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CALCULATION OF COSMIC-RAY INDUCED
SOFT UPSETS AND SCALING IN VLSI DEVICES - .-

B INTRODUCTION

Progression of VLSI (Very Large Scale Integration} circuitry to
smaller feature sizes substantially increases the probability of soft upsess
induced by the penetration of energetic cosmic-ray particles .through the
device.l ~These devices can change their 1logic state without permanen
damage to the device when a densely-ionizing particle deposits a quantity of
charge at a node (an MOS capacitor, for example) that is comparable to the
quantity of charge representing the logic state. N S T

An exploratory study is needed at this time to estimate the effect of
scaling of microelectronic devices to smaller sizes on expected - soft-upset
rates 1in the cosmic ray environments encountered. by satelliftes. &
definitive calculation requires knowledge of the - way microelectronic
technology will proceed on scaling to smaller feature sizes. However, some
1imiting cases can be studied which will indicate whether soft-upset rates
become impossibly large on further scaling or whether tolerable- soft-upset.
rates are to be anticipated as we evolve to the. VHSIC .(very high spesd
integrated circuit) era. Such an exploratory calculation: has been: gi-m
out by Burke.2 The calculations reported herein are.an extension of. the

S

Burke calculations in that our calculations are based on.extended commicoray
environments recently developed by the NRL Laboratory for Cosmic. Ray:
Physics,3 and our calculations employ exact evaluation of the.integre
chord-length distributions. Scaling of the device structures is.extsaded Lo
feature sizes of approximately 0.1 micrometer, and wariation in the scalieg
Taws 1s explored. o S g

RURS S S S% 3 3

The study by Burke parametrizes a cosmic-ray LET spectrum gehwrated by
Hetnrich.4 The Heinrich spectrum only includes cosmic-ray -componénts wf
6 < Z < 26, whereas the NRL spectrum includes a larger ..,‘ta?ggf;;;;l;rﬁgm 1.4
280 In addition, the NRL analysis accounts for "fmlf\hrh’iﬁﬁ 5?
producing data for three cosmic ray environments: - gplar- maxim vity,:
solar ninim:a acti\;it{;n and a 90 percent worst gm oo .“‘““
percent worst case is the envi pt most reasonable to. n-reliahiiity .
studies for satellite-borne ‘el(cgrqhws‘ since this ;lq:g 9 0r activity,
by definition, will only be excedded 10 pércent of. the tims A: WELES0m, ¢

lay ot W B
SRS

soft-upset rates have been calculated for tha dirsct ionfratioe 4
protons in the radiation belts at an altitude of GO0, nautial idles.. .
contribution to soft-upset rates by prot%ﬂm aucYerg. raactivhs. |
subject of a continuing fhvestigation. The presint calculaté

the dependence of expected soft-upset rates on environment.

Manwscript submitted June 4, 1983,
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Exact evaluation of the fntegral chord length d1str1mms .

comparison with approximate expressions which have been used by others dre
shown for selected examples.

Evaluation of soft upset rates for the same random access memories
(RAMS) that have been studied by Burke has been performed using the seme
gmtui-ical parameters and critical mrgus in order to facilitate
comparison . L e e

II. ENVIRONMENTS . EEREE

The LET spectra for the cosmic-ray environments were. darived.from the
work of Adams et al.3 We considered the pure galdetic’ cosmic ray
environment at times of minimum and maximum salar activity. The LET. gpectra '
for these two environments are shown in Figures 1 and resmtimy. For
the 90 percent worst case spectrusm, we have included'a pgrqgnt worst mo
contribution of low energy particles from solar and interplanatary activit
fn addition to galactic cosmic rays as they appear durt period
mintmm solar activity. Only 10 percent of the time shou it nonditiqis h
the interplanetary medium be more hostile for mcmlectronlg, ‘components.
This 90 percent worst case spectrum, of extreme imurtmce for estfutidn of
satel'Hte vulnerability, is shown in Figure 3.

A copy of the LET spectrum for cosmic rays due to I«fnricM is shown
for reference in Figure 4. This LET spectmi ts very close to the. . so‘ltr
maximum spectrum generated at NRL. .

Figure § shows the LET spectm for protous for 2 8§00 na
orbit in the proton radiation belts. The proton spcct,, ux _obtained by
using the “radfation belt proton: spectrum of ‘A over . a
6% 1111 km orbit, and allowing for the sMeldmg of s t%p éﬂ
spacecraft. The proton energy spéctrum’ uas cmvc
using the tables of Williamson andd Boujat ﬂ)iS; sur.:rm 1 )
the direct {fonfzation effects of the mtons, ml _ A
imnﬂon of any resction products. As pointu out m_.,.,,,; negs. 3 A

the proton reactfon products can usﬂ e upsets. MER
devices, 30 that the actual upset” ﬂtes a  MiCH higher a ,
factors than given by predictions using this spectrum. This Cturve +
for showing the worst case upset rates as scaled dgvicgs M!!Ql _sh& -
the direct fonization. , S A e
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sensitive ume. w rea emuoh
Togic . tt-bfmdfﬁ_ 1t
‘nat .oceur, 1.e., that anly

i device acfually contributes to the collosted t B
- and diffused junctfon test §w¢fdm 0! % COY L
! significantly less charge from the same particlc than diffused mw 2§
3 ok devices. The energy deposited, Em, 48 gim by L
a . . .

, | Edep - Lp!, (1)

) ) where L s the 1inear-energy transfer for the particle (LET), p {s the

% density of the material, and £ is the chord length for the particular

' traversal through the sensitive vélume. 'Thé number of electron-hole pairs
‘ created is Egep/Ee.p, where E is the energy required to create an

electron-hole pair, 3.6 eV in the case of Si. When E &%

1 I AE, a critical energy, a sufficient number of electron-ho fmrri

2 ‘ to cause an event. Thus, an event can occur if the chord length associated
\ h with the particular passage of a particle is greater than Lgi,, where

!‘ \ ' min - ‘E,QL. (2)

_ It is shown by Kellerer,12 that in an 1sotr¢)pic unifom field of fluence
| $, the expected number of chords through a convex body of surface S is
, S§/4. If this number is multiplied by C(t gin), the sum prolnbﬂ’lty

) the chord-length through the sensitive volum fs greater Ml a.
the number of events that deposit an energy greater then af 'is o at
For a continuous spectrum, No is obtained by integration of

N =3 f RCK (-.r) a.

In this integral, ¢(L) is obtained from C(E) using tm trmfomﬂm

' The g4 depmdmce in C(l hasbmcmrtdtv

usi eqnation (2) so uut int over L can.
‘mng limit of {integration is the :!MJ v,m of L

. lg = l!hlm
where o 1s the diagonal of the pmmlm
‘ tm-u! o LR
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Lw is the mxim value of L included 1n }ﬂ- 1

to equation (3) has been used by Pickel and, Blanc

i et Lot SRS 8038 5 VAN 30

IQWQ of L tCﬂ' it L") contained in ’ .’4?‘-‘- N
en to be zero in the intérval, Lo <L g L. | ' T

N fve f § 1 o ’I‘
“An.alternative formulat qn to Calcu ate n, d. %, u 1, *

uses (L), integral LET spectrum, and . m qtff"" 61
| ch::d-lé%g)th distributigg. “These quan!{tus are. relgt'éd) to ‘(L) md Cﬁl ;y
(L) Lf (x)dx
c(*) f e RUN

1(’!;3 equivalence of the two fomlisms is easily shown by expanding equation

L L
N3 f W0 _[ml " )araL, (9)

where 2 = AE
oL

Interchanging the order of 1ntegration, with the appropriate change of
T1imits,we have -

L .
max max '
N, .{'-f £(2) f oL o 'de (10)
. ‘ ,.o L(z) : : DAl
Here, L(2) = aE/p 2, the minimm value of LET which will deposit aE in the
:;nositive voluse for that value of L, and L, = aE/olmax. Using (7)
ve, : ‘ L e

LT

ne-{‘- f t(2)e [L(2)] de, (¥
L
]

8.  Chord-length distributions

Kellerer'2 does not furnish_ cxplicit expressions Cfor  the
chord-length distributions that appear in hisg thqontical work on
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1B microdogimetry,  However, —Bradford has  utilizedsc-an :axeot: resul® by
: Colemani® . ..for the differential ‘chard-length:: distribetion W?z
two-~dimensional rectangle together with -the:formalism  developdd 9y Kellever:
relating the various two- and three-dimensionsd:chordsiength-distritutions
to. derive an approximate expression for: C(A.), theintegy ¥ - chord<Tength
distribution. for a rectangular parallelepiped.: Theapproximation iz’ claimed
to be useful for b/a or c/a sé 3.. This approximate evaluation wf -8f2):4s
very useful since it furnishes an. expression for -C{% ) Yin closed - foum.
Burke, in the worked cited above, has -used a. further agproximation: to-

' Bradford expression which 1s in -2 convenient form for hand: calculation.
1% . This approximation is . At atierih s it

C(2) = 0.75 (a/2)2.2 L>a (12a)
C(2) = 1 -0.25 (2/a) 2< a. - (12b)
These approximate results are very useful, yielding values of C{2) gqufte

close to the exact result except that C(1) does not go to zero correctly: for
large £ near 2 pax. : - o

il

PRk 4

-

] . An exact expression for the differential chord-length distribution,
- f(2), due to Petroff is contained in a paper by Pickel and Blandford.i:
= / We have evaluated C( 2) by numerical integration of the Petroff result,
- utilizing equation (8). This exact result for the geometries used {n the
soft-upset calculations is compared with an evaluation utilizing Bradford's
approximation (Approximation 1), and the approximation used by Burke
(Approximation 2). We have also compared the Br%dford approximation with an
exact calculation for a case studied by Ziegler.l -

Comparisons between the exact calculation of C(2) and Approximstien: 1
are shown in Figures 6 to 9. We note that results are almost .identical for
small £ until the first discontinuity in C(s) is reached, and. that .the
results are in quite good agreement bayond that uatil &..neaches. .a walue
larger than the last discontinuity in C(t)., For these larger valuss-of 1,
Approximation 1 for C(t) does not go to zero properly at | o The
examples shown in Figures 6 to 8 satisfy the criterion given by wd- for
the usefulness of the approximate formula. Figure 9 shews. ac?(roth
parallelepiped approaghes a cube, the case studied by Zisgler. - As case
the disagreement at large chord lengths is greater.. S T TR

Approximation 2 is compared with the exact calculativn for- g‘li) in
Figures 10 to 12. Again, the results using this appreximstion..ape
reasonably close to the exact results except for the longer chord | .
The degree of agreement seems to be dependent on how well the condition bfa
IV. OEVICE SCALING AND CALCULATION OF SOFT-UpSEt pate =~ =7 == ‘awene
A.  SCALING o

Soft-upset rates fn the cosmic-ray environment . havy bm

calculated for the particular memory devices studied by Burke

PIR, (S dirs
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scaling scenarios reported by Burke are extended to smaller feature sim
and soft-upset rates are calculated for the various environments diseussed
in Section II. Furthermore, where equation 3 {1s utilized to calcilate: the
number of events that deposit energy greater than aE by cosmic rays or
direct fonization from protons in the  radiation belts, exact evaluation of
C(1) is employed. When scaling to smaller device size, equation 3 can be
considered to apply to the reference devices, 4K memories. It is not clear
at this time how the technology will evolve when VLSI devices are scaled
down to smaller feature sizes. One scaling scenario that can be considered
is scaling according to the model of Mead and Conway.l7 1In this model,
all of the linear dimensions are reduced by a scaling factor a,

a' = a/a (13a)
b' = b/a (13b)
c' = cla (13¢c)

Furthermore, all voltages are scaled down by dividing by the same scaling
factor a, thus keeping all electric fields in the device constant. With
these assumptions, the stored charge representing a bit scales as a—2.
This follows from the fact that the capacitance, C, beirg propertional to an
area divided by a separation distance, scales as o~ Since Q@ = CV, Q
scales as ao-2. Critical energy is directly proportional to critical
charge, f.e., 4E = ¢Q where ¢ = 3.6 eV/eh-pair in silicon. Thus the
critical energy for upset scales as

= aE/al. » (14)

The Mead and Conway scaling scenario is rather simplistic and
cannot be expected to apply indefinitely as devices get smaller and
smaller. For example, at some point {ft {is not practical to continue
reducing the voltage as the signal to nofse ratio will ome intolerable.
Furthermore, the recently-discovered funneling phenomenon!V will cause the
effective charge-collection volume to scale differently than the physical
dimensions of the volume storing the charge that represents a bft. Correct
scaling would have to take fumneling into account as the device dimensiohs
become smaller. At the present time it is not clear which of wany possﬁﬂe
scaling scenarfos should be used for these exploratory calculations. ,,
for part of the analysis of soft-upset rates reported here, a w&d-cuo
assumption has been made that aE varies as a=3. We have aiso exp!
effect of variation of scaling laws by repeating the calculations for af
varying as a-¢, probably the most realistic scaling assumption with our
present knowledge. ,

With the assumption that af scales as a3, and the scﬂing of

linear dimensions at a-1, the minimum chord length, '-mm ‘for deposit of
energy greater than aE, scales as

'-'min = ‘EI¢3 L. .- (15)

Furthermore, the lower 1imit of integration Lo scales as
Lo = Lola2. . -8

R p——————
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4l . Assuming that the same chip area will be devoted to memory;, if
f ! the reference size is M, the new size M*' {s o ’ :

M' = a2M, o (17)
However, the quantity S in equation 3 is the surface per cell so that
S' = §/al (18)

for the calculation of events per bit-day.

YOI |

The basic equation for calculation of event-rate after scaling
becomes,

Ne = S/4a2 X #(L)C(aE/a3pL)dL. (19)
(o]

The error rate, Ng, is obtained by multiplication by e, the
error conversion factor.

This error conversion factor, ¢, which depends on the memory configuration,
is (number of cells/memory unit) x (vulnerability/cell).

B. EXAMPLES

Appiication of the preceding theory requires availability of the
_ cell dimensions and critical energy for specific devices. Following Burke,
. we use the parameters developed by Pickel and Blandford!3,18 for a number
' gf ]devlice types. The parameters used in the calculations are listed in
able I.

- The critical dimensions for the NMOS dynamic RAM were inferred by
31 Pickel and Blandford from the manufacturer's data on the device. The error
H conversion factor, ¢, in equation 20 is set equal to 1/2, assuming ~ 1/2 the
cells are empty at one time, as did Pickel and Blandford.

'Y The parameters for a CMOS-Bulk RAM example were also -obtained
; ; from reference 13. Here the value of aE = 22.5 MeV is obtained from
RE heavy-ion upset measurements. In this case, since there are six devices per
memory unit and 1/2 are vulnerable, ¢ s set equal to 3.

Similarly, the dimensions for the 4K, CMOS-SOS, five-transistor
1 memory cell RAM's were obtained from the work of Pickel and Blandford.
‘B ) Following the approximation used by Burke, ¢ is set equal to 5 in place of
the averaging procedure used by Pickel and Blandford.

The results of calculation of soft-upset rate for the three device
types in the 90 percent worst case spectrum environment are presented in

R R o

R

%




Figure 13. As in all of our calculations, the scaling goes from « = 0.5 to
a = 100, well beyond the VHSIC region. The relative vulnerability of the
various devices is indicated. Furthermore we see that as larger scale
integration proceeds, the predicted soft-upset rate peaks at the 256K to 1M
memory size and then falls off.

The dependence of predicted soft-upset rate on the specific
environment is shown in Figures 14 to 16. These results suggest that
detailed analysis of the environment associated with a particular satellite
orbit improves the predictive accuracy of soft-upset calculations.

The Heinrich spectrum used by Burke in his calculations is very close
to the solar maximum spectrum used in the NRL calculations. Although
calculations utilizing the solar maximum spectrum yield similar results in
the range of scaling explored by Burke, the NRL calculations with the solar
minimum spectrum agree more closely with Burke's results. The fact that
there is reasonable agreement between the Burke- and the NRL-calculations
indicates that the Burke approximation for the chord-length distributions
does not introduce any large errors.

The importance of the critical energy parameter, aE, is shown in
Figure 17. Here, the critical energy has been arbitrarily quadrupled for a
calculation of soft upset rate for the N-MOS dynamic RAM. This change in aE
reduces the vulnerability by approximately an order of magnitude.

The calculations presented up to this point with AE proportional to
a-3 can be considered a worst-case of scaling to smaller device features.
The effect of scaling the critical energy as a2 instead of a-3 is shown
in Figures 18 to 20. It is quite likely that the a~2 scaling is more
applicable to the way device scaling will go. We note that the a—2
scaling predicts soft-upset rates two to three orders of magnitude lower
than that predicted for o-3 scaling for scale factors larger than 10.
This strong dependence of predicted soft-upset rate on scaling scenario
indicates that a more detailed investigation of scaling is required for
accurate soft-upset rate predictions.

The predicted soft-error rate due to direct ionization by protons in
the proton radiatfon belt at 600 nautical mﬂes is sh%wn in Figures 21 and
22 for the critical energy scaling as a=J and as o~ These results are
preliminary as work is in prograss on the soft-upset rate induced by nuclear
reactions in silicon.

v. SUMMARY AND DISCUSSION

Calculations of predicted rates of soft-upset failure of devices in
the cosmic-ray enviromment are presented which parallel calculations
performed by Burke. The present calculations utilize improved cosmic-ray
environments generated at NRL, and exact calculation of the integral
SZori-d-ler‘ngth distributions. Furthermore, the scaling is extended to smaller

vice sizes.

The NRL predictions of soft-upset rate yield similar results to those

SN ST A Y RS W TB WIVR T LN A L8 LSl e h
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obtained by Burke. This agreement indicates that the Burke approximation to
the integral chord-length distribution does not introduce large errors.

Calculations utilizing the 90 percent worst case spectrum show a large
increase in predicted soft-upset rate in the scaling range of approximately
four to eighty over the results of Burke. The 90 percent worst case
spectrum is to be preferred for a more realistic estimate of the soft-upset
risk for a satellite in the cosmic-ray environment than not including the
contribution due to low level solar and interplanetary activity. Comparison
of soft-upset rates in the three cosmic-ray environments utilized in these
calculations indicates the 1importance of accurate evaluation of the
environment for reliable prediction of soft-upset failure rates.

The variation of predicted soft-upset rate with the critical energy
shows the importance of correct determination of the device parameters for
soft-upset predictions. A calculation with two different scaling scenarios
shows the dependence of soft upset rate on the details of scaling. Clearly,
further investigation of scaling is required. Perhaps, it would be more
correct to use different scaling scenarios for each of several regions of

scaling.

Preliminary results of predicted soft-upset rates in the proton
radiation belts at 600 nautical miles are presented. These calculations
only include effects due to direct ionization by the protons. Errors due to
direct fonization by protons in the radiation belts can become the limiting
factor on missions as devices are scaled down. For the examples in the
present calculations there is a rapid increase in soft-upset rate at a
scaling factor of approximately four. For more sensitive devices, failure
rate can become catastrophic with current technologies.

An important conclusion that can be inferred from these exploratory
calculations with several scaling scenarios 1is that cosmic-ray induced
soft-upset rates do not increase indefinitely as feature size is scaled down.
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Figure 2. LET spectrum due to galactic cosmic rays at times of maximum
solar activity.
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Figure 3. 90 percent worst case spectrum. LET spectrum due to galactic
cosmic rays at times of minimum solar activity plus 90 percent
worst case contribution of low energy particles due to solar and

1 ﬂ interplanetary activity.
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parallelepiped. Comparison of exact evaluation and
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Figure 14. Prediction of soft-upset rate for N-MOS dynamic RAM in three
different cosmic ray environments for aE varying as a-3.




1073

C-MOS BULK

90% WORST CASE
1074

5>
<
e 10 SOLAR MIN/
a
% —_— SOLAR MAX
@
e .6
T 1
(V7]
10~7
4K 16K 64K 256K 1.0M MEMORY SIZE
10—8 LL + JiJIl*j_‘l +41~44LIIIJ__I
0.5 1 10 100

SCALE FACTOR

Figure 15. Prediction of soft-upset rate for CMOS bulk static RAM in three
different cosmic ray environments for aE varying as a=3.
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Figure 16. Prediction of soft-upset rate for CMOS-SOS static RAM in three
different cosmic ray environments for af varying as a-3.
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TABLE I. Parameters Used in Soft-Upset Calculations

Device Type Device Dimensions for Critical Energy Error Conversion
4k Reference Device (MeV) Factor
(Scale Factor = 1)
(um)

N-MOS d-RAM 35 x4 x 21 5.6 0.5

N-MOS d-RAM 3.5 x 14 x 21 22.5 0.5
CMOS-Bulk 3 x10x10 22.5 3.0

Static RAM

CMOS-S0S 0.5x 5x15 24.75 5.0

Static RAM
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