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INTRODUCTION

The backscattering of light from droplets of water in clouds is known

to be enhanced due to a weak focusing in the backward axial diroctm.l This

axial focusing gives rise to the optical effect known as the “"glory” (Ref. 1-6 i

and refearences cited therein). Axisl focusing is also known to be present in 4

the classical and quantum mechanical scattering of particles vhere the enhance-

ment of the differential cross section is known as :lu’ "glory effect." Mani-

festations of this type of focusing in acoustics, though previously :ml:m'l.a’9

are relatively unexplored. In the present paper we derive a physical-optics

, approximation which describes “he effacts of diffraction on the axial focusing
of glory rays in fluid spheres. We varify our approximation by comparing it

vith numerical computations of the partial-wave sum for the exact scattering

from inviscid fluid spheres (formulated e.g. in Ref. 10). It is also shown
that the backscattering can be further enhanced by choosing the sound velocity
ratio such that glory and rainbow rays coincide.

The paths of rays through a sphere are determined by the acoustic
refractive index M = colci wvhere LR and c, are the sound velocities of
the outer and inner fluids, respectively. The incident wave is taken to be a

plane wave; it is unmodulated and has a wavelength A in the outer fluid. A

physical-optics approximation for the diffraction limited uial focusing is
derived here; the dc-rivation assumes that ) << the sphere's radius a.

! Comparigons with the exact partial-wave sum, made for several M <1 with

; ka = 100 and 1000 (vhers k = 2m/v 1is the wavenumber of the incident wave),
demonstrate the legitimacy of the method. Rays which reflect from the front snd

3 rasr poles of the sphere (the "axial rays") experience nc focusing; consequently
their smplitudes are smaller than those of the focused glory rays when ka is large.

Chmaaa
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A second mctu

extends the present results to csrtain cases of glory
scattering of ultrasonic pulses by an elaptic sphere in water; it also
describes direct observations of diffraction limited backward axisl focusing.
When rays inside an elastic sphere are not mixed in their type (i.e., they are
all shesr or all lomgitudinal rays), the paths ar¢ the same as those for a

fluid sphere with ¢, taken to be either the shear or the longitudinal wave

1
velocities. Consequantly, the paths in fluid spheres with M < 1 most closely
resemble those for wost elastic spheres. The emphasis of the present paper is on
fluid spheres with M < 1; however, in Sec. V we model scattering from fluid spheres
wvith M > 1 and present computations of the exact scattering.

The present description of the acoustic glory may also be
extended to the case of a spherical elastic shell filled with a liquid. Targets
of this type are asserted to be useful as navigational aids and for the calibration
of sonar devices. da described in Sec. V, backscattering from a fluid sphere
should be quits large when ¥ = 1.180. This znhancement of the scattering,

which is due to a coincidence of rainbow and glory rays, lhould.allo be

* applicable to the design of liquid-filled shells with unusually large target

strengths. Some applications to shells are noted in Sec. VI.
Our derivation of the scattaring amplitude for backward and near back-
wvard directions will parallel our previous trestments of the backscattering of

46 4n 1iquids and other dielectric spheres.® To

light from spherical bubbles
facilitate s comparison with the exact scattering, we derive, for the first
time, the dependence of the phase of the glory scattering on the scattering

sngle.

I. Ray Acoustics and Axial Pocusing
In this section we review the slementary ray acoustics of a sphere and
the geomstric effect which gives rises to axisl focusing. Ray paths are




described by Snell's law:

sind = M sinv 1

where 0 is the angle of incidence at the aphere's surface and Vv 1is the

angle of refraction. The number of chords inside the sphere for & given ray

will be denoted by n. Several rays vhich are reflected and refracted in the i
near backward direction: are shown in Fig. 1. The deviation Y in the direction
of a ray from the backward axis (the CC' axis) is given by

Yy = 8-8, (2)
B-znv-ef(z-n)n.n>1 (3)

where B is the internal sngle (relative to the CC' axis) of the point at
vhich a ray leaves the sphere. [Equation (2) may be derived by noting that

the direction shifts due to the initial and final refractions have the same
magnitude. See Fig. 2 .] The roots of Y = 0 having o<e<em wvill be
denoted by Gn and the associated rays will be referred to as glory rays. Here
em-nlzmn>1mem-ec vhen M <1 where ec-arcli.n(u) is
the critical angle of incidence. Exact backscattering _nho' occurs for rays
with 6 =0 and vy = (n=2)7, n = 0,2,4 . . .; these rays will be referred to

as axisl rays. Certain axtal and glory rays are shown as the solid lines in
Pig. 1.

The following is a summary of conditions on M and n for glory

12

rays to exist. It ie well known™ that o = 2 glory rays exist for

V2 < M < 2. The emphasis of the preseat paper will be a class of glory rays #

3

which exisc for o<u$u; with n > 2. The upper bounds ll; are > 1

with l(;*l. as n+eo gnd l;+1<l;. We have previously demonstrated
5

that:




L 312 6 - 912 = 1.179960 (%)

1/2

H;. = (4/3)(2/3) = 1.088662 (5)

Most of our discussion will be concerned with spheres with M < 1,
The general class of glory rays in such spheres is described by 0 = B'
vhere 8' = 8 + n'2r wvhere 2n' + 1 1is the number of times rays cross the
syametry axis. It is necessary for n> 2n' + 2, n' = 0,1,2, . . . and conse~-
quently glory rays with n' > 0 have 4 or more internal reflections. We have
extended the physical-optics approximation described in Sec. II and III to
include rays with n' > 0 and find that their comtribution to the total
glory scattering from fluid spheres is significantly smaller than that of rays
with n' = 0. Consequently, for reasons of brevity and simplified notation,
ve will only describe the glory scattering due to rays with n' = 0 which is
the class of rays illustrated in Fig. 1. Irrespective of the value of n', as
n +®, Gn -+ Oc.

Consider rays which lie close to s glory ray; e.g., the dashed lines
near the n = 3 glory ray in Fig. 1. The incident wavefront bounded by these
rays is an agnnular ring which corresponds to wavelet de in Fig. 1. The
corrasponding wvavefront is toroidal when it leaves the sphere and it corres-
ponds to curved wavelat d'e’'. This wavelet is toroidal because the figure may
be rotated around the CC' axis. The nth toroidal wavefront appears to
originate at a virtual ringlike source at l"n. Each source forms a virtual
focal circle. Rays in the portion of the outgoing wavelet F'd' cross the
backward axis when they are extended.

When the scattering amplitude from a penetrable sphere is computed via
tay optics, the smplitude diverges as the observation point approaches the
backward axis [see e.g., Ref. 1 (Sec. 12.21), Ref. 9 (Sec. IC3), or Ref. 13




(Sec. VIII)]. This divergence is the manifestation of the axial focusing and
it also affects the scattering along the forward a.x:ll.6'9 This divergence is

also present in the classical description of scattering from a centrsl potential

vhere the well known differential cross section 107
do _ _1_
& 1o E b, |db, /dg| (6)

vhare the sum is over the different particle trajectories which are scattered
by an angle ¢ and bi is the impact parameter of the ith class of trajectory.
Axial focusing is predicted for those rays with bildblldﬂ $0 as ¢+
(backscattering) or ¢ + 0 (forward scattering).

The cause of the focusing can be seen by rotating Fig. 1 about the
CC' axis. Follow adjacent rays having infinitesimally different azimuthal
angles but having the same angle of incidence ©O. When this 6 1s slightly
less than che € A of some "glory ray," the adjacent rays cross the axis at a
common point after they leave the sphere. (This can be seen by extending the
line 1’3d'.) This crossing of azimuthally adjacent rays gives rise to the
geometrically predicted divergence of the energy density on the axis.

The method for correcting for this divergence was suggested by
1,12 1 mskes use of a physical-optics amroxi-tion"s which

involves (a) the computation of amplitudes in an exit plane near the sphere

Van de Hulst.

via ray optics, and (b) allows these waves to diffract to the observation
point. This method will be illustrated for glory rays which give rise to
toroidal wavefronts such as those shown in Fig. 1. It will be shown in Sec. V,
howaver, that as M + H"‘. the nth wavefront is no longer toroidal.

There are rays and types of scatterers for which there is no geomet-
rically predicted focusing. There is no focusing of backscattered axial rays
except for certain M > 2 (e.g., n = 2 and M= 2, see Ref. 14). The n =0

ray reflects without entering the sphere. To an external observer, its
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reflection appears to come from a point-like source at ‘0 (see PFig. 1). It
'is also evident that when a plane wave is incident on a cylinder (with M < 1)
and propagating in a direction perpendicular to the cylinder's axis, theras
will be no focusing of the backscattering.®’? Figure 1 1s applicable but
with rotation about the CC' axis no longer allowed. Backscattered rays
appear to originate from virtual line sources located, e.g., at Ao and the
Pn. It is evident from asymptotic formulations of scalar wave scatterr by

15,16

cylinders that t's geometric scattering from s fluid cylinder doer ..

diverge as y -+ 0.

II. Amplitude and Phase in the Exit Plane

In this section we use ray optics to describe the amplitude and phase
of the glory vaves in the exit plane. It is convenient for this plane to be
the one which touches C' with its normal parallel to the propagation direc-
tion of the incident wave. Its projection onto Fig. 1 is the dashed vertical
line. After the incident ray crosses the dashed vertical line, the propagstion .
phase delay for reaching the exit plane is:

n = kia(l = cosf) + 2anM cosv + w] ’ (7

wvhere (Fig. 2) v is the distance traveled by the ray from the exit point on

the sphere to the exit plane:

w » 3(1 - cosB) sec(8 - B) . (8 1
' The ray crosses the exit plane st a radius s from C' wvhere from Fig. 2 ﬁ
s = afsing - (1 - cosB) tan(® - B)] ¢))

The radius of the nch focal circle is bn = g(eind n)’ As is evident

from Fig. 1 and by direct computation, dn/ds = 0 wvhen s = p x The radius




7
un of the toroidal wavefront at the exit plane is obtained by computing the
vavefront's curvature:

o = k@n/adHt, s = b, (10a)
n
1 -1
= afl + i(nt - 1) conen] , (10b)

wvhere T = :anvn/:anen and Vo is given by (1) evaluated at Sn, the glory
ray condition. The proof of Eq. (10b) is outlined in Appendix A. The spreading

of the wavelet de at the exit plane is characterized by:

. lim (d'e) _  lim  Js(e') - s(d")}
3 (de) + 0 " (de) (de) ~ 0 s(e) - s(d)

(11)

vhere (d'e') and (de) are the arc and linear lengths of the outgoing and

incoming wavelets, respectively, and 8 1s the distance from C' to the ‘
indicated points of contact with the dashed plane. From symmetry arg-asents,

the rightmost side of (11), when generalized to arbitrary =n, becomes:

q, = |la(b, - a(6)]/(b, - a sinB)|, as 6 + 6 where s is an implicit

function of the ray's original angle of incidence via (1), (3), and (9).

Application of - L'Hospital's rule to this limit (see Appendix A) gives:
q = |1 + 2(at - sect | = [a /(a - a)|. (12)

With M < 1, a > a for all finite n (and n') so that the absolute value
signs in (12) are not needed; for ranges of M > 1, however, we find some
[an/(an = a)] are negative.

Let Py exp(-iwt) denote the incident pressure in the dashed plane

through C' in Fig. 1 wvhere w and Py are the frequency and amplitude of

the wvave. Ray optics gives the following amplitude in the exit plane for the




nth toroidal wave:

py B(s) 2
' S ¢ i[ng + up + k(s = by)"/2a,]
() = =g " as
%
where the toroid has been approximated by a quadratic surface. This approxima-
tion introduces a negligible phase error provided k(s - bn)a << IG:I. The

phase factor nn is the propagation phase delay of the glory ray:

n, * 2ka(l ~ co:&n + nucosvn) (14)

and U 1s the phase shift due to the crossing of focal 1ines.l The q;llz

factor accounts for the change in the area of the wavefront.

The factor Ks) accounts for the reduction in amplitude due to the
partial transmission or reflection of the wave at each interface. We approxi-
mate this by repeated use of the internal reflection coefficient for pressure at

17-19

a plane surface as a function of the external angle 6

2..1/2
R(G) = Hz - s8in"@ = Tecosd (15)

o - s1220)12 & Tcosd
vhere T = bilpo and p1 and po are the densities of the inner and outer
fluids, respectively. 1In (15), 6 is chosen to be angle of incidence of the

17,18 between the

ray which crosses the exit plane at s. Symmetry relations
transaission and reflection coefficients yield the following combined

coefficient
B(s) = R 1+ R(O)I[L - RO - (16)

The phase shift H, Aaccounts for the phase advance of 7/2 associated

with sach crossing of a focal curve prior to reaching the exit plane. (This

shift occurs due to vanishing of the wavelat's area at each focal curvc.1'19

)




b

From Fig. 1 it is evident that there ars two types of curves. One type, at
points Ll in Fig. 1, is dua to the intersection of initially adjacent rays
wvhich lie in the same meridional plane. There are n - 1 focal curves of
this type when M < 1. The second type is dus to axial focusing of rays
within the sphere. There is one focus of this type each tims the internal ray
intersects the axis; this occurs once wvhen n' = 0. This is the point Lz
for the n = 3 ray in Fig. 1. The total shift becomes u,o=- nn/2. (This
result differs from that given in Ref. 1, Sec. 12.22 as Van de Hulst was con-
cerned with the phase shifts at a distant observer.)

Evaluation of the constants bn, LI and n, requires that (1)
through (3) be solved for ﬁn with Yy = 0. With n = 3 or 4 the system of

equations reduces to a cubic equation which leads to the following tClults

stn’s. = nE(1 - b cos[(T, + m)/3]} an

P3 = arccos[(1l - Hz)h;3] " (18a)

r, = arccos [(27/160 - 1] (18b)

- L ] - " a - B -
vhere 0ST <7, hy=1/2, by~ [1-3 Ly, h) = 2/3, smd b, =-1/2.

When n > 4, we solve the system iteratively for en by choosing en_ as the

1
first estimate of en.

III. Diffraction and the Far-Field Scattering Amplitude

A. Stationary-Phase Approximation for the Backscattered Amplitude
The amplitude Py at the observation point Q can be expressed in
terms of a diffraction integral of P, 1in the exit plane (the x'y' plane

ia Fig. 3). In Fig. 3 the z axis is the extension of the CC' axis and the

Y
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backscattering angle Y is measured with respect to C' and the z axis.

™. y' axis may be chosen to be the dashed vertical axis in Fig. 1. (Unlike
4

. : the corresponding optics problem in which polarization breaks the symmetry,

here the orientation of the y' axis is arbitrary.) The Praunhofer approxi-

19,20

mation for r' gives r’' > r - [(xx' + yy')/r] and it gives the

following approximation of the diffraction integral for Py

p. = 2n(iir)”t 1K E, r >> ke? (19)

n max °’

Y
| Fix,y) = zl“» J J p;(!' ’y').'ik(xx' + yy')/t dx'dy’ . (20)

wvhere 8 ax’ the radius of the domain of integration, is sufficiently large

that the contribution to the diffracted amplitude from points outside of lm
is negligible. In addition to making use of the Fraunhofer approximation,
(19) neglects any corrections to the amplitude due to the obliquity between

Q and the wavefront in the exit plane. We mticipati the result below that
the phase of the integrand is atationary in the region of applicability of the
approximations leading to (13). Consequently we extend s ux. in (20) to =

‘and make use of the circular symmetry of pl" by writing F in terms of

radial and azimuthal mtcsnlczo’n
F(v) = J:c P, W(s,Y)ds (21)
1 (%"
W(s,) = 3= L oxp [-1ksl cos(y ~ E)1dY = Jg(u) (22)
wvhere [ = [(x2 + yz)/tzll'/2 ® giny, u = ksl', and ¥ 41s the azimuthal angle

of (x',y'). Due to symmetry, F and W do not depend on the azimuthal angle
E of Q.
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Since W 1s given by the zero-order Bessel function Jo(u), F 1s the

20,21

Hankel transform of p;. The phase of pl" is stationary vhen s = b o

and we use the stationary phase spproximation (SPA) of F. The smplitude of

]
29
except when Gn is close to the critical angle Gc. As n + o, recall that

is proportional to B which is a slowly varying function of s near bn

Gn-> ec, R+ zl, and B3 + 0. Consequently, the strongest p, are those with
small n wvhere B 1is sufficiently slowly varying that it may be removed from

the integrand. These approximations give

Foaop 3082 emlte, +u)) 1 (23)
I = L.l Jo(u) Ctp[ik(l‘- bn)zlzun]dl (24)
vhere q;llz has also been removed from the integrand since the spreading of

the wvavefront has been approximated by (12) which is the value at s = b n’ The

SPA of 1 1is (see eo.g. Ref. 22 Sec. 4.2¢c):

in/4

1 = b ()™M (aamla b)Y/ 5w )e™E + 00 )7 (25)

vhare u, - kbnf' aund the order of the correction term was obtained by noting
that the lowest order corrections from the endpoints of (24) vanish. Tha SPA

requires, however, that (u) be slowly varying near u = L and consequently

Yo
that Y be small. The condition on (19) may be writtea r > kb: since F

is dominated by contributions to the integral with s = bn'

B. Datermination of the Phase from Properties of the Angular Spectrum
When Q 4is not close to the backward axis, (25) does not yield the

correct phase for pn due to the requirement that u_ be small. The phase

n
correction is determined here by shifting the plane of integration to that of




e

R >3
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12

the focal circle. (The point at which the axis crosses this plane will be
denoted by G, c3 is shown in Fig. 1.) Since we lat Sax”” in (20),

F 1s a FTourier transform which expresses the planevave angular spectrum of
p;. The spectrum in the exit plane is related to the spectrum Fn’ determined
in the shifted plane, of the virtual source appropriate for the shifted planas.
The relation, which is well known in optics,?! 1s given by

F = exp(ika, coc‘y)Fn (26)

vhere o is the distance between the two planes and knneoﬂ i{s the phase

shift of a planewave, tilted at an angle Y with resps:t to the axis, as it

travels from the plane at c, to the one at C'. ‘

In the shifted plane, the virtual source is a circle whose spatial
proparties are those of the radial § function: 6(s - b‘). Writing Fn in
the form of a Hankel transform gives:

Fn = Dn El Jo(u) §(s - bn)ds - Dnano(un) 27)

wvhere Dn is a complex constant which has been determined by requiring Dnano(un)

oxp(ikan) = F via (23). This procedure, combined with (26) and (19), gives:

P, = Ppl(a/2r) exp(ikr)lg (28)

& = aoY2E 303 retln t tPa - o] (29)
Q. = -k, (- cosy) (30)

E, = 2 (2nfa|/q)P/? 072 (31a)

- 20, /0 (2v](a /) - 2112 (31b)

B R — . L ~——ﬁ
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vhere (31b) makes use of (12). The phase factor © was not preseat in (25).
An equivalent phase factor may be derived directly from an SPA of (24) by
assuming that v is large. This derivation is outlined in Appendix B.

In (29), B(bn) is given by (16) with 0 = Gn. The SPA result given
above requires |n(en)| to be not too small and hence that 8  is not close
to Brewster's ang;¢17 6‘ (known alsoc as the angle of intromission). This
angle is defined as the solution of R(OB) = 0; inspection of (15), gives
sta’0 = 0F - 1™)/(1 - 1. If TSM<1 orif T2M>1, then 8 exists.

When M < 1, all a, are positive. If a < 0 (which occurs for
certain M > 1), the signs of the 7/4 phases in (25) and (29) should

be rev.rscd.zz

C. The Axial Rays
Since the axial rays are unfocused, their far-field amplitudes and phases

can be computed directly from ray optics.1’13

Figure 4 defines the distances
needed to compute the phase difference co between the n = 0 reflected ray
and the propagation delay from C' to Q. Using our (...) notation for dis-

tance gives o " k((234) - (C'1)]; this can be writcten

& ™ 2ka[l - cos(Y/2)] - ka(l - cosy) (32)

by using the geometric results 6 = y/2 and (C'l) = (56). The far-field

pressure dus to each axial riy is pI[(alzr) cxp(ikr)]fn vhere the reflected

ray has the following form function when ka is not small:

g = -R(8 = y/2)al%0 . (33)

0

The ainus sign results from our definition that Eq. (15) describes internal

reflections. When Y is small, the reflected wave appears to come from Ao

23

which (as Y ~ 0) is a distance a/2 from C.
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The form functions fn (a=2,4, . . .) of the other axial rays may be

found by computing divergence factorol

and the phase shifts due to path lengths
and fcu:!..1 It is not generally feasible to express the ray's angle of inci-
dence 6 as a function of Y; this necessitates either the numerical solution
of transcendental equations or the use of approximations. An approximate
description of fz(Y) is given in Appendix C. A description with y = 0 of

14

electromagnetic axial rays from a dielectric sphere™ can be modified to give

the following acoustic result when ks >> 1

ERCEN TR TS "l YO Land R YOO (34)

For the examples to be described in this paper to and fz are siuilar in |
magnitude; for a 2 4, lfnl << |£°| so that approximations for those £ (Y)

will not be given here.

D. The Combined Scattering Amplitude
The above results may be combined to give the following approximation

for the pressure amplitude in the far field

P(r.Y) = prl(a/20) exp(ikn)] £, T >> ka? (39)
N

£(v) = g+ £, + Jg UM< (36)
n=3

: wvhere N should be sufficiently large to approximate an infinite series.
] The normalization for the fora function f has been chosen such that f£= 1

for geometric reflection from a fixed-rigid sphere of the same size. The

salient featurs of (29) is that |g (v = 0)|« (ka)/? while che £,
not depend on ka. Consequently the backscattering f '3 8

4
will be ted ontributicms of the diffracted glory waves provid he




attenuation of sound is negligible. As ka + =, the glory contributions to
(36) diverge; this divergence, a consequence of axial focusing, was also
evident in the purely geometric scattering; e.g., Eq. (6).

When ka is not large, (36) must be modified to include terms dus to
circumferential waves. Our tests of (36) had ka > 100 and, ss a consequence

15,19 and associated ruouncuzl'

of the largeness of ka, circumferential waves
should experience significant radiation dasping. The backscattering from
spheres due to circumferential waves will, nevertheless, be assisted by
diffraction-limited axial focusing as is the case for electromagnetic

1,3,12

scattering. Circumferential wave contributions to the scattering from

25,26 200; however, their

elastic objects are significant for ka as large as
significance to the scattering from large fluid objects with o 4 * P, 1s mot
well explored.

10,13,24 references the

The conventional description of the scattering
phase of the incident wave to the sphere's center C. It also uses distances
and angles with respect to C 8o that r becomes (CQ) and Yy becomes the
polar angle of Q with C as the origin. For the far-fisld scattering the

form of (35) 1is retained with f replaced by £.(Y) = £(Y) exp[1{,] where
§g = = ka(l + cosy) 37

is the negative of the phase shift for the distance (C'C5) din Fig. 4. The
Y-dependent phase shift for the reflected ray becomes %o + 5" ~2ka cos(y/2)
which agrees vith the convcn:imlu result; for the glory terms it becomes
?n +%o= -k (2a + (a, - 8)(1 = cosy)]. (Vhem o = a, the latter result
follows from elementary considerations.) Since the modulus of the form func-
tion 1is not altered by the transformation from C' to C, it is possible to

compare |f| from (36) directly with If.l vherse f_  1is the exact result of
10,18,24

the partial-wave theory.




IV. Discussion of Model and Comparison with Exact Scattering from
Spheres with M < 1

In this section we compare Eq. (36) with the modulus of the exact form
function f.. The partial-wave series for £ . VIS summed by using the com-
puter algorithm described in the appendix of Ref. 18. The number of partial-
waves included exceeded ka + 4.05 (ka)]'/a to ensure adequate convcrglnco.u
This algoritim was iimited to the case of equal inner and outer fluid densities
(py = p,) and the (£, presented here and in Sec. V are limited to this case.

Tables I and [I are representative of model results for form function
moduli of axial and glory terms and for the focal circle parameters. These
tables should be examined in conjunction with !‘1_3. 5~7. 1In each of the
figures, the largest N was chosen to be a power of 2 such that an additional
doybling of the largest n i1in (36) resulted in a new curve (not shown)
which differed imperceptibly from the dotted curve.

The value of M in Fig. 5 was selected such that the modulus of f‘,
the strongest of the omitted axial ray amplitudes, is especially small in com-
parison with |33(Y = 0)|. The main resuylt of Fig. 5s is that (36), with
N 2> 16, gives an smaplitude vhich {s nearly identical to tha exact result for
the range of Y plotted. This confirms, with vary lazge ks, our model ressult
for the amplitude and relative phases of the f and g . Note also that |£]
for v 2 0.2° 1is dominated by the interference of 83 fo.
Y < 0.2*, however, glory terms with n > 3 are significant. PFigure 5b con-

and 22; for

firms that the principal features of |[f

.l are describod by the modsl. Note

that the dip in |f ‘I near 12.5° is largely due to the destructive interfarence

of axial rays. Though we have previously msodeled individual t'.mutilmt:l.mu,l"s'8
rig. S 1is the first direct confirmation that a sum of axial end glory waves can

ace £ of the ba ) ¢ he M<]l.




2 g ey e

17

Pigures 6 and 7 confirm again that the principal features of |f_|
are described by the model. In Fig. 6a and 7, discrepancies between the modeled
and exact scattering are evident, especially at Y = 0. The causes of these
discrepancies are not known. Equation (36) has also been tested by including a
sum of glory terms with n' = 1 (which have n > 5) but the resulting shift
in |£| 41s much too small to account for the discrepancies. Though the
individusl |£ | with n 2 4 are small, it is plausible that the coherent
sun of omitted axial terms could account for significant part of the discre-
pancy. It is apparent that the omission of circumferential waves from the wmodel
is acceptable in Fig. S and 6b; this omission could account for some of the
discrepancies evident in Fig. 7.

Some noteworthy features of the modeled scattering are: (i) the width
of the backward peak of the scattering is roughly = 1/(ka) but the details
of the structure are highly dependent on ks seccording the interference of the
terms in (36); (ii) there is a tendency for the width of the peak to increase with

decreasing b3 and hence, decreasing M; (iii) though the |xn(-Y =0)| ¢(h)1/2.

|£] 18 not <« (',iu)']‘/2

due to the ks dependence of the interference between
the &, and the ka-independent fn; (iv) form function moduli can exceed
(e.g. Fig. 6a) or be close to (a.g. Fig. 6b, 7b) unity which is the geometric
result for reflection from a fixed-rigid sphere of the same size. This enhance-
ment is a manifestation .of diffraction-limited axial focusing of the bsck-
scaitering. It is possible, however, for the various glory terms to interfere
80 as to produce & minimum in |f]| for Yy = 0; this is evident in plots of
|¢] and |¢.| for M ® 0.5 with ka = 1000 which are not shown here.

Some aspects of the convergence of the series in (36) sould be moted.

As n+w, b +M and N, +n, vhere




)
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n, = 2ka[(1 -~ co.Oc) + M(w - Gc)] . (38)

This is the propagation phase shift a ray would have if it entered and exited
from the sphere at the critical angle ec and it traveled a circumferential

path with a phase velocity of ¢ Numerical tests suggest that it is suf-

4
ficlent to terminate the series wher’’ n, - nn) < 1 radian. The omitted terms
tend to cancel because of the alternating sign of B(bn) and the periodicity
of the phase factor cxp(iun) associated with the crossing of internal foci.
As n increases, I‘n' decreases due to decreasing |[B(b )| and increasing
q,; see Tables I and II. When Py  d Pgs the B(bn) are changed but the geo-
msetric paraneters are not.

It may be possible to arrive at (29) for g, from the asymptotic
evaluation (at large ka) of the exact partisl-wave sum. Glory ray amplitudes
should be describable by saddle-point contribution to a contot;r integral from
the Watson l:nmfcn'n:i.cm3 of the exact sum. Our use of the v ysical-optics
approximation in Sec. II and III, though less direct, manifests the physical
significance of the parameters an, bn’ 9, ¢n’ and Mo Furthermore, our
approach bypasses the difficulties with the asymptotic method noted in Ref. 13
and it may be extended to the near field by replacing (19) by a Fresnel

transform. 19-21

It may be importsant that Py and Pe be similar in magui~
tude for otherwise rnonanc'o‘i“ (as in a gas bubble) may be significant. The
lower limit on ka for which (36) is applicable is not known; the physical-

optics method wvas found to be uuful.“

depending on M, for tha description of
near critical-angle scattering when ka 2 25.
The physical-optics model may be used to approximate the scattering of

tons bursts where k is obtained from the average frequency of the incoming

burst. The time dalays of discrete echoes follows from the propagation phase

shifts nn, pn. and ‘n‘ Shapes of discrete glory echoes will differ from
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the incoming burs “11

due to the k-independent phase shifts, the Uy and
n/4 terus in (29); the scattered burst is related to the incoming signal
through superposition of time-shifted incoming and Hilbert-transformed
oignals.u

An extensive test of (36) could be carried out by repesting the com~
parisons in Figs. 5-7 with several smaller ka. This would be inefficient to

do at present since the |f and Ifl curves are plotted using separate

o
computer systems. Figures 5~7 were made by overlaying and tracing the curves.

V. Spheres with M > 1 and Combined Rainbow and Glory Scattering
In this section we summarize the results of exact calculations of

backscattering from large fluid spheres with certsin M > 1 and we model the

enhancement of backscattering due to rainbow rays. As described in Sec. I,
the class of glory rays with n' = 0 and | n 23 are not limited to M < 1;
they also exist for 1 <M < Hl" vhere the upper bounds are given by (4) and
(5) for n = 3 and 4. Form functious for this class of rays are given by (29)
except vhen the ray has n internal chords and M = "1':‘ There is an

additional caveat to be noted:>

vhen u; <M< u"l there is second class of
rays having n internal chords which also cross the axis once. Here

H: = cac[(n=1)7/2n] 4s the value of M for which (1) and (3) give 0 = 8 = 7/2.
When n = 3, the angle of incidence of this second backscattered ray is given

by (17) with (T; + 7)/3 replaced by = + (T,/3).

The following comparison of ray properties for the two classes (each
vith n chords), will facilitate a description of the unusual backscattering
properties of spheres having M = !!;. Lat ;n - unen and En[fro- Eq. (10)]

l denote the focal paramsters for the new class of ray vhile b‘ and a_ danote

n
! those for the original type. With < M < M', the paramsters obey the
n
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following inequalities: bn < ;n < a, a > a, and (for M not too close to

H;) &n >0. As M~ M, Eqs. (1), (3), (10), and (17) lead to the results:

Sn *b,nr+1,a *+, En +-= and q + 1. The divergence of the dis-
tances to the focal circles gives rise to the erroneous prediction by (31)

that En’ and hence g8, also diverge for each of these rays. The present
physical-optics approximation fails because the glory wave is no longer toroidal
as required by (13). Numerical computations applied to the n = 3 ray and the
case M = Hs give the following limit as s ~ b,: [n(s) - n3]I(- - b3)3 -
Aska.z wvhere the dimensionaless constant A3 > =26.6. Hence the wavefront is
cubic which is characteristic of a "rainbow" or "stationary" ray. Figure 8
shows this ray.

1,7,13,23 4} the vicinity

It is well known that scattering is enhanced
of a rainbow ray. Rainbow rays have dy/d6 = 1 - (dB/d6) = 0. This is equiva-~
lent to the condition |db,/dé| + = in (6). These conditions require that>’'3
.1nze - (n2 - Mz)/(p2 - 1). We have vtrifieds that the glory rays with
M= H; and n = 3 and 4 satisfy this requirement; geometrical considerations
suggest that it is also met when n > 4. Consequently when M = H;, the back-

scattering is doubly enhanced relative to that due to axial rays: once due to
axial focusing and once due to the rainbow caustic.

We have developed a physical-optics approximation for 8, for the
special case M = H&. The principal change of the approximation described in
Sec. IIIA is to replace (24) by

3, 2
- u\nk(" ) /a =
1 |°. Jpwe ba ds = b J(u )1, (39)

vhere the SPA has been used to remove from the integral, that part of the
integrandwhich is assumed to be slowly varying near s = bn. The remaining

integral 1is




21

3,2
I, = Iﬁ eiAﬂk(‘-bn) /a ds . (40)

r 0

In the analysis which follows, we assume that An < 0, which is the case for
a= 3., It can be shown that the general form of the final result, Eq. (42),

does not depend on the sign of An‘ Changing the integration variable to

-2,1/3

4= (g~ bn) (-3Ana ) reduces I& to an incomplete Airy integral in

vhich the lower limit of integration is 4 = -bn(-3Ana.2)1/3.

1/3

As
k 4, = the incomplete integral has an asymptotic approximation [Eq. (10)

of Ref. 28] in terms of the complete Airy function A{ which gives

3
=1(A'/3)(by/a)
. _a a.2e n
I& --X7i73 [?wAi(O) + 1(;:) A'2/3 (41)

where Ai(0) = 0.35503 and A' = -3kaAn. These approximations give the fol-

lowing normalized form function in place of 8, wvhen M = M;

. - 2/3 ilng + ugl
x&n = «1i(ka) Ekn B(bn)Jo(un)e (42)

1/3
E = 471 A1(0) bn/[a(-3An)

o ] (43)

wvhere we have used the geometric result that 4, ~* 1 and the second term in

(41) has been omitted because of its small magnitude in cases to be considered

/3 because the enhancement of the

diffracted amplitude of a nonbackscattered rninbov1’3’23 /6.

here. 1t is to be expected that Byn « (ka)2
1s = (ka)?
The results of this model wvhen n = 3 are compared with |fe| in
Fig. 9. Away from Y = O, a complete approximation for 8y, DAY contain a
Y-dependent phase shift similar to the 421 factor 1in 8¢ Since this shift
has not been determined, our comparison is limited to comparing l3&3l with

|£,] 1n cases where |f | >> |£,] (vwhich is now the leading axial ray amplitude,

— e —
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see Table III). Figure 9 demonstrates that (42) describes the main features of
the gcattering when ka = 1000 but that (42) is relatively incomplete when

ka = 100. This conclusion is also supported from our computations of

|fe(y = 0)| for several ka within *10 of 1000 and 100. In each case Ifel
varied aperiodically with ka. Near ka = 1000 the extrema were typically
between 17.4 and 20.2; near ka = 100, they were typically between 3.8 and 6.8. i

These are to be compared with of 18.9 and 4.1 for ka of 1000 and 100,

18,5
respectively. That there should be ~.gnificant corrections to the physical-

optics approximation when .ka = 100 is to be expected from proximity of g
vy = 55.7° to the internal critical angle V. " nrcsin(us'l) = 57.9°. The |
use of plane~-surface reflection coefficients to compute B(b3) fails as v » vc
because tunneling, surface waves, and resonances make curvature an important i
conaidetation.1’3

Table III includes exact results with other values of M. For each
case |f€| was computed for a range of Y sufficient to include several of
the backward diffréction maxima; its peak occurred at Y = 0 in each case.

The relative magnirudes are consistent with the considerations given at the
beginning of this section. The rainbow condition is not met when M = 1.1 and
the backscattering is weaker than for MS' The backscattering is doubly
enhanced wvhen M = ua. It is small when M = 1.25 with ka = 1000 because
there is no glory ray having only a few chords (irrespective of n') and circum-
ferential waves experience significant radiation damping.

The combined rainbow-glory enhancement of backscattering is not limited
to the precise condition M = H;. Due to diffraction,3 a rainbow will influence
the backscattering when dy/d6 = 0 in the vicinity of Y = 0. Consequently,
backscattering will be enhanced for M in some range near M; which narrows

for increasing ka. There are other cases of glory enhanced backscattering




23
outside of the range 0 < M < us considered in this paper. The most useful of
these may be that due to the n = 2 glory ray for v2 < M < 2,

29

Our Mie theoretic computations”” of the backscattering of light from
dielectric spheres also demonstrate a combined rainbow-glory enhancement for

optical refractive indices of Ha and Hi.

VI. Applications to Underwater Acoustics

The models developed in Sec. III and V for glory and rainbow-enhanced
glory backscattering are more general tham the case of a purely fluid sphere
provided focal-circle parameters, attenuation, and coefficients of reflection
and transmission are properly modeled. For example, Eq. (29) removes the
Y + 0 divergence of amplitudes backscattered from solid spheres present in the
geometric model of Ref. 9; subtleties of this application will be described
elseuhere.ll Spheres have been used as calibration targets for sonar syltens3°.32
because of their symmetry; their response is asserted to be more uniform (in
regard to variations in the direction.of the incoming wave) than the triplane

31,32

reflector. In this section we comment on the design of practical spheres

vhich could be made to exhibit glory enhanced backscattering.
Liquid spheres with ka 2 100 are too large for surface temsion to
ensure sphericity. For example, with c, = 1.53 m/s (sea water) and

w/2m = 100 kHz, the radius = 24 cm when ka = 100. The target liquid may be

31,32

contained in a thin elastic shell. For ease of transport, the shell's

interior may be left unfilled until subnnrlion.al In the discussion which

follows, shear and loangitudinal sound velocities of the bulk shell material
will be denoted by <, and 7 and the shell's thickness will be denoted by

h; Pyr 8, and ¢, are the density, radius, and sound velocities of the inner

i
liquid and M = colci.
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For a large sphere, glory rays illustrated in Fig. 1 snd 8 exist in
the h << a 1limic. The main difficulty in using Eq. (29) and (42) to estimate
the scattering is in the evaluation of B(bn) for the transaission through
and reflection from the shell. Proper choice of h could simplify the
analysis by tacilitating the use of the thin-plate approximation for the

trausmission and reflection coefficients of flat platos.17’19

For larger h,
the analysis is complicated since both <y and cy typically exceed <, and

c Furthermore, Lamb nod0024 are launched in the shell at certain angles of

40
1nc1d¢nc¢.26 A plausible choice to facilitate transmission into the sphere's
interior is to select c. somevhat smaller than LR and ci. (For example,
Lexan is a strong material having e = 910 m/3.) In the case of rainbow-
enhanced glory, Fig. 8, the calculation of B(b3) may be especially complicated
due to the largeness of 63 and v3.
A computational demonstration of glory-ray enhanced backscattering may
be best achieved by computing the exact scattering from thin, liquid-filled
spherical shells by extending the computations in Ref. 33 to ka 2 100 and
certain M ¥ 1. The calculations should include a range of Y. The exact
calculation would be most interesting in the case M = Hi due to the (ka)zl3
enhancement factor in (42). The possibility of enhanced backscattering from
liquid~filled shells with this M has been previously overlooked. (For
example, if it is present, the interpolated target strength versus M curve
in Pig. 5 of Ref. 31 contains serious errors.) Circumferential wvaves, which

26

are known to influence backscattering from large cylinderical shells,
give rise to axially focused backscattering from spherical shells. The relative
importance of ray-optical and circumferential returns may be evaluated by dis-
playing the scattering of a short tone burst as in Ref. 33. Certain inhomo-

geneous spheres exhibit glory rays and should have enhanced backncatnring.36
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Appendix A: Curvature and Spreading of Glory Wavefromts

The wavefront is described by a curve of constant propagation phase
delay n. Its curvature at the exit plane is l/a = k'l(dzn/dlz)/u + (k'ldn/ds)
vhere s 1s the distance from C'; n and s are given by (7) through (9) as
functions of 6, B, and v, but could, in principle, be written as functions of

6 only, by making use of (1) and (3). VUe then have

1 (ds/de)(d®n/a8®) - (an/ae) (a%s/de® an
a k[(ds/d8) + (k! dn/de)3)3/2
where the differential operator is
4 _ 2, 4 3 98dv 38, 3
3 " @t Gt 8 (a2)
= 3/20 + 1 3/3v + (2at - 1) 3/38 (A3)

where (A3) uses (1) and (3) and the definition T = dv/d6 = tanv/tan6. The
first derivatives in (Al) are
(ka)™! %% = 2 (1-n7) (1-cosB)sec(6-8) tan(8-8) + (1-2nT)(sinB-sinBsec(6~8)) , (A4)

al %‘5 e 2(n1-1) (1-cosB)sec2(8-8) + @ aT-1)(cosB-sinBtan(6-8)) . (AS)

The second derivatives are somewhat longer, but straightforward to calculate.

2]3/2
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The interesting cases are the glory rays, occurring vhen 8 = 0; this condition
will be denoted by a subscript n for the glory ray with u chords. Since
(4n/d8)_ = O, (AL) becomes k/a_ = [(d’n/d%0)/(ds/d8)?] . The dertvatives at

the glory condition are (¢l¢/¢le)n = a[2(nT=1) + cosb n] and («'.lznldez)n -

Zk(nt-l)(ds/de)n. Hence the radius of curvature of the wavefront is given by
(10b).

From (9) and (11), the spread of the wavefront may be written as
unen - [8in8 - (1 - cosB)tan(® - B)]

1im
W " 6,88 s1ng_ - eind . (46)

1im (d/4d8) [n:l.neIl - 8inB + (1 - cosB)tan(® ~ B8)]
0,8+ ~ (@/de) [sia6_ - s126]

(A7)

where (A7) follows from L'Hospital’s rule. Application of (A3) gives an
expression which reduces to (12).

We have verified (10b), for several values of M # H"‘, with direct
numerical computations demonstrating that as s + b n’ (n(s) - nn]/ (s - bn)z -
k(2a “)-1. Furthermore, determinations of focal circle locations by direct ray
tracing (from large versions of Fig. 1) are in agreement with (10b). Our
result for 1, has also been verified by numerical evaluation of the limit

in (11). These tests were merited because quantities equivaleat to o and

q, are given by incorrect expressions in Appendix II of Ref. 23. Those
expressions were erroneous due to incorrect formulation of total derivatives:;

they happen to give the correct ratio Iaﬁllq‘.

T T T Y T e s —my T

Appendix B: Angle-Dependent Phase Shift Via the Method of Stationary Phase
The purpose of this appendix is to demonstrate that s modified SPA of
(24) yields a phase shift equivalent to (30) and to give insight into the cause

w
_—;—-
- P -
_ e e T r—
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of that shift. The derivation which follows is limited to cases vhere S

v, >> 1. In (24), express Jo(u) using Hankel functions of the first and

22

second kinds.?? 3 () = 5[BSD () + 8§D (u)] and define z,(w) = B (WexpGo)

3
with j = 1 and 2 (here and below) for the upper and lower sign, reaspectively.

Then (24) 1is s sum of integrals of the form
2 -1
]:.1 i 0. zj exp [1k)s(s bn) o %t {u] ds (B1)

wvhere the stationary phase points of the complex exponentials are at s = s 5

with g, = bn rd a.nI‘. From the asymptotic fcmuz2 of the néj)(u) as u + o,

]

it is evident that .zj is a slowly varying function of s near s = g, pro-

3
vided u >>1 and ldnlf << b . Consequently, in the SPA of (Bl), it is

appropriate to treat the complex exponential, which differs from that of (24),

as the function which oscillates rapidly wvhen s # s Approximating I, and

3 1

I2 by this procedure gives the following sum:

1/2 1) + 1/4)

1 = bn(Zﬂlanllk) Jolu)e (82)

vhere terms of order anrkbn relative to unity have been neglected and

¢"‘ = - &knnl'z. Replacing (25) by (B2) leads directly to (29) with ¢n replaced
by ¢:a' By inspection, when I << 1, ‘Pn and ¢:I are identical up to terms
«I®. They give nearly identical results for the conditions under which (29)

wvas tested in Sec. IV. The derivation of ?;, however, assumes that both

u,>> 1 and o T << b and hence that (kb )7! << T << b /la,|.

The shift of the stationary phase points by ¢ anI' has the following
physical interpretation. Consider the locations of the effective areas (or
Fresnel :onul) of the toroidal wavefrout which contribute to the scattering to
Q. Whan [ ¥ 0, these zones are centered on points with y= £ and Y= g+
vhere £ (Fig. 3) is the azimuth of Q. The centers of these zones are shifted
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awvay from bn by = anI‘. This shift of the effective areas of the toroidal

wave leads to the phase shift ?;

Appendix C: Asmplitude of the One-Bounce Axial Ray
The purpose of this appendix is to describe an approxisation for
fz(y). The geometry of the associated ray is shown in Fig. C-1. Lat %,

denote the phase difference between the n = 2 ray and the propagstion delay
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St

from C' to Q. Inspection of Fig. C-1 gives i = k[(12) + M(234) + (45) - (C'6)) =

2ka{(1l - cosf) + 2M cosv] ~ ka(l - cosy). We exprass ;, as s function of y by

using an approximation for 6. As Yy + 0, Eq. (1) becomes 0 = Mv provided |M - 1]

is not large. Eliminating v from the exact expression Y = 2(2v - 8) gives
6 = My/(4 - 2M) (C1)

From this utiuﬁ of 6, the complete Eq. (1) is used to obtain Vv and cz
is found via the expression given sbove. This approximation for ‘z wvas com-
pared with the exact result (which may be computed as a function of 60). The
error is negligible for the range of ka, Y, and M of the computations in
Sec. IV. The approximation for £, is

£, = RO - rO W - Wit -

vhere the -7 phase term results from the crossing of two foci. The factor

M/(2 - M) is the divergence factorlr13+14

appropriate for y = 0. Tests
indicate that our approximation of this factor by a constant introduces a
negligible error in Fig. 5-7. The reflection coefficient was computed via (15)

and (Cl1).
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TABLE 1I. Focal circle parameters for M = (.94 (upper group) and
0.6 (lower group). B(by) is shown for the case py = n,.

n en(dcg) b n/ a a.n/ a q En B(b)
3 40.24 0.646 1.162 7.2 1.30 3.0 E-3
53.08 0.800 1.078 13.9 1.12 -9.1 E-4
8 65.62 0.911 1.016 65.1 0.57 -1.2 E-4
16 68.91 0.933 1.004 277.1 0.28 «4.0 E-5
3 21.20 0.362 1.096 11.4 0.56 9.3 E=-2
28.24 0.473 1.052 20.4 0.54 -5.7 E=2
8 34.76 0.570 1.012 84.2 0.31 -2.3 E=2
16 36.33 0.593 1.003 340.3 0.16 -1l.1 E-2

TABLE I11. Exact and axial form function moduli at vy = 0 for
selected M > 1 when pi = °o‘

M £, (ka = 100) | |£,(ka = 1000) | €51

Hz 2.57 7.12 0.042 0.051
1.10 1.97 1.99 0.048 0.058
Hs 6.50 19.60 0.083 0.118

1.25 1.39 0.26 0.111 0.183




Figure Captions

Fig. 1. Backscattered rays from a sphere with M = 0.6. The center of the

sphere is C and the figure may be rotated about the CC' axis.
Fig. 2. Path of a ray (dashed line) as it leaves the sphere.

Fig. 3. Angles and distances needed to describe a point (x',y') in the exit
plane and the observation point Q. The 2z axis is the extension (toward

the source) of the CC' axis.
Fig. 4. Distances needed to describe the phase of the reflected wave.

Fig. 5. Comparison of exact and model form functions of spheres with M = 0.94.
The curves labeled N give [f| from Eq. (36) evaluated with the indicated N.
In (a), the model result (dotted curve) is nearly identical to the exact result

(solid curve).
Fig. 6. Comparison as in Fig.'S but with M = 0.6.

Fig. 7. Comparisons as in Fig. 5 but for (a) M = 0.8, and (b) M = 0.5, with

ka = 100 in both cases.

Fig. 8. Combined rainbow-glory ray for a sphere with M = M5 of BEq. (4).
The distance scales in the sketch of the cubic wavefront have been enlarged for

enhanced visibilicy.

Fig. 9. Comparison of exact (solid curves) and modeled (dashed curves) form
functions of spheres with ka = 1000 (upper group) and 100 (lower group). The
model results are from Eq. (42) which describes only the rainbow-enhanced glory

ray. The ray is the n = 3 ray in Fig. 8 which has b, = 0.9752 a.

3







37

Fig. 2




38




Lo

INCIDENT
WAVE |—
FRONT

Fig. 4

39







qag ‘3r4

41

(se@a1bap) £
02 ] o G

(o

OO0l =0 60=W (q)
OolI'o ]




42

(saa4bap) £




T

43

(saa1bap) £ | @ o

107 Gl Ol G

(9)




44

(s9aibap) £

0¢ Gl Ol * o
1

14|




45

(seaubap) £
ool

q, "3ya

W (@




CUBIC WAVE FRONT

rig. 8




Sl

1) -~

1%
Ew:=n

']

Ol

80 w;.o b0
0001 = 0% 10} (s33169p) £

6 ‘314




29

Fig. C-1. Distances and angles needed to describe the scattering due to the

single bounce "axial ray.” 0 4s the ray's angle of incidence. The refraction

angle Vv 48 illustrated for the case M = 0.6.
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Submitted to the 104th Meeting of the Acoustical Society of America !
9-12 November 1982

Observation of the acoustic glory: Scattering from an elastic sphere in near
backward directions. Philip L. Marston, Timothy J. B. Hanson,a)and Kevin L.
Williams (Dept. of Physics, Washington State University, Pullman, WA 99164)

We have measured the scattering for small angles y (relative to the
backward axis) from a fused silica sphere of radius @ ¥ 52 mm. Tone bursts
in water corresponding to ka ~ 450 were incident on the sphere; their short
duration permitted glory and axial returns to be separated in time. The vy
for the probe hydrophone was scanned to test a model [P. L. Marston and
L. Flax, J. Acoust. Soc. Am. Suppl. 68, S81 (1980)] of diffractive effects on
backward axial focusing. Observations tend to support the model as adapted
to fused silica: (1) from the arrival time, the strongest echo is evidently
due to the 4-chord shear glory ray; (2) its amplitude is = Jy(kbsiny) where
b is the calculated glory circle radius; (3) its amplitude at vy = 0, though
slightly smaller than predicted, exceeds that of the first axial reflection;

: and (4) the times, amplitudes, and y dependences of other echos are correlated
to predictions. The first null ¢f the strongest echo occurs at vy = 1°.
Consequently, we demonstrate for the first time the diffraction limited backward
focusing of echos from a sphere. [Work supported by ONR. Marston is an

Alfred P. Sloan Research Fellow]

‘)Pnsent address: Defense Systems Division, Honeywell Inc., Hopkins, MN 55343

Technical Committee: Physical Acoustics
Subject Classification numbers: 43.20.Fn, 43.20.Px, 43.35.Z2c
Telephone Number: (509) 335 - 5343 (P. L. Marston)
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