
7 A0-Al17 1999 SACRAMENTO AIR'LOGISTICS CENTER MCCLELLAN AFA CA SERA-;-ETC F/G_22/2
RESULTS OF A SURVEY SOFTWARE DEVELOPMENT PROJECT MANAGEMENT IN -ETC(U)
DEC 79 R H THAYER.

UNCLASSIh JED SM-ALC/MME-TM 79-54VO3 AD

SM-ALC/MHE TR 79-54, Volume III

18 December 1979

RESULTS OF A SURVEY

SOFTWARE DEVELOPMENT PROJECT MANAGEMENT

IN THE U.S. AEROSPACE INDUSTRY

VOLUME III

MAJOR PROBLEMS

ZZ: RICHARD H. THAYER

SACRAMENTO AIR LOGISTICS CENTER

tAIR FORCE LOGISTICS COMMAND

MCCLELLAN AFB, CA 95652

Approved for public release, unlimited distribution.

Any opinions expressed in this report are solely those of the Author
and do not necessarily reflect the position of the United States Air Force
or the American Institute of Aeronautics and Astronautics Technical
Committee on Computer Systems.

DOT 0
3. DEPARTMENT OF THE AIR FORCE .C AAIJ 0 6 1982

t- HEADQUARTERS SACRAMENTO AIR LOGISTICS CENTER (AFLC)

MCCLELLAN AIR FORCE BASE, CALIFORNIA 95652

C044

82 08 06 044

SECURITY CLASSIFICATION OP THIS PAGE (119.n Does Entered)....... READ OFSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMFLE'MG FORM

0. REPORT MUMER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

SM-ALC/OAE TR-79-54 VOLUME IIIb i_____________
4. TITLE (,,d &utielo) S. TYPE OF REPORT A PERIOD COVERED

RESULTS OF A SURVEY: SOFTWARE DEVELOPMENT PROJECT Technical, Final
MANAGEMENT IN THE U.S. AEROSPACE INDUSTRY S. PERFORMING ORG. REPORT MUMMER
VOLUME III: MAJOR PROBLEMS
7. AUTwORra) S. CONTRACT OR GRANT NUMUER(s)

Richard H. Thayer

S. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & woRK UNIT NUNSERS

Directorate of Materiel ManagementA

Sacramento Air Logistics Center Volume III: Major Problems
McClellan Air Force Base, California 95652
I. CONTROLLING OFFICE NAME AND ADDRESS Ii. REPORT DATE

18 December 1979
13. NUMBER OF WAGES

135
14. MONITORING AGENCY NAME A ADORESSil difeuent from Controllind Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
1Sa. OECLASSlIFI CATION/OOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, unlimited distribution.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different hem Report)

I#. SUPPLEMENTARY NOTES

Prepared in cooperation with the American Institute of Aeronautics and
Astronautics (AIAA) Technical Committee on Computer Systems.

19. KEY WORDS (Continue on reverse side If neceary and identity by block numbr)

Software Engineering Project Management, Software Development, Survey,
Project Management, Major Issues

20. AESTRACT (Continue oun revere.e sde f necoeey aid Identify by block number)

See separate sheet following.

,JAN 7 1473 i_
SECURITY CLASSIFICATION OF THIS PAGE (W'hen Data Entered)

-- ,46 -al-he - -- .

ABSTRACT

RESULTS OF A SURVEY

SOFTWARE DEVELOPHENT PROJECT MANAGEMENT

IN THE U.S. AEROSPACE INDUSTRY

Volume III: MAJOR PROBLEMS

BY

RICHARD H. THAYER

This report contains the results of a survey conducted in 1977 and
1978 on how the U.S. Aerospace Industry manages its software development
projects. The sample of the U.S. Aerospace Industry that was surveyed

consisted of companies with membership in the ALAA Technical Committee on
Computer Systems. The survey contained a number of different parts. This
volume pertains to Part Three and reports on how project managers perceive
the major issues and/or major problems of software engineering project
management. Other volumes pertain to Part One and Part Two.

Twenty major problems were postulated and those surveyed were asked
to comment on whether or not they felt the problems cited were critical,
important, not important, or no problem at all. In addition the
respondents were asked whether or not the problem was management,
technical, both, or neither; and whether or not the problem could be
solved through improvements in management, technology, both, or neither.
Lastly, the surveyees were asked to describe how they would (or did) solve

the problem. j

The answers have been condensed and/or coded and recorded on a
tabulation sheet in this report. In addition, the narrative portion of
the survey is recorded in clear text with all references to individuals
and/or their companies deleted. This report does not attempt to analyze
or come to conclusions about the data, only to report it as clearly as
possible.

iii

I __

TABLE OF CONTENTS

SECTION 1 -- RESULTS 1

I

SECTION2 -- THE DATA 13

SECTION 3 -- REFERENCES 39

APPENDIX A-- CONTRIBUTORS 43

APPENDIX B -- QUESTIONNAIRE 65

APPENDIX C-- COMMENTS ON AND ABBREVIATIONS USED
IN THE REDUCTION OF ANSWERS 75

APPENDIX D -- NARRATIVE AND CANDID (CLEAR TEXT)
ANSWERS TO SELECTED QUESTIONS 87

Accession For

NTIS G[A&I
DTIC T-A:

Dist :i ec1l

po''

I

1

SECTION 1

RESULTS

BACKGROUND

In the spring and summer of 1977, a survey was conducted on the U.S.

Aercspace Industry to determine what management techniques and procedures

they were employing in software development projects. This survey was

designed, written, tested and implemented by the author and Mr. John H.

Lehman, California State University, Sacramento, California. It was

originally accomplished to collect data for analysis and the preparation

of a paper on Software Engineering Project Management, to be presented at

the American Institute of Aeronautics and Astronautics (AIAA) Conference,

Computers in Aerospace, 31 Oct-2 Nov 1977.

The sample of the U.S. Aerospace Industry surveyed consisted of those

firms and companies with a membership in the AIAA Technial Committee on

Computer Systems who were hosts to the conference. These committee

members represented 47 major corporations, or major corporate

subdivisions, and occupied top positions in software management within

their firms. They were, therefore, in an ideal position to report on how

their segment of the U.S. Aerospace Industry managed its software

development projects.

Initial contact was made in May 1977 to determine which members of

the committee would be interested, willing, and able to participate.

Forty-five members, representing 35 companies, agreed to respond. The

initial draft of the survey was completed in June 1977 and critiqued by

approximately 25% of the total committee membership. The results of this

critique, along with other corrections, were incorporated into the final

survey. The survey was mailed 10 August 1977. On 6 September 1977, with

29 of the completed surveys on hand, the authors of the survey wrote the

first report for the proceedings of the Conference, Computers in

Aerospace. This paper can be found in the Conference Proceedings,

2

A Collection of Technical Papers. By the time the actual presentation was

given on I November 1977, questionnaires from 33 companies representing 55

projects had been received. These companies, predominantly aerospace

firms with government contracts, reported mostly on large to very large

projects. The presentation given (called Report Nr 2, AIAA Project

Management Survey) differed from the paper in so far as it used the more

complete data and a different approach.

The survey did not end there, for completed forms continued to arrive

until, by the summer of 1979, 66 projects representing 38 firms for a 86%

return rate had been received (see Appendix A for a list of partici-

pants). A decision was made by the AIAA Technical Committee on Computer

Systems to make further use of the data by writing an assessment paper on

the state-of-the-art in software development project management. Mr Gene

F. Walters, General Electric Co., Command and Information Systems,

Sunnyvale, California and Mr Jack E. Bloodworth, Boeing Aerospace Company,

were given primary responsibility for this paper. In addition, the Rome

Air Development Center (RADC), the Boeing Aerospace Company and the

Sacramento Air Logistic Center offered their services, and in some cases

the services of their company's data processing capability to reduce and

analyze the data.

The remaining problem was to reduce the data into a form useable by a

computer. This involved "coding" the narrative and free form answers of

the survey and verifying their consistency.

PURPOSE OF SURVEY

As previously stated, the purpose of this survey was to look at a

sample of the U.S. Aerospace Industry through the use of a questionnaire

to determine how they managed software development projects.

Specifically, the questions that the survey attempted to answer were:

1. What are the current practices in Software Engineering Project

Management today?

3

2. Are the new developments in management, i.e., "modern" management
techniques or project management techniques, being used?

3. What are the trends in Software Engineering Project Management?

4. What are the relationships between Software Engineering rrofect
Management techniques and successful delivery of software?

5. What are the relationships between various parts of Software
Engineering Project Management as a system?

6. What are the relationships between "modern" Software Engineering
techniques and Software Engineering Project Management?

THE SURVEY

first design a model for software engineering project management as a

system, and define the elements of that model and the relationships

between these elements, and second develop a questionnaire around this

model using the various elements and/or variables as questions and

possible responses. The survey contained 225 numbered questions and by

use of "questionnaire packing techniques," allowed for approximately 1,328

separate responses.

The survey, which contained 72 pages, was divided into three parts.

Part One dealt with defining 'he total organization, management structure,

requirements, and philosophy ot the firm and was intended to be answered

by top management to provide the backdrop against which the individual

projects would be viewed. Part Two concerned questions about individual

projects and was intended to be completed by the project manager. Part

Three consisted of general questions, not project specific, calling for

evaluation, cpinions, and suggestions on the major problems of software

engineering project management. It was also intended to be completed by a

project manager.

PURPOSE OF THIS REPORT

This paper has been prepared to report the answers to Questions 5

through 24 of Part Three of the questionnaire in "raw" form so that they

Ii

4

may be entered into a computer data base as well as to satisfy the many

requests received from the computing community for access to the data

collected as a result of this survey. The answers to Part One, Part Two

and Questions 1, 2, 3, 4, and 25 of Part Three are provided in Volumes I

and II. However, data from Part One and Part Two in sufficient detail to

ideatify the position held by the respondent, as well as provide selected

attributes of both the individual and the firm, have been repeated in this

part to make it independent of the other two volumes. This data is

reported as Psuedo Questions 1 through 4, even though these questions were

not originally part of Part Three of the survey.

Because of the restrictions pliced by the participants on the use of

their submissions, the actual completed surveys cannot be distributed and

have been destroyed. This report was selected as a means of documenting

and capturing as much of the "raw data" as possible without any

possibility of revealing its source. In essence, this report does not

contain "raw data" but reduced data in abbreviated and coded form that

efficiently separates it from its source while allowing interested

computer scientists its use fcr their own requirements.

Tais report does not attempt to analyze or come to conclusions about

the data, only to report it as clearly as possible. Only minimum

interpretation was made to enable the answers to be tabulated for eventual

analysis. Although 66 projects were reported, the author removed six

projects that did not seem to fit the norm, leaving a set of 60 projects

to be reported.

CONTENTS OF THIS REPORT

As already stated, the purpose of this report is not to analyze the

data from the AIAA Project ,Management Survey, but to report it as simply

and accurately as possible, and, to keep within the original ground rules

of maintaining anonymity of the participants. Section 2 contains the

questions and answers to this survey and Section 3 contains cited

references. The participants in the survey are listed in Appendix A.

5

A duplicate copy of the questionnaire is in Appendix B. The

questionnaire is included to allow the reader easy access to the questions

and predefined answers to provide a ready familiarity with the type of

material covered.

Appendix C contains the abbreviations used in reporting the narrative

portions of this survey. Since the reduction of comments to code

destroyed some of the richness of prose, the author felt it worthwhile to

include the actual responses and these are recorded in Appendix D. To

maintain the concept of protecting the participants identity, the

narrative answers cannot be tied to any project reported in Section 2.

THE FUTURE

This survey is, as far as the author can determine, the first attempt

to query an industry on such a large scale to discover how their software

engineering projects are managed. A look at the list of contributors in

Appendix A will attest to the significance of this base of answers. The

tremendous volume of data collected and the excellence of the responses

dictates that this store of information be made available as reference

material for papers, reports, texts, and other technical publications

which might benefit the U.S. Aerospace Industry or the data processing

commu.nity at large. The AIAA Technical Committee on Computer Systems is

anticipating the preparation of an assessment paper on industries

management of software engineering projects. This committee welcomes

suggestions from the computing and aerospace communities on how to best

use this data for the benefit of all. Suggestions should be sent to

either:

Mr Gene F. Walters Mr Jack E. Bloodworth
Mgr, Software Technologies Mgr, ALCM Software
Information Systems Programs The Boeing Aerospace Company
General Electric Company MS-45-70
1277 Orleans Drive P.O. Box 3999
Sunnyvale, CA 94086 Seattle, WA 98124
(408) 734-4980 (206) 655-6718

6

The Rome Air Development Center (RADC) has contracted with ITT

Research Institute (IITRI) to establish and operate a software information

analysis center. The center has been named the Data and Analysis Center

for Software (DACS). One of the functions of DACS is to acquire and

analyze data gathered during the various phases of the software

development process with the purpose of identifying and quantifying those

factors which contribute to the production of quality software. The data

from this survey has been contributed to DACS and is available for

analysis by any member of the AIAA Technical Committee on Computer Systems

as well as the general computer community. Personnel interested in

receiving copies of this data, or requesting analysis of this data should

contact:

Ms Lorraine Duvalle
Data & Analysis Center for Software

RADC/ISI

Griffiss AFB, 1Y 13441
(315) 336-0937

7

ACKN OWLED GE NE NTS

In addition to the contributors listed in Appendix A, the author

wishes to acknowledge the support and dedication of the following people:

From the Sacramento Air Logistics Center

Personnel who provided programming and analyst support are: Ms

Bonnie J. Nieland, Mr Lee M. Hanger, Mr Robert D. Heckler, Mr Grover "Bob"

Collins, Mr John W. Robino, and Mr David E. Sturdevant.

The following individuals provided typing, proofreading, and

composing support: Mrs Terry L. Meyer, Mrs. Beryle E. McPheeters, Mrs

Marianne L. Mueggenburg, Mrs Betty J. Smith and Miss Meg L. Astleford.

From the Boeing Aerospace Company

The Boeing Company's integrated logistic and systems maintenance

team, consisting of Mr D. H. Wilson, Mr G. R. Herrold, and Mr W. B.

Dalrymple, provided support in the areas of data reduction, data base

structure, and file updating and verification. Dr Kenneth A. Hales, 1977

president of the AIAA Technical Committee on Computer Systems, provided

the support of his committee in testing and completion of the

questionnaires.

From the General Electric Company, Space Division

The Information Systems Program in Sunnyvale provided technical

consultant support, proofreading, printing and encouragement through the

services of Mr Gene F. Walters and his technical group.

From the Rome Air Development Center

RADC had offered to perform analysis of the data for the benefit of

the U.S. Air Force, the AIAA Technical Committee on Computer Systems, and

the computing community. Personnel responsible for this are: Mr Donald

Roberts and Mr Alan R. Barnum. Ms Lorraine Duval, ITT Research Institute,

who is general manager of the RADC Data and Analysis Center for Software

(DACS), became the custodian of the data from this survey.

8

ATTACPhIENT 1 TO SECTION 1

RELATIONSHIPS BETWEEN REPORTS

The survey was comprised of three parts, each dealing with a separate

facet of software engineering project management. Part One dealt with the

firm and the environment in which the project was done. Part Two was

devoted to specific software engineering projects accomplished within the

firm. Part Three asked the project managers their opinions about project

management. Each of these parts can stand alone. Part One, covered in

Volume I of th.Ls report series, centers on the organization, management

policies, staffing techniques and project controls of the companies that

completed project questionnaires reported in Part Two.

Part Two, reported in Volume II of this report series, provided both

detail and summary information on each project for which a valid

questionnaire was returned. Each questionnaire could be considered a case

study in project management. Part Three, reported in this Volume,

concerns ideas and perceptions about software engineering project

management but does not relate to a given project or company.

At -ie same time, there is a relationship between these reports.

:ells the relationships between Volumes I, !I and -II of this

report.

9

TABLE I (ATTACHMENT I TO SECTION 1)

RELATIONSHIPS OF PROJECTS REPORTED IN AIAA

PROJECT MANAGEMENT SURVEY VOLUMES I, II AND III

Survey VOL I VOL II VOL III
Identification Nr (1) (Part One) (2) (Part Two) (3) (Part Three) (4)

101 30 101 Yes
102 30 102 Yes
103 30 103 Yes
104 31 104 Yes
105 33 (8) 105 Yes

106 34 (8) 106 Yes
107 35 107 Yes
108 35 108 Yes
109 35 109 Yes
110 36 110 Yes

il 36 ill Yes
112 39 (9) 112 Yes

113 40 (9) 113 Yes
114 41 114 Yes
115 69 115 No

116 42 116 None
117 43 117 Yes
11i 45 118 Yes
119 45 119 Yes
120 51 120 Yes

121 66 (5) 121 Yes
122 51 122 Yes
123 51 123 Yes
124 51 124 Yes
125 52 125 Yes

126 55 126 Yes

127 None 127 Yes
128 59 128 No
129 None 129 Yes
130 31 130 Yes

10

(TABLE I CONTINUED)

Survey VOL I VOL II VOL Ill
Identification Nr (1) (Part One) (2) (Part Two) (3) (Part Three) (4)

201 67 201 None
202 27 (7) 202 Yes
203 28 (7) 203 Yes
204 29 204 Yes
205 32 205 Yes

206 37 206 Yes
207 37 207 Yes
208 38 208 Yes
209 43 209 Yes
210 44 210 Yes

211 46 (10) 211 Yes
212 47 (10) 212 Yes
213 49 213 Yes
214 49 214 Yes
215 49 215 Yes

216 49 216 Yes
217 50 217 Yes
218 53 (11) 218 Yes
219 54 (ii) 219 Yes
220 56 220 Yes

1 57 221 Yes
222 60 222 Yes
223 60 223 Yes
224 58 224 Yes
225 58 225 Yes

226 58 226 Yes
227 61 228 Yes
228 61 228 Yes
229 64 229 Yes
230 68 230 Yes

301 26 (6) 301 Yes
302 48 (10) None None

303 25 (5) None None
304 68 304 (12) None

305 62 None None
306 63 (7) None Yes

L

11

FOOTNOTES FOR TABLE I

(1) Column I - This column lists the returned surveys according to
a randomly assigned identification number.

(2) Column 2 - The company identification number listed in column 2
is used in Vol 1. In some cases, the same company was reported on by two
or more individuals which resulted from two or more project managers
reporting on different projects within the same company. In most
instances these "double" reports were the same. Comments along these
lines are contained in foot notes (5) through (12).

(3) Column 3 - This column lists the project numbers reported in Vol
II. Projects with the same company numbers are from the same company or
major subdivision.

(4) Column 4 - Vol III reports on data from Part Three. This column
indicates whether or not the same person reported/wrote Part Two and Part
Three of the survey. This is done so that the reader will know if there
is any relationship between the project reported on in Part Two and the
surveyee's opinions on the major problems of software development
management.

(5) Company 25 and 66 are the same.

(6) Very small company. Part Three is reported as Part Three of
Project 201.

(7) Company 27, 28 and 63 are the same. Answers reported under
company 28 looked to be the most accurate and complete. Part Three
submitted by company 63 is reported as Part Three of Project 116.

(8) Company 33 and 34 are the same. Answers reoorted under company 33
looked to be the most accurate and complete.

(9) Company 39 and 40 are the same and have identical answers.

(10) Company 46, 47 and,48 are the same. Answers reported under
company 46 are considered to be the official answers by the surveyee.

(11) Company 53 and 54 are the same. Answers reported under company
54 looked to be the most accurate and complete.

(12) Project reported under project 304 was too large to be included.

12

13

SECTION 2

THE DATA

INTRODUCTION

This section reports the data submitted by the participants in

tabulated, abbreviated, and coded form. Every effort has been made to

preclude associating any response with a particular contributor.

Each question is handled separaraly and reported in an array

format. The horizontal indices of the array refer to project

identification numbers while the vertical indices refer to the question

and part number. Each narrative response has been converted to a three-

character alphanumeric code (see Appendix C for explanation of codes).

Questions 1 through 4 were not part of the original questionnaire,

but were derived from Parts One and Two in order to make this Volue

independent of Volumes I and II. Questions 5 through 24 provide the data

on the 20 postulated major problems.

Part Three of Project 301 was reported as Part Three of Project 116

and Part Three of Project 306 was reported as Part Three of Project 116.

A FINAL NOTE:

The question numbers for Part Three of the questionnaire have been

renumbered from 1 to 24 to 301 to 324. This was done in order to not

duplicate the question number in Parts One (Volume I) and Two (Volume

Two), allowing the data files to be merged.

j

14

15

.: -a 3 0 ey 0

-z L. ;Nwmg

-j 0 0

e- .0 01
wa -R t Ac

- N an
4 4 -

V2 0go
N '.J '.ev

II .- ..1 N .4 N .&

ZZ - - P. N P4

-z U2 b.. 30 37 :ma
,;, ZO; -, *~ - J 0.N

.~ ~Z. .4 4 -.

~.z -J~2 .-- 0 0 0

~ O~ 0 x

16

W) 41 0 co -

w 6bl 46 W La 41 44

-0G W) 0 Nq Go to .

i 00 7 Go a* 0

3- .. ~ em 0, 3-)-

am 1 0000 W lW 0 0

-2 c..0) oo Nm 00

0 20 0 co 0 0

N I 4j4 N hi AA4

V) cm 00 w) 0 0
N 8 414 l~. :z4 44

a. X. 00 .00

- 7 07 M (n 00

x 2. A1 A 414 4A 441

t-- t 0Z 0v a M M D2 a5 0 0 o

I. 41 ;. Z -- v2 000 r 00a

V. - 0. w). 0. N) a*

cn V0 co 00 0 0 070

4n412 m M 000 0. 00

"o, 2z.; V3 4 r 4 Ot w) 41

Z--zL.)" 0 0, 000 r. 0
Zc1 4.' -K 41 4411 -414

0.) fn 45 -r 0. 00.. N0.0
-~A "A7: .0

2. 8412. ./8000 0 0

-~ ~~ -4 - - -- - - -..) N -. -

17

a 4n 0 to

P N

m9 wo

ev u'- @

A 2 0 to

- PN Pi
em Z.. @

j4N ~ I

=; 2 :! co

jz .9 2 -V.

.r -. C w2-

IA 2). N IA N

4.D 4

A~r I-- 2 @

4~t or ~ .

Ia e-4~PN

A 21- 2 @2 ~16
V5 W3 M.

Onp m v r

.4~~~
~ - j0 4N

cn 2 2:v4D0

V0 ev a N

N7
0

m 000 -A 0 J CAN

fu V, NN

fu N N - 0 W3 N N

-~f
-N O N N

c0 03
m~ ! 0 M

N 1
e4 ji A 3

co4 U) N N 0 * N

N j pO N

VAS

0 0 03 01 NN @ 0 N

A - 0 N
0 3 0

- ~ ~ F 0) S

5 44
25 0 0 0N

0) 0

Z 4 or cm AA - 0

- N N 0v rNN

-' 4r or IO 44 3 - -3

N ~3 2 - U N N Z N N. N

NA N N N

-j ~. -x4 4 - 4 330 - 4

4~p *..0 2

2C c
ON

0 0

0 3 4 U (4 23 ~ 0 0
. -

~ -~ 33.
~0 - 4 cm

0Z~ 0 3W -
N1 ~ ~- - N

19

0 M --a- 'A .

N a3 gO 001aa

0~~~ .. t .z N 0

t 3t3 m O 3

A. N 3 3 0 4N 0 3

03~~ -O :04K2

-0001z-W N 2 0 01(

0x- 3 -*-W

NO-O j3 0

N 0 x a

20

- 0 333r 4 - 3

03300
N

000, 'A.0

t0 In 'A -9 O N 'AN

0 0 4NO 004x

-. 30 NO 00

6A~ 0 J xN

0z -eUw

w C

-- ==-- N~ 0

.= - FA 0A UN^ 4

0 N 0 0 z

22 Ow 07 C x 0 0 0 4j N u

0~i -4N030 'A

20~~ z U '

M
4

.9 -

Sa0% 0 Ln 2 N 0 N 0 01-
ON N NOD11! 0 0

ou 20 (O

-0 00 ~NO ==0

N 0 1N 0 000!
-000- N N00

- a a u -fN 0 0

N a u 00 u o

J ~~ ~ N -z~ 3

41 00 N 0

-0 02 N 0 00

z

4 4 N-' N- - N N
2 0 % i0

-0 32w>2

t- N z

c 0 0 N 000

c c~ c c ON N

22

ai eu 0 .4 Ili0 0M1I

-0 00 aO. IM 00U

3 N eu U~4 N -

10 0 0 2' co0

2-00021 v o 0gz

NO 00 (v 00'.
000 N 00

10 - 0 z O

* NO U 0NN N.j

ON N 0x NN

N0 0 w N 00

-. 0 0 Nz 0 0 z

N 000' N- 00

=-am0 to 0 0

0 000 O N N Li

0 - N 0 N 00 '

o o -0002 000

J, 5 0 .NO 0

-~~ ~~~ -z - -- . 0

OV. - -£ 0

-~ - C o

03 0 0 0 0 0 0

2- J 0 0 - 0 0
O..L 4~ 42 N 00 0o

44 .Xz -

23

- 0 3 -o 030P02

Z2 -D x0 - N N -

'.1=0V 00
-3 3 0 Z tu cm .1 0

Q. U N N N t IA
"I0 z. 2 =3 *0302

=a C= =304 0 x 3 0 C 0 I

-Zz CX 32 " 9 u N NC 2
'.10001 = 00 z
-r CCC N0 0 32

:!i N N4 . N Nl N
-um~ -W* mw1 0

'.14~z .)N %

x 0U a 0 0 0 -

!t CO N le0

-z N X N N -4

--- C z- z 0 0 0 2N 0 Q CO

Z2X.1 00- z4CC N ' N~ v - ; 1N
M-ax 0 0 -Z

0 XI 0 N N

-~~ 4UA .. OZ 0 %0 0

-:~~~~l W4 -J 4 - 0

2 ~-~4
0 -~ ,A N

-~ 222£
222~ I

22 2 N 020 U -

2 ~2
U -

~0 00
N o02 z I

N 50 20
000

2~
4 - - - ~ N 0 2 2 1

N 202I~
NO 00~

- 2 0 0 - -

- -- U

- ~ 022

.N 202
N00

0
2

~02 I

'C ~ - - 4 ~Z 4

NO 022
N 00211

2 N 0021

- - - U
-- - U

N 502 ~ N 222 N
NOOO 2

.. 000 I
2 N~ N U

N 2220 N N 022
o2 OUt

N 000
.~ 44

NO 2 2~ V 022
- N ~00I

N - ~ N N

N 2021
V 222

- 02~
N 022

N N N U - ~' - -

N 2221
N 222

~020
NO 22
ON - - U

ON ~ ~ N 222 N

- - N ~ £

~ 0021
N 022£

= 2 NN NI 2 N N N U

2 ~.
222- - -4

2 2 ~002 Z N 000£

~- 2 2 N N N I

Z 2 222 I N 000

2 4.- 4 -~02l

I

~. N ~4

N - N 2 - 2 2 0 1

12 - 2 2 0 - N 0 0 2

2 - .2 20 020 U U

- ~ 21 £

-'-1 ~2. 11 .0 N N ~ fl .~ N ~ U

- 1 .. i ... 222 2 ~.202 N

- ~j - 2 0 0 1 N 0 0 0 £

U4~ .12 Z~ J~ N 2 - .fl N - ~ 4 .~
~2 20

ZZ 2~ 2£ 22~ U N 000 -

- 2 2~. 202 I

1£ I@~ 2 - ~ U 2 - N N *~

- 2 2 0 -
S2 2 2 N N 0 0 0 -

~'W -~

4Z ~ ~

- - N - ~

-- -CO -~ - 222
~2202

1 2 142 142 - 2 0 2 1 - N 2 0 0 U -

-~ 121 UIU .~1U

21 ~Z2 ~2 ~ N - 4 U ~ N - - - 4

~2 521~
~2 221

- 2 0 0 - - - N 0 0 0

Zz £~ Z~, ~
4

22422242
-

.2 U

202
.. 2 20 N

~.. UL~. 2£ -1 2 - 2 2 2 - N 2 2 0 2

4 -

- ~1± .U 0 - ~ - - 2 ~ 2 2 ~

fl .-. N1 2 2 2 1
2 2 0 1

~-I ~2£W1~~- - 2 2 = - N 0 0 0

2.-... 2 ~ 2 -
2 N - - 4

.~,2 4Z2~~
2222£

- 2 0 0 - N 2 0 0 -

2 I441~Z£££
.~IU ~ 2 2 2 - - U - N - -

~ -X.J 224 2243 2 2 2 2 N 2 2 2 2 2 1

- 0 2 2 £ N 0 0 0 U -

N - - - 2 ~ - N N ~

211124 £4~- 2 2 2 2 - - 2 2 2 2 -

.0
-~ - 2 2 2 - N 0 0 0 -

-

2222

-14 2 - ~ 2 2 2 ~ 1 N 0 0 2 U

-, - - 4

222 21

222 2
N 022

.220
2 - -~ - ~

2222
2222 -

~20 02 N 0001

- N 224
2 .P J -'

22222

022£
ZNO 22 U
2

NW ~-2
ON - 2

22222~
22222

0

222 ~ - - - U

2
~ 22 2 2 ~ 2222 N

2 1% 0022

2
~ 42 U 22

N-----

1000202
200200

4
4

0.
0.

25

0 1 ~ ~ 0 0 N N 1 .

- a0 cN 0 00 x

0 0 00 N 000C

ON~~~~ N z0- ~ '

0 0 a

w m NC 00

ON 0 '0 .J 0 N - - 4
N 00 O 0 C a -0

Nu 00 O C~~O C0 z4N 0 0

0 00 ' N 0004:.

- COov NOC u

O-Z 0 0 u,

-j- 31 N 0 0 0 z

.4N 00 1 0 %0
-2 - 0 0 0 u z a 0 0 x

0 z w~ z~.3 .. O

x0 == NO J% 'n a 0

04 mz X' a 000pA 4 Q a N CONO
0C -Z -- =- - =zz%

",C 2 0 .V 0 @ 0 -
z--W - - -0 0

Z -. 0! a --NC=
Z4 M .

lx4 02 OX - 0 00
-±= zQ . 'Lwr - N CN NI 0

tww0 -
. 4I @ 2 N 2 @ .
X= 30 1 - 00-0

m. = - -

=-.C 0.
U=.c C 0 0 0 1 24O N

=~ 4 C C -00
Z0.D 2020 @20 afO 0 -C0 0L

0 L 40 M
0 ~ ~~m C=4 2N 2. @

-:~j ~Li.4 0.4 0UJ -0 0 0 - -00 0 4

0a J4 0 p4 140 LL NC CC

26

2 NC -~ 43 N N N Z

- co .NO 2

AsN N u m m Cu
N 202% NO 22

-0 02N 0

C~r N N N z

N C U4 l N W

22 w N 02

100m N 00 A

=C C W N x

N-- -- cc02

2J N p02

z N Nv N U P u

N22 N 200

42

2 2 C C- 3 z C- -

-r - 422 1N 2 2

4 A 222 U N . N 20L

27

0
OflZ

-~ 00011 ~ ~A 000

00 ~ 2. ~2 ~ 0000

~

'400 00 000011

~000 ~.j N 0002.2.

'400011
'40001~

-0002.2.
Al 0002.:

1 - - -
- - -

'40001
'4000%

-00 oa~ ~0 00 Z

* ~ A ~ I

'40002
Al 0001 I I

-. 0002.
A) 0002.2.2.

~~~2 
/~ ~J

A) 0001 AD 000%

000 a. Al 0002

U -- - U W Al - -

'4000% 
Al 0001

00~ 2 NOO

~ 0 ~ -4

Al 0001 
'gO 00£

0002. 
Al 0002.

Al .- ~ ~.A ~ '40-~ 42.

A) 2001 
A) 0001£

~0002. 
N 0002.2.

- A) ~ -' ~ - - - -

-U 0001 
'40001

~00 2. Al 000 ~

~0004Z-. 
0

- '4220111 
'4202%

0202.2.1 
Al 0001

2.

0 
0 .--. ~4 0-00 W~

Z 0 2 - .0001 
.000

- 0 0 ~o002. 
Al 0002

2. J M

0 0 
4

.~j 02 0 0002 
-. 0002

O 0 4~.. ~ -000 * Al 0000.

-1 - - c.~ 42. ~- ~ - - I

* - 10 3 
-000£

L~. ' 0~ ... 00 0 U 2.2. ~ 0002.

A0t~ 21 2 
-

~-2 ~2. 11 4 Al -

I - £ .. 200% 
Al

4 ~ 0002

-- - -- 
I

- .. ~ z: z~ u~ .. 01
22 2~ 2£ - 0 0 0 2. Al 0 0 0 2. Z

O .~0 02 02. ~.0022

~,, ~U 
a - ~A I

2 11 2.~
~J1 02.0 - 2 0 0 Al 0 2. 0 ~

O ZV~0 0 - 0 0 0 2

4 2J~~ 
- 0 0 0 ~

~ - - - 4 2. ~ - A 4

~ U4J I..) M -. ooOll Al 0000.

O 2. 0 2.40 2.40 - 0 0 0 0. 0.

- ~02. MI..) MI..)

Z -20 lU)C 1.1.0 N N fli ,li I - 4 N Al - U

2 ~ - 2 0 0 1 I 0 0 2 Al

4 iLl. 10 ~ 2 0 0 2. 1 2. Al 0 0 0 ~

MOM£.. 
2 0 0 1

2. - 1Z4012
4

0 - - - .1 
-

~ ZM .~001 
Al 0002.

- ~ :2 2 -0002.

-.:2.1.~.C 
NO

2;;; 

~ 
~;

01M J2. ~M

.. C-.. 2 ~)~£ 
-. I 0 - - - 4 1 2

-21 ~~42 02J2Z 2 0 0 0 1 0 0 0 0 1 I I
0 0 0 2. Al 0 0 0 2. 2. 2.

O
2.UJO 0 - A -' - 0 0 .1' ~ U

M.D X.J J24 0*43 0 2 0 2 1 0 0 2 0 0 Al

441 - 0 0 0 2. Al 0 0 0 U 2

~ - - - 2. ~D 2. f. Al - - 1 0

0 0 0 0 £ 1 1 0 0 0 0 1 1

2 0002.O.2. NO 00 2.U

-~ 

C AL A

I U 2 ~ - - 0 o 0 0 1

00001 
Al 0002.

00~ 2.

~ ~ -~ 0 0

Id' N'~~ Al -~ 000 0~-
000001 N 00011
- 0 0 0 U 2. - .i A 1

0 N~ -, ~ 22001

0000% 
NO 002.

-0002
- A 4 ~ 04 1

4 0 - - U) -

o0201 
oOOOO£ I

... o002. 
2.0000 ~ 2.2.

O NN - - U 00 Id~ .t. ~

20000 ~ 200000%

0002 
. N 000 U I

2.
-412. l~ - - -

.0000 gIl .~.0000%

-
3.2.2. 100002

4

2 
- Al '

C 41 ~J
----------

-
Al 

% - -

4 
4

1000000 
100000004

2. 
2.



28

-0 w2 NO 0 a.

N - N 330

a2 4 CL 9292 0 .J

J-0211 2 NO 00 zI2

a Z002 N 00

v- 00a02 U . NO z2.22.

z 4 N9 2 NI9N99
Nj 00 39 N 3 0

j 303%p N a0 -jm

N 0031 N 0009

0002 Nw=w= aaczf 0 00a 2.

I - N--N- L

- L Z - -U Ni 0 0 z

z x -j 2. 330 - 0 0

0~ 0 - 0 0 tn0 0 L

a& 02 0 - 00 33I0a

-W. N 002.A

4~~ ~ N 922L 49

CO 0.W-0002. NoO 0 "I2

4 ~ ~ ~ ~ ~ C M92 Z4-2 N 0 c 0 92



29

a 00 a CA 6)00

U 0 z to

N -Owa NO a00. 4i

ru N0 - N -
2N a 0 MMS~. a a Ca

.0 N 0 0 - z .N 420 0 0g

'CI a Aa a a 3

0~~C 'A- U--

JCJ 0 0 CL Z. N. 0 00 A

zN- MO NO

co a a a. 2.00 a
4 -3 N 'I u A J,

0

-= - c j a 0 N N0

Q MA AU 00 a. u3 NC00

CAA

C2 -n N - 3 N 00 'm
-zj =1 *003 00

0.- -C 06 N 0 Nn00

02 0 ~ 0 00 - a CL

AJ u -a -f4r0 '

.5 '- -Z -Z- 4Z 1 N -
4 o 2 a l CL c fu a

- .c cm 20 -
- 0 c c='. V:3. t o N A U'0 . .0 a Go

- 0 1 .J 000 000

-~C 0 - 00 2N 0 0 c 3.

in -o -~ - -- - - - - - - - -,



30

0

NZ X N 5£

u 0 N 0 0 z

-- -r-'uf

-Kk 09 ' NO 5

J, 4; N- - -
NzZ. Z 90 1 x a95x

N~~~G 00 %N.3 2

'fiz --= =- -z

a:0 00 0 0f

- N~-N

N 5 5 9 . 5 5 5 '

= 7 3 * 9N-

AN -1- SO f

44 -- 42

!!0 2 02 -I 5 -4, 5 - a

2 0 ~tc4 w 5 0 . 5

X0 Q %.
-~k w ~ 0

JO~~x tv033542

2U 50 0~ 00 ~ U 000



31

N -o o0 0 z

eu02o o 0

S00 0 NO00

tz@

WN -x -

;.j6.

MCL co 0 02 z00 
'

00 0N 0z00c

al S IC 0 M

N ~ -, a.0 
0 1

CNOO 
00

0A:Z 000 % Al 00IV

C000wAl000

2X4 00 000 l

=N .1~ z ol0 2tl0 0 '

-00~~ 
NO 00



32

M - 0 0 -,

-ie 000 Zo i

~0 00fu 0 00

ON -0 fu 0

oC ~ 3 00 4 0 0

r- -K -"A .

NOS 0%'400 co

oO O 400

dv - 0 0

N 000 c w00 z

Z* Nt. -.a fu0 0

t200 NL xo

0 c f

No '4000N0o oa

NNh a

NO 003 '400M

o0 0 '40 c000

c .r o o

N c0 1 Gr00



33

0~ 6WA
N 000 U N 0 0 4

~0 0 ~ AN 0002

* N 4(~ 00A A A

N p 0 00

00041N 00 Uco

- 0 0 A to

ou NU
em oA4 o

02 
2

AA 
AJ

NLI oo0 N 00

NO -U .A30

2. NO 0 02

eu0 A N 0 0 a)

a. N~ 
ZN U A u

4.00.t 
@ 0

0002 N oor

0 Aa ~ O

4 N 000N 000m

2. A 00 ~ -N 000

-
c L4



34

* N 'A-A 04 O

AAA 0 0 -

*v -- %

.00 00 0

U4- LA U. N

N9 00 2 50

-@ 000 NZ2 0

0--j u UN

A .%Z NO 0400

410 x- DZ 220Xz
MA 2 N 20 z

-w a.. a

1 0 00 0 p U

NZ 1; ; -- 0 - -
00 Z -0020= N00032

co 0- c

4~~~l u I

A -0 I 222I02it



35

o 0 0 N o

NO 00~ N 000

~00 00N @ 0

-CNL" -K 0 0 Uf

x-i-c Li z 0 0 c

N z "00 NNW02

ZM A0r w 'V -U0 0

c-- z ONw -- 4

r -j N @NZ r00w

N:w NOz -;Z

z 0 -a _;N -- U j

02 0 c0'.' 00
=-L-WUo L sc 0 0 02 N 0

40T

0 ~l - - NJO - L



36

S -5 - Ad 'o'A0 a =.1 ; k

~v j, Lm P -~

'D 5 V 5 1

-m0 f 0 5 U

j, - 1US4-

!T 555 2. N n 55 .

-5 0 UUNo o0 U I

"N -; 'Z U; "N - -
o00 Q C2 z

Lo2NO ~
x= ~ ~ . o C,04e

N3O 0o= zO

.c,0 PAUNO 0

-13 o - o c

-9 -A ---A50

-jz -x - 4
3 Nw - N=5 '

xI N~ 000

- N S N -

U N - N 505

I 5 0

-c -N 5 - N '~z



37

0 N d X 0 a 0 2

N 0 0 0 0 fm 0 0 00 -

to a0 NO 0 2

- @000 N 000

~~--0 - x

N 00 0 0

000 Ida IC N 00

-cr 0 -z N w

-0 02 7 00 z

x 0 Li~ 0 0 *0 Z

z2 Jz J Z 00 00 I. N 0000

-a -00 000

0 0 0 fN N N m -
,~ ~~~~~ 02z- 0 0

O 0 4U 4 0 02N=0 0Z



38

o N-~-~ N N N

o0C o 0C z

N ~ ~ ~ ~ - N C

44- U2 ~ N 0 U

z
-4L C CUC oC C Z

.0 N - 0= ; N N W'

N~~~ Cz

A00 o 4,CC

:r.0 Z3: N O GM

140 43. Nx aC -, -

000 NCC U

4u 1N N

z .52 N N No

N -N 0 C A w4C

I N CC

4~



39

SECTION 3

REFERENCES

INTRODUCTION

The hypothesis or propositions used in this survey were formulated by

the author from the literature, case studies, and his own experience.

This section lists the references and case studies on which these

propositions were based.

In formulating the hypothesis or propositions, each of the problems

that had been recorded in the literature as being a software engineering

problem was looked at from the viewpoint of a newly assigned or newly

promoted project manager, working alone in a potentially unfriendly

environment, and faced with all the decisions he or she must make to

successfully deliver the project on time, within cost, and satisfying the

user's requirements. Therefore, the statements made by the authors in the

literature have been rewritten in an attempt to reflect how a project

manager might view the problem, not necessarily how it was stated by the

referenced author.

Following the references are the 20 propositions and the specific

sources for each. To insure complete honesty of reporting, each

proposition is followed by an exact quote from the reference, including

page number, so that the readers can judge for themselves whether or not

the author interpreted a reference correctly. Where there is no reference

underneath one of the propositions, the proposition is wholly that of the

author. As an aside, the number of references behind a proposition gives

some weight to the seriousness and/or at least the visibility of that

particular proposition.

Although the author attempted to obtain a primary source when a

source document referenced another document, if the primaL, 3ource wasn't

readily available the secondary source was quoted.

It should be pointed out that the initial propositions and



40

questionnaires were composed in June 1977 and distributed between August

and November of that year. These same propositions were updated,

clarified and rewritten in November 1977, and widely distributed in the

form of a second questionnaire from November 1977 through December 1978.

You may note that some of the references are dated after 1977. This was

done for purely academic reasons to show that the problem has not gone

away. It is of course entirely possible that the problems reported in the

1978 sources were influenced by the questionnaire and not the other way

around. The author leaves this unresolved question to the reader.



41

REFERENCES

[ADP Org Workshop, 19781 --- Invited Workshop on "Organizing ADP Project,"

Cosponsored by: National Bureau of Standards, IEEE Computer Society, and
Federal Interagency Committee on Automatic Data Processing (13-14 Jun
1978)

[Aron, NATO Conf, 1969] --- J. D. Aron, "Estimating Resources for Large
Programming Systems," Software Engineering Techniques: Report on a
Conference Sponsored by the NATO Science Committee, J.N. Buxton and B.

Randell, Editors (27-31 Oct 1969), pp. 68-79

[BNDATC SOW SW-A-44-75, 19741 --- Statement of Work, "Reliable Software,"

SW-A-44-74, Ballistic Missile Defense Advanced Technologies Center
(BMD0ATC), Huntsville, AL (25 Sep 1974)

[BUDATC SOW SW-A-88-75, 1974] -- Statement of Work, "Data Processing
System Requirements," SW-A-88-75, Ballistic Missile Defense Advanced

Technologies Center (BMDATC), Huntsville, AL (9 Dec 1974)

(Boehm, 1972] --- Barry W. Boehm, "Software and Its Impact: A

Quanti'ative Assessment," Technical Report P-4947, The Rand Corporation,
Santa Monica, CA (Dec 1972)

[Boehm, Brown and Lipow, 1976] --- Barry W. Boehm, J. R. Brown, and M.
Lipow, "Quantative Evaluation of Software Quality," Proceedings, Second

International Conference on Software Engineering, IEEE-CS, pp 592-605
(Oct 1976)

[Boehm, 1974] -- Barry W. Boehm, "Software Engineering," IEEE
Transactions on Computers, Volume C-25, Nr 12, pp 1227-1230
(Dec 1976)

[Brooks, 1974] --- Frederick P. Br, ons Jr., "The Mythical Man-Month,"

DATAMATION, Volume 20, Nr 12 (Dec 1974)

fCCIP-85, 1972] -- "Information Processing/Data Automation Implications

of Air Force Command and Control Requirements in the 1980's," (CCIP-85),
Volume 1: Highlights, SAMSO TR72-141 (Apr 1972)

[Cooper, 1978] --- John D. Cooper, "Corporate Level Software Management,"
IEEE Transactions on Software Engineering, Volume SE-4, Nr 4, pp 319-326
(Jul 1978)

[De Roze, 1976] -- Barry C. De Roze, Letter, "DOD Defense System Software

Management Program," Office of the Assistant Secretary of Defense,
Washington, D.C. (1 Mar 1976)

[De Roze and Nyman, 1978] -- Barry C. De Roze and Thomas H. Nyman, "The
Software Life Cycle A Management and Technological Challenge in the

Department of Defense," IEEE Transactions on Software Engineering, Volume

SE-4, Nr 4, pp 309-318 (Jul 1978)

[Keen and Gerson, 1977] -- Peter F. W. Keen and Elihu M. Gerson, "A

Politics of Software System Design," DATAMATION, Volume 23, Nr 11,
pp 80-84 (Nov 1977]



42

(Keider 1974] -- Stephen P. Keider, "Why Projects Failed," DATAMATION,
Volume 20, Nr 12, pp 53-55 (Dec 19741

(Klass, 1978] -- Phillip J. Klass, "NORAD Data System Has 100% Overrun,"
Aviation Week and Space Technology, Volumel09, Nrl8, pp 61-63
(30 Oct 1978)

[Kolence, NATO Conf, 1968] --- K. Kolence, In a discussion on "Software
Engineering Management and Methodology," Software Engineering: Report on
a Conference Sponsored by the NATO Science Committee, Peter Naur and Brian
Randell, Editors (7-11 Oct 1968), p 13.

[Lipow and Thayer 1977] --- M. Lipow and T. A. Thayer, "Prediction of
Software Failures," Proceedings 1977 Annual Reliability and
IMaintainability Symposium, pp 1-6 (1977)

[Manley, 1975] -- Lt Col John H. Manley, "Embedded Computer System
Software Reliability," Defense Management Journal, Volume 11, Nr 4,
pp 13-18 (Oct 1975)

(McCarthy, 1975] -- Rita McCarthy, "Applying the Technique of
Configuration Management to Software," Defense Management Journal, Volume
11, Nr 4, pp 23-28 (Oct 1975)

[Miller, 1975] --- Barry Miller, "Avionics Problems Bar Debute of F-15
With TAC," Aviation Week Space Technology, Volume 103, Nr 12,
pp 23-25 (Dec 1975)

(Ogdin, 19721 -- Jerry L. Ogdin, "Designing Reliable Software",
DATAMATION, Volume 18, Nr 7, pp 71-78 (Jul 1972)
[RADC R&D Program, 1977] -- Rome Air Development Center (RADC),

Unpublished R&D Program in Software Cost Reduction (FY 1977)

(Ruth, 1974] -- Captain Stephen R. Ruth, USN, "What can the Navy learn
from ALS?," Unpublished document (Approx 1974)

(Schwartz, NATO Conf, 1969] --- Jules I. Schwartz, "Analyzing Large-Scale
System Development", Software Engineering Techniques: Report on a
Conference Sponsored by the NATO Science Committee, J. N. Buxton, and B.

Randell, Editors (27-31 Oct 1969), pp 122-137

[Slaughter, 1973] -- John B. Slaughter, "Understanding the Software
Problem," Proceedings of a Symposium on the High Cost of Software, edited
by Jack Goldberg, Stanford Research Institute, Menlo Park, CA, pp 41-52
(17-19 Sep 1973)

(Spier, 1976] --- Michael J. Spier, "Software Malpractices - A Distasteful
Experience," Software - Practices and Experience, Volume 6, pp 293-299
(1976)

SRWG Report, 1975] -- Findings and Recommendations of the Joint Logistics
Commanders Software Reliability Work Group (SRWG Report), Volume 1:
Executive Summary (Nov 1975)

[Thayer, 1974] --- Richard H. Thayer, "The Rome Air Development Center R&D
Program in Computer Languages and Software Engineering," RADC Tech Report
Nr TR-74-80 (Apr 1974)

[Walsh, 1977] --- Dorothy A. Walsh "Structured Testing," DATAMATION,
Volume 23, Nr 7, pp 111-118 (Jul 1477)

I I I i l I . .. ',i :_,



43

QUESTION 5 (Problem 1) -- Performance specifications are frequently
incomplete, ambiguous, inconsistent, machine dependent, and/or
unmeasureable.

"People don't understand the completed operational system. . . . it
is sometimes unclear that even the customer knows what he wants."

(Schwartz, NATO Conf, 1969, p 1291

"The most serious problems (facing the Air Forces' command and
control data processing in 1985] involve the following areas:
requirements analysis and design techniques for command and control
information systems and automated aids to command and control systems
exercising." (CCIP-85, 1972, p 341

Some of the principle causes of unreliable, unresponsive and
incompatible software quality are, " . . • inaccurate statement of
requirements by user [and] inadequate understanding of user
requirements." (Slaughter, 1973, p 47]

"Research objectives: the objectives of this program are to devise
and demonstrate an advanced engineering methodology that supports the
design, development, validation and unambiguous communications of complete
and consistent data processing subsystem performance requirements in a
highly visible and traceable manner." [BMDATC SOW SW-A-88-75, 1974]

"The project is not adequately defined." "Definition of the project

is vague, misleading, or totally wrong." "Project completion elements are
not defined." [Keider, 1974]

"The fact that requirements often change during system development is
generally acknowledged to be one of the greatest sources of cost
escalation and schedule slippages in the acquisition of major software
systems." (SRWG Report, 1975)

"Software . . . in embedded computer system acquisition (has]

inadequate requirements analysis." (De Roze, 1976, p 1-2)

"Ideally, one would like to have complete, consistent, validated,
unambiguous, machine-independent specifications of software requirements
before proceeding to software design." [Boehm, 1976, p 1230)

"Specific goals of this area are the development of standard tools
and procedures which specify requirements. . . . Over 65% of all software
errors are generated in the design phase, and most of these can be traced
to poorly or inaccurately stated requirements." [RADC R&D Program,
1977, p 5]

"The requirements document was poor (weak and poorly defined, didn't
satisfy the user's needs, kept changing during the course of the project,
poor controls on change, etc.)." [ADP Org Workshop, 1978]



44

"The lack of means to produce clear, concise, and unambiguous
statements of user requirements is one of the biggest contributors to the
high cost of software." [De Roze and Nyman, 1978, p 3101

"First, the customer needs to be able to write complete, correct, and
unambiguous specifications for the software he wants to acquire."
[Cooper, 1978, p 325]

QUESTION 6 (Problem Nr 2) -- There are no decision rules for the software
engineering project manager to use in selecting the correct software
design techniques or tools available within the state-of-the-art.

"Programming management will continue to deserve its current poor
reputation for cost and schedule effectiveness until such time as a more
complete understanding of the program design process is achieved."
[Kolence, NATO Conf, 1968, p 71

"Adherence to standards and specifications is either not defined or,
if defined, not followed." "Knowledge of 'tools' to perform the project
more effectively is lacking." [Keider, 1974]

"The lack of application of system engineering methodology to
computer system design is the root of a number of critical problems in the
development of major weapons systems." [SRWG Report, 1975, p 55]

"The development of software requires a major investment in support
tools and facilities. If they are not available from previous programs
and not provided for in the development plans, a major schedule slippage
and cost overrun can result." [SRWG Report, 1975, p 58]

"The design of software traditionally has been a craft rather than an
engineering discipline. Consequently, it has tended to be unstructured,
with few rules and constraints." [SRWG Repcrt, 1975, p 591

"Softwac'e . . . in embedded computer system acquisitioi [has]
inconsistent application of tools and procedures." [De Roze, 1976, p 1-2]

"He needs more powerful analysis tools to help him sort out the
[design] alternatives." [Boehm, 1976, p 1230]

"Tools and procedures applicable to the major technical areas o.f
software design, development and debuggings/integration will be
explored. Various existing tools and procedures will be evaluated for
possible application in the Air Force. . . . Inputs from this work will
provide valuable guidance for the selection and development of promising
tools and procedures which will be integrated into USAF software
development environment." [RADC R&D Program, 1977, p 141

"The goal of [the software development] technical area is the
development of tools and procedures which assist in the production of
quality software." [RADC R&D Program, 1977, p 15]

"A particularly difficult problem is the choosing from among the



45

variety of demonstrated alternative methods, those software tools and
controls best suited for a particular program manager's needs. Thus, a
key role of the S&T (Science and Technology] program will be to survey the
successful software methods, and place them into perspective from the
program manager's viewpoint." [De Roze and Nyman, 1978, p 313]

QUESTION 7 (Problem 3) -- There is no measure or index of "goodness" of
code that can be used as an element of software design, and there is no
practical way to guarantee one program is better than another.

"We can look at two programs, ostensibly similar, and find that they
accomplish the same desired function. Yet, we will say that this program
is a good program, while that one is a bad program, but we don't always
know why." [Ogdin, 1972, p 71]

Some of the principle causes of unreliable and unresponsive software
quality are " . . • lack of standards by which performance can be measured
(and] poor testing and certification practices." [Slaughter, 1973, p 47]

"We recognize nowadays that the more programs we write for
applications of increasing complexity and sophistication, the more
uncertain we become of our ability to write these programs such that they
be as 'good' as possible." [Spier, 1976, p 293]

QUESTION 8 (Problem 4) -- There are no decision rules for selecting the
procedures, strategies, and tools to be used in testing software.

"The contractor shall identify, define, and recommend test tools and
techniques which are candidates for application to each element of the
software engineering approach as determined in the Software Engineering
Program [being pursued by BMDATC] ." [BHDATC SOW SW-A-44-75, 1974]

"The lack of application of systems engineering methods to the design
of software has led to systems that are non-modular, lacking well
established interfaces, and difficult to test." [SRWG Report, 1975]

"Software . . . in embedded computer system acquisition [has]

inconsistent application of tools and procedures." [De Roze, 1976, p 1-2]

"Software quality specifications and trade-offs (reflect a problem
in] lack of quantitative test standards." [De Roze, 1976, p 1-12]

"There has been no systematic attempt to develop complementary
verification techniques geared to determine software reliability as
software develops. . . . Testing continues to be 'a witch hunt'."
[Walsh, 1977]

"This [software debug and/integration] technical area is concerned
with the development of tools that support the software debugging
integration activities." [RADC R&D Program, 1977, p 15]

"The goal of this [testing] technical objective is to achieve more
comprehensive tests per dollar expended for Air Force software." [RADC
R&D Program, 1977, p 19]



46

QUESTION 9 (Problem 5) -- There is no measurement, or index of reliability

that can become an element of design and there is no way to predict

software failure; i.e., there is no practical way to guarantee (prove) the

delivered software meets a given reliability criteria.

There is no compreshensive and formalized set of techniques

which will . . • support design in quality or reliability across the

development cycle." " . . . The contractor shall identify and define the

heuristics related to design practices and development tools which impose

the "designed in" concept of reliable software for each element of the

Software Engineering Program." "The contractor should define a procedure

for combining the application of the test tools identified . . . into a

comprehensive reliability measurement technique." [BMDATC SOW SW-A-44-75,
1974]

"Because of the varied nature and sources of these errors, it has

been extremely difficult to satisfactorily define or measure computer

software reliability." [Manley, 1975, p 14]

"The final product was often characterized by lack of reliability,
which refers to the ability of a program to produce correct results when

given a specific input." [Manley, 1975, p 24)

"Since the field of software reliability engineering is new, it lags

behind the hardware reliability discipline and available methods, tools

and techniques." "Software reliability management techniques are

virtually non-existent, and therefore must be evolved." [SRWC Report,

1975t

"Problems in software quality assurance and control [show a] lack of

management monitoring of software reliability." [De Roze, 1976, p 1-5]

"Development of adequate analytical models and tools for predicting

cost, rai&.ciiity and maintainability in software [are required]." [RADC
RC&D Program, 1977, p 6]

"The goal of [the software data repository] is to create a

centralized repository that will serve as a focal point for exchange and

analysis of software data collected from . . . software projects,

personnel, companies and across different programming languages, and will

provide an invaluable tool in establishing standards of performance,
measures of software reliability and quality." [RADC R&D Program, 1977,
pp 19-20]

"It is desirable to be able to predict at the earliest possible

moment the resources needed to correct the causes of software failure and
determine where within the software to devote the most resources." [Lipow
and Thayer, 1977]

"A good software contract needs to pertain to reliability and

maintainability requirements. Since these concepts have not yet been
defined, how can they be included in a legal document? Assume for the



47

moment that the foregoing could be done, how then could the software be
evaluated to determine if it were in conformance with the correct
specification?" [Cooper, 1978, p 325]

QUESTION 10 (Problem 6) -- There is no way to guarantee that the delivered
software meets the user's requirements.

"One of the . . . most serious problems [facing command and
control data processing in 1985] involved. techniques for guaranteeing
that command control information systems have no software 'bugs' which
could cause a system to malfunction at critical times." [CCIP-85,
1972, p 34]

QUESTION II (Problem 7) -- There is no measurement or index of
maintainability that can become an element of software design; i.e., there
is no practical way to guarantee that a given program is more maintainable
than another.

"Development of adequate analytical model and tools for predicting
cost, reliability and maintainability in software [are required]." [RADC
R&D Program, 1977, p 61

"One [researcb] effort that is currently underway will develop
techniques for the construction of self-checking software in the
evaluation of computer program designs in terms of a quantitative measure
of maintainabilty." [RADC R&D Program, 1977, p 22]

"A good software contract needs to pertain to reliability and
maintainability requirements. Since these concepts have not yet been
defined, how can they be included in a legal document? Assume for the
moment that the foregoing could be done, how then could the software be
evaluated to determine if it were in conformance with the correct
specification? [Cooper, 1978, p 325]

QUESTION 12 (Problem 8) -- No technical discipline exists for the design
of maintainable programs.

"The integration of operational support requirements and the
transition from production into operational use are high on the list of.
major problems and weapons systems acquisition. The lack of
transferability of software, the lack of provisions for the maintenance,
and the cost of changes resulting from these inadequacies have been cited
in many previous software studies as important problems needing

solutions." (SRWG Report, 1975]

"Software maintenance is an extremely important, but highly neglected

activity." [Boehm, 1976, p 1235]

"Development of adequate analytical models and tools for predicting

cost, reliability, and maintainability of software [are required]." [RADC
R&D Program, 1977, p 6]



48

"In the future the DOD will need to take a comprehensive look at the
life-cycle approach to acquiring software. This will include the
formulation of design and management principles, development and
validation of software life-cycle cost models, and evaluation of design
methodologies for ease of maintenance and program update." [De Roze and
Nyman, 1978, p 3111

QUES!ION 13 (Problem 9) -- Planning for software engineering projects is
generally poor.

. * . the CCIP-85 study found that the problems of software
productivity on medium or large projects are largely the problems of
management: of thorough organization, good contingency planning,
thoughtful establishment of measureable project milestones, continuous
monitoring on whether the milestones are properly passed, and prompt
investigation and corrective action in case they are not." [Boehm, 1972,
p 16]

.Little or no time is spent in planning the project. Rather,
analysis design and/or coding is begun immediately upon the project
approval. The project leader is not permitted the 'luxury' of
planning." [Keider, 19741

"In general, poor planning can be blamed for most of the software
industry's inability to cope with these new demands and rapid growth.
Projects were initiated without a clear goal; thus, as programmers coded,
they made their own assumptions of the -urpose of the programs and this
often adversely affected the final product. Even when the goals were
clearly specified the development process suffered from inappropriate
planning." [McCarthy, 1975, p 23]

"In order to insure that development of major software subsystems is
well organized and managed, and all requirements are properly understood
and defined, it is essential to have a detailed development plan prepared
and evaluated prior to starting full scale development." [SRWG Report,
1975]

"Although the program manager should have on his immediate staff
system engineers who are knowledgeable about software, manpower
limitations often restrict staff to a skeleton organization. Without
other direct support, the program manager cannot adequately fulfill his
responsibilities for carrying out the extensive planning and monitoring
associated with the major new weapon system." [SRWG Report, 1975]

"To some extent an Air Force official conceded,'we underestimated the
size of the task'." [Miller, 1975, p 23]

"Lack of planning and operation guidance in day-to-day operation is a
problem facing management." [De Roze, 1976, p 1-8]

There is . . . "poor planning: generally this leads to large amounts
of wasted effort and idle time because of tasks being unnecessarily



49

performed, overdone, poorly synchronized, or poorly interfaced." [Boehm,
1976, p 1237]

"The thrust of this area [planning] is to develop and validate models
of the software production process • • . [which] enable the generation,
evaluation and refinement of uniform procedures for setting goals,
estimating resources expenditures (time, money, material and manpower),
and for revising plans efficiently and effectively based on internal or
external world events . . ." [RADC R&D Program, 1977, p 9]

"Not enough time was spent doing technical planning, defining the
scope of work, and developing the technical tasks list." [ADP Org
Workshop, 19782

QUESTION 14 (PROBL-7( 10) -- There is an inability to accurately estimate
delivery time of a computer program.

"It is very common for the cost and schedule of large program systems
to exceed the initial estimates . . .. Not only does the main resource--
manpower--vary widely in productivity and quality, but the secondary
resources, such as machine time and publications support, are frequently
unavailable at the appropriate times." [Aron, NATO Conf, 1969, p 68]

"One of the . . • most serious problems [facing command and control
data processing in 1985] involves . . . techniques for effecting timely
development of software without compromising flexibility or functional
requirements." [CCIP-85, 1972, p 34]

Problems associated with delivery schedule are caused by "poor
estimation practices, variable programmer skills and productivity,
unrealistic milestones." [Slaughter, 1973, p 49]

"RADC requires a good technique of estimating accurately the length
of time (and consequently cost) necessary to produce a large software
package." [Thayer, 1974]

• • • our techniques of estimating are poorly developed." [Brooks,

1974]

"No standards exist for estimating how long the project will take.
That is, each project is treated as a new and valuable system with some
individual responsible for estimation." "Estimation is not done by the
probable project leader, but rather, by whoever happens to be available at
the estimating time." "Short lead times are alloazed for estimates, with

corresponding inaccuracies as a result." [Keider, 197-4]

"Software . . . in an embedded computer system acquisition
[frequently has] inaccurate cost/schedule projections." [De Roze, 1976,
p 1-2]

"There is poor resources estimation: without a firm idea of how much
time and effort a task should take, the manager is in a poor position to
exercise control." [Boehm, 1976, p 12371



50

"Tools and procedures are needed by management to accurately
plan/forecast the resources (time, money, manpower and facilities)
required to develop a system to meet functional operational
requirements." [RADC R&D Program, 1977, p 5]

"Deadlines and milestones were unrealistic and not well ?lanned."
(ADP Org Workshop, 19781

"U.S. Air Force Program to modernize the North American Air Defense
Command's Real Time Data Processing System has an overrun of more than
100% in both time and cost and will provide no better inital capability
than the system it replaces." [Klass, 1978, p 611

QUESTION 15 (Problem 11) -- The ability to plan for resources,
particularly the number of programmers required, is poor.

"It is very common for the cost and schedule of large program systems
to exceed the initial estimates. . . . Not only does the main resource--
manpower--vary widely in productivity and quality, but the secondary
resources, such as machine time and publications support, are frequently
unavailable at the appropriate times." [Aron, NATO Conf, 1969, p 681

"Problems associated with difficulty in determining software
development costs are poor estimation of production cost, inadequate
programmer skill levels, uncertainty of cost allocations." [Slaughter,
1973, p 481

", • • our techniques of estimating are poorly developed."
[2rooks, 1974]

"Resource requirements are not scheduled for the project. Critical
items, such a keypunch, test time, user manual typing, secretarial, and
printing requirements, and are addressed only after they have affected the
project." [Keider, 1974]

"The lesson: It is vital to make appropriate allowances Lor elapsed
time in total manhours to reflect the real meaning of an acceptable
system. Further, be prepared to accept a drastic increase in elapsed time
when, in order to compensate for delays, a significant increase in total
manyears are used as a cure." [Ruth, 1974]

"Software • . . in an embedded computer system acquisition
[frequently has] inaccurate cost/schedule projections." [De Roze, 1976,
p 1-2]

"There is poor resources estimation: without a firm idea of how much
time and effort a task should take, the manager is in a poor position to
exercise control." [Boehm, 1976, p 1237]

"Development of adequate analytical models and tools for predicting
cost, reliability and maintainability in software [are required)." [RADC
R&D Program, 1977, p 6)



51

"Tools and procedures are needed by management to accurately
plan/forecast the resources (time, money, manpower and facilities)
required to develop a system to meet functional operational
requirements." [RADC R&D Program, 1977, p 5]

"Studies by industry and DOD have concluded that today there are no

simple universal rules for predicting software costs accurately, and that
to do so required an understanding of the nature of the individual program
and the individual routines within that program." [De Roze and Nyman,
1978, p 310]

"U.S. Air Force Program to modernize the North American Air Defense
Command's Real Time Data Processing System has an overrun of more than
100% in both time and cost and will provide no better initial capability
than the system it replaces." [Klass, 1978, p 61]

QUESTION 16 (Problem 12) -- There is no real quality method of designing a
project control plan that will enable project managers to control their
project.

"The main interest of management is in knowing what progress has been
made towards reaching the final goal of the program. The difficulty is to
identify observable events which mark this progress." [Kolence, NATO
Conf, 1968, p 56]

"Because project milestones are not determined at the onset of a
project, percentage of completion is usually equated to percent of hours
expended." [Keider, 1974]

"There is poor resources estimation: without a tirm idea of how much
time and effort a task should take, the manager is in a poor position to
exercise control." (Boehm, 1976, p 1237]

"The control area is aimed at three interrelated areas; tracking
resource expenditures, controlling deliverables and changes (configuration
management), and improving the ability to assess both cost/schedule
performance as well as technical performance during development in terms
of activity completion in end products sufficiency." [RADC R&D Program,
1977, p 9]

"The program manager's choice of effective software management and
control techniques is further complicated by lack of measurement criteria
and experience data." (De Roze and Nyman, 1978, p 314]

"In spite if this position, corporate management has few direct
control mechanisms for enforcing policy and standards among projects."
[Cooper, 1978, p 324)

QUESTION 17 (Problem 13) -- There are no decision rules for the selection
of management techniques for software engineering project management.

"The software acquisition management standards [reflect a] lack of



52

consistent policy and planning guidance (via standards, regulations,

instructions)." "The software acquisition management standards (reflect
a] lack of standard terminology governing software acquisition and
management." [De Roze, 1976, p 1-7]

QUESTION U& (Problem 14) -- Techniques for the selection of project

managers are poor, generally resulting in poorly managed projects.

"Change of personnel is one of the major ceasons why projects fail.
Personnel, including project leaders, are removed from the project, with
no adjustment to the schedule for the time lost due to the change."
[Keider, 1974]

"A wide variation exists in the degree in which program managers are
staffed with personnel competent in system engineering and software
applications." [SRWG Report, 1975]

"Personnel development and training [problems show a] shortage of
practitioners." [De Roze, 1976, p 1-10]

as a very general statement, software personnel tend to
respond to problem situations as designer rather than as managers."

(Boehm, 1976, p 1237]

"Problem/issue . . . insufficient understanding by managers . . . (in
the] acquisition of software.' (De Roze, 1976, p 1-8]

"The project manager position was weak (was inexperienced, didn't
assume leadership, didn't communicate with the user, etc.)." [ADP Org
Workshop, 1978]

QUESTION 19 (Problem 15) -- There is no means of measuring with any degree

of accuracy the quality and quantity of code expected from a programmer.

"There is a great deal of difference in programmer capability . . .

[which] does make it much more difficult to schedule and to measure

progress in the early phases." [Schwartz, NATO Conf, 1969, p 130]

"It is very common for the cost and schedule of large program systems
to exceed the initial estimates . . . Not only does the main resource--
manpower--vary widely in productivity and quality, but the secondary
resources, such as machine time and publications support, are frequently

unavailable at the appropriate times." [Aron, NATO Conf, 1969, p 68]

Problems associated with delivery schedule are caused by

poor estimation practices, variable programmer skills and

productivity, unrealistic milestones." [Slaughter, 1973, p 49]

"RADC is interested in any behavioral studies on programmers, their
profiles, qualifications of good programmers, and any other data which
will lead to better selection procedures, training, etc." (Thayer, 1974]

"The [research] goal of [the software data repositor] is to create a



33

centralized repository that will serve as a focal point for exchange and
analysis of software data collected from . . . software projects,
personnel, companies and across different programming languages, and will
provide an invaluable tool in establishing standards of performance,
measures of software reliability and quality." [RADC R&D Program, 1977,
pp 19-20]

"The best practitioners, individual superstars, can produce high
quality and efficient software on schedule at low cost, however, it is not
very useful to decree an approach to 'hire just good programmers'. In
fact, there is no scientific measure of either quality of software or the
performance of practitioners." [De Roze and Nyman, 1978, p 311]

"Many projects are pursued by the project manager completely unaware
that skills available to him are within his own shop. A skills inventory
of past accomplishments of each staff member simplifies the staffing of a
project and assures the experience is 'recyclable'." "Staff or members
are considered 'universal experts'. During estimation stage, and again
during implementation, staff members are considered to be equally
competent analysts, designers, programmers, librarians, documentation
specialists, etc. They are assigned to any of these functions with little
consideration given to their abilities." "Personnel are not evaluated.
There is an ideal time and only one, to evaluate the performance of an
individual on a project and that is immediately at the conclusion of a
project. Yet, only too often, personnel evaluation is tied to prominent
anniversary dates." [Keider, 1974)

"It is a well known (and documented) maxim that productivity of
[analysts, system programmers and applications programmers] is little
understood, and, as a result, seldom evaluated. As a result, two persons,
each earning $25,000, could be producing at a rate of X and 5X and very
little is typically done about the disparity." "These issues combine with
the turnover rate which reflects on the man with the 5X as well as the X
producer [and] leads to the lesson: Never assume stability of data
processing skills area for the life of the project. Make allowances for
significant turnovers and assume that the high producer will go first,
requiring far more than a I for I relief." [Ruth, 1974

QUESTION 20 (Problem 16) -- There is a poor accountability in most
development projects, leaving some question as to who is responsible for
various project functions.

"Project leader responsibility is undefined." "It sounds strange,
but many projects flounder through to completion without a rudder." "In
general, very few installations have one man accountable for an entire
project, but rather fragment the responsibility to the point where no one
person is accountable." [Keider, 1974)

"Lesson: For a major project, allow senior managers an opportunity
to be associated with risk of invention as well as those of limitations.



54

This means that for a major data systems project an officer or civilian
should be appointed with the understanding that the tenure may be as long
as 5 or 6 years." (Ruth, 1974]

"There is a poor accountability structure: projects are generally
organized and run with very diffuse delineation of responsibilities .

[Boehm, 1976, p 1237]

"There wasn't a single, recognized authority in charge, coordinating
staff activities." [ADP Org Workshop, 1978]

QUESTION 21 (Problem 17) -- There is much consternation in industry
concerning how best to organize for the accomplishment of a project (e.g.,
should the project be organized around the function, the project, or under
a new matrix system?).

(No References)

QUESTION 22 (Problem 18) -- It is difficult to impossible for a project
,manager to have the requisite visibility to be able to determine whether
the project is on scLedule and within cost.

"The main interest of management is in knowing what progress has been
made towards reaching the final goal of the program. The difficulty is to
identify observable events which mark this progress." [Kolence, NATO
Conf, 1968, p 56]

"Good programs are creative . . . the art of programming requires

creativity. There are non-programmers involved in most aspects of the
system development process..... Non-programming managers usually have
the option of trustin, the programmer in situations or trying to inflict
their judgement on the programming personnel. Either course without
adequate understanding is dangerous. It is extremely difficult to judge
the actual status of the system at any given time. There is little
methodology used in testing or system development. No one knows the whole
system." (Schwartz, NATO Conf, 1969, p 1301

our estimating techniques falliciously confused effort for
progress, hiding the assumption that men and months are interchangeable."
. . . schedule progress is poorly monitored." [Brooks, 1974]

"Because project milestones are not determined at the onset of a
project, percentage of completion is usually equated to percent of hours
expended." "The project team's activities are not clearly represented to
the end user." "Posting or reporting of project information is not
performed, resulting in the project leader being unaware of what
completion percentage is, and the user being unaware of the impact of
changes upon the original system." "Project reviews are typically
exercises in trivia." [Keider, 1974]

____ ,,, , _



55

"First, [lesson] aggressive management of data systems demands that
assumptions about the hardware, applications and systems software be
reevaluated frequently. Simple restatement of previous knowledge or 'gut
feels' may be enough in some kinds of projects but not where the stakes
are dramatically high as in a mammouth data system effort." "The second
lesson has to do with bench marks. It is simply this; about every 6
months the original bench marks should be reviewed. To do this otherwise
would be comparable to a navigator using dead reckoning from port to port
without ever getting a firm fix on an intermediate position." [Ruth,
1974]

"The project was killed, not because it was technically unfeasible,

but through the sheer frustration of management of not knowing when the
project would be delivered or how much it would cost." (Source:
unidentified member of a project to deliver a large real time range safety
system at Vandenberg AFB, CA 19741

"The lack of software visibility, as compared to hardware, in the

acquisition of major subsystems is generally agreed to contribute to the
fact that it is not well managed." "The abstract nature of software makes
it difficult to measure progress, and makes it even more necessary to
formalize the steps in design, and limitations, and test." (SRWG Report,
1975, p 51-53]

"There is poor control: even a good plan is useless when it is not
kept up-to-date and used to manage the project." (Boehm, 1976, p 1237)

QUESTION 23 (Problem 19) -- There is a general lack of traceability from
the requirements specification to the final code.

"Research objective: the objective of this program is to devise and
demonstrate an advanced engineering methodology that supports the design,
development, validation and unambiguous communications of complete and
consistent data processing subsystem performance requirements in a highly
visible and traceable manner." [BMDATC SOW SW-A-88-75, 1974]

"Most automated aids to software design provide little support for
such management needs as configuration management, traceability to code or
requirements, and resource estimation and control." [Boehm, 1976, p 1238]

"Specific goals of this area are the development of standard tools
and procedures . . . to allow verification and tracking throughout the
acquisition cycle." (RADC R&D Program, 1977, p 5]

QUESTION 24 (Problem 20) -- There is, in general, an inability to measure

the quality of a program.

One of the principle causes of problems in software quality is "lack
of appropriate management attention and control." [Slaughter, 1973, p 48]

there is no comprehensive formalized set of techniques which
will . . . support design in quality or reliability across the development
cycle." [BMDATC SOW SW-A-44-75, 1974]

A _ _ _ _ _ _ _ _ _



56

"Quality control: typically, when a project is completed, it is
never evaluated for quality. The quality control criteria is 'does the
program run?'." [Keider, 1974]

"In general, poor planning can be blamed for most of the software
industry's inability to cope with these new demands and rapid growth.
Projects were initiated without a clear goal; thus, as programmers coded,
they made their own assumptions of the purpose of the programs and this
often adversely affected the final product. Even when the goals were
clearly specified :he development process suffered from inappropriate
planning." [McCarthy, 1975, p 23]

"Software quality specifications and trade-off [reflect problems] in
lack of quantitative quality, reliability goals and objectives." [De Roze,
1976, p 1-2]

"Software . . . in embedded computer system acquisitions [has] low
quality." [De Roze, 1976, p 1-2]

"Why evaluate software quality? Suppose you receive a software
product which is delivered on time, within budget, and correctly and
efficiently performs all specific functions? Does it follow that you will
be happy with it? . . . Here are some of the common problems you may
find: The software product may be difficult to use or easy to misuse.
The software product may be unnecessarily machine-dependent, or hard to
integrate with other programs." (Boehm, Brown, and Lipow, 1976)

"There is inappropriate success criteria: minimizing development
cost and schedule would generally yield a hard-to-maintain product.
Emphasizing 'percent coded' tends to get people coding early and to
neglect such key activities as requirements and design validation, test
planning, and draft users documentation." [Boehm, 1976, p 12371

"Another on-going [research] effort will begin to develop a working
definition of software quality. The software quality definition will be
built by determining the factors relating to software quality, identifying
pertinent criteria that make up each factor and establishing metrics for
these factors so that the objective analysis of software quality can be
permitted." "RADC is developing a number of metrics for use in the
quantative measurement of software." [RADC R&D Program, 1977, p 22]

"When criteria for success are ambiguous and lack a simple measure,
decisions concerning system extensicns will appear arbitrary from the
perspective of some of the interested parties." "The less clear the
definition of success and completion, the more political the decision
making will be. [Keen and Gerson, 1977, p 83]

"A common pitfall is that project managers tend to be development
oriented. The most pressing responsibility is the development of their
system within budget and on schedule. Consequently, they optimize the
development process, often at the expense of overall life-cycle cost
considerations." [Cooper, 1978, p 320]

.........



57

"A good software contract needs to pertain to reliability and

maintainability requirements. Since these concepts have not yet been
defined, how can they be included in a legal document? Assume for the
moment that the foregoing could be done, how then could the software be
evaluated to determine if it were in conformance with the correct
specification?" [Cooper, 1978, p 3251

"In the future the DOD will need to take a comprehensive look at the
life-cycle approach to acquiring software. This will include the

formulation of design and management principles, development and
validation of software life-cycle cost models, and evaluation of design
methodologies for ease of maintenance and program update." [De Roze and
Nyman, 1978, p 3111



58



59

APPENDIX A

CONTRIBUTORS

INTRODUCTION

This appendix lists those individuals (usually project man-

agers) and firms who completed the survey. This list is provid-

ed to: (1) acknowledge the contribution, hard work, and willing-

ness to contribute to the general knowledge of computer science

by these individuals, and (2) to lend credibility to this report

by making visible the excellent source of the data.

These people and companies are all members and supporters

of the AIAA Technical Committee on Computer Systems.

At the end of this list is a group of individuals that

wished to remain anonymous in order that they could provide more

candid, truthful answers.

It was obvious from the answers received that the contri-

butors worked very hard making the answers as truthful as possi-

ble. Again, the authors thank you.

CONTRIBUTORS

Mr. Philip S. Babel Simulator Systems Program Office
Technical Advisor for Aeronautical Systems Division
Computer Systems Wright-Patterson AFB, OH 45433

Acquisition

Mr. Francis J. Barrett Data Automation Branch
Chief, PEACE SIGMA Sacramento Air Logistics Center
Development Unit McClellan AFB, CA 95652

Mr. Frank L. Bernstein CALCULON Corporation
Vice President 1501 Wilson Boulevard
Federal Systems Division Arlington, VA 22209

Mr. Herman S. Binder Grumman Aerospace Corporation
Section Head, Systems Design Bethpage, NY 11714
Analysis & Integration
Section



6

Mr. M. Lenard Birns Defense Systems Division
Program Manager, Naval Computer Sciences Corporation
Warfare Gaming System 304 West Route 38, Box N

Moorestown, NJ 08057

Mr. Jack E. Bloodworth The Boeing Aerospace Company
Manager, ALCM Software P. O. Box 3999

Seattle, WA 98124

Mr. David A. Brown Data Automation Branch
Chief, ARRCS Development Sacramento Air Logistics Center
Group McClellan AFB, CA 95652

Mr. Allen G. Burgess Equipment Division
Manager, Computer Systems Raytheon Company
Laboratory 528 Boston Post Road

Sudbury, MA 01776

Mr. George R. Cannon, Jr. Logicon, Incorporated
Manager of Vandenberg P. 0. Box 1567
Programs Vandenberg, CA 93437

Mr. Frank J. Cerulli Lockheed Electronics Company,
Director of Engineering Incorporated
Computer Systems Division U.S. Highway 22

also* Plainfield, NJ 07061
Products Systems Division

Alr. James P. Chilton McDonnel Douglas Astronautics
Director, Data Processing Company
Sub Systems 5301 Bolsa Avenue

Systems Technology Program Huntington Beach, CA 92647

Mr. Arthur C. Ciccolo The Charles Stark Draper
Associate Division Leader Laboratories, Incorporated
Computer Science Division 555 Technology Square

Cambridge, MA 02139

Mr. James W. Clark United Technologies Research
Manager of Engineering Center
Operations East Hartford, CT 06108

Mr. Jerry E. Cummings Directorate of Plans & Programs
Program Analyst Sacramento Air Logistics Center
Logistics Research & McClellan AFB, CA 95652
Systems Division



61

Mr. G. Russell Curtis General Electric Company
Manager, Simulation & Data 450 Persian Drive
Systems Sunnyvale, CA 94086
Information Systems Programs

Mr. Alan J. Deerfield Submarine Signal Division
Consulting Scientist Raytheon Company

P. 0. Box 360
Portsmouth, RI 02871

Mr. Edward M. Dunaye Planning Research Corporation
Director, Quality Assurance 7600 Old Springhouse Road

McLean, VA 22101

Mr. Joe N. Dyer Lockheed Missile & Space Company,
Manager, Equipment Evaluation Incorporated
& Systems Programming P. 0. Box 504

Sunnyvale, CA 94088

Mr. Richard R. Erkeneff McDonnell Douglas Astronautics
Chief Design Engineer, Company
Data Control & Processing 5301 Bolsa Avenue
Systems Huntington Beach, CA 92647

Mr. S. G. Evetts Vought Corporation
Project Manager P. 0. Box 5907

Dallas, TX 75222

Dr. George R. Fath General Electric Company
Acting Manager 901 Broad Street
Avionics Development Utica, NY 13503
Engineering

Mr. Herb Finnie Lockheed Missile & Space Company,
Manager, PLSS Software Incorporated
Development P. 0. Box 504

Sunnyvale, CA 94088

Mr. J. I. Freeman Vought Corporation
Avionics Project P. 0. Box 5907
Engineering Dallas, TX 75222

Dr. Virgil "Smokey" V. Griffith McDonnell Aircraft Company
Chief, Electronics Engineer P. 0. Box 416
Digital Computer & Software St. Louis, MO 63166
Engineering

.~~~~~~~~~~~* , " . . - . ....,...- °,_ . ,. .. ...



- .. ... I~i ,i 7 7 -ill -

62

Mr. Harvey I. Gold System Development Corporation
Manager, Software Technology 2400 Colorado
Department Santa Monica, CA 90406

Dr. Kenneth A. Hales The Boeing Aerospace Company
Manager, MSP Mission Control P. 0. Box 3999
& Software Seattle, WA 98124

Mr. Uwe W. Ibs Pomona Division
Design Specialist General Dynamics Corporation

P. 0. Box 2507
Pomona, CA 91766

Dr. Peter R. Kurzhals Headquarters National Aero-
Director, Guidance, Control & nautics & Space Administration
Information Systems Division Washington, DC 20546

Mr. John C. Lemanczyk Grumman Aerospace Corporation
Manager, Software Technology Bethpage, NY 11714
Development

Mr. Myron Lipow Defense & Space Systems Group
Senior Staff Engineer, of TRW, Incorporated
Product Assurance One Space Park
Systems Engineering & Redondo Beach, CA 90278
Integration Division

Mr. Austin Maher Kearfoot Division
Manager, Software The Singer Company

Little Falls, NJ 07424

Dr. John H. Manley Applied Physics Laboratory
Assistant to the Director The Johns Hopkins University

Johns Hopkins Road
Laurel, MD 20810

Dr. Robert R. McCready Vought Corporation
Applied Mathematician P. 0. Box 5907

Dallas, TX 75222

Mr. H. Lewis Parker COMSTAT Laboratories
Manager, Mini/Micro Based 22300 Comstat Drive
Systems Department Clarksburg, MD 20734

Dr. Leon Pressor Softool Corporation
President 340 S. Kellogg Avenue

Goleta, CA 93017

I,



63

Dr. Terry A. Straeter Langley Research Center

Head, Programming Technologies National Aeronautics & Space
Branch Administration

Hampton, VA 23665

Mr. Herbert D. Strong, Jr. Jet Propulsion Laboratory
Manager, ADP Management Office California Institute of
Flight Projects Support Office Technology

4800 Oak Grove Dri7e
Pasadena, CA 91103

Mr. R. L. Van Tilburg Hughes Aircraft Company
Senior Scientist P. 0. Box 3360
Computer Programming Laboratory Fullerton, CA 92634

Mr. Gene F. Walters General Electric Company
Manager, Software Technol.gies 450 Persian Drive
Information Systems Program Sunnyvale, CA 94086

Mr. Lynn S. Wilson Grumman Data Systems Corporation
Director, West Coast Operations 16133 Ventura Blvd., Sutie 675

Encino, CA 91436

Mr. Eric W. Wolf Bolt Beranek & Newman,
Manager, Washington Operations Incorporated

1701 No. Fort Myer Drive
Arlington, VA 22209

Ai. nymous Engineering & Development
Techniccal Advisor for Organization

Computers Large Government Agency
(Military)

Anonymous Electronic Systems
Manager, Communication Analysis Large Manufacturing Company

Anonymous Research Center
Chief, Scientific Applications Large Government Agency

Analysis Branch (Non-Military)

Anonymous Software and Engineering
Tech Director, Simulation Large Manufacturing Company

Division

Anonymous Aircraft Development
Senior Engineering Specialist Large Aerospace Corporation
Avionics Software



64



65

Appendix B

QUESTIONNAIRE

INTRODUCTION

This appendix contains Questions 5 throigh 24 of Part Three, plus

identification data obtained from Parts One and Two of the original

questionnaire. This added information is used to provide a brief

background of both the position and attributes of the participant and the

type and attributes of the participant's company and is reported

artificially as answers to Pseudo Questions 1, 2, 3, and 4.

The questionnaire (Questions 5 through 24) is a slightly modified

version of the original questionnaire.

The author did not do a complete job of selecting possible answers

for each question/problem. In particular, for part "a," there was no

possible answer for those surveyees who felt that the proposition was

either wrong, incorrectly stated and/or chose not to answer the

question. The surveyees normally wrote their disagreement in the remarks

section or in the margin of the report. This was handled by creating a

fifth possible answer to part "a" entitled "problem incorrectly worded or

confusing." This then created an inaccuracy in parts "b" and ''c." since

there was no means which a surveyee could indicate that it was not a

problem, it was unanswerable because he/she did not agree with the

problem, or did not know the answer. Many of the surveyees therefore

either chose to ignore question "b" and "c," or wrote in their

disagreement in the margin or some other appropriate place. For these

reasons a possible answer of "not a problem, unanswerable, or don't know"

was added.

In order to save space the possible answers were only provided one

time as answers to Question 5. On the original questionnaire the same set

of possible answers was repeated 19 more times. In addition, the original



66

questionnaire had Questions 1, 2, 3, 4, and 25 which were general type

questions for the participants, but did not pertain to the major issues

and/or problems of software engineering project managemeut. These

original questions 1, 2, 3, 4, and 25 have been reported as part of Volume

II where the author felt this was more appropriate.

In addition, some of the questions were poorly written. This is not

only the opinion of the author (in hindsight) but includes the opinion of

the surveyees. Therefore, based on answers to the original questionnaire,

19 of the questions were rewritten. This was done for the benefit of

future researchers who might wish to make use of some or all of the

questions.

Answers to part "d" of the questionnaire were narrative in nature.

in order to report these answers the authur included them by grouping like

responses under a single code and reporting this single code on the

tabulation sheet. If the reader wishes to get to the full flavor of the

responses, he/she is referred to Appendix D.

The author hopes the above explanation does not appear to be too

complex. This was done purely in the interest of conveying the maximum

amount of information to the reader as to what the original questions were

and the answers that they engendered.



67

A SURVEY OF MANAGEMENT TECHNIQUES AND PROCEDURES

EMPLOYED IN SOFTWARE DEVELOPMENT PROJECTS

PART THREE (Modified)

Major Problems of Software EngizLeering Project Management

This portion of the questionnaire presents 20 propositions concerning

major problems of software engineering project management. The surveyee

is asked to identify himself, his company and then give his opinion on the

problem, whether or not it was a management or technology problem, and

whether or not it can be solved through improvements in management or

technology.

THE IDENTIFICATION NUMBER ASSIGNED THIS FORM IS

Please return completed form in envelope provided or mail to:

Colonel Richard H. Thayer
SM-ALC/ACD
McClellan AFB, CA 95652

SECTION 1 - SURVEYEL IDENTIFICATION (ADDED)

I. What is your position within your company (including university,
Government, etc.) and/or the computing industry (including consultants,
students, etc)?

a. Line manager generally over software development (including
president, VP, directors, software development division managers, etc.).

b. Project manager responsible for the successful delivery of
projects (including project manager of software subsystems).

c. Individual developer generally connected with a project

(including technical director, designers, analysts, engineers,
programmers, etc.'.

d. Senior staff position responsible for establishing broad software
policy for the organization (e.g. senior technical director).



68

e. Supervisory/Senior staff position, software function (including
miscellaneous software development, software R&D, software technology,

software IV&V, software evaluation, etc.).

1. Consultant.

z. Other/Comment:

2. Which of the following attributes apply to the surveyee?

a. R&D orientated.

b. Educator (all).

e. Programmer and/or software analysts.

f. Engineer and/or functional analysts.

g. Quality assurance/technical director

h. Manage r/Supervi sor

i. Government employee.

J. PhD.

k. Consultant.

1. Establishes /influences broad policy on software development.

m. National author and/or speaker on software development.

n. Affiliated with IEEE - CS, ACM, or other data processing

progessional organizations.

o. Affiliated with AIAA or other aerospace professional

organizations.

r. American-Canadian influence.

3. The affiliate, employer or firm of the surveyee is primarily engaged
in:

b. A manufacturer of other than computer hardware

c. A "software house"

d. An engineering service and technical support organization

e. The government: federal (non-military), federal (military),
state, county, municipal

f. A university, R&D laboratory, educational institution

m. The utilities: communications, electric, gas



69

4. Which of the following attributes apply to the surveyee's affiliate,
employer, or firm?

The gross revenues (or budget) for last year were:

a. Less than 50 million dollars.

b. Between 50 million and 500 millIon dollars.

c. In excess of 500 million dollars.

What percent of revenue is derived from or budget alloted to software
development?

d. Very little (less than 10%).

e. Moderate to average (10 to 50%).

f. High (50 to 90%).

g. Almost all (greater than 90%).

How many people:

J. Are employed by firm.

k. Work in all aspects of software.

1. Are devoted to software development activities.

z. Comment:

4
hhL - -



70

SECTION 2 - PROPOSITIONS

INSTRUCTIONS

Four answers are called for at the end of each of the following

propositions. Check one word or phrase to complete each of the first
three responses and provide a brief narrative in response to Question d.

REQUIREMENT SPECIFICATIONS

5. (Problem Nr Ul--Performance [requirement] specifications are
frequently incomplete, ambiguous, inconsistent, machine dependent, and
invalid. (added)

ANSWERS *

a. This problem is:

Critical [ ] An irritant

Important [ I Of no consequence [ ]

Problem incorrectly worded or confusing (added) ( 1

b. This is a problem in:

Management [ J Both

Technology [ Neither

Not a problem, unanswerable, or don't know (added)

c. This problem can be solved through improvements in:

Management [ ] Both f ]

Technology [ Neither [ ]

Not a problem, unanswerable, or don't know (added) [

d. How would (did) you solve this problem?

• In the actual survey an identical set of choices followed each of the
twenty propositions.

.. . . t...... .



71

SOFTWARE DESIGN

6. (Problem Nr 2) -- There are no decision rules for the software
engineering project manager to use in selecting the correct software
design techniques or tools available within the state-of-the-art.

Rewritten: Decision rules for use in selecting the correct software
design techniques, equipment, and aids to be used in designing software in
a software engineering project are not available.

7. (Problem Nr 3) -- There is no measure or index of "goodness" of code
that can be used as an element of software design, and there is no
practical way to guarantee one program is better than another.

Rewritten: Measurements or indexes of "goodness" of code that can be used
as an element of software design are not avaialbe; i.e., there is no
practical way to show that one program is better than another.

TESTING AND RELIABILITY

8. (Problem Nr 4) -- There are no decision rules for selecting the
procedures, strategies, and tools to be used in testing software.

Rewritten: Decision rules for use in selecting the correct procedures,
strategies, and tools to be used in testing software developed in a
software engineering project are not available.

9. (Problem Nr 5) -- There is no measurement, or index, of reliability
that can become an element of design and there is no way to predict
software failure; i.e., there is no practical way to guarantee (prove) the
delivered software meets a given reliability criteria.

Rewritten: Measurements or indexes of reliability that can be used as an
element of software design are not available and there is no way to
predict software failure; i.e., there is no practical way to show the
delivered software meets a given reliability criteria.

10. (Problem Nr 6) -- There is no way to guarantee that the delivered
software meets the user's requirements.

Rewritten: Methods to guarantee or warrantee that the delivered software
will "work" for the user are not available.

MAINTENANCE AND MAINTAINABILITY

11. (Problem Nr 7) -- There is no measurement or inc-: of maintainability
that can become an element of software design; i.e., there is no practical
way to guarantee that a given program is more maintainable than another.

Rewritten: Measurements or indexes of maintainability that can be used as
an element of software design are not available; i.e., there is no
practical way to show that a given program is more maintainable than
another. I



72

12. (Program Nr 8) -- No technical discipline exists for the design of
maintainable programs.

Rewritten: Procedures, techniques, and strategies for designing

maintainable software are not available.

PLANNING

13. (Problem Nr 9) -- It is reported that planning for software

engineering projects is generally poor.

Not Rewritten

14. (Problem Nr 10) -- There is an inability to accurately estimate
delivery time of a computer program.

Rewritten: The ability to estimate accurately the delivery time on a
software development is poor.

15. (Problem Nr 11) -- The ability to plan for resources, particularly
the number of programmers requiredis poor.

Rewritten: The ability to estimate accurately the resources required to

accomplish a software development is poor.

16. (Problem Nr 12) -- There is no real quality method of designing a
project control plan that will enable project managers to control their
project.

Rewritten: Procedures, methods and techniques for designing a project
control system that will enable project managers to successfully control
their project are not readily available.

DIRECTING

17. (Problem Nr 13) -- There are no decision rules for the selection of
management techniques for software engineering project management.

Rewritten: Decision rules for use in selecting the correct management

techniques for software engineering project management are not available.

STAFFING

18. (Problem Nr 14) -- Techniques for the selection of project managers
are poor, generally resulting in poorly managed projects.

Not Rewritten: Procedures and techniques for the selection of project

managers are poor.

19. (Problem Nr 15) -- There is no means of measuring with any degree of
accuracy the quality of code produced by a programmer.



73

Rewritten: Standards and techniques for measuring the quality of
performance and the quantity of production expected from programmers and
data processing analysts are not available.

ORGANIZING

20. (Problem Nr 16) -- There is a poor accountability structure in most
development projects, leaving some question as to who is responsible for
various project functions.

Rewritten: The accountability structure in many software engineering
projects is poor, leaving some question as to who is responsible for
various project functions.

21. (Problem Nr 17) -- There is much consternation in industry concerning
how best to organize for the accomplishment of a project (e.g., should the
project be organized around the function, the project, or under a new
matrix system?)

Rewritten: Decision rules for selecting the proper organizational
structure, e.g., project, matrix, function, are not available.

CONTROLLING

22. (Problem Nr 18) -- It is difficult to impossible for a project
manager to have the requisite visibility to be able to determine whether
the project is on schedule and within cost.

Rewritten: Procedures, techniques, strategies, and aids that will provide
visibility of progress (not just resources used) to the project manager
are not available.

23. (Problem Nr 19) -- There is a general lack of traceability from the
requirements specification to the final code.

Rewritten: Techniques and aids that will provide an acceptable means of
tracing a software development from requirements to completed code are not
generally available.

24. (Problem Nr 20) -- There is, in general, an inability to measure the
quality of a program.

Rewritten: Success criteria for a software development is frequently
inappropriate which results in poorer "quality" delivered software; i.e.,
not maintainable, unreliable, difficult to use, relatively undocumented,
etc.



74

.... ....



75

Appendix C

COMMENTS ON AND ABBREVIATIONS USED IN TABULATING THE ANSWERS

INTRODUCTION

This Appendix presents the post-survey analysis on specific questions

and their responses, and lists the abbreviations/codes used on the

tabulation sheet in Section 2.

To conserve space and provide a means of using a computer for

analysis, all narrative answers were abbreviated and/or coded

(abbreviations and codes will be called codes for the balance of this

report). Because of space limitations and ease of processing, all

alphanumeric codes were restricted to exactly three characters. In

addition, the use of codes has an additional advantage; it effectively

disguises the responses so that the participants continue to remain

anonymous.

Two types of codes are used. The first type is general and applies

to all questions. The second type will be applicable to specific groups

of questions or subparts of questions.

PROBLEM QUESTIONS

Certain questions created more problems for the participant than

others. These questions apparently confused the participants or there as

disagreement with the proposition. The questions that created the

strongest problems for the surveyees were Questions Number 24, 7 and to

some limited degree 12, 19, and 21.



76

GENERAL CODES

Listed below are some general codes used with short answers or

answers common to many types of questions.

CFU -- Confusing, vague, don't understand.

CPX -- Too complex to discuss in this short space.

DIS -- Disagree with question as written, not true statement.

D/K -- Don't know.

XIS -- Question not answered (supplied by author).

N/A -- Not applicable (on this project), didn't use.

N/C -- No comment (supplied by author when Part d was not answered).

NON-- No, none, or false.

NOS -- No solution (yet), hard to solve.

NOT-- Did not solve, no solution here.

NPR -- Not a problem (here), fully solvable with current techniques.

N/S -- Not specified/not selected.

OTH -- Other.

PER -- Use persistence, determination.

PRB -- This was a problem for us, we solved poorly.

RES -- Research needed.

SUB -- Subjective question, not definable.

rRU -- True statement.

UNK -- Unknown (also included "?" as a answer).

VAR-- Variable.

YES -- Yes or true.

Upon occasion the author felt it necessary to either answer the

question for the participant or change his answer. In the interest of

honest reporting the following codes indicate whether or not the answer was

changed/contrived and the reason given. These changes codes were C01,

C02, C03, and C04. C01 has the highest probability that the changed

answers reflect the true answer, C02 next highest probability, C03 next

and C04 the lowest probability. The change codes follow:



77

COI -- This answer was supplied by the author and was based on an
answer to another question or questions or other outside information
(e.g., if the surveyee answered a question by saying it was t.e same
answer as for a previous question, the answers were filled in but they
were marked as code CO1. If the author entered an "x" answer because
the survey *eft it blank this was marked COI.

C02 -- This answer was supplied by the author to make an obvious
correction to the supplied answer (e.g., in parts c and d when the
surveyee checked both management and technology the answer was changed
to read "both", deleting the answers to management and technology and
change code C02 was used).

C03 - Answers were supplied by the author from narrative given from

part d or some other source. For example, the surveyee answered
"neiter" as an answer to parts b and c. This was done to reduce the
number of unanswered questions when it was obvious that the surveyee
really did answer the question.

C04 - This answer was redirected by the author from one supplied by
the surveyee to another answer. It was done only with the utmost
caution and was only done if the checked answer appeared to be wrong
as based on the narrative given in part d, or in a few cases, some
other source such as notes in the margin. This is primarily

applicable to a-swers checked in parts a, b, and c but disagreed with
part d and it appeared the part d was correct.



78

SPECIFIC CODES

For Questions 1 t!.:ough 4

The code "YES" on the listing opposite a question (parts a through r)

indicated that the answer is "yes" or "true" as it applies to that

question. If a given question has a "blank" for an answer this indicates

that the surveyee answered 'no", or that the answer is "false" as it

pertains to that question.

For Questions 4j, k, 1

The number of people employed was reported in units according to the

following method. The number d(l), d(2), d(3), . . ., d(n) can be

represented by d(1), d(2) XI0**R, where R=N-2 and was coded for answers

4j, k, and I as d(1)d(2)R. (e.g. 10 is coded as 100, 900 is coded as 901,

6,500,000 is coded as 655, etc.).

For Questions 5 through 24

Sometimes a pseudo response, part x, was created to indicate that the

participant did not provide an answer to a given question because he: 1)

did not understand the question, 2) felt it did not apply to his project

or organization, or 3) just did not feel like answering it. This was done

so that the reader would not read a "no" when the correct answer is

unknown to the author.

For Questions 5 through 24. Part a

001 -- This problem is critical.

002 -- This problem is important.

003 -- This problem is not important.

004 -- This problem is not a problem at all.

005 -- This problem is incorrectly worded or confusing (or sometimes

supplied by author when surveyee did not answer).

For Questions 5 through 24, Part b

001 - This is a problem in management.

002 -- This is a problem in technology.

003 - This is a problem in both management and technology.



79

004 -- This is a problem in ieither management or technology.

005 -- This is not a problem, unanswerable, or don't know (or

sometimes supplied by author when surveyee did not answer).

For Questions 5 through 24, Part c

001 -- This problem can be solved through improvements in -'nagement.

002 -- This problem can be solved through improvements in technology.

003 - This problem can be solved through improvements in both

management and technology.

004 -- This problem cannot be solved through improvements .n

management or technology.

005 - This is not a problem, unanswerable, or don't know (or

sometimes supplied by author when surveyee did not answer).

For Questions 5 through 24, part d

In answering part "d" of Questions 5 through 24 a different approach

must be used. These were narrative questions calling for opinions and/or

lessons learned by the surveyee. The answers are frequently verbose, very

opinionated, and represent some lesson learned the hard way. The answers

were grouped under the management functions of planning, organizing,

staffing, directing and controlling and the technical functions of

requirements, desigu, develop and code, and index of performance. The

first letter of the three character code indicates the grouping.

C -- Controlling

D -- Directing

I Index of performance

0 -- Organizing

P -- Planning

R -- Requirements

S -- Staffing

X -- Design, develop and code



so

CONTROLLING CODES

CMa. Track manhours expended vs budget (cost/performance charts) (rate

charting) and compare with documented evidence of progress.

b. Establish that if a software system meets requirements (or is at

least useable) it has quality.

c. Monitor schedule closely.

d. Provide visible measurable milestones, coupled with reporting,

reviews or walk throughs.

e. Apply judgement to determine if software meets quality.

f. Use an automatic monitoring system and/or other tools.

g. Establish a quality assurance function.

h. Assign mor personnel to project control.

i. Document and review task description, agree to schedule and output,

and make personnel responsible for work assigned.

j. Put numbers on subjective measurements.

k. Control changes (configuration management plan).

1. Use walk throughs.

m. Use (frequent) reviews and reports.

n. Use milestones.

o. Keep the customer informed.

p. Document all delivered products.

q. Have a (separate) project control function.

r. Measure against the development plan.

y. "Quality not specific enough, must be defined.

CTa. Develop guide books.

b. Establish good tracing techniques (matrix) from requirements to

design with appropriate test criteria.

c. Use a tracking tool such as threads or a similar technique.

d. Establish and adhere to programming standards, software design

methodology.

e. Use a technical control board.

f. Use a work breakdown structure (WBS).

g. Do extensive and thourough testing and verifying.

h. Check test results and accuracy of interfaces against known results.

i. Find a method of testing and measuring "quality."



81

DIRECTING CODES

DMa. Institute an earned value type scheme with meaningful work
measurement parameters.

b. Select a method applicable to project, plan for it and stick with

it.

c. Treat each case differently and select the best method available.

d. Develop a list (survey) of techniques and select from this list to
meet the requirement.

e. Use the same techniques that worked in any other (i.e., hardware)
development.

f. Obtain through trial and error.

z. Any technique is valid.

INDEX CODES

IMa. Review constantly (involve the user with) the software development
process.

b. Use the many (best) indexes available.

c. Establish an (independent) software testing and validation effort.

d. Keep maintainable statistics.

y. Not necessary if software meets design requirement as demonstrated
through tests (or if it is not specified).

ITa. Design parallel software, test and then select best one.

b. Build design verification tools.

c. Use proof of correctness techniques.

d. Define and develop software development metrics.

e. Develop tools/techniques to measure metrics.

f. Determine the software's capability for easy change.

g. Use simulation and prototyping techniques.

h. Establish a MTBF for software.

i. Use fail-soft hardware/software systems.

J. Do a thorough job of reviewing, testing and verifying.

k. lest, if it works, it is a good code.

LL_ _ __ _ _ _



82

ORGANIZING CODES

OMa. Establish (improve) the proper authority of the organization (define
authority and tasks) (early in the project) (document the decision).

b. Require the acceptance of responsibility (by project manager).
c. Use a functional organization.

d. Use a project organization.

e. Use a matrix organization.

f. Give responsibility to programmers for implementation, interrogation
and testing (obtain their concurrence and understanding).

g. Use programming team concept.

h. Train personnel in how to develop and follow a proper organizational
structure.

i. Place the project organization under one manager.

z. Use any (and all) methods that work.

PLANNING CODES

P1a. Develop (early) correct (detailed) planning for the project that
accomplishes the task (schedule, budget, etc.).

b. Establish a (more) formal project phase (function).

c. Understand the requirement specification (first).

d. Plan for better aids (PERT, CPM, etc.).

e. Initiate R&D in project management.

f. Understand the (technical) problem by management.

g. Involve everybody connected (customer, developer, technicians, etc.)
with the development.

h. Agree on task to be performed (by everybody), improve communication,

and select common goals.

i. Control the factors outside of the project managers control.

j. Break planning down into lower levels of activities.

k. Schedule the project better.

1. Have software development project follow proven engineering
standards (like hardware).

m. Execute, use and enforce the plan.

n. Documentate the plan better.

o. Break system down into detailed levels.



83

PLANNING CODES (continued)

p. Review (by senior maaagement) and update throughout the project.

q. Have a fall back position.

r. Use planning tools, techniques and procedures (used by similar
successful projects) (collect historical data).

w. And will increase the development costs.

PSa. Allow enough time to do a good job of estimating.

b. Use a conservative estimate with contingencies.

c. Use best methods (rules) (available).

d. Size the work effort and complexity accurately and realistically.

e. Use bottom up planning.

f. Develop and use a detailed milestone schedule.

g. Have greater involvement }'v programmer/analyst.

h. Research methods of estimating schedule and cost.

i. Research and review past projects (build data base on cost/schedule
data).

j. Review the schedule constantly.

k. Staff and fund realistically.

1. Use (documented) work performance measurement (structure) for
manloading.

y. Not a problem, a low estimate was made.

REQUIREMENT CODES

Rha. Have a (more) formal requirements phase with adequate time for
preparation.

b. Deliver on time (before starting design).

c. Review at the beginning and throughout the project (to determine
completeness) (for "Quality).

d. Control and/or base line the specifications.

e. Agree on specification between all organizations involved (customer,
developer, management, technician, etc.).

f. Develop specification independent of project.

g. Develop jointly (or involve) the customer, developer, management,
technicians, etc.; work with/get customers input.

y. "Quality" was not a requirement.



84

REQUIREMENT CODES (continued)

RTa. Establish specification that will accomplish its intended function
of specifying the customer's requirements (before beginning design).

b. Verify, analyse, measure, and test the software (independently).

c. Use formal (modern) requirement generation techniques and/or
methodology (specification languages, top-down design, standards, etc.).

d. Accumulate more specific details and complete specifications.

e. Have clear, readable, and understzidable specifications.

f. Have unambiguous and constant specification.

g. Have useable, realistic, and valid specifications.

h. Redesign system (if necessary).

i. Analyze the problem (simulation techniques) (prototyping)
thouroughly and ca'efully.

STAFFING CODES

SAa. Review and monitor programmer product and documentation by
knowledgeable (peer) people.

b. Train and educate the customer.

c. Keep records on each programmer.

d. Staff with competent programmers adequately.

e. Establish, use and enforce best personnel standards available.

f. Use best qualified programmers available.

g. Increase staff as needed.

h. Match jobs to personnel.

i. Recruit and hire qualified programmers appropriate to the job.

J. Use knowledgeable, experienced and trained project managers to lead,
manage and communicate.

k. Train and eiucate programmers (to produce good code).

SIMa. Select managers based on experience, managerial and technical

abilities (not availability).

b. Define the attributes of a good manager (and apply).

c. Design test to test potential project managers.

d. Review past project to establish what project manager quality will

improve chance for success.



85

STAFFING CODES (continued)

e. Let the project manager manage.

f. Do not use "old school", bottom-up managers.

g. Have the reviewing authority also be a good manager.

h. Select managers who have been successful in similar type projects
(experienced) (even if project was smaller).

i. Match the project requirements to project manager's background.

j. Do not push/use technical personnel into management when they are
not qualified.

k. Provide appropriate training for project managers.

I. Provide OJT (apprenticeship) for project analysts to train them to
be managers.

DEVELOPMENT, CODING CODES

XMa. Making it a (more) formal phase.

b. Use competent experienced technicians to select appropriate tools,
techniques, procedures, etc.

c. Keep a library of tools, procedures and techniques available for
selection.

d. Use those rules, policies and procedures you do know (or through
consultation with others) that will do job and select the appropriate
ones.

e. Develop a list (survey) of software development tools, techniques,
procedures and select from this list to match the current needs.

f. Enforce procedures, techniques, tools selected.

g. Use procedures, tools and testing procedures used by a similar
successful system.

y. All programs are maintainable (some easier than other).

z. Any method will do in software design, tools and technology if the
software meets design requirements.

XTa. Research in developing decision criteria (metrics) to enable
managers to evaluate and select software tools.

b. Develop or establish your own software design tools, techniques,
procedures, etc., (to the best of your ability) for designing and testing
software.

c. Research and develop software development standards, procedures,
test procedures.



86

DEVEEOPMENT. CODING CODES (continued)

d. Analyze the software development requirement and select the proper
tools, techniques, procedures, etc.

e. Allow adequate design flexibility.

f. Use top-down structured programming, modern programming and design

approach.

g. Use an integrated approach to software development and testing.

h. Bench mark or simulate a subset of the software design to select
proper tools.

i. Select a specific procedure.

J. Use bottom-up testing approach.

k. Use the same procedure as hardware.

1. Use good software design standards that if met will develop "good"
reliable, maintainable, usable code.

m. Use good documentation standards.

n. Use small programs.



87

Appendix D

NARRATIVE RESPONSES TO PART "D" QUESTIONS

INTRODUCTION

This section deals with the actual mostly unaltered answers provided

to the Part "d" portion of each question. Part "d" asks "How would (did)

you solve this problem?" This, of course, required a narrative type

respor' e. Unfortunately narrative type response are not amenable to

reduction and analysis on a computer. Therefore, all of these narrative

responses were defined and grouped by type. Each grouping was given a

code and this code is reported ou the tabulation sheet in Section 2 (the

code itself can be found in Appendix C). However, since this reduction of

comment to code destroyed some of the richness of prose, the author felt

it was worth-while to include this "verbal" section in the report.

The answers as they appear in the following pages have been "cleaned

up" to assure anonymity from the standpoint of author, firm, and

project. Identical or nearly identical responses have been eliminated as

have incomplete (incompleteable) sentences and "one-worders." With the

exception of the "clean up" and correction of the most obvious spelling

and punctuation errors, those responses included in the following pages

are as received and though they do not in every instance answer the

question asked, they do relate to the subject. As an aside, we make no

claim t total understanding of every response.

The narrative answers to the "Part d" questions are all grouped under

specific Problems 1 through 20 (Questions 5 through 24). Also included

with the Part "d" answers is how the surveyee answered Parts a, b and c.

As you realize from reading Appendix C in this report, Part a is coded I

through 5, Part b is coded 1 through 5, and Part c is coded 1 through 5.

If, for example, the surveyee answered I for Part a, 2 for Part b, and 4

for Part c then the code 124 precedes tile narrative answer in parenthesis

in front of the answer. This is to give the reader a feeling for the

participants attitude as he wrote the answer.



88

Also whether or not the respondent marked "would" or "did" is placed

in parenthesis and preceeds the response to Part "d". Very few bothered

to indicate. Also the author feels obligated to call to your attention

that some of the codes preceding the part "d" answers were not necessarily

the ones the participant put down. As previously described in Appendix C

some of the answers were changed or contrived. It is the changed or

contrived answers to parts a, b and c that appear here. We do not believe

that any significant amount of information is lost in this method of

reporting.

QUESTION 5. Problem - Performance specifications are frequently
incomplete, ambiguous, inconsistent, machine dependent, and invalid.

SOLUTIONS

(111) Encourage/force specification development jointly by customer and
analyst.

(111) Development and enforcement of formal standards for specification
generation with frequent reviews by management and involved technical
personnel.

(111) Require complete specifications before signing/negotiating
contract; or use phased contract approach -- phase (1) prepare
specifications; (2) implement.

(111) (1) Assign specialists to insure performance specifications are
complete, consistent, non-ambiguous, and valid and that the specifications
can be met within the budget and schedule commitments made under
contractual requirements. (2) Provide training in specifications
writing; attempt to drive hardware-like specifications (one requirement,
one paragraph); testable; eliminate equations, descriptions, and BS.
(3) Rework MIL-STD-483 to the above. (4) Avoid HIPO-type and "formal"
specifications. This is a waste; better techniques available for real
time.

(111) Recognize performance specifications inadequacy as directly

effecting delivery and react as if customer delivery was late.

(111) Work with the customer to obtain an agreement on the performance
requir ement s.

(1I1 Depends upon when problems are uncovered. If early, complete SRR
should provide full visibility followed by complete requirements
allocation by SDR.



89

(111) More calendar time for specification writing. Schedule
spe fication delivery to programmers with same detail that output
sol ire is scheduled. Give the people writing specifications time to
understand the entire problem before being forced to get somethkng on
paper.

(113) (did) (1) Primarily a management problem due to lack of
insistence on qualitative and quantitative specifications, which result in
no measurement criteria. (2) An obtainable performance objective must be
agreed upon early in the program with minimal modifications allowed during
the development.

(122) Use formal requirement methodology.

(132) Better performance specifications.

(133) (would) Make efficient use of best technical personnel who could
be found.

(133) Go to the root of the problem by evaluating the source of the
specifications.

(133) Top-down design with mandated traceability among levels of
specifications and code.

(133) By performing requirement analysis and rewriting the requirements
as a result; also working closely with customer.

(133) Involvement of both the designer and the developer during
performance specifications.

(133) Establish the approach of using a software integration engineer who
understands problem physics ar.d a computer program implementer of physics
algorithm.

(133) Team with customers/system engineer teams to build specification
ICD's and use modern specification definition techniques.

(133) We were required to use MIL-STD-483 and write B5/C5
specifications. Part of the difficulty is that the outline for B5
specifications erroneously puts forth the proposition that equations are
requirements. I personally fought this battle, and won; we do not today
have a single equation in our requirement specifications. The problem, of
course, is that an equation gives the impression to a reader of detail and
precision. Unfortunately, an equation is just a description, couched in
algebraic language rather than English, and has nothing to do with
requirements.



90

(133) 1. Get software managers with technical (application)
capabilities; 2. Get an executable or analyzable statement of the
requirements.

(133) Have software development team participate in requirements
definition, start software development later in system cycle, use parallel
requirements definitions/software development periods with formal change
management starting from "base line" definition.

(133) 1. Start software systems engineering with concept formulation
(hardware and software). 2. Improve the method of sizing software tasks.

(133) Redesign system.

(133) A great deal of communication with the customer prior to project
go-ahead.

(133) More time to prepare formal and complete specifications.

(133) Software participation in specification writing and use of
simulation modeling in validating performance specifications.

(211) Design reviews to identify base line.

(211) Manager must work with customer to develop better specifications.

(211) Assign specification preparation to an independent, well staffed
organization (rather than programmer manager's staff).

(211) The source of the problem is inadequate technical understanding of
the problem by the customer, usually the government. The solution is to
provide an environment that will attract and keep technically competent
personnel.

(211) The problem can be prevented from the very beginning by taking
precautionary procedures in management, such as an early decision,
assigning responsible persons to handle, careful checkups and testing,
etc.

(2XX) Establish an independent verification of the performance
specifications to assure single interpretation and verification of the
requirements.

(231) Provide an effective communication path between management and
technical personnel regarding specifications.

(233) Better analysis of problem in deriving requirement specifications.

(233) Work closely with customer to resolve discrepancies.



91

(233) Suffered because of this problem.

(233) Attempted to base performance requirements on existing, documented
figures.

(233) (would) Start project specifications activities sooner, to give
people more time.

(233) Establish requirements traceability in an explicit and positive
manner, e.g., traceability matrix.

(233) More time should be spent on this, programming support and actual
psuedo-program testing on computer.

(233) System engineering team (customer, developer, management, members)
developed specifications.

(233) Require more detailed performance specifications early in program.

(233) Use specification languages and specification guides.

(244) Although customer did not generate specifications, development team
created realistic goals.

(311) Require clear and complete statement of requirements and
specifications. Iteration between those establishing specifications and
those who have to meet them.

(311) Change Air Force policy i initiation and manning of projects.

(344) By building a close, friendly relationship with the user to
understand his real needs and problems.

QUESTION 6. Problem - There are no decision rules for the software
engineering project manager to use in selecting the software design
techniques or tools available within the state-of-the-art.

SOLUTIONS

(111) (did) Implement policy and procedures that define a minimum set of
techniques and tools for all projects.

(11) Technically up-to-date technical management that has the background
to know/understand the tools, equipment, and the timing. It takes n
commitment to planning to get it right.

(133) All these new methods have advocates and they often make
contradictory claims. A survey must be made and one selected. I



92

(133) Either team-up with a professional or shape up ourselves.

(133) Establish team to select the best tools/methods. Try them and use
them.

(133) This problem occurs when the engineering project manager does not
know software design techniques. So it is important to assign someone who
knows software techniques well enough and can make the decision.

(133) Take the approach for optimum performance and if it is of a high
technical risk, always have a back-up position prepared.

(211) Continued education at company expense.

(211) The absence of rules is not necessarily a problem if the project
manager has previous experience. This- problem equates to having
experienced project managers, which is a training issue, or one of
personnel development. If no techniques or tools existed, it would be a
technology issue.

(211) More education of management into modern programming tools and
techniques.

(211) Select one the staff knows best.

(213) Training for upper level ADP management.

(222) Establish known rules.

(222) Software was designed according to available expertise.

(222) Developed software.

(222) Solving problems is difficul-; practice makes it easier; give tools
which help state the problem.

(222) It is extremely difficult to "cook book" this area -- requirements
differ for each new job.

(233) Establish decision criteria to enable evaluation and selection of
software tools. Develop or adapt standards and enforce utilization of
software design techniques deemed optimum.

(233) Compare the requirements of system against approaches taken on
similar projects and their successes.

(233) Keep a library of tools; rely on technical performing organization
to recommend tools; interchange experience between projects.



AD-AI'17 999 SACRAMENTO AIR LOGISTICS CENTER MCCLELLAN AFB CA SERV--ETC P/G 22/2
RESULTS OF A SURVEY SOFTWARE DEVELOPMENT PROJECT MANAGEMENT IN --ETC(U)
DEC 79 R H THAER.

UNCLASSIFIED SM-ALC/MME-TR-79-54-VOL-3 NL

22 mmommmmmmmi



93

(233) Used available tools and designed unique ones within budget
constraints.

(233) Survey all possible software design tools/techniques available for
application to the particular project. If none are available pursue
establishing requirements through management functions and develop
necessary tools.

(233) Spend funds to develop proper tools in hopes of pay-back in
software development cost.

(233) Arbitrarily select a constant set of techniques to use (structured
design, top-down implementation, and HIPO's for modules) and push the
technique.

(233) Survey of current practice.

(311) Meet with design leaders.

(311) Select tools on basis of availability, capability and the
experience of others. If several programs will need tools, assign a
person to develop decision rules and index to existing tools.

(314) This is a situation which occurs in all state-of-the-art
technology. One must keep current and learn to live with it.

(322) Applied structured, top-down design approaches.

(322) Use techniques proven on simulation type applications.

(322) (did) Rely on competence of individuals.

(33) Research and, more important, education of personnel involved in

software design.

(333) (did) This project was completed before the current emphasis on

techniques gained general acceptance.

(333) Analyze the system requirements to determine the design approach
and software tools needed to satisfy these requirements.

(344) Had adequate design flexibility.

(411) (would) Simply choose one; they all work. The real crux of the
matter is personnel quality more than design tools.

(455) This may not be a problem at all and may simply reflect the
confidence of the customer that management will select the best tools
available at the time required.



94

(455) The techniques and tools vary a great deal from project to project
and no set of rules is good for all cases.

(555) I don't understand the question. It is not clear to me that
software design techniques are an important issue if the project manager
understands what he is supposed to produce.

QUESTION 7. Problem - There is no measure or index of "goodness" of code

that can be used as an element of design, and there is no practical way to
guarantee one program is better than another.

SOLUTIONS

(122) Develop automated tools for design verification.

(122) We are analyzing HOS as possible answer.

(211) Much more testing at several levels (unit, local integration,

global integration, system integration, project integration). The best
way to measure code "goodness" is to test it thoroughly.

(222) Perform tests with various alternative programs, analyze results,
and select the most positive one.

(222) Rigorous testing will determine that the program meets design
requirements and not affect system performance.

(222) (did) Establish some after a literture search and discussions with
experienced people/projects.

(222) Define criteria for measuring relative goodness, develop
qualitative measures, and apply them. The criteria and measurements will
differ with different types of programs; they will not be universal.
Doing this will be expensive, but worthwhile.

(222) Very hit and miss.

(222) Education. Discussion. Even today we can write "better" FORTRAN
programs. Of course, part of "better" comes about because of changed
definitions of what is better. In early days we fought for execution
efficiency and memory usage minimizations. Today we look for better
programs in the sense of understanding, readibility, etc. This problem
will be self-solving as constraints of technology are removed (e.g.,
faster machines, cheaper memories).

(223) (did) Implement nolicies and procedures that define and require
the use of metrics for software development.

____ j



95

(223) Simple (or short) elegant coding can be produced by intelligent
programmer who has logical mind to do so. Even then, there is no way to
guarantee one program is better than the other. Hence, select carefully
the right programmer (who can make the job sell done) to do the work.

(232) Use more software simulation techniques.

(233) "Goodness" must be defined. If standards are applied (assuming
they are "good") then program designs which meet these standards, meet
system requirements, and work "correctly" can be evaluated against these
criteria.

(233) (did) A thorough and continuous review process.

(233) Define criteria beforehand, and build tools to measure it at
keypoint in the software development.

(233) The problem may be relieved through the adherence to programming

standards within the project.

(233) The importance is job dependent "goodness" can be "time"
dependent. "Memory size" dependent, etc. Must be solved by better
communications of the situation at hand.

(322) Was largely unsolved so far as code efficiency was concerned.

(322) Code review; using structured programming conventions.

(322) Rely on competence of individuals.

(322) Get smart programmers.

(322) There are methods of measuring "goodness" of code but they require
duplication of effort, at same level, and are thus costly.

(325) Don't worry about measurement of goodness; test to see that it does
as required.

(333) It can only be solved through academic and on the job training
courses, together with discipline and careful review. It will drive the
development cost upward.

(422) Within limits, program variation between programmers is of no
consequence if the product will do the job. The programmer should be
exposed to suggested "good" techniques.

(432) Having a goodness factor is somewhat academic. Use rigorous
testing under system performance variations. Qualification of goodness
will not be directly relatable to any single point, software failure.



96

(444) All code generated is measured by its performance in accomplishing
specification requirements which is the only guarantee provided. The
measure or guarantee that one program is better than another can only be
derived from specific cases (i.e., one program produces more optimum code,
or has fewer bugs than another). Top-down design and structured
programming can relieve the number of bugs, but increase the amount of
code.

(444) Goodness depends upon specific objectives. These shift from
project to project. There are many "indices" of goodness, e.g., size,
speed, maintainability, documentation.

(444) Programs are equally "acceptable" if they meet requirements.

(455) There are indeces of goodness; does it meet specification; is it

maintainable; well commented; understandable.

(455) This has always been considered black or white -- which translates
to good or bad. If the system function was as desired, it was good.
Otherwise it was bad and there was nothing in between.

(555) There is no substitute for qualified people in whom the project
manager has confidence. Problem statement is confusing. Why must one

program be better than another if both meet specifications?

(555) This problem has many facets and may begin during analysis at the
time where processing algorithms are selected, or they may be strictly a
reflection of inexperience associated with selection of coding
techniques. How do you define "goodness"?

QUESTION 8. Problem - There are no decision rules for selecting the

procedures, strategies, and tools to be used in testing software.

SOLUTIONS

(111) Spend much more time developing rules and procedures for testing

and in testing itself.

(111) Used the approach that each had the most confidence and success
with/over their previous experiences.

(122) Have not solved it yet. I think the design problem is more
critical.

(133) Either team with a program -- shape up ourselves.

(133) A bench mark set of problems was selected as a stability test and
used to help detect problems. j



97

(133) Perform trade studies to determine most cost effective approach to
be used for testing.

(133) Rigorous operational simulation with software and hardware

instrumentation.

(133) Formalize validation procedures; defined as part of contract.

(133) Poorly.

(133) Get smart systems testers that are not under software manager's
control.

(211) (did) Implementation of policies and procedures.

(211) Testing is unique to the type of software generated (i.e., control,
support and test). Develop accurate procedures (including necessary
tools) for testing software prior to release (e.g., develop a complete
test case for a compiler and insure it is ran without error prior to any
release).

(211) Define test criteria for each program based on performance
specifications.

(211) Tha absence of rules is not necessarily a problem, if the project
mana-er has previous experience. This problem equates to having
experienced project managers, which is a training issue or one of
personnel development. If no techniques or tools existed, it would be a
technology issue.

(211) (did) Select levels of testing and test criteria thaL match
costs/schedules/resources and tools availability constraints of the
project.

(211) Send the manager to get training courses.

(222) Establish basic rules.

(222) Test by sampling input space, using formally reviewed acceptance
test.

(222) Spend lots of time testing.

(222) (did) Separate test team. Exhaustive test at every level.

(233) Made assumptions, conducted tests based on experience and
recommendations of key senior people.



98

(233) Establish criteria upon which such test tools, procedures, etc.,
can be evaluated in terms of project needs. This involves education and
the latest development in software disciplines.

(233) I established them on a specific project.

(233) A funded program does not usually allow development of general
purpose tools. Since flight software is usually programmed in assembly
language, the procedures, strategies and tools are unique to the computer
and problem.

(233) Write testable criteria in requirements. Define development
approach to use aailable tools, make sure tools are ready at test time,
apply change management to tools also.

(233) Define criteria for measuring, testing, developing qualitative
measures and apply them. The criteria and measure will differ with
different types of programs; they will not be universal. Doing this will
be expensive, but worthwhile.

(233) Test procedures were established at the initiation of the project
to insure that all requirements were met. These procedures were then
enforced by management.

(233) Specific R&D activity.

(255) I either don't understand the question or the problem. I don't see
mystery in software and find the range of techniques of management to be
fully useful.

(311) Devote more time to planning test phase. Assign an independent
test team.

(324) Decision rules depend upon specific objectives. These shift from
project to project. There are many decision rules. We do not work in a
static field.

(333) Experience is still a more satisfactory attribute than any
programmer rules.

(422) We test systems for proper performance and run demonstrations. The

computer program integrity is verified at this time.

(444) Develop on individual case basis.

(455) There are testing aids and disciplines.

(455) Procedures, strategies, and tools reflect the nature of testing
requirements relative to performance specifications. Where did you get
these magic decision rules?



r,~

99

QUESTION 9. Problem -There is no measurement, or index, of reliability
that can become an element of design and there is no way to predict
software failure; i.e., there is no practical way to guarantee (prove) the
deli-vered software meets a given design criteria.

SOLUTIONS

(113) (did) Provided the most stringent tests possible with, the
allotted time.

(121) The manager (customer type) has not insisted that his people impose
requirements in an manner which permits the product to be tested properly!

(122) Establish minimum design objectives to be met.

(122) Improved design techniques; automated design verification.

(122) (did) Extensive testing at every level.

(132) Design review board.

(133) Exhaustive testing!

(133) Through a combination of programming standards and enforced testing
procedure.

(133) Better design techniques, longer testing in "real" environment.

(133) Spend adequate time testing.

',Il) Insure specificetions are complete, accurate, and understandable.
Design the software arond the specifications using top-down structured
design, high order language and perform testing in accordance with
approved procedures.

(211) Again, the way to verify reliability is in testing.

(214) Large programs are impractical to guarantee against failure by any
method I know of.

(222) Continue data gathering and data analysis.

(222) I see it coming as the next big push in software technology. We
are spending IR&D monies in this area to collect data on flight test --
released program flight hours vs errors. Also looking at predictive
models.

(222) Rigorous testing and simulation to guarantee software performance.

........ , . . .. .. o1



100

(222) Proof of correctness.

(222) Not important on this project.

(222) (did) Perform exhaustive system testing.

(223) I established them on a specific project.

(232) Solved usually by fault insertion of "test data."

(233) There are ways of doing these things, but they take additional time
from actual implementation which people are not usually willing to pay
for.

(233) (did) Adoption of a proven reliability measurement scheme.

(233) Used a criteria that the soft-ware "seems to work" in a production
environment with non-computer staff; it's reliability is therefore
adequate.

(233) (would) When the customer puts a reliability (or any other defined
index) in the system requirements, technology will be developed to satisfy
the requirements.

(233) Much reliability is inherent in the completeness of the analysis
and design effort from performance specifications to coding, as well as
detailed test plans which should be part of the design phase.

(233) (would) Impose top-down, structured (design simplification)
techniques. Require fail-soft overload (out of specification) processing
and recovery from iLtermittent hardware faults. Conduct detailed reviews
to monitor adherence to established criteria.

(233) Reliability is "designed in" and achieved through rigid design
procedures. Also, having a reliability measure is somewhat academic.
Rigorous testing under system performance variations. Qualification of
reliability will not be directly relatable to any single point in software
failure.

(233) Get good people to work on the job. The emphasis on all software
development must be on the quality of the people rather than on the
procedures for doing a job with a large number of people of limited
competence, and inventing elaborate procedures for managing, monitoring,
and correcting the feeble and expensive efforts.

(322) We test to SRS.

(333) Extensive comparison of design walk-through results with software
output/results.

~ ~ -



101

(333) Test the software thoroughly before committing to its use as the
residual unknowns are minimal and acceptable. Build in failure recovery
methods for critical problems.

(344) An initial decision on how much time and effort is to be spent on
such assurances. It will vary from case to case.

(444) Testing: test by sampling input space using formally reviewed
acceptance test.

(455) In the application which I have worked for 10 years this
"reliability" thing ... .

(555) I don't think the question is correct. I think it is possible.

QUESTION 10. Problem - There is no way to guarantee that the delivered
software meets the user's requirements.

SOLUTIONS

(111) Design and test plans must be continually reviewed and evaluated in
terms of user requirements. Enforcement of such policy will guarantee
meeting requirements to within a very small tolerance.

(111) Precise, detailed statements of requirements. Through acceptance
testing.

(111) User requirements must be specified and test program must show that
all requirements in specifications are satisfied.

(111) Establish a series of design reviews (both hardware and software)
with the user to insure proper communications are established. Keep
communciation channels open and allow user walk-throughs when
appropriate. Try to set up early demonstrations or prototype useage for
user evaluation during development.

(111) Traceability from approved requirements through all levels of
documentation.

(111) User should get involved with the development of software. If
possible, he should participate in the software review periodically, to
make sure that the software will meet his requirements.

(111) Earlier and more participation of users in requirements.
Participation of users in testing.

(112) System testing.



102

(113) Improve the software requirements to insure that they are all
testable. Rigorous testing over complete range of data values.

(121) The manager (customer type) has not insisted that his people impose
requirements in a manner that permits the product to be tested properly!

(122) (did) Intensive testing.

(122) (did) Extensive testing.

(133) Have project reviews on a regular basis with the user, and try to
resolve differences between the specifications and implementation
problems.

(133) All paths through software couldn't be checked (time constraints);
critical paths tested to specification. rinal test equals production.

(133) Establish traceability.

(133) Establish cross checks on algorithm development and validation
simulations. Exercise flight code over extreme excursions with as much
flight hardware as possible.

(133) Prepare an SRS and review with user.

(133) (did) Establishment of a software verification and validation
functional organization.

(133) Executable/analyzable statement of requirements.

(133) User represented in design activities.

(133) By achieving a firm set of agreed-to requirements and enforcing a
comprehensive test program, this problem can be relieved.

(133) Greater involvement of the user community. In most instances, to
gain maximum benefit, the user must have more than a "black box" concept
of what the computer system can do for him.

(133) Redesign to users requirements those that were practical.

(144) Communication.

(211) Involve user in requirements definition and review. However, user

often doesn't know what he wants.

(213) Testing, both functional and integrated is the key. If
requirements are clearly stated they can be tested for. The depth of
testing is a function of time and cost.



103

(214) Large programs are impractical to guarantee against failure by any

methods I know of.

(222) Major requirements were checked.

(222) All major requirements were verified.

(222) No mystery here -- it's tied into "requirement" and testing. As
part of requirements definition, test definitions can be solidly tied
down. It can work as well as hardware testing; get the mystery and crap
out of the requirements. Implement a scheme for achieving concurrent
documentation. We did this by adapting the C5 format (and by moving
equations from the B4 to the C5). I feel strongly that the outline for
B5/C5 specifications is contributing to the problem of requirements
definition by substituting (or mistaking) detailed descriptions for
requirements. For evidence, see the Fire Control Computer OFP.

(232) Test the software extensively before delivery.

(233) Write good specifications; use pilot projects; have user
participate in development review and prototype evaluation; keep
developers around for a "maintenance" phase.

(233) Keep software people in contact with user representation.

(244) The primary problem is in communications. The ability to state
requirements on a system or user level.

(311) Communication with user.

(311) Develop test plan.

(322) Thorough testing does an adequate job of proving (or disapproving)
that requirements are met.

(411) Communications and user involvement.

(444) (did) Test specifications, test planning, and test procedures
reviewed by the user.

(455) Not a problem because we involved the user in developing the [-
requirements and throughout the development process.

(555) I disagree with the premise. Get good people to work on the job.
The emphasis on all software development must be on the quality of the
people rather than on procedures for doing a job.



104

QUESTION 11. Problem - There is no measurement or index of
maintainability that can become an element of design; i.e., there is no
practical way to guarantee that a given program is more maintainable than
another.

SOLUTIONS

(211) Well-written documentation, small modules with minimal
interdependence , structured design, well commented listing, and a sound
control system will achieve satisfactory maintainability.

(211) The key to maintainability is documentation. Stricter rules for
generating documentation and commenting code. Enforce concurrent
code/documentation.

(211) The software should be designed to be understandable by other
programmers with more suitable comments, statements, and should be
feasible with them.

(211) More complete and automated documentation.

(213) Insure that software standards are maintained and that software is
properly documented.

(214) Use programming guidelines that include maintainability objectives.

(222) Actually test different programs and introduce possible bugs, then
evaluate which program is easier to "fix".

(222) Study all new cncepts on software design, keeping abreast of actual
concepts put in use to insure maintainability. Establish indexes to
implement those concepts that prove to develop software that is easily
maintained (e.g., HOL, modular design, etc.).

(222) Presently doing independent research into maintainability metrics.

(222) Yes -- except to standardize on selection of higher order
languages, the use of constructs, the nature of documentation and the
simplicity of interfaces and formats.

(222) Use structured design.

(222) Train customer adequately.

(233) Establish traceability.

(233) Wait and see. Otherwise, must maximize effort on documentation on

all levels.



105

(233) Use good people to begin with, document well, and emphasize
personnel continuity.

(233) Establish design guidelines and forced conformance.

(233) Allocate funds for warrantee and rigorous control and documentation
procedures.

(233) This problem was reduced through structured design and enforced
programming standards. Documentation standards must also be enforced.

(233) Structured programming methods.

(311) Hire the best programmers/analysts you can: you'll get reasonable
programs.

(311) Require better documentation. Improved programming techniques.

(311) Maintainability can be measured on a project after delivery. This
used as correcter on next project.

(322) Review alternate technical approaches with respect to
maintainability during early development phases.

(322) Evaluate code and documentation. System capabilities do change.

(333) Establish heuristic measures of maintainability and apply them.

(333) Improve documentation techniques.

(333) Conduct trade studies in beginning to determine what maintenance
oriented requirements to incorporate into requirements and pay for them;
use best software technology available to ease maintenance tasks.

(344) An index can be developed by using the ratio of write to debug
time. Usually the higher the ratio the better the maintainability.

(355) I'm not familiai with the corresponding hardware indices, but will
say that good design is essential to "good" maintainability. And since
I'm stuck on requirements and concurrent documentation, I think the answer
is there.

(433) Relative index ratings are for conversation and don't really
qualify anything except someone's subjective rating.

(444) This was a feasible study.



106

(444) (would) Simplify design (structured/top-down) complete
documentation (3560.1 plus auto-generated as built documents).

(455) There are maintainability indeces, in particular, seeding of
errors, followed by the accrual of maintenance statistics.

QUESTION 12. Problem - No technical discipline exists for the design of
maintainable programs.

SOLUTIONS

(111) Solution (if that is the word) is longevity of staff on project.

(133) Again, structured design and programming standards will relieve
this situation. Also, the design should be as simple as possible.

(211) Well written documentation, small modules with minimal
interdependence, structured design, well commented listing, and a sound
control system will achieve satisfactory maintainability. Basically, the
principles involved are no different than those used for developing
maintainable hardware.

(211) Statusing techniques against budget and/or schedule are obviously
inadequate. Also, the status reports of optimistic programmers must be
carefully looked at.

(211) More complete and automated documentation.

(222) Establish minimum maintainability standards.

(222) Presently doing independent research into maintainability metrics.

(222) Perform analysis to determine technical disciplines that allow for
the design of maintainable programs. Use those disciplines (e.g., HOL,
modular programming, top-down design and testing) that will insure proper
design.

(222) Use structured design.

(222) Train customer.

(222) (would) Require top-down design and modularization by function.

(233) Define problem. Set up standards/guides.

(233) Establish traceability.

(233) Use modern programming techniques and produce concurrent
documentation.



107

(233) Structured programming techniques.

(233) Establish design guidelines and forced conformance.

(233) Technology can provide better program documentation language, etc.,
however, management must insist on structure and be willing to live with
its cost and schedule impact.

(311) Adherence to proper software standards.

(322) Research needed.

(322) Develop guidelines for use in local programs.

(333) Standards.

(333) Conduct trade studies in beginning to determine what maintenance
oriented requirements to incorporate into requirements and pay for them;
use best software technology available to ease maintenance task.

(333) Funds to establish a plan.

(333) Structured programs tend to be more maintainable.

(433) Maintainability is "designed in" through appropriate levels of
modularity and documentation completeness. A separate technical
discipline is not necessary.

(444) (would) Simplify design (structured/top-down). Complete

documentation.

(455) All programs are "maintainable." Some are easier to maintain than
others. We are aware of many of the things which enhance maintainability,
the question is quality versus cost.

(455) Maintainability requirements are a function of end use. It can be
designed into software if required.

(555) Not true; the structure of modules and data base can be designed
following rules such as Constantine's or Yourdon's.

(555) I don't think the question is correct. I think it is possible.

(555) By defining/identifying specifics. You can't treat sickness until
you identify the particulars.

QUESTION 13. Problem - It is reported that planning for softuare
engineering projects is generally poor.



108

SOLUTIONS

(111) Do it right! Train managers! I established visibility techniques
with daily meetings and planning papers.

(111) (did) Developed a plan, updated it monthly, and stuck to it.

(111) Improved communication between programmer/analyst and management.
More comprehensive reviews; agreement on goals.

(11) More extensive and more structured planning. Greater involvement
of analyst/programmer personnel. Provision for detailed review of plans.

(111) Suffered due to poor planning.

(111) Review recent and on-going projects.

(111) In future projects -- more effort should be spent in planning.

(111) (did) Establishment of a requirement for detailed development plan
for all projects.

(111) Early establishment of development plans with a series of review
milestones to monitor progress.

(111) Develop a software engineering plan to identify all elements,
schedules, budgets, and milestones to be met. Provide all personnel with
a copy and convey full understanding to all persons involved. In essence,
plan the project and execute the plan.

(111) Train managers of software projects in problem solving/software
technology and management.

(111) Training of managers.

(111) Plan with the same intensity as that used for hardware.

(111) Spend more time planning and plan in more detail. Monitor and
enforce plan.

(113) Development of automatic aids (e.g., CPM, PERT); training of
project people in various planning methods, formal classes.

(114) I think the problem isn't in the plan, but the knowing where you
are. Tangible measurement of progress is the key and concurrent
documentation is the answer. Reason - software in development is just
documentaion. No documentation, no software, no progress, no plan.



109

(131) More time must be devoted to understanding the problem
(requirements) prior to implementation planning. The most knowledgeable
people must be used in planning and scheduling after they have been given
sufficient time to study the requirements. Frequently planning is done in
a few days picking numbers from a hat. This is done so as not to distract
uechnical personnel from the present assignment, but results in poor
planning.

(131) Management guidebooks should be prepared.

(133) The problem experienced was not planning but execution, it was made
extremely difficult by influences outside the project manager's control.

(133) In depth schedule preparation.

(133) This problem was reduced by coordinating the initial design effort
with the project planning phase to insure a common base on which to manage
the project.

(133) Software inputs to higher level management.

(133) Majority of problems seem to arise from lack of good historical
data; speed of technology advance also complicates matters in this area.

(133) Require software management training for managers.

(133) Tight planning requirements.

(211) Software engineering projects can be planned using the same basic
planning techniques as for any other project. This technique has worked
for us on many programs.

(211) Management must understand the technical requirements of the job.
All unknowns should not be buried in software.

(211) Detailed software development plan reviewed by senior ADP staff.

(211) Identify all necessary tasks and allow contingency.

(211) PERT charts or equivalent; formal status reporting.

(211) Teach project managers how to plan bette r.

(211) Detailed management plan.

(211) Matrix solution.



110

(233) Increase experience data base with time. The biggest uncertainty

is when the requirements a,- firm enough to translate into a computer
program. Firm requirements ususally come late in the program development,
hence making software planning uncertain. Extensive early problems

simulation is required to make software planning reasonably accurate.

(233) Treated software like hardware.

(233) Software engineering projects must follow proven engineering
standards.

(331) Force a complete schedule and work load estimate bi-monthly by

program module/component.

(333) Planning can be a waste of time if the inpits (specifications) are

not complete. One must verify specifications first for completeness.

(411) Develop plans.

(444) The problem is to keep the development according to plan, assuming

it was realistic to start with. The biggest problem is unfrozen
requirements/change traffic.

QUESTION 14. Problem - There is an inability to accurately estimate

delivery time of a computer program.

SOLUTIONS

(111) Identify a plan of action, insure schedules are understood, staff

to meet the schedule commitments and insure a buffer time span is included
to account for unpredictable problems. Include use of overtime and

multiple shift operation to meet schedules.

(111) Leave no major problem, but be willing to accept crabs on minor,
but sometimes very time consuming problems.

(122) Improved software development techniques.

(133) Provide enough time. Define.

(133) Measurements of past to relate to future.

(133) The trick consists in developing a good set of specifications
before actual implementation begins. This avoids schedule slippage by

changes not planned for.

(133) I doubt it can be solved. Realistic rules for estimating
times/effort might help. Greater involvement by programmers/ analysts in
setting schedule is needed. Wait until job is well understood before

establishing delivery date.

_ _ _ _ _ _ _ _ _ _ _



-i .-il - -

(133) Do it right! Train managers! I established visibility techniques
and daily meetings and planning papers.

(133) (did) Establish data base of projects histories. Prepare software
cost estimation procedures. Insist on detailed milestone schedule.

(133) Staff with proven, experienced, software engineers; and strive to
solidify requirements early. Use multi-skilled software designers in the
area of input/output software design.

(133) Staff with experienced personnel, periodic management reviews,
detailed scheduling with work performance measurement.

(133) More detailed schedule preparation.

(133) We have gone to milestones two weeks or less -- no more code/debug,
etc. Modularity seems to be the key.

(133) Spend more time on estimates. Base estimates on past experience.
Allow for unforeseen problems. Monitor progress very closely.

(211) Rely on competence of individuals.

(211) Assuming the requirements are complete, it is not difficult to
estimate the design and coding efforts quite accurately, and even testing
to within 15 percent.

(211) Improve the completeness of program requirements statements.

(211) (would) Bottom-up, etc.'s, filtered through updated experience
factor; realistic funding and staffing expectations were evaluated
monthly.

(211) Guess again when specifications have been written.

(211) Experience an important factor.

(211) Use experienced people to make best guess.

(211) Strict adherence to all intermediate delivery dates and correctness
of intermediate items.

(211) Increased knowledge of problem complexity.

(211) In the field today an accurate estimate can be made if sufficient
time is devoted to finding a comparable system. However, frequently a low
estimate is used just to get the project started with hope that more funds
will come later.



112

(214) Guess based on experience and drive to that date by manning
adjustments, etc.

(233) Make specifications as complete as possible; minimize change.

(233) More conservative estimates must be made; more factors and
contingencies examined.

(233) This problem was relieved by structured design and implementation
of functions via the "build" philosophy of integrated and tested
functions.

(233) Used staff with previous similar experience.

(233) Recognize that this is not an accurate portrayal of tho
situation. I think the real problem here is the inability to base line
requirements -- principally because the long software lead time forces the
customer to start the software specifications prematurely.

(244) Spent extra free time.

(433) Realistic independently verified sizing of the work effort.

(444) Assuming a realistic plan and schedule, the main problem is to
control changes so as to be able to keep to the schedule and negotiate new
dates with change.

(455) I feel that a thorough analysis of emperical data will result in
curves useful in accurately predicting completion and delivery of software
of any complexity.

QbESTION 15. Problem - The ability to plan for resources, particularly
the number of programmers required is poor.

SOLUTIONS

(111) Project difficulty estimates must be improved.

(111) Inspect the task requirements very closely to insure complete
understanding. Include sufficient personnel to support design, code,
test, and documentation requirements. Allow for use of overtime or
multiple shift operations in establishing number of programmers required.

([32) Have access to large data base use guidelines.

(133) Do it right! Train managers! I established visibility techniques
and daily meetings and planning papers.

.1.- I



113

(133) This problem may be resolved by structured design, programming

standards and judicious hiring of programmrs to implement the system to
be built in the selected language.

(133) Better communication between management and technical requirements
to justify additional resources and funds.

(133) Prop;.rly size the program workload.

(211) Use of known productivity standards, i.e., lines of code per
p rogrammer.

(211) Bottom-up etc.'s, filtered through updated experience factors
realistic funding and staffing expectations were evaluated monthly.

(211) Plan on a very detailed level with a clear understanding of working
conditions. Many interior milestones are required to maintain a
programming schedule.

(211) If requirements are complete then the level of effort is not
difficult to estimate as a function of schedule and level of personnel
expertise.

(211) In depth scheduling.

(211) Increase staffing as the need arose.

(211) Spent extra free time.

(211) Use of management personnel who have control over programming

resou.:ces•

(211) Use management personnel who have strong influence over programming
pool personnel.

(211) Use/maintain measurements of productivity vs size and complexity.

(211) Spend more time on estimates. Base estimates on past experience.
Allow for unforeseen problems. Monitor progress very closely.

(211) Increased knowledge of problem complexity.

(211) Rely on experienced managers.

(214) Residue of the "software is mystery" syndrome. Knowledgeable
technical management is the answer.



114

(231) In the field today, an accurate estimate can be made if sufficent
time is devoted to funding a comparable system; however, frequently a low
estimate is used just to get the project started with hope that more funds
will come later.

(233) Heuristic rules for effort estimation would help. Provide for
continuing review of resource requirements.

(233) This aspect improved with experience, but is subjective; depends
upon the ability and motivation of available programmers.

(233) (did) Establish data base of project histories. Prepare software
cost estimation procedures. Insist on detailed milestones schedule.

(233) Modularity approach has helped here -- it is easy to see manpower
loading by modular assignment of personnel.

(233) Used staff with previous similar experience.

(311) Train and orient programmers to be flexible in assignment so they
can be moved around more easily and effectively.

(311) Usually over estimate and under staff.

(444) Plan "smooth" manloading profiles, use previous similar projects as
models, provide contingency plans.

(444) No problem.

(455) A thorough analysis of emperical data will result in curves useful
in accurately predicting completion and delivery of software of any
complexity.

(555) The real problem is making sure the right programmer is working on

the right problem. This project has a tendency to keep a constant staff
with a variety of talent so the original question does not apply -- none-

the-less, matching talent to task is the real problem.

QUESTION 16. Problem - There is no real quality method of designing a
project control plan that will enable project managers to control their
project.

SOLUTIONS

(111) Follow specifications and continue reviews. Also stressing problem
areas.

rf&



115

(111) Project manager's program plan must include project organization
structures, reporting levels and milestones to be met. This should have
concurrence of each functional group involved.

(11) (did) We have subjectively defined parameters that we wish to

monitor and control, and have designed a scheme to do so.

(111) Reorganize project as soon as possible to give manager more
control.

(111) Use automated project control systems (such as PCS-70 or ,4K-III) to

control projects.

(111) New manager.

(Ill) Closely track manhours expended vs budgeted (CSCS/R, CPR) and
compare with documented evidence of CPS design development progress.

(113) Assign more technically knowledgeable people to monitoring and
enforcing the plan.

(133) Set up guidebook organizations.

(133) Project control may be accomplished by establishing an achieveable
goal prior to designing the system. Milestones and schedules must be
monitored continuously and managed.

(133) The milestone approach is OK with some additional identification of
dependent tasks. "Pert" or similar monitoring tools are excellent but
must be generated by technically knowledgeable people and thus cost a

great deal.

(211) (would) Institute an earned value type scheme with meaningful work
measurement parameters.

(211) Plan on a very detailed level with a clear understanding of working
conditions. Many interior milestones are required to maintain a
programming schedule.

(211) Perfection is not possible, but the critical pitfalls should be

predicted.

(211) A plan must be flexible to change. It is only a plan. Control
procedures are more important. The quality of the plan is usually the
same quality as the manager who develops it.

(211) Develop plan that provides for continuing monitoring of tasks,
status, schedule, etc.



116

(211) PERT charts or equivalent; formal status reporting.

(211) Educate management!

(211) Milestone schedules.

(211) Experience of the individual project manager appears to be major
factor to success -- again, it's not to the "cook book" stage.

(233) Problem is really the putting of numbers on subjective
measurements, (e.g., is to know your people).

(233) Do it right! Train managers! Established visibility techniques

and daily meetings and planning papers.

(311) Develop a plan whereby project management does control project.

(333) Provide visibility.

(444) Frequent status reviews and customer involvement, approval of
intermediate milestone completion, and affect change management are
critical.

(444) I think there are quality methods of controlling projects -- PERT,
WBS, walk-through's, MIS,

(455) No problem, once the need and method of getting tangible results is
understood.

QUESTION 17. Problem - There are no decision rules for the selection of
management techniques for software engineering project management.

SOLUTIONS

(111) Cut and try helped. Put out management standards and school
managers in this!

(211) Institute an earned value type scheme with meaningful work
measurement parameters.

(211) Software project management, unlike many people's beliefs, is not
considerably different than other engineering tasks, therefore similar
rules may be applied.

(211) Management is not science. Many techniques are valid. One must
select managers who have previously shown insight and talent on similar
jobs.

- -..



117

(211) More research should be done in this area.

(211) (did) We have subjectively defined parameters that we wish to
monitor and control, and have designed a scheme to do so.

(211) No rules are required, however, the proper management technique
should be applied based on the particular project (i.e., matrix management
where a project cuts across many disciplines, line management where a
project is local to a line supervisor, etc.).

(225) Do not know an adequate estimating technique.

(233) Management techniques vary with the type of system to be built.
The process should be as simple as possible. Proper planning between
managers and technicians is identical to solving this type of problem.

(311) This is a question of philosophy. I do not believe that software
engineering projects require applications of management principles which
do not already exist.

(311) Management science guidebooks.

(311) Review alternatives and select techniques most applicable for
project and project personnel.

(311) Must choose one and start with it.

(311) Develop base line of techniques in control plan.

(311) Tried new method to see if it would work (it didn't1).

(311) Consider previous similar efforts and work to solve specific
problems experienced and duplicate successes.

(333) Learn what is available and make rational decisions on a case by
case basis.

(333) Treat each case individually.

(344) There is nothing unique about software that requires special
techniques.

(411) For flight software the techniques are by largely unique to the
project and the customer requirements. Decision rules should be flexible
to be responsive to this. Good management judgement will suffice for
rigid decision rules.



118

(444) Management techniques are the option of the software development
company organization and the customer. There should be frequent
continuous realistic sharing of experiences to identify effective
techniques.

(444) I think there are quality methods of controlling projects-- PERT,
WBS, walk-through's, MIS,

(455) There appears to be a multitude of management techniques. It's a

matter of selecting those which work within your particular environment.

(455) CPLSS computer program development plan.

(455) You can't have rules for everything.

(455) Experience.

QUESTION 18. Problem - Techniques for the selection of project managers
are poor, generally resulting in poorly managed projects.

SOLUTIONS

(111) (would) Select managers who have previously been highly successful

in identical projects.

(Il) Hire good ones, train/experiment with new ones.

(111) I don't think this is a problem here. If it were I would seriously
consider changing employment.

k i) Insure potential project managers have the necessary background
(technical and management) and have strong personalities and can deal with
boch management and technical personnel. Also insure they have good

ccmmunications skills and can deal with customers effectively.

(111) Qualifications must be experienced based.

(133) Must examine past projects to see if any trends exist. Look for
some correlations between qualifications and successes.

(133) Select project managers based on experience in related areas to
insure that the risk is reduced to the lowest possible level.

(211) Selection must be based on ability in terms of managerial and
technical talent, rather than availability of an individual.

(211) Better matching of project specifications to project manager
background.



119

(211) Management is not a science. Many techniques are valid. One must
select managers who have previously shown insight and talent on similar
jobs.

(211) (would) Define the attributes of a good manager and match those
attributes to the capabilities of potential managers. Develop an
apprenticeship program for project managers.

(211) Very hard to solve.

(211) Extensive interiewing, test his technical ability.

(211) Emphasize track record.

(211) The biggest problem I've witnessed here is pushing technical people
into management slots they don't want and/or not prepared for.

(211) Try out potential project managers on small projects first.

(222) Very hard to solve. Project managers with applicable experience
should be assigned.

(233) Give senior analysts responsibility and accountability whenever
possible, involve programmer/analysts in planning to train them as future
project managers.

(241) Disagree. Project manager should be selected from group with

proven record of success.

(311) Based upon previous performance.

(311) I'd say we're not doing too bad in this area.

(311) By bringing them through the ranks as they qualify.

(411) Technique other than management judgement based upon demonstrated
skill and satisfactory performance.

(411) Develop managers over a period of time.

(444) Assure a pool of trained, experienced project managers exist;
conduct courses on useful manageraent techniques, make sure reviewing
authority is a good manager.

(455) My experience is that manager selection is fairly good.

(511) Disagree with problem statement, but can be overcome by flagging
the problem areas immediately.

L __ ____ ____



120

(555) Should be knowledgeable in the discipline. Same criteria as
selecting any other project manager.

QUESTION 19. Problem - There is no me-ns of measuring with any degree of
accuracy the quality of code produced by a programmer.

SOLUTIONS

(111) Monitor the performance of the man's functional development and
classify him on the degree of success of the function.

(133) Use modern programming techniques. Much emphasis on testing.

(133) Define problem. Set up measurements.

(211) Establish and enforce standards together with reviews and walk-
throughs.

(211) Set up review process in which other programmers disk check code.

(211) Initiate quality control measures to check all code prior to
release to the customer. The QA function should be independent from the
project management and have the authority to veto the release of all code
that does not meet required standards.

(211) Keep records of quality (e.g., errors discovered later, subjective
evaluations, etc.).

(211) Management must know their programmers abilities.

(221) Get good programmers.

(222) More effort should be spent in code optimization.

(222) Hire good ones; train/experiment with new ones.

(222) Code authorization should be one of the tasks.

(222) (would) Code must at least meet requirements and follow standards
(structuring, naming, etc.). Continue to investigate current studies of
design-versus-"quality" parameters (e.g., error rate versus cyclamatic
complexity) and adopt those which are valid and fit within program

constraints.

(222) Require testing milestones.

(222) (did) Separate test team. Extensive test.

......................--



121

(233) Establish and enforce coding standards, meaningful.

(233) Some standards could be established; e.g., ratio debugging to
coding time, percent of original statement replaced, average statement
complexity. Provide for code review by experienced programmers who know
efficient, maintainable code.

(233) (would) Metrics of "good code" must be defined.

(233) Measurement is not as important as visibility into the code and a
comprehensive test cases(s). Any measurement would be subjective since
human beings are involved rather than machines.

(233) Measurement of programmers work can be measured by monitoring
problem reports, computer usage and programmer documentation.

(233) Efficiency may be measured by insuring adherence to programming
standards, early unit test procedures and system performance monitors.

(233) Peer group review.

(311) More frequent review of programmer work.

(311) Code has to be examined by head programmer o- project managers, and
some judgement made.

(322) If you mean "in advance" I agree. This is an important problem.
If you mean during testing and early operation, I think we can tell good
code and good programs from bad.

(322) What is accuracy? Code walk-through's?

(333) Not a critical problem; i.e., the ccde does the job. Prefer to be
"more people oriented" and not put people into a 2,000 or 10,000 "line of
good code per year" box.

(333) Sequential software testing does measure code quality, software
techniques of programming standards, walk-throughs, automated checkouts,
etc., all help.

(333) There are methods, but they cost money because they require a
certain duplication of effort.

(455) IBM seems to have made great strides in this area. Problem I see
is that not too many organizations can afford the overhead required to do
tracking at this level.

A



122

(455) Given appropriate measures of "goodness", goodness can be
measured. Is all this effort worth the trouble and cost, or would the
time and money be better spent on definition of standards which produce
known results?

(555) Hire high quality coders if that was my primary concern, I'd do
this as soon as someone defined "quality of code."

QUESTION 20. Problem - There is a poor accountability structure in most
development projects, leaving some question as to who is responsible for
various project functions.

SOLUTIONS

(111) Establish procedures and establish good work breakdown structure.

(111) Responsibility should be clearly defined.

(111) Streamline accountability structure.

(111) Couple responsibility with accountability; make sure tasks are
understood by all parties.

(111) Establish clear-cut lines of responsibility for each project
function and organize the project around the functional requirements.
Insure all project members know who is second in command for each major
function under the project.

(111) Strict monitoring of functions and personnel is essential.

(33) The system should be designed in such a fashion that functions may
be allocated to programmers for implementation, integration and testing.

(211) Update responsibility, documentaion, and organization charts.

(211) Clearly defined work packages.

(211) (did) Enforcement of the programming team concept.

(211) Document task assignments.

(211) Invariably the informal organization is predominant.
Responsibility is important only when a job is not getting done.
Responsibility should be given to a person who is most capable of
performing.

(211) (did) Project organization with written tasking and procedure
direction.

t



123

(211) Completely documented and reviewed task descriptions with agreed
upon schedules and outputs.

(211) When projects are specified, each task should be outlined and lines
of responsibility identified.

(211) Clearly define and then respect the accountability structure.

(211) This problem is eliminated by the development of good program plans
at each level, including specific personnel assignments and
responsibilities.

(211) Define responsibilities in a better way.

(211) Programming by contract -- i.e., the team members would sign
contracts that specify their goals and responsibilities.

(311) Use standard WBS structure.

(311) Assume the responsibility if no one else does.

(311) Clearer definition of responsibilities4

(311) Task descriptions, organization charts.

(333) This is a planning problem and can be minimized if the planning
group consists of technically capable people, who are given sufficient
time to identify all functions in the initial plan.

(411) Matrix organization.

(444) Clear organization structure, good work authorizations usually keep
this under control.

(455) Surface it in the WBS.

(555) 1 don't truly agree with this statement. Responsibility is
generally well identified, although not always in the proper location.

QUESTION 21. - Problem - There is much consternation in industry
concerning how best to organize for the accomplishment of a project.
(e.g., Should the project be organized around the function, the project,
or under a new matrix system?)

SOLUTIONS

(111) Select the system that best suits the particular project. No one
system will respond to the needs of all types of projects.

U



124

(111) Work independent as though it was a line organization for the one
project.

(111) There is no single organization good for all projects. At high
levels, some form of matrix to get the proper people is necessary.
However, a second level of organization within the project is important
and this level must be geared to the specific project guide.

(111) Change companies. I give up here.

(133) This problem may be relieved by organizing the project to meet the
needs of the system by coordinating management and technical planning
effort.

(211) Better evaluate the specific project objective and then apply the
organization that seems to better fit.

(211) Matrix system dictated by division management.

(211) New matrix system,

(211) Organize by function.

(211) Pick best way in keeping with company dynamics.

(211) New matrix system.

(211) (did) Project organization resulted from a year of trial and
error.

(211) I don't know of anyone that seriously believes he can solve this
problem.

(211) Project or matrix organization.

(211) MIatrix organization with emphasis on project management.

(211) Selectively.

(233) For projects which fluctutate in manpower requirements, matrix is
clearly the best approach. From a technology viewpoint the individuals
need to see a clear, career path where specialization is allowed. Long
term projects, where manpower requirements exist full time, the
projectized organization is more appropriate.

(233) Depends on your particular organizational/customer mix as to which
works best.



125

(233) Matrix system.

(311) Have clear set of criteria in the beginning as to what are
important values assigned to development organization, and pick the
approach to best satisfy project values within company environment.

(311) This depends on overall company structure policy. Each type of
organization has its pro's and con's. Each will work if there is a
dedication by management to enforce standards, planning, reviews, etc.

(311) Select one type and adapt it to particular needs, use it enough to
make it the normal method of development.

(333) All methods work; the best way is to determine case-by-case.

(411) Organize to suit the project/problem to be solved. No one way will
solve all situations.

(444) Project organization.

(455) There are many ways to skin a cat. The program in which the boss
is most interested will always get the best resources.

(455) The scope of the job dictates the answer.

QUESTION 22. Problem - It is difficult to impossible for a project
manager to have the requisite visibility to be able to determine whether
the project is on schedule and within cost.

SOLUTIONS

(ll) Establish proper visibility tools, seeing papers at conferences.

(111) Better reporting techniques need to be developed.

(111) (did) Developed and automated reporting procedures that reports
status of all software modules. Developed cost/performance chart far
earned value reporting.

(111) Insure that only responsible persons are generating status reports,
problem reports, budget reports, etc. Utilize automated accounting
systems and project control systems whenever possible to insure timeliness
in reporting schemes.

(111) The manager must go after information, "Look under the rug," and
provide help where needed. Further, he must keep the customer informed
before dates are missed.



126

(114) 1. Good spec's. 2. Tangible milestones. 3. Reviews, releases,
audits. People hate documentation (unless they either don't have the
opportunity to learn to hate it, or they see what a beautiful thing it can
be). But getting the documentation integrated into the design process
essentially clears half of the "problems" you cite.

(133) Need cost/accomplishment matrix.

(133) 1. Good task leaders. 2. Formal reporting structures.
3. Review boards. 4. Formail sufficiency and acceptance criteria.

(133) This problem may be solved by enforcing scheduled - liveries and
comprehensive testing procedures.

(211) Define program functions at a detailed level and use that breakdown
as a check-off list as tests are completed.

(211) By establishing target dates and budgets, a project can be
controlled and evaluated at any point.

(211) Su~h visibility is a function of control structure establishea,

reporting tools used, clear-cut level of responsibility, and continued
personnel involvement.

(211) If he doesn't the project manger should be replaced. His job is to
maintain just such visibility.

(211) Define multiple intermediate milestones with observable,
neasureable outputs, e.g., specifications with walk-throughs.

(211) Use rate charting for visibility of module development.

(211) Weekly progress meetings.

(233) Have a separate cost control function.

(233) Better management information systems, built around automated data
acquisition and utilizing automated work breakdown structures.

(411) (did) Thorough planning, project organization, reporting by
exception, tight change control, frequent reviews.

(411) Used matrix system.

(444) Milestones.

(444) Good budgets, frequent control is essential. The recent
C-specifications and CSSR techniques applied to software development,
detract, rather than help.



127

(533) Plan, control, and measure against the plan. You can't answer
these kind of pseudo motherhood questions.

(555) I don't agree here. Modularity has given us the visibility.
Improved communications and fixing of responsibility.

(555) Disagree -- use many milestones or kilometer stones.

QUESTION 23. Problem - There is a general lack of traceability from the
requirements specification to the final code.

SOLUTIONS

(111) More frequent reviews are needed.

(il) (did) Traceability matrix from performance specifications to
design specifications.

(1ii) Current contract requirements remove this as a problem since part
of preliminary and critical design reviews relate the specification
requirements to the actual code that implemented the requirement.

(111) Requirements should lead to the development of performance
specifications which leads to design specifiations. These documents must
iclude detailed test plans for each functional area. So that the coder
can code to the design specifications, mindful of test cirteria.

(122) Formal requirements methodology; automated documentation.

(122) Correct through documentation.

(123) Add integrated approach to software development and testing is
required.

(133) Threads, SUD's and similar decomposition techniques, where the
decomposed elements could be weighted, tracked through implementation and
integration, back to complete functions.

(133) This problem may be relieved by enforcing structured design,
programming standards, test procedures and documentation standards.

(133) It is only through traceability that the accuracy of the final
product can be determined relative to performance requirements.
Traceability absolutely necessary.

(133) The requirements specifications should be the basis for final
acceptance test procedures, which are best written by someone not involved
with the original specifications.

I



128

(211) Traceability matrixes from document to document including code.

(211) Insist on traceability.

(211) Require high traceability.

(222) Better analysis of requirements.

(222) Provide good documentation and tacking mechanisms to each lower
level of design detail.

(223) Accurate specifications are required with any changes.

(223) Good old V&V rigorously applied and independently performed.
Double the traceability for double the development cost.

(233) Do this by edict and by methodology.

(233) Enforce adherence to both project specification and design
standards.

(233) Rigorous test procedure development.

(233) Again, I feel this is a matter of overhead cost. A number of these
items are, in fact, niceties rather than hard requirements.

(233) Traceability matrices at each level.

(233) Project review detailed design with specific intent to trace
requirements through design.

(233) (did) Extensive test by a separate group.

(233) Set up guidelines.

(311) Clear assignment of responsibilities and documentation of technical
decisions.

(311) Improved documentation of various phases.

(333) Some new automated tools which generate and evaluate the matrix
helps. Writing separate testable requirement helps, intentionally
organized design also helps.

(333) Tight control.

(455) A technical control board at the project level.



0 I

129

QUESTION 24. Problem - There is, in general, an inability to measure the
quality of the program.

SOLUTIONS

(111) Better testing.

(111) Organized around a systemized project.

(122) Different programs can be tested through different means to measure
its quality. For instance, by using certain input (with results being
known in advance) to test the program and compare its outputs with the
result to determine the program accuracy. The compute time is another way
to determine the factor of quality.

(122) Develop software metrics.

(133) This is a true statement -- unfortunately, programming is like a
good landing -- anyone you can walk away from.

(133) Define criteria and weapons software.

(211) Assure that the program has followed all design specification- and
implementation standards.

(211) Control/quality meetings.

(222) (would) Establish a realistic MTBF criteria; measure against
requirements and standards; impose standards to support LSS (structuring,
naming, etc.).

(222) Do this by edict and by methodology.

(222) Still have not established a good measure of quality.

(222) (did) Extensive testing by separate group.

(233) Did not consider measuring the quality.

(233) Still working the problem.

(233) Some sort of programming standards could help. Review of
programming (for efficiency, readability, modularity, etc.) while there is
still time to change.

(233) The quantity of a program may be measured by way of test results,
adherence to programming standards, structured design nd accuracy of
interfaces.

- . - .,-i • - .p ,= _ , .. . .



130

(233) Improved testing.

(311) Due to high cost of superior quality software, accept software that
meets user requirements, don't optimize, etc., or cost is too high.

(311) Hire high quality programmers.

(322) If you mean "in advance" I agree. This is an important problem.
If you mean during testing and early operations, I think we can tell good
code and good programs from bad.

(333) "Quality" is a subjective term. If the standards applied result in
a program that meets the requirements, "works," and is maintainable, then
its "quality" is satisfactory.

(333) Code has to be examined by head programmer or project manager and
some judgement made.

(333) This is the function of the QA organization. Any mutually agreed

to method which you can afford will work. Don't expect absolute
definitions.

(355) Again, if it performs the requisite function, it may be used.
Recognize the variants in programmer ability.

(355) Overcome by experience and by use of the program.

(422) Measurement qualification will always be subjective. A 90 percent
figure is of no value, if the remaining 10 percent code of the program
results in a systems failure.

(455) The measure of the quality of a program is best accomplished by

demonstrating all requirements to user and measuring his response.

(455) "Quality" unless made more specific means little. "Quality" in
what way: cheap, timely, fast • .

(555) Success criteria cannot be anything but meeting requirenents. If
not a requirement, then cannot be judged. Put it in the specifications,
and test for it. Here is the crux -- if you can decide on a meaningful

test, then you will get a meaningful design.

(555) I don't think the question is correct. I think it is possible.



I


