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smaller~~~~~~~~ ~ ~ ~~~ fetr sie usatalyicessth rbblt. fsf p
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s Alle expatr s tudy su sneally increass the probetabt- of sofft Of

sine by thcrelpenetraon ofeertic collrsi-aztes on.et-ft-upset
damae to the dev ic whnay denseioning patil d siti aquptit

quatiy f care epesetig he ogc tae.cutre,.

definitive calculation requires knowledge of the ,.wayuWolete~
technology will proceed on scaling to smaller feature sizes. However, so"
limiting cases can be studied which will indicate whethqr..soft-upset. rates
become impossibly large on fu 'rther scaling or 464therrteal ' 4
rates are to be anticipated as we evolve to the, YHSIC .(Very h~
integrated circuit) era. Such an exploratory calculation he&%O
out by Burke. 2 The calculations reported 'herein are-ain. ext;=slo of. the
Burke calculations in that our calculations are based onT*XtenA m~f
environments recently developed by the NRL Laboratory # rC s~
Physics,J and our calculations employ exact evaluation 0ft~
chord-length distributions. Scaling of the device 'structrsi
feature sizes of approximately 0.1 micrometer, and vv~ainiitpsai
laws is explored.0

The study by Burke parametrizes a cosmic-ray LET Spect r"m4,04 h
Heinrich. 4  The Heinrich spectrum only includes cosmic-ray ce entovwJ
6 < Z < 26, whereas the NRL spectrum includes a IlarW e ra "O. Z 4I c

* ~287 5 addition, the NRL analysis accounts for torl vra~~
producing data for three cosmic ray environments: $r ui1V~ftyA
solar minimum activity, and a 90 percent worst ciWase ~ F7
studies for satellite-borne'electrontics stnce thi lv
by definition,, will only be exc0*d 10 p*vctQ.tt i... ~ 5
soft-upset rates have been ocl d&d forr t#0
protgns in the radiation belts at an att4 fU oI~~1I ~i contribution to soft-upset rates by prA- ~1-i~u~ t ti S 4subject of a continuing 1itvstigation, The ivesn flu$1at~the dependence of expected soft-upset rates on envir onmt.

~muf. .ib g .an , ... ..



Exact evaluation of the integral chord length distrIbvtop "
comparison with Wproximate expressions which have been used by others ie
shown for selected exmles.

Evaluation of soft upset rates for the sae. random access tmios
(RAfs) that have been studied by Burke has been performed using the Oft
geometrical parameters and critical energies in order to facilitate
comparison.
11. ENVIRONMENTS

The LET spectra for the cosmic-ray environments were dmrerv4.,from the
work of Adams et al. 3  We considered the pure galhctidc c*uc roy
environment at times of minimum and maximum sQi~ar activity. Tlp,,LXT. Pectra
fvr these two environments are showi in Fig ures I and? r *s9p.,thie* Forthe 90 percent worst case spetrum, zwe have in tue 'a 901 p~ctwos %
contribution of low energy particles from Sol ar and i iteria ~ 'at~~
in addition to galactic cosmic rays as they appear dur nt t- peripid,,if
minimm solar activity. only: 10 percent of 'the 6tine SIoM 4 coniditi~gos,'
the interplanetary medium be soft hostile for microelectron1C1 AM&~t

* ~This 90 percent worst case spectrum, of extreme importance fO stia no
satellite vulnerability, is show in Figure. 3.

Acopy of the LET spectrum for cosmic rays due to HNericb i 00
for reference in Figure 4. This LET spectrui~ ts very: close to ~PW . tl
maximum spectru generated at NRL.

Figure 5 shmw the LETr s pectrim for protons fora 0
1'oi'it fin the proton radiation belts. The prtntpw M

using the'radiation belt proton' s pectrum ofWO
630 1111 km orbit, and allowing for' the shildt f''
spacecraft. The proton energy spetttuli. was convei~d a
using the- t s of Willlsion Ad Do'ujot.?7 ThiW jpactri" L. I
the direct- iooization effects of 'the #"tonsil"n 4e ftt
iwiftion 0f any reactin products. rAs pointe Jt -i
the PW ao reaction prdSs -can, Ies 1 fae~p~
devies, to that the actual upset Irate, allh'~rat ~
factors than given by predictions using this spectrum. Tis'~r~i
for showing the worst case upset rates as scaled ,"icpece 1 e

tUK. DI1=SSION OF.ALUATO

A. an am L~etalcio

utili~tin' nrawe~le i f~4V u

rauda trversals -of ~ovabodies
esO" ted sf~strtl h * m t.t~v~~

heftciasly fI",w tht 6f ie Xi hu4s7tf*3$



calculate the probability ta

HC~i -$t~tC 'the."vtice. Xti
not ocur, ~e,,that only ' care i

dev ie .cU4TY contributes to t CO-~and diffused junction tes titrtktir Thlaesinfcatyless charge from the same particle than di..sdJultodevices. The energy deposited,, Edep, 1% lPiven by
:1 Edep aLt(1

*awhere L is the linear-energy transfer for the particle (LET), 0 is the
density of the material, and I is .the, chord length for the particular

* traversal through the sensitive volume. ',h number of electron-hole pairs
created is Ee/E h, where Ee. is the energy required to create anelectrn-hol 'eir,3.6 eV in, th case of Si. When. Ei r~'b
AE, a critical energy, 6 sufficient number of elettn*46o1 -Oifir~i
to cause an event. Thus, an event can occur if the chord length assoitt
with the particular passage of a particle is greater than Amin#, where

Smin - EoL. (2)

It is shown by Kellerer, 12 that in an isotropic uniform field of fluene
0, the expected numuber of chords through a convex body of surface S is
SO/4. If this number is multiplied by COt MiA), the sumn proaility ta
the chord-length through the sensitive volume is greater te.1
the number of events that deposit an energy greater then dE iAId
For a continuous spectrum, Re~ is obtained by integration of

In this integral, O(L) is obtainod from O(E) using the trapsfovmettg

The 1imin dependence in Q %%n) has beew confted to .* d*"W"Maw
using equation (2) so that usint raiOV40L casbk P*s 1 1lwrlimit of integation ithe lw*t u IvOf-A

where Ame is the diZ~m ofM a
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the axma vp1ue of L. incluvdedI () n mta ia

i s m axto b z r im t h e n t v , L o L L , I n

eq uati on (3) has benused bY Pitkol' %~dN~d Tisa
ases (L), the totegral LETr spcrm nwt(i) h

chord-length distribution. These quatities a re..related to ()aiC(th

L

The equivalence of the two formalisms is easily shown by expanding, equation
(3)

F OL) f(1)dLdLj (9)

where L & Eii

Interchanging 'the order of integration, with the appropriate change of
limits,we have

a N f(t) f (L )dL (10)
A L( t

Here, LMA * aIfgA, the miniuim value of LET which will deposit AE in the
sensitive volumue for that val ue of L, "and to d/ a x~,. Using (7)
above,

max,
N*. J f(-)9([L(03Jdt. ()

0

B. Chord-length distributions

Kellerer 12  does not furnish,. explicit expressions 'for tfs4 chord-length distributions that appar int his theoetical work on

4
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sicrodmflutrye However* Bradford ;hw.: *1l4se*tan
Clmn 4r the differe~ial ~ ~ g ~ d~iem-~~

twoedimnsion&l rectangle tgte ihtefrm~.dvlgd ~ele
relatiro the various two. and thre-dimns!!e "Jre gtdsr Men
to, derive, an -approximate expression for. 0(A4r)j h w1 ~h,~st
distribution. for a rectangular paralleipd Th pox i r claied
to be usefulI for b/4 or cia.t 3. This -approxiluter *vawto Art(& -s
very useful, since it furnisMisr an: epresian, for Inclo- fmin
Burke* in the worked cited above, hNs sed a, further-MooitaulmUonteb

* This approximation iss t~enn o slusin
C(l) *0.75 (al1) 2.2  A > a 0 (2a)

CMt 1 -0.25 (14a) 1< a. (12b)

These approximate results are very useful, yielding- values of Cj %) quite
close to the exact result except that C(.a) does not go to zeror correctly for
large i near t max.

An. exact expression for the differential chord-length distwibutip
f( %), due to Petroff is contained in a paper, by Pickel and 81adf=d.a
We have evaluated C( tr) by numerical integration of the. Petroff ,esult,

( utilizing equation (8). This exact result for the geomtries *sed. In the
soft-upset calculations is compared with an evaluation utilizing Bradford'sapproximation (Approximation 1), and the approximation used by Burke
(Approximation 2). We have alSo compared the Br ~or approximation with an
exact calculation for a case studied by Ziegerl

Comparisons between the exact calculation of C( x) and Approxlmptienl
are shown in Figures 6 to 9. We note that results are almost Jdwntical fe
small a until the first discontinuity in CWa. is reached, a ht~
results are in quite good agreemnt beyond that until 1 mah4 -V440
larger than the last discontinuity in C( )., For these larger, voluesE4 itApproximation I for C(aP) does not go to zero properly at.. Tineexamples shown in Figures 6 to 8 satisty h rtro ie by av4for
the usefulness of the approximate fotmula. Figure 9 shws ;~ e~r
parallelepiped approaghes a cube, the case studied by, Ziegler. nL" v out
the disagreement at large chord lengths ii greter.

Approximation 2 is compared wi th the exact cikulttbte. f. a &)$
Figures 10 to 12. Again, the results using this 4"pr ;; a q.W
reasonably close to the exact results except for the longer chod 1ngtis
The degree of agreement seems to be depopdetm hwwl tIe condition bit

£ ~~ 3 is satisfied. . ~ ~ -

IV. DEVICE SCALING AND CALCULATION OF SFUSEtRAUl%

A. SCALING

Soft-upset rates In the cos i.c ,-ray 1 e.n viro inn! havtbe
calculated for the particular memary devices studied by Burite. Them



scaling scenarios reported by Burke are extended toa smaller, fe-ft" '$10
and soft-upset rates are calculated for the various enviromients discuSed
in Section II. Furthermore, where equatton 3 is-uttllzed to calclat the
number of events that deposit energy greater than &E by cosmic rets or by
direct ionization from protons in the: radiation belts, exact evaluato6 of
C(i) is employed. When scaling to smaller device size, equation -3 can -be
considered to apply to the reference devices, 4K mmories. It is not clear
at this time how the technology will evolve when VLSI devices are scaled
down to smaller feature sizes. One scaling scenario that can be considered
is scaling according to the model of Head and Conway.17  In this moel,
all of the linear dimensions are reduced by a scaling factor e,

a' - ale (13a)
b' = b/a (13b)
c' - c/a (13c)

Furthermore, all voltages are scaled down by dividing by the same scaling
factor a, thus keeping all electric fields in the device constant. With
these assumptions, the stored charge representing a bit scales as c"2.
This follows from the fact that the capacitance, C, beifg proportional to an
area divided by a separation distance, scales as %- . Since Q - CV, Q
scales as a-2 . Critical energy is directly proportional to critical
charge, i.e., &E a eQ where e a 3.6 eV/eh-pair in silicon. Thus the
critical energy for upset scales as

AE' - AE/e2. (14)

The Head and Conway scaling scenario is rather simplistic and
cannot be expected to apply indefinitely as devices get smaller' and
smaller. For example, at some point it is not practical to continue
reducing the voltage as the signal to noise ratio will b9gome intolerable.

*Furthermore, the recently-discovered funneling phenomenonlu will cause the
effective charge-collection volume to scale differently than the physIcal

• Idimensions of the volume storing the charge that represents a bit. Correct
scaling would have to take funneling into account as the device dimmsoW s
become smaller. At the present time it is not clear which of y possble
scaling scenarios should be used for these exploratory calculations. NM,
for part of the analysis of soft-upset rates reported e, a t6wt-case
assumption has been made that aE varies as a-3. We have also ei64ed the
effect of variation of scaling laws by repeating the calculations for &Evarying as -2, probably the most realistic scaling assut%6 with our
present knowledge.

With the assumption that &E scales as e-3, and the scaling of
linear dimensions at a-I, the minimum chord length, Luin, for deposit of
energy greater than &E, scales as

t min - aEls3 L. (15)

Furthermore, the lower limit of integration Lo scales as

o Lo/e2.

t t 6



Assuming that the same chip area will be devoted to memory, if

the reference size is M, the new size M1 is

N' W 42M. (17)

However, the quantity S in equation 3 is the surface per cell so that

S' - S/82  (18)

for the calculation of events per bit-day.

The basic equation for calculation of event-rate after scaling
becomes,

Lmax

Ne - S/452 f (W)C(E/Q3pL)dL. (19)

The error rate, NE, is obtained by multiplication by c, the
error conversion factor.

( NE - eg. (20)

This error conversion factor, c, which depends on the memory configuration,
is (number of cells/memory unit) x (vulnerability/cell).

B. EXAMPLES

Application of the preceding theory requires availability of the
cell dimensions and critical energy for specific devices. Following Burke,
we use the parameters developed by Pickel and Blandford1 3 ,18 for a number
of device types. The parameters used in the calculations are listed in
Table 1.

The critical dimensions for the NMOS dynamic RAM were inferred by
Pickel and Blandford from the manufacturer's data on the device. The error
conversion factor, c, in equation 20 is set equal to 1/2, assuming - 1/2 the
cells are empty at one time, as did Pickel and Blandford.

The parameters for a CMOS-Bulk RAM example were also obtained
from reference 13. Here the value of AE a 22.5 NeV is obtained from
heavy-ion upset measurements. In this case, since there are six devices per
memory unit and 112 are vulnerable, e is set equal to 3.

Similarly, the dimensions for the 4K, CNOS-SOS, five-transistor
memory cell RAM's were obtained from the work of Pickel and 8landford.
Following the approximation used by Burke, e is set equal to 5 in place of
the averaging procedure used by Pickel and Blandford.

The results of calculation of soft-upset rate for the three device
types in the 90 percent worst case spectrum environment are presented in

7



Figure 13. As in all of our calculations, the scaling goes from a - 0.5 to
a - 100, well beyond the VHSIC region. The relative vulnerability of the
various devices is indicated. Furthermore we see that as larger scale
integration proceeds, the predicted soft-upset rate peaks at the 256K to IM
memory size and then falls off.

The dependence of predicted soft-upset rate on the specific
environment is shown in Figures 14 to 16. These results suggest that
detailed analysis of the environment associated with a particular satellite
orbit improves the predictive accuracy of soft-upset calculations.

The Heinrich spectrum used by Burke in his calculations is very close
to the solar maximum spectrum used in the NRL calculations. Although
calculations utilizing the solar maximum spectrum yield similar results in
the range of scaling explored by Burke, the NRL calculations with the solar
minimum spectrum agree more closely with Burke's results. The fact that
there is reasonable agreement between the Burke- and the NRL-calculations
indicates that the Burke approximation for the chord-length distributions
does not introduce any large errors.

The importance of the critical energy parameter, aE, is shown in
Figure 17. Here, the critical energy has been arbitrarily quadrupled for a
calculation of soft upset rate for the N-MOS dynamic RAM. This change in aE
reduces the vulnerability by approximately an order of magnitude.

The calculations presented up to this point with aE proportional to
a-3 can be considered a worst-case of scaling to smaller device features.
The effect of scaling the critical energy as Q-2 instead of G-3 is shown
in Figures 18 to 20. It is quite likely that the e-2 scaling is more
applicable to the way device scaling will go. We note that the a-2
scaling predicts soft-upset rates two to three orders of magnitude lower
than that predicted for *-3 scaling for scale factors larger than 10.
This strong dependence of predicted soft-upset rate on scaling scenario
indicates that a more detailed investigation of scaling is required for
accurate soft-upset rate predictions.

The predicted soft-error rate due to direct ionization by protons in
the proton radiation belt at 600 nautical miles is shqwn in Figures 21 and
22 for the critical energy scaling as 4-3 and as a-'. These results are
preliminary as work is in progress on the soft-upset rate induced by nuclear
reactions in silicon.

V. SUMRY AND DISCUSSION

Calculations of predicted rates of soft-upset failure of devices in
the cosmic-ray environment are presented which parallel calculations
performed by Burke. The present calculations utilize improved cosmic-ray
environments generated at NRL, and exact calculation of the integral
chord-length distributions. Furthermore, the scaling Is extended to smaller
device sizes.

The NRL predictions of soft-upset rate yield similar results to those

! ... ,. .,,. .-8



obtained by Burke. This agreement indicates that the Burke approximation tothe integral chord-length distribution does not introduce large errors.

Calculations utilizing the 90 percent worst case spectrum show a large
increase in predicted soft-upset rate in the scaling range of approximately
four to eighty over the results of Burke. The 90 percent worst case
spectrum is to be preferred for a more realistic estimate of the soft-upset
risk for a satellite in the cosmic-ray environment than not Including the
contribution due to low level solar and Interplanetary activity. Comparison
of soft-upset rates in the three cosmic-ray environments utilized in these
calculations indicates the importance of accurate evaluation of the
environment for reliable prediction of soft-upset failure rates.

The variation of predicted soft-upset rate with the critical energy
shows the importance of correct determination of the device parameters for
soft-upset predictions. A calculation with two different scaling scenarios
shows the dependence of soft upset rate on the details of scaling. Clearly,
further Investigation of scaling is required. Perhaps, it would be more
correct to use different scaling scenarios for each of several regions of
scaling.

Preliminary results of predicted soft-upset rates In the proton
radiation belts at 600 nautical miles are presented. These calculations
only include effects due to direct ionization by the protons. Errors due to
direct ionization by protons in the radiation belts can become the limiting
factor on missions as devices are scaled down. For the examples in the
present calculations there is a rapid Increase in soft-upset rate at a
scaling factor of approximately four. For more sensitive devices, failure
rate can become catastrophic with current technologies.

An important conclusion that can be inferred from these exploratory
calculations with several scaling scenarios is that cosmic-ray induced
soft-upset rates do not increase indefinitely as feature size is scaled down.
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Approximation 2.
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Figure 13. Comparison of scaling of soft-upset rate for th~ree device types
in the 90 percent worst case spectrum environment for &E varying
as
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Figure 14. Prediction of soft-upset rate for N-40S dynamic RAM in three
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Figure 15. Prediction of soft-upset rate for CMOS bulk static RAM in three
different cosmic ray environments for AE varying as a-3 .
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Figure 16. Prediction of soft-upset rate for CMOS-SOS static RAM in three

different cosmic ray environments for AE varying as 03
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Figure 17. Effect of change in critical energy, aE, on predicted soft-upset

vulnerability of N-MOS d-RAM in 90 percent worst case spectrum
environment. Scaling assumed aE varies as .
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Figure 18. Effect of scaling scenario, &E varying as .3vs aE varying as

,I2, on predicted soft-upset rate for N-140S dynamic RAN.
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Figure 19. Effect of scaling scenario, &E varying as a-3 vs &E varying as

on predicted soft-upset rate for CMOS bulk static RAN.

28



CMOs-SOS
90% WORST CASE SPECTRUM

1074Ac 
-

a106

0 1-

LUJ

4K 16K 64K 256K l-OM MEMORY SIZE
10-91 f

0.5 1 10 100

SCALE FACTOR
Figure 20. Effect of scaling scenario, &E varying as u3vs &E varying as

f-,on predicted soft-upset rate for CM4OS-SOS static RAN.
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Figure 21. Prediction of soft upset rate due to direct ionization by
radiation belt protons at 600 nautical miles for critical energy
scaling as a-3.
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Figure 22. Prediction of soft upset rate due to direct ionization by

radiation belt protons at 600 nautical miles for critical energy
scaling as .
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TABLE 1. Parameters Used in Soft-Upset Calculations

Device Type Device Dimensions for Critical Energy Error Conversion
4k Reference Device (1eV) Factor
(Scale Factor = 1)

(um)

N-MOSd-RAM 3.5 x 14 x 21 5.6 0.5

N-MOS d-RAM 3.5 x 14 x 21 22.5 0.5

CMOS-Sulk 3 x 10 x 10 22.5 3.0
Static RAM

CMOS-SOS 0.5 x 5 x 15 24.75 5.0
Static RAM
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