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ABSTRACT

The variation of the pinning force with microstructure and with the

Ginzburg-Landau parameter is studied for 53 vanadium and vanadium alloy
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specimens. Vanadium-carbide precipitates are used as pinning centers.
The Ginzburg-Landau parameter is varied by alloying the vanadium with
small quantities of gallium or niobium. Alloy compositions of
V-0.20a/0 Ga, V-1.05a/0 Ga, V-2.96a/0 Ga, and V-4.01a/o Nb are used.
These yield a range of the Ginzburg-Landau parameter from less than 2

for the pure vanadium specimens, to more than 20 for the V-2.96a/0 Ga
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specimens.

The pinning force is not described by a universal scaling law
by - for all specimens. The pinning force for a specific reduced magnetic
‘1 field is determined by the depinning mechanism active at that field.
There are at least three depinning mechanisms. Two of these can be

identified with the plastic-deformation mechanism and the line-pinning

mechanism, which are predicted by Kramer [1]. A previously unidentified
i depinning mechanism is the prevailing factor in specimens with large
pinning centers.

The empirical line-pinning forte of our specimens varies with
the individual precipitate volume cubed times the density of precipi-
tates. The pinning force in the plastic-deformation region varies as
the cube-root of the density of precipitates. A dependence on the
Ginzburg-Landau parameter squared can be observed for the magnitude

of the pinning force for most of the reduced field regions.
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research by alloying vanadium in order to modify the superconducting
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properties of that metal. However, early in the project, there were
signs of possible Joule heating at the current contacts to the
specimens. It was suspected that the same problem might have
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to minimize the Joule heating and its effects. There is confidence
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CHAPTER I
INTRODUCTION

Superconductors are materials which lose all electrical resistance
at Tow temperatures. Although superconductivity was discovered in
1911 [3], successful technological applications have been developed
only during the last twenty years. An example is the use of supercon-
ducting windings in high field magnets. These magnets play a
prominent role in high-energy particle accelerators and in plasma con-
tainers for controlled fusion reactors. Superconducting computers,
power lines, generators, and even the superconducting magnetic-
levitation of trains are in advanced experimental stages. However, the
understanding of the superconducting phenomena, mainly the ability to
carry high densities of lossless currents, lags behind the technological
success of superconductors.

A superconductor carries a lossless current only below a threshold
defined by the temperature, the magnetic field, and the transport cur-
rent density. The critical values of these three factors depend on the
composition and microstructure of the material. The magnetic field
penetrates a type of superconductor, called a Type Il superconductor, in
quantized bundles called fiuxoids. The critical current of a Type II
superconductor is dictated by the Lorentz force which causes the
fluxoids to move. The movement of the fluxoids dissipates energyv and

thus terminates the lossless state. However, metallurgical defects in
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3 the microstructure of the superconductor can create a "pinning force"

- which can prevent the movement of the fluxoids, thus maintaining the

4_ lossless state.

It has been suggested that the pinning force density, Fp, obeys :

i structure of the superconductor and may depend on certain supercon-

{ a scaling law of the form [4]
?’ . n
| Fp = Kol (MI"Fh) (1. |
{ :
vf where Hc (T) is the upper critical field, f(h) is a form factor, and ;
i 2 :
.{ h is the reduced field H/Hc . The constant Kp depends on the micro- :
= 2

ducting parameters of the material, e.g. the coherence length, £,
and the Ginzburg-Landau parameter, k.
The purpose of this investigation is to find the dependence of

. the scaling law on the specimen microstructure and on the

AR ————

- Ginzburg-Landau parameter. Vanadium, which superconducts below
5.4K, is the basic material used in this study. Vanadium-carbide
precipitates provide a controllable source of pinning centers. The

Ginzburg-Landau parameter is varied by alloying the vanadium with

small concentrations of gallium or niobium. The validity of the

scaling law is also tested. ;
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CHAPTER II
THEORY

The properties of a superconductor can roughly be divided

s S BE e o
aigh.

in two categories, namely, the intrinsic or fundamental properties,

which usually are reversible, and the mostly irreversible

properties like flux pinning. The fundamental properties, like

R P Rt
SO oy PR id

the critical temperature and critical fields, depend mostly on

"

the thermodynamic and/or the electronic characteristics of the
| material. The irreversible properties, while also being
4 dependent on the electronic and thermodynamic characteristics,
depend heavily on the microstructure of the superconductor.
The dependence of the irreversible properties on the thermo-
7; dynamic and electronic parameters can be expressed in terms of
the fundamental or reversible parameters. It is for this
reason that the fundamental properties will be discussed first.
}1 Gaussian (cgs) units are used through the text. In this
‘3 system of units, and for the geometry of our experiment, the
' magnetic field, H, is numerically equal to the magnetic induc-
. tion, B. Therefore, the magnetic field is used instead of the i
magnetic induction in many of our results.
This next section introduces basic¢ concepts concerning ]

? superconductivity. It is not meant to be an exhaustive ’




treatise on the subject; several excellent books are available

for this purpose [5,6,7]. The next section introduces and
elaborates on the fluxoid concept. For more information on
fluxoids, the reader is encouraged to read Huebener [8]. The
last sections in this chapter deal with fluxoid pinning.
Campbell [9] may be consulted for more information on the basic

pinning interactions.

A) Fundamental Properties of Superconductors

The state of a superconductor depends on three external
factors: the temperature, the magnetic field, and the transport
current. In the absence of electrical current or magnetic fields,
the normal-superconducting transition occurs at the critical
temperature Tc. The critical temperature for pure metals and
alloys vary from below 1K to near 24K. For pure vanadium, Tc
equals 5.4K [10].

The effect of a magnetic field on a superconductor depends
on the type of superconductor; there are two types. Type I
superconductors exhibit nearly perfect diamagnetism up to a
critical field Hc’ where they become normal. This diamagnetic
behavior is called the Meissner State after its discoverer [11].
The energy density needed to exclude the magnetic field from the

bulk, given by Hg(T)/Sn,can be equated to the difference in




Helmholtz free-energy densities, fn(T) and fS(T), of the normal and
‘conducting state [12]. Hence, the critical field, HC, can be defined
thermodynamically as
ﬁ(T) = f (T) - £(T) (2.1)
8l n S : :
The dependence of the critical field HC on the temperature as seen

in Figure 1 is given approximately by

H(T) ~ H(O)[1-t7] (2.2)

where t 1is the reduced temperature T/Tc'

The second kind of superconductors, called the Type II super-
conductors, show nearly perfect diamagnetism only up to a field
Hc], which is below H, (see Figure 2). Above Hc], in what is
called the mixed state, magnetic flux starts to penetrate the
material in quantized units of flux called fluxoids. At a field HCZ,
which is usually far above Hc, the bulk of the material becomes
normal. Small lossless currents may still flow, in a thin surface
layer, up to a field HC3, which is higher than ch

The diamagnetism of the Meissner State is perfect only in the
bulk of the superconductor. The magnetic field is not abruptly
excluded at the surface; it drops off exponentially, entering the
bulk with a penetration depth X. London's local theory of super-

conductivity [13] predicts a penetration depth given by

x gy 172
AL (—"‘*5—7) (2.3)

4Te nS

e —————
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Figure 1) Variation of the critical field Hc with temperature.
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Figure 2) Magnetization as a function of magnetic field for
a) a Type I superconductor, and b) a Type II
superconductor.
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*
s
respectively, of the superconducting charge carriers. The penetra-

tion depth at zero temperature is typically on the order of 10'6 cm.

* *
where m , e and n_ are the effective mass, charge and density,

Pippard [14] proposed a non-local theory of superconductivity
in order to improve on London's local theory. Pippard's theory

introduces another characteristic length, the coherence length &.

The coherence length describes the range over which there are

A e M

strong correlations between superconducting electrons. The coherence

Sae

length of a pure metal is [15]

(2.4)

where kB is Boltzmann's constant, VF is the Fermi velocity, and a
is a constant which empirically equals 0.15 [15]. Pippard proposes

that, in the presence of scattering, the coherence length should be

£ 7 o | (2.5)

where 7 is the electronic mean free path of the normal metal at
the same temperature.

In 1957 Bardeen, Cooper and Schrieffer (BCS) published their
successful microscopic theory of superconductivity [16]. This
quantum-mechanical theory demonstrates that a weak attraction can
bind, in pairs, electrons near the Fermi surface. The attraction

that binds these "Cooper pairs" comes from an interaction of the




electrons with the lattice phonons. This interaction extends through
a distance given by the coherence length £. The coherence iength

of the pure metal given by the BCS theory is

hVF ) 0.]8'hVF

E = = ) (2-6)
) NA kBTc

where A is the energy gap of the superconductor. Cooper pairs have
an effective mass m* and a charge e*, equal to twice the mass
and charge, respectively, of the free electron.

In 1950 Ginzburg and Landau [17] proposed a phenomenological
theory of superconductivity based on Landau's theory of second-
order phase transitions. Landau's theory [18] states:

i) that the state of the material can be characterized by
an order parameter, ¥, which describes the "degree of
ordering" associated with the increase in symmetry of
the system as it goes through a second-order transition.
The order parameter is zero at the transition point.

ii) that the free energy can be expanded in powers of the
order parameter.

iii) that the coefficients of expansion are functions of the

temperature.

Thus, the Heimholitz free-energy density can be written as

£+ a(T)]¥]? 4 @i“fﬁ Y. (2.7)




Ginzburg and Landau apply this concept to the superconducting
transition in a quantum-mechanical way. They treat the order

parameter ¥(r) as a pseudowavefunction which describes the center-
of-mass motion of the Cooper pairs, with IWIZ being the Tocal density

* R
of superconducting Cooper pairs, ng. They include a term for the

magnetic energy and a term for momentum, obtaining

> *. 2
Ll B - <A

2 . Biyi4
fS = fn + OLI‘{‘I + é‘]‘{’l + Em—* (2.8)

Again, m* and e* are the effective mass and charge of the Cooper
pairs, that is, twice the mass and charge of the electron.

The free energy can be minimized with respect to spatial
variations of ¥(r) and with respect.to A(r). This procedure yields

the two Ginzburg-Landau differential equations

> *.
0-av+pule s L AT 2h2, (2.9)
2m

* *2

js - elﬁ (\y*-vny _ ‘PW*) _ _e_*__‘{‘*‘{»‘K . (2.10)
2m i mc

In the absence of gradients or fields, equation (2.9) yields

w2 = 2 =gt . (2.11)

This result can be used on equation (2.8) under the above condition

yielding

(2.12) ]




Loak o R

- NSRRI IS Sl ks

¢
§
:

N

which, using equation (2.1) becomes

2
L - (2.13)
One can solve simultaneously equations (2.11) and (2.13) obtaining
-HE
o = ..__*- (2.]4)
4Hns
and
e
B=—Sr . (2.15)
4Hns

London's penetrat.on depth, xL, can be obtained from
equation (2.10). For weak magnetic fields, |‘¥|2 can be replaced by
its equilibrium value lwolz, so that

%2

*
J = 29 :‘ (¢ Ty - wi") - & IWOIZK . (2.16)
m mc

One can take the curl on both sides of this equation, obtaining
2
*

curl 35 = |y lzﬁ . (2.17)
mc °

The Maxwell equation
curl H = %g J o, (2.18)
can be used to express equation (2.17) as

f% curl curl B = =5

IAE (2.19)
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and one obtains
* 2 2
Bt =R . (2.20)
*2 2

4Ile IWOI
This equation yields a magnetic field penetration that agrees with
London's (Equation 2.3).

The Ginzburg-Landau theory provides a temperature dependent
coherence length. If wz = ]\Plz/l‘yol2 = |W|2(-B/a) is substituted
into equation (2.9) in the absence of magnetic field, one obtains

2 2
0=y -y =— d_% (2.21)
2m |a| dx
One can substitute y(x) = 1 + g(x), where g(x)<<1, yielding
2 2
0=-2g-3g°-¢>+ -0 _ &4 (2.22)
2m |o| dx
This equation can be approximated, to the first order of g, by
4w ol d?q(x)
m Za g(x) = zx ) (2.23)
bl dx
The function g(x) will decay to 1/2g(0) at a characteristic length
_ n
E(T) - * ]/2 (2~24)
(2m {a(T)|)
called the temperature dependent coherence length. Equations (2.3)
and (2.14) can be used to express a as
«T) = 7““*2 HE(TINE(T) (2.25)
* C » -

mc

| ,I,_,,._.",I.M. — |
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Now the coherence length can be expressed as
: £(T) = he (2.26)
3 2/Z e (T)Ag¢e(T)
% The coherence length £(T) denotes the characteristic decay-
4 length for small variations of the order parameter . It is not the

same as Pippard's coherence length &, (Eqdation 2.5) which denotes
g the smallest possible size of the superconducting electron wave-
packets. However, Gor'kcv [19] shows that there is a relation
between the GL coherence length &£(T) and Pippard's coherence length
for pure metals, 50 (Equation 2.4).
Gor'kov [19] demonstrates that the GL theory is a limiting
; case, near Tc’ of the BCS theory. The BCS theory can then be used
to approximate the GL critical lengths near TC for two limits:
the pure Timit, where the electronic mean free path, 7, is much
larger than the penetration depth AL’ and the dirty limit, where

Z<<AL. For these limits, the critical lengths are given by [5,19].

; E(T) = 0.74_ 50 (2.27)
b | (l-t)]/2

:a pure limit

4 X (o)

2 A(T) = L (2.28)

201-1)7172
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E and

1/2 :
| 0.855 (%01) -
, E(T) = 177 (2.29) |
t (]-t) :
3 dirty limit
L & 1/2
2 XMT) = AL(o) X3 - (2.30)
E 3
'§§ where AL(o) is London's penetration depth at zero temperature, and

t is the reduced temperature, T/Tc.

Both the penetration depth (Equations 2.28 and 2.30) and the
GL coherence length (Equations 2.27 and 2.29), have the same
" temperature dependence near Tc‘ A GL parameter, x, can then be

defined by

| <« =3 (2.31)

which near TC becomes temperature independent and equal to

Ko = 0.96 AL(O) for pure metals (2.32)
%
and
1 A (o)
’ K, = 0.715 "L for dirty metals. (2.33)

! :

Goodman [20] shows that for intermediate values of 7, « can be

. approximated by
. K=Ky *K, (2.34)
"i The GL parameter, k, plays an important role in determining
™
'g if a superconductor is Type I or Type II. There is a negative energy
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associated with the expulsion of the magnetic field from the bulk
of the material. On the other hand, there is a positive energy
which is the result of forming normal/superconducting interfaces.
Their sum is called the surface energy. For « less than 1//2, the
surface energy is positive. This inhibits the formation of normal/
superconducting surfaces within the bulk, creating the Meissner
effect. Abrikosov [21] finds that for k greater than 1//Z, the
surface energy is negative, so that normal-superconducting inter-
faces are encouraged. This induces the magnetic field to penetrate
in the form of fluxoids. The GL parameter can then be used to

define the type of superconductor:

k < 1/¥/Z = Type 1 superconductor,

and

k> 1//2

1]

Type II superconductor .
There is a unitless parameter, K](T), which relates the upper
critical field Hc to the thermodynamic critical magnetic field

2
Hc by

ch(t) = /Z'K](t)Hc(t) . (2.35)
At the critical temperature, K1(TC) equals k. Marker [2] finds that

the temperature dependence of K](t) can be approximated by

<y (t) =ﬂli”—% , (2.36)
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B) Fluxoids
Magnetic flux, as noted previously, penetrates a superconductor
for fields above HCZ(T). It penetrates in quantized bundles called
fluxoids [22]. The fluxoids are a direct result of the second GL

differential equation
%2

. *
p - N Vi VR Vi) BT ML S (2.37)
2m i mc

The order parameter can be separated into a magnitude |¥| and a
phase ¢ obtaining
x 2

P I VT S (2.38)
m mec

*
One can substitute N for |‘¥|2 and rearrange this equation obtaining

Chgy=0C J.% . (2.39)

An integration over a closed path s inside the superconducting

material yields

*

C_M%.d;wzsw.dz-w-d; (2.40)
e eﬂs 1
*
=B 9T g (2.41)
ens
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! The order parameter must be a single valued function, so for a loop

around the path s, the phase ¢ must vary by 2lIn. When this fact

is applied to the integral on the left one obtains the fluxoid
g quantization
i n *

nc mc v

E, —;—=ﬂ—§j-ds-¢ . (2.42)
k| e e n

This equation describes a magnetic entity, the fluxoid, which is
B composed of a superconducting current vortex surrounding a magnetic
flux column (see Figure 3a). The number of superconducting electrons
decreases toward the center of the vortex, creating a normal core
of radius £(T) (see Figure 3b). The magnetic flux quantum, 0y is

given by
= -7 2
%, == =3¢ = 2.07 x 107" gauss-cm~ . (2.43)
e e

This relation can be used together with Equations (2.26) and (2.31)

to express the coherence length as

2 ] 1/2

£(T) *[ﬁg—c;m (2.44)

A fluxoid is repelled by the magnetic field of neighboring
J fluxoids. This mutual repulsion induces them to form in a periodic
lattice array which is usually triangular. The geometry of the

crystal lattice can deform the fluxoid lattice angles, and can even

= B
RN oo .




Figure 3) Schematic representation of a fluxoid showing
a) the supercurrent distribution around the normal
core, and b) the density of superconducting eiectrons
and the magnitude of the magnetic induction.




dictate a square fluxoid lattice [8]. The distance between fluxoids

in a triangular lattice is given by the fluxoid lattice parameter

a
0

a =

0

26\ 1/2
( 0 2.45)

3
The Flux Line Lattice (FLL) responds elastically to applied

forces. Any elastic reaction of the lattice can be described by

a combination of the following elastic moduli given by Labush [23]:
L - which changes the cross-sectional area of a fluxoid

lattice cell but not its shape,

Cag - which tilts the fluxoids away from the z-direction, and
Ce6 - which shears the lattice in the x-y plane (see Figure 4).

The elastic moduli for magnetic fields near HC are given by [23]:

2
2
_ 82 o
LB (2.46)
_ BH
44 = 21 (2.47)

.48(1-h)2HC2
Cos = 2 (2.48)

8H(2)<2-’l )B%

where h is the reduced field H/Hc , and, for a triangular lattice,
2
By is equal to 1.16. Although these results are strictly correct
only in fields near HC , they are routinely used, with good results,
2

at lower fields.
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Figure 4) Schematic model of the elastic moduli showing
a) a cross-sectional area of the FLL at rest,
b) Cps c) Cyq» and d) Co6-
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C) Flux Pinning

1) The Lorentz Force and the Critical Current

An electrical current density, J, passing through a super-
conductor which is in a magnetic field,creates a Lorentz force
density,

=1
FL=cIxB , (2.49)

that acts on the fluxoids (see Figure 5). This force can be

derived thermodynamically from the Helmholtz free energy density

f [9]. An area A, perpendicular to a magnetic induction B, can be
compressed in such a way that BSA + ASB = 0. The pressure, in terms

of the free energy density is

_ _ |3Force | _ _ 3(Af) _ . _ Asf
P = ( 3A )7 A fF-": - (2.50)
Due to our initial conditions, this can be expressed as
= . Baf
p - f + 33 . (2-5])

The force per unit volume, Fv, is

-4 _ _df _ d [Bdf
Fy = dy =~ dy * dy ( dB
=_£_B+ﬂ3_£+81(d_f_ (2.52)
B dy dy dB dy \ di

d
Campbell and Evet*ts [9] assume that the conditior for thermal

equilibrium is

H
& (2.53)

wlw
@©f
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Figure 5) Schematic representation of the Lorentz force
F o= 1 J x ﬁ, and of a fluxoid moving with velocity
L ¢“c
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therefore,

F - B di (2.54)

The Maxwell relation V x B = %g J can be used to obtain

2] -
F -ij§-?l_ (2.55)

v
When the Lorentz force causes the fluxoids to move, they

create an electrical field [24] due to the Maxwell relation

(2.56)

o)'o)
{0}

=z 1
VXE—-'E

In the case where the fluxoid velocity VL is a constant, the above

expression yields [25]

E=]EV 8 . (2.57)

L

where E is parallel and opposite to the current. Such is the case

for a superconductor without microstructural defects, where the

flux flow is limited by viscous forces. Work is done against the

viscous forces when the fluxoids are moved. Therefore, a]fhough

the material remains in the superconducting state, it no longer

carries a lossless current. The current at which the fluxoid-

induced voltage is first observed is defined as the critical current.
The critical current can be increased by preventing the movement

of the fluxoids. A force equal and opposite to the Lorentz Force

must be provided to "pin" the fluxoids. Anderson [26] proposed

that this "pinning" could be accomplished by inhomogeneities in the

material. Fluxoids can be attracted or repelled by impurities and
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crystal lattice defects, effectively being pinned by them. The
maximum "pinning force" density exerted by these defects, F_, can

p
be calculated from the Lorentz Force at the critical current JC

Fo=-F)=-23 x8 . (2.58)

p c ¢
Power is still dissipated at currents above Jc. However, now vL is
not a constant; it depends on the depinning mechanism. The dis-
sipated power can be calculated from the work done to depin the
fluxoids from the pinning centers.

2) Pinning-Producing Material Defects

Material defects interact in a variety of ways with the fluxoid
lattice. Crystal lattice dislocations and grain boundaries produce
in their vicinity changes in the superconducting parameters. The
coherence length, the critical field, and other parameters are
affected by the electron scattering caused by the crystal defects.
The change in these parameters, in turn, changes the local value of
the fluxoid lattice energy. This energy gradient can attract the
fluxoids to the defect or repel them away, acting, in both cases,
as a barrier to the movement of the fluxoids.

The elastic energy of the crystal 1atfice dislocations can
also produce pinning [27]. The vortex core is stiffer than the
surrounding superconducting material. Therefore, the elastic
energy of a crystal lattice fislocation increases as a fluxoid core
approaches it, creating a repulsive force. Furthermore, the specific
volume of the core is lower than that of the surrounding bulk, creating

local stresses. These stresses interact with the strains created by

the crystal defects.

U

Ay




Defects that are large compared with the penetration depth, A,
3 produce pinning due to "magnetic interactions."” The magnetic field

inside these defects can differ from the average magnetic field in

the bulk. The fluxoid lattice is pinned by the resulting gradient
in magnetic energy.

A void or a normal impurity with a small size compared to the
penetration depth, A, can pin a fluxoid due to the change in con-
densation energy if the fluxoid threads the impurity. Normal
electrons must be created if the fluxoid core moves out of the
impurity. Cooper pairs in the surrounding bulk must be broken up
to provide these normal electrons. Energy is spent in breaking
the pairs, therefore, the fluxoids prefer to stay pinned to the
impurities. This interaction between the fluxoid core and an
impurity is called a "core interaction.”

3) Core Interactions

Many of the specimens in this research have a high density of
small precipitates (d<i). If this density is nigher than the
density of other types of crystalline defects, the biggest contri-
bution to the pinning force density is due to "core interactions”
between the vanadium-carbide precipitates and the fluxoids. Due
to the small size of the precipitates of these specimens, the
"magnetic interactions" are negligible. The density of non-
precipitate defects in the specimens used is low, therefore, the

pinning force density due to these defects is neglected.
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The core interaction force, fp, is usually obtained from the
Ginzburg-Landau free energy density. We can obtain the interaction
force following the method used by Campbell and Evetts [9]. Con-
sider moving a normal precipitate of diameter <2£ and volume V
from inside a fluxoid core to a position half way between two
fluxoids, x = 1/2a0. According to Campbell and Evetts, the change

in the G.L. free energy AE, can be expressed as

vHZ

8E = 5= £2v%0% max, (2.59)

where, again, wz = |w|2/|w5;2. Saint-James, et al. [7] obtain an
expression for wz. Campbell and Evetts simplify this expression

obtaining for materials with high x, the relation

WF = (1-n)1 '[% cos{x - X)%E + cos AL 2L, cos(x + X)%E] ,
73 /3

0 /3 3o )

(2.60)

where x and y are the distances from the core of a fluxoid. It
is more illustrative to consider a one-dimensional approximation of

the square lattice at high fields, given by

1

wz(x) 2 (l-h)(] - cos 21

-5;- (2.61)

Using this approximation, the change in free energy becomes

2

e fanele 2

LE = o a, v©|max . (2.62)
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The interaction force, fp, is then equal to

3
fp = 'a; = il (%E) ngi wzlmax . (2-63)
0

The maximum value of wz is (1-h), therefore,

P TR

3
_ v fam\ 2.2
f _4H(ao) EH. (1-h) . (2.64)

L
&

This result is the same as that obtained by Campbell and Evetts [9].

Using Equations (2.35), (2.44), and (2.45) one obtains from

Equation (2.64)
VHc 5/2 h3/2
2
0 Z

where cp = 1.27.

Kramer [28], and Fihnle [29] also obtain an interaction force
from the G.L. free energy density. They use approaches which are
more sophisticated than the one discussed above. Their results
are of the same form as Equation (2.65), with <y equal to 0.866

and 0.274 in their respective calculations.

B | Kramer's result [28], given by
Y 0.866 VH_ /% 1n3/2 (1-n) |
E P 2 1/2
1 ¢o
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will be used in future calculations. We will use it because of
the frequent use of this result in the literature, and because its
value of c¢_ fallsnear the middle of those found by Campbell and

p

Evetts (c. = 1.27) [9] and Fédhnle (cp = 0.274) [29].

P
For precipitates with one or more dimensions larger than twice
the coherence length, part of the precipitate volume lies outside
of the normal core of a fluxoid that threads it. Therefore, the
change in the G.L. free energy, given by Equation (2.59), is not
proportional to V. This energy change is now proportional to that
part of the precipitate volume that lies inside the normal core.
The precipitates in our research are thin disks, the planes
of which are usually oriented at 90°, 71.6° and 18.4° to the specimen
surface [30]. In the geometry of our experimental set-up, these
precipitates 1ie at 0°, 18.4° and 71.6° to the magnetic field.
For precipitates with diameter, d, larger than twice the coherence
length, the precipitate volume within a fluxoid normal core, shown

in Figure 6, can be approximated by

i) for the 0° orientation

2 2

vy = 2t€(T)[%- - Ez(Td]]/z + t% arctan [Zg(T ] ,

d
(2.67)
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ii) for the 18.4° orientation, and g(T)<%

v, 4t2£2(T) sec (18.4°) (2.68)

d d
and, for §>5(T)>€

Vp = Vi o (2.69)

iii) for the 71.4° orientation

Vg » T ECt sec (71.4°) (2.70)

where ¢ is the precipitate thickness. The average volume, V, is

given by

Vel (vt v, + ) . (2.71)

For 7>§(T), this equation can be approximated by

Taly 2
V=gV =56ed . (2.72)

A normal metal in good electrical contact with a superconductor

will acquire superconducting properties near the contact area [31]. T
The Cooper pairs in the superconductor penetrate a distance £ into

the normal metal, creating a superconducting layer of thickness £.

The thickness, ¢, of most of the precipitates is less than £.

Therefore, the precipitates might become superconductors with Hc lower

than that of the bulk. This can reduce the change in free energy used

to calculate f Equation (2.59), by a factor (28]

SH H - H

c c
¢ . __bulk ppt
v ) (2.73)

c Cppt

¥
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where H is the local value of the critical field inside the
ppt
precipitate. Kramer [28] talculates the change in fp due to the

proximity effect on precipitates Tike ours and obtains a resulting

interaction force f& equal to
oy akper, | 2
o iim x| % (274

where fp is given by Equation (2.66), N(o) is the density of states
at the Fermi surface, A is the superconducting energy gap, ¢ is
the precipitate thickness, and Ao = A(T = 0). This factor adds to
fp a further dependence on the microstructure, given by tz, and a
further dependence on temperature, which is approximately given by
(1-t). For our specimens, the thickness ¢ is proportional to the
square root of the precipitate diameter, d. Therefore, when the
proximity effect is considered, the resulting interaction force,

f&, is proportional to

foo=d(1-t) £, . (2.75)

4) Summation of the Macroscopic Pinning Force

The summation of the elementary pinning force, fp, exerted
by the pinning centers, into a macroscopic pinning force density,
Fp, is a major problem. First, several of the potential sources
of pinning mentioned in the previous sections can act at the same
time. Second, the strong coupling between the flux lines in the

fluxoid lattice prevents a simple summation of forces; stresses

st
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induced on the fluxoid lattice by a pinning center may reach
neighboring pinning centers. Furthermore, the fluxoid lattice is
not rigid, it bends and plastically deforms to minimize its
energy.
a) Dew-Hughes' Theory

Dew-Hughes [32] ignores the elastic behavior of the lattice.
He assumes 5 direct summation of the elementary interaction forces,

Fp = pr over all pinning centers in a unit (2.76)

volume,

so that

Fp = p?b , (2.77)
where p is the density of pinning centers. This is the maximum
Fp that could conceivably be calculated. Using Equation (2.66)
one obtains

ovH_ /2 h3/2 (1-n)
F, = 0.866 — T (2.78) |
S ‘ !

b) Labush's Theory

Labush [33] computes Fp using a statistical method to take J

into account the interaction between fluxoids. He obtains for

small plate-like precipitates

2
df 1/2
: =°_E(¢£ ’[

p.
i % ) /c]]c44

1
- —_(.\/7 4Hc66 -\'[4“(:66 )} (2.79)

s V)

‘N
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where i stands for the coordinates x and y, the parameter N equals
(cL + C66)’ and d is the diameter of the precipitates. The tensor
a is the mean value of F(U) over all line elements of the fluxoid

lattice. The tensor F(U) is given by

2, ~ N2y -
F(U) =.a4% X + é_% y o, (2.80)
X Yy

where U is éhe potential of the interaction between a fluxoid and
a pinning center, given in energy per unit Tength. Weak inter-
actions, or high reduced magnetic field, yield (a/4nc66)<<1. In
this case, the elastic response of the lattice is independent of

o and Equation (2.78) becomes

2
pdf 1/2
s = p (éL) 1 PR . (2.81)
8Vl 0 /c.”c44 /c65c44

Assuming that H = B, the use of Equations (2.46), (2.47), (2.48),
and (2.66) yields

pdV2H3.5h2.5 A
€ 2([ 2, 0.18(1-n)2 ]2
F 20.38'—r]—/2—(]-h) h™ + = 7
P K1 @ (2<-1)

(2.82)

, 2.36(2¢%-1)1/2 )
(1-h)

c) Kramer's Theory

Kramer [1] considers the power loss due to the motion of the FLL

at the moment it becomes depinned. This power loss is equal to the




elastic energy ES that the moving FLL elements had prior to -

depinning. This energy is given by

¢ -
=1.p
A (2.83)

*
where fp is an effective interaction force, and C is the appropriate
combination of elastic coefficients of the FLL.  The depinning force

density, Fd’ needed to move the FLL a distance a_, the lattice

o’
parameter, can be expressed as

Fg=-20 2= -F (2.84)

where p is the density of pinning centers.
Kramer's theory predicts two different depinning mechanisms. +4

At low fields, the FLL remains elastic and depins by breaking

individual bonds with the pinning centers, as shown in Figure 7.

At high fields, the shear strength of the lattice decreases and

the lattice deforms plastically around the pinned fluxoids. At

these fields, strongly pinned fluxoids remain pinned; the lattice

plastically deforms only in the areas where the fluxoids are not

individually pinned or are weakly pinned. The resulting pinning

force for a given reduced field is dictated by that mechanism,

elastic or plastic, which yields the lowest magnitude depinning f

force for that reduced field. An example of a pinning force

resulting from the elastic and plastic mechanisms is shown in

Figure 8.




<
O o o O
o O O 56 o 0 o ° 4
O fglgggg ter . o Nekio o
e /I\fp 0. OE\C/)"O. /I\fp 0
O O o © O
O \N1.0 0o o O O © @)
C) _fluxoids o o 0
o O © 606 0 O o 5
b)
O C O o O
(?..,b...%...,_o 0O 0 O Ogo O
O W O o o 50 'e) O
o O O 0O © 0o o0 O O O o o
O O 0O 00 00 09090 o n
c)
o 0 C o, 0 0 0 ¢ o
O
o0@oo]” 00 %, o~D~~o.,O
| Cj"' e C)l
o 0o ©0 % o0 0o
O l VL\l/ |O O
0 000900090000 4
|~ Py . ~ !
Figure 7) Schematic representation of a pinned FLL under the

influence of the Lorentz force where: a) the FLL
lattice bends elastically, b) the FLL dislodges from
the pinning centers, and c) individual fluxoids
remain pinned but the lattice deforms plastically
between the pinned fluxoid.
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The elastic response of the lattice is further subdivided in
two reduced-field regions. At very low fields, the fluxoids are
very flexible; pinned fluxoids bend easily under the influence
of the Lorentz force. Furthermore, the FLL can also shear
elastically about a pinned fluxoid. Therefore, in this limit, the
elastic moduli Ca4 and Cog AT needed to describe the elastic
reaction of the FLL to a pinning center. On the other hand, at
higher fields a fluxoid becomes stiffer, and if the distance
between the pinning centers along its length is small, the fluxoid
will barely be able to bend. The fluxoid now has the appearance
of being pinned along its length by a line pinning center.
Elastically, the FLL can only shear, therefore, only Ce6 is needed
to describe the elastic response of the FLL. The low field region,
where a fluxoid car cand about a pinning center, is called the
point-pinning region. The reduced field region, where the fluxoid
appears to be pinned by a line pinning center, is called the line
pinning region. The reduced field hL at which there is the transi-
tion from point-pinning to line-pinning is dictated by the relative

stiffness of a fluxoid as compared to the shear strength of the
flux lattice, and by the distance between pinning centers. This
reduced field, hL, can be obtained from

) 6 B
) C44:0

2/3

~

(2.85)

The point-pinning region is of little interest because as

the magnetic field is increased, the critical current drops
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rapidly to very lTow values. On the other hand, in the line-
pinning region, there is a rapid increase in critical current
as the reduced field increases. Therefore, more emphasis is
given to the line-pinning region.

The elastic energy per flux line, Es, can be calculated
from the interaction force fp. In the line pinning region, the

interaction force per unit length of fluxoid is

f = n]f (2.86)

p
where N is the humber of pinning centers per unit length of a
flux 1ine. The flux line lattice can shear in order to thread
through more pinning centers. Therefore, the effective inter-

*
action force fp is proportional to the displacement of the lattice

fp]/css, thus,
[2

e (2.87)
e .

The elastic energy density per unit length of pinned fluxoid ES s
1
obtained from Equation (2.82), is proportional to

p *2
bt
e, e le (2.88)
1 66

The use of Equations (2.86) and (2.87) in Equation (2.88) yields

n?f4
£ x
S

1

-

(2.89)

()

66
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One now obtains from Equation (2.84) the relation

F = 01 ip s (2.90)
aoc663

where ol is the density of pinned fluxoids per cross-sectional area.
The use of Equations (2.45), (2.48), and (2.66) yields the pinning
force density for the line-pinning region

6.
a0 (217 00

Fo= ppnqViHe” 3
2 < (1-h)

5 (2.91)

The shear strength of the FLL decreases as the magnetic field
is increased. At a reduced field hp, the Lorentz Force exceeds
the maximum shear strength of the FLL. Thus, the elastic response
of the FLL is supplanted with plastic deformation of the lattice.

To calculate the pinning force 1imit due to plastic deforma-
tion, Kramer considers a simple system consisting of pinning
planes, separated by a distance y. The surface of the plane lies
parallel to the Lorentz force. For such a system, the shear stress

rwyof the FLL can be approximated by [34]

o L) e

where x is the distance from the surface of a pinning plane.

Setting x at the position of maximum stress, namely at x = % 3y

the above equation can be expressed as
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where Tnax can be approximated by
c
_ 766

Kramer calculates the stored energy density, pES, to be

22
E it (2.95)
p = em——— . .
S 24c66
Substituting in this equation the value of FL given in Equation (2.93), 1

Equation (2.84) becomes

c
- 66
Fp = 2 . (2.96) 1

2 ao
121 ( --y—) ao

Substituting Equations (2.45) and (2.48) into (2.96), one obtains

y 512
Fo=—018 2 42 (n? . (2.97) ‘
I f
Y

For a more realistic model (parallel pinning planes are not very
realistic) the biggest change in this equation is in the dependence
on the microstructure. Furthermore, Kramer's theory is based on

a simplistic version of the plastic deformation phenomena because

he does not take into account the fluxoid-lattice defects. Plastic
deformations usually start and/or propagate along lattice defects.
This will have an unknown effect on the form of the pinning force
density. Regardless of the model used, the depinning force density
due to the plastic-deformation mechanism is probably weakly
dependent on the precipitate density, and it is probably independent

of the interaction force fp.

I —————




d) Other Theories

Schmucker [35] calculates the pinning force in the plastic
deformation region by means of a Green's function which describes
the elastic behavior of the FLL. Schmucker states that the

pinning force density can be expressed as

F, = 4lof djidy (2.98)
where f; is an effective interaction force that depends on the
elasticity of the lattice, and d,,, d; are the dimensions of the
pinning centers parallel and perpendicular, respectively, to the

flux 1ines. The shear stress Tgs derived from the FLL Green's

function equals

T = fpd+p , (2.99)
where G can be approximated by

-2

G = 5.47 x 10 ) (2.100)
1/2

Caq 411

0.93+ o a

66 “L

At the threshold of plastic deformation, when the shear stress is
*
at a maximum, one can define an effective interaction force fp by

means of Equation (2.98) as being equal to

*  Thax
fp = —d-l-G— ’ (2.]0])
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E
Schmucker uses a maximum shear stress of the form
c
_ %66
Tmax = 50 ° (2.102)
therefore, using Equatjon (2.100) and (2.101), f; becomes
* 66 ey 41| 72
f =0.36 74— | 0.93 + | — — . (2.103)
p d g6 9L

Using this equation and Equations (2.47) and (2.48), Equation (2.98)

can be rewritten as

2
5 (1-h)
F = 0.065 pd d; HE, - —p—
P 2 (2¢%-1)
di 7 h : (2.104) ‘
X [0.93 + H-_L— (2.367)¥2x"-1 m-n ‘

For high values of « and when d,, ~ d;, this equation can be

approximated by
0.1 d_2 n(1-h)

. 2
x 2 , (2.105)

Campbell and Evetts [9] have proposed, without a rigorous
treatment, a different mechanism to explain the increase in critical
currents at certain fields. They state that at low fields there
is such a low density of fluxoids that most pinning centers are
not near fluxoids, so these unused pinning centers do not contribute
to the pinning force density. As the field is increased, the
fluxoid density increases. The fluxoids thread more pinning centers,
in other words, they synchronize better with the pinning-center

density. However, at a certain field hs’ there are no more unused
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pinning centers to synchronize with, so there cannot be any further
increases in the pinning force density. As the field is increased

from hs’ the pinning force density decreases because the elementary

interaction force of the pinning centers decreases.

sinichbdma




CHAPTER III

SPECIMENS AND APPARATUS

This investigation consisted of two stages. The specimens were
prepared and analyzed by K. Moi], under the supervision of
Dr. W.R. Bitler of the Department of Material Sciences of The
Pennsylvania State University. The author performed the second
stage, namely, the final preparation, and the measurement of super-
conducting and electrical properties of the specimens. To acquire
this data, the specimens were mounted in a sample holder and cooled,
using liquid helium as a refrigerant. The resistance ratio, transi-
tion temperature, and critical currents of the specimens were

measured with a four-probe method.

A) Specimens
1) Starting Materials

The superconductors studied in this investigation are high-
purity vanadium, and vanadium alloyed with niobium or gallium.
Vanadium and niobium are the only intrinsic Type II superconductors.
Marker [2] used vanadium because of its availability in high purity,
and its controllable microstructure. We chose gallium as an alloying
agent because carbon has more affinity to vanadium than to gallium,
therefore, the formation of gallium ca.bides in the V-Ga specimens
is unlikely. Also, the literature shows that the transition tempera-

ture of vanadium does not drop too much with the addition of small
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concentrations of gallium [34,34,39,40]. Finally, superconducting
V-Ga alloys are technologically important. Niobium was selected for
its electronic and superconducting similarities with vanadium.

The starting materials were obtained from Materials Research
Corporation. The vanadium arrived in 0.0254-cm x 2.54-cm x 61.0-cm
foils of 99.95% nominal purity. The alloys, which arrived in
1.27-cm~diameter ingots, were made with vanadium of 99.9% nominal
purity, and 99.999%-pure gallium or 99.99%-pure niobium. The alloy
concentrations, given in atomic percents, were V-3.96a/0 Ga,
V-1.05%a/0 Ga, V-0.20a/0 Ga, and V-4.10a/0 Nb.

2) Annealing and Carburization

The specimens are annealed to reduce the lattice defects
that can cause fluxoid pinning. This process creates crystal
grains approximately 2-mm in diameter with surfaces near the {001}
planes. Carbon is added to the vanadium or vanadium alloy in order
to obtain normal precipitates that act as pinning centers. The
vanadium-carbide precipitates in the form of disks along the {310}
habit planes. Therefore, the disks align with their surface at
90°, 71.6°, and 18° to the specimen surface. Aging, which means
heating for a definite period of time, coarsens the precipitates;
that is, it increases their volume at the expense of neighboring
precipitates. The precipitate thickness is roughly proportional
to the square root of the precipitate diameter. The precipitaies

stress the lattice, therefore, the larger precipitates tend to

become incoherent with the lattice.
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The Material Science group supervised by W.R. Bitler annealed
and carburized the specimens. The specimens are annealed at a
pressure of 10'6-torrs and at a magnesium-gettered oxygen partial
pressure of less than 10']7 torrs. (hmic self-heating, produced
by passing a large current through the specimen, is used to anneal
the specimens at 1,500°C. Carburization is also done at this
temperature. A measured volume of a 2.08 vol. % methane in a hydrogen
carrier is introduced into the vacuum chamber. The methane
decomposes, with the carbon going into solid solution in the hot
specimen. Specimens to be aged are sealed at a pressure of 10'6 torrs
in Pyrex capsules. They are then heated in a muffle furnace at
350°C. Aging times vary from 30 minutes to 36 hours. (For more

information on the annealing, carburization and aging of vanadium,

consult Schuvler [30]).

3) Analysis of Specimen Microstructure

The microstructure of the specimens was analyzed with a
Phillips EM 200 transmission electron microscope. Results of this
analysis are shown in Table 1. Apparently, the addition of gallium
slows down the coarsening of the precipitates. For example, specimen
#68, which is pure vanadium with 0.20a/0 C and was aged for one hour,
has a mean precipitate volume ]03 larger than that of specimen #71,
which is a V-1.05a/0 Ga alloy with the same carburization treatment
N as #68.

Roughly half of the specimens were carburized on an apparatus

that permitted a slow cooling from the carburizing temperatures.
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Table 1. Composition, Aging Time, and Microstructural Analysis of
the Specimens

Speci- a/o C Aging at 0 Diameter Vp ; on 3
men 350°C hrs 12 A 6 -
p x 10 pp/cm3 A x 10°(A)° x 10

Pure vanadium specimens

8 0.0 - - - - -
50 0.0 - - - - -
54 0.0 - - - - -
41 0.0 - annealed, then cold rolled to 75% reduction
76 0.07 0.0 almost solid solution
77 0.07 0.5 1,943 244 0.991
78 0.07 3.0 699 397 2.41 1.69
82 0.07 10.0 396 524 4.84 1.92
83 0.13 0.0 24.7 1,968 175 4.42
9 0.3 0.5 16.5 2,726 305 5.04
96 0.13 + 1.0 141 976 28.4 3.99
70 0.20 0.0 8.69 3,648 665 5.78
56 0.20 0.0 8.74 3,839 688 6.01
49* 0.20 0.0 N.A. N.A. - -
68 0.20 1.0 5.61 4,143 999 5.61
58 0.20 1.0 5.57 4,011 1,053 5.87
65 0.20 3.0 13.4 2,860 374 5.04

*Inadvertly aged in situ after carburization, due to siow cooling
-Distinct second distribution of precipitates of smaller size

N.A. Not Available




Table 1.

Composition, Aging Time, and Microstructural Analysis of
the Specimens (Continued)

Speci- a/o C Agigg at p DiaTeter Vg . pr
m;n 350°C hrs X ]O]pr/cm3 A « 10 (A)3 X ]0-3
35* 0.40 0.0 4.23 6,404 2,610 11.0
24* 0.60 0.0 1.64 8,494 5,804 9.53
24- 84.7 1,393 86.9 7.63
23* 0.60 0.5 1.05 11,708 13,73¢ 14.5
23- 542 523 5.1 2.77
22* 0.60 0.5 N.A. N.A. - -
19* 0.60 1.0 0.932 6,207 5,771 5.38
19- 458 957 22.6 10.4

V - 0.20a/0 Ga
86 0.13 0.0 - solid solution -
90 0.13 1.0 N.A. N.A. - -
93 0.13 1.0 4,339 248 0.734 3.19
91 0.13 3.0 2,929 314 1.36 3.99
92 0.13 5.0 2,261 337 1.69 3.82

V - 1.05a/0 Ga
30 0.0 - - - - -
61 0.20 0.0 - solid solution -
42* 0.20 0.0 1,874 425 2.96 5.54
43* 0.20 0.5 1.256 476 3.83 4.81
71 0.20 1.0 4,415 302 1.1 4.89
32* 0.20 1.0 2.453 382 1.94 4.75
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Table 1. Composition, Aging Time, and Microstructural Analysis of

the Specimens (Continued)

Speci- a/o C Agigg at ol DiaTeter Vp . oV
m;n 350°C hrs X ]O]pr/cm3 A X ]06(A)3 X 10-3
60  0.20 3.0 13,058 192 0.364  4.76
69 0.20 10.0 4,524 295 1.02 4.64
81 0.20 36.0 3,670 300 1.28 4.68
84 0.20 2.hrs at 500°C 50.3 1,759 95.2 4.79

V - 2.96a/0 Ga
7 0.0 - - - - -
5 0.0 - cold rolled from starting material; not
annealed
63 0.20 0.0 17,310 170 0.270 4.67
33* 0.20 0.0 4,669 3N 1.10 5.12
7% 0.20 0.5 N.A. N.A. - -
44  0.20 1.0 7,520 246 0.640 4.81
62 0.20 5.0 5,579 269 0.854  4.77
67 0.20 10.0 8,223 237 0.613 5.04
9*  0.40 0.0 2.15 7,568 4,582 9.87
10+ 0.40 0.5 2.54 6,518 4,017 10.14
V - 4.01a/0 NB
27* 0.0 - - - - -
28  0.20 0.05 1,153 528 4.30 4.36
29*  0.20 1.0 1,197 537 4.52 5.4
45  0.20 1.0 6,945 265 0.805 5.59
51*  0.20 2.0 8.630 238 0.610 5.26
52*  0.40 1.0 1,003 675 10.4 10.43
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Unfortunately, this slow cooling was responsible for some aging

in situ, roughly equivalent to a couple of hours of aging at 350°C.
The apparatus was modified for subsequent specimens, allowing a
faster quench from the carburizing temperature and minimizing the
aging in situ.

4) Cutting and Polishing Procedures

The specimens are electrochemically cut and polished using a
solution of 20% sulfuric acid, 80% methanol, and a few drops of
water. The solution is kept cool by running tap water through a
submersed glass coil. Eleven volts are applied between the specimen
and two stainless-steel cathodes immersed in the etchant. Mechanical
stirringminimizes the anodic layer that forms on the specimen
surface. A proper combination of electrode position and stirrer
speed is critical for obtaining specimens with uniform thickness.

The 0.254-mm thick specimens are first electrochemically
thinned to a thickness of 0.15 mm. They are then coated with
“Microstop Stop Off Lacquer," which is manufactured by the Michigan
Chrome and Chemical Co. Then strips of lacquer are cut using a
brass template and peeled off. The specimens are reimmersed in the
etchant, exposing to the acid the outline of the desired shape.
After the cutting operation, the remaining lacquer is peeled off
and the specimens are cleaned with acetone. A final etch thins the
specimens to 0.10 mm.

The final shape of a sample is shown in Figure 9. The wide

end-tabs, ultrasonically tinned with indium, improve the electrical

contact to the current leads and the thermail contact to the sample
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block. Indium-solder flows through the holes etched at each end,
improving the mechanical bond between the tabs and the current
leads. The thin center strip is designed for voltage measurements
along its length with the four-probe method. The cross-sectional
area of the center strip is kept at a minimum in order to achieve
high current-densities with the available current sources. Further-
more, decreasing the total current decreases the ohmic heating at

the current-lead/specimen contact.

B) Hardware
The srecimens are mounted on a copper block which contains
all the pertinent sensors. The specimen block is designed to fit
inside a vacuum-tight brass can. The can is positioned inside a
liquid heljum filled finger dewar so that the specimen is located
at the center of a superconducting magnet. Figure 10 shows the
specimen holder and dewar system.

1) Specimen Block

The specimen block, shuwn in Figure 11, is made of copper
half-cylinders, separated by a 0.127-mm thick teflon insulator.
The halves are held together by four stainless steel bolts. A
cloth-phenolic insulator around the top half of each bolt prevents
the bolts from electrically shorting the two copper halves. The
sample block contains a recording thermometer, which is a germanium
resistance thermometer; a heater, which is a 50 nicrome wire

epoxied around the copper block; a regulating thermometer, which is

O PR Al MU . el i 4t
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'

a 100Q carbon resistor; and two vertical, spring-loaded voltage

probes. All the wires coming to these devices are passed through the
liquid helium bath, thereby eliminating heat leaks into the sample
through the wires. They are then wound several times around the

if% blocks and epoxied in place, thermally grounding them to the block.

The specimens are mounted on the bottom of the block, perpendicular

,f‘ to the insulated division between the halves. A 0.127-mm thick teflion
3; foil electrically insulates the center part of the specimen from

] the copper block. The end tabs of the specimen come in direct

! thermal contact with the copper block; a dab of Dow Corning 200

f?, fluid of 60,000-centistopes viscosity enhances this thermal contact.

Superconducting, multifilimentary Nb3Sn (in a copper matrix) wires,
which carry the transport current for the four probe method, are
u]trasbnica]]y soldered to thick copper-contacts. These contacts
are designed to be soldered to the tinned specimen-tabs.

2) Block Support

The specimen block fits inside a 5.1-cm diameter, 20.3-cm
long, vacuum-tight brass can. It is supported by two thin wall,
151 stainless-steel tubes. Thus, the block does not come in direct
contact with the liquid helium bath, enabling its temperature to
be regulated at a value above the bath temperature. Helium gas
is introduced in the can to a pressure of 60 to 100 militorrs.

The gas provides thermal contact between the bath and the copper

block.

o m_—-———-—-ld
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The can is suspended from a brass flange by a 0.95-cm diameter,
96.5-cm long, thin-wall stainless steel tube. The voltage and
o thermometer leads are enclosed inside a 0.64-cm diameter stainless
: steel tube parallel to the support tube, to minimize electronic-noise
i pick-up. The support tube is connected at the top flange to a

pumping port used to evacuate the brass can to the desired pressure

e

L Vet K aaick

73 level. The top flange also supports an aluminum electronic-chasis,
which contains all the electrical connections to the copper block.
Low-thermal input connectors are used in the chassis for the voltage
leads of the four-probe method in order to minimize thermal emfs.

3) Cryostat and Superconducting Magnet

The brass can enclosing the sampie block is designed to fit
inside a finger dewar filled with liquid helium. The temperature
of the 1liquid helium is regulated by controlling the pressure
inside the finger dewar with a manostat.

The sample block is located at the center of a superconducting

! magnet which surrounds the lower part of the finger dewar. American

- Magnetics, Inc. fabricated the solenoid from multifilamentary NbTi

; wire. The field homogeneity is one part in 105 over a 2.5 cm

diameter volume around the specimen location. A Didcot Instrument
b Co., Ltd. Model DPSA/100/4.5/1 power supply provides the magnet

%j; current. A resistor of 10ma, which is in series with

:

the solenoid, is used for measuring the current for fields above

5K 0e. An external resistor of 0.26490 in series with the solenoid
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is used for lower fields in order to increase the current readout-
voltage sensitivity at these fields. The voltage across these
resistors is read, nominally to four significant digits, with a
Keithley Modei 190 digital multimeter. The magnetic field is
calibrated versus the magnet current by proton nuclear magnetic

resonance to an absolute accuracy of *0.2 Qe.

C) Electronics

1) Four-Probe Method

The four-probe voltage versus current method used to measure the
critical current is shown schematically in Figure 12. Two power
FET's powered by a D-8D truck battery provide up to 20 amps. The

controlling ramp-circuit is optically isolated from the power FET's

in order to prevent noise-producing ground-loops. Ramp speeds are !
monitored in order to have a slow approach to JC. The total ramping .
time from J = 0 to JC is usually more than one minute. The current

is determined by measuring the voltage developed across a series

0.0256 resistor.

The voltage along the center part of the specimen is amplified
]06 times by a Keithley 148 nanovoltmeter. The 8 Hz noise from the
nanovoltmeter's chopper is eliminated with a low pass filter on the
output of the nanovoltmeter.

A Hewlett-Packard 7001A-M x-y recorder is used to plot specimen
voltage versus current. Coupled with the nanovoltmeter it shows a

resolution of 100 nv/cm and noise level generally below 10 nv.
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2) Temperature Control

The temperature of the specimen was controlled using the two
systems shown in Figure 13. The first system measures the tempera-
ture, the second regulates it. The temperature is obtained from a
Cryo Cal, Inc. germanium Cryo Resistor using a four probe method.
The thermometer resistance varies from 3861Q at 1.5K, to 95.59 a at
10.0K. A constant-current source provides a current of 1.191 pA
or 13.31 pA through the thermometer. The higher current is only
used for temperatures above 3.5K. The voltage across the Cryo
Resistor is amplified by a Hewlett-Packard 7408 Standard/Differential
Voitmeter. The voltage is then displayed on a Digitec digital
millivoltmeter, which has a four-digit display.

The Cryo Resistor was factory calibrated only down to 1.5K.

We calibrated it from 4.2K to 1.125K with a carefully calibrated
germanium-resistance thermometer and with the 1958 Liquid-Helium
Pressure Scales [41]. There is good agreement between the three
calibrations, with a maximum deviation of 1.6% at 1.5K. To obtain
a smooth scale from 1.125K to 10.0K, the following scheme is used:
i) 1.125<T<1.5 - standard resistor's calibration is used,
i1) 1.5<T<2.0 - logarithmic average of standard resistor's
calibration and factory calibration is used,
iii) 2.0<7<10.0 - factory calibration is used.
Temperature regulation consists of three parts; the liquid-helium

thermal-bath, the specimen-block heater, and a temperaturleeedback

system. To maintain a constant temperature, the heat supplied to
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the sample block has to balance the heat conducted to the helium
bath. The bath is maintained at 0.25K below the desired block
temperature. The stainless steel tubes supporting the sample block
(see Figure 10), the copper wires, and the helium gas inside the
brass can, provide the thermal contact between the block and the helium
bath. The block is heated to the desired temperature by a 500
nicrome wire heater (see Figure 11) controlled by a feedback system.
The core of the feedback system is a 100Q carbon resistor,
which is the fourth leg of a Wheatstone bridge. The resistor is
coated with Dow Corning 200 fluid of 60,000 centistokes to assure
thermal contact with the copper block where it is imbedded. A
carbon resistor is used because, in contrast to the germanium
thermometer, it has a resistance which is independent of magnetic
fields. A low-amplitude 1 kHz current is sent through the bridge.
The voltage across the bridge is measured by a Keithley 840 lock-in
amplifier. The output of this amplifier controls the nicrome-wire-
heater power supply. The temperature dependence of the carbon
resistor is used to regulate the block temperature. The bridge is
balanced when the resistance of the carbon resistor equals that of
an external control resistor. A change on the resistance of the
carbon resistor, induced by a change in temperature, creates a
signal across the bridge. The phase and amplitude of this signal
directs the lock-in amplifier to command an increase or decrease,

as needed, of the heater current. Heater currents between 6 and

15 ma are needed to maintain a given temperature. A change in the

n
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value of the control resistor in the Wheatstone bridge changes the

temperature at which the system balances. Temperatures from 1.5K

e to above 6K can be maintained within +0.5%. (For more details on

| | the electronics involved, see Marker [2].)

.
.-
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CHAPTER 1V
DATA AQUISITION AND RESULTS ;

A} Fundamental Properties ‘

1) Basic Thermodynamic and Electronic Properties ;
The electronic mean free path, 1, and the electronic specific ;
heat, v, are frequently used to calculate various superconducting
parameters. For small concentrations of impurities, the electronic
specific heat is almost a constant. Therefore, the value of
1.179 x 10° erg em™3 deg'z, given by Radebaugh and Keesom [10]
for pure vanadium, is used for all our specimens.
The effect of impurities on the electronic mean free path,
however, is appreciable. Hence, the electronic mean free path is
calculated for all the specimens from the low temperature

resistivity, Py By far, the biggest source of error in measuring

the resistivity is the measurement of the physical dimensions of

the specimens. To circumvent this problem, the resistance ratio
is used to calculate the low temperature resistivity.

The resistance at room temperature. R295, and the low tempera-
ture resistance, Ro, were obtained for each specimen from voltage

versus current plots. These plots were made with the four probe

method illustrated in Figure 12. The nanovoltmeter was not used
for these measurements; the voltage was recorded directly by the
x-y recorder. Ffor vanadium specimens with values for the low

temperature resistivity as high as those for our specimens, the




value of the resistance of the normal specimen obtained at any

temperature below 6K is within 2% of that obtained at zero
temperature [41]. Therefore, to simplify procedures, R, was ob-
tained at a temperature just above the critical temperature

of the specimen. This temperature never was above 6K.

The physical dimensions of the specimens were measured in
order to calculate their resistivity. This was done after the
superconducting data had been acquired because mechanical damage,
incurred during the measurement of the specimen dimensions, could
affect the superconducting properties. The specimen thickness
was measured with a micrometer in several places along the center
strip. The width and length were measured with an optical com-
parator.

The resistivity of a metal results from the addition of the
resistivity due to the thermal motion of lattice ions, Py and

that due to scattering from impurities Pe [42], so that

P =0, *p, (4.1)
At the temperature at which Ro was measured, Py for vanadium is

almost zero [41], thus

P =0 . (4.2)




e

For small concentrations of impurities, p. is fairly impurity

13
independent, thus, one can say that at room temperature °; is
almost a constant for all our specimzns. From Equations (4.1) and

(4.2) one can approximate o, with
k295

p = p -0, (4.3)
1295 295 0

which leads to

Pogs = Pg ¥ constant . (4.4)

Table 2 shows the value of this difference for our specimens.
Excluding specimens #32, 33 and 49, whose value of Pogs = Pq
deviate from the mean by more than two standard deviations, the

average value of fogs ~ P for the specimens is given by

5795 = Py = 2.50 x 10" %0-cm (4.5)

with a standard deviation of 3.4 X ]0'6Q-cm. The value given in
Equation (4.5) is about 20% higher than that found by other
authors [10, 43, 44]. This discrepancy is probably due to a
systematic overestimation of the cross-sectional area of our
specimens. The V - 4.0la/o Nb specimens were not included in the
average given by Equation (4.5). These specimens show a con-
sistently higher value for this equation. There is no evident

reason for this tehavior.
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Table 2. Resistivity and Related Parameters.

Specimen P295 92955' Po " o
# x 10-30-cm x 10 “Q-cm x 10-60-cm

>0

pure vanadium specimens {
8 - 20.87 g
50 2.632 2.500 18.85 1.327 264 i
54 2.858 2.721 19.77 1.266 276 !
41 2.449 2.301 15.62 1.602 218 ;
76 2.405 2.286 14.16 1.767 198 f
77 2.480 2.351 18.21 1.374 255
78 2.424 2.313 20.86 1.199 292 ;
82 2.622 2.474 16.79 1.490 235 V
83 2.658 2.464 12.96 1.931 181
94 2.353 2.116 8.95 2.795 125
% 2.543 2.403 17.14 1.460 240
70 2.449 2.303 15.80 1.584 221
56 2.880 2.696 14.66 1.707 205
49 1.338 1.122 5.20 4.814 73
68 2.437 2.316 19.07 1.312 267
58 3.202 3.040 18.73 1.336 262
65 2.712 2.578 19.27 1.298 270
35 2.121 2.008 17.90 1.398 250
23 3.553 3.376 19.01 1.316 266

23 N.A. - N.A. - -

N.A. Not Available

e —
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Table 2. Resistivity and Related Parameters (Continued).
Specimen b295 295 ~ Po " % L
# x 10-5g-cn  x 10 20-cm x 107%-cm A
22 N.A. - 4,48 5.58 63
19 2.958 2.801 17.81 1.405 249
V - 0.20a/0 Ga
86 2.792 2.250 4.149 6.030 58.0
90 N.A. - 4.529 5.524 63.4
93 3.071 2.422 3.731 6.705 52.2
91 3.246 2.623 4,205 5.950 58.8
92 N.A. - 4.026 6.215 56.3
V - 1.05a/0 Ga
30 5.372 3.280 1.568 15.96 21.9
61 4.084 2.629 1.806 13.85 25.3
42 3.846 2.392 1.645 15.21 23.0
43 3.747 2.318 1.622 15.42 22.7
71 3.347 2.144 1.782 14.04 24.9
32 6.612 4.7126 1.650 15.07 23.2
60 4.349 2.826 1.855 13.49 25.9
69 3.996 2.539 1.743 14.35 24.4
81 3.182 2.025 1.751 14.29 24.5
84 3.549 2.251 1.735 14.42 24.3
V - 2.96a/0 Ga
7 N.A. - 1.20 20.85 16.8
5 N.A. - 0.54 46.33 7.55
63 6.938 3.267 0.890 28.12 12.4
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b
] Table 2. Resistivity and Related Parameters (Continued).
Specimen P295 P295 = Po T % L

# x 10-5Q-cm x 107 "Q-cm x 10"80-cm A
h 33 6.703 3.746 1.267  19.75 17.7
_, 17 5.117 2.652 1.076  23.25 15.1
- 44 4.673 2.517 1.168  21.42 16.3
;; 62 4.851 2.276 0.884  28.30 12.4
8 67 4.299 2.017 0.884  28.30 12.4 |
‘ 9 N.A. - 1.08  23.17 15.1 5
' 10 5.289 2.644 1.000  25.02 14.0 |
‘ V - 4.0la/o Nb
x 27 4.242 3.357 3.795  8.329 42.0
' 29 4.875 3.838 3.70 8.543 41.0

45 3.301 2.616 3.821 8.273 42.3

51 3.859 2.977 3.377  9.360 37.4

52 3.877 3.017 3.507  9.013 38.8
i

%
¢
3
™= :
*
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In order to minimize the random error in measuring the

physical dimensions of the specimen, a low temperature resistivity

Py Was calculated from the resistance ratio s which is given by
R - R
po= 225 0 (4.6)
1 Ro

Using T and Equation (4.5), one obtains

R
Vo= 0 — .
Po ~ (Rzgg‘I R, (Pag5 - #5)

2.50 x 10°0/cm . (4.7)

~S|—

1
The value of Pog5 = Py = 3.16 x 10'59-cm is used for the V-Nb

specimens. The values for Pogs® Pags = Por T and pé are listed
in Table 2.

The resistance ratio rz, which is sometimes used in the
literature and is defined by

_ Rags

r , (4.8)
2 RO

is easily obtained from r by using the relation

r, = ry+ 1.0 . (4.9)

Figure 14 shows the resistance ratio as a function of the
concentration of gallium. Nijobium, with its electronic configura-
tion similar to that of vanadium, produces less of an effect
on the resistance ratio than gallium does. However, as noted

before, niobium seems ty affect the lattice resistivity.
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Figure 14) Resistivity versus concentration of gallium,
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The electronic mean free path, 7, is computed from the equation [10]

61

2

Z—

= (4.10)
he

DOS
where h is Plank's constant and S is the area of the Fermi surface
in K-space. Using the values given by Radebaug ana Keesom [10],

one obtains

4

_3.50 x 10744
p b}

0

A (4.17)

where o is given in Q-cm. Values for the mean free path using

the resistivity p, 9iven by Equation (4.7) are listed in Table 2.

2) Critical Tenperature

The critical temperature is obtained from a plot of tempera-
ture versus sample resistance. First, the helium-bath temperature
is lowered below the expected transition temperature. The
germanium-thermometer output, amplified by the H.P. 740 B voltmeter,
is connected to the horizontal axis of the x-y recorder (see
Figure 15). The voltage across the specimen, amplified by the
nanovoltmeter, is connected to the vertical axis of the x-y
recorder. The specimen is heated momentarily to above its transi-
tion temperature. This is done in order to be able to set a small
current (0.2 to 6.0 Amp/cmz) producing 0.8 to 0.7 uV along the
thin center section of the normal specimen. These current levels

decrease the value of TC for pure vanadium by less than 0.15% [41].

RIS
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Figure 15) Block diagram of the equipment used to obtain the
critical temperature.
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The current level is set and the specimen is allowed to cool. While

the temperature and voltage are recorded on the x-y recorder, the
{ ; ' sample is heated until it becomes completely normal and then

| allowed to cool until it becomes superconducting again. The
critical temperature is defined as that temperature which gives a
resistance value midway between the fully normal value and zero,

the superconducting value (see Figure 16). The average result of

".;_.. !"l L _‘. A.'- 4

two increasing and two decreasing temperature cycles is recorded
as being the critical temperature of the specimen.

The critical temperature, as defined above, is tabulated for
all specimens in Table 3. This definition is somewhat arbitrary
since other points in the transition curve can be chosen as Tc'
The transition wiath, AT, is probably the result of lack of homo-
geneity in the material. Metals with a high degree of uniformity,
such as pure single crystals, exhibit very sharp transitions with
very small AT. Hence, the value of TC for these metals is rather

clearly defined. Inhomogeneous superconductors generally have

variations in the value of TC within the bulk. The width AT for

| these materials can be rather wide. Therefore, for inhomogeneous

t
.3’.

A
ir
!

}. i >
i
i
¥

superconductors, an arbitrary definition of the critical temperature
of the bulk is needed. For example, Tc can also be defined as that

temperature at which the specimen starts to show resistance or as

that tempera-ure at which it becomes compietely normal. Because

of this ambiguity, the width AT is considered as a source of error
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Figure 16) Voltage drop across specimen #96 as a function of
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Table 3. Superconducting Parameters.

Tc ATC
K %

Speci-
men
#

pure vanadium specimens

8 .330 4.2 .737

50 .233 N.A.
54 .242 2.3
4] .290
76 173
77 219
78 .241

82 221
83 .193
94 .047
96 .223
70 .207
56 .232
49 .129
68 .244
58 .236
65 .245
35 .242

24 .282
23 .221

N.A. Not Available




Table 3. Superconducting Parameters (Continued).

Sgg;i- :f A;C n ch(o) AHc2
# n=0.5 n=0.5
kOe %
22 4.740 5.2 0.654 8.531 1.7
19 5.245 2.5 0.647 4.719 1.8
V - 0.20a/0 Ga
86 4.693 2.6 N.A. 10.120 1.1
90 4.770 3.1 N.A. N.A. -
93 4.640 2.7 N.A. 10.837 1.5
91 4.715 2.9 N.A. 10.173 1.9
92 4.734 2.0 N.A. 10.528 2.6
V - 1.05a/0 Ga
30 3.825 4.5 0.410 16.497 0.13
61 4.054 4, 0.546 16.108 0.43
42 3.866 3.5 0.558 16.710 0.36
43 3.840 3.0 0.520 16.755 0.64
71 4.007 2.4 N.A. 16.247 1.36
32 3.886 2.4 0.542 16.515 0.74
60 4.073 5.0 0.426 15.432 1.43
69 3.97 1.8 0.293 16.389 1.08
81 3.934 2.0 0.759 16.270 0.71
84 3.967 2.0 N.A. 16.584 0.90
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ble 3. Superconducting Parameters (Continued).
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S[;T)]Zrc]i— KC A;c n ch(o) AHC2
# n=0.5 n=0.5
kQe %
4 V - 2.96a/0 Ga
- 7 3.750 4.0 N.A. N.A. -
>i  5 3.770 10.0 N.A. N.A. -
. 63 3.272 7.0 0.524 20.881 1.37
33 3.567 4.1 0.486 19.145 0.73
17 3.470 3.5 0.698 19.082 0.58
. 44 3.583 3.5 0.568 19.214 1.26
62 3.304 3.8 0.573 21.450 0.44
67 3.228 2.0 0.344 21.437 1.26
9 3.610 4.8 0.670 18.770 1.39
10 3.425 4.9 0.588 18.974 1.47
V - 4.01a/0 Nb
| 27 4.755 2.7 0.612 12.712 0.89
28 4.513 3.3 N.A N.A.
ﬁ}i 29 " 4.880 7.3 N.A. N.A. ;
i 45 4.790 0.9 0.352 12.430 2.33
51 4.698 2.7 0.321 12.513 1.73
52 4.759 2.4 N.A N.A. -
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in defining Tc from our data. The width it is related to the

homogeneity of the specimen as mentioned above. It is therefore

useful when comparing the quality of the specimens.

The critical temperatures for our V-Ga and V-nB specimens

are similar to those found by other authors for these alloys [36,

37,38,39,45,46].

X The critical temperature is a function of the resistivity, P

' because scattering by impurities decreases the value of the super-

conducting energy gap. Radebaugh anrd Keesom [10] suggest that

this relationship might be linear. Figure 17 shcws a plot of TC

¥ | versus o . The relationship is linear only at low values of fo
Figure 18 shows a plot of the critical temperature versus rz' . The
linearity extends to higher alloy concentration than on the previous
graph. By extrapolation this plot predicts a critical temperature
for infinite mean free path, TCO, equal to 5.47K. This result was

obtained from a least mean square fit to the straight line,

excluding the V - 4.01 Nb specimens and specimen #49. This value

i

of TCo is near the value of 5.41 + 0.01K obtaine” by Radebaugh
and Keesom [10]. However, Azhazha, et al. [41] report a value of
5.58 + 0.02K for a specimen with a resistance ratio of 1370.
Go'ovashkin, et al. [37] show a strong dependence of T. on the :

conduction electron concentration. Niobium affects the conduction

electron concentration of vanadium much less than galljum does,

which might be the reason why the V - 4.0la/o Nb specimens do not

fall on the same Tc versus rz'] curve for the gallium alloys.
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3) Upper Critical Magnetic Field

The Upper Critical Magnetic Field, ch(t), is defined as
that field at which the critical current extrapolates to zero.
(Critical currents are discussed in section B-1 of this chapter.)
This value depends on the equation used fof the extrapolation. As
noted in Chapter 11, it is believed that at fields near ch(t), the
fluxoid lattice depins by deforming plastically around the pinning
centers. Thus, an equation describing the critical current under
the influence of plastic deformation of the FLL is needed for the
extrapolation. Traditionally, one of the following equations is

used

J = (1-h) , (4.12)

or

J= h/2(1-n)2 . (4.13)
Equation (4.12) is an empirical equation, later supported by
Schmucker's theory (Equation2.105. Equation (4.13) is derived
from Kramer's theory (Equation 2.97). Figure 19 shows a sample
fit of our data to each equation. Initially, the linear equation
(Equation 4.12) was used, but it was found that, as seen in
Figure 19, Equation (4.13) gives a better fit to our data.

The critical fields ch(t) calculated for several temperatures

are fitted to an empirical equation in order to find the upper
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Figure 19) Extrapolation for Hc (t), of specimen #65 at
t = 2.5K, using a) 3 « (1-h), and b) J = h'/2(1-h)2.
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critical field at zero temperature ch(o). The empirical
relation [47]
1-2
He (8) = H_ (o) A1=BL (4.14)
2 2 (14nt")
where n is a free parameter, is used since it gives a good fit to
our data. The parameter n varies randomly for our specimens from
0.29 to 0.74, with the average being about 0.5.

The value n determines the shape of the curve given by
Equation (4.14). When n and ch(o) are calculated simultaneously,
the shape of this curve is adjusted in order to obtain the best
least mean square fit of Equation (4.14) to the data. Small
deviations in the empirical values of n change the shape of
the curve. However, the value of ch(o) is dependent of this shape.
Changes in the shape of the curve due to errors in ch(t) change
the value of ch(o). Therefore, some errors in the data are
amplified in the calculation for ch(o) if the value of n cal-
culated for each specimen is used. For this reason, the value
n = 0.5, which is the average for all specimens, is used in the
calculation for ch(o) using Equation (4.14). A sample fit to
this equation is shown in Figure 20. The values of n, and of
ch(o) using n = 0.5 are shown in Table 3.

Once ch(o) is found, an uncertainty in ch(o), AHc (0), is
measurad by predicting values of ch(t), using Equation (4.14) for the
temperatures studied, and comparing these values to the experimental

values for those temperatures. The difference between the values is




Hcft) (kOe)

1
0 0.5 1.0
T/ Te

Figure 20) Variation of the critical field Hc with reduced

temperature for specimen #65. Thezsolid line
represents Equation (4.14) with n = 0.5,




averaged for each specimen and expressed as a percentage. The
value of AHc » is lower when Equation (4.13) is used to calculate
ch(t) than when Equation (4.12) is used, with 3.2% being the
average result for the latter and 1.2% for the former.

The values of ch for our V - 4.07a/0 Nb specimens are higher
than the values for pure vanadium and those found by Sirota and
Ovseichank [46] for higher concentrations of Nb. This indicates
a peak in ch for low concentrations of Nb.

From Equations (2.29) and 2.44), a linear relationship can be
obtained between the upper critical field, ch(o), and the inverse
of the electronic mean free path. For infinite mean free path,
Equation (2.27) substitutes for Equation (2.29), leading to the
intrinsic upper critical field ch(o). Equation (4.11) shows
that the low temperature resistivity is proportional to the mean
free path. A plot of ch(o) versus o, should therefore be linear.
Figure 21 shows such a plot for our specimens. The relation seems
to be linear only for small concentrations of impurities. This
leads to an ch(o) of 2.70 kOe. Figure 22 shows a plot of ch(o)
versus (rz)']. The reason for the increase in the range over which
the plot is linear is unclear. This graph intersects the axis at
ch(o) = 3.12 kOe. Using the computed value of n for each speci-
men, as opposed to fixing it at n = 0.5, increases the scattering
of the data from the struight line in this graph, justifying our

decision to fix n.

85




4

86

-%9 A31AL3s1594 3y3 shsaaa (o) u: ‘plats LBOLILUD 3Y3 JO uotiejaep (12 d4nbiy

wI-uU 0l X oS

XA 5 01 0

1 T N

. £

aN o 10'7- A v o

b9 Y096~ AV s
D9 Y/og0°'l- Ao
D9 ¥DOZ0- A @
aund A @




-%4 o13e4 32uR}S|SaU 3yl JO 3asaaAuL 3yl yiim (o)

z
W pLaLs LEILILAD DU JO uOLFRLARA (22 B4nbl4

M~
0
bs1
S0 S0 0
| ] A
A
aN Y0107 A ¥
9 ¥096Z- A V g s
D9 ¥0G0°I- A O
D9 ¥D0Z0- A a
aund A o
401
.JH
. _,.
(=]
= l
H\ 1
st
q02

A R e e R

) + «

W TR e e M R e e




88

4) Other Superconducting Parameters

The Ginzburg-Landau parameter, k, is calculated for the specimens in

this study by means of Equation (2.34). The London penetration

e g by o L O LY e

depth at zero temperature, AL(o), and the Pippard coherence length,

g , are obtained by Radebaugh and Keesom [10] for a pure vanadium

()
i specimen with a resistance ratio of 140. They use the equations
’ [
X : 1/72.1/2 X
A (o) = 1’_‘1__“_(3 (4.15) " 4
4 L EKBS l'
b
and ] 4
kg$ '
go = 1015 Tc Y (4.16)
0
¥ obtaining
4 o
;| A (o) =398 A (4.17)
¥ L
and
£, = 450 A . (4.18)

Here S is the area of the Fermi surface in k-space, h is Planck's
constant, and kB is Boltzmann's constant.

Substituting the values (4.17), (4.18), and Equation (4.11) into
the Equations (2.32) and (2.33), Ko and «; become

. K, = 0.849 (4.19)

and

5
Ky 8.13 x 10 Py - (4.20)

o AR et B

i |
§ £




Equation (2.34) becomes

k = 0.849 + 8.13 x 105po , (4.21)

where % is given in ohms-cm. Using the value n = 0.5 given in

the previous section, Equation (2.36) can be expressed as

1.5«
Ky(t) = ———7n—
1 (1+0.5t%)

(4.22)
The parameter K](O) has a range for the specimens in this study

of about 3.0 for pure vanadium, to more than 30.0 for the

V - 2.96a/0 Ga specimens. The ratio K](O)/K obtained from

Equation (4.22), namely,

K](O)

= 1.5 (4.23)

agrees with that obtained by Radebaugh and Keesom [10].
The temperature dependent coherence length, £(t), can be

calculated from Equation (2.44) as being
® 1/2

g(t) = Zﬁ(ﬁ : (4.24)

The penetration depth A(t) can be calculated, near Tc’ from

Equation (2.31) as being
A(t) = kg(t) . (4.25)

Values obtained for k and £(o) are listed in Table (4).
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Table 4. The Ginzburg-Landau Parameter and the Coherence Length.

Specimen K(o) £(o)
# A

pure vanadium specimens

8 275
50 1.93 N.A.
54 188 268
4 2.15 259
76 2.29 248
77 1.97 268
78 1.82 278
82 2.06 265
83 2.42 265
94 3.12 232
96 2.04 271
70 2.14 260
56 2.24 N.A.
49 4.76 N.A.
68 1.92 265
58 1.94 N.A.
65 1.90 261
35 1.99 N.A.
24 1.92 266
23 n2.36 244

N.A. Not Available
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Table 4. The Ginzburg-Landau Parameter and the Coherence Length

Rl LNt . i AU PN, S A

(Continued).
Specimen K(o) g(o)
# A
f} 22 197
3 19 1.99 264
‘ V - 0.20a/0 Ga
86 5.75 180
'j 90 5.34 N.A.
;j 93 6.30 174
| 9 5.69 180
i; 92 5.90 177
- V - 1.05a/0 Ga
“T 30 13.8 141
61 12.1 143
42 13.2 140
43 13.4 140
Al 12.3 142
: 32 13.1 141
60 1.8 146
; 69 12.5 142
o 81 12.5 142
i 84 12.6 4




‘Table 4.

The Ginzburg-Landau Parameter and the Coherence Length

(Continued).

Spe;imen K(o) E(g)

A

V - 2.96a/0 Ga
7 17.8 N.A.
5 38.5 N.A.
63 23.7 126
33 16.9 131
17 19.8 131
44 18.3 131
62 23.9 124
67 23.9 124
9 19.7 132
10 21.2 132
V - 4.01a/o Nb

27 7.62 161
28 N.A. N.A.
29 7.79 N.A.
45 7.57 163
51 8.46 162
52 8.18 N.A.
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% ) B) Fluxoid Pinning

1) Critical Currents

The critical currents for each specimen were measured at four

! to eight temperatures, down to 1.5K. At each temperature, the
critical currents were obtained for thirty to fifty successively
s increased magnetic fields. The fields were increased from zero

up to a value just above ch(t). For each magnetic field, the
. transport current was swept up from zero until flux flow was
{; clearly observed. The four-probe method shown in Figure 11 was
: used to observe the voltage across the specimen. The critical
current was taken to be that current at which fiux-induced voltage
was first observed (see Figure 23).

Fluxoids are strained in the process of changing magnetic
fields or of changing transport currents, therefore, critical
currents are dependent on the recent magneto-electric history of
the specimen [48,49,50,51]. For example, if the desired magnetic
field is obtained by increasing it from a lower magnetic field, the
critical current can be different from that if the desired field is
arrived at from above. The following procedure was used to erase
the magneto-electric history from the specimen. The magnetic
field was established before each c¢ritical-current data point was
taken. The specimen was then heated above its critical temperature

and allowed to cool. This process created a relaxed flux lattice [49].
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Several steps were taken to minimize the effect of Joule -
heating in the specimen/current-lead contact areas. As noted in
the previous chapter, the specimen shape was designed with this in

mind. The wide end tabs of the specimens provide a large contact

[ 3 surface. The end tabs are ultrasonically tinned with indium and

:4 then soldered to the copper current-contacts. This method usually
provides a satisfactory current contact [52]. The indium solder
flows around both sides of each end tab. The indium solder super-
conducts at low temperatures and near-zero magnetic fields. Hence,
even if there is a vanadium-oxide layer between the vanadium and
" , the solder, the contact surface probably superconducts due to the
| proximity effect. The normal indium solder provides a different
A benefit. Normal indium serves as a good heat carrier from the
superconducting vanadium, which has very poor thermal conductivity,
to the copper block halves (see Figure 11). The copper block
halves come in direct contact with the tinned end tabs. Dow-
: ‘ Corning-20Q fluid of 60,000 centistokes is used to enhance the
thermal contact. Other precautions taken were: superconducting
Nb3Sn current lead-in wires with a thick copper cladding to dis-
. sipate excess heat; a small cross-sectional area in the center of
' the specimen to minimize the current needed for a given current

. density; and massive copper current-contacts to enhance thermal con-

duction and dissipation.

;g The effect of the current-contact Joule heating was monitored

in several ways. Direct checks were routinely made by observing




ke

R

alls ..

e s 8 i = <5 . R L

96

the specimen-block temperature rise due to this heating. For
this check, the specimen-block heater (Figure 11) was turned off,
and the specimen-block was allowed to cool to the helium-bath
temperature. The transport current was then slowly increased to

a value above Ic,while recording from the germanium thermometer
the increase, if any, in temperature. At low temperatures and near-
zero magnetic fields, the indium solder superconducted. In this
case, usually there was no sign of heating at currents below the
critical current of the specimen. In the case where the indium
solder was normal, there was a rise in the specimen-block tempera-
ture usually of less than 0.04K at 20A, the maximum transport
current available. This temperature rise was easily handled by
the copper-block temperature-control system under normal working
conditions.

The copper-block temperature control system itself provided
another check. A decrease in heater current at the higher
transport-current levels was an indication that the balance of
the heat needed to maintain the specimen-block temperature was
being supplied by the Joule heating of the current contacts.

Finally, the critical current provided another check. Joule
heating in the contact area can sometimes precipitate a quench
in the superconductivity of that area. This gquench propagates
through the superconductor appearing as an abrupt and irreversible 1

increase in voltage in the V-1 plot, accompanied, and often

preceded by, a sudden increase in block temperature. Although
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some of our specimens showed sudden increases in voltage in the

Wi bl B

V-1 curves, there are several indications that these were not

caused by quenches in the contact area. First, the sharp increase
in voltage could usually be stopped once it started. This was
easily done by freezing the magnitude of the transport current at

a value just above Ic' A decrease in the magnitude of the transport

current would then cause the voltage across the specimen to decrease

D it
2 i

smoothly to zero. Second, the sharp increase in voltage was not
preceded by a sudden increase in the specimen-block temperature.

Finally, these sharp increases in voltage appeared at specific

3 reduced-magnetic-field regions, where the critical current was
increasing with increased magnetic field. At higher reduced fields,
critical currents of larger magnitude were usually observed without
the abrupt voltage increase. This phenomena will be discussed in
?1 later sections.
Figures 24-27 show the critical current density versus the

b | reduced field for many of the specimens, grouped by alloy and

carbon concentration. A temperature near 0.6TC is used for each
; figure. Several general observations can be made from these

figures. The specimens with no precipitates exhibit very low

critical current densities as expected. Crystal dislocations,

A

caused by cold rolling the material, increase the magnitude of

Jc. This increase is not as high as the one brought about by the

vanadium-carbide precipitates. Specimens with large precipitates

i ien; e , v _ ‘ 'i




ff 5;103~
3 &
* Y .
E A
9
~4
(3]
* -]
| '
3 102:-
-
- Sgecimens
- ® 82 )
K o 78
4 77
0 76
B B 54
10! |
o 005 loo
h .

Figure 24) Semi-log plot of the critical current density versus
reduced field, at T = 3.5K, for the vanadium specimens
with 0.07%C.
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Figure 25) Semi-log plot of the critical current density versus
reduced field, at T - 3.0K, for the V - 0.20a/0 Ga
specimens.
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Figure 26) Semi-log plot of the critical current density versus
reduced field, at T = 2.5K, for the V - 1.05a/0 Ga
with small precipitates.
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Figure 27) Semi-log plot of the critical current density versus
reduced field, at T = 2.5K, for the V - 1.05a/0 Ga
with large precipitates.
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exhibit higher values of JC than those with smaller precipitates.
However, several specimens with very large precipitates actually

exhibit lower values of JC than the values for specimens with com-

O e g~

paratively smaller precipitates. The peak effect near HC is

2
evident in specimens with no carbon or very small sized precipitates.

e

2) Carburized Specimens

a) General Observations on the Form of the Pinning Force

"""“‘VF"!".. £

g Our specimens exhibit four distinct forms for the pinning force
density. Each form appears at a definite reduced-magnetic-field

i region. An individual specimen may show two, three, or all of

{ these regions. The appearance of a given reduced-field region in

j an individual specimen depends on the microstructure of the specimen.
. There is a strong similarity between some of these regions and

: Kramer's line-pinning and plastic regions [1]. For convenience,

we will name these regions following Kramer.

Several specimens show a sharp decrease in JC as the reduced

field is increased from zero, leveling off at higher fields. This

effect is more evident in the spe;imens with small-sized or no
precipitates. This reduced-field region can be called the point-
pinning region. This region usually exhibits very Tow critical
currents. Hence, no attempt was made to thoroughly analyze this
region. At a certain reduced field, the critical current starts

to increase with increasing field. This is the line-pinning region.
At fields near Hc , the current decreases as (I-h)z. This reduced-

2
field region, called the plastic-deformation region, is the one

—"
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region shared by all specimens. Between this high-reduced-field

region and the line-pinning region, many specimens show a fourth
region. In some specimens, this region occupies most of the
reduced-field range. There is no equivalent for this region in
Kramer's theory. For lack of a better name, we will call this
region the transition region.

The boundary between each region is usually clearly defined,
as shown in Figure 28. A sharp discontinuity in the reduced-
field dependence of the pinning force is often observed in the
boundary between any two regions. There is usually an abrupt
change in the magnitude of the pinning force in the point-pinning/
line-pinning boundary.

The character of the fluxoid-induced voltage at JC varies
from one region to another. In the line pinning region, the
alloyed specimens often exhibit an abrupt increase in voltage at
Jc’ as seen in Figure 29. This effect was mentioned in the previous
section. The point-pinning, transition, and plastic-deformation
regions show a slow increase in voltage at Jc.

The pinning force density in the line-pinning region of the
alloyed specimens is also dependent on the magneto-electric
history of the specimen. Several runs were made where the critical
current was obtained in the usual way, that is, the specimen was
heated in the magnetic field ur to a temperature above its TC and
allowed to cool before measuring Ic’ Then, the transport current
was decreased to zero and, without reheating the specimen to above

Tc, the current was increased to obtain a new Ic for that field.
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Figure 28)

Pinning force density, Fp, of specimen #69 at

T = 2.5K, versus the reduced field, h. The vertical
lines indicate the start of a) the line-pinning region, ,
b) the transition region, and c) the plastic- ‘
deformation region. ‘
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This procedure of repeatedly raising the current up to Ic is

called training. In the 1ine pinning region, the value of the

trained critical current was usually lower than that of the original

Ic' This training effect was not observed in the other reduced-

field regions. In these regions, the same critical current was

always observed independently of the magneto-electric history.
Finally, as it is shown in the next sections, the dependence

on temperature and microstructure differs from region to region.
Several assumptions are made in order to obtain a dependence

of the pinning force density on temperature, reduced magnetic

field, and microstructure. These assumptions are based on the

generally accepted idea of a scaling law [4] and on several traits

common to most theoretical forms of the pinning force density.

We assume that the temperature dependence can be described by

Hé;(T), where n is rounded off to the nearest half-inteqger.

We also assume that the dependence on the Ginzburg-Landéu parameter,

ST is given by K]m. Again, for simplicity the parameter m is

rounded off to the nearest half-integer. Therefore, the pinning

force density, F_, can be described by

P

f(h)g(microstructure) |, (4.26)

where f(h) is a form factor describing the reduced-field dependence,

and g(microstructure) describes the dependence on the microstructure
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of each specimen. The parameter q is a constant for all specimens.
The form of this equation changes for each of the reduced field
regions.
b) Line Pinning Region

Only the specimens with the smaller sized precipitates show
a line pinning region. This region is characterized by an increase
in the critical current density as the reduced field is increased.
Kramer used a simple approximation of the interaction force where
fp « (1-h) [1], obtaining for the pinning force density a form
factor given by
h1/2
(1-h)

f(h) =

5 (4.27)

This form factor basically agrees with our data. Our specimens
show a form factor given by

h1/2

f(h) = s+b (4.28)
(1-h)

as seen in Figure 30. This form factor has been observed elsewhere
[53]. The constant b is usually negligible.

The reduced field hL’ at which the line pinning first appears,
is usually easy to recognize from the abrupt change in the character
of the pinning force curve. The boundary between the line pinning
region and the transition region is sometimes smooth. With a smooth
boundary, the upper bound of the line pinning region is a somewhat
subjective choice. For the specimens without a transition region,

the boundary between the line pinning region and the plastic

.
$
;
i
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deformation region is very sharp. In either case, the range of the
line pinning region is usually aboue one third of the total reduced
field range from zero to He (T).

2
The parameter C] is defined by the equation

5 P e 2

(4.29) !

This parameter contains the temperature, microstructure, and «
dependence of the pinning force density of a specimen. The value
? of this parameter is obtained for each temperature from a least

: mean square fit of the data to Equation (4.29).

The temperature dependence of Cl’ given by Hé;(t), is obtained !

from a least-mean square fit of the data to the equation

iy (6)] = n Ml (811 + Ky (4.30)

where K] is dependent on the microstructure and on the G.L. para-
meter, «;. The average value of n is 4.2, with a standard deviation of

0.9.(see Table 5). The pinning force density cannow be expressed as

Foo= KHD (0)01/2(1-n)72 (4.31)
p )
_3 Small variations of n create large variations in Kl‘ Therefore
i to minimize errors, Ki is calculated for each specimen using the

average n rounded up to the nearest half-integer n = 4.0. The

parameter Ki is calculated for each temperatire from

& Ky = —7 : (4.32) i
H. (T)
3’ Cz

|
i
ﬁ
i
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Figure 31) Log-log plot of the parameter C, versus the critical
field H_ (t) for the specimens ¥62, #44, and #33.
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Table 5. Pinning Force Density Parameters (Continued).
Specimen # - Line-Pinning Transition Plastic Deformation
Region 2.5 Region 2 Region 2
n kiK]-é n KaK1 n kpk
X 10
‘i V - 0.2a/0 Ga
?j 93 4.9 9.4 - N.E. 1.8 7.0
: 91 4.2 31 N.A. 2.4 5.4
ﬁ: 92 3.7 44 2.0 0.170 2.1 14
;‘ V - 1.05a/0 Ga
X 42 3.8 236 2.5 0.140 2.8 27
:1 43 - N.E. 2.7 0.131 3.2 12
‘ 71 3.5 42 3.0 0.177 2.0 9.0
' 32 - N.E. 2.7 0.138 2.0 12-
60 4.6 6.5 2.4 0.122 2.2 5.6
| 69 4.2 19 2.9 0.132 2.9 3.6
81 3.7 102 2.0 0.034 1.9 20 ;
" 84 2.6 0.06 2.9 1.0 :
X . V - 2.96a/0 Ga q
3 33 5.9 0.70 - N.E. 1.4 13 !
: 17 N.A. 3.0 0.276 5.0 18-
“ 44 3.9 20 2.7 0.206 2.5 9.0
. 62 3.2 9.3 2.6 0.133 3.0 3.8
‘ 67 3.6 1.2 3.1 0.173 1.8 3.6
s V - 4.01a/0 Ga
45 5.4 11 - N.A. 2.9 4.7
51 5.0 18 3.0 0.206 2.8 5.2

W |‘|||||M' ; - |




> i | o o M 5w b e s A AN S -

112

Table 5. Pinning Force Density Parameters.

Specimen # line-Pinning Transition Plastic Deformation
Region 2.5 Region Region 2
n kix] : n K n k _k
-8 v P
x 10

“ait

pure vanadium

77 5.4 4.0 NE. 3.2 2.0
! 78 " 5.0 34 N.A 1.6 2.7
g 82 3.2 245 1.9 3.1 1.1 a4
83 2.6 846 2.8 1.3 2.4 2.3
94 4.2 257 1.7 2.9 1.4 3.4
; 96 - N.E 2.2 3.1 2.4 2.7
X 70 - N.E. 2.0 2.1 1.6 1.8
) 56 - N.E. N.A. 0.48 - N.A.
68 - N.E. 2.3 0.57 1.8 .93
; 65 - N.E 2.2 2.7 1.9 1.5
19 - N.E. 2.0 1.95 1.7 5.4

|

5

N.A. Not Available

N.E. Does not show this region

..
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Since Ki is temperature independent, it is then averaged for all
temperatures. Temperatures within 9% of TC are not used because
the value of Ki obtained from them is usually more than two standard

deviations away from the mean Ki for the specimen. This large

deviation probably results from the several approximations used

to get to this stage, namely, n = 0.5, F = Hg (T), and from the
2

' uncertainty in defining Tc within the observed ATC.
The dependence of the pinning force density on the microstruc-

i. The

> line-pinning-force density predicted by Kramer (Equation 2.91)

ture, of each specimen is contained in the parameter K

¢

contains a dependence on the average volume of a precipitate to

the fourth power, V4. The parameter Ki was plotted for each alloy

concentration against the product of V4 times the density of

precipitates raised to various powers. Of these combinations, the

product V4p2 given the best fit to a straight line. The V - 2.96a/0 Ga

and the V - 4.01% Nb specimens give a very poor fit to this relation.
Most of the other pinning theories predict a dependence of Fp

on the density of precipitates times a function of the precipitate

13 dimensions. Hence, the parameter Ki was also plotted for each

alloy concentration against the product of p times the volume raised

to various powers. Of these plots, the combination

. Ki a V3p (4.33) 1

¢ .oy

|
i
|
R
..
!




gives the best fit to a straight line. This fit is slightly

better than the one obtained using V4p2. The plot of Ki versus

V3p is shown for several alloy concentrations in Figure 32. The

pinning force density now can be expressed by
4.1/2
Hc h

= 3 2
FP = D]V o -—_E]-h) R

(
where the parameter D] is dependent on the Ginzburg-Landau
parameter k].

The fact that a fitof Ki can be found for both V"'p2 and V3p
is understandable. The product Vp is the total volume per cubic
centimeter of the vanadium-carbide in the specimens. This product
reflects the concentration of carbon introduced in the specimen.
Several concentrations, varying from 0.07 to 0.4, were used, as
shown in Table 1. For specimens with the same concentration of
carbon and negligible amount of carbon in solid solution, pV is
a constant (again, see Table 1). For each alloy concehtration,
the specimens that show a line-pinning region have the same carbon
concentration. The product Vp is therefore a constant for each
alloy concentration. The product V3p can be multiplied by this
“constant," Vp, yielding V4p2.

The parameter D], defined by Equation (4.34), can be obtained
for each alloy concentration if the specimens in the group have ap-
proximately equal values of Ky This is done by using the relation

X

1
D, = — (4.35)
! V7
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Figure 32) Variation of the parameter K{ versus v3p for various
alloy concentrations. The straight lines show the
relationship Ki « Y3p for each alloy concentration.
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summed over all specimens of an alloy concentration. The dependence
of this parameter on Ky can be obtained from a least mean square
fit of log D] versus log SE Figure 33 shows such a plot, which

yields.

D, = K]2'37(0) (4.36)

The exponent of Ky can be rounded off to the nearest half-integer,

i.e., 2.5.

The pinning force density now is given by

3 S h'/2

F_ =g 0V

(4.37)

The value of % is a constant for all specimens. This value is

obtained from the equation

z(K! 2.5(0))

_ =W
q~| - 3 I (4.38)
£(v>p) i
summed over all the specimens. The result of this equation is
q; = 5.3 x 10°], with a standard deviation of 2.9 x 1631, The fit

of the specimens to this equation is illustrated in Figure 34.
There are several sources of error in the calculations of ]

the pinning force parameters C, K, D, and q. The biggest source

Lo

of error is the uncertainty in the cross-sectional area of the

specimen, AA. The cross-sectional area is used to calculate the

pinning force density. Equation (4.5) shows that there is an
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Figure 33) Log-log plot of D, versus x, for the various alloy
concentrations. +he slope &f the straight line is
equal to -2.37.
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uncertainty of nearly 15% in the resistivity. Most of this error

is due to aA. The uncertainty AHCZ, listed in Table 3, provides an
approximate value of the precision of HCZ(T). The average value

of AHC2 is1.2%. There is also uncertainty in obtaining the values
for the critical current from the I-V curve (see Figure 23). This
error is larger for the plastic deformation region, where the voltage
increases imperceptibly from zero at Ic. In the line-pinning region
and in the transition region, the value of IC is usually more easy
to define (see Figure 29). The uncertainty AIc is usually between
0.5% and 3%. These uncertainties, AA, AHC2 and AIC, are probably
the biggest sources of error. There are also errors due to the
various approximations used in computing <y and the pinning con-

stants.

B T ey

The error in the parameter Ki can be described by

BK] = A+ AT+ dBH_ ¥ ... E

2 :
This equation yields an uncertainty of at least 20%. Similar
relations can be found for the other parameters.
The uncertainty in the microstructural analysis is unavailable.
Some comments can be made about this uncertainty. The uncertainty '
in o is much higher for specimens with small precipitates. The
specimen thickness in the area which is under the transmission

electron microscope is computed to find p. This thickness is

computed from the diameter of the precipitates that cut through
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both surfaces of the area under observatijon. The specimen thickness
cannot be accurately calculated for specimens without precipitates
large enough to cut through these surfaces. Hence, there is a
larger uncertainty in the density of precipitates for these speci-
mens.

Most of the specimens that show a line-pinning region have
precipitate diameters smaller than 2£. Fpr these specimens, it can
be assumed that the whole volume of a precipitate, V, can lie
within a fluxoid. Specimens #83 and #94 have diameters much larger
than 2§. These two specimens fit the curve shown in Figure 34
only if the volume V, given by Equation (2.72), is used.

For high pinning center densities, the pinning center density
per unit length of flux line, s is proportional to 01/3, and the
density of pinned fluxoids per cross-sectional area of the specimen,

2/3. Equation (2.19), derived by

Pys is roughly proportional to p
Kramer [1] for the line-pinning region, can be expressed as

2 .3
2.4, 4.5 (247-1)" 6.5

F .« o] V'H (4.39)
P 2 K]S ('l--h)2
which for high values of « yields
24 Hc24‘5 h6'5

The temperature and microstructure dependence of this equation is
similar to that found for our specimens (Equation 4.37), the form

factor f(h) is not. If the proximity effect on the precipitates
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js taken ‘nto consideration, Equation (2.75) must be used in cal-

culating Fp from Equation (2.90). The result of this calculation is
a 4.5
o c 6.5
| Fow ol 2 (1)t (4.41)
| p K] (]'h)

The temperature and reduced field dependence of this equation is

Aoy

not similar to that obtained for our specimens.

ks Labush's equation (Equation 2.82) is of the form
Hc 3.5
F e odv® —2— f(n) , (4.42)
p 4
K
1
where
2 ' 21V 2.36(2¢,2-1)1/2 |
(2,21 (-} ;
(4.43) :

The fit of this equation to our specimens is improved if the

proximity effect is included. Using Equation (2.75), Equation (2.81)

yields

3 MR-
43 c
A o= pdVE ZH— (1-t%) f(n) (4.44)

1

T 7R P R Papn et i) T

The dependence on the microstructure and on temperature of this !
equation is similar to that of Equation (4.37). The form factor

and the <-dependence of the two equations are quite different.




SO LR I A

122

A slight change in Kramer's theory of line pinning [1] yields
a form of the pinning force density similar to that given by
Equation (4.37). Kramer considers the case where the fluxoids can
move a distance fp/c66 to thread through more pinning centers.

This yields an effective interaction force

£2
* _'pl
foa 2, (4.45)
P Ce6

The effective interaction force, f;, is then used in calculating
the pinning force density from Equations (2.83) and (2.84).
If the material has a high density of pinning centers,
Equation (4.45) is invalid. In this case, the interaction force
per unit length of fluxoid, fp], is used directly in Equation (2.88) |
to find the elastic energy density per unit length of pinned 3

fluxoid, Esp' The pinning force density is then calculated as for

s

Equation (2.91), obtaining

2
(2¢,°-1)
2,2 3.5 1 h3.5 (4.46)

Fp o p]n]V HC2 =
1

1/3

For high precipitate densities n is proportional to p ‘", and

/3

Py 1s roughly proportional to p If the contribution of the

proximity effect on the precipitates, given by Equation (2.75),

is used, Equation (2.88) yields

2 :

F e o834y2 H 30 (-n)f —— 0 (4.47) |
1 ]

P 2
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A numerical analysis shows that, for values of the reduced field

greater than h = 0.2 and less thin h = 0.8, h3’5

]/2(]"'h)-2.

is approximately

proportional to h
3.5

Furthermore, for several specimens

h is actually a better description of the reduced-field behavior

than h]/2(1—h)’2, as sown in Figure 35. Therefore, the form factor

of Equation (4.37) can be substituted by

£(h) = h3:2 (4.48)

with an appropriate change in dy- Equation (4.47) is then similar
to Equation (4.37) in its variation with reduced field, temperature,
K, and microstructure.
c) Plastic Deformation Region

At high reduced fields, usually above h = 0.85, the specimens
behave as predicted by Kramer [1]. Kramer predicts a pinning force
density,due to plastic deformation of the fluxoid lattice, of the
form (Equation 2.97)

K H 5/2 h1/2

(1-n)2 ' (4.49) _

Pt T T
where the parameter Kp has a weak dependence on the density of
precipitates.

At these high fields, the specimens follow the form factor of
Equation (4.49), as seen in Figure 19. This form factor has been

observed elsewhere [1,54]. Equation (4.49) can be expressed as

s V2,02
Fp = €y h/e0-n)" (4.50)

. 2 AT ST F it 1 675 ] . ~rr e bt o GO
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The temperature dependence of Cp is calculated, as in the line-

pinning region, from a least mean square fit of 1In Cp versus

In HC (t) for each specimen. The value of n, the exponent of

Hc (t), is given for each specimen in Table 5. The average value
2

P 7 S

of n is 2.3, with a standard deviation of 0.8. There is a weak ]

e dependence on alloy concentration, with n increasing as the alloy
) concentration increases. The expression for the pinning-force
density now becomes
L 2.5,y 1/2,7 .12
F = H h - . 4.51
p = Kp e, TE) T () (4.51)
i The parameter Kp is calculated for each specimen from
) .C_(t)
X K =——gs— , (4.52)
€2

and averaged over all temperatures. Again, temperatures within
9% of TC are not used in this calcuiation.
According to Kramer's theory [1], the parameter Kp has a weak
1 dependence on the precipitate density, p. In this theory, the
pinning force density in the plastic deformation region is
independent of the elementary interaction force, fp, and independent
; of V. If the parameter Kp>is plotted against the density of
precipitates, it shows a dependence on'p]/3<for the pure vanadium
& snecimens. When each alloy concentration is treated individua]]y,

these groups do not show this dependence on precipitate density.

- iy
P A :

2
\
1
P




Several combinations of density and volume were also tried. The

alloyed specimens do not seem to follow any specific combination.

The pure vanadium specimens also fit to a dependence on pdz.

As noted in the previous section, pV is a constant for many of these

1/3

specimens. Hence, a dependence on p can be approximated by a

dependence on pdz.

If we assume that the pinning force density of the alloys do

1/3

depend on p ’~, a dependence of Fp on the Ginzburg-Landau parameter,

Ky is satisfied using K]Z. Figure 36 shows a plot of

H Z'S(T)

c
Fy=ay 0'/3 Z——n'20mm? (4.53)
j (o)

for most of the specimens. This plot shows that the apparent
failure of the Fp of the alloys to show a dependence on p]/3 is
probably due to the large uncertainty involved in calculating Cp.

The parameter 9% of Equation (4.53) is calculated from

o, = 2% (9) (4.54)
P o173
summed over most of the specimens, yielding, qp = 4,9 x 10'5 with
a standard deviation of 3.3 x 10'5. Specimens #42 and #94 are not
used in this calculation because their value of Kp|<]2/p]/3 are more

than two standard deviations higher than the mean. Equation (4.53)
is similar to that predicted by Kramer for plastic deformation of

the FLL, Equation (4.49).
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Figure 36) Log-log plot of K K12 versus 91/3 for most of the
specimens. The sg
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d) Transition Region

Most of the specimens exhibit a transition region between the
line-pinning region and the plastic deformation region; only the
specimens with very small precipitates (d<<f) do not show this
region. In the case of the specimens with a high density of large
pinning centers (d>£), the transition region occupies a large
fraction of the reduced field range. There is no direct equivalent
in Kramer's theory [1] to this transition region. In Kramer's
theory, the transition from the line-pinning region to the p]éstic
deformation region occurs smoothly over a certain reduced-field
region. The pinning force density in Kramer's transition region
results from a statistical summation of line-pinning forces and
plasti: deformation depinning forces. As such, it is strongly
dependent on the precipitate dimensions. No such dependence is
found for the specimens in this research for the "transition
region." Furthermore, there is usually a clearly defined boundary
between this region and the others, whereas Kramer's transition
region smoothes out the boundaries. The observed transition region
can also be detected in the pinning force densities obtained by
other authors, particularly in the data from Kes, et al. [54] for
voids in superconducting vanadium. However, none of these authors
identify this region as a distinct reduced-field region.

The transition region, as opposed to the two regions discussed

in the previous sections, shows a marked dependence on the alloy
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composition. In this region, the pure vanadium specimens exhibit
a form factor of the form
f(h) = h(1-h) , (4.55)

as shown in Figure 37. However, the alloys exhibit a more com-

plicated behavior. Certain reduced field regions can be accurately

ML s .

described by (see Figure 38)

Fo=ch/2(1-n2 v b, (4.56)
\ p A
; where b is a constant of the order of Fpmax, usuaily near
:if Fpmax/z. The behavior of the alloys on the higher reduced fields

can also be roughly described by

f(n) = (1-n)1/2 . (4.57)
Figure 39 illustrates the fit of several specimens to this equation.
;; This equation does not provide as close a fit to the data as

Equation (4.56), but it is useful in describing, in a simple way,
the total shape of the transition region for most alloys.
:‘ In this region there is no reduced field dependence common to

both the pure vanadium specimens and the alloyed specimens.

et il &

Furthermore, the reduced field dependence of the alloyed specimens
is only roughly described by Equation (4.57). Therefore, the ]
pinning force Fp at h = 0.7 was used in the least mean fit of

. log Fp versus log HCZ(T) used to find n, the exponent of HCZ(T),

? and in other calculations. Again, the value of n varies with the

<| |
" al
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{ Figure 37) Reduced pinning force versus reduced field, h, for :
¢ specimen #65 at the temperatures 4.CK, 4.5K, and 5.0K.

The solid line indicates the form factor f(h) = h(1-h).

LY




131

"Gl 3@ (94 uswidads Joy NE-:N\_; SNSJdA A1LSuap 3d404 bBuruutd (8¢ a4nbry

10 500 0

1 [3) Sy
102

o"

>

o

£~

e

2

b

1s¢ 3

w
o€




T~

NS VU S

AN S0 S
[

132

3...
- Specimens
,g o 43
- A 42
v L o 60
>
©
~r
o
>
Lo
1—-
o 0
oooO (o]
0

Figure 39) Pinning force density, Fp, versus redu.ed field, h,
for specimens #42, #43 and 760 at 2.0K. The solid
line indicates the form factor f(h) = (1-h)1/2,
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alloy concentration. The average value of n for pure vanadium
is 2.1, and that for the alloys is 2.6, with a standard deviation
of 0.3 for both of the averages.

The pinning force density of the pure vanadium specimens can
now be expressed as

F =K. H. 2h(1-h) (4.58)

P vV.cy ) :
The parameter KV is obtained, for each specimen, at h = 0.7 using

F_(h)
K, = —p—— (4.59)
HC h(1-h)
2
averaged for all temperatures. For the alloys we have
- 2.5 1/2

Fp Ka ch (1-h) (4.60)

where
Fo(h) :
= s 4.61)
a = 251172
€2

calculated at h = 0.7 and averaged for all temperatures.

Several combinations of the microstructural parameters, such as

1/3

pV, pA, etc. were plotted against Ka‘ O0f these, only p gives

some correlation. The V - 1.05a/0 Ga specimens show the best fit
to this dependence. The V - 2.96a/1 specimens show a poor dependence

J/3,

on and there are not enough V - 0.20a/o0 Ga and V - 4.01a/o Nb

specimens that show the transition region to test their dependence




1/3

onp /7, most of the alloyed specimens seem to fall on a line given
by
Hc 2.5
- 1/3 -2 1/2
Fp = qap — (1-h) (4.62)
K] (o)
where h = 0.7. The parameter 9 is calculated, at h = 0.7, using
ZKaKlz(o)
q, © —-E—T7§—“ s (4.63)
o)
summed over most of the alloyed specimens yielding 9, = 9.3 x 10'7,
with a standard deviation of 2.6 x 10’7. Specimen #81 is not used

in this calculation because its value of KaK]2/01/3

is more than
two standard deviations lower than the mean. Figure 40 shows the
fit of most of the alloyed specimens to Equation (4.62).

The pure vanadium specimens do not fit the same line, given by
Equation (4.52), with the alloved specimens. In fact, if Equation (4.63)
is used for the pure vanadium specimens, the value of qy obtained
for these specimens is about ten times larger than that obtained for
the alloys. The analysis of the pinning force of the pure specimens
is therefore treated independently from that of the alloys. There f
is at present no way to find the dependence of Fp on K, for the
pure specimens.

As seen in Figure 41, the pure vanadium specimens show a weak

]/3. However, attempts to find a better cor-

dependence of Kv on p
relation of Kv with other combinations of microstructural parameters

such as oA, cV, etc., were futile. There is a poor correlation of Kv
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Figure 40) Plot of the product Ka~<]2 versus 01/3, at h = 0.7,

for most of the alloyed sgecimens. Solid 1ine indicates
the fit to q = 6.8 x 1077,




Figure 41) Log-log plot of Ky versus 91/3, at h = 0.7, for most
of the pure vanadium specimens. The straight line is

given by g, = 4.9 x 107°.
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With pV2/3. For our specimens, V2/3

V2/3

is a meaningless parameter.

The parameter is not equal to an area of the precipitate.

2/3

This correlation of pV with Kv is due to the fact that Vp is a

constant for specimens with the same carbon concentration and that

Kv a 01/3. Therefore, for the pure vanadium specimens we have

F =q¢>1/3

5= a, HCZZ(T) h(1-h) . (4.64)

where q, is calculated at h = 0.7 using the equation

73 (4.65)

summed over all pure vanadium specimens. The constant qv equals |

5.6 x 107> with a standard deviation of 3.7 x 107°. :
There is no direct equivalent in the theory to Equations (4.62)

and (4.64). However, Equation (4.62) is somewhat similar to

Kramer's equation for the plastic deformation mechanism (Equation 2.97).

On the other hand, Equation (4.64) is similar to Schmucker's

(Equation 2.105). In any case, thi: region seems to be strongly

influenced by a plastic deformation of the FLL mechanism because

there is no dependence of F_ on precipitate volume; no dependence

P
on V means no dependence on fp. This implies that the fluxoids are
not breaking their individual bonds with the pinning centers; the
FLL is deforming plastically around the pinned fluxoids.

e) Resulting Scaling Law

Apart from the point pinning region, the pinning force density

for a given reduced field is given by the mechanism which yields

| IR
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2 the lowest pinning force density for that reduced field. There

! are at least four pinning force density equations, which are:

o i
-

i) in the line pinning region (h] < h«< hT), using

5 Equation (4.48),

4
H(T)
3 hl/2

31

Fp = 5.3 x 107" pV (4.66)

ii) in the transition region (hT < h < hp)

Fy = 5.6 x 107 o3 1 2:3()n(1-h) (4.67)
2

for the pure specimens, and

2.5

H (T)

C
Fy = 9.3 x 1077 p”3-——2—2—(—-—--(1-h)”2 (4.68)

for the alloys.
jii) in the plastic deformation region (hp < h<1.0)

H Z'S(T)

Cc
Fo = 4.9 X 1073 ,1/3 —-372-3- n/2(1-p)%  (4.69)
K 0
1

An example of a resulting pinning force density for a specimen is ;
shown in Figure 42.

Each reduced-field region has a different temperature dependence.
Hence, the resulting pinning force densitv Jdoes not scale with
temperature over all the reduced field regions. The boundary between
the line-pinning region and the next higher region moves to lower

reduced fields as the temperature is decreased (see Figure 43).




e ¢)

Figure 42) Pinning force density versus reduced field for
specimen #47 at 3.5K. The solid Tine shows the
pinring force density predicted for this specimen by
a) Equation (4.66), b) Equation (4.68), and
c) Equation (4.69).
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f) General Comments

The theories of Dew-Hughes [32] and of Labush [33] fail to
predict the appearance of the several reduced-field pinning
regions. On the other hand, the theories of Kramer [1] and
Campbell and Evetts [9] predict different depinning mechanisms for
discrete reduced-field regions. The scaling laws obtained from
Kramer's theory are similar to our empirical relations. On the
other hand, the theory of Campbell and Evetts fails to describe
the data.

Campbell and Evetts [9] do not provide a set of scaling laws
for their theory. However, several things can be inferred from
their theory. In this theory, our empirical "line-pinning region"
is supposed to be described by an unsynchronized FLL region, where
the pinning force is basically that given by Dew-Hughes. This fact
fails to explain the empirical dependence of the pinning force on
the precipitate volume cubed. Furthermore, the character of the
empirical V-1 curves (Figure 29) is opposite to the one inferred
from this theory. When an "unsynchronized fluxoid" moves, it is
likely to move to another pinning center. There are no free
pinning centers for a fluxoid on a synchronized FLL to move to.
Therefore, a moving synchronized-fluxoid can precipitate a massive
movement of the lattice. This depinning behavior of the synchronized
and unsynchronized fluxoids is opposite to the one observed on the
V-T curves. These curves show an abrupt depinning in the "line-

pinning region" and a smooth depinning in the other reduced-field

regions.
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An explanation of the character of the empirical V-1 curves can
be inferred from Kramer's depinning theory. In the line-pinning
region, a fluxoid depins by breaking the bond with the pinning
centers along its length. The sudden loss in elastic energy
creates a local heat burst that can cause similar depinning in
neighboring fluxoids. This effect can cascade and even create a
total quench. The plastic-deformation depinning mechanism can be
smoother than the line pinning depinning mechanism described above.
Therefore, the voitage rise at JC is less abrupt in the plastic
deformation region than in the line pinning region.

As previously mentioned, the specimens alloyed with gallium
exhibit a decrease in the critical current when trained. This
can be explained if the precipitate expells some gallium from the
volume it occupies [48]. The area surrounding the precipitate
acquires a higher density of gallium. Therefore, the local value

of HC increases and that of Tc decreases. At temperatures near

the ciitica] temperature of the bulk, the energy well due to the

normal precipitate becomes wider with the addition of the now-

normal surrounding volume. At lower temperatures, the increased

value of the local ch creates an energy barrier around the precipitate
due to the increase in condensation energy (see Figure 44). When

a specimen is cooled from the normal state while it is in a

magnetic field, the fluxoids are attracted to the broad well

produced by the precipitate and the gallium enriched region. With

further cooling and the advent of the energy barrier, the fluxoids

remain pinned inside the well. However, if the fluxoids are driven
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Figure 44) Potential well due to a) a normal precipitate,
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out by a transport current and the current is brought back to zero,

some fluxoids cannot re-enter into the well because of the energy

barrier. Therefore, these fluxoids are not strongly pinned and the

pinning force density decreases. This idea is supported by the

fact that the pure vanadium specimens do not exhibit any effects

due to training. Furthermore, this effect is absent in the transi-

tion and plastic deformation regions, where the pinning force is

not expected to be dependent on the elementary interaction forces.
Another way to analyze the pinning force data is to compute the

pinning force per pinning center [55,56]

(4.70)

and to plot it versus the elementary interaction force, fp. In this
way, it can be verified whether the direct summation, where Q = fp
(Equation 2.77), or the statistical summation, where Q « fg
(Equation 2.81), can properly describe the data. Figure 45 shows
this method applied to most of the specimens. This graph shows a
qualitative agreement with the direct summation theory over several
orders of magnitude of the interaction force. There is a sudden
drop in Q at low interaction forces. This behavior has been
observed elsewhere [55,56]. However, as it will be demonstrated
below, the fit of the specimens in this research to this direct
summation curve is misleading. The specimens with weak interaction
forces do not fall on this line. These specimens are the ones that

show line pinning up to high reduced fields. Hence, the pinning force

density for these specimens is strongly dependent on the magnitude of fp.
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Vk If the pinning force density of the specimens can be described
% 1 by the direct summation, a plot of Fp versus pfp should be linear.
E' Figure 46 shows that for our specimens, this plot is not linear.
&i Hence, the pinning force density of the specimens in this research
i cannot be described by the direct summation theory. The fact
L that Figure 45 seems to indicate that there is a direct summation
E? of forces is easy to explain. The specimens with large precipitates
F' usually have pinning force densities of the same order of magni-
i: tude. For these specimens, a plot of Q versus fp is equivalent *+»
i‘ a plot of p_] versus V. Due to the fact that the product pV is
é‘ almost a constant, this plot yields a straight line.
F' 3) Uncarburized Specimens

A1l annealed specimens with no precipitates behave in a similar
way. As seen in Figures 24-27, as the magnetic field is increased
from zero, these specimens show a sharp drop in critical current

density. This drop levels off at higher fields, then it usually

peaks near H_ (T). ’
C2 E
The pinning force density behaves fairly erratically as a
function of reduced field. Furthermore, the reduced-field dependence
sometimes changes from one temperature to another. For most of
these specimens, the reduced field dependence of F_ can be ap-

P
proximated at low reduced fields by

f(h) = h/%(1-n)2 (4.71)




—
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Figure 46) Log- log plot of Fj versus pf for the vanadium
specimens at T = S 5K and h 0.7. The solid line
represents the direct summation.
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as illustrated in Figure 47. The temperature dependence of this

region, obtained from

in Fp(h = 0.5) =n1ln Hc (T) + constant (4.72)
2

2'S(T). Following the general trend,

is approximately given by Hc
we assume a quadratic dependence on the Ginzburg-Landau parameter,

yielding the equation
2 h1/2(]_h)2
S

The parameter Cnc is obtained for all temperatures from

i) (4.78)

C =
nc Hc 2‘5(T)h]/2(1-hi2
2

where h = 0.5, and averaged for each specimen. The value for this
parameter, as seen in Table 6, is similar for all annealed and
uncarburized specimens and even for some specimens with carbon in
solid solution. This implies that the assumption of a quadratic
dependence on K1 is probably correct and that these annealed
specimens have similar microstructures.

Most of these specimens show a peak in the pinning force density

near H_ (T). The rise in Fp shows a form factor given by
2

£(h) = h'72(1-n)2 + b

Then, very close to HC (™), Fp drops rapidly to zero.
2
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Figure 47) Reduced pinning force density versus reduced field for

s?ecimen #61. Solid line indicates the form factor
h1/2(1-h)2.
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s Table 6. Pinning Force Density Parameters for Specimens With No
‘1 Precipitates.
|
'1
g Specimen # Alloy Carbon n C
o Concentration Concentration nc
| a/o x 10-4
.; 8 pure V - 2.5 5.97
54 pure V - 2.4 6.63
. 86 0.20a/0 Ga 0.13 2.5 3.18
30 1.05a/0 Ga - 2.3 1.35 |
61 1.05a/0 Ga 0.20 2.2 2.82 1
]
‘ 7 2.96a/0 Ga - 2.2 2.05 »
63 2.96a/0 Ga 0.20 2.5 3.21
27 4.01a/o Nb - 1.6 2.76 :
r |
| |
i‘
i
i
11_ |
%3
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The reduced field dependence of Fp seems to indicate a plastic
deformation region followed by a line-pinning region. This is the
inverse of the usual order of appearance of these regions. This
can be explained if one assumes that the fluxoids are pinned by
imperfections on the specimen surface. There is a low density,
per volume, of these imperfections. Hence, the plastic deformation
of the FLL starts at low reduced fields. At higher fields, line
pinning forces in the bulk of the material become stronger than
the surface pinning forces. These bulk pinning forces are mainly

due to elastic interaction forces due to the grain boundaries and

other crystal defects.
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CHAPTER V
CONCLUSIONS

There is no one scaling law that will universally describe
the pinning force Fp. The pinning force for a particular reduced
field region is determined by the depinning mechanism active in
the region. At least four depinning mechanisms are present.

The first region, which is only present at the lower reduced
fields, is of little interest because of its low critical currents.
No analysis was attempted for this region which, for simplicity,
we call the "point pinning region." At the next higher reduced
fields, there is a region where Fp shows a strong dependence on
temperature, reduced field, and microstructure. The relation to
the microstructure is approximately given by V3o. In this region,
which is identified with Kramer's line-pinning region, Fp varies with
the square of the interaction force fp.

At the highest reduced fields, usually above h = 0.8, all
specimens show the same reduced field behavior for Fp, given
by f(h) = h(]-h)z. In this region, the dependence of the pinning

force on the microstructure is given by F_ = p]/3.

p
is well described by Kramer's theory of depinning by plastic

This region

deformation of the FLL.
The specimens usually show inother region, the transition
region, at intermediate fields between the line pinning region and

the plastic deformation region. The pinning force in this region
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is similar to that of the plastic deformation region in its tempera-
ture and microstructure dependence. The reduced field dependence
is not the same as that for the plastic deformation region. This
is the only region where there is a distinct difference in the form
factor of the pure vanadium specimens and that of the alloyed specimens
The transition region was unnoticed by previous authors.

The only reduced-field region exhibited by all the specimens
is the high-reduced-field plastic deformation region. The appearance
of any of the other regions is determined by the microstructure of
the specimen. Specimens with small precipitates exhibit the
“point-pinning" region and the line-pinning region. Specimens with
large precipitates show a broad transition region and barely, if
any, of the "point-pinning" or line-pinning regions. Specimens
with intermediate-sized precipitates exhibit the transition region
at all temperatures, and a clear line-pinning region only at the

higher temperatures.

The optimum microstructure for obtaining high pinning force
densities can now be described. In the line-pinning region, the
pinning force density depends on the cube of the precipitate

volume which lies inside the fluxoid core, V°.

For large
precipitates (d>2¢), part of the precipitate volume would 1lie 3
outside any fluxoid core that threads it. This extra volume has

a negligible effect on Fp, as seen in specimens #83 and #94. Hence,

the optimum precipitate diameter is about 2f. Spherical precipitates
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have a larger volume than disk-1ike precipitates of the same
diameter. Hence, spherical precipitates would make better pinning

:w centers. Voids are not affected by the proximity effect, hence,

1 a void makes a better pinning center than a precipitate of the same
:% dimensions. Strongly pinned specimens, which are those with a
high density of large precipitates, exhibit a broad transition P
regicn. This region is dependent on the density of precipitates.
Hence, the optimum microstructuré would be composed of the higher
57 attainable density of precipitates, or voids, with diameters near
'f ‘_‘f 2.
The alloying of small quantities of gallium is a good way of
- varying <, providing a range of x =~ 2.0 for pure vanadium to x = 20
i for the V - 2.96a/0 Ga alloys. The critical temperature and upper

critical field, Hc , can be calculated, from empirical curves,

2
for any dilute V - Ga alloy with a known resistance ratio. However,

.

the V - 4.01a/0 Nb specimens do not fit the empirical curves !i
found for the vanadium-gallium alloys.
Except for the transition region, there is not much difference

in the form of the pinning force of the low-«¢ pure vanadium

;,”

specimens, and the high-« alloys. For most of the regions, the

L5 ¥ Y a

pinning force can be described as varying with the inverse of

K1 squared.

New studies on pinning should be directed in anothe., maybe ,

more practical direction; pinning by vanadium-carbide precipitates ;i

has little, if any, practical application. A pinning center with ;i
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a broader range of values for p and pV is desirable. Voids are
currently used for this reason [54,55] and, in addition, voids are
not affected by the proximity effect.

Pinning by crystal dislocations caused by cold working the
material, is currently the main source of pinning in most commercial
superconductors. During the microstructural analysis of our speci-
mens it was observed that the carbon in solid solution tends to
accumulate along crystal grain boundaries. If carbon also accumulates
along the dislocations caused by cold work of the material, this
accumulation can be used to enhance the pinning force caused by

these defects, thus providing a valuable research tool.

ke i
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