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ABSTRACT

The variation of the pinning force with microstructure and with the

Ginzburg-Landau parameter is studied for 53 vanadium and vanadium alloy

specimens. Vanadium-carbide precipitates are used as pinning centers.

The Ginzburg-Landau parameter is varied by alloying the vanadium with

small quantities of gallium or niobium. Alloy compositions of

V-0.20a/o Ga, V-l.05a/o Ga, V-2.96a/o Ga, and V-4.Ola/o Nb are used.

These yield a range of the Ginzburg-Landau parameter from less than 2

for the pure vanadium specimens, to more than 20 for the V-2.96a/o Ga

specimens.

The pinning force is not described by a universal scaling law

for all specimens. The pinning force for a specific reduced magnetic

field is determined by the depinning mechanism active at that field.

There are at least three depinning mechanisms. Two of these can be

identified with the plastic-deformation mechanism and the line-pinning

mechanism, which are predicted by Kramer [1]. A previously unidentified

depinning mechanism is the prevailing factor in specimens with large

pinning centers.

The empirical line-pinning force of our specimens varies with

the individual precipitate volume cubed times the density of precipi-

tates. The pinning force in the plastic-deformation region varies as

the cube-root of the density of precipitates. A dependence on the

Ginzburg-Landau parameter squared can be observed for the magnitude

of the pinning force for most of the reduced field regions.
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CHAPTER I

INTRODUCTION

Superconductors are materials which lose all electrical resistance

at low temperatures. Although superconductivity was discovered in

1911 [3], successful technological applications have been developed

only during the last twenty years. An example is the use of supercon-

ducting windings in high field magnets. These magnets play a

prominent role in high-energy particle accelerators and in plasma con-

tainers for controlled fusion reactors. Superconducting computers,

power lines, generators, and even the superconducting magnetic-

levitation of trains are in advanced experimental stages. However, the

understanding of the superconducting phenomena, mainly the ability to

carry high densities of lossless currents, lags behind the technological

success of superconductors.

A superconductor carries a lossless current only below a threshold

defined by the temperature, the magnetic field, and the transport cur-

rent density. The critical values of these three factors depend on the

composition and microstructure of the material. The magnetic field

penetrates a type of superconductor, called a Type II superconductor, in

quantized bundles called fluxoids. The critical current of a Type II

superconductor is dictated by the Lorentz force which causes the

fluxoids to move. The movement of the fluxoids dissipates energy and

thus terminates the lossless state. However, metallurgical defects in
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the microstructure of the superconductor can create a "pinning force"

which can prevent the movement of the fluxoids, thus maintaining the

lossless state.

It has been suggested that the pinning force density, Fp, obeys

a scaling law of the form [4]

Fp =K p[H c2(T)]nf(h) , (1.1)

where H (T) is the upper critical field, f(h) is a form factor, andc2

h is the reduced field H/H c. The constant Kp depends on the micro-

structure of the superconductor and may depend on certain supercon-

ducting parameters of the material, e.g. the coherence length, ,

and the Ginzburg-Landau parameter, K.

The purpose of this investigation is to find the dependence of

the scaling law on the specimen microstructure and on the

Ginzburg-Landau parameter. Vanadium, which superconducts below

5.4K, is the basic material used in this study. Vanadium-carbide

precipitates provide a controllable source of pinning centers. The

Ginzburg-Landau parameter is varied by alloying the vanadium with

small concentrations of gallium or niobium. The validity of the

scaling law is also tested.

I
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CHAPTER II

THEORY

The properties of a superconductor can roughly be divided

in two categories, namely, the intrinsic or fundamental properties,

which usually are reversible, and the mostly irreversible

properties like flux pinning. The fundamental properties, like

the critical temperature and critical fields, depend mostly on

the thermodynamic and/or the electronic characteristics of the

material. The irreversible properties, while also being

dependent on the electronic and thermodynamic characteristics,

depend heavily on the microstructure of the superconductor.

The dependence of the irreversible properties on the thermo-

dynamic and electronic parameters can be expressed in terms of

the fundamental or reversible parameters. It is for this

reason that the fundamental properties will be discussed first.

Gaussian (cgs) units are used through the text. In this

system of units, and for the geometry of our experiment, the

magnetic field, H, is numerically equal to the magnetic induc-

tion, B. Therefore, the magnetic field is used instead of the

magnetic induction in many of our results.

This next section introduces basic concepts concerning

superconductivity. It is not meant to be an exhaustive



4

treatise on the subject; several excellent books are available

for this purpose [5,6,7]. The next section introduces and

elaborates on the fluxoid concept. For more information on

fluxoids, the reader is encouraged to read Huebener [8]. The

last sections in this chapter deal with fluxoid pinning.

Campbell [9] may be consulted for more information on the basic

pinning interactions.

A) Fundamental Properties of Superconductors

* The state of a superconductor depends on three external

factors: the temperature, the magnetic field, and the transport

current. In the absence of electrical current or magnetic fields,

the norrial-superconducting transition occurs at the critical

temperature Tc* The critical temperature for pure metals and

alloys vary from below 1K to near 24K. For pure vanadium, Tc

equals 5.4K [10].

The effect of a magnetic field on a superconductor depends

on the type of superconductor; there are two types. Type I

superconductors exhibit nearly perfect diamagnetism up to a

critical field Hc, where they become normal. This diamagnetic

behavior is called the Meissner State after its discoverer [11].

The energy density needed to exclude the magnetic field from the

bulk, given by H (T)/811, can be equated tn the difference in

c'
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Helmholtz free-energy densities, f n(T) and f s(T), of the normal and

conducting state [12]. Hence, the critical field, Hc, can be defined

thermodynamically as

H (T)8- f n(T) - fs(T). (2.1)
n S9

The dependence of the critical field Hc on the temperature as seen

in Figure 1 is given approximately by

H c(T) H c(O)[l-t 2] , (2.2)

where t is the reduced temperature T/Tc*

The second kind of superconductors, called the Type II super-

conductors, show nearly perfect diamagnetism only up to a field

Hcl, which is below Hc (see Figure 2). Above H , in what is

called the mixed state, magnetic flux starts to penetrate the

material in quantized units of flux called fluxoids. At a field Hc2 ,

which is usually far above Hc, the bulk of the material becomes

normal. Small lossless currents may still flow, in a thin surface

layer, up to a field Hc3, which is higher than Hc2*

The diamagnetism of the Meissner State is perfect only in the

bulk of the superconductor. The magnetic field is not abruptly

excluded at the surface; it drops off exponentially, entering the

bulk with a penetration depth X. London's local theory of super-

conductivity [13] predicts a penetration depth given by

* *2 1/2
XL - m c (2.3)

\4e n s
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where m , e and ns are the effective mass, charge and density,

respectively, of the superconducting charge carriers. The penetra-

tion depth at zero temperature is typically on the order of 10-6 cm.

Pippard [14] proposed a non-local theory of superconductivity

in order to improve on London's local theory. Pippard's theory

introduces another characteristic length, the coherence length .

The coherence length describes the range over which there are

strong correlations between superconducting electrons. The coherence

length of a pure metal is [15]

AVl F(24
o kBTc (2.4)

where kB is Boltzmann's constant, VF is the Fermi velocity, and a

is a constant which empirically equals 0.15 [15]. Pippard proposes

that, in the presence of scattering, the coherence length should be

1 = i_+ 1 (2.5)

where I is the electronic mean free path of the normal metal at

the same temperature.

In 1957 Bardeen, Cooper and Schrieffer (BCS) published their

successful microscopic theory of superconductivity [16]. This

quantum-mechanical theory demonstrates that a weak attraction can

bind, in pairs, electrons near the Fermi surface. The attraction

that binds these "Cooper pairs" comes from an interaction of the
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electrons with the lattice phonons. This interaction extends through

a distance given by the coherence length E. The coherence length

of the pure metal given by the BCS theory is

VF O.181VF 
(2.6)0o KA kBT c  26

where A is the energy gap of the superconductor. Cooper pairs have

an effective mass m and a charge e , equal to twice the mass

and charge, respectively, of the free electron.

In 1950 Ginzburg and Landau [17] proposed a phenomenological

theory of superconductivity based on Landau's theory of second-

order phase transitions. Landau's theory [18] states:

i) that the state of the material can be characterized by

an order parameter, T, which describes the "degree of

ordering" associated with the increase in symmetry of

the system as it goes through a second-order transition.

The order parameter is zero at the transition point.

ii) that the free energy can be expanded in powers of the

order parameter.

iii) that the coefficients of expansion are functions of the

temperature.

Thus, the Helmholtz free-energy density can be written as

= f + ct(T)I' I 2 + (2-- I 14 + .. (2.7)

____J
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Ginzburg and Landau apply this concept to the superconducting

transition in a quantum-mechanical way. They treat the order

parameter '(r) as a pseudowavefunction which describes the center-

2of-mass motion of the Cooper pairs, with 4'j being the local density

of superconducting Cooper pairs, ns. They include a term for the

magnetic energy and a term for momentum, obtaining

2 6 4 1 i 2 2
fs = fn + art12 + ZJT 4 + - - )Y + r (2.8)

Again, m and e are the effective mass and charge of the Cooper

pairs, that is, twice the mass and charge of the electron.

The free energy can be minimized with respect to spatial

variations of T(r) and with respect. to A(r). This procedure yields

the two Ginzburg-Landau differential equations

0 = O' + T 'I 2T + -t ( cX T~2 (2.9)

2m

and

e * - e * .* (2.10)
2m i mc

In the absence of gradients or fields, equation (2.9) yields

2Y1 -2 n* (2.11)

This result can be used on equation (2.8) under the above condition

yielding

2
f - , (2.12)fn-s 2S
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which, using equation (2.1) becomes

2 H 2

C (2.13)
S 411

One can solve simultaneously equations (2.11) and (2.13) obtaining

_H2

= c (2.14)
41lns

and

H
2

C c(2.15)

411n s2

London's penetrat;on depth, XL' can be obtained from

equation (2.10). For weak magnetic fields, ITI 2 can be replaced by

its equilibrium value IT 2, so that

Se h (eI 2s - _*, e c o12 A (2.16)
2mi mc

One can take the curl on both sides of this equation, obtaining

curl is :-eIT0 1 2-H (2.17)m c

The Maxwell equation

curl '= 11 (2.18)
C

can be used to express equation (2.17) as

.*2

c curl curl = I . I2 (2.19)
mi c 0
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and one obtains

m'c 2 VIA q (2.20)2

411e IT 02

This equation yields a magnetic field penetration that agrees with

London's (Equation 2.3).

The Ginzburg-Landau theory provides a temperature dependent

coherence length. If p2 = 1I2 /ITo12 = ]IT 2(-I/a) is substituted

into equation (2.9) in the absence of magnetic field, one obtains

.2 d2 q (2.21)

2m la dx2

One can substitute (x) = 1 + g(x), where g(x)<<l, yielding

0 -2g - 3g2 g3 + d2  (2.22)

2m*aI dx2

This equation can be approximated, to the first order of g, by

4 m*a g(x) = d 2g(x) (2.23)
x2 dx2

The function g(x) will decay to l/2g(O) at a characteristic length

E() 1T/2 ,(2.24)

( 2m Ie L(T) I )12

called the temperature dependent coherence length. Equations (2.3)

and (2.14) can be used to express a as

=(T) -4e2 H(T)X2 (T)  (2.25)
m c

6o
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Now the coherence length can be expressed as

S(T)= (2.26)

2v7 e c (T)A eff(T)

The coherence length (T) denotes the characteristic decay-

* length for small variations of the order parameter . It is not the

same as Pippard's coherence length , (Equation 2.5) which denotes

the smallest possible size of the superconducting electron wave-

packets. However, Gor'kov [19] shows that there is a relation

between the GL coherence length g(T) and Pippard's coherence length

for pure metals, o (Equation 2.4).

Gor'kov [19] demonstrates that the GL theory is a limiting

case, near Tc, of the BCS theory. The BCS theory can then be used

to approximate the GL critical lengths near Tc for two limits:

the pure limit, where the electronic mean free path, Z, is much

larger than the penetration depth XL , and the dirty limit, where

l<<XL* For these limits, the critical lengths are given by [5,19].

!(T) = 0.74 o (2.27)
'j(1-t), 

/2

pure limit

X(T) X L(O)1/2 (2.28)
[ t
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and

0.5 l 1/2
(T) = 0.855 o I (2.29)

dirty limit
F~1 1/2

X(T) = X 2.661(1-t) (2.30)

where XL(o) is London's penetration depth at zero temperature, and

t is the reduced temperature, T/Tc.

Both the penetration depth (Equations 2.28 and 2.30) and the

GL coherence length (Equations 2.27 and 2.29), have the same

temperature dependence near Tc. A GL parameter, K, can then be

defined by

K(T) : {-- , (2.31)

which near Tc becomes temperature independent and equal to

= 0.96 XL(O) for pure metals (2.32)

and

K1 = 0.715 XL(O) for dirty metals. (2.33)

Goodman [20] shows that for intermediate values of 1, K can be

approximated by

KK 0 + K Z (2.34)

The GL parameter, K, plays an important role in determining

if a superconductor is Type I or Type II. There is a negative energy
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associated with the expulsion of the magnetic field from the bulk

of the material. On the other hand, there is a positive energy

which is the result of forming normal/superconducting interfaces.

Their sum is called the surface energy. For K less than 11/2, the

surface energy is positive. This inhibits the formation of normal/

superconducting surfaces within the bulk, creating the Meissner

effect. Abrikosov [21] finds that for K greater than l/V2, the

surface energy is negative, so that normal-superconducting inter-

faces are encouraged. This induces the magnetic field to penetrate

in the form of fluxoids. The GL parameter can then be used to

define the type of superconductor:

K< l/V"2 Type I superconductor,

and

K > I/v7 E Type II superconductor

There is a unitless parameter, Kl(T), which relates the upper

critical field H to the thermodynamic critical magnetic field

Hc by

Hc2(t) = /7K1(t)Hc(t) (2.35)

At the critical temperature, Kl(Tc) equals K. Marker [2] finds that

the temperature dependence of Kl1(t) can be approximated by

K1 (t) , (2.36)

(l+nt)

where I is a parameter on the order of unity.
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B) Fluxoids

Magnetic flux, as noted previously, penetrates a superconductor

for fields above H c2(T). It penetrates in quantized bundles called

fluxoids [22]. The fluxoids are a direct result of the second GL

differential equation

.*2
I = e (T.'V - **) ' * A (2.37)

2m i mc

The order parameter can be separated into a magnitude I'I and a

phase p obtaining

* 2
2tV12 e 'T . (2.38)

m m c

One can substitute n for JIY2 and rearrange this equation obtaining

* = (2.39)

e *2 *s

An integration over a closed path s inside the superconducting

material yields
(*

chds . m~ c d-~J ds (2.40)e - e r * " "

e e qs

* L I- ds -D (2.41)

e ns

I
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The order parameter must be a single valued function, so for a loop

around the path s, the phase € must vary by 211n. When this fact

is applied to the integral on the left one obtains the fluxoid

quantization

nchmc •d (2.42)

Qe e n s

This equation describes a magnetic entity, the fluxoid, which is

composed of a superconducting current vortex surrounding a magnetic

flux column (see Figure 3a). The number of superconducting electrons

decreases toward the center of the vortex, creating a normal core

of radius (T) (see Figure 3b). The magnetic flux quantum, (o, is

given by

_c c =20x1-7

(o2.07 x lO" gauss-cm2 . (2.43)
o * 2ee

This relation can be used together with Equations (2.26) and (2.31)

to express the coherence length as

(T) 2H(T) . (2.44)

A fluxoid is repelled by the magnetic field of neighboring

fluxoids. This mutual repulsion induces them to form in a periodic

lattice array which is usually triangular. The geometry of the

crystal lattice can deform the fluxoid lattice angles, and can even
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Y J,

normal
core I

I-2f -1
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core, and b) the density of superconducting electrons
and the magnitude of the magnetic induction.
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dictate a square fluxoid lattice [8]. The distance between fluxoids

in a triangular lattice is given by the fluxoid lattice parameter

a
0

2%o 1/2

a* a=11 II \?.45)

The Flux Line Lattice (FLL) responds elastically to appliea

forces. Any elastic reaction of the lattice can be described by

a combination of the following elastic moduli given by Labush [23]:

cL - which changes the cross-sectional area of a fluxoid

lattice cell but not its shape,

c44 - which tilts the fluxoids away from the z-direction, and

c66 - which shears the lattice in the x-y plane (see Figure 4).

The elastic moduli for magnetic fields near H are given by [23]:

B2 3H
c B 2 3H (2.46)L 4n B

BHc44 :4n" (2.47)

.48(l-h)
2H 2

c66  2  (2.48)
228fl(2K2-I)ST

where h is the reduced field H/H2, and, for a triangular lattice,

6T is equal to 1.16. Although these results are strictly correct

only in fields near H c2  they are routinely used, with good results,

at lower fields.

'i
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a) a cross-sectional area of the FLL at rest,
b) c L9 C) c44 1 and d) c66.
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C) Flux Pinning

1) The Lorentz Force and the Critical Current

An electrical current density, J, passing through a super-

conductor which is in a magnetic field,creates a Lorentz force

density,

l x (2.49)

L c

that acts on the fluxoids (see Figure 5). This force can be

derived thermodynamically from the Helmholtz free energy density

f [9]. An area A, perpendicular to a magnetic induction B, can be

compressed in such a way that B6A + A6B = 0. The pressure, in terms

of the free energy density is

P (3 Force - a(Af) = _f Af (2.50)

3A 3A 3A2.0

Due to our initial conditions, this can be expressed as

p = .f + Baf (2.51)

The force per unit volume, Fv , is

F =dP _ df + d Bdfj

v dy dy d -B

df dB dB df Bd dfl (2.52)

dB dy dy dB y d9

Campbell and Evetts [9] assume that the condition for thermal

equilibrium is

)f H (2.53)

TB 41

;M6
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1
*Z d
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rY

Figure 5) Schematic representation of the Lorentz force
=L -11 , x i, and of a fluxoid moving with velocity

L  c

LVL.
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therefore,

F B dH
v 411 dy (2.54)

The Maxwell relation V x H = 4 can be used to obtain
C

x = (2.55)

When the Lorentz force causes the fluxoids to move, they

create an electrical field [24] due to the Maxwell relation

Vc at (2.56)

In the case where the fluxoid velocity VL is a constant, the above

expression yields [25]

= L X (2.57)
c L

where is parallel and opposite to the current. Such is the case

for a superconductor without microstructural defects, where the

flux flow is limited by viscous forces. Work is done against the

viscous forces when the fluxoids are moved. Therefore, although

the material remains in the superconducting state, it no longer

carries a lossless current. The current at which the fluxoid-

induced voltage is first observed is defined as the critical current.

The critical current can be increased by preventing the movement

of the fluxoids. A force equal and opposite to the Lorentz Force

must be provided to "pin" the fluxoids. Anderson [26] proposed

that this "pinning" could be accomplished by inhomogeneities in the

material. Fluxoids can be attracted or repelled by impurities and



24

crystal lattice defects, effectively being pinned by them. The

maximum "pinning force" density exerted by these defects, Fp, can

be calculated from the Lorentz Force at the critical current Jc

r l( )=iS x . (2.58)
p Lc c c

Power is still dissipated at currents above Jc* However, now VL is

not a constant; it depends on the depinning mechanism. The dis-

sipated power can be calculated from the work done to depin the

fluxoids from the pinning centers.

2) Pinning-Producing Material Defects

Material defects interact in a variety of ways with the fluxoid

lattice. Crystal lattice dislocations and grain boundaries produce

in their vicinity changes in the superconducting parameters. The

coherence length, the critical field, and other parameters are

affected by the electron scattering caused by the crystal defects.

The change in these parameters, in turn, changes the local value of

the fluxoid lattice energy. This energy gradient can attract the

fluxoids to the defect or repel them away, acting, in both cases,

as a barrier to the movement of the fluxoids.

The elastic energy of the crystal lattice dislocations can

also produce pinning [27]. The vortex core is stiffer than the

surrounding superconducting material. Therefore, the elastic

energy of a crystal lattice iislocation increases as a fluxoid core

approaches it, creating a repulsive force. Furthermore, the specific

volume of the core is lower than that of the surrounding bulk, creating

local stresses. These stresses interact with the strains created by

the crystal defects.
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Defects that are larqe compared with the penetration depth, A,

produce pinning due to "magnetic interactions." The magnetic field

inside these defects can differ from the average magnetic field in

the bulk. The fluxoid lattice is pinned by the resulting gradient

in magnetic energy.

A void or a normal impurity with a small size compared to the

penetration depth, A, can pin a fluxoid due to the change in con-

densation energy if the fluxoid threads the impurity. Normal

electrons must be created if the fluxoid core moves out of the

impurity. Cooper pairs in the surrounding bulk must be broken up

to provide these normal electrons. Energy is spent in breaking

the pairs, therefore, the fluxoids prefer to stay pinned to the

impurities. This interaction between the fluxoid core and an

impurity is called a "core interaction."

3) Core Interactions

Many of the specimens in this research have a high density of

small precipitates (d<X). If this density is higher than the

density of other types of crystalline defects, the biggest contri-

bution to the pinning force density is due to "core interactions"

between the vanadium-carbide precipitates and the fluxoids. Due

to the small size of the precipitates of these specimens, the

"magnetic interactions" are negligible. The density of non-

precipitate defects in thL specimens used is low, therefore, the

pinning force density due to these defects is neglected.
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The core interaction force, fp, is usually obtained from the

Ginzburg-Landau free energy density. We can obtain the interaction

force following the method used by Campbell and Evetts [9]. Con-

sider moving a normal precipitate of diameter <2C and volume V

from inside a fluxoid core to a position half way between two

fluxoids, x = l1/2a o. According to Campbell and Evetts, the change

in the G.L. free energy AE, can be expressed as

V2

AE 2 2 2 Imax '  (2.59)

w2 ag=n i 2. -James, et al. [7] obtain an
where, again, 4) 1/I 0 2  Saint-aen

2
expression for q2 Campbell and Evetts simplify this expression

obtaining for materials with high <, the relation

2 (l-h)l -[ cos -_- cos cos (x +

a jao ao

(2.60)

where x and y are the distances from the core of a fluxoid. It

is more illustrative to consider a one-dimensional approximation of

the square lattice at high fields, given by

22xp(x) 1(1-h) Co. (2.61)
2 a 0

Using this approximation, the change in free energy becomes

AE c(2a 2 2max (2.62)
4 E a4 "0a)
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The interaction force, fp, is then equal to

_E V (2111 22 2

f 2F ao a H Imax (2.63)

The maximum value of 2 is (1-h), therefore,

v2 13 2 2
fp =41Laor J Hc (1-h) (2.64)

This result is the same as that obtained by Campbell and Evetts [9].

Using Equations (2.35), (2.44), and (2.45) one obtains from

Equation (2.64)
5/2 h3/2VHc 2

fp Cp 2 /2 Cl-h) (2.65)

where c = 1.27.P

Kramer [28], and F~hnle [29] also obtain an interaction force

from the G.L. free energy density. They use approaches which are

more sophisticated than the one discussed above. Their results

are of the same form as Equation (2.65), with cp equal to 0.866

and 0.274 in their respective calculations.

Kramer's result [28], given by
VH5/2 h3/2

0.866 VHc2  h (1-h)
fp 2 (2.66)

2 /2

J12
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will be used in future calculations. We will use it because of

the frequent use of this result in the literature, and because its

value of cp falls near the middle of those found by Campbell and

Evetts (cp = 1.27) [9] and Fahnle (cp = 0.274) [29].

For precipitates with one or more dimensions larger than twice

the coherence length, part of the precipitate volume lies outside

of the normal core of a fluxoid that threads it. Therefore, the

change in the G.L. free energy, given by Equation (2.59), is not

proportional to V. This energy change is now proportional to that

part of the precipitate volume that lies inside the normal core.

The precipitates in our research are thin disks, the planes

of which are usually oriented at 900, 71.61 and 18.40 to the specimen

surface [30]. In the geometry of our experimental set-up, these

precipitates lie at 00, 18.40 and 71.60 to the magnetic field.

For precipitates with diameter, d, larger than twice the coherence

length, the precipitate volume within a fluxoid normal core, shown

in Figure 6, can be approximated by

i) for the 00 orientation

V1 :2t (T)[-2 -2(T)I/2 + t2 arctan T
t2 d

(2.67)

*
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f I u-oid

-precipitate

I V3

c)

PV

Figure 6) Schematic representation of a fluxoid threading a
disk-shaped precipitate at an angle, between the
fluxoid axis and precipitate plane, of a) 0°,
b) 18.40, ana c) 71.60.

-I
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d!

ii) for the 18.4' orientation, and (T)<-

V2 z 4t2 2(T) sec (18.40) (2.68)

d d
and, for V>(T)>-

V2 z Vl  ,(2.69)

iii) for the 71.4' orientation

V3 :1Rt 2t sec (71.40) (2.70)

where t is the precipitate thickness. The average volume, V, is

given by

V (V + V + V (2.71)
I z '3)

d
For rW>(T), this equation can be approximated by

- v . (2.72)

A normal metal in good electrical contact with a superconductor

will acquire superconducting properties near the contact area [31].

The Cooper pairs in the superconductor penetrate a distance & into

the normal metal, creating a superconducting layer of thickness c.

The thickness, t, of most of the precipitates is less than .

Therefore, the precipitates might become superconductors with Hc lower

than that of the bulk. This can reduce the change in free energy used

to calculate fp, Equation (2.59), by a factor [28]

6Hc Hcbulk - Hcppt
Ho c pk,(2.73)

c Hcpp t
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where H is the local value of the critical field inside thecppt

precipitate. Kramer [28] talculates the change in f due to the

kproximity effect on precipitates like ours and obtains a resulting

interaction force fp equal to

V=2~ N(o)(i ) fp (2.74)
p 11HcC

where fp is given by Equation (2.66),N(o) is the density of states

at the Fermi surface, A is the superconducting energy gap, t is

the precipitate thickness, and A0 
= X(T = 0). This factor adds to

2fp a further dependence on the microstructure, given by t , and a

further dependence on temperature, which is approximately given by

(1-t). For our specimens, the thickness t is proportional to the

square root of the precipitate diameter, d. Therefore, when the

proximity effect is considered, the resulting interaction force,

f , is proportional to

fp - d(l-t) fp (2.75)

4) Summation of the Macroscopic Pinning Force

The summation of the elementary pinning force, fp, exerted

by the pinning centers, into a macroscopic pinning force density,

Fp, is a major problem. First, several of the potential sources

of pinning mentioned in the previous sections can act at the same

time. Second, the strong coupling between the flux lines in the

fluxoid lattice prevents a simple summation of forces; stresses
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induced on the fluxoid lattice by a pinning center may reach

neighboring pinning centers. Furthermore, the fluxoid lattice is

not rigid, it bends and plastically deforms to minimize its

energy.

a) Dew-Hughes' Theory

Dew-Hughes [32] ignores the elastic behavior of the lattice.

He assumes a direct summation of the elementary interaction forces,

Fp = f over all pinning centers in a unit (2.76)
p volume,

so that

Fp = p , (2.77)

where p is the density of pinning centers. This is the maximum

F that could conceivably be calculated. Using Equation (2.66)P

one obtains

pVHc25/2 h3"2 (1-h)

F = 0.866 2 (2.78)
P K1  ol~/2

b) Labush's Theory

Labush [33] computes Fp using a statistical method to take

into account the interaction between fluxoids. He obtains for

small plate-like precipitates

F df 1/2F + .01
~i 8T___ B4TIc V4f 11

k c 6 1_"c, 1 .7
4flc66 4hc66 (.9
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where i stands for the coordinates x and y, the parameter cll equals

(cL + c66), and d is the diameter of the precipitates. The tensor

a is the mean value of F(U) over all line elements of the fluxoid

lattice. The tensor F(U) is given by

a 2U ^ 2U ^
F(U) 2x + 7 y  (2.80)

ax ;x

where U is the potential of the interaction between a fluxoid and

a pinning center, given in energy per unit length. Weak inter-

actions, or high reduced magnetic field, yield (c/4Rc66 )<<l. In

this case, the elastic response of the lattice is independent of

a and Equation (2.78) becomes

F _ Bd' 81 /2 1 + 1(.1

Assuming that H z B, the use of Equations (2.46), (2.47), (2.48),

and (2.66) yields

pdV 2H3.5h 2 .5

F p z 0.38 14 K oi/2 (1-h) 2  h2 + 018(I-h)2  
1 /2

2" 3622I I/ 0 2K1

+ 2.36(2Klh) 1/2 (2.82)

c) Kramer's Theory

Kramer [1] considers the power loss due to the motion of the FLL

at the moment it becomes depinned. This power loss is equal to the
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elastic energy Es that the moving FLL elements had prior to

depinning. This energy is given by
*2

E l P (2.83)2 C

where f is an effective interaction force, and C is the appropriate

combination of elastic coefficients of the FLL. The depinning force

density, Fd, needed to move the FLL a distance ao , the lattice

parameter, can be expressed as

Fd = -2p a -Fp , (2.84)

where P is the density of pinning centers.

Kramer's theory predicts two different depinning mechanisms.

At low fields, the FLL remains elastic and depins by breaking

individual bonds with the pinning centers, as shown in Figure 7.

At high fields, the shear strength of the lattice decreases and

the lattice deforms plastically around the pinned fluxoids. At

these fields, strongly pinned fluxoids remain pinned; the lattice

plastically deforms only in the areas where the fluxoids are not

individually pinned or are weakly pinned. The resulting pinning

force for a given reduced field is dictated by that mechanism,

elastic or plastic, which yields the lowest magnitude depinning

force for that reduced field. An example of a pinning force

resulting from the elastic and plastic mechanisms is shown in

Figure 8.
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Figure 7) Schematic representation of a pinned FLL under the
influence of the Lorentz force where: a) the FLL
lattice bends elastically, b) the FLL dislodges from
the pinning centers, and c) individual fluxoids
remain pinned but the lattice deforms plastically
between the pinned fluxoid.
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Figure 3) Reduced field dependence of the pinning force density
due to the line-pinning mechanism and to the plastic
deformation mechanism.
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The elastic response of the lattice is further subdivided in

two reduced-field regions. At very low fields, the fluxoids are

very flexible; pinned fluxoids bend easily under the influence

of the Lorentz force. Furthermore, the FLL can also shear

elastically about a pinned fluxoid. Therefore, in this limit, the

elastic moduli c44 and c66 are needed to describe the elastic

reaction of the FLL to a pinning center. On the other hand, at

higher fields a fluxoid becomes stiffer, and if the distance

between the pinning centers along its length is small, the fluxoid

will barely be able to bend. The fluxoid now has the appearance

of being pinned along its length by a line pinning center.

Elastically, the FLL can only shear, therefore, only c66 is needed

to describe the elastic response of the FLL. The low field region,

where a fluxoid can -end about a pinning center, is called the

point-pinning region. The reduced field region, where the fluxoid

appears to be pinned by a line pinning center, is called the line

pinning region. The reduced field hL at which there is the transi-

tion from point-pinning to line-pinning is dictated by the relative

stiffness of a fluxoid as compared to the shear strength of the

flux lattice, and by the distance between pinning centers. This

reduced field, hL, can be obtained from

-2/3 c66 B

-4 , (2.85)

The point-pinning region is of little interest because as

the magnetic field is increased, the critical current drops
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rapidly to very low values. On the other hand, in the line-

pinning region, there is a rapid increase in critical current

as the reduced field increases. Therefore, more emphasis is

given to the line-pinning region.

The elastic energy per flux line, ES) can be calculated

from the interaction force f . In the line pinning region, the

interaction force per unit length of fluxoid is

fPl = rl ff ' (2.86)

where n, is the number of pinning centers per unit length of a

flux line. The flux line lattice can shear in order to thread

through more pinning centers. Therefore, the effective inter-

action force fp is proportional to the displacement of the lattice

fpl/c66, thus,

f
2

*f P rl (2.87)

The elastic energy density per unit length of pinned fluxoid E

obtained from Equation (2.82), is proportional to

n2 f .*2

E "I . (2.88)
s1 c66

The use of Equations (2.86) and (2.87) in Equation (2.88) yields

6~of4

Es p (2.89)S 3c66

,A._



39

One now obtains from Equation (2.84) the relation

6f4
F p 'r PL n  ' (2.90)

aoc663

where p, is the density of pinned fluxoids per cross-sectional area.

The use of Equations (2.45), (2.48), and (2.66) yields the pinning

force density for the line-pinning region

4 4 4.5  (2K1-1)3 h6 5

2 K (1-h) (2.91)

The shear strength of the FLL decreases as the magnetic field

is increased. At a reduced field hp, the Lorentz Force exceeds

the maximum shear strength of the FLL. Thus, the elastic response

of the FLL is supplanted with plastic deformation of the lattice.

To calculate the pinning force limit due to plastic deforma-

tion, Kramer considers a simple system consisting of pinning

planes, separated by a distance y. The surface of the plane lies

parallel to the Lorentz force. For such a system, the shear stress

T- of the FLL can be approximated by [34]

T (y-x) F (2.92)

where x is the distance from the surface of a pinning plane.

Setting x at the position of maximum stress, namely at x = a

the above equation can be expressed as

2T
F max (2.93)
L f' al

yl-02
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where Tmax can be approximated by

Tmax - 2 (2.94)

Kramer calculates the stored energy density, pEs, to be

F 22
pEs - (2.95)s 24c 66

Substituting in this equation the value of FL given in Equation (2.93),

-X Equation (2.84) becomes

Fp = 66  2 (2.96)

121 l2T1( 0 a) 2 0

Substituting Equations (2.45) and (2.48) into (2.96), one obtains

H 5/20.14 c2 hl/2 2

S2 2-h (1-h) 2  (2.97)
P I ao) K

Y

For a more realistic model (parallel pinning planes are not very

realistic) the biggest change in this equation is in the dependence

on the microstructure. Furthermore, Kramer's theory is based on

a simplistic version of the plastic deformation phenomena because

he does not take into account the fluxoid-lattice defects. Plastic

deformations usually start and/or propagate along lattice defects.

This will have an unknown effect on the form of the pinning force

density. Regardless of the model used, the depinning force density

due to the plastic-deformation mechanism is probably weakly

dependent on the precipitate density, and it is probably independent

of the interaction force f .P
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d) Other Theories

Schmucker [35] calculates the pinning force in the plastic

deformation region by means of a Green's function which describes

the elastic behavior of the FLL. Schmucker states that the

pinning force density can be expressed as

Fp =411pfpdid± , (2.98)

where f is an effective interaction force that depends on the

elasticity of the lattice, and d1 , d_ are the dimensions of the

pinning centers parallel and perpendicular, respectively, to the

flux lines. The shear stress %s derived from the FLL Green's

function equals

Ts = fpd.G , (2.99)

where G can be approximated by

G - 5.47 x 10 2  (2.100)

c.44 + d44 
1/

. c66 d:

At the threshold of plastic deformation, when the shear stress is

at a maximum, one can define an effective interaction force fp by

means of Equation (2.98) as being equal to

* Tmax
f = " (2.101)p dG
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Schmucker uses a maximum shear stress of the form

Tmax C6 6  (2.102)
max -

therefore, using Equation (2.100) and (2.101), fp becomes

, . 66 c44 dl /
fp 0.36-L 1 0.93 + Cd /2 (2.103)

Using this equation and Equations (2.47) and (2.48), Equation (2.98)

- can be rewritten as

2 (lb-)2
F = 0.065 pd Id± HC2  - 2
'P (2K -1)

[ 1x 0.93 + _- (2.367 K _1 T ] 1h0

For high values of K and when djj - di , this equation can be

approximated by

0.11 d2H h(1-h)

F (2.105)
p K1

Campbell and Evetts [9] have proposed, without a rigorous

treatment, a different mechanism to explain the increase in critical

currents at certain fields. They state that at low fields there

is such a low density of fluxoids that most pinning centers are

not near fluxoids, so these unused pinning centers do not contribute

to the pinning force density. As the field is increased, the

fluxoid density increases. The fluxoids thread more pinning centers,

in other words, they synchronize better with the pinning-center

density. However, at a certain field hs, there are no more unused
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pinning centers to synchronize with, so there cannot be any further

increases in the pinning force density. As the field is increased

from hs , the pinning force density decreases because the elementary

interaction force of the pinning centers decreases.

h
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CHAPTER III

SPECIMENS AND APPARATUS

This investigation consisted of two stages. The specimens were

prepared and analyzed by K. Moll, under the supervision of

Dr. W.R. Bitler of the Department of Material Sciences of The

Pennsylvania State University. The author performed the second

stage, namely, the final preparation, and the measurement of super-

conducting and electrical properties of the specimens. To acquire

this data, the specimens were mounted in a sample holder and cooled,

using liquid helium as a refrigerant. The resistance ratio, transi-

tion temperature, and critical currents of the specimens were

measured with a four-probe method.

A) Specimens

1) Starting Materials

The superconductors studied in this investigation are high-

purity vanadium, and vanadium alloyed with niobium or gallium.

Vanadium and niobium are the only intrinsic Type II superconductors.

Marker [2] used vanadium because of its availability in high purity,

and its controllable microstructure. We chose gallium as an alloying

agent because carbon has more affinity to vanadium than to gallium,

therefore, the formation of gallium ca, bides in the V-Ga specimens

is unlikely. Also, the literature shows that the transition tempera-

ture of vanadium does not drop too much with the addition of small

Mas
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concentrations of gallium [34,34,39,40]. Finally, superconducting

V-Ga alloys are technologically important. Niobium was selected for

its electronic and superconducting similarities with vanadium.

The starting materials were obtained from Materials Research

Corporation. The vanadium arrived in 0.0254-cm x 2.54-cm x 61.0-cm

foils of 99.95% nominal purity. The alloys, which arrived in

1.27-cm-diameter ingots, were made with vanadium of 99.9% nominal

purity, and 99.999%-pure gallium or 99.99%-pure niobium. The alloy

concentrations, given in atomic percents, were V-3.96a/o Ga,

V-l.05a/o Ga, V-0.20a/o Ga, and V-4.10a/o Nb.

2) Annealing and Carburization

The specimens are annealed to reduce the lattice defects

that can cause fluxoid pinning. This process creates crystal

grains approximately 2-mm in diameter with surfaces near the {001}

planes. Carbon is added to the vanadium or vanadium alloy in order

to obtain normal precipitates that act as pinning centers. The

vanadium-carbide precipitates in the form of disks along the {310}

habit planes. Therefore, the disks align with their surface at

900, 71.6', and 180 to the specimen surface. Aging, which means

heating for a definite period of time, coarsens the precipitates;

that is, it increases their volume at the expense of neighboring

precipitates. The precipitate thickness is roughly proportional

to the square root of the precipitate diameter. The precipitates

stress the lattice, therefore, the larger precipitates tend to

become incoherent with the lattice.
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The Material Science group supervised by W.R. Bitler annealed

and carburized the specimens. The specimens are annealed at a

pressure of 106 -torrs and at a magnesium-gettered oxygen partial

pressure of less than 10-17 torrs. Ohmic self-heating, produced

by passing a large current through the specimen, is used to anneal

the specimens at 1,500C. Carburization is also done at this

temperature. A measured volume of a 2.08 vol. % methane in a hydrogen

carrier is introduced into the vacuum chamber. The methane

decomposes, with the carbon going into solid solution in the hot

-6specimen. Specimens to be aged are sealed at a pressure of 10 torrs

in Pyrex capsules. They are then heated in a muffle furnace at

350'C. Aging times vary from 30 minutes to 36 hours. (For more

information on the annealing, carburization and aging of vanadium,

consult Schuyler [30]).

3) Analysis of Specimen Microstructure

The microstructure of the specimens was analyzed with a

Phillips EM 200 transmission electron microscope. Results of this

analysis are shown in Table 1. Apparently, the addition of gallium

slows down the coarsening of the precipitates. For example, specimen

#68, which is pure vanadium with 0.20a/o C and was aged for one hour,

has a mean precipitate volume l03 larger than that of specimen #71,

which is a V-l.05a/o Ga alloy with the same carburization treatment

as #68.

Roughly half of the specimens were carburized on an apparatus

* that permitted a slow cooling from the carburizing temperatures.
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STable 1. Composition, Aging Time, and Microstructural Analysis of
the Specimens

Speci- a/o C Aging at 0 Diameter Vp pV
men 350C hrs x 1012 / 3 A P -03(A)3

#pp/cm X1

Pure vanadium specimens

8 0.0 .....

50 0.0 .....

54 0.0 ....

41 0.0 - annealed, then cold rolled to 75% reduction

76 0.07 0.0 almost solid solution

77 0.07 0.5 1,943 244 0.991

78 0.07 3.0 699 397 2.41 1.69

82 0.07 10.0 396 524 4.84 1.92

83 0.13 0.0 24.7 1,968 179 4.42

94 0.13 0.5 16.5 2,726 305 5.04

96 0.13 1.0 141 976 28.4 3.99

70 0.20 0.0 8.69 3,648 665 5.78

56 0.20 0.0 8.74 3,839 688 6.01

49* 0.20 0.0 N.A. N.A. - -

68 0.20 1.0 5.61 4,143 999 5.61

58 0.20 1.0 5.57 4,011 1,053 5.87

65 0.20 3.0 13.4 2,860 374 5.04

*Inadvertly aged in situ after carburization, due to slow cooling

-Distinct second distribution of precipitates of smaller size

N.A. Not Available
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Table 1. Composition, Aging Time, and Microstructural Analysis of
the Specimens (Continued)

Speci- a/o C Aging at p Diameter V9 pV
men 350C hrs x 12  3  P3-3

pp/cm3  A xl10 (A) x 10

35* 0.40 0.0 4.23 6,404 2,610 11.0

24* 0.60 0.0 1.64 8,494 5,804 9.53

24- 84.7 1,393 86.9 7.63

23* 0.60 0.5 1.05 11,708 13,736 14.5

23- 542 523 5.11 2.77

22* 0.60 0.5 N.A. N.A. - -

19* 0.60 1.0 0.932 6,207 5,771 5.38

19- 458 957 22.6 10.4

V - 0.20a/o Ga

86 0.13 0.0 - solid solution -

90 0.13 1.0 N.A. N.A. - -

93 0.13 1.0 4,339 248 0.734 3.19

91 0.13 3.0 2,929 314 1.36 3.99

92 0.13 5.0 2,261 337 1.69 3.82

V - 1.05a/o Ga

30 0.0 - - -

61 0.20 0.0 - solid solution -

42* 0.20 0.0 1,874 425 2.96 5.54

43* 0.20 0.5 1.256 476 3.83 4.81

71 0.20 1.0 4,415 302 1.11 4.89

32* 0.20 1.0 2.453 382 1.94 4.75
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Table 1. Composition, Aging Time, and Microstructural Analysis of
the Specimens (Continued)

Speci- a/o C Aging at p Diameter V pV

men 350'C hrs x 1012 3 A6p ox 10 3 A0I(A) x1# pp/cm

60 0.20 3.0 13,058 192 0.364 4.76

69 0.20 10.0 4,524 295 1.02 4.64

81 0.20 36.0 3,670 309 1.28 4.68

84 0.20 2.hrs at 500C 50.3 1,759 95.2 4.79

V - 2.96a/o Ga

7 0.0 ....

5 0.0 - cold rolled from starting material; not
annealed

63 0.20 0.0 17,310 170 0.270 4.67

33* 0.20 0.0 4,669 311 1.10 5.12

17* 0.20 0.5 N.A. N.A. - -

44* 0.20 1.0 7,520 246 0.640 4.81

62 0.20 5.0 5,579 269 0.854 4.77

67 0.20 10.0 8,223 237 0.613 5.04

9* 0.40 0.0 2.15 7,568 4,582 9.87

10* 0.40 0.5 2.54 6,518 4,017 10.14

V - 4.Ola/o NB

27* 0.0 - - -

28* 0.20 0.05 1,153 528 4.30 4.96

29* 0.20 1.0 1,197 537 4.52 5.41

45* 0.20 1.0 6,945 265 0.805 5.59

51* 0.20 2.0 8.630 238 0.610 5.26

52* 0.40 1.0 1,003 675 10.4 10.43
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Unfortunately, this slow cooling was responsible for some aging

in situ, roughly equivalent to a couple of hours of aging at 3500 C.

The apparatus was modified for subsequent specimens, allowing a

faster quench from the carburizing temperature and minimizing the

aging in situ.

4) Cutting and Polishinq Procedures

The specimens are electrochemically cut and polished using a

solution of 20% sulfuric acid, 80% methanol, and a few drops of

water. The solution is kept cool by running tap water through a

submersed glass coil. Eleven volts are applied between the specimen

and two stainless-steel cathodes immersed in the etchant. Mechanical

stirring minimizes the anodic layer that forms on the specimen

surface. A proper combination of electrode position and stirrer

speed is critical for obtaining specimens with uniform thickness.

The 0.254-mm thick specimens are first electrochemically

thinned to a thickness of 0.15 mm. They are then coated with

"Microstop Stop Off Lacquer," which is manufactured by the Michigan

Chrome and Chemical Co. Then strips of lacquer are cut using a

brass template and peeled off. The specimens are reimmersed in the

etchant, exposing to the acid the outline of the desired shape.

After the cutting operation, the remaining lacquer is peeled off

and the specimens are cleaned with acetone. A final etch thins the

specimens to 0.10 mm.

The final shape of a sample is shown in Figure 9. The wide

end-tabs, ultrasonically tinned with indium, improve the electrical

contact to the current leads and the therm3l contact to the sample
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Figure 9) Specimen shape.
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block. Indium-solder flows through the holes etched at each end,

improving the mechanical bond between the tabs and the current

leads. The thin center strip is designed for voltage measurements

along its length with the four-probe method. The cross-sectional

area of the center strip is kept at a minimum in order to achieve

high current-densities with the available current sources. Further-

more, decreasing the total current decreases the ohmic heating at

the current-lead/specimen contact.

B) Hardware

The specimens are mounted on a copper block which contains

all the pertinent sensors. The specimen block is designed to fit

inside a vacuum-tight brass can. The can is positioned inside a

liquid helium filled finger dewar so that the specimen is located

at the center of a superconducting magnet. Figure 10 shows the

specimen holder and dewar system.

1) Specimen Block

The specimen block, shown in Figure 11, is made of copper

nalf-cylinders, separated by a 0.127-mm thick teflon insulator.

The halves are held together by four stainless steel bolts. A

cloth-phenolic insulator around the top half of each bolt prevents

the bolts from electrically shorting the two copper halves. The

.. sample block contains a recording thermometer, which is a germanium

resistance thermometer; a heater, which is a 5O2 nicrome wire

epoxied around the copper block; a regulating thermometer, which is
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Electronic chassis box
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- -Liquid helium at
. .. .... 1.25K - 4.2K

Superconducti nn
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- Snecimen block

/ !--Brass can

/__ ___ ___ ___ ___

Figure 10) Schematic representation of the specimen holder and
cryostat.
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S -- Top of voltage probe
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Thermally grounded wires

Nicrore wire heater

Teflon insulator

Voltage probes___/ ' "--5pe c imen
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Superconducting wire

Cloth pnenolic block

Brass can

Figure 11) Specimen block.
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a 100Q carbon resistor; and two vertical, spring-loaded voltage

probes. All the wires coming to these devices are passed through the

liquid helium bath, thereby eliminating heat leaks into the sample

through the wires. They are then wound several times around the

blocks and epoxied in place, thermally grounding them to the block.

The specimens are mounted on the bottom of the block, perpendicular

to the insulated division between the halves. A 0.127-mm thick teflon

foil electrically insulates the center part of the specimen from

the copper block. The end tabs of the specimen come in direct

thermal contact with the copper block; a dab of Dow Corning 200

fluid of 60,000-centistopes viscosity enhances this thermal contact.

Superconducting, multifilimentary Nb3Sn (in a copper matrix) wires,

which carry the transport current for the four probe method, are

ultrasonically soldered to thick copper-contacts. These contacts

are designed to be soldered to the tinned specimen-tabs.

2) Block Support

The specimen block fits inside a 5.1-cm diameter, 20.3-cm

long, vacuum-tight brass can. It is supported by two thin wall,

stainless-steel tubes. Thus, the block does not come in direct

contact with the liquid helium bath, enabling its temperature to

be regulated at a value above the bath temperature. Helium gas

is introduced in the can to a pressure of 60 to 100 militorrs.

The gas provides thermal contact between the bath and the copper

block.
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The can is suspended from a brass flange by a 0.95-cm diameter,

96.5-cm long, thin-wall stainless steel tube. The voltage and

thermometer leads are enclosed inside a 0.64-cm diameter stainless

steel tube parallel to the support tube, to minimize electronic-noise

pick-up. The support tube is connected at the top flange to a

pumping port used to evacuate the brass can to the desired pressure

level. The top flange also supports an aluminum electronic-chasis,

which contains all the electrical connections to the copper block.

Low-thermal input connectors are used in the chassis for the voltage

leads of the four-probe method in order to minimize thermal emfs.

3) Cryostat and Superconducting Magnet

The brass can enclosing the sample block is designed to fit

inside a finger dewar filled with liquid helium. The temperature

of the liquid helium is regulated by controlling the pressure

inside the finger dewar with a manostat.

The sample block is located at the center of a superconducting

magnet which surrounds the lower part of the finger dewar. American

Magnetics, Inc. fabricated the solenoid from multifilamentary NbTi

5wire. The field homogeneity is one part in 10 over a 2.5 cm

diameter volume around the specimen location. A Didcot Instrument

Co., Ltd. Model DPSA/0O/4.5/l power supply provides the magnet

current. A resistor of 10m2, which is in series with

the solenoid, is used for measuring the current for fields above

5KOe. An external resistor of 0.2649 1 in series with the solenoid
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is used for lower fields in order to increase the current readout-

voltage sensitivity at these fields. The voltage across these

resistors is read, nominally to four significant digits, with a

Keithley Model 190 digital multimeter. The magnetic field is

calibrated versus the magnet current by proton nuclear magnetic

resonance to an absolute accuracy of +0.2 0e.

C) Electronics

1) Four-Probe Method

The four-probe voltage versus current method used to measure the

critical current is shown schematically in Figure 12. Two power

FET's powered by a D-8D truck battery provide up to 20 amps. The

controlling ramp-circuit is optically isolated from the power FET's

in order to prevent noise-producing ground-loops. Ramp speeds are

monitored in order to have a slow approach to J . The total ramping
c

time from J = 0 to Jc is usually more than one minute. The current

is determined by measuring the voltage developed across a series

0.025Q resistor.

The voltage along the center part of the specimen is amplified

106 times by a Keithley 148 nanovoltmeter. The 8 Hz noise from the

nanovoltmeter's chopper is eliminated with a low pass filter on the

output of the nanovoltmeter.

A Hewlett-Packard 7001A-M x-y recorder is used to plot specimen

voltage versus current. Coupled with the nanovoltmeter it shows a

resolution of 100 nv/cm and noise level generally below 10 nv.
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Voltage ramp

Photo-insulator

Current supply D-8D battery

•-025 ] x-input x-y recorder

y-input

-Specimen

Nanovol tmeter Filter

Figure 12) Schematic diagram of the equipment used to measure
the critical current, showing the location of the
electronic ground.



59

2) Temperature Control

The temperature of the specimen was controlled using the two

systems shown in Figure 13. The first system measures the tempera-

ture, the second regulates it. The temperature is obtained from a

Cryo Cal, Inc. germanium Cryo Resistor using a four probe method.

The thermometer resistance varies from 38612 at 1.5K, to 95.59 Q at

10.OK. A constant-current source provides a current of 1.191 11A

or 13.31 VA through the thermometer. The higher current is only

used for temperatures above 3.5K. The voltage across the Cryo

Resistor is amplified by a Hewlett-Packard 740B Standard/Differential

Voltmeter. The voltage is then displayed on a Digitec digital

millivoltmeter, which has a four-digit display.

The Cryo Resistor was factory calibrated only down to 1.5K.

We calibrated it from 4.2K to 1.125K with a carefully calibrated

germanium-resistance thermometer and with the 1958 Liquid-Helium

Pressure Scales [41]. There is good agreement between the three

calibrations, with a maximum deviation of 1.6% at 1.5K. To obtain

a smooth scale from 1.125K to 10.OK, the following scheme is used:

i) 1.125<T<l.5 - standard resistor's calibration is used,

ii) 1.5<T<2.0 - logarithmic average of standard resistor's

calibration and factory calibration is used,

iii) 2.0<T<l0.0 - factory calibration is used.

Temperature regulation consists of three parts; the liquid-helium

thermal-bath, the specimen-block heater, and a temperature-feedback

system. To maintain a constant temperature, the heat supplied to
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Cons ta nt-Current lK a ve source
Source

Specimen block

f Carbon Wheatstone

~Res~r resistor mbridge_
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____ ___ VTuned
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amplifier amplifier *
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Figure 13) Block diagram of the equipment used to monitor and

control the specimen-block temperature.
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the sample block has to balance the heat conducted to the helium

bath. The bath is maintained at 0.25K below the desired block

temperature. The stainless steel tubes supporting the sample block

(see Figure 10), the copper wires, and the helium gas inside the

brass can, provide the thermal contact between the block and the helium

bath. The block is heated to the desired temperature by a 502

nicrome wire heater (see Figure 11) controlled by a feedback system.

The core of the feedback system is a l02 carbon resistor,

which is the fourth leg of a Wheatstone bridge. The resistor is

coated with Dow Corning 200 fluid of 60,000 centistokes to assure

thermal contact with the copper block where it is imbedded. A

carbon resistor is used because, in contrast to the germanium

thermometer, it has a resistance which is independent of magnetic

fields. A low-amplitude 1 kHz current is sent through the bridge.

The voltage across the bridge is measured by a Keithley 840 lock-in

amplifier. The output of this amplifier controls the nicrome-wire-

heater power supply. The temperature dependence of the carbon

resistor is used to regulate the block temperature. The bridge is

balanced when the resistance of the carbon resistor equals that of

an external control resistor. A change on the resistance of the

carbon resistor, induced by a change in temperature, creates a

signal across the bridge. The phase and amplitude of this signal

directs the lock-in amplifier to command an increase or decrease,

as needed, of the heater current. Heater currents between 6 and

15 ma are needed to maintain a given temperature. A change in the
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value of the control resistor in the Wheatstone bridge changes the

temperature at which the system balances. Temperatures from 1.5K

to above 6K can be maintained within +0.5%. (For more details on

the electronics involved, see Marker [2].)
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CHAPTER IV

DATA AQUISITION AND RESULTS

A) Fundamental Properties

1) Basic Thermodynamic and Electronic Properties

The electronic mean free path, Z, and the electronic specific

r. heat, y, are frequently used to calculate various superconducting

parameters. For small concentrations of impurities, the electronic

specific heat is almost a constant. Therefore, the value of

1.179 x 104 erg cm-3 deg 2 , given by Radebaugh and Keesom [10]

for pure vanadium, is used for all our specimens.

The effect of impurities on the electronic mean free path,

however, is appreciable. Hence, the electronic mean free path is

calculated for all the specimens from the low temperature

resistivity, Po"' By far, the biggest source of error in measuring

the resistivity is the measurement of the physical dimensions of

the specimens. To circumvent this problem, the resistance ratio

is used to calculate the low temperature resistivity.

The resistance at room temperature, R295, and the low tempera-

ture resistance, R , were obtained for each specimen from voltage

versus current plots. These plots were made with the four probe

method illustrated in Figure 12. The nanovoltmeter was not used

for these measurements; the voltage was recorded directly by the

x-y recorder. For vanadium specimens with values for the low

temperature resistivity as high as those for our specimens, the
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value of the resistance of the normal specimen obtained at any

temperature below 6K is within 2% of that obtained at zero

temperature [41]. Therefore, to simplify procedures, R was ob-0

tained at a temperature just above the critical temperature

of the specimen. This temperature never was above 6K.

The physical dimensions of the specimens were measured in

order to calculate their resistivity. This was done after the

superconducting data had been acquired because mechanical damage,

incurred during the measurement of the specimen dimensions, could

affect the superconducting properties. The specimen thickness

was measured with a micrometer in several places along the center

strip. The width and length were measured with an optical com-

parator.

The resistivity of a metal results from the addition of the

resistivity due to the thermal motion of lattice ions, p7, and

that due to scattering from impurities pe [42], so that

= PZ + P e (4.1)

At the temperature at which R was measured, pZ for vanadium is

almost zero [41], thus

p : oe (4.2)
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For small concentrations of impurities, ix is fairly impurity

independent, thus, one can say thaz at room temperature p is

almost a constant for all our specimIs. From Equations (4.1) and

(4.2) one can approximate o. with
295

PL295 = P2 95 - Po' (4.3)

which leads to

P295 - Po Z constant (4.4)

Table 2 shows the value of this difference for our specimens.

Excluding specimens #32, 33 and 49, whose value of P295 - Oo

deviate from the mean by more than two standard deviations, the

average value of P295 - Po for the specimens is given by

P295 - Po = 2.50 x 10- 5 -cm , (4.5)

with a standard deviation of 3.4 x l0 6 2-cm. The value given in

Equation (4.5) is about 20% higher than that found by other

authors [lO, 43, 44]. This discrepancy is probably due to a

systematic overestimation of the cross-sectional area of our

specimens. The V - 4.01a/o Nb specimens were not included in the

average given by Equation (4.5). These specimens show a con-

sistently higher value for this equation. There is no evident

reason for this behavior.

---------------------------------------------

A1
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Table 2. Resistivity and Related Parameters.

Specimen P25P9 oI

#x10- 5 -cm x 10 Q-CM x 10-6 2-cm

*pure vanadium specimens

8 -20.87

50 2.632 2.500 118.85 1.327 264

54 2.858 2.721 19.77 1.266 276

*41 2.449 2.301 15.62 1.602 218

76 2.405 2.246 14.16 1.767 198P

77 2.480 2.351 18.21 1.374 255

78 2.424 2.313 20.86 1.199 292

82 2.622 2.474 16.79 1.490 235

83 2.658 2.464 12.96 1.931 181

94 2.353 2.116 8.95 2.795 125

96 2.543 2.403 17.14 1.460 240

70 2.449 2.303 15.80 1.584 221

56 2.880 2.696 14.66 1.707 205

49 1.338 1.122 5.20 4.814 73

68 2.437 2.316 19.07 1.312 267

58 3.202 3.040 18.73 1.336 262

65 2.712 2.578 19.27 1.298 270

35 2.121 2.008 17.90 1.398 250

24 3.553 3.376 19.01 1.316 266

23 N.A. - N.A. -

N.A. Not Available
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Table 2. Resistivity and Related Parameters (Continued).

xP29 - _Pc rl _Po

Specimen P295 5-5 1  6
# x 10- 52-cm x 10 2-cm x 10 6 -cm A

22 N.A. - 4.48 5.58 63

19 2.958 2.801 17.81 1.405 249

V - 0.20a/o Ga

86 2.792 2.250 4.149 6.030 58.0

90 N.A. - 4.529 5.524 63.4

93 3.071 2.422 3.731 6.705 52.2

91 3.246 2.623 4.205 5.950 58.8

92 N.A. - 4.026 6.215 56.3

V - 1.05a/o Ga

30 5.372 3.280 1.568 15.96 21.9

61 4.084 2.629 1.306 13.85 25.3

42 3.846 2.392 1.645 15.21 23.0

43 3.747 2.318 1.622 15.42 22.7

71 3.347 2.144 1.782 14.04 24.9

32 6.612 4.126 1.660 15.07 23.2

60 4.349 2.826 1.855 13.49 25.9

69 3.996 2.539 1.743 14.35 24.4

81 3.182 2.025 1.751 14.29 24.5

84 3.549 2.251 1.735 14.42 24.3

V - 2.96a/o Ga

7 N.A. - 1.20 20.85 16.8

5 N.A. - 0.54 46.33 7.55

63 6.938 3.267 0.890 28.12 12.4



68F Table 2. Resistivity and Related Parameters (Continued).

Specimen 29 955- Po1 00

#x 10-52-cm x 10 2-cm x 10- Q-cm A

33 6.703 3.746 1.267 19.75 17.7

17 5.117 2.652 1.076 23.25 15.1

44 4.673 2.517 1.168 21.42 16.3

62 4.851 2.276 0.884 28.30 12.4

67 4.299 2.017 0.884 28.30 12.4

9 N.A. - 1.08 23.17 15.1

10 5.289 2.644 1.000 25.02 14.0

V -4.Ola/o Nb

27 4.242 3.357 3.795 8.329 42.0

29 4.875 3.838 3.70 8.543 41.0

45 3.301 2.616 3.821 8.273 42.3

51 3.859 2.977 3.377 9.360 37.4

52 3.877 3.017 3.507 9.013 38.8
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In order to minimize the random error in measuring the

physical dimensions of the specimen, a low temperature resistivity

P 0  was calculated from the resistance ratio rI, which is given by

R295 - (4.6)

R R

Using rI and Equation (4.5), one obtains

Po ( - R)(295 - Po) - I 2.50 x 105 /cm (4.7)29 
rR 

9

0 1

The value of P295 - po = 3.16 x lo- 5-cm is used for the V-Nb

specimens. The values for P295 ' P295 - Po) r1 and po are listed

in Table 2.

The resistance ratio r2, which is sometimes used in the

literature and is defined by

R295
r 2  R , (4.8)

0

is easily obtained from r1 by using the relation

r2 = r1 + 1.0 (4.9)

Figure 14 shows the resistance ratio as a function of the

concentration of gallium. Niobium, with its electronic configura-

tion similar to that of vanadium, produces less of an effect

on the resistance ratio than gallium does. However, as noted

before, niobium seems to affect the lattice resistivity.
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The electronic mean free path, 1, is computed from the equation [10]

Z= 6112 (4.10)

he2PoS

where h is Plank's constant and S is the area of the Fermi surface

in K-space. Using the values given by Radebaug and Keesom [10],

one obtains

410

3.50 x 10 , (4.11)
PO

where p is given in Q-cm. Values for the mean free path using

the resistivity p 0 given by Equation (4.7) are listed in Table 2.

2) Critical TeriDerature

The critical temperature is obtained from a plot of tempera-

ture versus sample resistance. First, the helium-bath temperature

is lowered below the expected transition temperature. The

germanium-thermometer output, amplified by the H.P. 740 B voltmeter,

is connected to the horizontal axis of the x-y recorder (see

Figure 15). The voltage across the specimen, amplified by the

nanovoltmeter, is connected to the vertical axis of the x-y

recorder. The specimen is heated momentarily to above its transi-

tion temperature. This is done in order to be able to set a small

current (0.2 to 6.0 Amp/cm 2 ) producing 0.8 to 0.7 .V along the

thin center section of the normal specimen. These current levels

decrease the value of Tc for pure vanadium by less than 0.15% [41].
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Transport-current Constant-current
Current source source source

Nicrome-wire Specimen Germanium

heater Cryo-Resistor

Specimen block

Nanovoltmeter 
740B

amplifier

Filter x-y recorder

Figure 15) Block diagram of the equipment used to obtain the

critical temperature.
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The current level is set and the specimen is allowed to cool. While

the temperature and voltage are recorded on the x-y recorder, the

sample is heated until it becomes completely normal and then

allowed to cool until it becomes superconducting again. The

critical temperature is defined as that temperature which gives a

resistance value midway between the fully normal value and zero,

the superconducting value (see Figure 16). The average result of

two increasing and two decreasing temperature cycles is recorded

as being the critical temperature of the specimen.

The critical temperature, as defined above, is tabulated for

all specimens in Table 3. This definition is somewhat arbitrary

since other points in the transition curve can be chosen as T

The transition wioth, AT, is probably the result of lack of homo-

geneity in the material. Metals with a high degree of uniformity,

such as pure single crystals, exhibit very sharp transitions with

very small AT. Hence, the value of Tc for these metals is rather

clearly defined. Inhomogeneous superconductors generally have

variations in the value of Tc within the bulk. The width AT for

4these materials can be rather wide. Therefore, for inhomogeneous

superconductors, an arbitrary definition of the critical temperature

of the bulk is needed. For example, Tc can also be defined as that

temperature at which the specimen starts to show resistance or as

that tempera ure at which it becomes completely normal. Because

of this ambiguity, the width AT is considered as a source of error
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Table 3. Superconducting Parameters.

Speci- T AT TiH()Al
men H Cco)C

# K % TIn=O. 5n=.
k~e

pure vanadium specimens

8 5.330 4.2 0.737 4.342 1.5

50 5.233 N.A. N.A. N.A.

54 5.242 2.3 0.551 4.571 0.9

41 5.290 2.0 0.601 4.896 0.9

76 5.173 1.7 0.498 5.365 1.5

77 5.219 2.0 0.459 4.597 1.6

78 5.241 0.5 0.337 4.275 2.8

82 5.221 1.8 0.483 4.683 1.6

83 5.193 1.6 N.A. 4.706 0.6

94 5.047 1.9 N.A. 6.142 2.0

96 5.223 1.9 N.A. 4.490 2.1

70 5.207 1.2 0.494 4.861 1.5

56 5.232 2.4 N.A. N.A.

49 5.129 3.4 N.A. N.A.

68 5.244 1.7 0.499 4.693 0.7

58 5.236 1.9 N.A. N.A.

65 5.245 1.3 0.584 4.77 0.7

35 5.242 1.6 N.A. N.A.

24 5.282 1.4 0.598 4.671 1.0

23 5.221 3.6 0.701 5.521 1.4

N.A. Not Available
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Table 3. Superconducting Parameters (Continued).

Speci- Tc AT n H c(o) A
me Kn=0.5 ni=0.5

k~e 11

22 4.740 5.2 0.654 8.531 1.7

19 5.245 2.5 0.647 4.719 1.8

V - 0.20a/o Ga

86 4.693 2.6 N.A. 10.120 1.1

90 4.770 3.1 N.A. N.A.

93 4.640 2.7 N.A. 10.837 1.5

*91 4.715 2.9 N.A. 10.173 1.9

92 4.734 2.0 N.A. 10.528 2.6

V - 1.05a/o Ga

30 3.825 4.5 0.410 16.497 0.13

61 4.054 4.8 0.546 16.108 0.43

42 3.866 3.5 0.558 16.710 0.36

43 3.840 3.0 0.520 16.755 0.64

71 4.007 2.4 N.A. 16.247 1.36

32 3.886 2.4 0.542 16.515 0.74

60 4.073 5.0 0.426 15.432 1.43

69 3.971 1.8 0.293 16.389 1.08

81 3.,34 2.0 0.759 16.270 0.71

84 3.967 2.0 N.A. 16.584 0.90
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Table 3. Superconducting Parameters (Continued).

Speci- TA H (o) IAH
men K 2 c2

# K % n=O.5  lO5
kOe

V - 2.96a/o Ga

7 3.750 4.0 N.A. N.A.-

5 3.770 10.0 N.A. N.A. -

63 3.272 7.0 0.524 20.881 1.37

33 3.567 4.1 0.486 19.145 0.73

17 3.470 3.5 0.698 19.082 0.58

44 3.583 3.5 0.568 19.214 1.26

62 3.304 3.8 0.573 21.450 0.44

67 3.228 2.0 0.344 21.437 1.26

9 3.610 4.8 0.670 18.770 1.39

10 3.425 4.9 0.588 18.974 1.47

V - 4.01a/o Nb

27 4.7b5 2.7 0.612 12.712 0.89

28 4.513 3.3 N.A. N.A.

*29 4.880 7.3 N.A. N.A.-

45 4.790 0.9 0.352 12.430 2.33

51 4.698 2.7 0.321 12.513 1.73

52 4.759 2.4 N.A. N.A. *-
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in defining Tc from our data. The width .t is related to the

homogeneity of the specimen as mentioned above. It 4s therefore

useful when comparing the quality of the specimens.

The critical temperatures for our V-Ga and V-nB specimens

are similar to those found by other authors for these alloys [36,

37,38,39,45,46].

The critical temperature is a function of the resistivity, o i_

because scattering by impurities decreases the value of the super-

conducting energy gap. Radebaugh and Keesom [10] suggest that

this relationship might be linear. Figure 17 shcws a plot of Tc

versus p 0 The relationship is linear only at low values of po ,

Figure 18 shows a plot of the critical temperature versus r2 1 The

linearity extends to higher alloy concentration than on the previous

graph. By extrapolation this plot predicts a critical temperature

for infinite mean free path, T , equal to 5.47K. This result was

obtained from a least mean square fit to the straight line,

excluding the V - 4.01 Nb specimens and specimen #49. This value

of Tc is near the value of 5.41 + 0.01K obtaine l by Radebaugh

r 'Jand Keesom [10]. However, Azhazha, et al. [41] report a value of

5.58 + 0.0.K for a specimen with a resistance ratio of 1370.

Golovashkin, et al. [37] show a strong dependence of Tc on the

conduction electron concentration. Niobium affects the conduction

electron concentration of vanadium much less than gallium does,

which might be the reason why the V - 4.Ola/o Nb specimens do not

fall on the same Tc versus r2-1 curve for the gallium alloys.

" -i I - - r i i I i ll.l . ...
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3) Upper Critical Magnetic Field

The Upper Critical Magnetic Field, H (t), is defined as
C2

that field at which the critical current extrapolates to zero.

(Critical currents are discussed in section B-l of this chapter.)

This value depends on the equation used for the extrapolation. As

noted in Chapter II, it is believed that at fields near H C2(t), the

fluxoid lattice depins by deforming plastically around the pinning

centers. Thus, an equation describing the critical current under

the influence of plastic deformation of the FLL is needed for the

extrapolation. Traditionally, one of the following equations is

used

J O(l-h) , (4.12)

or

J= hl/ 2 (1-h) 2  (4.13)

Equation (4.12) is an empirical equation, later supported by

Schmucker's theory (Equation2.lO . Equation (4.13) is derived

from Kramer's theory (Equation 2.97). Figure 19 shows a sample

fit of our data to each equation. Initially, the linear equation

(Equation 4.12) was used, but it was found that, as seen in

Figure 19, Equation (4.13) gives a better fit to our data.

The critical fields H ct) calculated for several temperatures

are fitted to an empirical equation in order to find the upper
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critical field at zero temperature Hc (o). The empirical

2C
relation [47]

H (t) = H (o) e (4.14)c2  = 2 (l+t2t 2

where n is a free parameter, is used since it gives a good fit to

our data. The parameter n varies randomly for our specimens from

0.29 to 0.74, with the average being about 0.5.

The value n determines the shape of the curve given by

Equation (4.14). When n and Hc (o) are calculated simultaneously,

the shape of this curve is adjusted in order to obtain the best

least mean square fit of Equation (4.14) to the data. Small

deviations in the empirical values of q change the shape of

the curve. However, the value of Hc (o) is dependent of this shape.

Changes in the shape of the curve due to errors in Hc 2(t) change

the value of H (o). Therefore, some errors in the data are
C2

amplified in the calculation for Hc2 (o) if the value of n cal-

culated for each specimen is used. For this reason, the value

n = 0.5, which is the average for all specimens, is used in the

calculation for Hc (o) using Equation (4.14). A sample fit to

this equation is shown in Figure 20. The values of n, and of

H c2(o) using n = 0.5 are shown in Table 3.
C2

Once Hc2 (0) is found, an uncertainty in Hc 2(o), AHc2 (o), is

measurtd by predicting values of H c2(t), using Equation (4.14) for the

temperatures studied, and comparing these values to the experimental

values for those temperatures. The difference between the values is
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averaged for each specimen and expressed as a percentage. The

value of AHc2, is lower when Equation (4.13) is used to calculate

H c(t) than when Equation (4.12) is used, with 3.2% being the

average result for the latter and 1.2% for the former.

The values of H for our V - 4.01a/o Nb specimens are higherC2
than the values for pure vanadium and those found by Sirota and

Ovseichank [46] for higher concentrations of Nb. This indicates

a peak in H for low concentrations of Nb.

From Equations (2.29) and 2.44), a linear relationship can be

obtained between the upper critical field, Hc2(o), and the inverse

of the electronic mean free path. For infinite mean free path,

Equation (2.27) substitutes for Equation (2.29), leading to the

intrinsic upper critical field Hc (o). Equation (4.11) shows

that the low temperature resistivity is proportional to the mean

free path. A plot of Hc (o) versus Po should therefore be linear.
20

Figure 21 shows such a plot for our specimens. The relation seems

to be linear only for small concentrations of impurities. This

leads to an Hc (o) of 2.70 kOe. Figure 22 shows a plot of H (O)

versus (r2)-. The reason for the increase in the range over which

the plot is linear is unclear. This graph intersects the axis at

H (o) = 3.12 kOe. Using the computed value of n for each speci-
C2

men, as opposed to fixing it at n = 0.5, increases the scattering

of the data from the straight line in this graph, justifying our

decision to fix n.
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4) Other Superconducting Parameters

The Ginzburg-Landau parameter, K, is calculated for the specimens in

this study by means of Equation (2.34). The London penetration

depth at zero temperature, AL(o), and the Pippard coherence length,

&o are obtained by Radebaugh and Keesom [10] for a pure vanadium

specimen with a resistance ratio of 140. They use the equations

13hy/2 1/2 (xL(0) = ekS(4.'15)
L~O ekB S

and

kB S

o 1015 ST (4.16)

obtaining

0

X (o) =398 A (4.17)
L

and

o = 450 A . (4.18)

Here S is the area of the Fermi surface in k-space, h is Planck's

constant, and kB is Boltzmann's constant.

Substituting the values (4.17), (4.18), and Equation (4.11) into

the Equations (2.32) and (2.33), Ko0 and KZ become

A

Ko a 0.849 (4.19)

and

8.13 x1 5po  (4.20)13x10P
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Equation (2.34) becomes

K = 0.849 + 8.13 x 105p , (4.21)

where p0 is given in ohms-cm. Using the value n = 0.5 given in

the previous section, Equation (2.36) can be expressed as

Kl(t )  2 1.5K (4.22)
(l+0.5t2)

The parameter KI(o) has a range for the specimens in this study

of about 3.0 for pure vanadium, to more than 30.0 for the

V - 2.96a/o Ga specimens. The ratio KI(o)/K obtained from

Equation (4.22), namely,

K1(o) = 1.5 (4.23)

K

agrees with that obtained by Radebaugh and Keesom [10].

The temperature dependent coherence length, E(t),can be

calculated from Equation (2.44) as being

1/2
(t) = 211H c(t) (4.24)

C2

The penetration depth X(t) can be calculated, near Tc, from

Equation (2.31) as being

X(t) = K&(t) . (4.25)

A Values obtained for K and C(o) are listed in Table (4).
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Table 4. The Ginzburg-Landau Parameter and the Coherence Length.

Specimen K(o) (o)
# 0

A

pure vanadium specimens

8 275

50 1.93 N.A.

54 188 268

41 2.15 259

76 2.29 248

77 1.97 268

78 1.82 278

82 2.06 265

83 2.42 265

94 3.12 232

96 2.04 271

70 2.14 260

56 2.24 N.A.

49 4.76 N.A.

68 1.92 265

58 1.94 N.A.

65 1.90 261

35 1.99 N.A.

24 1.92 266

23 "-2.36 244

N.A. Not Available
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Table 4. The Ginzburg-Landau Parameter and the Coherence Length
(Continued).

Specimen K(o) (O)
0
A

22 197

19 1.99 264

V - 0.20a/o Ga

86 5.75 180

90 5.34 N.A.

93 6.30 174

91 5.69 180

92 5.90 177

V - 1.05a/o Ga

30 13.8 141

61 12.1 143

42 13.2 140

43 13.4 140

71 12.3 142

32 13.1 141

60 11.8 146

* 69 12.5 142

81 12.5 142

84 12.6 141
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Table 4. The Ginzburg-Landau Parameter and the Coherence Length
(Continued).

Specimen K(o) V(o)

V - 2.96a/o Ga

7 17.8 N.A.

5 38.5 N.A.

63 23.7 126

33 16.9 131

17 19.8 131

44 18.3 131

62 23.9 124

67 23.9 124

9 19.7 132

10 21.2 132

V -4.Ola/o Nb

27 7.62 161

28 N.A. N.A.

29 7.79 N.A.

45 7.57 163

51 8.46 162

52 8.18 N.A.
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B) Fluxoid Pinning

1) Critical Currents

The critical currents for each specimen were measured at four

to eight temperatures, down to 1.5K. At each temperature, the

critical currents were obtained for thirty to fifty successively

increased magnetic fields. The fields were increased from zero

up to a valiue just above H c(t). For each magnetic field, the

transport current was swept up from zero until flux flow was

clearly observed. The four-probe method shown in Figure 11 was

used to observe the voltage across the specimen. The critical

current was taken to be that current at which flux-induced voltage

was first observed (see Figure 23).

Fluxoids are strained in the process of changing magnetic

fields or of changing transport currents, therefore, critical

currents are dependent on the recent magneto-electric history of

the specimen [48,49,50,51]. For example, if the desired magnetic

field is obtained by increasing it from a lower magnetic field, the

critical current can be different from that if the desired field is

arrived at from above. The following procedure was used to erase

the magneto-electric history from the specimen. The magnetic

field was established before each critical-current data point was

taken. The specimen was then heated above its critical temperature

and allowed to cool. This process created a relaxed flux lattice [49].

C.l
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Several steps were taken to minimize the effect of Joule

heating in the specimen/current-lead contact areas. As noted in

the previous chapter, the specimen shape was designed with this in

mind. The wide end tabs of the specimens provide a large contact

surface. The end tabs are ultrasonically tinned with indium and

then soldered to the copper current-contacts. This method usually

provides a satisfactory current contact [52]. The indium solder

flows around both sides of each end tab. The indium solder super-

conducts at low temperatures and near-zero magnetic fields. Hence,

even if there is a vanadium-oxide layer between the vanadium and

the solder, the contact surface probably superconducts due to the

proximity effect. The normal indium solder provides a different

benefit. Normal indium serves as a good heat carrier from the

superconducting vanadium, which has very poor thermal conductivity,

to the copper block halves (see Figure 11). The copper block

halves come in direct contact with the tinned end tabs. Dow-

Corning-200 fluid of 60,000 centistokes is used to enhance the

thermal contact. Other precautions taken were: superconducting

Nb3Sn current lead-in wires with a thick copper cladding to dis-

sipate excess heat; a small cross-sectional area in the center of

the specimen to minimize the current needed for a given current

density; and massive copper current-contacts to enhance thermal con-

duction and dissipation.

The effect of the current-contact Joule heating was monitored

in several ways. Direct checks were routinely made by observing

1'
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the specimen-block temperature rise due to this heating. For

this check, the specimen-block heater (Figure 11) was turned off,

and the specimen-block was allowed to cool to the helium-bath

temperature. The transport current was then slowly increased to

a value above Ic ,while recording from the germanium thermometer

the increase, if any, in temperature. At low temperatures and near-

zero magnetic fields, the indium solder superconducted. In this

case, usually there was no sign of heating at currents below the

critical current of the specimen. In the case where the indium

solder was normal, there was a rise in the specimen-block tempera-

ture usually of less than 0.04K at 20A, the maximum transport

current available. This temperature rise was easily handled by

the copper-block temperature-control system under normal working

conditions.

The copper-block temperature control system itself provided

another check. A decrease in heater current at the higher

transport-current levels was an indication that the balance of

the heat needed to maintain the specimen-block temperature was

being supplied by the Joule heating of the current contacts.

Finally, the critical current provided another check. Joule

heating in the contact area can sometimes precipitate a quench

in the superconductivity of that area. This quench propagates

through the superconductor appearing as an abrupt and irreversible

increase in voltage in the V-I plot, accompanied, and often

preceded by, a sudden increase in block temperature. Although
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some of our specimens showed sudden increases in voltage in the

V-I curves, there are several indications that these were not

caused by quenches in the contact area. First, the sharp increase

in voltage could usually be stopped once it started. This was

easily done by freezing the magnitude of the transport current at

a value just above Ic* A decrease in the magnitude of the transport

current would then cause the voltage across the specimen to decrease

smoothly to zero. Second, the sharp increase in voltage was not

preceded by a sudden increase in the specimen-block temperature.

Finally, these sharp increases in voltage appeared at specific

reduced-magnetic-field regions, where the critical current was

increasing with increased magnetic field. At higher reduced fields,

critical currents of larger magnitude were usually observed without

the abrupt voltage increase. This phenomena will be discussed in

later sections.

Figures 24-27 show the critical current density versus the

reduced field for many of the specimens, grouped by alloy and

carbon concentration. A temperature near 0.6T C is used for each

figure. Several general observations can be made from these

figures. The specimens with no precipitates exhibit very low

critical current densities as expected. Crystal dislocations,

caused by cold rolling the material, increase the magnitude of

J C*This increase is not as high as the one brought about by the

vanadium-carbide precipitates. Specimens with large precipitates
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exhibit higher values of Jc than those with smaller precipitates.

However, several specimens with very large precipitates actually

exhibit lower values of Jc than the values for specimens with com-

paratively smaller precipitates. The peak effect near H isc2

evident in specimens with no carbon or very small sized precipitates.

2) Carburized Specimens

a) General Observations on the Form of the Pinning Force

Our specimens exhibit four distinct forms for the pinning force

density. Each form appears at a definite reduced-magnetic-field

region. An individual specimen may show two, three, or all of

these regions. The appearance of a given reduced-field region in

an individual specimen depends on the microstructure of the specimen.

There is a strong similarity between some of these regions and

Kramer's line-pinning and plastic regions [1]. For convenience,

we will name these regions following Kramer.

Several specimens show a sharp decrease in J c as the reduced

field is increased from zero, leveling off at higher fields. This

effect is more evident in the specimens with small-sized or no

precipitates. This reduced-field region can be called the point-

pinning region. This region usually exhibits very low critical

currents. Hence, no attempt was made to thoroughly analyze this

region. At a certain reduced field, the critical current starts

to increase with increasing field. This is the line-pinning region.

At fields near H , the current decreases as (1-h)z . This reduced-

field region, called the plastic-deformation region, is the one
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region shared by all specimens. Between this high-reduced-field

region and the line-pinning region, many specimens show a fourth

region. In some specimens, this region occupies most of the

reduced-field range. There is no equivalent for this region in

Kramer's theory. For lack of a better name, we will call this

region the transition region.

The boundary between each region is usually clearly defined,

as shown in Figure 28. A sharp discontinuity in the reduced-

field dependence of the pinning force is often observed in the

boundary between any two regions. There is usually an abrupt

change in the magnitude of the pinning force in the point-pinning/

line-pinning boundary.

The character of the fluxoid-induced voltage at Jc varies

from one region to another. In the line pinning region, the

alloyed specimens often exhibit an abrupt increase in voltage at

Jc as seen in Figure 29. This effect was mentioned in the previous

section. The point-pinning, transition, and plastic-deformation

regions show a slow increase in voltage at Jc.

The pinning force density in the line-pinning region of the

alloyed specimens is also dependent on the magneto-electric

history of the specimen. Several runs were made where the critical

current was obtained in the usual way, that is, the specimen was

heated in the magnetic field up to a temperature above its Tc and

allowed to cool before measuring Ic* Then, the transport current

was decreased to zero and, without reheating the specimen to above

Tc, the current was increased to obtain a new Ic for that field.
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This procedure of repeatedly raising the current up to Ic is

called training. In the line pinning region, the value of the

trained critical current was usually lower than that of the original

Ic . This training effect was not observed in the other reduced-

field regions. In these regions, the same critical current was

always observed independently of the magneto-electric history.

Finally, as it is shown in the next sections, the dependence

on temperature and microstructure differs from region to region.

Several assumptions are made in order to obtain a dependence

of the pinning force density on temperature, reduced magnetic

field, and.microstructure. These assumptions are based on the

generally accepted idea of a scaling law [4] and on several traits

common to most theoretical forms of the pinning force density.

We assume that the temperature dependence can be described by

HC (T), where n is rounded off to the nearest half-integer.

We also assume that the dependence on the Ginzburg-Landau parameter,

K1, is given by Klm . Again, for simplicity the parameter m is

rounded off to the nearest half-integer. Therefore, the pinning

force density, Fp, can be described by

H n (T)c2
F = q - f(h)g(microstructure) , (4.26)

where f(h) is a form factor describing the reduced-field dependence,

and g(microstructure) describes the dependence on the microstructure
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of each specimen. The parameter q is a constant for all specimens.

The form of this equation changes for each of the reduced field

regions.

b) Ltne Pinning Region

Only the specimens with the smaller sized precipitates show

a line pinning region. This region is characterized by an increase

in the critical current density as the reduced field is increased.

Kramer used a simple approximation of the interaction force where

fcc(1-h) [l], obtaining for the pinning force density a form

factor given by

f(h) = -h12 (4.27)
(1-h)

This form factor basically agrees with our data. Our specimens

show a form factor given by

f~h)= hl/2 2+ b(4.28)
(1-h)

as seen in Figure 30. This form factor has been observed elsewhere

£53]. The constant b is usually negligible.

The reduced field h L) at which the line pinning first appears,

is usually easy to recognize from the abrupt change in the character

of the pinning force curve. The boundary between the line pinning

region and the transition region is sometimes smooth. With a smooth

boundary, the upper bound of the line pinning region is a somewhat

subjective choice. For the specimens without a transition region,

the boundary between the line pinning region and the plastic
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deformation region is very sharp. In either case, the range of the

line pinning region is usually aboue one third of the total reduced

field range from zero to H c2(T).

The parameter C1 is defined by the equation

hl2Fp = C1 (h" 2  "(4.29)

(1-h)2

This parameter contains the temperature, microstructure, and K

dependence of the pinning force density of a specimen. The value

of this parameter is obtained for each temperature from a least

mean square fit of the data to Equation (4.29).

The temperature dependence of Cl , given by H n(t), is obtained
C2

from a least-mean square fit of the data to the equation

ln[Cl(t)] = n ln[Hc (t)] + K1  , (4.30)
2

where K1 is dependent on the microstructure and on the G.L. para-

meter, K,. The average value of n is 4.2, with a standard deviation of

0.9. (see Table 5). The pinning force density can now be expressed as

F =KiHC2(t)hl/ 2 (1-h) 2  (4.31)
Fp

Small variations of n create large variations in K1. Therefore

to minimize errors, Ki is calculated for each specimen using the

average n rounded up to the nearest half-integer n = 4.0. The

parameter K is calculated for each temperat'ire from

Ki H4T) (4.32)

1 H4 (T)
C
2
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Table 5. Pinning Force Density Parameters (Continued).

Specimen # Line-Pinning Transition Plastic Deformation
Region 2.5 Region 2 Region 2

n xllK,8 n KaK 1  n kpk

X 10-

V - 0.2a/o Ga

93 4.9 9.4 - N.E. 1.8 7.0

91 4.2 31 N.A. 2.4 5.4

92 3.7 44 2.0 0.170 2.1 14

V - 1.05a/o Ga

42 3.8 236 2.5 0.140 2.8 27

43 - N.E. 2.7 0.131 3.2 12

71 3.5 42 3.0 0.177 2.0 9.0

32 - N.E. 2.7 0.134 2.0 12-

60 4.6 6.5 2.4 0.122 2.2 5.6

69 4.2 19 2.9 0.132 2.9 3.6

81 3.7 102 2.0 0.034 1.9 20

84 2.6 0.016 2.9 1.0

V - 2.96a/o Ga

33 5.9 0.70 - N.E. 1.4 13

17 N.A. 3.0 0.276 5.0 18-

44 3.9 20 2.7 0.206 2.5 9.0

62 3.2 9.3 2.6 0.133 3.0 3.8

67 3.6 1.2 3.1 0.173 1.3 3.6

V - 4.Ola/o Ga

45 5.4 11 - N.A. 2.9 4.7

51 5.0 18 3.0 0.206 2.8 5.2
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Table 5. Pinning Force Density Parameters.

Specimen # line-Pinning Transition Plastic Deformation
Region 2.5 Region Region 2

n kj: 1  n Kv  n kk

x 10-8

pure vanadium

77 5.4 4.0 N.E. 3.2 2.0

78 5.0 34 N.A. 1.6 2.7

82 3.2 245 1.9 3.1 1.1 4.1

83 2.6 846 .2.8 1.3 2.4 2.3

94 4.2 257 1.7 2.9 1.4 3.4

96 - N.E. 2.2 3.1 2.4 2.7

70 - N.E. 2.0 2.1 1.6 1.8

56 - N.E. N.A. 0.48 - N.A.

68 - N.E. 2.3 0.57 1.8 .93

65 - N.E. 2.2 2.7 1.9 1.5

19 - N.E. 2.0 1.95 1.7 5.4

N.A. Not Available

N.E. Does not show this region
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Since K' is temperature independent, it is then averaged for all

temperatures. Temperatures within 9% of Tare not used because

the value of Ki obtained from them is usually more than two standard

deviations away from the mean Ki for the specimen. This large

deviation probably results from the several approximations used

to get to this stage, namely, n = 0.5, FP Hn (T an2ro h

uncertainty in defining T c within the observed AT c

The dependence of the pinning force density on the microstruc-

ture, of each specimen is contained in the parameter Ki. The

line-pinning-force density predicted by Kramer (Equation 2.91)

contains a dependence on the average volume of a precipitate to

the fourth power, V 4. The parameter K i was plotted for each alloy
44 4

concentration against the product of V times the density of

precipitates raised to various powers. Of these combinations, the

product V 4p 2 given the best fit to a straight line. The V - 2.96a/o Ga

and the V - 4.01% Nb specimens give a very poor fit to this relation.

Most of the other pinning theories predict a dependence of F

on the density of precipitates times a function of the precipitate

dimensions. Hence, the parameter Ki was also plotted for each

alloy concentration against the product of p times the volume raised

to various powers. Of these plots, the combination

ct a p (4.33)
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gives the best fit to a straight line. This fit is slightly

better than the one obtained using V4p2 . The plot of K' versus

V3p is shown for several alloy concentrations in Figure 32. The

pinning force density now can be expressed by

H 4 h
1/2

60 = D IV P  (1-h) (4.34)

where the parameter Dl1 is dependent on the Ginzburg-Landau

parameter k1.

The fact that a fit of K can be found for both V4p2 and V3p

is understandable. The product Vp is the total volume per cubic

centimeter of the vanadium-carbide in the specimens. This product

reflects the concentration of carbon introduced in the specimen.

Several concentrations, varying from 0.07 to 0.4, were used, as

shown in Table 1. For specimens with the same concentration of

carbon and negligible amount of carbon in solid solution, pV is

a constant (again, see Table 1). For each alloy concentration,

the specimens that show a line-pinning region have the same carbon

concentration. The product Vp is therefore a constant for each

alloy concentration. The product V3p can be multiplied by this

"constant," Vp, yielding V4p2.

The parameter D, defined by Equation (4.34), can be obtained

for each alloy concentration if the specimens in the group have ap-

proximately equal values of K I. This is done by using the relation

K4;iD1 (4.35)

EI
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summed over all specimens of an alloy concentration. The dependence

of this parameter on K 1 can be obtained from a least mean square

fit of log 0 versus log K1. Figure 33 shows such a plot, which

yields.

D1 i 1 2.37(o) (4.36)

The exponent of K can be rounded off to the nearest half-integer,

i.e., 2.5.

The pinning force density now is given by

43 H 2 (T) hl12

p K 2.5(o) (1-h)2 (4.37)

The value of ql is a constant for all specimens. This value is

obtained from the equation

q z( 1  o)) (4.38)

summed over all the specimens. The result of this equation is

ql = 5.3 x 1031, with a standard deviation of 2.9 x 1031. The fit

of the specimens to this equation is illustrated in Figure 34.

There are several sources of error in the calculations of

the pinning force parameters C, K, D, and q. The biggest source

of error is the uncertainty in the cross-sectional area of the

specimen, A. The cross-sectional area is used to calculate the

pinning force density. Equation (4.5) shows that there is an
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uncertainty of nearly 15% in the resistivity. Most of this error

is due to AA. The uncertainty AHc , listed in Table 3, provides an

approximate value of the precision of H c(T). The average value

C2
2

of tAHc isl1.2%. There is also uncertainty in obtaining the values

for the critical current from the I-V curve (see Figure 23). This

error is larger for the plastic deformation region, where the voltage

increases imperceptibly from zero at Ic . In the line-pinning region

and in the transition region, the value of Ic is usually more easy

to define (see Figure 29). The uncertainty AIc is usually between

0.5% and 3%. These uncertainties, A, AHc and AIc , are probably

the biggest sources of error. There are also errors due to the

various approximations used in computing <1 and the pinning con-

stants.

The error in the parameter Ki can be described by

AKi = IA + A c + 4AHc 2 +

This equation yields an uncertainty of at least 20%. Similar

relations can be found for the other parameters.

The uncertainty in the microstructural analysis is unavailable.

Some comments can be made about this uncertainty. The uncertainty

in p is much higher for specimens with small precipitates. The

specimen thickness in the area which is under the transmission

electron microscope is computed to find p. This thickness is

computed from the diameter of the precipitates that cut through

9.j
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both surfaces of the area under observation. The specimen thickness

cannot be accurately calculated for specimens without precipitates

large enough to cut through these surfaces. Hence, there is a

larger uncertainty in the density of precipitates for these speci-

mens.

Most of the specimens that show a line-pinning region have

precipitate diameters smaller than 2 . For these specimens, it can

be assumed that the whole volume of a precipitate, V, can lie

within a fluxoid. Specimens #83 and #94 have diameters much larger

than 2&. These two specimens fit the curve shown in Figure 34

only if the volume V, given by Equation (2.72), is used.

For high pinning center densities, the pinning center density

per unit length of flux line, nl , is proportional to pl/3, and the

density of pinned fluxoids per cross-sectional area of the specimen,

Pl. is roughly proportional to p2/3 . Equation (2.19), derived by

Kramer [1] for the line-pinning region, can be expressed as

Fp p2V4 Hc4.5 (2K12_1)
3 h6 .5 (4.1FcpH8 h 5 (439)

p c2  K1  (1-h)2 '

which for high values of K yields

F p2V4 2 h (4.40)I KI  (1-h) g

The temperature and microstructure dependence of this equation is
A

similar to that found for our specimens (Equation 4.37), the form

factor f(h) is not. If the proximity effect on the precipitates
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is taken into consideration, Equation (2.75) must be used in cal-

culating F from Equation (2.90). The result of this calculation is

4.5H

F op --2 (l-t) 4  h (4.41)
P K 2 (-) 2

1(1-h

The temperature and reduced field dependence of this equation is

not similar to that obtained for our specimens.

Labush's equation (Equation 2.82) is of the form

H 23.5

F P pdV2  24 f(h) (4.42)
p 1

where

f(h) = h2.5(1-h)
2  h2  0.18(1-h)2 

-1/2  + 36(2K12-_ ) /

(2K 1 2_i) (--h)

(4.43)

The fit of this equation to our specimens is improved if the

proximity effect is included. Using Equation (2.75), Equation (2.81)

yields

3.5H

F x pd2V2  c2  -t2  ) f(h), (4.44)

1

The dependence on the microstructure and on temperature of this

equation is similar to that of Equation (4.37). The form factor

and the <-dependence of the two equations are quite different.
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A slight change in Kramer's theory of line pinning [1] yields

a form of the pinning force density similar to that given by

Equation (4.37). Kramer considers the case where the fluxoids can

move a distance f to thread through more pinning centers.

This yields an effective interaction force

fp "p (4.45)
p ;c 66

The effective interaction force, fp, is then used in calculating

the pinning force density from Equations (2.83) and (2.84).

If the material has a high density of pinning centers,

Equation (4.45) is invalid. In this case, the interaction force

per unit length of fluxoid, fPl , is used directly in Equation (2.88)

to find the elastic energy density per unit length of pinned

fluxoid, E sp. The pinning force density is then calculated as for

Equation (2.91), obtaining

22 3.5 (2Kl2-) h35 (4.46)Fp 1 Pl cV H2 K 4

2

For high precipitate densities n, is proportional to p /3and
2an

P1 is roughly proportional to p2/3. If the contribution of the

proximity effect on the precipitates, given by Equation (2.75),

is used, Equation (2.88) yields

F p4/3dV 2 H 3.5 (-t) 2 (2K 2- 1) h3.5

p c K 4  (4.47)

2
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A numerical analysis shows that, for values of the reduced field

greater than h = 0.2 and less thin h = 0.8, h3.5 is approximately

proportional to h 1(-h)- 2. Furthermore, for several specimens

h is actually a better description of the reduced-field behavior

than h 1(-h) 2  as sown in Figure 35. Therefore, the form factor

of Equation (4.37) can be substituted by

3.5f(h) =h ,(4.48)

with an appropriate change in ql. Equation (4.47) is then similar

to Equation (4.37) in its variation with reduced field, temperature,

K, and microstructure.

c) Plastic Deformation Region

At high reduced fields, usually above h = 0.85, the specimens

behave as predicted by Kramer £1). Kramer predicts a pinning force

density,due to plastic deformation of the fluxoid lattice, of the

form (Equation 2.97)

K 1.H 5/2 h 1
2

F K 2 (1-h)2  (4.49)

where the parameter K Phas a weak dependence on the density of

precipitates.

At these high fields, the specimens follow the form factor of

Equation (4.49), as seen in Figure 19. This form factor has been

observed elsewhere [1,54]. Equation (4.49) can be expressed as

Fp = C Ph'1/2(1-h)' 2 (4.50)
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The temperature dependence of C is calculated, as in the line-
p

pinning region, from a least mean square fit of In C pversus

in H (t) for each specimen. The value of n, the exponent of

2

of n is 2.3, with a standard deviation of 0.8. There is a weak

dependence on alloy concentration, with n increasing as the alloy

concentration increases. The expression for the pinning-force

density now becomes

F K H C2  (t) 1 -h)2  .(51

The parameter K pis calculated for each specimen from

C p(t)
K = (4.52)
p H 2.5M

c2 t

and averaged over all temperatures. Again, temperatures within

9% of T c are not used in this calculation.

According to Kramer's theory [1), the parameter K Phas a weak

dependence on the precipitate density, p. In this theory, the

pinning force density in the plastic deformation region is

independent of the elementary interaction force, f p and independent

of V. If the parameter K Pis plotted against the density of

1/3
precipitates, it shows a dependence on-p for -the pure vanadium

specimens. When each alloy concentration is treated individually,

these groups do not show this dependence on precipitate density.
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Several combinations of density and volume were also tried. The

alloyed specimens do not seem to follow any specific combination.

2The pure vanadium specimens also fit to a dependence on pd

As noted in the previous section, pV is a constant for many of these

specimens. Hence, a dependence on pl/3 can be approximated by a

dependence on pd2.

If we assume that the pinning force density of the alloys do

depend on p1/3 , a dependence of F on the Ginzburg-Landau parameter,
2p

K1 is satisfied using K Figure 36 shows a plot of

H2.5 (T)

Fp = q p1/3 H 22  hl/2(1-h)2 (4.53)p K i2(o)

for most of the specimens. This plot shows that the apparent

failure of the F of the alloys to show a dependence on pl/3 is

probably due to the large uncertainty involved in calculating Cp.

The parameter qp of Equation (4.53) is calculated from

Sqp = Z KPKl 2 ( )  (4.54)
1pl/3

summed over most of the specimens, yielding, qp = 4.9 x 10 with

a standard deviation of 3.3 x lO 5 . Specimens #42 and #94 are not

used in this calculation because their value of KpK 1
2/p 1/3 are more

* than two standard deviations higher than the mean. Equation (4.53)

is similar to that predicted by Kramer for plastic deformation of

the FLL, Equation (4.49).

A
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d) Transition Region

Most of the specimens exhibit a transition region between the

line-pinning region and the plastic deformation region; only the

specimens with very small precipitates (d<<&) do not show this

region. In the case of the specimens with a high density of large

pinning centers (d> ), the transition region occupies a large

fraction of the reduced field range. There is no direct equivalent

in Kramer's theory [l] to this transition region. In Kramer's

theory, the transition from the line-pinning region to the plastic

deformation region occurs smoothly over a certain reduced-field

region. The pinning force density in Kramer's transition region

results from a statistical summation of line-pinning forces and

plastic deformation depinning forces. As such, it is strongly

dependent on the precipitate dimensions. No such dependence is

found for the specimens in this research for the "transition

region." Furthermore, there is usually a clearly defined boundary

between this region and the others, whereas Kramer's transition

region smoothes out the boundaries. The observed transition region

can also be detected in the pinning force densities obtained by

other authors, particularly in the data from Kes, et al. [54] for

voids in superconducting vanadium. However, none of these authors

identify this region as a distinct reduced-field region.

The transition region, as opposed to the two regions discussed

in the previous sections, shows a marked dependence on the alloy
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composition. In this region, the pure vanadium specimens exhibit

a form factor of the form

f(h) = h(l-h) , (4.55)

as shown in Figure 37. However, the alloys exhibit a more com-

plicated behavior. Certain reduced field regions can be accurately

described by (see Figure 38)

Fp CAh (1-h) + b , (4.56)

where b is a constant of the order of Fpmax, usually near

F max/2. The behavior of the alloys on the higher reduced fields
p

can also be roughly described by

f(h) = (1-h) I/2  (4.57)

Figure 39 illustrates the fit of several specimens to this equation.

This equation does not provide as close a fit to the data as

Equation (4.56), but it is useful in describing, in a simple way,

the total shape of the transition region for most alloys.

In this region there is no reduced field dependence common to

both the pure vanadium specimens and the alloyed specimens.

Furthermore, the reduced field dependence of the alloyed specimens

is only roughly described by Equation (4.57). Therefore, the

pinning force Fp at h = 0.7 was used in the least mean fit of

log F versus log H c2(T) used to find n, the exponent of H c2(T),

and in other calculations. Again, the value of n varies with the
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The solid line indicates the form factor f(h) = h(l-h).
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Figure 39) Pinning force density, Fp, versus redu.ed field, h,
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line indicates the form factor f(h) (1-h)1/2.
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alloy concentration. The average value of n for pure vanadium

is 2.1, and that for the alloys is 2.6, with a standard deviation

of 0.3 for both of the averages.

The pinning force density of the pure vanadium specimens can

now be expressed as

Fp = K H 2h(-h) (4.58)

The parameter Kv is obtained, for each specimen, at h = 0.7 using

F (h)
Kv - H 2h(lh) (4.59)

averaged for all temperatures. For the alloys we have

Fp= K a Hc 22 5 (l-h)l/2  (4.60)

where

Fp(h)

K H 2.5 1_h)/ 2  , (4.61)

c2

calculated at h = 0.7 and averaged for all temperatures.

Several combinations of the microstructural parameters, such as

pV, pA, etc. were plotted against K Of these, only p l/3 gives
a

some correlation. The V - 1.05a/o Ga specimens show the best fit

to this dependence. The V - 2.96a/I specimens show a poor dependence

on o 1/3 'and there are not enough V - 0.20a/o Ga and V - 4.0la/o Nb

specimens that show the transition region to test their dependence
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1/3
on/p mostofthe alloyed specimens seem to fall on a line given

by

H2-*5 (T)
1/3 c2 (1-h)1 /2F q p 2 (o) (l- ) (4.62)

where h = 0.7. The parameter qa is calculated, at h = 0.7, using

ZKa 12(o)

q - K/
3  (4.63)

summed over most of tne alloyed specimens yielding qa = 9.3 x 10 7

with a standard deviation of 2.6 x lO"7 . Specimen #81 is not used

in this calculation because its value of KaK12/P 1 / 3 is more than

two standard deviations lower than the mean. Figure 40 shows the

fit of most of the alloyed specimens to Equation (4.62).

The pure vanadium specimens do not fit the same line, given by

Equation (4.62), with the alloyed specimens. In fact, if Equation (4.63)

is used for the pure vanadium specimens, the value of qa obtained

for these specimens is about ten times larger than that obtained for

the alloys. The analysis of the pinning force of the pure specimens

is therefore treated independently from that of the alloys. There

is at present no way to find the dependence of Fp on K1 for the

pure specimens.

As seen in Figure 41, the pure vanadium specimens show a weak

1/3
dependence of Kv on p . However, attempts to find a better cor-

relation of Kv with other combinations of microstructural parameters

such as A, cV, etc., were futile. There is a poor correlation of K
!V
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with pV2/3. For our specimens, V2/ 3 is a meaningless parameter.

The parameter V2/3 is not equal to an area of the precipitate.

2/3. This correlation of pV with K is due to the fact that Vp is a
v

constant for specimens with the same carbon concentration and that

Kv a pl/3 Therefore, for the pure vanadium specimens we have

- 1/3 2Fp= qvp H 2 (T) h(l-h) (4.64)

where qv is calculated at h = 0.7 using the equation

EKv

1 1/3 (4.65)

summed over all pure vanadium specimens. The constant qv equals

5.6 x lO-5 with a standard deviation of 3.7 x 10- .

There is no direct equivalent in the theory to Equations (4.62)

and (4.64). However, Equation (4.62) is somewhat similar to

Kramer's equation for the plastic deformation mechanism (Equation 2.97).

On the other hand, Equation (4.64) is similar to Schmucker's

(Equation 2.105). In any case, this region seems to be strongly

influenced by a plastic deformation of the FLL mechanism because

there is no dependence of Fp on precipitate volume; no dependence

on V means no dependence on f . This implies that the fluxoids are

not breaking their individual bonds with the pinning centers; the

FLL is deforming plastically around the pinned fluxoids.

e) Resulting Scaling Law

Apart from the point pinning region, the pinning force density

for a given reduced field is given by the mechanism which yields
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the lowest pinning force density for that reduced field. There

are at least four pinning force density equations, which are:

i) in the line pinning region (h1 < h < hT), using

Equation (4.48),
H 4 (T)31 23TC hl/12

Fp= 5.3 x 1031 pV3  2.5 (4.66)
K, (o) (.-h)'

ii) in the transition region (hT < h < h )

Fpp

*Fp = 5.6 x 10 1/3 H 2 .5(T)h(l-h) (4.67)

for the pure specimens, and

-p/3H~ 2 "5(T)Fp= 9.3 x 10O"7 pl/3 Kc2 2.IT /2

F K, 2(0) (1-h) (4.68)

for the alloys.

iii) in the plastic deformation region (hp < h < 1.0)

H 2"5(T)

Fp = 4.9 x 1O"5 p1/3  c2  h1/2(1-h)2  (4.69)

p 1  (o)

An example of a resulting pinning force density for a specimen is

shown in Figure 42.

Each reduced-field region has a different temperature dependence.

Hence, the resulting pinning force densit., does not scale with

temperature over all the reduced field regions. The boundary between

the line-pinning region and the next higher region moves to lower

reduced fields as the temperature is decreased (see Figure 43).
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f) General Comments

The theories of Dew-Hughes [32] and of Labush [33] fail to

predict the appearance of the several reduced-field pinning

regions. On the other hand, the theories of Kramer [1] and

Campbell and Evetts [9] predict different depinning mechanisms for

discrete reduced-field regions. The scaling laws obtained from

Kramer's theory are similar to our empirical relations. On the

other hand, the theory of Campbell and Evetts fails to describe

the data.

Campbell and Evetts [9] do not provide a set of scaling laws

for their theory. However, several things can be inferred from

their theory. In this theory, our empirical "line-pinning region"

is supposed to be described by an unsynchronized FLL region, where

the pinning force is basically that given by Dew-Hughes. This fact

fails to explain the empirical dependence of the pinning force on

the precipitate volume cubed. Furthermore, the character of the

empirical V-I curves (Figure 29) is opposite to the one inferred

from this theory. When an "unsynchronized fluxoid" moves, it is

likely to move to another pinning center. There are no free

pinning centers for a fluxoid on a synchronized FLL to move to.

Therefore, a moving synchronized-fluxoid can precipitate a massive

movement of the lattice. This depinning behavior of the synchronized

and unsynchronized fluxoids is opposite to the one observed on the

V-I curves. These curves show an abrupt depinning in the "line-

pinning region" and a smooth depinning in the other reduced-field

regions.
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An explanation of the character of the empirical V-I curves can

be inferred from Kramer's depinning theory. In the line-pinning

region, a fluxoid depins by breaking the bond with the pinning

centers along its length. The sudden loss in elastic energy

creates a local heat burst that can cause similar depinning in

neighboring fluxoids. This effect can cascade and even create a

total quench. The plastic-deformation depinning mechanism can be

smoother than the line pinning depinning mechanism described above.

Therefore, the voltage rise at J c is less abrupt in the plastic

deformation region than in the line pinning region.

As previously mentioned, the specimens alloyed with gallium

exhibit a decrease in the critical current when trained. This

can be explained if the precipitate expells some gallium from the

volume it occupies [48]. The area surrounding the precipitate

acquires a higher density of gallium. Therefore, the local value

of Hc2 increases and that of T decreases. At temperatures near

the critical temperature of the bulk, the energy well due to the

normal precipitate becomes wider with the addition of the now-

normal surrounding volume. At lower temperatures, the increased

value of the local H creates an energy barrier around the precipitate

due to the increase in condensation energy (see Figure 44). When

a specimen is cooled from the normal state while it is in a

magnetic field, the fluxoids are attracted to the broad well

produced by the precipitate and the gallium enriched region. With

further cooling and the advent of the energy barrier, the fluxoids

remain pinned inside the well. However, if the fluxoids are driven
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Figure 44) Potential well due to a) a normal precipitate,
b) a normal precipitate surrounded by a gallium-rich
zone, at a temperature above the T of the zone, and
c) a normal precipitate surrounded by a gallium-rich
zone, at a temperature below the Tc of the zone.
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out by a transport current and the current is brought back to zero,

some fluxoids cannot re-enter into the well because of the energy

barrier. Therefore, these fluxoids are not strongly pinned and the

pinning force density decreases. This idea is supported by the

fact that the pure vanadium specimens do not exhibit any effects

due to training. Furthermore, this effect is absent in the transi-

tion and plastic deformation regions, where the pinning force is

not expected to be dependent on the elementary interaction forces.

Another way to analyze the pinning force data is to compute the

pinning force per pinning center [55,56]

Q = F p/p ,(4.70)

and to plot it versus the elementary interaction force, f . In this

way, it can be verified whether the direct summation, where Q = fp

(Equation 2.77), or the statistical summation, where Q a f2
p

(Equation 2.81), can properly describe the data. Figure 45 shows

this method applied to most of the specimens. This graph shows a

qualitative agreement with the direct summation theory over several

orders of magnitude of the interaction force. There is a sudden

drop in Q at low interaction forces. This behavior has been

observed elsewhere [55,56]. However, as it will be demonstrated

below, the fit of the specimens in this research to this direct

summation curve is misleading. The specimens with weak interaction

forces do not fall on this line. These specimens are the ones that

show line pinning up to high reduced fields. Hence, the pinning force

density for these specimens is strongly dependent on the magnitude of f
p
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If the pinning force density of the specimens can be described

by the direct summation, a plot of F versus pf should be linear.
p p

Figure 46 shows that for our specimens, this plot is not linear.

Hence, the pinning force density of the specimens in this research

cannot be described by the direct summation theory. The fact

that Figure 45 seems to indicate that there is a direct summation

of forces is easy to explain. The specimens with large precipitates

usually have pinning force densities of the same order of magni-

tude. For these specimens, a plot of Q versus fp is equivalent 1o

a plot of p-l versus V. Due to the fact that the product pV is

almost a constant, this plot yields a straight line.

3) Uncarburized Specimens

All annealed specimens with no precipitates behave in a similar

way. As seen in Figures 24-27, as the magnetic field is increased

from zero, these specimens show a sharp drop in critical current

density. This drop levels off at higher fields, then it usually

peaks near H (T).

The pinning force density behaves fairly erratically as a

function of reduced field. Furthermore, the reduced-field dependence

sometimes changes from one temperature to another. For most of

these specimens, the reduced field dependence of Fp can be ap-

proximated at low reduced fields by

1/2 2f(h) h1 (1-h) ,(4.71)



147

.1 50

0 0

01 0

00

00

1
1 5 10 20

* ffp X 10 dynes crFf3

Figure 46) Log-log plot of F versus pf2  for the vanadium
specimens at T S .5K and h 2 0.7. The solid line
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as illustrated in Figure 47. The temperature dependence of this

region, obtained from

In F (h = 0.5) = n In H (T) + constant (4.72)
p C 2

is approximately given by H 2.5(T). Following the general trend,
C
2

we assume a quadratic dependence on the Ginzburg-Landau parameter,

yielding the equation
C 22.5 (T)  1/

F C Hc2
2 () hl/ 2 (l-h)2  (4.73)Fp = nc K1 2(o)

The parameter C nc is obtained for all temperatures from

nc H 2 2.5(T~hl/2.1_(hT)h

where h 0.5, and averaged for each specimen. The value for this

parameter, as seen in Table 6, is similar for all annealed and

uncarburized specimens and even for some specimens with carbon in

solid solution. This implies that the assumption of a quadratic

dependence on K1 is probably correct and that these annealed

specimens have similar microstructures.

Most of these specimens show a peak in the pinning force density

near H c(T). The rise in Fp shows a form factor given by

C2 p

f(h) = h1/2 (l-h) -2 + b (4.75)

Then, very close to H (T), F drops rapidly to zero.
C2 p
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Table 6. Pinning Force Density Parameters for Specimens With No
Precipitates.

Specimen # Alloy Carbon n Cnc
Concentration Concentration

a/o x 10-4

8 pure V - 2.5 5.97

54 pure V - 2.4 6.63

86 0.20a/o Ga 0.13 2.5 3.18

30 1.05a/o Ga - 2.3 1.35

61 1.05a/o Ga 0.20 2.2 2.82

7 2.96a/o Ga - 2.2 2.05

63 2.96a/o Ga 0.20 2.5 3.21

27 4.Ola/o Nb - 1.6 2.76

I,
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The reduced field dependence of Fp seems to indicate a plastic

deformation region followed by a line-pinning region. This is the

inverse of the usual order of appearance of these regions. This

can be explained if one assumes that the fluxoids are pinned by

imperfections on the specimen surface. There is a low density,

per volume, of these imperfections. Hence, the plastic deformation

of the FLL starts at low reduced fields. At higher fields, line

pinning forces in the bulk of the material become stronger than

the surface pinning forces. These bulk pinning forces are mainly

due to elastic interaction forces due to the grain boundaries and

other crystal defects.

.21

I-,
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CHAPTER V

CONCLUSIONS

There is no one scaling law that will universally describe

the pinning force F . The pinning force for a particular reduced

field region is determined by the depinning mechanism active in

the region. At least four depinning mechanisms are present.

The first region, which is only present at the lower reduced

fields, is of little interest because of its low critical currents.

No analysis was attempted for this region which, for simplicity,

we call the "point pinning region." At the next higher reduced

fields, there is a region where Fp shows a strong dependence on

temperature, reduced field, and microstructure. The relation to

the microstructure is approximately given by V 3P. In this region,

which is identified with Kramer's line-pinning region, F varies withP

the square of the interaction force fp.

At the highest reduced fields, usually above h = 0.8, all

specimens show the same reduced field behavior for Fp, given

2
by f(h) = h(l-h) 2 . In this region, the dependence of the pinning

force on the microstructure is given by Fp c p/. This region

is well described by Kramer's theory of depinning by plastic

deformation of the FLL.

The specimens usually show inother region, the transition

region, at intermediate fields between the line pinning region and

the plastic deformation region. The pinning force in this region
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is similar to that of the plastic deformation region in its tempera-

ture and microstructure dependence. The reduced field dependence

is not the same as that for the plastic deformation region. This

is the only region where there is a distinct difference in the form

factor of the pure vanadium specimens and that of the alloyed specimens

The transition region was unnoticed by previous authors.

The only reduced-field region exhibited by all the specimens

is the high-reduced-field plastic deformation region. The appearance

of any of the other regions is determined by the microstructure of

the specimen. Specimens with small precipitates exhibit the

"point-pinning" region and the line-pinning region. Specimens with

large precipitates show a broad transition region and barely, if

any, of the "point-pinning" or line-pinning regions. Specimens

with intermediate-sized precipitates exhibit the transition region

at all temperatures, and a clear line-pinning region only at the

higher temperatures.

The optimum microstructure for obtaining high pinning force

densities can now be described. In the line-pinning region, the

pinning force density depends on the cube of the precipitate

volume which lies inside the fluxoid core, V3 . For large

precipitates (d>2 ), part of the precipitate volume would lie

outside any fluxoid core that threads it. This extra volume has

a negligible effect on F as seen in specimens #83 and #94. Hence,

the optimum precipitate diameter is about 2 . Spherical precipitates

41
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ii have a larger volume than disk-like precipitates of the same

diameter. Hence, spherical precipitates would make better pinning

centers. Voids are not affected by the proximity effect, hence,

a void makes a better pinning center than a precipitate of the same

dimensions. Strongly pinned specimens, whicn are those with a

high density of large precipitates, exhibit a broad transition

region. This region is dependent on the density of precipitates.

Hence, the optimum microstructure would be composed of the higher

attainable density of precipitates, or voids, with diameters near

2 .

The alloying of small quantities of gallium is a good way of

varying K, providing a range of K % 2.0 for pure vanadium to K = 20

for the V - 2.96a/o Ga alloys. The critical temperature and upper

critical field, H c, can be calculated, from empirical curves,c2
for any dilute V - Ga alloy with a known resistance ratio. However,

the V - 4.01a/o Nb specimens do not fit the empirical curves

found for the vanadium-gallium alloys.

Except for the transition region, there is not much difference

in the form of the pinning force of the low-K pure vanadium

specimens, and the high-K alloys. For most of the regions, the

pinning force can be described as varying with the inverse of

1, squared.

New studies on pinning should be directed in anothe,, maybe

more practical direction; pinning by vanadium-carbide precipitates

has little, if any, practical application. A pinning center with
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a broader range of values for p and pV is desirable. Voids are

currently used for this reason [54,55] and, in addition, voids are

not affected by the proximity effect.

Pinning by crystal dislocations caused by cold working the

material, is currently the main source of pinning in most commercial

superconductors. During the microstructural analysis of our speci-

mens it was observed that the carbon in solid solution tends to

accumulate along crystal grain boundaries. If carbon also accumulates

along the dislocations caused by cold work of the material, this

accumulation can be used to enhance the pinning force caused by

these defects, thus providing a valuable research tool.
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