() =K + A (34)
j=l a.,. (-Oj) i.

2j'j .) .

R = 2, x 0

-1 
2N A. 6T

F(X) = IN - CIK -  + X 2  -J (35)

2j j j

R =3, . 0

F() ( IN--c K-I M-K-I C K-I C}}K
-

2N A. 6
T

+ \3  Z -J -J (36)
j=l a O3 3(X-cj

R 4, ci 0

F()= K- IC-A2 {K- IM-K- IC K-I C)

Ni -I - -- --

-X3{K-I C K M-KIM K- IC+K- 1C K- IC K- CI}K "

2N A. 6
T

+A4  1 ,-3-J

j=l a ( (X-Or (37)
2jJ 3

These equations (34) - (37) each have the form

F(,) = Property Matrix Contribution + Modal Contribution

For large systems the modal contribution is normally incomplete since the

higher order modes are not calculated. In practice the summa-

tions in equations (33) - (37) only extend over the 2L lowest modes

(including complex conjugate modes) where L typically is in the range of

equation (3). If the eigensystem employed is complete all of these

formulas will yield the exact receptance matrix defined by equation (8).



IMPROVING THE COMPUTATIONAL ACCURACY

The integer R in equations (29) and (33) - (37) can be referred to

as a "higher mode factor." To investigate why increasing R reduces t:ne

importance of the higher mode contributions to the summations in equations

(33) - (37) consider the ratio

o= coefficient of A  6 T a I R  a2 1 X( - al) (38)

coefficient of A 6i a 1a2n (A - n

Arrange the eigensolutions according to

where the equality holds only if uj+l = a j  This implies that

1 < , 3 < n < 2N (40)

n

Consequently equation (38) shows that as R increases, r ndecreases for n

greater then three (3) Hence the higher mode contributions to the

summations in equations (33) - (37) are increasingly less important for

larger values of R. Since these modes are not usually calculated in the

analysis of large structure models the accuracy of the elements of F(,)

will improve as R increases.

Consider the contribution of the mth mode to the rec ptance

matrices in equations (33) - (37), i.e.,

R= 0 A ,T

alm(xm) -m
R=O TA 3 T

om a2m (-dm) -in

mm

R~ 1



R= 2 T
" m fm = (-_)2

c 2  2m(\-cm) --m
m

etc.

Clearly the magnitude of the contribution from the mth mode will de-

crease as R increases if

<]

M

This shows that if only q eigensolutions are utilized in equations

(33) - (37) then

q ,

is a necessary condition for the R = 1,2,3... receptance formulas o produce

more accurate results than the R = 0 formula. Therefore, the (R < 1) receptance

formulas for F(X) should only be used if II[ < ICAq 1.

APPLICATION TO SPECIAL SYSTEM TYPES

The generalized receptance formulas given by equations (29), and

(33) - (37) can be simplified for several common types of vibrational

systems. Gyroscopic systems satisfy

M > 0, K > 0, CT = -C (41)

These frequently occur in models of rotating structures 14,15 For this

system type1
3

6. A Re(a) = 0, Re(a) = 0 (42)-J - J' J



The eigenvectors of general, symmetric systems

MI > 0, C > 0, K > 0 (43)

satisfy
6. = A. (44)-J -_I

Proportionately damped vibratory systems are defined by

TM > 0, K > 0, i C 4j = 6ij 2 i Q. m. (45)

In this case equations (29), (33) - (37) reduce to

R=0 ,

T
N 9 kk (46

F(X) = Y (46)
k=1 n (X2 + 2 .Q X + 2

R = 1, 2,...

F (A) = {! + K- (-X2M - A C) +

*s(K (-X2 1 - C))R  K-

N (X 2t 2 Q ) R  --k T

+ (-X2)R N k k k k (47)

k=kI mk( 2k)R (A2 + 2Ck kA + 2)

ki( k ki k~? k

USE OF THE GENERAL RECEPTANCE MATRIX

Use of the receptance matrix derived here typically requires that

only a small submatrix of F be evaluated, i.e.,

f() :F k k2 - k) : ... Fkp3 1  2  s) FklJ I F12klJ2

Fk1 Fk2J2 ... FkJ

F F F

s < I s 2 sp 8

s < < N, p < < N (48)8



Consider a system model where

(kI k2 k3 k4 ) = (jl J2 J3 j4 ) = (6 7 8 9)

The R = I formula from equation (34) implies

--1 -1 -1 -1-
K K K K A' Al A' A'

-6 -7 -68 -69 66 67 68 69
-1 -1 -1 -11 1 1 1

f(X)= K K_ K K_ +N A I A I A 1 A1
-76 -77 -78 -79 76 77 78 79

K K-1 K 1  K 1  A' A' l Al
-86 -87 -88 -89 86 87 88 89

K _K K_1  A' Al1  eA' A'
-96 -97 -98 -99 96 97 98 99

N A.
, = ' (49)ij J I 2.e ci 2(X of 2) (9

The R = 2 formula from equation (35) becomes

,-1 -1 -1 -1-
K _ K K K_

-66 -67 -68 -69

f(\ -1 K-1 K-1 K-1

( -76 -77 -78 -79

K -I K-I -1
-86 -87 -88 -89

-1 -1 -1 -1
96 -97 -98 K99

1 A2  A) A2  A2
-6 66 A67 68 69

-X K 1  C K1_ - IK I K_ +A2  A2  A2  A2 A2
-6 - 8 1 -9 76 77 78 79

A2  A2  A2  A2

--1 88 89
K- A2  A2  A2  A2

-996 97 98 99

where
N A 6jA . Ai . (50)

'j 9,= a2£ (X -X )



and K and K are the nth row and column of K - , respectively,-n -1%

Similar formulas for R greater than 2 are also easily derived. Note

that the property matrix - submatrices in equations (49) and (50) need

be evaluated and stored only once. These submatrices may then be re-

trieved to evaluate f(\) for any value of X.

APPLICATION OF THE RECEPTANCE FOPUMULA

A useful application of receptance formulas is in dynamic reanalysis.

Suppose that modifications to a structure result in the formation of the

new mass, damping, and stiffness matrices

1 = M + Am (N x N) (51)

= C + AC (52)

= K + AK (53)

The quadratic matrix eigenvalue problem for the modified system ecomes

(2 (M + AM) + X (C + Ac) + (K + AK)' = 0 (54)
n - n . .. . . - -

From equation (54) define the modification matrix

S( = A +M + LC + AK (55)

Suppose that the modification involves relatively few elements in the

property matrices, in other words, &M etc., is very sparse. T!,e sparse-

ness of the modification is quantified by considering the non-null rows

(or columns) of S(O). These row numbers are entered in the set

S=(Jl J2 )T p(56)

A local modification to the structure is defined as a modification with

a p/N ratio much less than 1. Appendix II demonstrates that a form

of the modified system's characteristic equation is

kA . : :: .. .



g(k) = determinant (I + S(2k ) F(An)) = 0 (57)
-p - n - n

where

A: zeroes of g(N) (eigenvalues of the modified structure)
n

S(X) = S ( j2 .. p) pxp (58)

i j 2 .2 .Jp

= condensed modification matrix

Fh) j2 jp PXP

= condensed receptance matrix

I = unit matrix of order p
-p

Equations (58) and (59) utilize the notation of equation (ILR). As seen

above, the generalized receptance matrix enters into the reanalvsis pro-

cedure through the matrix F(X). The zeroes of g(,) are obtained iterativel\,

using either the Newton Raphson or Muller approach. During the iteration

the condensed receptance matrix F(k) must be repeatedly evaluated for each

guess of A. In addition a search for an optimal structural design requires

computation of the eigenvalues for each trial design. These designs result

in the formation of AM, AK, and AC modification matrices and consequently

in the formation of condensed effective modification matrices S. This

emphasizes the requirement for computation of F(X) for maTy values of X.

The eigensolution reanalysis procedure is therefore a reasonable application

for the approximate receptance formulas previously derived.

NUMERICAL EXAMPLE

The uniform beam model in Figure 1 can be used to demonstrate the

accuracy and efficiency of the receptance approach to an eigenvalue reanalysis



as outlined in Appendix II. This NASA model is a crude continuum repre-

sentation of a large space truss. The objective is to determine the

optimal location for an "active" damper (c) to dampen transient vibrations

resulting from maneuvers, dockings, and other dynamic loadings.

Classical root locus plots are constructed, varying the damper

strength (c) from 0.1 to 4.0 lb. sec. in. (0.0175 < c < 0.70 kN sec. m

in 0.1 lb. sec. in. (0.0175 kN sec. m- ) increments. For each damper

value the lower portion of the beam's eigensvstem, as determined from

the imaginary part of the eigenvalues, is computed. These plots are

generated for various damper locations and consequently may mandate the

computation of the partial eigensystem for hundreds of cases.

In this particular example the system has 50 dof, i.e., N 50

and the generalized displacement vector is

A= (x1  eI  X2  e2 ... X25  T25T

Suppose a damper is added at node 11, then D = 1 and J = (j) = (21).

The general equations of the previous section reduce to

2 2^ I

S(X) AM + AAC + AK =XAC

since

LM = AK = 0, AC = (aC)21 2 1 = c

Also, for this case

F() - (F)2 1,2 1 = F2 1 21

For this case, equation (75) of Appendix II yields the following foym

for the modified system's characteristic equation

g(A) = 1 + Ac F2 1 ,2 1 (0) = 0

Since the initial system is undamped and is described by symmetric

M and K matrices, the receptance F21,21 is computed, for each guess

of X, by using equations (46) and (47)



R"0L $ l,k

F2 1 ,2 1 () _

R= 1

21, k

-1.2 L 21,

F (A) (K)-Z 2,

21,21 21,21 k=l (2+6 )

where typically L < < N, i.e. an incomplete eigensystem is used, and

$ij' r.and jare modal properties of the undamped system. The zeroes

of g(X) are eigenvalues of the damped system, and are obtained with

Muller's method. Root locus plots for a damper at node 1i, are shown

in Figure 2. Optimum damper and optimum damping ratio ( ) values are

listed for each mode. Twelve (L = 12) original system modes were

employed in the receptance formulas (P2,2) , aove.Fgr2shw

results for both the R =0 and R = 1 receptance formulas. The eigenvallue

solver EISPACK 1 was used to judge the accuracy of the approximate re-

analysis results. EISPACK conditions the input matrix (A2 l B ,, see

equation (13)) with subroutine RALANG, reduces the conditioned matrix

to Hessenberg form 1 with subroutine ELMH-ES, and then computes the

eigenvalues of this similar matrix with the QR algorithm, utilizing sub-

routine HQR. Table I shows the maximum percent error for each of the

eight (8) lowest modes, for damper values in the set (0.1, 0.2, 0.4,

0.7, 1.1, 1.2, 1.4, 1.5, 4.0} lb sec. in:1 (0.0175, 0.035, 0.07, 0.1925,

-I)
0.21, 0.245, 0.2625, 0.70 kN sec. m ).Note by comparison with Figure

2 that this set of (c) values encompasses all of the optimum dampers,

and the minimum and maximum damper values. The results clearly s1ow
R

LA 2

21,k
F M (K



that the computation of the receptances by the R - 1 formula provides

substantially improved eigenvalue reanalysis accuracy, as compared to

the R - 0 receptance computation results. Table 11 shows a computa-

tion time efficiency comparison for the exact (FISPACK) and approximate

(reanalysis) methods. A large computer time reduction is seen to result

with the approximate reanalysis method. For instance, the average re-

analysis time per value of C for the R = I approach is 0.4725 cp. sees..

while the same computation requires 37.6 cp. sees. with EISPACK. This

represents a computation time reduction by a factor of 79.6.

This numerical example only includes eigenvalue computations since

the root locus plots do not require eigenvectors.

CONCLUDING REMARKS

A representation for the approximate calculation of the receptance

elements for a general second degree, square lambda matrix has been

presented. The computational efficiency of solving for a submatrix of

the receptance is increased, in particular when the submatrix is evaluated

for many distinct values of X. The submatrices are useful in eigensolution

reanalysis, design, or component synthesis schemes, as well as in forced

harmonic response analyses. The accuracy of the receptances are shown

to be improved relative to a classical spectral representation when em-

ploying only an incomplete eigensystem. Previous receptance formulas

were shown to be special cases of the general results derived. These

prior works apply only to undamped, nonrotating structures, with symmetrical

property matrices.

It was assumed in equations (18) - (20) that the eigenvalues of the

structural model are all distinct. In addition, in equation (63) the

IL



assumption was made that no elgenvalue is left invariant during a structural

modification. Because of the lack of ideal symmetry characteristics, both

of these conditions are satisfied in many structural models. These

limitations on the applicability of the formulation are subjects of ongoing

research.



APPENDIX I: NOTATION

General Notation

= matrix-vector quantity

-I
A = inverse of matrix A

A>O = A symmetric, positive definite

A > 0 = A symmetric, positive semi-definite

diag ( ) = diagonal matrix

( ) = complex conjugate

.. = Kronecker delta
iJ

Re ( ) = real part of

i = 4

T
A = transpose of matrix A

A 2 B 2 = first order forms of system property matrices

a ii, a2i = modal normalization constants

C = damping matrix NXN

f(M) = a submatrix of F, equation (48)

F generalized receptance matrix

G = classical receptance or dynamic flexibility influence

coefficient matrix

h = stiffness matrix NXN

L = number of system eigensolutions available for use in a

spectral type representation of F or G

M mass matrix NXN



m = modal normalization constant

T
Mg= 1q12

N = total number of system model degrees of freedom

P = 2N X 2N matrix pencil

Q = N X 2N right eigenvector modal matrix

R = receptance higher mode factor

V = N X 2N left eigenvector modal matrix

a . = ith complex eigenvalue of a general vibratory system

r = 2N X 2N modal matrix of right eigenvectors from a

first order system formulation

rk = kth column of r

= 2N x 2N modal matrix of left eigenvectors from a

first order system formulation

= kth column of y

-. = ith modal da'ping constant for a proportionately

damped system, with symmetric M, K, C

= ith modal damping constant for a symmetric,

proportionately damped system

A. = ith complex right eigenvector of a general vibratory
-.

system

X = a complex scalar

F = nth generalized coordinate vector for a modified

structural system

ith element of _

j= jth elgenvector of an undamped vibratory system

model, with symmetric M, K

ij ith component of .



n th right eigenvector of a modified structural

sys tern

w = forcing frequency

Qj= jth eigenvalue of an undamped vibratory system

model, with symmetric M, K



APPENDIX II: REANALYSIS THEORY

The free vibration problem for a modified structural system is

expressed by

(X-(M + LM) + X (C + AC) + (K + AK)) =0 (N x 1) (60)n-n

An effective modification matrix may then be defined as

S(N) = X 2 IM + XAC + AK (61)

Assume that matrix S is very sparse. This sparsity is quantified through

the integer set

J = (J I " jp)T (p x (62)

where j i are the non-null row (or column) numbers of S. A local

modification to the structure is defined as one which has a P/N ratio

much less than 1. Define the generalized receptance matrix as

F(X) = ( 2M + kC + K)-1 (63)

which exists as long as X is not an eigenvalue of the unmodified system.

Substitute the change of basis

,n F(Yn)n('n) (N x l) (64)

into equation (60). This yields

(I + S(0 )F( )) (N x 1) (65)

11 n nlfT

By the definition in equation (62) it follows that

kn"0, k (jl 2""Jp (66)

and

+Jn Sj F n=0, r E(l, 2, ... p) (67)

tj r n -jr



where

S J row of S (68)r

Fi (F 1 2 .. N)(Nx p) (69)

tT (70)-an in  In " " n"( 0

Taking advantage of the sparsity of the columns of S, equation (67)

condenses further to

(I + S(X )F(Xn))- = 0 (p x 1) (71)

--p -n- n_

where (in the notation of equation (48))

S = (")(1 Jp

2
= \ (AX) 1 "(Ac) ( J)+ (7K) 1 2

1i j2 "' 1 J2 " P" j  
P) '

(p x p) (72)

F (.)(i. J (pxP) (73)

Equation (71), accompanied by

(N Xl1) (74)

represents the final condensed form of the quadratic eigenvalue problem

(60) for the modified system. The rank of the coefficient matrix in

equation (71) must be less than p, for a nontrivial null space to exist.

This implies that

% .- 1 A~--- -



g( n ) = det(I + S(X n)F(ln)) = 0 (75)

The zeroes of g(\ ) are eigenvalues of the modified structural system.
n '

Conseqdently, g(X) is a form of the modified system's characteristic

equation.

i~ -
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Table I Accuracy Comparison: Approximate (Reanalysis)
Versus Exact (EISPACK) Eigenvalues for a Damped
Beam*

R=0 R= I R=0 R= 1
Re(A) Re(X) Im(W) Im(X)
Max % error Max % error Max % error Max % error

XI  -0.008 0.000 0.000 0.000

A2 -0.016 0.000 0.000 0.000

X3  -0.073 0.000 0.016 0.000

A4 -0.458 0.000 0.042 0.000

A5 -1.440 -0.005 0.125 0.000

X6 -2.17 -0.024 0.248 0.003

A7 -9.83 -0.318 0.016 0.000

A8 -7.82 -0.387 0.804 0.038

Data shown is the maximum percent err r with C E {0.1, 0.2, 0.4, 0.7,
1.1, 1.2, 1.4, 1.5, 4.0} lb. sec. in- (0.0175, 0.035, 0.07, 0.1q25,
0.21, 0.245, 0.2625, 0.70) kN ec. -

• -



Table 1I Computation Time Comparison: Approximate (Reanalysis)
Versus Exact (EISPACK) Approaches

(a) Formation of K, M and computation of original system eigensolutions:
19.46 cp. secs.

(b) R = 0 reanalysis for c E {0.l, 0.2, ... 4.01, 40 values of c and 10
Xi per value: 16.8 cp. secs., average: 0.42 sec/damper value

(c) R = 1 reanalysis for c c (0.1, 0.2, ..., 4.01, 40 values of c and 10
Xi per value: 18.9 cp. secs., average: 0.4725 sec/damper value

(d) EISPACK solution for 9 values of c and 10 Ai per value c c (0.1, 0.2,
0.4, 0.7, 1.1, 1.2, 1.4, 1.5, 4.01: 338.0 cp. sec., average: 37.5556

sec/damper value
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,3 24 25

K = 0.10 lb/in (17.51 N/m)

H. = b.0 in. (15.24 cm)
i

T. = 0.1875 in. (0.4762:5 cm)J

L. = 6.0 in. (15.24 cm)

L = 144 in. (3.6576 m)

pg = 0.0967 ib/in
3 (0.02596 N/cm

3

E = 10 x 106 lb/in 2 (68.93 GN/m 2), Alluminum

0.1 < c < 4.0 lb.seo./in (0.0175 < c < 0.70 'N.sec/m)

Original system natural frequencies: Q = 2.065 rad/sec, 3?.. 3.F04,

0 3 = 12.504, 4 = 32.472, P.5 = 63.211, Q6 = 104.332, P, = 155.792,

Q8 = 217.587

Figur I Euler Bernoulli beam model for

space structure reanalysis

1.
'- . ___________________



R=O

MODE OPTIMUM DAMPER OPTIMUM ZETA MODE OPTIMUM OAMPER OPTIMUM ZETR
1 .100 .71915 1 .100 .71922 A

2 .100 .01470 2 .100 .01470
3 .200 .18230 3 .200 .18243
4 .400 .07575 4 .400 -07G02
5 .700 .07924 5 .700 .07723
9 .700 .10437 G .700 1OGG5
7 1.400 .00130 7 1.500 .00201
6 1.100 .08778 8 1.200 .09508

300.000

-=.5250,000

R=t

Z=O 10 '200.000

IMILRMBOR)

7 150.000

Z=0.20

Z=0. 30

5- 50.000

-21. 000 -20.00O0 -1Q. 000 -12. 000 -8. 000 -4. 00

RE(LAMBOR)

RUN NO. 40781.200
)AHiMER NOIK No. o.

NO. LWIPER VALUES 40
SALLEST DAMPER(*) .100 LB.SF.C.IN- (0.0175 kN.SEC.m-
DAMPER INCREMENT .100 LB.SEC.IN (0.0175 kN.SEC.mMODES FOR RECEPTANCE 12

Figure 2 Root locus plot for space structure beam
model utilizing eigenvalue reanalysis

' ' ' '~~p - ' a -




