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ABSTRACT

Travel time models are developed for automated storage/
retrieval (AS/R) machines. The S/R machine travels
simultaneously horizontally and vertically as it moves
along a storage aisle. For randomized storage conditions
expected travel times are determined for both single
and dual command cycles. Alternative input/output
(I/O) locations are considered. Additionally, various
dwell point strategies for the storage/retrieval
machine are examined.

Acessj0onlPor
NTTS3 r.t'R&1
PTIC TABU nan ounced Ll

' Distribution/
Avallsb:lity Codos

__ 
Ail

S pv c tnl i

A !

IThe preparation of this paper was supported by the Office of / o
Naval Research under Contract No. NOO014-80-k-0709.



INTRODUCTION

Over the past years, interest in automated storage/retrieval (AS/R)

systems has grown tremendously. Such systems have increased considerably

in number and probably will continue to do so in the future. The rapid

growth in the interest in AS/R systems can be attributed to such benefits

as lower building and land cost, labor savings, reduced inventory levels,

and an improved throughput level, among others [13].

Much of the early work done to analyze AS/R systems is based on sim-

ulation. Bafna [1] developed a design package where the optimum configu-

ration is determined by using simulation in conjunction with a search pro-

cedure. A similar approach is presented by Koening [8], where the search

for the "optimum" configuration is limited to certain values of the design

variables specified by the user. Using simulation in designing such sys-

tems has the obvious drawback of added computational effort, plus the

possibility of stopping with a sub-optimum solution. The design variables

for AS/R systems typically can take on a wide range of:values. Thus,

simulating each feasible design long enough to assume steady-state behavior

is expensive computationally and undesirable at an early design stage where

the user is mainly interested in obtaining bench-mark solutions.

A design package based on analytical techniques was developed by White

and Bozer [11]. Based on Zollinger's [12] cost model, the mathematical

characteristics and relationship of the cost functions were defined cor-

responding to various elements in the system. Subsequently, the minimum-

cost design was determined by performing a Fibonacci search over the number

of aisles in the system.

Karasawa, Nakayama, and Dohi [7] developed a cost model of an AS/RS.

They considered only single command cycles. Their total cost function in-



cluded terms for storage racks, S/R machines, building, and land. They

assumed the rack cost per opening to be a linear function of the height of

the system; the S/R cost per machine was assumed to be constant; and building

cost and land cost were assumed to be linearly proportional to the floor

area. They solved the nonlinear programming problem using Lagrangian mul-

tipliers and then obtained the best neighborhood integer solution.

A number of studies have been performed based on simulation; but they

have emphased analysis rather than design. As exdmples, some studies have ad-

dressed the throughput/performance of AS/R systems under different operating

and/or storage policies assuming that the design (configuration) of the sys-

tem is known. Among such studies are those given by [2], [4], [9], and [10].

In this paper, closed-form expressions are developed to determine the

expected travel time associated with each trip based on single and dual com-

mand cycles. An immediate application of the travel time expressions is in

designing AS/R systems and in measuring the performance.of AS/RS installa-

tions.

EXISTING METHODS

Two analytical approaches have been described for determining the ex-

pected travel time. The first approach is given by Graves, et al. in [4]

and [6]. Their approach is limited by the need to assume-the rack is square-

in-time. That is, the dimensions of the rack and the vertical and horizontal

speeds of the storage/retrieval (S/R) machine are such that the time to

reach the row most distant from the input/output (1/0) point equals the

time to reach the most distant column, given that the I/O point is located

at the lower left-hand corner of the rack.
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Empirical experience indicates that the optimum design for AS/R systems

frequently is not square-in-time. For this reason it is desirable to deter-

mine the expected travel time for a rack that is not necessarily square-In-

time.

An alternate method of estimating the expected travel time is given by

the AS/RS Product Section of The Material Handling Institute, Inc. (MHI)

[13]. The single command expected travel time is essentially taken to be equal

to twice the time required to travel from the I/O point to the storage slot

at the center of gravity of the rack. As can be seen in Figure 1, the single

command expected travel time is equal to the round-trip travel time between

the I/O point and point A. In order to determine the expected round-trip

travel time for dual command cycles, it is assumed that a storage is per-

formed at point A and a retrieval is performed at point B, which is assumed

to be located at three-fourths of the distance (horizontally and vertically)

from the I/O point. As illustrated in Figure 2, the expected round-trip

travel time for dual command cycles is equal to the time to travel from the

I/O point to A, travel from A to B, and then return to the I/O point.

The MHI travel time model may not provide an accurate representation

of the travel of the S/R machine. As an example, when the rack is square-

in-time and randomized storage is used, the MHA model underestimates by 25

percent the expected single command travel time.

Another aspect of the MHI model that deserves examinationconcerns the

specification of the retrieval point involved in the dual command cycle.

Given that the S/R machine has traveled to the first opening for storage,

there is no reason to assume that, in the long-run, the retrieval point

will be at the assumed location. Since the retrieval point is assumed to
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Figure 1: Determining the single command expected
travel time using the MHI method.
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Figure 2: Determining the dual command expected
travel time using the MHI method.
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be three-fourths of the distance from the I/O point, the expected time re-

quired to return to the I/O point will be overestimated. However, as noted

above, the expected time to travel from the I/O point to the storage location

will be underestimated. Hence, it remains to determine if the total dual

command travel time is overestimated or underestimated.

To facilitate the determination of the travel time for an SIR machine,

the following notation is introduced.

N - the total number of openings in'the rack.

t0oi = one-way travel time between the Il/O point and the th

opening (toi - tio).

tii = one-way travel time between the i th opening and the Jth

opening (t tji)

E(SC) = expected single command round-trip travel time.

E(VC) = expected dual command travel time.

The expected single command travel time can be computed from the following ex-

pression.

N
E(SC) = '- if l 2t.. (1)

The expected dual command travel time is given by

2 N-I N J

EV) RN2 I l N-1 N t o + t + t jo) (2)
E(P)C) = ( I)=1 j=+l ( tt t(2)

"'" I5m II I•Il



Computing toi for each opening may become time consuming for large N.

From the double summation involved in Equation 2, if N = 400, then 159,600

terms must be considered.

A STATISTICAL APPROACH

In this section closed-form expressions and the methodology used to

develop the travel times will be presented. The following assumptions are

made.

1. The rack is considered to be a continuous rectangular pick face

rather than an array of discrete openings.

2. The S/R machine-operates either on a single or dual command

basis, i.e., multiple stops in the aisle are not allowed.

3. The rack length and height, as well as the S/R machine speed

in the horizontal and vertical directions, are known.

4. The S/R machine travels simultaneously in the horizontal and

vertical directions. -

5. In calculating the travel time, constant velocities are used

for horizontal and vertical travel.

6. Randomized storage is used. That is, any point within the

pick face is equally likely to be selected for storage or

retrieval.

7. The I/O point is located at the lower left-hand corner of

the pick face. Every trip originates and terminates at the

I/O point.

8. Pick-up and deposit (P/D) times associated with load handling

are ignored. The P/D times is generally independent of the

rack shape and the travel velocity of the S/R machine.
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Furthermore, given the load characteristics, the P/D time

is usually deterministic. Hence, it is a straightforward

matter to include the P/D time after the average travel

time has been computed.

AS stated earlier, the pick face is a continuous rectangle with known

dimensions that can vary from one application to another. To "standardize"

the pick face, let

sh = speed of the S/R machine in the horizontal direction,

sv = speed of the S/R machine in the vertical direction,

L = length of the rack, and

H = height of the rack.

Now, let th represent the horizontal travel time required to go to the

farthest column from the I/O station. Likewise, let tv denote the

vertical travel time required to go to the farthest row (level). Then,

by definition:

th= Ls h

tv = H/sv

Let,

T = max {th, tv}

and

b = min fth/T, tvfT}

which implies that 0 & b s 1. In subsequent discussions, b is referred to

as the "shape factor". Note, if the rack dimensions and travel velocities

are such that th = tv, then b = I and the rack is said to be "square-in-

time". Without loss of generality, assume that T = th. That is, b = tv/T.
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We will consider first the single command travel time. Let the storage (or

retrieval) point be represented by (x, y) in time, where 0 5 x : 1 and

0 : y : b. Travel from (0, 0) to (x, y), say tx, will be

txy = max (x, y)

Now, let F(z) denote the probability that travel time to (x, y) less than

or equal to z. That is,

F(z) = Pr(tY : z)

Assuming the x, y coordinates are independently generated

F(z) = Pr(x 5 z) - Pr(y 5 z)

Furthermore, for randomized storage the coordinate locations are assumed to

be uniformly distributed. Thus,

Pr(x 5 z) = z

and

MY z) z/b i f 0 z:sb~
I if b:z 1

Hence,

z2/b for 0 5 z 5 b
F(z)

z for b < zl

Therefore,
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2z/b for 0 5 z 5 b
f(z)

I for b< z s

Letting E(SC) denote the expected travel time under single command for the

normalized rack, then

1 b

y-E(SC) = z f(z)dz f z f(z)dz + f z f(z)dz
z=O z=O z=b

1 b 2z 1
-E(SC) f z -dz + fz dzz.O z=b

I E(SC) ~-b 121+

Therefore,

E(SC) b b2 + 1 (3)

3

Next, consider the dual command cycle. By definition, each dual command

cycle involves two random locations; one representing the storage point, the

other representing the retrieval point. To analyze the expected travel time

between the two points, recall that any point is represented as (x, y) in

time and 0 < x : 1 and 0 5 y 5 b. Let tB be the time required to travel

between the storage and retrieval locations. Also, let

F(z) = Pr(tB : z)

F(z) = Pr(jx1 - x21 5 z) Pr(ly, - y21 5 z)

9



where (xI , y1 ) and (x2, y2 ) are the two random points. First consider the

term Pr(jx I - x2J : z). Recall, if x(1 ),..., X(n) are the order statistics

of a sample xI,..., xn , from a population with probability distribution

function f(x) and cumulative distribution function F(x), the difference

X(n) - X(l) is called the sample range R. Letting H(r) = Pr(R : r), in [7]

It is shown that

H(r) = n f f(v)[F(v + r) - F(v)]n-1 dv (4)

Differentiating H(r) yields the probability density function

h(r) = n(n - 1) f [F(v + r) - F(v)] n -2 f(v) f(v + r) dv (5)

Recall that 0 s xI : 1 and 0 5 x2 5 1. With n 2,

f~x)= I1 0 S x 5 1

10 otherwise

for

0 x 0

It should be noted that f(x) and F(x) are derived based on the assumption that
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under randomized storage x, and are uniformly distributed in the interval

(0, 1). Since 0 s R : 1, then 0 s v 15 - r. Letting n = 2, from Equation 5

h(r) = z(l - r) (6)

Letting

F (z) Pr(fx I - x2l z)

then

Fx(z) = Pr(O : R s z)

or

2"

F x(z) = 2 f (1 - r)dr0

Therefore,

Fxlz) =2z - z (7)

Next consider the term Pr(jy 1 - y21) s z, where 0 s Yi s b for i = 1, 2.

For this case

S0 y <0

F(y) y/b 0 y b

1 y > b

Hence,

11



SI/b 0 sy sb

-~y -- -

fO (Y)
0 otherwise

Substituting n = 2 and rewriting Equation 5 gives

b--
h(r) = 2 J f(v)f(v + r)dv

v=O

b-r
h(r) =2 1dv

v=O b

1. h(r) (b - r)
b

Letting

Fy() = Pr(Iy -y 2 1) z where 0 s z : b

then

Fy( =Pr(O s R s z)

or

Fy(z) o) (b - r)dr
b 0

Therefore,

Fy(z) (8)

1 for b < z 1
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Recall that F(z) = Pr(t8 < z) where tB represents the "travel between"

time. Based on Equations 7 and 8, F(z) can be written as:

F(z) = Fx (z) Fy (z)

or

C(2z z -2 ) for 0 & zs b

F(z) =

(2z z2) for b < z & 1

Therefore

=o (2 - 2z)(2z/b - z2/b2) + (2z - z2)(2/b - 2z/b 2) if 0 s z s bf(z)=

2 - 2z i f b < z sl

Letting E(TS) denote the expected travel time between the two randomly

selected points,

1 b1
E(TB) = z f(z)dz f ,.z f(z)dz + z f(z)dz

0

or

E(T)- 1 1 2 Lb 3  (9)

Let E(PC) denote the expected travel time for a complete dual command cycle

with a normalized rack. Then, by definition,

13



E(VC) - E(SC) + E(TB)

Hence,

E(VC) = + " b2  b3  (10)

Using Equation 3 and 10, the expected single command and dual command travel

times can be calculated for a normalized rack.

EXAMPLE: Suppose the rack dimensions and the S/R machine speed is such that

L = 352 ft.

H = 88 ft.

s h = 400 fpm

sv = 90 fpm

Using the approach developed earlier, we have

th = L/sh = 352/400 = 0.88 mins.

and

tv = H/sv = 88/90 = 0.9778 mlns.

Therefore,

-J = max(0.88, 0.9778) = 0.9778

and

b = 0.88/0.9778 = 0.900

Hence, the "normalized" rack is 0.900 mns. long in the vertical direction,

and 1.0 mins. long in the horizontal airection. Using Equations 3 and 10:

E(SC) 1 b + 1 = 1.27 mlns.

E(DC) = 1.7140 mns.

14



To obtain the results corresponding to the original rack, we "denormalize"

the above travel times to obtain

E(SC) = .E(Sc) T. = 1.2418 mins.

E(DC) = 4E(Vc) T, = 1.6759 mins.

COMPARISON WITH OTHER METHODS

As mentioned previously, the MHI approach underestimates the expected

single command cycle time and may overestimate or underestimate the dual

command cycle time. First consider the single command cycle time. For any

normalized rack with 0 s b s 1, the MHI procedure yields MHI(SC) = 0.50 (2) =

1.00 minute. Using Equation 3 to determine E(SC), the values provided in

Table I are obtained.

Table 1. Comparison of Single Command Travel Times for a Normalized Rack

b 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

E(SC) 1.000 1.003 1.013 1.030 1.053 1.083 1.120 1.163 1.213 1.270 1.333

MHI(SC) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

% DIFF 0.000 0.300 1.280 2.910 5.030 7.660 10710 14020 17.560 21.26025O00

It is interesting to note that the greatest difference occurs for b - 1, or

when the rack is square-In-time. Also, the difference approaches zero as b

approaches zero, i.e., storage is one-dimensional.

Next consider the dual command cycle time. For any normalized rack with

0 s b s 1, the MHI method yields MHI(PC) z 0.75 (21 - 1.50 minutes. Using

15
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Equation 10 to determine E(VC), the comparison given in Table 2 was performed.

Table 2. Comparison of Dual Command Travel Times for a Normalized Rack

b 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

E(VC) 1.333 1.338 1.353 1.371 1.411 1.454 1.506 1.567 1.636 1.714 1.80

MHI(VC) 1.500 1.500 1.500 1.50 1.500 1.500 1.500 1.500 1.500 1.500 1.500

% DIFF -12.530 -12.110 -10.86 -8.93 -6.310 -3.160 0.400 4.280 8.3101Z490 16.670

In Table 2, a minus sign indicates over-estimation, while a positive percent

difference indicates under-estimation of the dual command cycle time. Notice,

the maximum under-estimation is 16.67%, while the minimum is 0.40% (for b =

0.60).

From Equations 3 and 10, it can be shown that a square-in-time rack mini-

mizes travel time. Graves, et al. in 14] and [5] developed expressions for a

square-in-time rack. Using a different approach, they obtained a value of

7/15 for the expected travel time between two randomly selected points. Letting

b = 1 in Equation 9 yields the same value.

Adjusting for Acceleration and Deceleration Rates

Some error is introduced when the acceleration/deceleration rate of the

S/R machine is neglected. Suppose values for sh, sv and the acceleration/de-

celeration are known. The total distance required for the S/R machine to

start from a stationary position, accelerate to full speed and immediately

decelerate down to a full stop can be computed. Suppose the distance is d1.

.16
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Let the time corresponding to d be A time units. The impact of neglecting

acceleration/deceleration is depicted in Figure 3(a). For any distance less

than di, the error is less than A, and for any distance greater than or

equal to d1 , the error will be A time units. The total amount of error in-

troduced is represented by the cross-hatched area. From Figure 3(a), t -=th

(or tV ) while t2 is the time required to travel to the farthest column (or

row) from the I/O point, including the acceleration and deceleration rates.

One method for reducing the amount of error is to calculate b, E(SC) and

E(QC) as before but to use t2 (instead of t1 ) in "denormalizing" the rack;

the amount of error will be reduced to the cross-hatched area shown in Fig-

ure 3(b). Assuming the acceleration/deceleration rates in the horizontal

and vertical directions are approximately equal, t2 will not be significantly

different when computed over L or H.

ALTERNATIVE CONFIGURATIONS FOR THE I/O POINT

In the previous discussion, it was assumed that the I/O point is located

at the lower left-hand corner of the rack and every trip originates and ter-

minates at the I/O point. In this section the assumption is relaxed; three

alternative configurations are analyzed; and the corresponding expected

travel time expressions are developed.

Input and Output at Opposite Ends of the Aisle

For the first configuration to be considered assume that all storage

orders are initiated at the input station while all retrieval orders are

terminated at the output station. It is also assumed that after each single

command storage, the S/R machine returns to the input point; and after each

retrieval (which may be initiated at the input point or the output point)

17
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Figure 3: Estimation error generated by neglecting

the acceleration/deceleration rate.
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the SIR machine travels to the output station and remains there. Consequently,

at the time the S/R machine starts a dual cycle, It will be at the input sta-

tion if the previous trip was a storage; otherwise it will be at the output

station. In the first case, the S/R machine can start the dual trip immediately.

In-the latter case, before the S/R machine starts the dual cycle, it must travel

to the input station. The travel of the S/R machine is summarized in Table 3.

Recall, the expected travel time for a single command cycle when the I/O

Is at (0, O) is

E(SC) = b + 1

Dividing the above expression by -2gives the expected one-way travel time

E(V), i.e., the expected travel time from any corner of the rack to a randomly

selected point or vice versa. Hence

E(v) =1b 2+

Also, recall the expected travel time between two randomly selected points

is

E-8) + .1 b 2  1 b

Note that, E(T) will remain constant regardless of the locations of the in-

put and output stations.

Assume that a% of all the trips are single command cycles and (I - a)%

are dual command cycles. Furthermore, since the total number of storages

should be equal to the total number of retrievals in the long-run, assume

that 50% of all single command cycles are storages, while the remaining

50% are retrievals. Also, assume that all orders are statistically

19



Table 3. S/R Machine Travel

When the previous cycle was To perform S/R machine travels

Single command storage Single command storage I S+I

Single command storage Single command retrieval I-*R'-O

Single command storage Dual command IS.R+O

Single command retrieval Single command storage O+IS+I

Single command retrieval Single command retrieval 0-R+O

Single command retrieval Dual command O+I S-+R*O

Dual command Single command storage O+I S(I

Dual command Single command retrieval O-R-*O

Dual command Dual command

I: input location

0: output location

S: storage location

R: retrieval location



independent. Hence, the probability that a given order is a storage is a/2,

while the probability that it is a retrieval or dual command order is

1 - (/)

The above implies that, on the average, a/2% of the trips will terminate

at the input station, and 1 - (G/2)% of the trips will terminate at the out-

put station. If the S/R machine is at the input station, then the expected

travel time for a:

(1) storage is equal to 2 E(V)

(2) retrieval is equal to 2 E(V)

(3) dual trip is equal to 2 E(V) + E(TB)

If the S/R machine is at the output station, then the expected travel

time for a:

(1) storage is equal to 2 E(I) + K.

(2) retrieval is equal to 2 E(V)

(3) dual trip is equal to 2 E(V) + E(Ts) +

where K is the fixed travel time from the output to the input station (0-i).

Defining an operation as a storage or a retrieval, the expected travel

time per operation, say El(T) will be:

E I(T ff1f 2.,E(V) + 0 2 E(V) + I(I - a) [2. E(V) + E(TB)

+ EI ] S (K + 2. E(V) + 2 E(V) + 1(1 - )[K + 2 E(V) + E(TB)

which reduces to

21



El(T) I.~E(L')(1 + cc) + E(TB)(1 a)

++ E(TB)(1 -a)+

Hence,

E1 (T) = E(V) (1 + a). + E¢T)(1 - a) +(I (1 - ) (11)

It is instructive to note that setting a = 0 in the above equation will yield:

E,(T) = E(V) + E(TB) + 1 K (12)

which is intuitively correct because each dual trip involves two operations

(a storage and a retrieval) and total expected travel time is E(V) + E(T8)

+ E(V) + K = 2 E(V) + E(TB) + K.

Setting a = I in Equation 9 gives

I
El(T) = 2 E(V.) + T K (13)

which is intuitively correct because 50% of all the orders are storages and

the remaining 50% are retrievals; the S/R machine travels from the output

station to the input station only if a retrieval is followed by a storage.

Note that the S/R machine never travels from the input station directly to

the output station.

Suppose the S/R machine is not required to return to the input station

after a storage. Instead, assume the following: the S/R machine remains at

the point of storage, awaiting the next order. If the next order is a stor-

age or dual command order, the S/R machine returns to the input station.

Otherwise, it travels directly to the retrieval point. The travel of the S/R

machine is summarized in Table 4.

22
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Table 4. S/R Machine Travel

When the previous cycle was To perform S/R machine travels

Single command storage Single command storage Xl I X

Single command storage Single command retrieval X 'X2*O

Single command storage Dual comma-d X1I X2 X3-O

Single command retrieval Single command storage O0I X

Single command retrieval Single command retrieval O.X-*O

Single command retrieval Dual command O+I XI X2-O

Dual command Single command storage O+I X

Dual command Single command retrieval O+X-*O

Dual command Dual command O+ISiR-S O

I: input location

0: output location

X: random location in the rack

23



Let I, 0 and X denote the states where the SIR machine is at the input

station, output station and at some point within the rack, respectively.

Then the following transition matrix can be constructed:

I 0 X

O-1 0 I Y

0 0 1 C

For example, if the S/R machine is in state I, then it will be in state X

at the beginning of the next trip only if the current order is a storage.

From Table 4 and the above transition matrix it is clear that the S/R machine

will never initiate a trip from the input station; after each storage the S/R

machine remains within the rack, otherwise it remains at the output station.

The steady-state probabilities are as follows:

PI =0

PX =
p0 =1- Y

The steady-state probabilities could be obtained directly from Table 4. How-

ever, with complex operating procedures, the construction of a transition

matrix may simplify the analysis.

Setting a = 0 gives P = 1 and PI = PX = 0 which is intuitively correct;

if only dual command cycles are performed, the next trip will start from the
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output station. On the other hand, when a = 1, PX = P0 - and PI - 0 as

expected, since the number of storages is assumed to be equal to the number

of retrievals in the long-run.

At the start of a cycle, if the S/R machine is at the output station,

then the expected travel time for a:

(1) single command storage is equal to E(V) + K

(2) single command retrieval is equal to 2 E(V)

(3) dual command is equal to 2 E(V) + E(TB) + K.

If the S/R machine is within the rack, then the expected travel time for a:

(1) storage is equal to 2 E(V)

(2) retrieval is equal to E(TB) + E(V)

(3) dual trip is equal to 3 E(V) + E(TB)

Hence, the expected travel time per operation, El(T), will be:

El(T) = (K+ E(V) + 2 E + I - (2 E(V) + E(TB +K)

+2 1 2 E(V) +S (E(T) + E(V)) + (I - )(3..E(V) + E(TB))

or

El (T) (1 y E (V)c + 2) +~ E (M1)( -1 a

It should be pointed out that if all the trips are performed on a dual cycle,
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the two strategies considered for the first configuration should give Iden-

tical results. Setting a = 0 in Equation 14 gives

EI(T) = E(V) + I E(TB) + K 15)

which is identical to Equation 12.
Finally, it is worthwhile to compare the two strategies on an expected

travel time basis. The second strategy is expected to perform better, for

under the second strategy the S/R machine remains within the rack and travels

to the input station only if the next order is a storage. Assuming a = 1,

from Equation 14 gives

El(T)- 3 E(V) + 1 ( 1 E(TB (6)

Hence, from Equations 13 and 16, the following ratio, *, is obtained

E,(T) under strategy 2 E(V.) + K + f E(TS)
El() under strategy 1 (17)

Assuming b 1 , from the equations for E(V) and E(T$) it is seen that E(/)

and E(TS) = 7/15. Furthermore, for a "normalized" rack, K( = 1. Substitu-

ting these values into Equation 17 gives = 0.86. Hence, for b = 1, using

the second strategy generates a 14% reduction in the expected travel time for

a single command trip.
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Input and Output at the Same End of the Aisle, but at Different Elevations

The second configuration to be considered is illustrated in Figure 4.

It is assumed that the input station is at the lower left-hand corner of the

rack while the output station is located d time units above the input station,

where d < b. Furthermore, it is assumed that the vertical travel yields the

value of b.

Consider the single command cycle first. As shown in Figure 4, the rack

can be visualized as being two separate racks (as indicated by the dashed

line). Travel from the input station to a random point in the rack can be

expressed as

E(V) b2 +1 (18)

However, on going from the random point to the output station, Equation 18

is not appropriate. The output station may be considered to be located-

at the corner of racks A and B. Due to symmetry, Equation 18 holds as'long

as the station is located at one of the corners. Hence, denoting the av-

erage return time from section A as EA(V) and using Equation 18 gives

EA(V.) =(b d) +

or

b2  2bd+d 2  1EA(V) 6 +  T (19)

Similarly,

E d 1EB(V) 6- (20)

Now, let EO(V) denote expected travel time for returning to the output station.
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A

T0T'
d B

Figure 4: Inpqt and Output at the same end of the
aisle, but at different elevations.

28



Thus,

EO(V) P1 (EA(V)) + (1 - pl)(EB(V)) (21)

where

p1 = probability that the return trip is initiated from section A

Due to randomized storage,

area of section A b - d
P= " total rack area b

Hence, Equation 21 can be given as

EO(V) (- d) (b2 - 2bd+ d2 +) d (d2 + I

Simplifying the above expression gives

E()= b d(b-d) (22)

or

Eo(V.) = E(V) - - d(b-d)

Next consider the dual command cycle. By definition, travel time be-

tween two randomly selected points in the rack is independent of the location

of the input and output stations. Hence, the expression developed earlier

for ECTB) is still valid.

Assume that the system operates according to the first strategy defined

previously. That is, the S/R machine returns to the input station after each
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storage and it remains at the output station after each retrieval or dual

command cycle. Hence, if the S/R machine is at the input station, then the

expected travel time for a:

(1) storage is equal to 2 E(V)

(2) retrieval is equal to E(V) + EO(v)

(3) dual trip is equal to E(U) + E(TB) + EO(V)

If the S/R machine is at the output station, then the expected travel

time for a:

(1) storage is equal to d + 2 E(V)

(2) retrieval is equal to 2 Eo(V)

(3) dual trip is equal to d + E(V) + E(Ts) + EO(V)

Thus, expected travel time per operation, E2(T), will be:

E2 (T) = { - 2 E(V) + [E(V) + EO(V)] (I 1 - a)[E(L1) + E(TB) + Eo(V)]

Y~ (f

+ (I - c) [d + 2. E(V)] + 2. EOM + 0 GO

( (d + E() + E(Ti) +Eo(V)]*

Simplifying the above expression yields

E (T) = A {i(V) - cE(TB) + .1 [(C) + E(TB) + E0(V)4

+ (I a ~ )(c [E(V) - E(7S + 0 VJ+ E(V) + E(TR) + E0(V)I + d)

(23)
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In Equation 23, if a - 0 (i.e., all trips are dual cycle trips), then,

as expected,

E2 (T) = - [E(V,) + E(TB) + EO(V)] + d

It is also worthwhile to compare the results obtained for the second

configuration with those obtained for the first, assuming that the same

strategy is used for both configurations. Recall, from Equation 11, El(T)

can be expressed as

El(T) = E(V)(1 + m) + E(T)(l - a) + (1 - ) (24)

For the purposes of the comparison let a = 0.50, d = O.50b, and b = 1. By

definition, K = 1. Thus, E(V), E(T) and EO() can be determined as follows:

E(V) - b2 + 0.667

E(TS) = + 30 b - b = 0.467

E () = b bd+ 'd2+.1 0.542

Thus, fromi Equation 23:

E2(T) = 1.2188 minutes

and from Equation 24:

E1(T) = 1.4923 minutes

Hence, from a travel time standpoint, the second configuration performs
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18.33% better than the first configuration. This result was anticipated, be-

cause elevating the output station will save some travel time in the vertical

direction. Before selecting a configuration involving an elevated output

station, however, the costs associated with such a design should be considered.

Input and Output at the Same Elevation, but at a Mid-Point in the Aisle

The third configuration alternative considered is based on the I/0 point

being located at the center of the rack. Such a configuration can be visual-

ized as having the delivery and take-away conveyors running half-way into the

aisle, through a set of rack openings located at the mid-level on either side

of the aisle. It is further assumed that vertical travel time c(O, b), with

horizontal travel e(O, 1). Hence, the I/0 point is assumed to be located at

(1/2, b/2) for the normalized rack, where 0 . b ! 1.

Given randomized storage, the following holds:

2z if z > 1/2

2z ifz s b/2
b

Pr(Iy - 5 z) =

I if z > h12

Hence,

4z2/b if 0 s z g b/2
F(z) = 2z if b/2 < z s 1/2

1 if z > 1/2

32

.. . . ...1 1 1 1 -_ _ ..



Consequently,

8z/b if 0 s z s b/2

f(z) = 2 if b/2 s z : 1/2

0 otherwise

Denoting expected travel time from the center of the rack to a randomly se-

lected point as EM(V), then:

1/2 8b/2 21/2
EM(V) f z f(z)dz = f z dz + f 2z dz

0 0 b/2

or

EM(V) =I b 2b+1 (25)

Note that EM(V) =}E(V).

Next consider the strategy described for the second configuration. Since

the input and output stations are coincident for the third configuration, the

strategy is equivalent to the case where every trip originates and terminates

at the 1/0 point. Hence, the expected travel time per operation, say E3(T),

will be

E3 (T) = ci[2 EM(V)] + (1 - a)[2 EM(V) + E(TB)] (26)

It is instructive to briefly compare the results for the second config-

uration with the results for the third configuration. Due to the convenient

location of the 1/0 point, it is expected that the third configuration will
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perform better from a travel time standpoint. However, the magnitude of the

improvement should be determined in order to economically justify higher con-

veyor costs and the loss of the rack openings required for the conveyor. Again

for comparison's sake assume a = 0.50, d = 0.50b, and b = 1. Thus,

E(V). = 0.667

E(TB) = 0.467

EO(V) = 0.542

EM(V) = 0.333

Hence,

E2(T) = 1.2188 minutes

and from Equation 26

E3(T) = 0.8995 minutes

which implies a 26.2% reduction in expected travel time per operation.

Input and Output Elevated at the End of the Aisle

The fourth configuration alternative treated considers the situation

where the I/O station has the location (0, d). As before, it is assumed

that the maximum horizontal and vertical travel times are 1.0 and b, respec-

tively.

Recall the analysis of the configuration involving input and output

stations at the end of the aisle, but at different elevations. From the

results obtained, it is straightforward to obtain the following expressions

for the expected travel times for single command and dual command cycles:
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E(SC) =  b2 + 1 - d(b - d) (27)

4 23E(PC) = i+ b L b3  d(b d) (28)

Comparing Equations 27 and 29 with Equations 3 and 10, elevating the

I/0 station d time units introduces a correction factor of d(b - d) in the

computation of cycle times.

DWELL POINT STRATEGIES

The dwell point is referred to as the location of the S/R machine when

it becomes idle. In some situations, the determination of the optimum dwell

point strategy can be treated as a Markov decision problem. In performing

such analyses, the travel time modeling approach used in previous sections

should be applicable.

The previous discussion focused on two strategies for locating the S/R

machine following completion of storage and retrieval operations:

A. Return to the- input station following the completion of a

single command storage; remain at the output station fol-

lowing the completion of either a single command retrieval

or a dual command cycle; and

B. Remain at the storage location following the completion

of a single command storage; remain at the output station

following the completion of either a single command re-

trieval or a dual command cycle.

Obviously, many other strategies could be considered. As examples of

additional strategies consider the following:
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C. Travel to a mid-point location in the rack following

the completion of any cycle; and

D. Travel to the input station following the completion

of any cycle.

Strategy C might be appropriate when the next operation might be either a

storage or a retrieval; in such a case, for a given probability that the

next operation will be a storage an optimum dwell point location can be de-

termined. Strategy D would be appropriate when it is highly probable that

the next operation will be either a single command storage or a dual command.

SUMMARY

In summary, a number of travel time models were developed for automated

storage/retrieval machines under randomized storage conditions. Expected

travel times were determined for both singleand dual command cycles. The

following I/O locations were addressed: I/O at (0, 0); I at (0, 0) and 0

at (1, 0); I at (0, 0) and 0 at (0, d); I/0 at (0.5, d); and I/0 at (0, d).

Several dwell point strategies were considered. Based on the analyses per-

formed, it is felt that a number of insights can be obtained.concerning

AS/RS design tradeoffs using the travel time models.
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