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ABSTRACT Iq

The paper deals with strict solutions u(x,t) = u(x1,x2,x3,t) of an
equation

3

a., - I a,. (Du)u =0
tt 1,%=1 ik %%,

where Du is the set of 4 first derivatives of u. For given initial values
u(x,0) = €F(x), ut(x,O) = €G(x) the life span T(€) is defined as the
supremum of all t to which the local solution can be extended for all x.
Blow-up in finite time corresponds to T(€) < ®. Examples show that this can
occur for arbitrarily small €. On the other hand 'J.'(e) must at least be
very large for small €. Assuming that aik,P,G ec . that a, (0) = 6

and that P,G have compact support, it is shown that 1lim € 'r(e) - ® tor
every N. This result had been established previously ongy for N < 4.

AMS (MOS) Subject Classifications: 3I5L15, 35167, 35L70, 35B40

Key Words: partial differential equations, hyperbolic equations, wave
equations, second order nonlinear equations, shocks and
singularities
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LOWER BOUNDS FOR THE LIFE SPAN OF SOLUTIONS OF
NONLINEAR WAVE BQUATIONS IN THREE DIMENSIONS®

rritz John
This paper deals with existence of solutions u(x1 ,xz,xa) = u(x,t) of a nonlinear

wave equation of the form

3
uw, - I a, (u')u =90 (1a)
tt 1, k=1 ik xx

for large times t. Here u' stands for the gradient vector

u' = (“x1'“x2'“x3'ut’ - (D,u,bzu.bsu,b‘u) = Du {1b)

We assume that the a, (U) are in ¢" in a closed ball |ul <8 in 2, ana that
am(O) = 6“‘ ’ (1c)
so that (la) goes over into the classical linear wave equation
Du=u_=-A4u=0 (14)

tt
for "infinitesimal® u. The solution u of (1a) is to be found from initial conditions

for t = 0, Here we use initial data of the form

ul(x,0) = ef(x), ut(x,o) = gg{x) for x @ 33

(te)
vhere f,g are fixed functions in C;(l3) and € is a parameter that serves to msasure
the amplitude of the initial values.

Por a given choice of functions f(x).g(x),ln

as the supremum of all s such that a ¢ -solution of (1a,e) with |u'l| ¢ § exists for

(U} we define the life span T = T(€)

x e IJ and 0 € ¢t < s. One knows that T(€) > 0 for sufficiently small (&|; ("local®
solutions of the initial value problem exist). Existence of "global®” solutions would

correspond to T(t) = ®, One knows algo (see [4]) that T(€) < ® at least in some cases;

*This is a continuation of the author's paper DELAYED SINGULARITY FORMATION OF SOLUTIONS OF
WOWLINEAR WAVE BQUATIONS IN HIGHER DIMEWSIONS, Cowm. Pure Appl. Math. 29, (1976), 649-662,
referred to as (*) in the sequel.

This article represents work performed at the Courant Institute of Mathematical Sciences
and supported by the Mational Science Foundation Grant No. MC8-79-00812 and the Office of
Maval Research Grant No. W00014-76-C~043%. An outline is to appear in the Proceedings of
the Wational Academy of Sciences, June 1982. This report wes prepared at the Mathematics
Research Center, sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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{the local solution "blows up® in finite time). Thus for the equation*®

Au
Ye " T-32a " 0 (2a)
t
we have T(€) ¢ ® for all sufficiently small positive €, when

Ia g(x)dax > 0 (2b)
R

Realistic bounds for T(€) are difficult to obtain. In the example (2a,b) one can show
that

2 (2¢)

T(E) < A exp(BC
with certain constants A,B. In the present paper we show that T(€) increases with
diminishing € faster than any reciprocal, power of €3
THEOREN

For any real positive N

1in jeiMr(e) = » (3
€0

Remarks
(a) Statement (3) could be wrong for plane wave solutions of (1a,e). Indeed it does

not hold for such solutions for N > 1, if equation (1a) is genuinely nonlinear. But
plane vava solutions are excluded by our assumption that £ and g have compact support.
(b) Relation (3) had been proved in (*) for N restricted to the interval
0 < N < 4. The proof given here for general W closely follows the ideas developed in
(*). The extension to N > ¢ requires some not so obvious additional estimates, contained
in the MAIN LEMMA below.
(c) The arguments leading to (3) would also permit to derive more specific lower
bounds for T(¢) for fixed € for specific £,9.4;,. These bounds would depend on
assumptions on the growth of the derivatives of those functions with order. The methods

used here do not yield (3) for general N, when only a finite number of derivatives of

coefficients and data are available.

This contrasts with the situation in more than 5 space dimensions, where T(c) = = for all
sufficiently small ¢, as shown by Klainerman [1]. See also [2], [3).
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The proof of the THEOREM is broken up into & sequence of lemmas. Roughly one argues

as follows, F!rst a combination of a priori L,-estimates (“energy" estimates) and Sobolev
inequalities leads to a local existence proof. To §oe existence for really large times
t one has to establish pointwise decay of u' with time. Decay cannot bs inferred easily
fros L,-estimates. It is established here by cpfmtuting u' in the lLy-norm by vectors
W' that can be shown to decay. W¢ select here for 9 the partial sums of the formal

power series of u in terms of €3

3
1 uy * oo (4)

The nk(x.t) can be found explicitly by quadratures from linear recursion formulae. The

u®*ey #Czuz#t

THEOREM follows if one can prove that the derivatives of the u, decay at least like

t '20g ©1%*"? for large t. (The solutions of the linear wave equation (1d) decay
like ¢~! for initial data of compact support). In (*) this is shown for k = 1,2,3. The
orude technique used there, only estimating absolute values, does not work for k > 3. One

has to rely instead on cancellation of the worst contributions (exploited here dy

integration by parts). This comes about because the u, satisfy certain radiation
gonditiong, making them bohave asymptotically like outgoing spherical waves. One also has
to make use of the fact that the derivatives of the u, decay more strongly, like

t™2(10g £)2%™2, oxcept for small x|/t or ssall 1 - |x|/t. This is the essential

content of the Main lLewma.
¥o and as lons.
For a vector U € 2% we define (Ul as its euclidean length.* For U = Ulx,t) with
x € l3 and a non-negative integer n ws set

lotx, )] = /' )':‘ i0%(x, )12 (Sa)
ajen

and introduce for fixed t the two norms

("“”u - ::3 lu(x.e)ln (3b)

*This 4iffers slightly from the definition of {U] im (*), (37).
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2
o)t - {, totx, )] ) ax {5c)

In vhat follows ve shall use almost exclusively n =3 4n (Sb) and n =5 in (Sc). By
S8Scbolev's inequality there exists universsl C such that
ute)}y € clote)i, (sa)

We assume that the .u(l!) are of class c' in the closed ball

lul ¢ ¢ (6a)
and satisfy
.Lk‘m - .“(U) (6b)
lu((l) - ‘n: (6¢c)
Without restriction generality we can assume here that § is so small that
0<éc (64)
and that
I iwitcvde i a, (0v,v, € 2|v|2 (60)
2 4 1,1 ik 1'x

for all U satisfying (6a) and all V = (v,,vz.w._ ‘v‘) e l‘. with a given vectorfield

U = U({x,t) we associate the linear differeatial (jperator

3
2

P =05~ | o (0D (78)
CO S T 1%

The result of applying P(U) to a scalar function u(x,t) will be writtem P(U)[ul. 1In
this notation (1a) becomes P(u’){u] = 0,
IEWMA I. (a priori estimate).

et for a certsin T > 0 the function u(x,t) be a C ~solution of

Plu'){u) =0 for xe®, 0C¢t T (8a)
for which
lu(x,t)| <& (ob)
Pot
Ae) = max ({u'(e)}g)" {80)
16x<s




There exists a constant C (depending only on the suprema of the a,,(U) and their b

derivatives of ordess € 5 for |U| € §), euch that*

' fu'(e)l, € 200 ()0 axp(C [ Ats)as) (8q)
0

e S AR Y

£. 808 (*), p. 659 for W =S5, N' = 3. The extra factor 2 in (84) is due to the

difference in the definitione of |U|, and the use of (Se). .

e T p—

We assign initial data

u(x,0) = ef(x), ut(x.O) = gg(x) (9a)

e Sppr—

to the solution u(x,t) of (8a), vhere f,9 @ c:(l3). without restriction of generality

we can assume that

J e arad

f(x) = g(x) =0 for x| > 1. (9%)
Higher derivatives of u(x,t) for t = 0 can be computed from £,g with the help of the
differential equation (8a). In particular there exists a constant ¢ (depending on the

£,9,84y) such that

‘ l\:'(mls €ce for (] €1 (9q)
i LEMMA IX. {Iocal .“.t.ﬂc.)-
Lat for given f,g,au !
‘ Jej < min(1, —‘:-5) (10a)
We can find a value '1'0 = Tou) >0 and a solution u @ c” of
P(u'}{ul =0 for x€R', 0€c€T, (10b)
u(x,0) = ¢f(x), nt(x,o) = ¢g(x) for = @ l’ {(10¢c)
, for which
} T, 1
. J {u'(e)} 80 = 2 20g 2 (104)
) 0
I\'l‘(t)ls < Ilu‘lo)ls < 4cie) < % for 0 ¢ ¢t ¢ 'ro {10e)

*We can use the same C in (34) and (84).
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fut(x,t)] <8 < 1 for xcls. o<teT

A (10¢) .
ulx,t) =6 for Ix| >t+1, 0<t<T, (10g) ;
Proof. By (5b), (54), (9c), (10a) .
lu'(x,0)} € {u'(o)}:, < clu'(0)l, < cciel € % <8 . (11a)

Iet T = T(¢) be the life span, as defined on p. 1. Here T(£) > 0 because of (11a).

Then either
t
Un [ A(s)as = » (11b)
t+T 0
or
suplu'(x,t)| = 8§ for x e ®, o<t (11¢)

(8ee (*), pp. 660-661). We define T, = T,(€) by

T T
[ %A(a)as = %—3 vhen | A(s)as > l—"‘;_L’ (114)
0 0
T log 2
T, =T when | A(s)as € -°-g— {11e)
0
In either case
%o log 2
] 7 Merae ¢ 222 (11£) .
)

This implies by (84), (9¢), (10a), (5d) that for 0 € ¢t < T

0 v
lu'(t:)l5 < afu'(0)l, < 4cjel (11£0)
(“'('”3 € accje| ¢ 8 < 1 (11g)
Sut then also by (10a)
Ju'(x,e}] € 4cCle| <8 for x @ 13, 0<¢t« T, (11h)
This is incompatible with
T log 2
] Aa)as < -9§— <»
0
which would imply (11c) with T = T). Hence
<
To log 2
7 AMelas = LS, T (111)
0

-6~




It follows from (11g) and the definition (8c) of A(t) that

0 ° (113)

Thus (111) implies (10d). Moreover (11£*), (1th) yield (10e), (10£f). Pinally (10q) is a

Afe) = {\!'(t)]3 for 0¢ ¢t <€ T

consequence of assumption (9b); the effect of zero initial data is the same as for the
linear wave equation; (see [4], p. 49). .

Relation (10d4) permits to derive lower bounds for Ty and hence for T from upper

bounds for {u'(t)}s. Trivially one has from (11g), (10d)

scc’rie] > 4cc?r el > log 2 (12)

Not much more can be extracted from an upper bound for {u'(t)}s as long as this bound

does not show desay in t. Bounds showing decay cannot be obtained from bounds for

lu'(t)ls. which is not likely to decay; (it does not in the linear case). One way to

find better estimates for {u'(t:)]3 is to compare u with an “approximation® u, for

which {u'} 3 Shows the appropriate decay.
LEMMA III.

Let c,u,'l‘o be as in Lemma II. Let ; be an "approximation® of wu, for which

3

P(u')[u] = w(x,t) for x e B, 0<t T,

wx,0) = u(x,0); Ty (x,0) = u,(x,0) (12b)

(12a)

There exists a gonstant C* depending on the LIy but not on € and ‘\: such that

- T
Hu' = W) (eNg < an [ ° Iv(a)l ds for 0 <t <T, (12¢)
0
where
Ty o
N = exp{c* [ {u'(-)}sa-) (124)
0
It follows from (54) that
{u(e)}, € {u'(e)}, + anc [ Iw(s)l s (12¢)
0

Proot. See (*), pp. 662, where (12a) is written as a symmetric hyperbolic system for the

vector . The factor 4 in (12c) arises again from the difference in the definitions of




bl ot o

o

|ul. The norm lv(.)ls for the scalar v is defined exactly as that for vectors U in
(SI.G). e
We shall apply lLemma III to the case where U is one of the partial sums of the

formal power series expansion for u with respect to ¢€:

2 3
1*‘“2"“3"" (13a)

To get recursion formulae for the u, we expand the operator P(U) of (7a) formally with

respect to U:

p(u) » O+ r,(u) + rz(u) + oo (13b)
wvhere v,‘m is a form of degree k in the components of U with coefficients, that are
quadratic in D,,Dz,bs. Substituting (13a,b) into the equation P(u'){u] = 0 and
comparing terms with the same power of € we arrive at a sequence of equations

Cl\;. - g" (13c)
for M= 1,2,3,.¢. « Here e is a polynomial in the first and second derivatives of
the Upe Each term of this polynomial is (except for a constant factor) of the form

r

%y
I (' ) (134)
1=1 1

with multi-indices G, and integers k,, where la‘l = 1,2 and

i
i
k, =M k., 21 ro>2 (13e)
1e1 1 i
In particular

Q=0

92 - -P‘(u;)[u‘l (13¢)

Q- -P'(u;)(uzl - P,(u;) [u‘l - '2(“;”“1) (13¢9)

Q- -)1(u;)l\t’l - P,(u'z) (uzl - P‘(us)lu‘l
-ra(u;)luzj - 22(‘1;.“'2) ud - P,(u;)ln,) (13qg)

(vith P,(U,V) denoting the polar from of P,(U)). The equations (13c) combined with the

initial conditions

M'EN



u, = £{(x), Du = g(x) for t =0

1 41
uk-o, D‘uk-o for t =0 when k> 1

recursively determine the uye BSetting
Yo = Uy P8 b + Sy

we shall have to estimate lP(u')(;“lls and {;;‘)5 and then apply Lemma III.

The required estimates for the 7& involve the asymptotic behavior of the Yy for

large t. To describe this behavior adequately we introduce the radiation operators

2 ‘1‘):'*' Dy for 1= 1,2,3
L, =D, + )j ka

Finally we denote by D“v(x,t) the solution v of the equation
Ov = w(x,t)
with vanishing initial data:
vi{x,0) = vt(x,O) =9
We first note the asymptotic behavior of solutions of the linear wave equation.
LEMMA IV.
lst v(x,t) be the solution of
Ov(x,t) = 0 for x € 13, t>0
v(x,0) = £(x), Ve (x,0) = gix)

where f @ c’, g6 (:2 and

£(x) = g{x) = 0 for |[x] > 1

vix,t) = 0 for |t - Ix|| > 1

v-o(
(t#Z)

'-o(toz)' D"o(e-rz)' Ly

Here "0" stands for a constant depending on (!)2 and {q)‘.
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Proof. Classically

vs= v’(x,t) + D4vz(x,t) (16a)
where
1 1
v, == [ giy)as; v, == [[ g(yras (16b)
VAT e Y2 AT e o

(154) is obvious from (15c) since for |t - Ix|| > 1 the ball |y| < 1 and the sphere
ly = x| = t do not intersect. Since the area of intersection of the ball and the sphere

is at most equal to -.'ln(“,«tz) it follows immediately that

v1(x,t) < (un[%, t))-uplql - o(t 1 2) (16c)

The same argument shows that D‘v1 = 0(t/(t + 2)), where

1
D1v1 - we If Diq(y)dsy for 1 = 1,2,3 (164)
|y=x|=t
] 49 . g
D.V. ™ =t I[ ( + )ds (16e)
1T @ | e A Ty
Here
a9 _ 3§
- - k§1 £, D\ aly) (16¢)

is the normal derivative of g on the sphere |y - x| = t with direction cosines
1
Ek bl (yk - xk) (169)
of the exterior normal.

The same rate of decay is then found for D,v, and for

4¥2
DDv, =D, =~ [ Dfas for i =1,2,3
1%"2 * % @t 1 98y 2

ly=x|=t

2 1
Dev, = sz -t /[ bt as

ly-x|=t Y

completing the proof of
- o(—1v - of—1—
v o(t - z), D,V o(t - 2) (16h)
One easily verifies, by transforming the surface integral (16b) for vy into a volume

integral, that for i = 1,2,3

-{0=

AT S AR 7 £ T e ¢
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°"T:T|y_£f'_t‘1(%"'§3)“y'_17 I ate ey @-x P

i ane’ |y-xi=t

It follows that

L [ (2%,9+y, $)es
ane? |y=x|=t i i an"y

vy

1 -2 a -2

-f—-—-x:lxl [ 2k g+y Hlas = o((e + 207
ket ave? 1K ly-x|=t X k &’y

for 4 = 1,2,3, since

Il g, €amy 1G] <1yl €

ly=x|=t
lyl<t
Moreover by (16e,1i), (154)
1 -1
Lv, = — /I +2] <& 1x1" g as
41 ae? jyexlet § XK y
eds I we-axh + Dyxix™h e = otte s 207
4%t° |y-x|=t k Y
Then also
LD v, = O((t + 2)72) tor t=1,2,3,45 k=1,2,3,
since |>kv2 is obtained from v, by replacing g by Dkt. From the identities

3

-2 -1
t.in‘vz !.‘l)‘.v2 - )31 (xixklxl L4 + xklxl :I.’_)lt)kv2

for i = 1,2,3, and
3 -1
LDV, = 1 (1, +x IxlI” LD, v,
k=1
it then follows that

-2
l.il)‘v2 = (0((t +2) ") for i =1,2,3,4

This completes the proof of (15e).

(161)




LEMMA V. (The MAIN LEMMA).

Let wix,t) € ¢:z for x @ ‘3' t 20, and let

wix,t) =0 for x| >t + t

logh(t + 2)
Uxl + 23t - x| + 2)2

Ivl.lD vl € n

log¥(t + 2)
(Uxl + 23t - x| + 2)(¢ + 2)

<
|L‘_\'| [

for i = 3,2,3,4 with a certain k. Then
us= U-1v
satisties

u(x,t) = 0 for x| >t + 1

10" 3¢ + 2)
(x| + 2)(t = x| + 2)

<
ln‘nl AM

k+2
IL al € A te2

1
Uxl + 2)(e + 2)

for i = 1,2,3,4, wvhere A 1is a universal constant.
Proof. We postpone the lengthy proof of the MAIN LEMMA which only deals with a property of
the operator [J, to the Appendix, in order not to interrupt the arguments leading to the
proof of the THEOREM. .
LEMMA VI.

Let the u, be defined recursively for N = 1,2,3,... by the differential equations
(13¢) with initial conditions (13h,i) satisfying (9b). Then

\&(x.t) =0 for x| >t <+ 1

20-2

. 1 t+ 2
Oy = AT e e = el v ) for el >
28-2
a 1 t + 2
L’_D L 0(1+—J—L( x| + 2)(t + 2)) for jaj > 0

-2=
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Here "0" stands for a constant depending on !.g.nu.l,l. Relations (18a,b) imply that

2ne2
(uy(e)), = o(d &2 3)) (18a) }
tae), = 010 (¢ + 2)) (180)

for all k > 0.

Proof., We use induction over N. 8ince Clb'u‘ = 0 and the initial data of Ii"u1 have

their support in the ball x| € 1, we f£ind from Lesma IV that (18a,b,0) holds for
W= 1. Let (18a,b,c) hold, when N is replaced by a smaller number. Then t

UD.% - D“Clﬂ' for |a] > 0 is a linear cosbination of terms of the form

r a

b}
I (D ) (19a)
i=1 “ki.
where
f
k., =W kX, 21 r>»2y |a]| > 1 {19b)
11 1 i i

(see (13d4)). 8ince here k1 S M=-1 by (19b), the term (19a) can be estimated by

induction assumption by
Uxl + 2)7F(e = Ix] + 2) 109" (2 + 2)

with

Wom 2Ky =20 4 (2ky - 2) 4 ees 42k ~2) =220
Since r > 2 it follows that

0%, = 0(CIxl + 2)72(e =[xl + 2) 2109 e + 2))
Similarly for 4 = 1,2,3,4

LlDD“n' - I’.‘.D¢Q.

is a linear combination of terms
(!.Ll)c'mk )(002% ) ese (D“r“k )
1 2 4
satisfying (19b). Using the induction assumption we can estimate such a term by

Uxl + 27%e + 27 e = Ixl + 2) " 10g" (e + 2)

13-




a - m——— - ” v . - 3 . P .
—r— Py

;
and find that
1,00% = o(tixl + 2)72(e = Ixl + 207" (e + 20710642 + 20
t Nowt
L] -1 G .
Dy = vy, +0 Dy
!
: where ") is a solution of v“ = 0 with the same initial values as D“u“. Bince all
!
« derivatives of uy (including t-derivatives!) vanish for Ix| > 1, it follows from LEMMAS
IV and V that u, satisfies (18a,b,c). . 1
! We define ;N by (13j). By (184d) there exists a constant r' depending on
|
% f.g,.ik such that
2N~2
~. log (¢ +2)
(u“(t))5 < l'ultl ~ T3 for le| < 1 (20a)
and thus
T
0 ~, 20~-1
<
{’ {ug(e)} a8 € T l€l20g™" (Ty + 2) (200)
We denote by Ey the set of € for which
c*T_lel10g*™ (7 (€) + 2) < log 2 for n = 1,2,... M (200) :
§ F
le] < 1; |Je| < ey (204) :
with C* as in LEMMA III and ¢ as in (9¢c). We have ,
0 ~, ¥
exp{c* [ {\l“(l)}s)d.l €2 for n = 1,2,...,8 (20e) ¥
0 i
H
H
when ¢ € K. By definition E
4
{4
t“C 'k for k € N (20¢) :
LEMMA VII.
Lat t,u.'ro be as in LEMMA II. For given N there exists a constant Y (depending
on !,g,u“.l) and an integer V gsuch that
I - 'Eg')(ens < viet™og' e + 2) (21) . :
:
b
for 0 <t <7 (¢) and € EE. :'
. B
E
]
é.
'
4
i
?
y e - 'y
;‘ J - R U
. o
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Proof. The proof proceeds by induction over N. (It is given for W = 1,2,3 in (*),

pp. 675-676). Using LEMMA III we have from (20e)

~ T
u' - BeN, < 8 { ° Iv, (8]0 d8

vhere
w, = Pu*)ul] = P(u’) [e7u,]
N Yy 41 3
W
with

Rt a-§ Jtedu
we = (p(u') -0 - P, (u'))le’u
LI =0 =1 X ]

(04D @ Jtedu)
Wt = + P, (W' ))(ecn
U M e SR 3

N N-) - 5
T j§1 k§-1 (P"(“') ) Pk("‘."i"k”))[' uyl

(22a)

(22b)

(22¢)

" (224)

(22¢)

(22¢)

(This is the analogue of the decomposition for N = 3 in (*), p. 676, formula (145)).

Setting
P )
P(u') -0 - P (u') = R(u') = b, {(u')D,D
k=1 X 1,km1 X 1'%
we see that

o (R(u") (tjujl )

is a linear combination of terms of the form

8, 8 8
(G’hn(u'mo ‘W 2w) ... (® ’u)c’n”u’

where & stands for differentiation with respect to u' and the multi-indices

B"1'.."’I'Y “tilfy

Bler>0; (B, + 18,1 + oo+ B8]+ ]|v|=|a]l+r+2
1 2 r

18,122, IB,1 2,000,181 2, (vl >2
1 2 r

-15-

(229)

(22h)

(224)

(223)
(22x)
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feiri gl

Rere bu(u‘) is the truncated Taylor expansion of ~a5, (u') starting with terms of
order W - j + 1, It follows then from the boundedness of the derivatives of the auw)

for |U| <& that

s ol i™¥*T) gor ram-3 4+
[ bu(u') -
0(1) for rOXH-~-3J+1
By (223,k) tor |a] € 5 at most one of the Ilkl can excesd 4. Hence

8 8 [
(® 1\l)(l! 2u) vee (D Fu) = 0((lu'|3)r-1lu'ls) for r> 1

It follows from (11g) that in all cases
D‘(R(u')[tjuj]) = ot1e1Mut I lus} o)
Nence by (11£¢), (18d)
vl = o(|¢|l*‘ E’:’ML) (221)
v's

t+2
We turn to the estimate of v;'. By definition of the O in (13c) we have the

formal identities

-
" ,a
o~ J €. (>u)
) 1

- ’(‘“; + ‘2\1' + ..o)[‘\l, + ‘2

2 u, + ..ol

L] [ ]
-U(cu‘ + czuz + e+ § 1 ckﬂrk(u?' + suy + czus + seedu,]

k=1 je1 3

which yield actual finite identities when we collect the terms with equal powers of €.

Now the coeficients of ‘k

ul +cuy ¢ c’us 4 +ee in the last expression by the finite sum

2 k-3
R I LTI A B - SPPS

and restrict j§ to values €N and k to values € N - j. This means that

with k € N will not be affected if we replace

-18-




» ';' - D(G\x1 + Czuz ¥ see ¢+ c'%)
P § M e e e wk=3 ,
: + 321 )21 e MUHRN U PR Ueger? (9]

contains no teras ¢° with = € N and is equal to a linear combination of terms of the

8 8 8
‘N-H'H.(D 1“k ) D 2“k ) eee (D t“k )
1 2 4
with
i>»0 r> 2 Il1| > 1"""‘:' 1 2€x€<Nn.

The same holds for any D“u;'. It follows from (184,e) that

" s tlugeen )™ Nt en)

twre(e)t, = of¢
] s h3ew 4

(22m)

4N-4
: w1 20944t + 2)
: = oe Tva )

Pinally

Pplu') = ’k“‘-j-kﬂ’
is a form of degree k in ;;-j-kﬂ and u' - ;t'l-j-kﬂ' where each term contains at
least one of the latter factors. Thus
a - b
DRy (ut) = Py 4 yyq))lE “j”

is a linear combination of terms of the form

Jo YourlD T )(n"(u -2 3] (n"( -3 1 0a,)
L RIS T e Ugeyaietr Voo U Mgkt 9y
with
ol > 18,121 I¥[22 s+s=Xi Isl>1 N=-3-ket1€U=
lC,'*ooo"lClr‘f l’1'+ooo’l’.'+'7|- lcl#)#r#.
-y7=
na MYy T R v e R W 2 0

et i+ TR EILY oo 3 BR*




ror |a] € 5 it follows that at most one of the "k' can exceed 3 and that none of

them exceeds 6. Using (20a), (18d) and the induction assumption we find
-p (u 3
l(’k(\l') Pk(“:l-j-kﬂ”u \l:’l(t:)ls

SIS CUEE IR 113 ) M T [ TR TS

- o™ -

S
IO [T CHZ)

nj*'(ll-j-lwz)-(t . 2)~1mqu(t +2))

= 0(c
with a certain u. Here, since 82 1 and r + g = k,
i+ (Ni=3=k+2)s = rtitst(Rej=k+1)s > rejeas(U=j=i+1) = W

It follows that

'}
|';-o(t)|5 - o(;'*‘ MLL’) .

t+2

Altogether then

]
Tw (t)1 = o(g'*‘ M)

t+2

uith a certain u. Hence by (22a)
o - Wit~ o™ og" e 4 20)
This completes the proof of (21) by induction over N, provided we still verify the

case N = 1, In that case "1" and v;' -Dtu1 vanish. By (221)

2 -1
lv:ls = 0(e"(t + 2) ),
and (22a) furnishes the desired relation
' - ;;)(t)ls - 0(czloq(t + 2)) e
LEMMA VIII
Ln (ef%r (c) = = (23)
c*0

(This implies the THEOREM, since T(€) > To(t)).

-1g-
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Proof, Assume that (23) does not hold.

€, tending to sero for which

3

|cj|“'r°(cj) <K.

There exists then a constant K and a sequence of

Then € = ¢, will satisfy (20c,d4) for all sufficiently large J, and thus cj ¢ . »y

)
(21), (54), (20a)

for € =¢, with 3j sufficiently large.

3

T
1oa2 . 0 (wis) e
/]

Since here

(24) leads to a contradiction for Jj *+ =,

{ur ()}, < (Sycel, + vele 1™ 110g% (e + 2

log (¢ +2) + YC|C|N+11°9"(£ + 2)

It follows from (104) that

2N-1 N+Y v
< l',ltjllos (Tole,) + 2) + vclcjl 'ro(c,)loq "’o“j’ + 2)

2N-1 v
< l‘ulcjllog (To('j’ +2) ¢+ Yclltjllog ('ro(c’) + 2)

log(zy(e,) + 2) < log(xltjl.“ +2)

Thus (23) holds.

{24)
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APPEWDIX

THE MAIN LENMA
Let wix,t) @ <:2 for x € l’, t >0, and let

wix,t) = 0 for |x| >t + 1

N log(t + 2)

Ivl,iD vl € 2 7 for x| <t +1
(I} + 2)%(t - Ix| + 2)
M log®(t + 2)
|l-1\'| < — for Ix| <t + 1

Uxl + %(e = Ixl + 2)( + 2)
with a certain k > 0 and Ly defined by (14a,b) for i = 1,2,3,4. Then
u=0
satistfies
u(x,%) =0 for |x] >t + 1
k+2

AM 1 t + 2
lbiul<—|—-|——2’——s——-L—(x T (E = Ix] + 2) for x| <t «+ 1

1 k"2(t:+2)

AN
'Lt“l < (Ixl + 2)(t + 2) for x| <t +1

for 4 = 1,2,3,4 with a universal constant A.
oot.
By Duhamel’s principle
- t
ulx,t) =0 ‘wix,t) = [ a(x,t,s)ds
0
where #{x,t,s) for x @& l’, t »s is the solution of
Dw(x,t,s) = 0 for x € .3‘ 0<s<¢t

w(x,t,s) = 0, lt(u.t,-) = w(x,8) for t =38

Por ® we have (ses (16b)) the integral representation

-l
w(x,t,8) = =m0 'y-‘{_t_. wiy,e)ds

(2%¢) is an immediate consequence of (25a), (264) since w(y,s) = 0 for

=20~

(25a)

(25b)

(25¢)

(254)

(25e)

(25€)

(259)

(26a)

(26b)

(26¢)

(264)

iyl > s+,

At i &

ki

iz 55
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Iyl > In) =t +8>a4+ 1.
for |ly-x|l=st-8, x| >t+ 1,
8ince by (2%a,b)
k
wix,t) = o(w 22Ny o gy
(t +2)
we have the trivial estimates
® = 0Nt =8)); uwDO'wa=omed

We observe that Dyu is the solution of

Elbiu = Di'
with initial values

D;u = 0, D‘Diu - G“V(x,O) for t =0

-1 0
=0
D,u Dyw + G“n

wvhere uo is the solution of

Uuo =0
u° =0, u: = w(x,0) for t =20
8ince also Dyw = 0(M), we find in analogy to (26f)

Di“ = 'J(llt2 + Nt)

(26e)

(26¢)

(26g)

(269)

(26h)

(261)

(263)

In particular Dju = 0(M), if we prescribe a numerical upper bound for t, say t < 10.

It follows that (25f€,g) are satisfied for t < 10 since here |x|
less than t + 1. In wvhat follows we can assume that
t> 10

Modified integral representation for u.
In (26e) introduce spherical coordinates 6,4 on the sphere

is restricted to values

27)

ly - x| =t ~s, with

the polar axis pointing in the direction from x to 0, with 0 = polar distance, ¢ =

latitude. Then (see Pigure 1)

¢ - Li 2n
wix,t,8) = ro 2 f sin 046 f wdé
0 0

Set

r=|x|; p=s-|yly 9 =3 (Oxy)y ¥ =3 (x0y)

-21=

(28a)

q=cos ¥ (28b)
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The ¢-integration corresponds to y varying over the circle of intersection of the cone
y*x = qlylix| with the sphere |y| = s - p. Denote generally by j the average of w
on that circles
1
3opis) = o [ wiy, )8
yex=qlyllxl
ly|=s-p

for x* 0, |q/l €1, p<s. Here ¢ is an angular measurs on the circle (¢ = arc length

divided by radius). Then

t-s

w(ix,t,s) = 2

L
! j(x,p.q,8)8in 64
0

where p and q are the functions of © defined by

p-l"/(t'l)z'i'l.' - 2(t - s)r cos @

(l-p)2+1‘2- (:-l)2
2r(s - p)

q = Q(p,x,s,t) =

Introducing p instead of € as variable of integration in (284) results in the

expression

B
wix,t,8) = [ '2—;2 K(x,p,s,t)dp
A

where we define
k(x,p,s,t) = 3(x,p,Q(p,|x|,s,t}),s) (28h)
B=sgs~|s-t+r|l; A=g-|t+r-sg|=2-¢t-~-7r {284)
We introduce new independent variables in w(y,s) which are better suited for
describing outgoing waves. For that purpose we associate with w(y,s) the function v
defined by
viy,p,8) = w((s - p) T§T s) for y#0, p<s, 0<s
which is homogeneous of degree 0 in y. We have conversely
- w(y,s) = v(y,s - |yl,s) for y *#0, s>0 (29b)
Substituting this expression for w(y,s) into (28¢c) and replacing y by (s - p)y yields
J(x,p.q,8) = L J viy.p,s)d¢ (29¢)

2w
y x=q|x|
lyl=t




We observe that by assumption (25a)

viy,p/8) = 0 for p < -1 (294)
and then also by (29¢), (28h) ;
‘j(x,p.q,l) =0, k(x,p,8,t) =0 for p < -1 (29e)
It follows from (28qg,1i) that é
B
wix,t,s) -{ '2—;2 k(x,p,s,t)dp for s < t+r- 1 (29fF)
w(x,t,s) = 0 for s < EL:—f-:—l (29g) .
i
1
Derivatives of u. Direct estimates.
Let i = 1,2,3,4 be fixed, Set
Wix,t) = Div(x,t) (30a)
By (26g)
D,u -D"w + 6“\10

Here (see (16c), (26e))
M - 0( M )
t+2 (r +2)(t -1 + 2)

u°-o(

since no(x,t) $0 only for t - 1< r <t+ 1. Thus for the proof of (25f) we only have

to show that
k+2
N I log™ “(t + 2)
oW O(H (t+2)(t-r+2)) (30b)
Ve represent O in complete analogy to u = U 'W, introducing
i Viy.p,8) = Wits = p) T ) (30¢)
‘ J(x,p,q,8) = ;—' ) Viy.p,s)d¢ (304)
y*x=q|x| 1
lyl=1 3
K(x,p,s,t) = J(x,p,Q(p,Ix}|,s,t),s) (30e)
B, .
fx,t,8) = [ —5;2 K(x,p,s,t)dp (30£)
A
with A,B,Q as in (28f,i), so that
-1 t
0 Wix.t) = [ Q(x,t,s)ds (309) .
0
-23-




For V we find from assumptions (25a,b) that

Vviy.,p:s) = 0 for p <1

M 2og"(s + 2) )

viy.p,8) = of 2 7 (30h)
(s ~p+ 2)°(p + 2)
which implies that
J(x,p,q,8), K(x,p,8,t) = 0 for p < =1 (304)
M logk(l + 2)
J(x,p,q,8)s K(x,p,8,t) = 0f 2 2 (303)
(s =p+ 2) (p+ 2)
We can verify (30b) immediately for bounded t - |x|, say for
t=-3<r<ct+1 {(31a)
For by (303)) with -1 < p < s
BBy &) = ot legi(e + 2))
2r XsP:8, (s - p + 4)
while by (281) B< s~ (s -t +r)=¢t-1r¢<3. Thus, since here r > % (¢t +2),
3 k k
- M log (s + 2) - ofM 1o (€ + 2)
R(x,t,s) o(_{ s oD T D) dp) o(——9——(t TR 1))
0% = oX 106" V(e + 2)) . (M 106" 2(x + 2) )
t+2 (r+2)(t -1+ 2)
for r satisfying (31a). Henceforth in the proof of (30b) we can assume that
0<r<t=3; t>10 {31b)
In this section we find the relevant estimate for £(x,t,s) in the case where
Tesr-ncsce (32a)
without making use of the radiation conditions (25¢). (32a) implies that
-1<A=28-¢t-~-r (32b)
By (30f,))
B M ogttt +2)
(x,t,8) = o(f 7 %)
A r(s=-p+ 2)(p+ 2)
(32c)
k
- 0(" log (t + 2) (B~ A)(S + 4) + log (s - A+ 2)(B + 2)))
s + ‘)2 (A + 2)(B +2) (s =B+ 2)(A + 2)

=24~




“1¢{ACBwg-~-|t~-r=-g| Cs

0<B-A=2x+(t-r-8)=-|t~-r-s]| <2

B ~A
B +2

< Min(1,2r) = 0 )

(s - A+ 2)(B + 2) B-A B-aA
1°"(-—a+z)(a+z)'1°9([‘*.-a+z)(‘*g+z))

1 1
< z:(' ~ B+ 2 he 2)

1 2 1 1
v St gg) o)

Hence

M Jﬁs"(c + 2)

1 1
Q(x,t,8) = °((: + 2)(t + 2) (It ~r-sl+2 2m-t-r+ 2)J

and thus

t k+1
[ axemas = oiler (e r2))

(32d)
1 (t4r-1) r+2)(t+2)

Derivative of u. Integration by parts.

To complete the proof of (25f) we need in addition to (32d4) that

Y, (t4r-1) k+2
2
I = I Q(x,t,a)dg - O(M)

(33)
Y (t=r-1) (x4 2)c + 2)

(Note that as in (29g)

x,t,8) =0 for s <Yh(t-r - 1) (34a)

since then B < -1, and that

hit-r=-1) 21 (34b)

by (31b)). The considerations leading to (32d) are insufficient for the proof of (33).

The estimate (32c) still holds when A is replaced by ~1, but is not good enough to yiela

(33), and we have to have recourse to rure complicated estimates involving the raditation

conditions (25¢). 1In this section we restrict ourselves to values s with

Yott -z - 1) S cY(t+r=~1)
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The relation W = D,v betwean w and W yields relations between v and V,

namely
Vigop,a) = I v (y.pss) = b v (yopss) wvhen = 1,2,3 (364)
YoPo .-py1YoPo mpr' o4y
Viy.p,s) = V.(y.pol) + vp(y,p.-) when i =4 (34e)

In order to unify the arguments we introduce

vely.pes) = L ¢

Y
s-p yi("""' v*(y,p,8) = - Tﬁ v(y,p,8) when 4 = 1,2,3

V*(y.p.8) = v'(y.p.-)x ve(y,ps8) = v(y,p,s) when { = 4

so that V* and v* are homogeneous of degree 0 in y and

Viy,p.s) = V*(y,p,8) + v;(y.p.l) (35a)
In analogy to previous notation we set again
xpas) =h [ Veiy.p.elde (35b)
y x=q|x|
lyl=1
3*(x,p.,q,8) "F J v*(y.,p,8)a¢ (35¢)
y*x=q|x|
lyl=1
K*(x,p,s,t) = J*(x,p,Q(p,Ix|,s,t),s) (354d)
k*(x,p,s,t) = 3*(x,p,0(p,Ix|,s,t),s) (35e)

Then by (3%a), (304), (30e)

J(x,p.q,8) = J*(x,p,q,8) + j;(x.p,q,a) (35¢)
K(x,p,s,t) = K*(x,p,s,t) + k;(x,p,l,t) (35g)
- Qp(p,t,l,t)j;(x,p'Q(p,t,l,t),l) (35q)

Consequently (see (29f)), using that k*(x,~1,s,t) = 0,




———

B
. -
a(x,t,8) --{ SR (ke v k8 -0 3t)ap

s - B
2r

B
- { !3;-2 QP(P,r,-.t)j;(x,p,Q(p,r,.,g),.)ap

One verifies easily from (29a) and the definition of V* cthat

V*(y,p.8) = Liv((l - p) T¥T,l)

for i = 1,2,3,4, and that
3 vy
k
v _(Y,p,8) = = Z Ry
 J ke 171

It follows from assumptions (25b,c) that

'*k((. - p) T%T")

M LgsF(g_* 2)

v*(y,p,s) = 0

v (Y.pi8), VB(YiRi8) = of

Pinally we obtain from

(s ~p+ 228+ 2)0p+ 2)

M loqk(g7+ 2)
(s ~p+ 2)3(p + 2)°

- ' hd -
vyk(y.p.n) —m-z Lvils - p) T;T"’

and the definition of v* that

e o a-p
v;k(YUPnl) °(|¥| {w| + ¥ lIAk"l)

M logk(gf+ 2)

“ G Te=p+ Dp 7D

¥ 1og¥(s + 2) )

- °(|yl(l -p+2)(s+2)p+2)

Relations (366,4), (35b,c,d,e) imply that

J*(x,p,q,8), K*(x,p,8,t) = 0

-2l

M log"(s + 2)

1
((--p+2)(p+z)’-+

(s -p+2)%(s +2)p + 2)

B
k*(x,B,8,t) + [ (-'-2;-2 X*(x,p.m,t) + -;-; k*(x,p,s,t))dp
-1

(35h)

(36a)

(36b)

(36¢c)

(364)

(36e)

(36¢)

(369)




Mlog'(s +2) ) (36h)
(s-p+ 3+

I*(x,p.q,8), k*(x,p,s,t) = o(

We first consider the contribution to I of the term

a = &=B ye(x,n,0,0) (37a)
in (35h). By (36h)
amo(—Mledite o) y_ omtedftesn (1, 1 RIS S0 RO
r(s - B+ 2)(8 + 2)° rseq)? 8BT2Z B2, 00
where .
~1<B=g -~ |sottr| < & Y(ter=1) S g <Y (ter-1); t-2r>3
Thus

If here r < 1 we have from (37b)

a = o2 log(e + 2))

r(t = r + 2)

Y (eer-1 | 3 X
2)
| oaasmo(fiiesitrd)) o _Mlog(te3) (37¢)
% (ter-1) (t-r+2) (r+2)(E -1 +2)

If, on the other hand, r > 1 we have

: 1 + 1 + -] + 4
rs+4q)? ®-B+2 Be2" .2
=g ( AR IR R R R R I R T1
(s + 4)
and hence
Y (ter=1) et L
% (t=x-1) oae = o(“ +2{(e -1 +2) (374)
We next consider
| J . - .
g = ! (?2 K*(x,p,8,t) ¢ = .o(,"..'")~ (38m)
-1

-20-




Here by (36g,h)

k
g 1 - M log (¢t + 2) 1 1

K + 2r k* o(r(- -p+ 2)p ¢+ 2) (l + 2 * (s -p+ 2)(p + 2))
i

- o x_log"(e + 2) )
r(is - p + 2)(p + 2)(s + 2)

gg(t*Zl 1
(:(.oz)(c¢4) (I-p#z’pfz))

since p < B € 5. Hence by (34c¢)

K1
o oM 208" Ve + 2)
LR TR XL

k1
'-Q(M) for r ¢ %

g(t = ¢ +2)

g.o(—ﬂJt_:_zl) for £ > 1
(s + 2) (r + 2)

In either case ;
Y (ter=1)
- ____2!___LE_:_21__
B&(tixbt) Bda o((! +2)(t-r ¢+ 2)) (38b)
This leaves
Yo | 222 (p,r,e.t)32(x,p.0(p,r,8,t),8)dp (390)
-9 4 q

For J* given by (35c) one sasily derives the Aifferentiation formula

3

1

3*(x,p,q,8) = J I (x - xqy )v* (y,p,8)0

L 2%xr(1 - qz) yex=qr k=1 * * ¥y )
lyl=1

Here for x°y = qr, |yl = 1

Iﬁ'mkl‘lx-ml-rvh-qz. .

. -29-
1Y
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Y o

It follows from (36f) that

k
M1l s +2 q2,-‘!/2)

33xopeos) = (ot a s Dip e E 1 T (39b)

By definition (28f) of Q(p,r,s,t) we have

/1 - P(p.r,s,t) = B (39¢)

2r(s - p)

R o ——

where

R = /(t+r=-p) (t=r-p) (t+r=-28+p(28~-t+r-p) (394)
is Heron's expression for four times the area of the triangle with vertices 0,x,y; (see

Pigure 1). Moreover

Q (p/x,8,t) = —’——z (39e)
P (s - p)
where
g=-(s-pF+rt-(t-mn? (39¢)
? Consequently
B k
- M log (t + 2) 8
Y °(_{ T(s-pi2)(s + 21(p + 2) R ¥ (399
Writing
8 = -2(s - p)z + (t = p)(2s~t+r-p)-r(t-r=-p) (40a)

and using that

0 < 8=B < 8~p < t=r-p; 0 < B-p = 2g=t+xr-p < t-r-p for s < t-r

e po v

0 € 3=B < 8=p ¢ 28=téx=p; 0 < B=p = t-r-p < 28~t+r - p for s > t-r
we see that
8 = g((t + 2)(t=x-p)) for s < t-r (40b)

8 = 0((t + 2)(2s-t+r-p)) for s > t-r (40c)

We tirst take up the case

s> t-x (404)
This case only occurs when
' +
r> & 3 ! (40e)
s
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because of (34c). Here

1

1 =1 1 —tép=
thrp = o(t r z): o-p > A (28=t+r-p)

B = t-r;

Nence by (40c)

8
(s=p+2)(p + 2)R

- o(tt2 (- )/ 28-t+ )
s+ 4 --p+2 ) + 2 (ur-p)(t-r-p)(tor-zup

- of et +2 ( 1 + d20-tere1 )
(s + 4 err=20=1 7/ (t=r=-p)(2s=t+x-p+d) (p + z)v'c-r-p

Bence by (39g), (40e)

we + 21 ggk ](t +2) (1 . 3l-t+r01))
r(s + 2)3&0:-2-- ter+2

Y = o=

(l( loq (t + 2) Ml-eﬂ'ﬂ
/(t + 2)(t~242) (8 + 2) 4 r=28=1

With the substitution

.+ 2w AESERAN(EoEe3) (1 ¢ vz!

2(t+r+l) + 2¢( h-rt))v

we find

Y (t4r=1) k+1 - 2
[ vas m o BAoG (e +2) (0 1) "V/2(0003)"¥2 '—"—2—2
t-r Y(t + 2)(t~r42 a (1 +v)
(40£)

(__2143*_2).)
(r + 2)(t-r+2)

as= /gﬂrﬂut-x*‘l)
(t=x+3)(3r~t~-1)

! We coms to the contribution of the values s with [see (34c))

with

Y (t=1=1) < 8 < D = min(lp (t+r=1),t=r) (41a)

Here




——

8 = 0((t + 2)(t=z=p)), B = 2g~tér

t-r-p < toret °( torel
térep  téret t+ 2

t+r=28+p > tér-2s-1

Hence by (39g)

k
- log (t + 2) (t + 2)(tere1)
Y °( I r(s ¢ 2)(s-p*2)(p + 2) /10-:'-2-1)(2--:0-:-9) d')

logh(t + 2) /—'——‘g:u ) (t=r+1)
o(r(l + 2)(s + 4) tér=-28-1 ')

with

g 4 1 /'_1_
= _{ (.-ptz * Pt 2) 28~t+r~p %

a b
a0 . 1 a0

Yt-r-s+2 {I (1 + 08 /2g-ter+2 { (1 - 0)/o

a b 2
= °(/ (a + V(t-rat2) ¥ /;-e-m»z log 2 b)

20=t+r+1 b= 28~t+x+1

a =
tereg+2 20~t+r+2

Here by (41a)

2r - (t+r-1-2s) < s a < b 4

2 + (ter-s) a+1 r+1

.30 (t4r-1-2e)

2r + 1 = (t+r=-1-28) 2: + 1

2 2r
bloq' <2r*‘loq(4r+2)

t +2 t + 2)(t-xr+1
((l + 2)(s + &) r(xr + 1)(tér-2s-1) (/t-r-»z * /2.-1-.4-u2

In the special case 0 < r < 1 we have by (41a)

D =Y (ter=1); 842 > Y (£42)) t-r-s+2 > Y (t42); 28-tere2 > 1

{(41p)

{(41¢c)

(414)




k+1
Y= o( M log (¢t + 2)
(t + 2)/r(ter-28-1

and thus
1
1 (ter=1) vaa = o2 lgk*‘gf. +2)) . o(L’ﬁﬂul) (41e)
% (eer=1) e Frated

In the remaining case 1 < r < t=3 we have

k+1
M (t + 2) t + 2 1 1
V= °((r + 2)(s + 2) (t=r+2) (t+r=28-1 (/t-r-uz + /2.—1:":*2))

1 1
ds
Y (t=r=1) s +2 /(tn-n-i)(z- t+r+2)

Y (e}:-n 1 f 5
< ds
% (t=p=1) s+ 27 (ttr=28-1)(2s-t+r+1)

/___'.._ - /___1_
= ol /mmmee) = 'V wrEeed) (aat)

We need a similar estimate for

D 1

1
s+ 2 /(t#r-:--ﬁ(t—r-uz) a8 =G (449)

% (e-r=1)
2at at first 1 < r < t/2. Then +2 > V4 (t-r+3) > (t+2)/8, and

b
1 1 1
G- J - as = 0 ( I

t+2 % (t=r=1) /(e"-h-i)(t r~8+2) t+2,

® )
/5(1 + 0)

with
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2r t <+ 1
. a=0, b= o vy s for 1<« 3
Ir=t=-1 2r t + 1 t+ 5
& =8’ DT o3 for Ty <rc</y
4 t=r+s t+S t 1
& "ot D " 3pt-s for T3 <r<3

In each of the three sub-cases
¢ = o(1eH72)
as is easily verified. If instead t/2 < r < t-3 we have
D = t-r; t+r-2s=1 > t+r=2(t-r)=1 = Ir=t=1 > ¥, (¢t+2)

b

G~ 0( 1 tor ds ) - 0( 1 a0
Yt + 2 Y (t-r-1) (s+2)/t-x-s%2 (t-r+)(t + 2) a (1 - 0)/F
with
t-r+5 4
0<a=grvt ‘P ety 7
Here also

1
6 = o/ v e

Altogether then for 1 < r < t-3

{ ? vas = o® 10g%*?(¢ + 2))
. . Y (tmrmt) (z + 2)(t-1+2)

This, together with (41e), (40£), (38b), (37d4), (37c), (32d4) completes the proof of (25f).

Proof of the radiation conditions.

We notice that (25f) implies (25g) when Ix| = r <15 t. Thus in the proof of (25g) we
can restrict ourselves to the case

Yt <r < (45a)

; By (264) and the assumption w @ c2 we see that

wix,ts) = t‘; L[] wix+ (v - )€, 8)a8,
1€]=1
f .
; belongs to ¢ in x,t,8 for 0 < g € t. Because of (26a), (26¢c)

34~




8ince

ve f£ind from (28g), (28i) that

t

Ly

i

t B
+ f ds f !5;-2 Lik(xip,lpt)dp
0 A

Take first the cagse i = 1,2,3,

Ly

Here by (29¢c), (36e), (25c)

It follows from (454),

{More precisely the p-integration is taken over that portion of the interval

which p > =1).

3
2 (61. - t-zxix-)jx (x,p.q,8)

k=

=1

1
3 xepewe®) =m [ (3
y®x=qr
lyl=1

us= f Ltu(x,t,l)d.
0

Lt= Ltr - 6“

t t
8 =\
Liu = 61‘ { = x{x,A,s,t)ds - 614 ] as

By (28h), (45c), (14a)

3-
-1

n=1

o M log“(s + 2) )
ri{s-p+2)(s + 2)(p + 2)

(45a) that for 4 = 1,2,3

Ly

B
[
A

(45b)

(45¢)

=R x(x,p,s,t)0p

2r

2
¥y X v )d’
='ny,

t B X
u=off asf Jleilerd g
] A (s + 2)(p + 2)

= o

1 1og®*%(e + 2)
(r + 2)(t + 2)

)

(454)

(45e)

(45¢)

(45g)

(A,B) in




We turn to the case i = 4. By (28c,h), (25b)

——2 k(x:p.l,t) - O(M)

ris~pt2) (p + 2°
(ulog(t-o-)( 1 , 84
e+ 2 PR OBAE (T2

It follows that

t B
f ds I !—-32 x{x,p,s,t)dp
0 A 2r

k+1 k+1
- N los (t + 2! - » log {(t + 2)
of 2 )= oG 5 )

Similarly

- A
.22 s,t) =0 for A = 2s~t-r < -1

k
.22 2 k(x,A,8,t) = 9( M log (2 2) 2)
r{ttr=-s+2) (28=t-x+2)

M log®(t + 2)
r(r + 1)(28=-t-r+2)

= of

It follows that

t k
oA L oM loghte ¢ 2)
£ Fr k(x,A,s,t)ds o((r + 2)(t + 2))

This leaves the last term in (45d). By (14b), (28h)

Lk =@ +Q)i (%,PeQ:8) + 2 £ 'x oIx
[ ] n

The contribution to L,u of the terms with ’x is again of order
n

( g’ k+2 (t + 2!)
(r + 2)(t +2)
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) for A = 2s8~t-r > -t

(46a)

(46b)

(47a)

T Y

n




as follows from (45f), (45a). We estimate next

_ (2g-t+r-p) (t-r-p)

(@ + )3, =

(47b)
jq

2(s - p)r2

We find from (39b) (which applies just as well to jq as to ja), and (39¢,d) that

g (Q . Q )j - 0( M log (s + 2) /(t-rﬁg)(2|-t+r-p)
r2(. + 2)(p + 2) (t+r-p) (t+r=2s+p)

Here
28-t+r=p < t+r=-p; t-r-p < t-r+t

1f also s <%, (t+r-1) we have t+r-2+p > t+r-28~1, A < -1, and

M log (t + 2) t-r+1
s SR v 003 8 - of / i)

-1 r (. + 2)
Vo (t4r-1) B k+2
8 - = ofM1log {t + 2) t-r+1
£ as -{ SR, + Q)3 % of = /t+r+3)
- ol 1og®*2(¢ + 2)

(r + 2)(t + 2)

If instead 14 (t4r-1) < 8 < t we have s+2 >Y%(t +3), A> -1 and

R, + 03 = of 2"1—°‘-1“"2’ /£

r{t + 2)(p + 2)

B -

[ 2=P (g +g)3 ap= ("J‘“z’f )

I rorTe O A (p+2)Wp-a
- 0( M logk(t + 2)

/e + DA+ 2)

t B k
If as [ 2=R (g +9)jap~ o(!_lgﬁ_ii;t.gl)
Yaltee-) A ¥ F Tt79 r?

- 0(" lggkgt + 2) )

(r + 2)(t + 2}

This completes the proof of the radiation conditions (259) and of the MAIN LEMMA.
a
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ABSTRACT (cont.)

where Du is the set of 4 first derivatives of u. For given initial values
u(x,0) = er(x), ut(x.O) = €G(x) the life span T(€) is defined as the

supremum of all t to which the local solution can be extended for all x.
Blow-up in finite time corresponds to T(€) < ®. Examples show that this can
occur for arbitrarily small €. On the other hand T(€) must at least be
very large for small €. Asguming that aik,F,G -] c., that aik(o) - cik'
and that P,G have compact support, it is shown that 1lim SNT(G) = ® for
every N. This result had been established previously S;gy for N < 4.
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