AD-A119 369 WASHINGTON STATE UNIV PULLMAN DEPT OF PHYSICS
 NL

DisiRimution Sihtankir
 Approved for public releame;
 Dinertbution Unilimited

derartimint of mysics WASHiNCTON State unveraty

$$
8209 \quad 20 \quad 010
$$

DEPARTMENT OF PHYSICS

WASAIHGTOA STATE UNIVERSITY
PULIMAN, WA 99164-2814

TECHNICAL REPORT BO. 2

GLORY AND RAINBOW ENHANCED ACOUSTIC BACKSCATTERING FROM FLUID SPHERES: MODELS FOR DIFFRACTED AXIAL FOCUSING
by

Philip L. Marston and Dean S. Langley

September 1, 1982

Prepared for:
OFFICE OF NAVAL RESEARCH CONTRACT NO. NOOO14-80-C-0838

Approved for public release; distribution unilaited Reproduction in whole or in part is permitee for any purpose of the United States Government

Unclassified
QECURITY ELASAFICATIOM OF THIS PAEE (minm Deno Bntown

Daclaentiod

scattering from air bubbleg [D. S. Langley and P. L. Marston, Phye. Rev. Lett. 47, 913-916 (1981)], >contains now features to facilitate the ouming of aplitudes in a range of angles. An additional enhancement due to rainbow focusing is modeled for certain sound velocity ratios M; for these M the backscattered amplitude is proportional to $a_{\mu}^{2}(k a)_{\mu}^{2 / 3}$. Mejor features of the exact scattering are reproduced by theac models when kn $=1000$ and (with defects) ka $=$ 100. The enhancements are not intrinaically due to resonance. Applications to the design of passive monar targets are notedp
table of contents
Page
TITLE PAGE . 1
REPORT DOCUMENTATION PAGE . 11 INTRODUCTION . 1 SECTION NO.
I. Ray Acoustics and Axial Focusing 2
II. Amplitude and Phase in the Exit Plane 6
III. Diffraction and the Far-Field Scattering Amplitude
IV. Discussion of Model and Comparison with Exact Scattering from Spheres with $M<1$. 16
V. Spheres with M>1 and Combined Rainbow and Glory Scattering . . . 19
VI. Applications to Underwater Acoustics 23

Acknowledgments . 25 APPENDIX
A. Curvature and Spreading of Glory Wavefronts 25
B. Angle-Dependent Phase Shift Via the Method of Stationary Phase . . 26
C. Amplitude of the One-Bounce Axial Ray 28

References . 29
Tables . 33
Figure Captions . 35
Pigures . 36
Abstract Descriptive of the Scattering Experiment Cited in Reference 11 . . 49
Report Distribution Liat . 50

iv

IMTRODUCTIOM

The backentering of light from droplets of water in clouds is known to be eahanced due to a mak focusing in the backorard axial direction. ${ }^{1}$ This axial focuaing gives rise to the optical effect known as the "glory" (Raf. 1-6 and referencea cited therein). Axial focusing is also known to be preaent in the classical and quentun mechanical scattering of particles where the enhancement of the differential cross section is known as the "gloty effect." Manifeatations of this type of focusing in acoustics, though previouely noted, 8,9 are relatively unexplored. In the present paper we ierive a phyeical-optics approximation which describes the effects of diffraction on the axdal focusing of glory raya in fluid sphares. We verify our approximation by comparing it with numerical computations of the partial-wave sum for the exact scattering from inviacid fluid spheree (formilated e.g. in Ref. 10). It is aleo shown that the backacattering can be further anhanced by choosing the sound velocity ratio such that glory and rainbor rays coincide.

The paths of rays through a aphere are deternined by the acoustic refractive index $M=c_{0} / c_{1}$ where c_{0} and c_{1} are the sound velocities of the outer and inner fluids, reapectively. The incident vave is taken to be a plane wave; it is unodulated and hat a wavelength λ in the outer fluid. A physical-optice approximation for the diffraction linited axial focusing is derived here; the derivation assumes that $\lambda \ll$ the aphere's radius a. Comparisons with the asact partial-wave sum, ade for several $M<1$ with ke 100 and 1000 (where $k=2 \pi / y$ is the wavenumber of the incident wave), demonetrate tha legitimacy of the method. Rays which reflect from the front and rear poles of the mphere (the "axial rays") expertence no focusing; consequently thair amplitudes are galler than those of the focueed glory rays when ka is large.
A second paper ${ }^{11}$ extende the present results to certain canes of siory scatearing of ultrasonic pulaes by an alajeic aphare in water; it also describes direct observations of diffraction linited bachard axial focusfog. When rays ingide an alastic ephere are not mixed in thalt type (1.e., they are all shear or all loagitudinal rays), the paths are the aane as chose for a fluid sphere vith c_{1} taken to be either the shear or the longitudinal wave velocities. Consequancly, the pathe in Eluid apheres with $M<1$ mot elosely rescmble those for wost elastic spheres. The cmphasis of the present paper is on fluid spheres with $M<1$; bowever, in Sec. ∇ we model scattaring from fluid apheres with $M>1$ and present computations of the exact scattering.
The present description of the acoustic glory may also be extanded to the case of a sherical elastic shell filled with a liquid. Targets of this type are ascerted to be useful at navigational aide and for the calibration of sonar devices. As described in Sec. V, backscattering frow a fluid sphere abould be quite large whan $M=1.280$. This suhancenent of the scattering, which is due to a coincidence of rainbow and glory raya, should also be applieable to the design of 11quid-filled shells with unumaily large target serengthe. Some applications to whella are noted in sec. VI.
Our derivation of the scattering amplitude for beckorard and near beckward directions will parallel our previous treatments of the beckecatearing of 11ght from apherical bubbles ${ }^{4-6}$ in liquide and other dielectric apheras. 5 To facilitate a comparison with the exact scattering, we derive, for the first time, the dependence of the phace of the glory scattering on the scattering magle.

I. May Acountica and Arial Foculate

In eble saction we review tive elamatary ray acountice of a aphere and the geonatric effect which givea rise to axial focusing. Ray pathe are
deacribed by Snell's law:

$$
\begin{equation*}
\sin \theta=M \operatorname{sinv} \tag{1}
\end{equation*}
$$

where θ is the angle of incidence at the aphere's surface and v is the angle of refraction. The number of chorde inside the aphere for a given ray will be denoted by n. Several rays which are raflected and refracted in the near beckward direction are shown in Fig. 1. The deviation γ in the direction of a ray from the backward axis (the CC' axie) is given by

$$
\begin{gather*}
\gamma=\theta-\beta, \tag{2}\\
\beta=2 n v-\theta+(2-n) \pi, n>1 \tag{3}
\end{gather*}
$$

where B is the internal agie (relative to the CC' axis) of the point at which a ray leave the aphare. 【Equation (2) may be derived by noting that the direction shifes due to the initial ad final refractiong have the same agnitude. See Fig. 2.$]$ The roots of $Y=0$ having $0<\theta<\theta_{\text {anx }}$ will be denoted by θ_{n} and the asmociated raye will be referred to as gloy rays. Bere $\theta_{\text {max }}=\pi / 2$ when $M>1$ and $\theta_{\text {max }}=\theta_{c}$ when $M<1$ where $\theta_{c}=\arcsin (M)$ is the critical angle of incidence. Eract backscateming also occurs for rays with $\theta=0$ and $\gamma=(n-2) \pi, n=0,2,4$. . . ; these rays will be referred to as axdal rays. Certain axtal and glory raye are shown as the solid lines in F15. 1 .

The following is a gunary of condition on M and a for glory rays to exiet. It is mell known ${ }^{12}$ that $=2$ glory rays exiet for $\sqrt{2}<M<2$. The erphacis of the present paper will be a clase of glory rays which exist for $0<M \leq M_{a}^{\prime}$ with $a>2$. The upper bounde M_{a}^{\prime} are >1 with $x_{0}^{\prime} \rightarrow 1$ as $a \rightarrow \infty$ and $x_{a+1}^{\prime}<M_{n}^{\prime}$. We have previoualy demonetrated that: ${ }^{5}$

$$
\begin{align*}
& M_{3}^{\prime}=\left(3^{1 / 2} 6-9\right)^{1 / 2}=1.179960 \tag{4}\\
& M_{4}^{\prime}=(4 / 3)(2 / 3)^{1 / 2} \approx 1.088662 \tag{5}
\end{align*}
$$

Most of our discussion will be concerned with spheree with $M<1$. The general class of glory rays in such opheres is described by $\theta=\beta^{\prime}$ where $\beta^{\prime}=\beta+n^{\prime} 2 \pi$ where $2 n^{\prime}+1$ is the nuber of timed rays cross the symetry axis. It is necessary for $a^{\prime}>2 n^{\prime}+2, n^{\prime}=0,1,2$, . . . and consequently glory raye with $n^{\prime}>0$ have 4 or more internal reflections. We have extended the physical-optica approxination described in Sec. II and III to include rays with $n^{\prime}>0$ and find that their contribution to the total slory scattering from fluid spheres is significantly amaller than that of rays with $n^{\prime}=0$. Consequently, for reasons of brevity and simplified notation, we wil only describe the glory scattering due to raya with $\mathrm{n}^{\prime}=0$ which is the class of rays illustrated in Fig. 1. Irrespective of the value of a^{\prime}, as $n \rightarrow \infty, \theta_{n}+\theta_{c}$.

Consider rays which lie close to a glory ray; e.g., the dashed lines near the $n=3$ glory ray in Fig. 1. The incident wevefroat bounded by thete rays is an annular ring which corresponds to wavelet de in Fig. 1. The corresponding wavafront is toroidal when it leaves the aphere and it corresponds to curved wavelet d'e'. This wavalet is toroidal because the figure may be rotated around the $C C^{\prime}$ axis. The nth toroidal wavefront appears to originate at virtual ringlike source at F_{n}. Each source form a virtual focal circle. Bays in the portion of the outgoing wavelet $\mathrm{F}^{\prime} \mathrm{d}^{\prime}$ croas the becloward axds when they are extended.

When the scattering aplitude from a panetrable aphere is computed via ray optice, the aplitude diverges te the obeervation point approaches the backrard axis (eat e.s., Ref. 1 (Sec. 12.21), Ref. 9 (Sac. IC3), or Ref. 13
(Sec. VIII)]. This divergence is the manifestation of the axial focusing and it also affects the scattering along the formard axis. 6,9 This divergence is also present in the clasical description of scattering from a central potential where the well known differential cross section is ${ }^{7}$

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{\sin \phi} \sum_{i} b_{i}\left|d b_{1} / d \phi\right| \tag{6}
\end{equation*}
$$

where the sum is over the different particle trajectories which are scattered by an angle ϕ and b_{i} is the iupact parameter of the ith clase of trajectory. Axial focusing is predicted for those rays with $b_{i}\left|d b_{i} / d \phi\right| \nmid 0$ as $\phi \rightarrow \pi$ (backscattering) or $\phi \rightarrow 0$ (forward scattering).

The cause of the focusing can be seen by rotating Fig. 1 about the CC' axis. Follow adjacent rays having infinitesimally different azimuthal angles but having the same angle of incidence θ. When this θ is slightiy leas than the θ_{n} of rome "slory ray," the adjaceat raye crose the axis at a commp point after they leave the aphere. (This can be seen by extending the line $F_{3} d^{\prime}$.) This crossing of asimehally adiacent raye gives rise to the geometrically predicted divergence of the energy density on the axim.

The method for correcting for this divergence was susgested by Van de Hulst. ${ }^{1,12}$ It makes use of a physical-optics approximetion ${ }^{4-6}$ which involves (a) the computation of aplitudes in an exit plane near the sphere via ray optics, and (b) allow these waves to diffract to the observation point. This method will be illustrated for glory rays which give rise to toroidal wavefronts such as those shown in Fig. 1. It will be shown in Sec. V, however, that as $M+M_{n}^{\prime}$, the $n t h$ wavefront is no longer toroidal.

There are rays and types of acaterers for which there is mo geometrically predicted focualig. There is no focusing of backecatered axinl rays except for cercain $M \geq 2$ (e.g., $n=2$ and $M=2$, see Raf. 14). The $n=0$ ray reflects without entering the aphere. To an external observer, ite

Abstract

reflection appeara to come from point-like source at A_{0} (see Fig. 1). It is also evident that when a plane wave ia incident on a cylinder (with $M<1$) and propagating in a direction perpandicular to che cylinder's axis, there will be no focusing of the backscattering. ${ }^{8,9}$ Figure 1 is applicable but with rotation about the CC' axis no longer allowed. Backecatered rays appear to originate from virtual line sources located, e.g., at A_{0} and the $F_{n^{\prime}}$ It is evident from asmptotic formuletion of acalar wave scatter by cylinder: ${ }^{15,16}$ that ty geometric scattering from a fluid cylinder doer if diverge as $\gamma+0$.

II. Amplitude and Phase in the Exit Plane

In this section we use ray optica to describe the axplitude and phase of the glory vaves in the exit plane. It is convenient for this plane to be the one which touches C^{\prime} with ita normal parallel to the propagation direction of the incident wave. Its projection onto Fig. 1 is the dashed vertical line. After the incident ray crosses the dashed vertical line, the proparation phace delay for reaching the exit plane is:

$$
\begin{equation*}
\eta=k[a(1-\cos \theta)+2 \operatorname{an} k \cos v+w] \tag{7}
\end{equation*}
$$

where (Fig. 2) is the distance traveled by the ray from the exit point on the sphare to the exit plane:

$$
\begin{equation*}
v=a(1-\cos \beta) \sec (\theta-\beta) \tag{8}
\end{equation*}
$$

The ray croase the exit plan at a radius from C^{\prime} where from Fig. 2

$$
\begin{equation*}
-\operatorname{a} \tan \beta-(1-\cos \beta) \tan (\theta-\beta)] \tag{9}
\end{equation*}
$$

The radius of the ath focal circle is $b_{n}=a\left(a i n \theta_{n}\right)$. As is evident froe Fis. 1 and by direct computation, $d n / d s=0$ when $=b_{a}$. The redius
α_{n} of the toroidal wavefront at the exit plane is obtained by couputing the vavefront's curvature:

$$
\begin{align*}
\alpha_{n} & =k\left(d^{2} n / d s^{2}\right)^{-1}, s=b_{n}, \tag{10a}\\
& =a\left[1+\frac{1}{2}(n \tau-1)^{-1} \cos \theta_{n}\right], \tag{106}
\end{align*}
$$

where $\tau=\tan \nu_{n} / \tan \theta_{n}$ and ν_{n} is given by (1) evaluatad at θ_{n}, the glory ray condition. The proof of Eq. (10b) is outlined in Appendix A. The spreading of the wavelet de at the exit plane is characterized by:

$$
\begin{equation*}
q_{3}=\lim _{(d e) \rightarrow 0} \frac{\left(d^{\prime} e^{\prime}\right)}{(d e)}=\lim _{(d e) \rightarrow 0} \frac{\left|s\left(e^{\prime}\right)-g\left(d^{\prime}\right)\right|}{s(e)-s(d)} \tag{11}
\end{equation*}
$$

where (d'e') and (de) are the arc and linear lengths of the outgoing and incoming wavelets, respectively, and s is che distance from C ' the indicated points of contact with the daned plane. From syametry arsinents, the rightmost side of (11), when generalized to arbitrary n, becomes: $a_{n}=\left|2 i m\left[b_{n}-a(\theta)\right] /\left(b_{n}-a \sin \theta\right)\right|$, as $\theta \rightarrow \theta_{n}$ where is an implicit function of the ray' original angle of incidence via (1), (3), and (9). Application of L'Eospital's rule to this limit (see Appendix A) gives:

$$
\begin{equation*}
q_{n}=\left|1+2(n \tau-1) \sec \theta_{n}\right|=\left|\alpha_{2}!\left(\alpha_{n}-a\right)\right| . \tag{12}
\end{equation*}
$$

With $M<1, a_{a}>a$ for all finite $n\left(a n d \quad n^{\prime}\right.$) so that the absolute value signs in (12) are not needed; for ranges of $M>1$, however, we find some $\left[\alpha_{n} /\left(\alpha_{n}-a\right)\right]$ are negative.

Let $P_{I} \exp (-i \omega t)$ denote the incident pressure in the dashed plane through C^{\prime} in Fig. 1 where w and P_{I} are the frequency and arplitude of the wave. Ray optica gives the following amplitude in the exit plane for the
ath toroidal wave:

$$
\begin{equation*}
P_{n}^{\prime}(s)=\frac{P_{I} B(s)}{q_{n}^{1 / 2}} e^{i\left[n_{n}+\mu_{n}+k\left(s-b_{n}\right)^{2} / 2 a_{n}\right]} \tag{13}
\end{equation*}
$$

where the toroid has been approximated by a quadratic eurface. This approximation introduces a negligible phase error provided $k\left(s-b_{n}\right)^{4} \ll\left|\alpha_{n}^{3}\right|$. The phase factor η_{n} is the propagation phase delay of the glory ray:

$$
\begin{equation*}
\eta_{n}=2 k a\left(1-\cos \theta_{n}+n M \cos v_{n}\right) \tag{14}
\end{equation*}
$$

and μ_{n} is the phase shift due to the crossing of focal lined. 1 The $q_{n}^{-1 / 2}$ factor accounts for the change in the area of the wavefront.

The factor $B(s)$ accounts for the reduction in amplitude due to the partial transaission or reflection of the wave at each interface. We approximate this by repeated use of the internal reflection coefficient for pressure at a plane surface ${ }^{17-19}$ as a function of the external angle θ

$$
\begin{equation*}
R(\theta)=\frac{\left(M^{2}-\sin ^{2} \theta\right)^{1 / 2}-T \cos \theta}{\left(M^{2}-\sin ^{2} \theta\right)^{1 / 2}+T \cos \theta} \tag{15}
\end{equation*}
$$

where $T=\dot{\rho}_{i} / \rho_{0}$ and ρ_{i} and ρ_{0} are the denaities of the inner and outer fluids, respectively. In (15), θ is chosen to be angle of incidence of the ray which crosses the exit plane at s. Symmetry relations ${ }^{17,18}$ between the tranamision and reflection coefficients yield the following combined coefficient

$$
\begin{equation*}
B(B)=R(\theta)^{n-1}[1+R(\theta)][1-R(\theta)] \tag{16}
\end{equation*}
$$

The phase ahift μ_{n} accounts for the phase advance of $\pi / 2$ asociated with each crosaing of a focal curve prior to reaching the exit plane. (This shift occurs due to vanishing of the vavelet's area at each focal curve. ${ }^{1,19 \text {, }}$

From Fig. 1 it is evident that there are two types of curves. Oae type, at points L_{1} in Fig. 1 , is due to the interaection of initially adjacent rays which lie in the same maridional plane. There are $n-1$ focal curves of this type when $M<1$. The second type is due to axial focusing of rays within the sphere. There is one focus of this type aach time the internal ray intersects the axis; this occurs once when $n^{\prime}=0$. This is the point L_{2} for the $n=3$ ray in Fig. 1 . The total ohift becomes $\mu_{n}=-n \pi / 2$. (This result differs from that given in Ref. 1 , Sec. 12.22 as Van de Hulet was concerned with the phase shifts at distant observer.)

Evaluation of the constants b_{n}, a_{n}, q_{n}, and η_{n} requires that (1) through (3) be solved for θ_{n} with $\gamma=0$. With $n=3$ or 4 the systen of equations reduces to a cubic equation which leads to the following result ${ }^{5}$

$$
\begin{gather*}
\sin ^{2} \theta_{n}=h_{n}^{\prime} n^{2}\left\{1-h_{n} \cos \left[\left(\Gamma_{n}+\pi\right) / 3\right]\right\} \tag{17}\\
r_{3}=\arccos \left[\left(1-n^{2}\right) h_{3}^{-3}\right] \tag{18a}\\
r_{4}=\arccos \left[(27 / 16) n^{2}-1\right] \tag{18b}
\end{gather*}
$$

where $0 \leq \Gamma_{n} \leq \pi, h_{3}^{\prime}=1 / 2, h_{3}=\left[1-3^{-1} x^{2}\right]^{\frac{1}{2}}, h_{4}^{\prime}=2 / 3$, and $h_{4}=-1 / 2$.
When $n>4$, we solve the system iteratively for θ_{n} by choosing θ_{n-1} as the first estinate of ${ }_{\mathrm{G}}$ 。
III. Diffraction and the Far-Field Scatering Amplitude
A. Stationary-Phase Approximation for the Backecattered Amplitude

The amplitude P_{n} at the observation point Q can be expressed in terme of a diffraction integral of $\quad p_{n}^{\prime}$ in the exit plane (the $x^{\prime} y^{\prime}$ plane in Fig. 3). In Fig. 3 the z axis is the extenaion of the $C C^{\prime}$ axis and the
backacattering ancie γ is mantured with reapect to C^{\prime} and the z axis. Pr y^{\prime} axis may be chosen to be the daghed vertical axis in Fig. 1. (Dnlike the correaponding optice problem in which polarization breake the mymatry, ${ }^{4}$ here the orientation of the y^{\prime} axis is arbitrary.) The Fraunhofer approximation ${ }^{19,20}$ for F^{\prime} gives $r^{\prime} \times r-\left[\left(x x^{\prime}+y y^{\prime}\right) / r\right]$ and it give the following approzination of the diffraction integral for P_{n}

$$
\begin{gather*}
P_{n}=2 \pi(i \lambda r)^{-1} e^{i k r} F, r \gg k B_{\max }^{2}, \tag{19}\\
F(x, y)=\frac{1}{2 \pi} \int_{x^{\prime}+y^{\prime}} \int_{\leq e_{\max }^{2}} P_{n}^{\prime}\left(x^{\prime}, y^{\prime}\right) e^{-1 k\left(x x^{\prime}+y y^{\prime}\right) / r} d x^{\prime} d y^{\prime} . \tag{20}
\end{gather*}
$$

 that the contribution to the diffracted amplitude from points outside of sax is negligible. In addition to making use of the Fraunhofer approximation, (19) neglects any corrections to the amplitude due to the obliquity betmeen Q and the wavefront in the exit plane. We anticipate the reault below that the phase of the integrand is atationary in the region of applicability of the approximations leading to (13). Consequently we extend smax in (20) to a and make use of the circular symetry of P_{n}^{\prime} by writing F in terms of radial and azimuthal integrals 20,21

$$
\begin{gather*}
F(\gamma)=\int_{0}^{\infty} P_{n}^{\prime} W(e, \gamma) d e \tag{21}\\
W(s, \gamma)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp [-1 k \pi \cos (\psi-\xi)] d \psi=J_{0}(u) \tag{22}
\end{gather*}
$$

where $I=\left[\left(x^{2}+y^{2}\right) / x^{2}\right]^{1 / 2}$ - siny, $u=k \Gamma$, and ψ is the asimuthal ansle of (x^{\prime}, y^{\prime}). Due to aymetyy, F and W do not depend on the asfmuthal angle $\boldsymbol{\xi}$ of Q.

Since W is given by the zeromorder Bessel function $J_{0}(u)$, F is the Hankel tranaform ${ }^{20,21}$ of P_{n}^{\prime}. The phase of p_{n}^{\prime} is stationary when - b_{n} and we use the atationary phase approximation (SPA) of F. The amplitude of P_{n}^{\prime} is proportional to B which is a slowly varying function of a nent b_{n} except when θ_{n} is close to the critical angle θ_{c}. As $n \rightarrow \infty$, recall that $\theta_{n} \rightarrow \theta_{c}, R \rightarrow \pm 1$, and $s \rightarrow 0$. Consequently, the strongest P_{n} are those with samil n where B is sufficiently slowly varying that it gay be removed from the integrand. These approximations give

$$
\begin{align*}
& F=p_{I} B\left(b_{n}\right) q_{n}^{-1 / 2} \exp \left[1\left(n_{n}+u_{n}\right)\right] I \tag{23}\\
& I=\int_{0}^{\infty} s J_{0}(u) \exp \left[1 k\left(s-b_{n}\right)^{2} / 2 \alpha_{n}\right] d s \tag{24}
\end{align*}
$$

where $q_{n}^{-1 / 2}$ hes also been removed from the integrand since the spreading of the wavefront has been approximated by (12) which is the value at $s=b_{n}$ The SPA of I is (see e.g. Ref. 22, Sec. 4.2c):

$$
\begin{equation*}
I=b_{n}\left(k b_{n}\right)^{-1 / 2}\left\{\left(2 \pi\left|a_{n}\right| b_{n}\right)^{1 / 2} J_{0}\left(u_{n}\right) e^{1 \pi / 4}+a 0\left(k b_{n}\right)^{-1}\right\} \tag{25}
\end{equation*}
$$

where $u_{n}=k b_{n} \Gamma$ and the order of the correction rerm man obtained by noting that the lowest order correctiona from the endpointe of (24) vanish. The SPA requires, however, that $J_{0}(u)$ be slowly varying mear $u=u_{n}$ and consequeatly that Y be anall. The condition on (19) way be writcen $r \gg k b_{n}^{2}$ aince f is dondnated by contributions to the integral with $s \approx b_{n}$.
B. Daternination of the Phase from Properties of the Aagular spectrum

Whan Q is not close to the backward axds, (23) doea not gield the correct phase for P_{n} due to the requirament that u_{n} be sail. The phase correction is detentnad here by ohifting the plame of intagration to that of
the focal circle. (The point at which the axis croses this plane will be denoted by $C_{n} ; C_{3}$ is shown in Fig. 1.) Since we let enax $\rightarrow \infty$ in (20), F is a Fourier transforn which expresses the plancwave angular spectrua of P_{n}^{\prime}. The apectrua in the axit plane is ralated to the apectrun F_{n} decernined in the shifted plame, of the virtual source appropriate for the shifted plane. The ralation, which is mell known in optics, ${ }^{21}$ is given by

$$
\begin{equation*}
F=\exp \left(1 k \alpha_{n} \cos \gamma\right) F_{n} \tag{26}
\end{equation*}
$$

where a_{n} is the diatance between the two planes and $\mathrm{bon}_{\mathrm{n}}$ cosp is the phase shift of a planowave, tilted at an angle γ with respect to the axis, as it cravela from the plane at C_{n} to the one at C^{\prime}.

In the ahifted plane, the virtual source is a circle whose spatial
proparties are those of the radial δ function: $\delta\left(s-b_{n}\right)$. Writing F_{n} in the form of a Hankel transform gives:

$$
\begin{equation*}
F_{n}=D_{n} \int_{0}^{\infty} J_{0}(u) \delta\left(s-b_{n}\right) d s=D_{n} b_{n} J_{0}\left(u_{n}\right) \tag{27}
\end{equation*}
$$

where D_{n} is a complex conacant which has been deternined by requiring $D_{n} b_{n} J_{0}\left(u_{n}\right)$ $\exp \left(1 k \alpha_{n}\right)=F$ via (23). This procedure, combined with (26) and (19), gives:

$$
\begin{gather*}
P_{n}=P_{I}[(a / 2 r) \exp (1 k r)] g_{n} \tag{28}\\
q_{n}=(k a)^{1 / 2} E_{n} B\left(b_{n}\right) J_{0}\left(u_{n}\right) e^{1\left[n_{n}+L_{n}+\varphi_{n}-1 / \pi\right]} \tag{29}\\
Q_{n}=-2 a_{n}(1-\cos y) \tag{30}\\
E_{n}=2 b_{n}\left(2 \pi\left|a_{n}\right| / q_{n}\right)^{1 / 2} a^{-3 / 2} \tag{31a}\\ \tag{31b}
\end{gather*}
$$

where (31b) wakes use of (12). The phase factor φ_{a} was not present in (25). An equivalent phase factor may be derived directly from an SPA of (24) by assuning that u_{n} is large. This derivation is outlined in Appendix B.

In (29), $B\left(b_{n}\right)$ is given by (16) with $\theta=\theta_{n}$. The SPA result given above requires $\left|\mathrm{R}\left(\theta_{\mathrm{n}}\right)\right|$ to be not too emall and beace that θ_{n} is not close to Bremater's angle ${ }^{17} \theta_{B}$ (known also as the angle of introndsaion). This angle is defined as the colution of $R\left(\theta_{B}\right)=0$ inspection of (15), gives $\sin ^{2} \theta_{B}=\left(M^{2}-T^{2}\right) /\left(1-T^{2}\right)$. If $T \leq M<1$ or if $T \geq M>1$, then θ_{B} exists.

When $M<1$, all a_{n} are positive. If $\alpha_{n}<0$ (which occurs for certain $M>1$), the agas of the $\pi / 4$ phases in (25) and (29) should be reversed. 22

C. The Axial Rays

Since the axial rayb are unfocused, their far-field amplitudes and phases can be couputed directly from ray optics. 1,13 Figure 4 defines the distances needed to compute the phase difference 5_{0} between the $n=0$ reflected ray and the propagation delay from C^{\prime} to Q. Daing our (...) notation for distance gives $\zeta_{0}=k\left[(234)-\left(C^{\prime} 1\right)\right]$; this can be written

$$
\begin{equation*}
\zeta_{0}=2 \operatorname{ka}[1-\cos (\gamma / 2)]-\operatorname{ka}(1-\cos \gamma) \tag{32}
\end{equation*}
$$

by using the geonetric results $\theta=\gamma / 2$ and $\left(C^{\prime} 1\right)=(56)$. The far-field pressure due to each axial ray is $P_{I}[(a / 2 r) \exp (i k r)] f_{n}$ where the reflected ray has the following form function when ka is not emall:

$$
\begin{equation*}
f_{0}=-R(\theta=\gamma / 2) e^{1 \zeta_{0}} \tag{33}
\end{equation*}
$$

The finu aign results from our definition that Eq. (15) dencribes internal reflections. When γ is seall, the reflected wave appeare to come from A_{0} which $(a s) \quad Y \rightarrow 0)$ is a distance ${ }^{23}$ a/2 from C.

The form functions $f_{n}(n=2,4$, . . .) of the other axdal rays men be found by computing divergence factoral and the phase ahifts due to path leagths and foci. ${ }^{1}$ It is not generally. faasible to express the ray's angle of incidence θ an a function of Y; this necessitates elther the numerical solution of tranecendental equations or the use of approximations. An approximate description of $f_{2}(\gamma)$ is given in Appendix C. A description with $Y=0$ of electromagnetic axial raye from a dielectric ophere ${ }^{14}$ can be modikied to give the following acoustic result when ka >> 1

$$
\begin{equation*}
\left|f_{n}(Y-0)\right|=\left|M(n-M)^{-1} R(0)^{n-1}\left[1-R(0)^{2}\right]\right| \tag{34}
\end{equation*}
$$

For the exaples to be described in this paper f_{0} and f_{2} are sinilar in magnitude; for $n \geq 4,\left|f_{n}\right| \ll\left|f_{0}\right|$ so that approxinations for those $f_{n}(\gamma)$ will not be given here.
D. The Combined Scattering Anplitude

The above reaulta may be combined to give the following approximation for the presaure amplitude in the far field

$$
\begin{gather*}
p(r, Y)=P_{I}[(a / 2 r) \exp (1 k r)] f, r \gg k a^{2} \tag{35}\\
f(Y) \approx f_{0}+f_{2}+\sum_{m=3}^{M} g_{n}, M<1 \tag{36}
\end{gather*}
$$

where N should be aufficiently large to approximete an infinite series. The normalization for the form function f has been chosen such that $f_{0}=1$ for geometic reflection from a fixed-rigid sphera of the same siza. The salient feature of (29) is that $\left|g_{n}(\gamma=0)\right|<(k e)^{1 / 2}$ while the $\left|f_{n}\right|$ do not depend on ka. Consequently the backeattering fron leze fluld ophares will be doninated by contributions of the diffracted lory waves providad the
attenuation of sound is nerligible. As ka $\rightarrow \infty$, the slory contributions to (36) diverge; this divergence, a consequence of axial focusing, was also evident in the purely geomeric scattering; e.g., Eq. (6).

When ke is not large, (36) must be modified to include tame due to circumferential waves. Our tests of (36) had ka ≥ 100 and, as a consequeace of the largeness of kn, circumferential waves 15,19 and associated resomences 24 should experience aignificant radiation damoing. The backscatering from apheres due to circumferential waves will, nevertheless, be assisted by diffraction-limited axial focusing as is the case for electrongretic scattering. $1,3,12$ Circumferential wave concributions to the scattering from elantic objects are significant for ka as large as ${ }^{25,26} 200$; however, thelr significance to the scatering from large fluid objects with $\rho_{1}=\rho_{0}$ is not vell explored.

The conveational deseription of the scattering $10,13,24$ references the phase of the incident wave to the sphere's center C. It also uses distances and angles with respect to C so that r becomes (CQ) and γ becomes the polar angle of Q with C as origin. For the far-field scattering the form of (35) is retained with f replaced by $f_{C}(Y)=f(Y) \exp \left[i \zeta_{C}\right]$ where

$$
\begin{equation*}
\zeta_{z}=-\operatorname{ka}(1+\cos \gamma) \tag{37}
\end{equation*}
$$

is the negative of the phase shift for the distance ($C^{\prime} C 5$) in Fis. 4. The γ-dependent phase shift for the reflected ray becomes $\zeta_{0}+\zeta_{C}=-2 k \cos (\gamma / 2)$ which agrees with the conventional ${ }^{13}$ result; for the slory term it becomes $\varphi_{\mathrm{n}}+\zeta_{\mathrm{c}}=-k\left[2 a+\left(\alpha_{\mathrm{n}}-a\right)(1-\operatorname{com} \gamma)\right]$. (When $\alpha_{\mathrm{a}}=a$, the later reault follows from elemantary considerations.) since the modulus of the form function is not altered by the transormation from C^{\prime} to C, it is poasible to compare $|f|$ from (36) directiy with $|f|$ where f is the axact reault of the partial-wave theory. $10,18,24$
IV. Discuesion of Yodel and Comparison with Eract Scattering from Spheres with M <1

In this esction we compare Eq. (36) with the modulue of the exact form function $f_{\text {. }}$. The partial-wave serias for f was sumad by uning the cowputer algorith deacribed in the appendix of Bef. 18. The number of partialwaves included exceeded $k a+4.05$ (ka) ${ }^{1 / 3}$ to ensure adequate convergence. 18 This algoriths was ilsited to the case of equal inner and outer fluid densities $\left(\rho_{1}=p_{0}\right)$ and the $\left|f_{\text {e }}\right|$ prasented here and in Sec. ∇ are iinited to this case.

Tables I and II are representative of model results for form function moduli of axial and glory tarms and for the focal circle parameters. These tables should be exmaned in conjunction with Fig. 5-7. In each of the figures, the largeat if was chosen to be a power of 2 such that an additional doubling of the largest a in (36) resulted in a new curve (not shown) which differed imperceptibly from the dotted curve.

The velue of M in Fig. 5 was selected such that the sodulus of f_{4}, the strongeat of the onteted axial ray amplitudes, ia eapecialiy anil in comparison with $\left|s_{3}(Y=0)\right|$. The min requit of Fis. 5s is that (36), with K ≥ 16, gives an amlitude which is searly identical to the axact reault for the range of γ plotted. This coafirne, with vary large ka, our model reault for the aplitude and raletive phases of the f_{n} and s_{n}. Note also that $|f|$ for $\gamma \geq 0.2^{\circ}$ is doninated by the interfarmece of ξ_{3}, f_{0}, and f_{2}; for $\gamma<0.2^{\circ}$, howavar, glory terms with $n>3$ are algulicant. Figure 5b confirm that the principal fentures of $\left|f_{f}\right|$ are described by the model. Note that the dip in $\left|f_{\text {e }}\right|$ neer 12.5° in largely due to the deatructive interfarence of axial rays. Though we have previonely modeled individual contributions, 4-6,8 P1g. 5 is the first direct confirmetion that an of arial and lory wave can accout for sot of che backenttarine fron pherea wh M<1.

Figures 6 and 7 confite again that the principal features of $|f|$ are described by the model. In Fig. 6a and 7, discrepanciea between the modeled and exact acattering are evident, eapecially at $\gamma=0$. The causes of these discrepancies are not known. Equation (36) has also been tested by including a sua of glory terme with $n^{\prime}=1$ (which have $n \geq 5$) but the reaultigg ghift In $|f|$ is mach too mall to account for the discrepancies. Tbough the Individual $\left|f_{n}\right|$ with $n \geq 4$ are small, it is plausible thet the coherent sum of onitted axial terns could account for significant part of the diacrepancy. It is apparent that the onission of circunferential waves from the model is acceptable in Fig. 5 and $6 b$; this omission could account for som of the discrepancies evident in Fig. 7.

Some noteworthy features of the modeled scattering are: (1) the width of the backward peak of the scattering is roughly $\propto 1 /(k a)$ but the details of the structure are highiy dependent on ke eccordiag the interference of the terme in (36); (1i) there is a tendency for the width of the peak to increase with decreasing b_{3} and hence, decraasing M; (1i1) though the $\left|g_{n}(\gamma=0)\right| \propto(k a)^{1 / 2}$, $|f|$ is not $a(i x a)^{1 / 2}$ due to the ke dependence of the interfercace betwen the g_{n} and the ka-independent f_{n}; (iv) form function moduli can axcead (e.g. Fig. 6a) or be close to (0.g. Fig. 6b, 7b) unity which is the geomeric result for reflection from a fixed-rigid aphere of the sam aise. This enhancemat is a maifestation of diffraction-linited axial focusing of the backecaictering. It is poasible, homever, for the variou giory term to interfere co as to produce a ofnime in $|f|$ tor $\gamma=0$; this is evident in plots of $|f|$ and $|f|$ for $M=0.5$ with ka $=1000$ which are mot abown here.

Some aspecta of the convergence of the seriee in (36) sould be soted. as $n \rightarrow \omega_{0} b_{\mathrm{a}} \rightarrow M$ and $n_{\mathrm{a}} \rightarrow n_{\infty}$ where

$$
\begin{equation*}
\eta_{\infty}=2 \operatorname{ka}\left[\left(1-\cos \theta_{c}\right)+M\left(\pi-\theta_{c}\right)\right] \tag{38}
\end{equation*}
$$

This is the propagation phase shift a ray would have if it entered and exited from the aphere at the critical angle θ_{c} and it traveled a circunferential path with a phase velocity of c_{1}. Numerical tests suggest that it is sufficient to terninate the series $\operatorname{wan}^{27}\left(\eta_{\infty}-\eta_{n}\right) \leq 1$ radian. The onitted terma tead to cancel because of the alternating aign of $B\left(b_{n}\right)$ and the periodicity of the phase factor $\exp \left(i \mu_{n}\right)$ associated with the crosing of intermal foci. As n increases, $\left|g_{n}\right|$ decreases due to decreasing $\left|B\left(b_{n}\right)\right|$ and increasing q_{0}; see Tables I and II. When $\rho_{1} \not \rho_{0}$, the $B\left(b_{n}\right)$ are changed but the geomerle paramers are not.

It any be possible to arrive at (29) for g_{n} from the asymptotic evaluation (at large ka) of the exact partial-wave aun. Glory ray amplitudes should be describable by sadde-point contribution to a contour integral from the Watson transformation ${ }^{3}$ of the exact ann. Our use of the r.jysical-optics approxination in Sac. II and III, though less direct, aanifests the physical significance of the parametars $a_{n}, b_{n}, q_{n}, \varphi_{n}$, and μ_{n}. Furthermore, our approach bypasses the difficultias with the asymptotic method noted in Raf. 13 and it may be extended to the near field by replacing (19) by a Freanel tranaform. 19-21 It may be important that ρ_{i} and ρ_{0} be siallar in maguitude for otherwise rasouncies ${ }^{24}$ (as in a gas bubble) may be significant. The lower lifit on ka for which (36) is applicable is not known the physicaloptice method wae found to be useful, ${ }^{18}$ depeading on M, for the descripelon of sear critical-angle scattering when la ≥ 25.

The physical-optice model may be used to approxinate the acattering of tone burste whare I is obealned from the average frequency of the inconing buret. The cime delays of discrete echoes follows from the propagation phase shifte n_{n}, Q_{n}, and ζ_{n}. Shapes of discrete slory echoes will differ from
the incoming burst ${ }^{11}$ due to the k-independent phase shifts, the μ_{n} and $\pi / 4$ teras in (29); the scattered burst is related to the inconing algal through superposition of timeshifted inconing and Hilbert-tranaformad smals. 19

An extensive test of (36) could be carried out by repeating the conperisone in Figs. 5-7 with several saller ke. This would be inefficient to do at present aince the $\left|f_{a}\right|$ and $|f|$ curves are plotted using saparate computer syateme. Figures $5-7$ were made by overlaying and tracing the curves.
V. Spheres wich M>1 and Combined Rainbow and Glory Scattering

In this section we sumarise the results of exact calculations of backscatering from large fluid spheres with certain $M>1$ and we model the enhancement of backscatering due to rainbow rays. As described in Sec. I, the class of glory rays with $n^{\prime}=0$ and $n \geq 3$ are not liadted to $M \leq 1 ;$ they also exist for $1<M \leq M_{n}^{\prime}$ where the upper bounde are given by (4) and (5) for $n=3$ and 4. Fora functione for this clase of rays are given by (29) except when the ray has n internal chords and $M \simeq M_{n}^{\prime}$. There is an additional caveat to be noted: ${ }^{5}$ when $M_{n}^{\prime \prime}<M<M_{a}^{\prime}$ there is second class of rays having a incernal chords which also cross the axis once. Here $M_{n}^{\prime}=\operatorname{cac}[(n-1) \pi / 2 n]$ is the value of M for which (1) and (3) give $\theta=8=\pi / 2$. When $n=3$, the angle of incidence of this second backecattered ray is given by (17) with $\left(\Gamma_{3}+\pi\right) / 3$ replaced by $\pi+\left(\Gamma_{3} / 3\right)$.

The following corparison of ray properties for the two classes (ench with n chords), will facilitate a dancription of the unusual backecatterins properties of apheres having $M=M_{n}^{\prime}$. Let $\bar{b}_{n}=$ ain θ_{n} and $\bar{a}_{n}[f r o m$ Eq. (10)] denote the focal parameters for the new clase of ray while b_{a} and a_{n} denote chose for the original cype. With $M_{n}^{\prime \prime}<M<M_{a}^{\prime}$, the paranaters obay the
following inequalities: $b_{n}<\tilde{b}_{n}<a, \alpha_{n}>a$, and (for M not too close to $\left.M_{n}^{\prime}\right) \tilde{\alpha}_{n}>0$. As $M \rightarrow M_{n}$, Eqs. (1), (3), (10), and (17) lead to the results: $\tilde{b}_{n} \rightarrow b_{n}, n t \rightarrow 1, \alpha_{n} \rightarrow+\infty, \tilde{\alpha}_{n} \rightarrow-\infty$ and $q_{n} \rightarrow 1$. The divergence of the distances to the focal circles gives rise to the erroneous prediction by (31) that E_{n}, and hence g_{n} also diverge for each of these rays. The present physical-optics approxination fails because the glory wave ia no longer toroidal as required by (13). Numerical computations applied to the $n=3$ ray and the case $M=M_{3}^{\prime}$ give the following linit as $s \rightarrow b_{3}: \quad\left[n(s)-\eta_{3}\right] /\left(s-b_{3}\right)^{3} \rightarrow$ $\Lambda_{3} k^{-2}$ where the dimensionaless constant $\Lambda_{3} \simeq-26.6$. Hence the wavefront is cubic which is characteristic of a "rainbow" or "stationary" ray. Figure 8 shows this ray.

It is well known that scattering is enhanced ${ }^{1,7,13,23}$ in the vicinity of a rainbow ray. Rainbow rays have $d \gamma / d \theta=1-(d \beta / d \theta)=0$. This is equivalent to the condition $\left|d b_{i} / d \phi\right| \rightarrow \infty$ in (6). These conditions require that 5,13 $\sin ^{2} \theta=\left(n^{2}-x^{2}\right) /\left(p^{2}-1\right)$. We have verified ${ }^{5}$ that the glory rays with $M=M_{n}^{\prime}$ and $n=3$ and 4 satisfy this requirement; geometrical considerations suggest that it is also mat when $n>4$. Consequently when $M \simeq M_{n}^{\prime}$, the backscattering is doubly enhanced relative to that due to axial rays: once due to axial focuring and once due to the rainbow caustic.

We have developed a phyaical-optica approximation for $\boldsymbol{\varepsilon}_{\mathbf{n}}$ for the special case $M=M_{a}^{\prime}$. The principal change of the approximation described in Sec. IIIA is to replace (24) by

$$
\begin{equation*}
I=\int_{0}^{\infty} J_{0}(u) e^{1 \Lambda_{n} k\left(s-b_{n}\right)^{3} / a^{2}} d s=b_{n} J_{0}\left(u_{n}\right) I_{n} \tag{39}
\end{equation*}
$$

where the SPA has been used to remove from the integral, that part of the integrand which is assumed to be slowly varying near $s=b_{n}$. The remaining integral is

$$
\begin{equation*}
I_{n}=\int_{0}^{\infty} e^{i \Lambda_{n} k\left(s-b_{n}\right)^{3} / a^{2}} d s \tag{40}
\end{equation*}
$$

In the analysis which follows, we assume that $\Lambda_{n}<0$, which is the case for $n=3$. It can be shown that the general form of the final result, Eq. (42), does not depend on the sign of Λ_{n}. Changing the integration variable to $\Delta=\left(s-b_{n}\right)\left(-3 \Lambda_{n} a^{-2}\right)^{1 / 3}$ reduces I_{n} to an incomplate Airy integral in which the lower limit of integration is $s_{n}=-b_{n}\left(-3 \Lambda_{n} a^{-2}\right)^{1 / 3}$. As $k^{1 / 3} s_{n} \rightarrow-\infty$, the incomplete integral has an asymptotic approximation (Eq. (10) of Ref. 28] in terms of the complete Airy function Ai which gives

$$
\begin{equation*}
I_{n}=\frac{a}{\Lambda^{\prime} 1 / 3}\left[2 \pi A i(0)+1\left(\frac{a}{b_{n}}\right)^{2} \frac{e^{-1\left(\Lambda^{\prime} / 3\right)\left(b_{n} / a\right)^{3}}}{\Lambda^{\prime 2 / 3}}\right] \tag{41}
\end{equation*}
$$

where $A 1(0) \simeq 0.35503$ and $\Lambda^{\prime}=-3 k \Lambda_{n}$. These approximations give the following normalized form function in place of g_{n} when $M=M_{n}^{\prime}$

$$
\begin{gather*}
g_{n n} \simeq-1\left(k_{n}\right)^{2 / 3} E_{n_{n}} B\left(b_{n}\right) J_{0}\left(u_{n}\right) e^{i\left[n_{n}+\mu_{n}\right]} \tag{42}\\
E_{r n}=4 \pi A i(0) b_{n} /\left[a\left(-3 \Lambda_{n}\right)^{1 / 3}\right]
\end{gather*}
$$

where we have used the geometric result that $q_{n} \rightarrow 1$ and the second term in (41) has been omitted because of its small magnitude in cases to be considered here. It is to be expected that $g_{h 口_{0}} \times(\mathrm{ka})^{2 / 3}$ because the enhancement of the diffracted amplitude of a nonbackscattered rainbow $1,3,23$ is α (ka) ${ }^{1 / 6}$.

The results of this model when $n=3$ are compared with $|f|$ in Fig. 9. Away from $Y=0$, a complete approximation for $g_{\text {rn }}$ may contain a γ-dapendent phase shift ainilar to the $\boldsymbol{\varphi}_{\mathrm{a}}$ factor in g_{a}. Since this shift has not been determined, our comparison is limited to comparing $\left|8_{\mathrm{r} 3}\right|$ with $\left|f_{e}\right|$ in casea where $\left|f_{e}\right| \gg\left|f_{2}\right|$ (which is now the leading axial ray amplitude,
see Table III). Figure 9 damonstrates that (42) describes the main features of the scattering when ka $=1000$ but that (42) is relatively incomplete when $k a=100$. This conclusion is also supported from our computations of $\left|f_{e}(Y=0)\right|$ for several ka within ± 10 of 1000 and 100 . In each case $\left|f_{e}\right|$ varied aperiodically with ka. Near ka $=1000$ the extrema were typically between 17.4 and 20.2 ; near $k a=100$, they were typically between 3.8 and 6.8 . These are to be compared with $\left|g_{\text {r3 }}\right|$ of 18.9 and 4.1 for ka of 1000 and 100 , respectively. That there should be fignificant corrections to the physicaloptics approximation when k ka 100 is to be expected from proxinity of $\nu_{3} \simeq 55.7^{\circ}$ to the internal critical angle $\nu_{c}=\arcsin \left(M_{3}^{1-1}\right) \simeq 57.9^{\circ}$. The use of planesurface reflection coefficients to compute $B\left(b_{3}\right)$ fails as $v \rightarrow V_{c}$ because tunneling, surface waves, and resonances make curvature an iraportant consideration. ${ }^{1,3}$

Table III includes exact results with other values of M. For each case $\left|f_{e}\right|$ was computed for a range of γ sufficient to include several of the backward diffraction maxima; its peak occurred at $\gamma=0$ in each case. The relative magnirudes are consistent with the considerations given at the beginaing of this section. The rainbow condition is not met when $M=1.1$ and the backscattering is weaker than for M_{3}^{\prime}. The backscattering is doubly enhanced when $M=M_{4}^{\prime}$. It is small when $M=1.25$ with ka $=1000$ because there is no glory ray having only a few chords (irrespective of n ') and circumferential waves axperience aignificant radiation damping.

The combined rainbow-glory enhancement of backscattering is not limited to the precise condition $M=M_{n}^{\prime}$. Due to diffraction, ${ }^{3}$ a rainbow will influance the backscattering when $d \gamma / d \theta=0$ in the vicinity of $\gamma=0$. Consequently, backscattering will be enhanced for M in some range near M_{n}^{\prime} which narrows for increasing ka. There are other cases of glory enhanced backscattering
outside of the range $0<M \leq M_{3}^{\prime}$ considered in this paper. The most useful of these may be that due to the $a=2$ glory ray for $\sqrt{2}<M<2$.

Our Mie theoretic computations ${ }^{29}$ of the backscattering of light from dielectric spheres also demonstrate a combined rainbow-glory enhancement for optical refractive indices of M_{3}^{\prime} and M_{4}^{\prime}.
VI. Applications to Underwater Acoustics

The models developed in Sec. III and V for glory and rainbow-enhanced glory backscattering are more general than the case of a purely fluid aphere provided focal-circle parameters, attenuation, and coefficients of reflection and transmission are properly modeled. For example, Eq. (29) removes the $\gamma \rightarrow 0$ divergence of amplitudes backscattered from solid spheres present in the geometric model of Ref. 9; subtleties of this application will be described elsewhere. ${ }^{11}$ Spheres have been used as calibration targets for sonar systems ${ }^{30-32}$ because of their symmetry; their response is asserted to be more uniform (in regard to variations in the direction of the incoming wave) than the triplane reflector. ${ }^{31,32}$ In this section we comment on the design of practical spheres which could be made to exhibit glory enhanced backscattering.

Liquid spheres with ka ≥ 100 are too large for surface tension to ensure sphericity. For example, with $c_{0}=1.53 \mathrm{~m} / \mathrm{s}$ (sea water) and $\omega / 2 \pi=100 \mathrm{kHz}$, the radius $\simeq 24 \mathrm{~cm}$ when $\mathrm{ka}=100$. The target liquid may be contained in a thin elastic shell. ${ }^{31,32}$ For ease of tranaport, the shell's interior may be left unfilled until aubmersion. ${ }^{31}$ In the discusaion which follows, shear and longitudinal sound velocities of the bulk shell material will be denoted by c_{s} and c_{ℓ} and the shell's thicknese will be denoted by $h ; \rho_{1}, a$, and c_{1} are the density, radius, and sound velocities of the inaer 11quid and $M=c_{0} / c_{1}$.

For a large aphere, glory rays illustrated in Fig. 1 and 8 exist in the $h \ll$ a limit. The main difficulty in using Eq. (29) and (42) to estante the acattering is in the evaluation of $B\left(b_{n}\right)$ for the trananission chrough and reflection from the ahell. Proper choice of h could simplify the analysis by tacilitating the use of the thin-plate approxination for the tranmiasion and reflection coefficients of flat plates. 17,19 For larger h, the analysis is couplicated since both c_{ℓ} and c_{s} typically exceed c_{0} and c_{1}. Furthermore, Lemb modes ${ }^{24}$ are launched in the shell at certain angles of incidence. ${ }^{26}$ A plausible choice to facilitate transaission into the sphere's interior is to select $c_{\text {e }}$ somewhet maller than c_{0} and c_{1} (For example, Lexan is atrong meterial having $c_{g} \simeq 910 \mathrm{~m} / \mathrm{s}$) In the case of rainbow enhanced glory, Fig. 8, the calculation of $\mathbf{s}\left(\mathrm{b}_{3}\right)$ may be eapecially complicated due to the largeness of θ_{3} and ν_{3}.

A computational demonstration of glory-ray enhanced backscattering may be best achieved by computing the exact acattering from thin, liquid-filled spherical shells by extending the computations in Ref. 33 to ka 2100 and certain $M \neq 1$. The calculations thould include a range of Y. The exact calculation would be most interesting in the case $M=M_{3}^{\prime}$ due to the (ka) ${ }^{2 / 3}$ enhancement factor in (42). The poasibilicy of enhanced backscattering from liquid-filled shells with this M has been previously overlooked. (For example, if it is present, the interpolated target atrength veraue M curve in Fig. 5 of Ref. 31 contains serious errors.) Circumferential waves, which are known to influence backacattering from large cylinderical shells, ${ }^{26}$ will give rise to axially focused backecatering from spherical shells. The relative importance of ray-optical and circunferantial returne may be evaluated by displaying the scatering of a short tone burst as in Ref. 33. Certain inhomogencous apheras cxhibit gloty raye and should have enhanced backacattering. 34

Acknowledgments

We are grateful to K. L. William and S. P. Love for computational assistance and to an anonymous referes of our earlier paper (lef. 4) for consants concerning the calculation of α_{n}. This work was aupported by the Office of Naval Rasearch. P. L. Marston is an Alfred P. Sloan Research Fellow.

Appendix A: Curvature and Spreading of Glory Wavefronts

The wavefront is described by a curve of constant propagation phase delay η. Its curvature at the exit planc is $1 / \alpha=k^{-1}\left(d^{2} n / d s^{2}\right) /\left[1+\left(k^{-1} d n / d s\right)^{2}\right]^{3 / 2}$ where st is distance from $C^{\prime} ; \eta$ and are given by (7) through (9) as functions of θ, B, and v, but could, in principle, be written as functions of θ only, by aaking use of (1) and (3). We then have

$$
\begin{equation*}
\frac{1}{\alpha}=\frac{(d s / d \theta)\left(d^{2} \eta / d \theta^{2}\right)-(d \eta / d \theta)\left(d^{2} s / d \theta^{2}\right)}{k\left[(d s / d \theta)^{2}+\left(k^{-1} d n / d \theta\right)^{2}\right]^{3 / 2}} \tag{A1}
\end{equation*}
$$

where the differential operator is

$$
\begin{align*}
\frac{d}{d \theta} & =\frac{\partial}{\partial \theta}+\left(\frac{d v}{d \theta}\right) \frac{\partial}{\partial v}+\left(\frac{\partial B}{\partial v} \frac{d v}{d \theta}+\frac{\partial B}{\partial \theta}\right) \frac{\partial}{\partial B} \tag{A2}\\
& =\partial / \partial \theta+\tau \partial / \partial v+(2 a \tau-1) \partial / \partial \beta \tag{A3}
\end{align*}
$$

where (A3) uses (1) and (3) and the definition $T=d v / d \theta=t a n v / t a n \theta$. The first derivatives in (Al) are
$\left(k \cos \frac{d n}{d \theta}=2(1-n \tau)(1-\cos \beta) \sec (\theta-\beta) \tan (\theta-\beta)+(1-2 n \tau)(\sin \theta-\sin \beta \sec (\theta-\beta))\right.$.
$\left.e^{-1} \frac{d s}{d \theta}=2(n \tau-1)(1-\cos \beta) \sec ^{2}(\theta-\beta)+Q n T-1\right)(\cos \beta-\sin \beta \tan (\theta-\beta))$.

The second derivatives are somewhat longer, but straightforward to celculate.

The interesting cases are the glory rays, occurring when $B=\theta$; this condition will be denoted by a subscript a for the glory ray with a chords. Since $(d n / d \theta)_{n}=0$, (A1) becones $k / \alpha_{n}=\left[\left(d^{2} n / d^{2} \theta\right) /(d s / d \theta)^{2}\right]_{n}$. The derivacivas at the glory condition are $(d s / d \theta)_{n}=a\left[2(n T-1)+\cos \theta_{n}\right]$ and $\left(d^{2} n / d \theta^{2}\right)_{n}=$ $2 k(n \tau-1)(d s / d \theta)_{n}$. Hence the radius of curvature of the vavefront is given by (10b).

From (9) and (11), the spread of the wavefront may be written as

$$
\begin{align*}
& q_{a}=\lim _{\theta, \beta \rightarrow \theta_{n}} \frac{\sin \theta_{n}-[\sin \beta-(1-\cos \beta) \tan (\theta-B)]}{\sin \theta_{n}-\sin \theta}, \tag{A6}\\
& =\lim _{\theta, \beta \rightarrow \theta_{n}} \frac{(d / d \theta)\left[\sin \theta_{n}-\sin \beta+(1-\cos \beta) \tan (\theta-B)\right]}{(d / d \theta)\left[\sin \theta_{n}-\sin \theta\right]} \tag{A7}
\end{align*}
$$

where (A7) follows from L'Hospital's rule. Application of (A3) gives an expresaion which reduces to (12).

We have verified ($10 b$), for several valuas of $M \neq M_{a}^{\prime}$, with direct numerical computations damonstrating that as $s \rightarrow b_{n},\left[n(s)-\eta_{n}\right] /\left(s-b_{n}\right)^{2} \rightarrow$ $k\left(2 \alpha_{n}\right)^{-1}$. Furthermore, determinations of focal circle locations by direct ray tracing (from large versions of Fig. 1) are in agreement with (10b). Our result for q_{n} hat also been verified by numerical eveluation of the limit in (11). These teate were merited because quantities equivalent to a_{n} and q_{n} are given by incorrect expressions in Appendix II of Ref. 23. Those expressione were erroncous due to incorrect formulation of total derivacivea; they happen to give the correct ratio $\left|\alpha_{n}\right| / q_{n}$.

Appendix B: Angle-Dependent Phase Shift Via the Method of Statlonary Phase
The purpose of this appendix is to demonstrate that a modified SPA of (24) yields a phase shift equivaleat to (30) and to give iaeisht into the cause
of that shift. The derivation which follows is linited to cases where $u_{n} \gg 1$. In (24), express $J_{0}(u)$ using Hankel functions of the first and second kinds. ${ }^{22} J_{0}(u)=\frac{1}{2}\left[\mathrm{~B}_{0}^{(1)}(u)+H_{0}^{(2)}(u)\right]$ and define $z_{j}(u)=H_{0}^{(j)}(u) \exp (i u)$ with $j=1$ and 2 (here and below) for the upper and lower sign, respectively. Then (24) is a an of integrals of the form

$$
\begin{equation*}
I_{j}=\frac{1}{2} \int_{0}^{\infty} s z_{j} \exp \left[1 \cos _{2}\left(\varepsilon-b_{n}\right)^{2} a_{n}^{-1} \pm 1 u\right] d s \tag{B1}
\end{equation*}
$$

where the stationary phase points of the complex exponentials are at e_{j} with $s_{j}=b_{n} \mp \alpha_{n} r$. From the asymptotic foras 22 of the $H_{0}^{(j)}(u)$ as $u \rightarrow \infty$, it is evident that $s z_{j}$ is a slowly varying function of s near $s=s_{j}$ prom vided $u_{n} \gg 1$ and $\left|\alpha_{n}\right| \Gamma \ll b_{n}$. Consequentiy, in the SPA of (B1), it is appropriate to treat the complex exponential, which differs frow that of (24), as the function which oscillates rapidly when $\neq g_{j}$. Approximating I_{1} and I_{2} by this procedure gives the following sum:

$$
\begin{equation*}
I \approx b_{n}\left(2 \pi\left|\alpha_{n}\right| / k\right)^{1 / 2} J_{0}\left(u_{n}\right) e^{i\left(\varphi_{n}^{\prime}+\pi / 4\right)} \tag{B2}
\end{equation*}
$$

where terme of order $\alpha_{n}\left[/ b_{n}\right.$ relative to unity heve been naglected and $\varphi_{n}^{\prime}=-\frac{1}{2} k \alpha_{n} \Gamma^{2}$. Replacing (25) by (B2) leade directly to (29) with φ_{n} replaced by φ_{n}^{\prime}. By inspection, when $\Gamma \ll 1, \varphi_{n}$ and φ_{n}^{\prime} are identicil up to teras ar ${ }^{4}$. They give nearly identical resulte for the conditions under which (29) was tested in Sec. IV. The derivation of φ_{n}^{\prime}, however, asumes that both $u_{n} \gg 1$ and $\left|a_{n}\right| \Gamma \ll b_{n}$ and bence that $\left(k b_{n}\right)^{-1} \ll \Gamma \ll b_{n} /\left|a_{n}\right|$.

The shift of the acacionary phace pointe by $\pm \alpha_{n} r$ hat the followiag phyaical interpratation. Consider the locations of the effactive areat (or Freanel zones ${ }^{2}$) of the toroidal mavafront which contribute to the scatterins to Q. Whan $\Gamma \notin 0$, thase sones are centerad on points with $\psi=\xi$ and $\psi=\pi+\xi$ where 5 (Fig. 3) is the azimuth of Q. The centers of these sonas are shifted
away from b_{n} by $\pm a_{n} \Gamma$. This shift of the effective areas of the coroidal wave leads to the phase ahift φ_{n}.

Appendix C: Amplitude of the One-Bounce Axial Ray
The purpose of this appendix is to describe an approximation for
$f_{2}(Y)$. The geometry of the associated ray is shown in Fig. C-1. Lat $\boldsymbol{\zeta}_{2}$ denote the phase difference between the $n=2 \mathrm{ray}$ and the propagation delay from C^{\prime} to Q. Inspection of Fig. $C-1$ givea $\boldsymbol{L}_{2}=k\left[(12)+M(234)+(45)-\left(C^{\prime} 6\right)\right]=$ $2 \mathrm{ka}[(1-\cos \theta)+2 \mathrm{M} \cos \mathrm{V}]$ - $\mathrm{ka}(1-\cos \gamma)$. We express \boldsymbol{L}_{2} as a function of γ by using an approximation for θ. As $Y \rightarrow 0$, Eq. (1) becones $\theta=M$ provided $|M-1|$ is not large. Elininating V from the exact expreasion $Y=2(2 v-\theta)$ gives

$$
\begin{equation*}
\theta \approx E Y /(4-2 Y i) \tag{Cl}
\end{equation*}
$$

From this estime of θ, the complete Eq. (1) is used to obtain V and $\boldsymbol{\zeta}_{2}$ is found via the expression given above. This approximation for ζ_{2} was conpared with the exact result (which may be computed as a function of θ). The error is negligible for the range of $k a, r$, and M of the computaticas in Sec. IV. The approximation for f_{2} is

$$
\begin{equation*}
f_{2}=R(\theta)\left[1-R(\theta)^{2}\right][M /(2-M)] e^{1(\zeta 2-\pi)} \tag{C2}
\end{equation*}
$$

where the $-\pi$ phase tern reaults frow the croseing of two foci. The factor $M /(2-M)$ te the divergence factor ${ }^{1,13,14}$ appropriate for $Y=0$. Teats indicate that our approximation of this factor by a constant introduces a negligible error in Fig. 5-7. The reflection coefficient was computed via (15) and (C1).

Beferences

1. H. C. Van de Hulat, Lioht Scatertion by Sanll Particles (Wiley, Hew York, 1957).
2. B. C. Bryant and N. Jaraie, "The glory," Sci. Am. 231, 60 (July 1974).
3. H. M. Muscenzveig, "Complex angular momentum theory of the rainbow and the glory," J. Opt. Soc. An. 69, 1068-1079 (1979).
4. D. S. Langley and P. L. Marston, "Glory in optical backacattering from air bubbles," Phys. Rev. Lett. 47, 913-916 (1981).
5. P. L. Marston and D. S. Langley, "Glory in backscattering: Mie and model predictions for bubbles and conditions on refractive index in drops," J. Opt. Soc. An. 72, 456-459 (1982); In the final section, the equation $p t=-1$ should be $p t=1$.
6. P. L. Marston, D. S. Langley, and D. L. Kingsbury, "Light scactaring by bubbles in liquids: Mie theory, physical-optics approxinations, and experimenta," Appl. Sci. Res. 38, 373-383 (1982); P. L. Marston, "Light scattering by bubbles in liquids: comments and application of resulte to circularly polarized incident light," Appl. Sci. Res. (at prese).
7. K. H. Ford and J. A. Wheeler, "Semiclasaical description of scattering," Ann. Phys. (M.I.) I, 259-286 (1959).
8. P. L. Marston and L. Flax, "Glory coneribution to the backscatter from large elastic spheres," J. Acoust. Soc. An. Suppl. 68, 881 (1980).
9. G. J. Quantin, M. dabilly, and A. Bayman, "Comparison of backecattering of short pulses by solid sphares and cylinders at large ka," J. Acoust. Soc. A1. 70, 870-878 (1981).
10. V. C. Andermon, "Sound Scattering from a Fludd Sphere," J. Acoust. Soc. An. 22, 426-431 (1950).
11. P. L. Marston, K. L. Willians, and T. J. B. Ranson, "Observation of the acoustic glory: High-frequency backscatering from an elastic sphere," J. Acoust. Soc. An. (to be subnitted, also to be presented at the 104th meting of the Acount. Soc. Ar., Nov. 19a2).
12. H. C. Van de Hulst, "A theory of the anti-coronea," J. Opt. Soc. An. 37, 16-22 (1947).
13. S. I. Bubinow, "Scattering from a penetrable aphere at short wavelengthe," Ann. Phys. (N.Y.) 14, 305-332 (1961).
14. J. J. Stephens, P. S. Ray, and T. W. Kiteterna, "Far-field impulea response verification of selected high-frequency optics backecattering analogs," Appl. Opt. 14, 2169-2176 (1975).
15. D. Ludwig, "Diffraction by a circular cavity," J. Math. Phys. 11, 1617-1630 (1970).
16. D. Brill and R. tberall, "Tranamited Waves in the Diffraction of Sound from Liquid Cylinders," J. Acoust. Soc. Am. 47, 1467-1469 (1970).
17. L. M. Brekhovskikh, Waves in Layered Madia, 2nd ed. (Acadenic, Bew York, 1980).
18. P. L. Marston and D. L. Kingabury, "Acountic scattering fros fluid spheres: Diffraction and interference near the critical scattering angle," J. Acoust. Soc. An. 70, 1488-1495 (1981).
19. A. D. Pierca, Acountiche An Introduction to its Phyaical Principlea and Applications (McGraw Hill, Kew York, 1981).
20. A. Papoulis, Syaten and Tranforen with Applications in Optics (McGraw Mill, Kew York, 1968).
21. W. T. Cathey Optical Informetion Proceasing and Boloriaphy (wiley, Bew York, 1974); J. A. Batcliffe, "Some applicatione of diffraction theory and cheir application to che ionosphere," Rap. Prog. Phys. 19, 188-267 (1956).
22. L. B. Felsen and X. Marcuvits, Radiation and Scatterine of Weves (Prentice-Hall, New York, 1973).
23. R. G. Rouyoumjian, L. Peters, Jr., and D. T. Thomas, "A modified geomatrical optice method for scattering by dielectric bodies," IREE Trans. Antennas Propas. AP-11, 690-703 (1963).
24. L. Flax, G. C. Geunaurd, and H. Überall, "Theory of Resonence Scattering," In Phyaical Acoustics adited by W. P. Meson and R. N. Thurston (Acadeaic, Hew York, 1981), Vol. 15, pp. 191-294.
25. J. W. Dickey and H. Überall, "Acoustic high-frequency scattering by clastic cylinders," J. Acoust. Soc. Am. 66, 275-283 (1979).
26. L. R. Dragonette, "Evaluation of the relacive inportance of circumferential or creeping waves in the acoustic scattering from rigid and elastic solid cylinders and from cylindrical ahells," NRL Raport 8216 (Naval Reaearch Laboratory, Weshiagton, D.C., 1978).
27. This coadition appears to easure that the convergence conditions stated carlier in Sec. IV are mat but it may be overly stringent, eapecially when ke = 1000. With ka $=100$, conaider the convergence illustrated in Figs, 5-7 and the results $n_{\infty}-\eta_{16}=0.9,1.1,1.2$, and 1.2 for $\mathrm{K}=0.94,0.8,0.6$, and 0.5 respectively; notice that for $M=0.94, N=8$ was sufficient even though $\eta_{\infty}-\eta_{8}=3.7$.
28. L. Levey and L. B. Felsen, "On incomplete Airy functions and their application to diffraction probleme," Radio Sc1. 4, 959-969 (1969).
29. P. L. Maraton and D. S. Leagley, "Stroag backacattering and dapolarization from bubblee and glase apheres in vatar (abstract," J. Opt. Soc. Am. 72, yox (1982) at preas.
30. G. E. Duvall, " 24 kc echoes from a 3 -foot sphere," DCDNR Report IR A32 (Daiversity of Califorale, San Diego, 1944).
31. R. H. Wallace, B. V. Billery, G. R. Barnard, B. M. Marke, and C. M. Mckinney, "Experimental investigation of several passive sonar targets," J. Acoust. Soc. Am. 57. 862-869 (1975).
32. D. L. Folds, "Target strength of focussed liquid-filled spherical reflectort," J. Acount. Soc. An. 49, 1596-1599 (1971).
33. R. Hickilng, "Analyais of echoes from a hollow metallic sphere in water," J. Acoust. Soc. Am. 36, 1124-1137 (1964); K. J. Diercke and R. Bickling, "Echoes from hollow aluainum spheres in water," ibid. 41, 380-393 (1967).
34. C. L. Brockman and N. G. Alexopoulos, "Geometrical optics of inhomogeneous particles: glory ray and rainbow revisited," Appl. Opt. 16, 166-174 (1977).
TABLE I. Model results for form function moduli ${ }^{\text {a }}$ when $\rho_{i}=\rho_{0}$.

M	ka	$n=3$	$\left\|\mathrm{g}_{\mathrm{n}}(\gamma=0)\right\|$			$\left\|f_{n}(r-0)\right\|$		
			4	8	16	0	2	4
0.94	100	$4.0 \mathrm{E-2}$	$1.0 \mathrm{E-2}$	7.1 E-4	1.1 E-4	3.1 E-2	2.7 8-2	9.1 E-6
0.94	1000	1.3 E-1	$3.2 \mathrm{E}-2$	$2.2 \mathrm{E}-3$	3.6 E-4	3.1 E-2	2.7 E-2	9.1 E-6
0.60	100	$5.2 \mathrm{E}-1$	3.1 E-1	$7.4 \mathrm{E-2}$	$1.8 \mathrm{E-2}$	2.5 E-1	1.0 E-1	2.6 E-3
0.60	1000	1.65	$9.7 \mathrm{E}-1$	2.3 E-1	$5.7 \mathrm{E}-2$	2.5 E-1	$1.0 \mathrm{E}-1$	2.6 E-3

$\mathbf{a}_{\mathrm{E}-1}$ and $\mathrm{E}-2$ are factors of 10^{-1} and 10^{-2} reapectively, etc.

TABLE II. Focal circle parameters for $M=0.94$ (upper group) and 0.6 (lower group). $B\left(b_{n}\right)$ is shown for the case $\rho_{1}=\rho_{0}$.

\mathbf{n}	$\theta_{n}(\mathrm{deg})$	b_{n} / a	α_{n} / a	q_{n}	E_{n}	$B\left(b_{n}\right)$
3	40.24	0.646	1.162	7.2	1.30	$3.0 \mathrm{E}-3$
4	53.08	0.800	1.078	13.9	1.12	$-9.1 \mathrm{E}-4$
8	65.62	0.911	1.016	65.1	0.57	$-1.2 \mathrm{E}-4$
16	68.91	0.933	1.004	277.1	0.28	$-4.0 \mathrm{E}-5$
3	21.20	0.362	1.096	11.4	0.56	$9.3 \mathrm{E}-2$
4	28.24	0.473	1.052	20.4	0.54	$-5.7 \mathrm{E}-2$
8	34.76	0.570	1.012	84.2	0.31	$-2.3 \mathrm{E}-2$
16	36.33	0.593	1.003	340.3	0.16	$-1.1 \mathrm{E}-2$

TABLE III. Exact and axial form function woduli at $\gamma=0$ for selected $M>1$ when $\rho_{i}=\rho_{0}$.

M	$\left\|f_{e}(k a=100)\right\|$	$\left\|f_{e}(k a=1000)\right\|$	$\left\|f_{0}\right\|$	$\left\|f_{2}\right\|$
M_{4}^{\prime}	2.57	7.12	0.042	0.051
1.10	1.97	1.99	0.048	0.058
M_{3}^{\prime}	6.50	19.60	0.083	0.118
1.25	1.39	0.26	0.111	0.183

Figure Captions

Fig. 1. Backscattered rays from a sphere with $M=0.6$. The center of the aphere is C and the figure may be rotated about the CC' axis.

Fig. 2. Path of a ray (dashed line) as it leaves the sphere.

Fig. 3. Angles and distances needed to describe a point (x^{\prime}, y^{\prime}) in the exit plane and the observation point Q. The z axis is the extension (toward the source) of the CC^{\prime} axis.

Fis. 4. Distances needed to describe the phase of the reflected wave.

Fig. 5. Comparison of exact and model form functions of spheres with $M=0.94$. The curves labeled N give $|f|$ from Eq. (36) evaluated with the indicated N. In (a), the model reault (dotted curve) is nearly identical to the exact result (solid curve).

Fig. 6. Comparison as in Fig. 5 but with $M=0.6$.

Fig. 7. Comparisons as in Fig. 5 but for (a) $M=0.8$, and (b) $M=0.5$, with ka $=100$ in both cases.

Fig. 8. Combined rainbow-glory ray for a sphere with $M=M_{3}^{\prime}$ of Eq. (4). The distance scales in the sketch of the cubic wavefront have been enlarged for enhanced visibility.

Pig. 9. Comparison of exact (solid curves) and modeled (dashed curves) form functions of epheres with ke $=1000$ (upper group) and 100 (lower group). The model results are from Eq. (42) which describes only the rainbow-enhanced glory ray. The ray is the $n=3$ ray in Fig. 8 which has $b_{3}=0.9752$ a.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

(a)	$\mathrm{M}=0.6$	$k \mathrm{k}=1000$
	$\begin{aligned} & \text { If } \\ & -\cdots- \end{aligned} f_{1}$	
	-.-.. N	4
	----N	
	$\cdots \cdots \cdots$	

Fig. 8
Pig. 9

118. C-1. Diatences and anglea needed to deacribe the scatteriag due to the elagle bounce "axial ray." θ is the ray's angle of incidence. The refraction angle v is illustrated for the case $M=0.6$.

Submitted to the 104 th Meeting of the Acoustical Society of America 9-12 November 1982

Observation of the acoustic glory: Scattering from an elastic sphere in near backward directions. Philip L. Marston, Timothy J. B. Hanson, ${ }^{\text {a }}$ and Kevin L. Williams (Dept. of Physics, Washington State Iniversity, Pullman, WA 99164)

We have measured the scattering for small angles γ (relative to the backward axis) from a fused silica sphere of radius $a \approx 52 \mathrm{~mm}$. Tone bursts in water corresponding to $k a \approx 450$ were incident on the sphere; their short duration permitted glory and axial returns to be separated in time. The γ for the probe hydrophone was scanned to test a model [P. L. Marston and L. Flax, J. Acoust. Soc. Am. Suppl. 68, S81 (1980)] of diffractive effects on backward axial focusing. Observations tend to support the model as adapted to fused silica: (1) from the arrival time, the strongest echo is evidently due to the 4 -chord shear glory ray; (2) its amplitude is $\propto J_{0}$ (kbsiny) where b is the calculated glory circle radius; (3) its amplitude at $\gamma=0$, though slightly smaller than predicted, exceeds that of the first axial reflection; and (4) the times, amplitudes, and Y dependences of other echos are correlated to predictions. The first null of the strongest echo occurs at $\gamma \simeq 1^{\circ}$. Consequently, we demonstrate for the first time the diffraction limited backward focusing of echos from a sphere. [Work supported by ONR. Marston is an Alfred P. Sloan Research Fellow]
a) Present address: Defense Systems Division, Honeywell Inc., Mopkins, MN 55343

Technical Committee: Physical Acoustics
Subject Classification numbers: 43.20.Fn, 43.20.Px, 43.35.2c
Telephone Number: (509) 335-5343 (P. L. Marston)

1 copy
3 copies
1 copy
copy

February loni

Dr. H. Uberall
Departient of Physics
Catholic Universfty
Washiner.

Maval Detearch Laborator
Weathington, D.C. 20375

1 copy
1 copy
I copy
I copy
copy
copy

