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INTRODUCTION

The backscsttering of light from droplets of water In clouds is known

to be enhanced due to a weak focusing in the backward axial direction. 1  ThIre

axial focusing gives rise to the optical effect known as the "glory" (Ref. 1-6

and references cited therein). Axial focusing is also known to be present In

the classical and quantum mechanical scattering of particles where the enhance-

went of the differential cross section Is known as the7 "glory effect." MSni-

festations of this type of focusing In acoustics, though previously noted,
8'9

are relatively unexplored. In the present paper we erive a physical-optics

approximation which describes ^the effects of diffraction on the axial focusing

of glory rays in fluid spheres. We verify our approximation by comparing it

with numerical computations of the partial-wave sun for the exact scattering

from inviscid fluid spheres (formulated e.g. in Ref. 10). It is also shown

that the backscattering can be further enhanced by choosing the sound velocity

ratio such that glory and rainbow rays coincide.

The paths of rays through a sphere are determined by the acoustic

refractive Index M - c /c I where c0  and c I are the sound velocities of

the outer and Inner fluids, respectively. The incident wave is taken to be a

plane wave; it is umodulated and has a wavelength X In the outer fluid. A

physical-optics approximation for the diffraction limited axial focusing is

derived here; the derivation assumes that X << the sphere's radius a.

Comparisons with the exact partial-wave sum, made for several X < 1 with

ka - 100 and 1000 (where k - 2T/Y Is the wavenumber of the Incident wave),

demonstrate the legitimacy of the method. Rays which reflect from the front and

rear poles of the sphere (the "axl rays") experience no focusing; Consequently

their amplitudes are smaller than those of the focused glory rays when ka is large.
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A second paper extends the present results to certain cases of glory

scattering of ultrasonic pulses by an elastic sphere in water; It aso

describes direct observations of diffraction liited backward axial focusInS.

When ray@ Inside an elastic sphere are not mixed In their type (i.e.. they are

all shear or all longitudinal rays), the paths are the oms as those for a

fluid sphere with cI taken to be either the shear or the longitudina wave

velocities. Consequently, the paths in fluid spheres with < 1 most closely

resemble those for sost elastic spheres. The emphasis of the present paper is on

fluid spheres with N < 1; however, In Sec. V we model scattering from fluid spheres

with K > 1 and present computations of the exact scattering.

The present description of the acoustic glory may also be

extended to the case of a spherical elastic shell filled wIth a liquid. Targets

of this type are asserted to be useful as navigational aids and for the calibration

of sonar devices. as described in Sec. V, backscattaring from a fluid sphere

should be quite large when M a 1.180. This emhancement of the scattering,

which is due to a coincidence of rainbow end glory rays, should also be

applizable to the design of liquid-filled shells with unusually large target

strengths. Some applications to shells are noted in Sec. Vt.

Our derivation of the scattering amplitude for backward and near back-

word directions will parallel our previous treatments of the beckucattering of

light from spherical bubbles 4- 6 in liquids and other dielectric spheres. 5 To

facilitate a comparison with the exact scattering, we derive, for the first

time, the dependence of the phase of the glory scattering on the scattering

eagle.

. lay Acoustics and Axial Iousin8

Ia this section we review C-e elementary ray acoustics of a sphere and

the gemotric effect which gives rise to axial focusing. Ray paths are
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described by Snell's law:

sInO - N sInv (1)

where e Is the angle of Incidence at the sphere's surface and v Is the

angle of refraction. The nmber of chords inside the sphere for a given ray

will be denoted by n. Several rays which are reflected and refracted In the

near backward direction are shown In Fig. 1. The deviation y In the direction

of a ray from the backward axis (the CC' axis) is given by

Y " 0-B, (2)

B 2nv- 0+ (2- )1, n> 1 (3)

where B is the internal angle (relative to the CC' ails) of the point at

which a ray leaves the sphere. [Equetiou (2) may be derived'by noting that

the direction shifts due to the Initial and final refractions have the same

magnitude. See Fig. 2 .1 The roots of y - 0 having 0 < 0 < P., will be

denoted by On  and the associated rays will be referred to as glory rays. Hare

e a w/2 when N > 1 and 04z -8 0 hen X < 1 where Or -arcsin(M) to

the critical angle of Incidence. Exact backscatterIng also occurs for rays

with 0 - 0 and y - (n-2)w, na- 0,2,4 . . .; these rays will be referred to

as Mxial rays. Certain axa and glory rays are shown as the solid lines in

pit. 1

The following Is a summary of conditions on N and n for glory

rays to exist. It U e nown 1 2 that n - 2 glory rays eiast for

vT < N < 2. The mphqasi of the present paper will be a class of glory rays

whIchexist for 5 O< NI ' with a> 2. Theupperebound N; are I

with 1 as n *m and N;+ <I~ ife have previouly demanstrated

that:

.............---------------



/ 2  1/2(31 6- 9) 1.179960 (4)

- (4/3)(2/3)1 /2 a 1.088662 (5)

Most of our discussion will be concerned with spheres with N < 1.

The general class of glory rays in such spheres is described by 8 - 01

where 0n - '2 w where 2n' + 1 is the number of times rays cross the

sysietry axis. It Is necessary for n > 2a' + 2, n' - 0,1,2, ... and conse-

quenrty glory rays with n' > 0 have 4 or more nternal reflections. We have

extended the physical-optics approximation described in Sec. 11 and III to

nclude rays with n' > 0 and find that their contribution to the total

glory scattering from fluid spheres is significantly smaller than that of rays

with n' - 0. Consequently, for reasons of brevity and simplified notation,

we will only describe the glory scattering due to rays with n' - 0 which is

the clas of rays illustrated in Fig. 1. Irrespective of the value of n, as

a.* M , 6 n O -- e.

Consider rays which lie close to a glory ray; e.g., the dashed lines

near the n - 3 glory ray in Fig. 1. The incident vavefront bounded by these

rays is an annular rins which corresponds to wavelet do in Fig. 1. The

correspondling wavefront I toroidal when It leaves the sphere and It corres-

ponds to curved wavele.t d'a'. This wavelet to toroidal because the figure may

be rotated around the CC' axis. The nth toroidal wavefront appears to

originate at a virtual ringlike source at 1n . Each source forms a virtual

focal tcle. Rays in the portion of the outgoing wavelet 7'd' cross the

backward axis when they are extended.

When the scattering amplitude from a penetrable sphere is computed via

ray optics, the amplitude diverges as the observation point approaches the

bckward axis low e.g., Ref. 1 (Sec. 12.21), Ref. 9 (Sec. 1C3), or Ref. 13
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(Sec. VIII)]. This divergence is the manifestation of the axial focusing and

it also affects the scattering along the forward axis. 6 ' 9 This divergence is

also present in the classical description of scattering from a central potential

where the well known differential cross section U 7

do " 1 bildbi/dI (6)
Zi sin# I

where the sun Is over the different particle trajectories which are scattered

by an angle # and b I is the Impact parameter of the ith class of trajectory.

Axial focusing is predicted for those rays with bildbi/dI 0 0 as # IT

(backscattering) or * * 0 (forward scattering).

The cause of the focusing can be seen by rotating Fig. 1 about the

CC' axis. Follow adjacent rays having infinitesimUlly different azimuthal

angles but having the same angle of incidence 0. When this 0 is slightly

less than the 8n  of some "glory ray," the adjacent rays cross the axis at a

comn point after they leave the sphere. (This can be seen by extending the
line F3d'.) This crossing of asimuthally adlacent rays gives rise to the

geometrically predicted divergence of the energy density on the axis.

The method for correcting for this divergence was suggested by

Van de Hulst.1' 1 2 It makes use of a physical-oytics aMroziuation4 -6 which

Involves (a) the computation of amplitudes in an exit plane near the sphere

via ray optics, and (b) allows these waves to diffract to the observation

point. This method will be illustrated for glory rays which give rise to

toroidal wavefronts such as those sha in Fig. 1. It will be shown in See. V,

however, that as M. M ', the nth wavefront is no longer toroidal.

There are rays and types of scatterers for which there is no geomet-

rically predicted focusing. There is no focusing of backscattered axial rays

except for certain N Z>2 (e.g., n - 2 and = 2, see Ref. 14). The n- 0

ray reflects without entering the sphere. To an external observer, Its
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reflection appears to come frou a point-like source at A (see Fig. 1). It

.is also evident that when a plane vave is incident on a cylinder (with N < 1)

and propagating in a direction perpendicular to the cylinder's axis, there

will be no focusing of the backscattering. 8 ' 9 Figure I is applicable but

with rotation about the CC' axis no longer allowed. Backscattered rays

appear to originate from virtual line sources located, e.g., at AO and the

Fn. It is evident from asymptotic formulations of scalar wave scatter- by

15,16cylinders that t. i geometric scattering from a fluid cylinder dos

diverge as y - 0.

11. Aplitude and Phase in the Exit Plane

In this section we use ray optics to describe the amplitude and phase

of the glory waves in the exit plane. It is convenient for this plane to be

the one which touches C' with its normal parallel to the propagation direc-

tion of the incident wave. Its projection onto Fig. 1 is the dashed vertical

line. After the incident ray crosses the dashed vertical line, the propagation

phase delay for reaching the exit plane is:

in - k[a(l -cose) + 2nM cosy + v] (7)

where (Fig. 2) v is the distance traveled by the ray from the exit point on

the sphere to the exit plane:

v - a(l- co•) sec(- B) • (8)

The ray crosses the exit plane at a radius a from C' where from Fig. 2

a a alesin - (1 - costS) t-n(B - 0)] (9)

The radius of the nth focal circle is bn - a(slnes). As is evident

from Fig. I and by direct computation, dT/do - 0 when s - bna The radius

__
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L of the toroidal wavefront at the exit plane is obtained by computing then

vavefront' s curvature:

- 2 2-1a n k(d n/ds2)- , s - b , (lOa)

a a[l +-!(Ul - 1)-l cos8n] , (lOb)

where T - tanv n/tanO and vn  is given by (1) evaluated at en, the glory

ray condition. The proof of Eq. (lOb) is outlined in Appendix A. The spreading

of the wavelet de at the exit plane is characterized by:

q li (deal) ' lim ls(e') - s(d')l (11)
q3  (de) - 0 (de) (de) - 0 s(e) - s(d)

where (d'e') and (de) are the arc and linear lengths of the outgoing and

incoming vavelets, respectively, and a is the distance from C' to the

indicated points of contact with the dashed plane. From symmetry arg..ents,

the rightmost side of (11), when generalized to arbitrary n, becomes-.

% - lim[bn - s(O)]/(bn - a sine)I, as 8 * 8n where s is an implicit

function of the ray's original angle of incidence via (1), (3), and (9).

Application of .L'Hospital's rule to this limit (see Appendix A) gives:

1 l + 2(nW - l)secel - I .i(an - a)I. (12)

With M < 1 On > a for all finite n (and n') so that the absolute value

signs in (12) are not needed; for ranges of M > 1, however, we find some

[n /(a a- a)] are negative.

Let p1 exp(-iwt) denote the incident pressure in the dashed plane

through C' in Fig. 1 where w and pI are the frequency and amplitude of

the wave. Ray optics gives the following amplitude in the exit plane for the

..... ak
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nth toroidal wave:

pn' p B(a) [ + + k(s - /2% (13)

where the toroid has been approximated by a quadratic surface. This approxima-

tion introduces a negligible phase error provided k(s - bn) 4 << i. The

phase factor Tn  is the propagation phase delay of the glory ray:

nn  - 2ka(l - cos8n + nMcosV) (14)

and P is the phase shift due to the crossing of focal lines.
1  The q;1 /2

factor accounts for the change in the area of the wavefront.

The factor B(s) accounts for the reduction in amplitude due to the

partial transmission or reflection of the wave at each interface. We approxi-

mate this by repeated use of the internal reflection coefficient for pressure at

a panesurac1 7 -19a plane surface as a function of the external angle 0

(() -)- sin2e) 1/'2 - Tcose (15)
(X2 - sin2e)1/2 + Tcose

where T - Oi/Oo and pi  and P0  are the densities of the inner and outer

fluids, respectively. In (15), 8 is chosen to be angle of incidence of the

ray which crosses the exit plane at s. Symmetry relations1 7'1 8 between the

transmission and reflection coefficients yield the following combined

coefficient

B(s) - R(e)n' l [1 + R(8)111 - R(e)1 . (16)

The phase shift 'n accounts for the phase advance of W/2 associated

with each crossing of a focal curve prior to reaching the exit plane. (This

shift occurs due to vanishing of the vavelet's area at each focal curve.
1 '19)
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From Fig. 1 it is evident that there are two types of curves. One type, at

points L, in Fig. 1, is due to the intersection of Initially adjacent rays

which lie in the same meridional plane. There are n - I focal curves of

this type when H < 1. The second type is due to axial focusing of rays

within the sphere. There is one focus of this type each time the internal ray

intersects the axis; this occurs once when n' - 0. This is the point L

for the n - 3 ray in Fig. 1. The total shift becomes '1n - - nw/2. (This

result differs from that given in Ref. 1, Sec. 12.22 as Van de Eulst was con-

cerned with the phase shifts at a distant observer.)

Evaluation of the constants bn, an' qn, and nn requires that (1)

through (3) be solved for 6n with y - 0. With n - 3 or 4 the system of

equations reduces to a cubic equation which leads to the following result
5

in2e h' 2  - h cos[(r + w)/31} (17)

1r3  " arccos [(1 - H 2)h3 ] (lea)

r4 - arccos [(27/16)M2 - 1] (18b)

where o rU ir, h; - 1/2, h3 ' [1 - 3"M14, h- -2/3, and h4  1/2.

When n > 4, we solve the system iteratively for e by choosing 8nl as the

first estimate of 0
n

II. Diffraction and the Far-Field Scattering Amplitude

A. Stationary-Phase Approximation for the Backscattered Amplitude

The amplitude p at the observation point Q can be expressed in

terms of a diffraction integral of Pn In the exit plane (the x'y' plane

in Fig. 3). In Fig. 3 the z axis is the extension of the CC' axis and the
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backscattering anzle y Is measured with respect to C' and the z axis.

.'!i y' axis may be chosen to be the dashed vertical axis in Fig. 1. (Unlike

the corresponding optics problem n which polarization breaks the symmetry, 4

here the orientation of the y' axis is arbitrary.) The Fraunhofer approxi-

mation1 9 ' 2 0 for r' gives r' a r - [(xx' + yy')/r] and it gives the

following approximation of the diffraction integral for pn

Pn 27r(iXr) 1 e 1  F, r >> ks 2  (19)

F(xy yp(x' ) dx'd' (20)2w fni x f 2-" xt 2.", 2 < 2

where a , the radius of the domain of integration, is sufficiently large

that the contribution to the diffracted amplitude from points outside of a

is negligible. In addition to making use of the Iraunhofer approximation,

(19) neglects any corrections to the amplitude due to the obliquity between

Q and the wavefront in the exit plane. We anticipate the result below that

the phase of the integrand is stationary in the region of applicability of the

approximations leading to (13). Consequently we extend an in (20) to e

and sake use of the circular symmetry of p by writing F in terms of

radial and azimuthal integrals2 0 '

F(y) - co. %1 W(a, )ds (21)

W(sOy) - ezp[-ikr coo(* - o)]do - Jo(u) (22)

where r - [(x 2 + Y2)/r21l/ 2 - siny, u - ksr, and * is the azimuthal angle

of (z',y'). Due to symmetry, F and W do not depend on the azimuthal angle

of Q.
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Since W is given by the zero-order Bessel function J 0 (u), F is the20 2 .1 o1,'•
Hankel transform2 0 2  of P ns The phase of %~ is stationary when a a b

and we use the stationary phase approximation (SPA) of P. The asmplitude of

p is proportional to B which is a slowly varying function of s near ba

except when On is close to the critical angle 0 . As a + -, recall that

e. 1e, x -±i, and I * 0. Consequently, the strongest pu are those with

small n where B is sufficiently slowly varying that it may be removed from

the integrand. These approximations give

F & p 15(b-)q112 *xP[inn + On) ] 1 (23)

r - s 0 (u) exp[ik(s- bn)'/2an1 ds (24)

where ---1/2 has also been removed from the integrand since the spreading of

the wavefront has been approximated by (12) which is the value at s - bn . The

SPA of I is (see e.8. Ref. 22, Sec. 4.2c):

S b n(kb ) 1 2QIb) JO(uN)e w/ 4 + a o(kbn) " 1 (25)

where on - kbnr and the order of the correction term was obtained by noting

that the lowest order corrections from the endpointe of (24) vanish. The SPA

requires, however, that Jo(u) be slowly varying near u - u and consequently

2that y be small. The condition on (19) may be written r >> kbn since F

is dominated by contributions to the integral with a 2 ba.

B. Determination of the Phase from Properties of the Angular Spectrum

When Q is not close to the backward axis, (25) does not yield the

correct phase for pU due to the requirement that un be small. The phase

correction is determined here by shifting the plane of integration to that of
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the focal circle. (The point at which the axis crosses this plane vill be

denoted by Cu; C3  Is shown In 74i. 1.) Since we let i in (20),

F is a Fourier transform which expresses the planevave angular spectrum of

p . The spectrum in the exit plane is related to the spectrum Fa, determined

In the shifted Plane, of the virtual source appropriate for the shifted plane.

The relation, which is well inow In optics,21 i given by

F - ezp(ika cosy)Fa (26)

where ot is the distance betweeu the two planes and klmn cosy Is the phase

shift of a planeave, tilted at an angle y vith respezt to the axis, as it

travels from the plane at Cu to the one at C'.

In the shifted plane, the virtual source is a circle whose spatial

properties are those of the radial 6 function: 6(s - b). Writing F in

the form of a Hankel transform gives:

F D (u) 6(a - bn)do - DbJo(U (27)
un unO'

where D is a complex conetant which has been determined by requiring DnbUJ 0 (u)

exp(ika) - F via (23). This procedure, combined with (26) and (19), gives:

pA a p1[(a/2r) ep(ikr)Ign (28)

(ka)1/ 2 En D (b )J0(u )eJ[L + An +f- (29)

, - kno (1 - cosy) (30)

E, . m,,n(2,1%1/o.,,11 /2 a-3/2 (3,.)

- 2(bn/a)2wI(1 /) - l1/2 (31b)

L.
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where (31b) makes use of (12). The phase factor an vs not present in (25).

An equivalent phase factor may be derived directly from an SPA of (24) by

ass-min that un is large. This derivation is outlined In Appendix B.

In (29), 3(b n ) is given by (16) with 8 - On . The SPA result given

above requires I R(%n)l to be not too small and hence that On  is not close

to Brewster's anzle 1 7 e3  (known also as the angle of intromission). This

angle is defined as the solution of R(OB) B 0; inspection of (15), gives

sin283 - (M2 - T2)/(l - T2). If T _ N < 1 or if T ZN > 1, then eB exists.

When N < 1, all %n  are positive. If on < 0 (which occurs for

certain M > 1), the signs of the W/4 phases in (25) and (29) should

be reversed.22

C. The Axial Rays

Since the axial rays are unfocused, their far-field amplitudes and phases

can be computed directly from ray optics., 1 3 Figure 4 defines the distances

needed to compute the phase difference C0 between the n - 0 reflected ray

and the propagation delay from C' to Q. Using our (...) notation for dis-

tance gives C - k(234) - (C'l)]; this can be written

C0 a 2ka[l - cos(y/2)] - ka(l - cosy) (32)

by using the geometric results e - y/2 and (C'l) - (56). The far-field

pressure due to each axial ray is p1 [(a/2r) exp(ikr)]fn where the reflected

ray has the following form function when ka is not small:

fo a -1(6 - Y/2).*0 . (33)

The minus sign results from our definition that Eq. (15) describes internal

reflections. When y Is small, the reflected wave appears to come from AO

which (s y 0 is a distance2 3 a/2 from C.
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The form functions f0 (a = 2,4, . . .) of the other axial rays my be

found by computing divergence factors1 and the phase shifts due to path lengths

and foci.1 It is not generally feasible to express the ray's angle of Inci-

dence 6 as a function of y; this necessitates either the numerical solution

of transcendental equations or the use of approximations. An approximate

description of f 2 (y) is given in Appendix C. A description with y - 0 of

electromagnetic axial rays from a dielectric sphere14 can be modified to give

the following acoustic result when a >> 1

if -)1 - IM( - )"- (O)al'l - 1(O)211 . (34)

For the examples to be described in this paper f0  and f2  are similar In

magnitude; for n Z_ 4, IfRI << If01 so that approximations for those fa(Oy)

will not be given here.

D. The Combined Scattering Amplitude

The above results say be combined to give the following approximation

for the pressure amplitude In the. far field

p(ry) - pI[(a/2r) exp(ikr)] f, r >> ka2  (31)

f(y) a if +  f 2 + a1 t < (36)

where N should be sufficiently large to approximate an Infinite series.

The normalization for the form function f has been chosen such that % 1

for geometric reflection from a fixed-rigid sphere of the same sie. The

salient feature of (29) is that jg.(y - 0)1- (ka)1/2 while the 1t3I do

not depend on ka. Consequently the backscattogine fro- large fluid soheres

will be dominated by contributig.s of the diffracted slory !Mves provided the

-4 _ __ __ __
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attenuation of sound is nezligible. As ka ,the glory contributions to

(36) diverge; this divergence, a consequence of axial focusing, was also

evident in the purely geometric scattering; e.S., Sq. (6).

When ka is not large, (36) must be modified to Include term due to

circumferential waves. Our tests of (36) had ka Z 100 and, as a consequence

of the largeness of ka, circumferential waves1 5 ' 19 and associated resonane 24

should experience significant radiation dampinz. The backscattering from

spheres due to circumferential waves will, nevertheless, be assisted by

diffraction-limited axial focusing as is the case for electromagnetic

scattering.1 '3'12  Circumferential wave contributions to the scattering from

elastic objects are significant for ka as large as25,26 200; however, their

significance to the scattering from large fluid objects with p I ao is not

well explored.

The conventional description of the scattering10,13,24 references the

phase of the Incident wave to the sphere's cteor C. It also uses distances

and angles with respect to C so that r becomes (CQ) and y becomes the

polar angle of Q with C as the origin. For the f*r-fiald scatterina the

form of (35) Is retained with f replaced by f CM - f(Y) exp[i c I where

= -ka(l + cosy) (37)

is the negative of the phase shift for the distance (C'C5) in Fig. 4. The

y-dependent phase shift for the reflected ray becomes C0 + c a -2ka cos(Y/2)

which agrees with the conventional 1 3 result; for the glory term It becomes

4n + C k 2a + ((zn - a)(I - cosy)]. (When % a, the latter result

follows from elementary considerations.) Since the modulus of the form func-

tion is not altered by the transformation from C' to C, It Is possible to

compare JfJ from (36) directly with Ifel where fe is the exact result of

the partial-wava theor.1
0 ,18 ,2

4
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IV. Discussion of Nodel and Comparison with Exact Scattering from
Spheres with N < 1

in this section we compare Eq. (36) with the modulus of the exact form

function fr" The partial-wave series for fe was sued by using the com-

puter algorithm described in the appendix of Ihf. 18. The number of partial-

waves Included exceeded ka + 4.05 (ka)1/3  to ensure adequate convergence.
1i

This algorithm was limited to the case of equal Inner and outer fluid densities

(Pi - 00) and the tfol presented here and in Sec. V are limited to this case.

Tables I and Ur are representative of model results for form function

moduli of axial and glory terms and for the focal circle parmeters. These

tables should be examined in conjunction with Fig. 5-7. In each of the

figures, the largest N was chosen to be a power of 2 such that an additional

doubling of the largest n In (36) resulted In a new curve (not shown)

which differed imperceptibly from the dotted curve.

The value of N In Fig. 5 was selected such that the modulus of f.,

the strongest of the omitted axial ray amplitudes, is especially small in com-

parlsn with 1g3(f * 0)1. The main result of Fig. Sa ts that (36), with

N >_ 16, gives an amplitude which is nearly Identical to the exact result for

the range of y plotted. This confirms, with very laige ha, our model result

for the amplitude and relative phases of the f and Su. Note also that JfJ

for y > 0.2V is dominated by the interference of 63' f0' and fl; for

y < 0.2", heever, glory terms with a > 3 are significant. Figure 5b con-

firms that the principal features of I.e are deacribed by the model. Note

that the dip in Je' near 12.50 is largely due to the destructive Interference

4-6,8of axial rays. Thoush we have previously modeled Individual contributions,

nig. S is the first direct confirmation that a sum of axial and #lotq waves can

oagot for most of the backscatterI:a from neree with N < I.

____ ____ ___ ____ ____ __
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Figures 6 and 7 confirm again that the Principal features of I fe

are described by the model. In Fig. 6a and 7, discrepancies between the modeled

and exact scattering are evident, especially at y - 0. The causes of these

discrepancies are not known. Equation (36) has also been tested by Including a

sun of glory terms with n' - 1 (which have n 2_ 5) but the resulting shift

In It is much too small to account for the discrepancies. Though the

Individual If I with n Z 4 are small, it is plausible that the coherent

sun of omitted axial terms could account for significant part of the discre-

pancy. It is apparent that the omission of circumferential waves from the model

is acceptable in Fig. 5 and 6b; this omission could account for some of the

discrepancies evident in Fig. 7.

Some noteworthy features of the modeled scattering are: (1) the width

of the backward peak of the scattering is roughly - 1/(ka) but the details

of the structure are highly dependent on ka according the Interference of the

terms in (36); (i) there is a tendency for the width of the peak to Increase with

decreasing b3 and hence, decreasing M; (III) though the Ign(Y - 0)1 -(ka)1/ 2

If I is not - (ka)1 /2 due to the ka dependence of the Interference between

the and the ka-independent fn; (iv) form function moduli can exceed

(e.g. Fig. 6a) or be close to (e.g. Fig. 6b, 7b) unity which is the geomtric

result for reflection from a fixed-rigid sphere of the am sie. This enhance-

ment is a umnifestation of diff-raction-lmited axial focusing of the back-

sca&terlng. It Is possible, however, for the various glory term to interfere

so as to produce a mInImm in IfI for y - 0; this Is evident In plots of

If I and Ifee for N o 0.5 with ka - 1000 which are otshow here.

Sam aspects of the convergence of the series In (36) sould be moted.

As n ,bn - N ad % - n. where
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- 2ka[(l - cose) + M(w - eC)] . (38)

This in the propagation phase shift a ray would have if It entered and exited

from the sphere at the critical angle 8
C  and it traveled a circumferential

path with a phase velocity of c£. Numerical tests suggest that it is suf-

ficient to terminate the series whM 27 (n., - n ) < 1 radian. The omitted term

tend to cancel because of the alternating sign of B(b.) and the periodicity

of the phase factor exp(iun ) associated with the crossing of internal foci.

As n Increases, Isj decremas due to decreasing 15(bn) end Increasing

q; see Tables I and 11. When Pi # 0o , the 3(b.) are changed but the Seo-

metric parameters are not.

It may be possible to arrive at (29) for gn  from the asymptotic

evaluation (at large ka) of the exact partial-wave sum. Glory ray amplitudes

should be describable by saddle-point contribution to a contour Integral from

the Watson transformation3 of the exact sm. Our use of the 'iysical-optics

approximation in Sec. 11 and I1, though less direct, manifests the physical

significance of the parameters , b,aA, q ,. and 1 ' Furthermore, our

approach bypasses the difficulties with the asymptotic method noted in Ref. 13

and it may be extended to the near field by replacing (19) by a Fresnel

transform. 1 9 " 2 1  It may be important that pi and 0 be similar In magni-

rude for otherwise resonances24 (as in a gas bubble) ay be significant. The

lower limit on ka for which (36) is applicable is not known; the physical-

optics method was found to be useful, depending on M, for the description of

nesr critical-angle scattering when ka Z 25.

The physical-optics model may be used to approximate the scattering of

toe bursts where k Is obtained from the average frequency of the Incoming

burst. The time delays of discrete echoes follows from the propagation phase

shifts tn' fn' and Shapes of discrete glory echoes will differ from
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the incoming bursts11 due to the k-independent phase shifts, the P. and

i/4 terms in (29); the scattered burst is related to the incoming signal

through superposition of time-shifted Incoming and HNlbert-transformod

signals.
19

An extensive test of (36) could be carried out by repeating the com-

parisons in Figs. 5-7 with several smeller ka. This would be inefficient to

do at present since the Ifl and 1f1 curves are plotted using separate

computer systems. Figures 5-7 were made by overlaying and tracing the curves.

V. Spheres with M.> 1 and Combined Rainbow and Glory Scattering

In this section we sumarize the results of exact calculations of

backscatcering from large fluid spheres with certain N > 1 and we model the

enhancement of backscattering due to rainbow rays. As described in Sec. 1,

the class of glory rays with n' - 0 and n> 3 are not limited to M 1;

they also exist for 1 < M in where the upper bounds are given by (4) and

(5) for a - 3 and 4. Form fuctionas for this class of rays are given by (29)

except when the ray has n internal chords and M a N. There is ann
additional caveat to be noted: 5 when 1' < X < M' there Is second class ofa n

rays having n internal chords which also cross the axis once. Here

K" - csc[(n-l)w/2n] is the value of M for which (1) and (3) give 0 - - w/2.

When n - 3, the angle of incidence of this second backscattered ray is given

by (17) with (r3 + r)/3 replaced by w + (r3/3).

The following comparison of ray properties for the two classes (each

with n chords), will facilitate a description of the unusual backscattering

properties of .spheres having N M. Let b - sin and ; [from Sq. (10))

denote the focal parameters for the new class of ray while bn  and % denote
nn
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following inequalities: b < b < a, a > a, and (for N not too close to

N') a > 0. As M - n, Eqs. (1), (3), (10), and (17) lead to the results:n n
bn - bn, nT - 1, a n -4 - ,n and qn - 1. The divergence of the dis-

tances to the focal circles lives rise to the erroneous prediction by (31)

that En , and hence an  also diverge for each of these rays. The present

physical-optics approximation fails because the glory wave is no longer toroidal

as required by (13). Numerical computations applied to the n - 3 ray and the

case M - i give the following limit as s * b3 : [n(s) - n 3 ]/(s - b3) 3

A 3ka 2 where the dimensionaless constant A3  -26.6. Hence the wavefront is

cubic which is characteristic of a "rainbow" or "stationary" ray. Figure 8

shows this ray.

It is well known that scattering is enhanced1'7'13'23 in the vicinity

of a rainbow ray. Rainbow rays have dy/de - 1 - (dW/de) - 0. This is equiva-

lent to the condition Idbi/d*I - in (6). These conditions require that
5 ,13

sin2O - (n2 _M2)/(p2 - 1). We have verified5 that the glory rays with

N - M' and n - 3 and 4 satisfy this requirement; geometrical considerations
n

suggest that it is also met when n > 4. Consequently when N 2 Mf, the back-

scattering is doubly enhanced relative to that due to axial rays: once due to

axial focusint and once due to the rainbow caustic.

We have developed a physical-optics approximation for gn  for the

special case N - M'. The principal change of the approximation described in
n

Sec. IIIA is to replace (24) by

3 2
I , JW0 (u)e

L k (s-bn) /a do = b3 0 (un)
1
4  (39)

where the SPA has been used to remove from the integral, that part of the
integrandwhich is assumed to be slowly varying near s - bn . The remaining

ntegral is
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S eiAnk(s-bn)3/a2 ds. (40)

In the analysis which follows, we assume that An < 0, which is the case for

n - 3. It can be shown that the general form of the final result, Eq. (42),
does not depend on the sign of A . Changing the integration variable to

n

6 - (s - bn ) (-3Ana- 2 )1 / 3  reduces I4 to an incomplete Airy integral in

which the lower limit of integration is An -b n(-3A na2)3. As

k1 / 3 6 0 -i, the incomplete integral has an asymptotic approximation [Eq. (10)

of Ref. 28] in terms of the complete Airy function Ai which gives

+ A'2/ 3  (41)

where Ai(O) = 0.35503 and A' - -3kaA . These approximations give the fol-
n

lowing normalized form function in place of 5 n when H = )Hn

g~u = -i(ka)2/3 EAn B(bn)Jo(u)ei~rn + Un] (42)

E -- 4v AL(O) bn/[a(-3A) 11 / 3] (43)

where we have used the geometric result that qn - 1 and the second term in

(41) has been omitted because of its small magnitude in cases to be considered

here. It is to be expected that gn I (ka) 2 / 3 because the enhancement of the

diffracted amplitude of a nonbackscattered rainbow1'3'2 3 is , (ka)1 /6 .

The results of this model when n - 3 are compared with Ife in

Fig. 9. Away from y - 0, a complete approximation for gAn may contain a

y-dependent phase shift similar to the 1n factor in gn. Since this shift

has not been determined, our comparison is limited to comparing I5431 with

Ifa I in cases where Ife I I f 2 l (which is now the leading axial ray amplitude,
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see Table I1). Figure 9 demonstrates that (42) describes the main features of

the scattering when ka - 1000 but that (42) is relatively incomplete when

ka - 100. This conclusion is also supported from our computations of

Ife(y - 0)1 for several ka within -10 of 1000 and 100. In each case Ifel

varied aperiodically with ka. Near ka - 1000 the extrema were typically

between 17.4 and 20.2; near ka m 100, they were typically between 3.8 and 6.8.

These are to be compared with jg 31 of 18.9 and 4.1 for ka of 1000 and 100,

respectively. That there should be r.gnificant corrections to the physical-

optics approximation when ka - 100 is to be expected from proximity of

V- 55.7" to the internal critical angle vc - arcsin(M - 1) - 57.9-. The3 3

use of plane-surface reflection coefficients to compute B(b3 ) fails as v V3 c

because tunneling, surface waves, and resonances make curvature an important

consideration. 1,3

Table III includes exact results with other values of K. For each

case I fel was computed for a range of y sufficient to include several of

the backward diffraction maxima; its peak occurred at y - 0 in each case.

The relative magnitudes are consistent with the considerations given at the

beginning of this section. The rainbow condition is not met when M - 1.1 and

the backcattering is weaker than for M;. The backscattering is doubly

enhanced when H - M. It is small when M - 1.25 with ka - 1000 because

there is no glory ray having only a few chords (irrespective of n') and circum-

ferential waves experience significant radiation damping.

The combined rainbow-glory enhancement of backscattering is not limited

to the precise condition M - Mn'. Due to diffraction, 3 a rainbow will influence

the backcattering when dy/de - 0 in the vicinity of y - 0. Consequently,
backscattering will be enhanced for M in some range near M' which narrows

n

for increasing ka. There are other cases of glory enhanced backscattoring
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outside of the range 0 < M M 3' considered in this paper. The most useful of

these may be that due to the n 2 glory ray for r2 < M < 2.

Our Hie theoretic computations 2 9 of the backscattering of light from

dielectric spheres also demonstrate a combined rainbow-glory enhancement for

optical refractive indices of H a' nd M'.

VI. Applications to Underwater Acoustics

The models developed in Sec. III and V for glory and rainbow-enhanced

glory backscattering are more general than the case of a purely fluid sphere

provided focal-circle parameters, attenuation, and coefficients of reflection

and transmission are properly modeled. For example, Eq. (29) removes the

y - 0 divergence of amplitudes backscattered from solid spheres present in the

geometric model of Ref. 9; subtleties of this application will be described

elsewhere. 1 1  Spheres have been used as calibration targets for sonar systems 3 0 - 3 2

because of their symmetry; their response is asserted to be more uniform (in

regard to variations in the direction of the incoming wave) than the triplne

reflector.31'32 In this section we comment on the design of practical spheres

which could be made to exhibit glory enhanced backscattering.

iUquid spheres with ka > 100 are too large for surface tension to

ensure sphericity. For example, with co - 1.53 m/s (sea water) and

w/2w - 100 kHz, the radius = 24 ca when ka - 100. The target liquid may be

contained in a thin elastic shell.31'32 For ease of transport, the shell's

interior may be left unfilled until submersion. 31 In the discussion which

follows, shear and longitudinal sound velocities of the bulk shell material

will be denoted by ca and cI and the shell's thickness will be denoted by

h; p0, a, and c I are the density, radius, and sound velocities of the inner

liquid and 4 c 0/cI.
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For a large sphere, glory rays illustrated in Fig. 1 and 8 exist in

the h << a limit. The main difficulty in using Eq. (29) and (42) to estimate

the scattering is in the evaluation of B(bn )  for the transmission through

and reflection from the shell. Proper choice of h could simplify the

analysis by facilitating the use of the thin-plate approximation for the

transmission and reflection coefficients of flat plates. 1 7 ' 19 For larger h,

the analysis is complicated since both c and c typically exceed c0  and

ci. Furthermore, Lamb modes 2 4 are launched in the shell at certain angles of

incidence. 2 6 A plausible choice to facilitate transmission into the sphere's

interior Is to select co  somewhat smaller than c0  and ci. (For example,

Laxan is a strong material having co -- 910 a/s.) In the case of rainbow-

enhanced glory, Fig. 8, the calculation of B(b 3 ) may be especially complicated

due to the largeness of e3 and v 3 .

A computational demonstration of glory-ray enhanced backscattaring may

be best achieved by computing the exact scattering from thin, liquid-filled

spherical shells by extending the computations in Ref. 33 to ka ? 100 and

certain H 0 1. The calculations should include a range of Y. The exact

calculation would be most interesting in the case M - Hi due to the (ka) 2/ 3

enhancement factor in (42). The possibility of enhanced backscattering from

liquid-filled shells with this M has been previously overlooked. (For

example, if it is present, the interpolated target strength versus N curve

in Fig. 5 of Ref. 31 contains serious errors.) Circumferential waves, which

are known to influence backscattering from large cylinderical shells, 2 6 will

give rise to axially focused backscattering from spherical shells. The relative

Importance of ray-optical and circumferential returns may be evaluated by dis-

playing the scattering of a short tone burst as in Ref. 33. Certain inhomo-

geneous spheres exhibit glory rays and should have enhanced backacattering. 3 4
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Appendix A: Curvature and Spreading of Glory Wavefronts

The wavefront is described by a curve of constant propagation phase

delay ni. Its curvature at the exit plane is 1/a - k 1l(d 2 n/ds2)/[1 + (kldn/ds) 21 3 / 2

where a is the distance from C'; n and s are given by (7) through (9) as

functions of 6, 0, and v, but could, in principle, be written as functions of

e only, by making use of (1) and (3). We then have

1 . (ds/de)(d 2r i/do2) - (dr/de)(d2 s/dO2) (Al)
3 k[(ds/de)2 + (k"1 dn/de)23/2

where the differential operator is

d a a dyv. 2A dy ~+ (A2)
dO TOF ad~ v av de 30 30 ~2

- Wl/6 + T a/v + (2nr - 1) a/38 (W3)

where (A3) uses (1) and (3) and the definition T - dv/de - tanvltane. The

first derivatives in (Al) are

(ka)"l Ad - 2 (l-n') (l-cosO)sec(8-8)tan(O-) + (1-2nT) (sin8-sin~sec(O-0)) , (A4)
de

d" *-2(nT-1)(1-Cos8)sec (&-0) + Q nT-l)(CosO-sin~tan(6-0)) (AS)

The second derivatives are somewhat longer, but straightforward to calculate.

- - -- - -- I n
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The interesting cases are the glory rays, occurring when 8 = 8; this condition

will be denoted by a subscript n for the glory ray with u chords. Since

(dn/dO)n - 0, (Al) becomes k/ln - [(d 2 n/d 2e)/(ds/d) 2 1n . The derivatives at

the glory condition are (da/dO)n - a[2(nT-l) + cos n ] and (d2 n/de 2)n -

2k(nr-1)(ds/d) n . Hence the radius of curvature of the wavefrout is given by

(lOb).

From (9) and (11), the spread of the wavefront any be written as

q US minO. - [sin - (1 - cos$)tan(e - 8)] (A6)qn "es n  sine n - sine (6

li (dde) [sine - sin$ + (1 - cosB)tan(e - 8)]

e,0,en (/de) [s:Lne n - sinel (AT)

where (W7) follows from L'Rospitalf8 rule. Application of (A3) gives an

expression which reduces to (12).

We have verified (lOb), for several values of N # M', with direct

numerical computations demonstrating that as a bn , [n(s) - n]J/(s - bn) 2

k(2Q) " . Furthermore, determinations of focal circle locations by direct ray

tracing (from large versions of Fig. 1) are in agreement with (lOb). Our

result for q. has also been verified by numerical evaluation of the limit

in (11). These tests were merited because quantities equivalent to % and

an are given by incorrect expressions in Appendix 11 of f. 23. Those

expressions were erroneous due to ncorrect formulation of total derivatives;

they happen to give the correct ratio II/qn.

Appendix B: Angle-Dependent Phase Shift Via the Method of Stationary Phase

The purpose of this appendix Is to demonstrate that a modified SPA of

(24) yields a phase shift equivalent to (30) and to give insight into the cause
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of that shift. The derivation which follows is limited to cases where

un >> 1. In (24), express J0 (u) using Hankel functions of the first and

second kinds. 2 2  J (u) .1 (1)H (u) + (2)() and define Z * W(UOp;u

with j - I and 2 (here and below) for the upper and lover sign, respectively.

Then (24) is a sun of integrals of the form

I " r Zj exp[iki(s-bn) 2 aT1 ± :u I do

where the stationary phase points of the complex exponentials are at a - a

with sj - bn ;n F . From the asymptotic forms2 2 of the E( j ) (u ) as u .n 0
it is evident that sZ is a slowly varying function of a near a - s pro-

vided u >> 1 and jir << b n . Consequently, in the SPA of (B1), it is

appropriate to treat the complex exponential, which differs from that of (24),

as the function which oscillates rapidly when s # aj* Approximating I1 and

12 by this procedure gives the followin sun:

I a bn(2wlraI/k)1/2 J (u )e1(fn' + i/4) (32)

where terms of order a n/b n  relative to unity have been neglected and

(p 1 - - anr2 . Replacing (25) by (32) leads directly to (29) with Pn replaced

by W'. By inspection, when r << 1. and qD re ientici up to terms

ar4 . They give nearly identical results for the conditions under which (29)

was tested in Sec. IV. The derivation of 9 1 , however, assumes that both

un >> 1 and laar << bn ad hec that (Ibn)-I << r << bn/Iln1

The shift of the stationary phase points by t anr has the following

physical Interpretation. Consider the locations of the effective ares (or

Fresnel zones1 ) of the toroidal wavefront which contribute to the scattering to

Q. When r 1 0, these zones are centered on points with - nd 4P- w +

where & (Fig. 3) is the azimuth of Q. The centers of these zones are shifted
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away from bn  by ± or. This shift of the effective areas of the toroidal

wave leads to the phase shift 

Appendix C: Amplitude of the One-Bounce Axial lay

The purpose of this appendix is to describe an approximation for

f2 (y). The geometry of the associated ray is shown In Fig. C-1. Let C2

denote the phase difference between the n - 2 ray and the propagation delay

from C' to Q. Inspection of Fig. C-1 gives €2 - k[(12) + N(234) + (45) - (C'6)] -

2ka[(1 - cose) + 21 cosyv - ka(l - cosy). We express C2 as a function of y by

using an approximation for 0. As y * 0, Eq. (1) becomes e a Mv provided IN - ii

is not large. Eliminating v from the exact expression y - 2(2v - e) gives

e a )ty/(4- 2M) (Cl)

From this estimate of e, the complete Eq. (1) is used to obtain v and ;2

is found via the expression gIven above. This approximation for C2 Was com-

pared with the exact result (which may be computed as a function of e). The

error is negligible for the range of ka, y, and H of the computations in

Sec. IV. The approximation for f 2  Is

f2 2 R(6)[1 - (8) 2W(2 - M)]I(C2- W) (C2)

where the -it phase term results from the crossing of two foci. The factor

X/(2 - f) is the divergence factor1,13'14 appropriate for y - 0. Tests

Indicate that our approximation of this factor by a constant introduces a

negligible error In Fig. 5-7. The reflection coefficient was computed via (15)

and (CI).
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TABLE I. Focal circle parameters for H - 0. 94 (upper group) and
0.6 (lover group). B(bn) is show for the case Pi - po.

n e.n(deg) bn/a an/a q En B(bn)

3 40.24 0.646 1.162 7.2 1.30 3.0 E-3

4 53.08 0.800 1.078 13.9 1.12 -9.1 E-4

8 65.62 0.911 1.016 65.1 0.57 -1.2 E-4

16 68.91 0.933 1.004 277.1 0.28 -4.0 E-5

3 21.20 0.362 1.096 11.4 0.56 9.3 E-2

4 28.24 0.473 1.052 20.4 0.54 -5.7 E-2

8 34.76 0.570 1.012 84.2 0.31 -2.3 E-2

16 36.33 0.593 1.003 340.3 0.16 -1.1 E-2

TABLE II. Exact and axial form function moduli at y - 0 for
selected M > 1 vhen p: 0.

M If (k. - 100)1 If (ka - 1000)1 Ifol 1f21

H' 2.57 7.12 0.042 0.051

1.10 1.97 1.99 0.048 0.058
H' 6.50 19.60 0.083 0.118

1.25 1.39 0.26 0.111 0.183
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Figure Captions

Fig. 1. Backscattered rays from a sphere with M - 0.6. The center of the

sphere is C and the figure may be rotated about the CC' axis.

Fig. 2. Path of a ray (dashed line) as it leaves the sphere.

Fig. 3. Angles and distances needed to describe a point (x',y') in the exit

plane and the observation point Q. The z axis is the extension (toward

the source) of the CC' axis.

Fig. 4. Distances needed to describe the phase of the reflected wave.

Fig. 5. Comparison of exact and model form functions of spheres with M - 0.94.

The curves labeled N give jfr from Eq. (36) evaluated with the indicated N.

In (a), the model result (dotted curve) is nearly identical to the exact result

(solid curve).

Fig. 6. Comparison as in Fig. 5 but with M - 0.6.

Fig. 7. Comparisons as in Fig. 5 but for (a) M - 0.8, and (b) M - 0.5, with

ka - 100 in both cases.

Fig. 8. Combined rainbow-glory ray for a sphere with M - M' of Eq. (4).

The distance scales in the sketch of the cubic wavefront have been enlarged for

enhanced visibility.

Fig. 9. Comparison of exact (solid curves) and modeled (dashed curves) form

functions of spheres with ka - 1000 (upper group) and 100 (lower group). The

model results are from Eq. (42) which describes only the rainbow-enhanced glory

ray. The ray is the n - 3 ray in Fig. 8 which has b3 = 0.9752 a.
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fTg. C-1. Distances and angles needed to describe the scattering due to the

single bounce ffazial ray." 6 Is the ray's angle of Incidence.* The refraction

angle v Is Illustrated for the case N 0.6.
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Submitted to the 104th Meeting of the Acoustical Society of America
9-12 November 1982

Observation of the acoustic glory: Scattering from an elastic sphere in near

backward directions. Philip L. Marston, Timothy J. B. Hanson,a )and Kevin L.

Williams (Dept. of Physics, Washington State IJniversity, Pullman, WA 99164)

We have measured the scattering for small angles y (relative to the

backward axis) from a fused silica sphere of radius a 52 mm. Tone bursts

in water corresponding to ka % 450 were incident on the sphere; their short

duration permitted glory and axial returns to be separated in time. The y

for the probe hydrophone was scanned to test a model [P. L. Marston and

L. Flax, J. Acoust. Soc. Am. Suppl. 68, S81 (1980)] of diffractive effects on

backward axial focusing. Observations tend to support the model as adapted

to fused silica: (1) from the arrival time, the strongest echo is evidently

due to the 4-chord shearglory ray; (2) its amplitude is a Jo(kbsiny) where

b is the calculated glory circle radius; (3) its amplitude at y = 0, though

Slightly smaller than predicted, exceeds that of the first axial reflection;

and (4) the times, amplitudes, and y dependences of other echos are correlated

to predictions. The first null Of the strongest echo occurs at y 10

Consequently, we demonstrate for the first time the diffraction limited backward

focusing of echos from a sphere. [Work supported by ONR. Marston is an

Alfred P. Sloan Research Fellow]

a)Present address: Defense Systems Division, Honeywell Inc., Hopkins, MN 55343

Technical Committee: Physical Acoustics

Subject Classification numbers: 43.20.Fn, 43.20.Px, 43.35.Zc

Telephone Number: (509) 335-5343 (P. L. Marston)
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