AD=A117 989  ARMY ENG!NEER WATERWAYS EX

PERIMENT STATION VICKSBURG=-ETC “F/6 12/1

THEORY AND CALCULATION OF THE NONLINEAR ENERGY TRANSFER BETWEEN=-=ETC (1)
' MAY 82 B A TRACYr D T RESIO
UNCLASSIFIED WIS-11 NL

. IillIIIIIIIlIIIIIIIIII|IIII|IIIII|IIIIIIIIII|IIII|IIIII|IIIIIIIIII
a




THEORY AND CALCULATION OF THE
NONLINEAR ENERGY TRANSFER BETWEEN
o SEA WAVES IN DEEP WATER

-;r"‘\.- by
Pl Barbara A. Tracy, Donald T. Resio
Hydraulics Laboratory
i U. S. Army Engineer Waterways Experiment Station C
= P. O. Box 631, Vicksburg, Miss. 39180 D ‘ ‘
- s‘.“ v

[Approved For Public Release; Distribution UnlimitedJ

M J 2
s 1. - o
WIS Report 11 - % 3

May 1982 S AUG O 1982 "-ﬁ 5

WAVE INFORMATION STUDIES OF U.S. COASTLINES

Prepared for Office, Chief of Engineers, U.S. Army
Washington, D.C. 20314

82 08 u9 07 5

—
[0 S
=




 —

[

Destroy this report when no longer needed. Do not return
it to the originator.

The findings in this report are not to be construed as on official
Department of the Army position unless so designated.
by other authorized documents,

The contents of this report are not to be used for

odvertising, publication, or promotional purposes.

Citation of trade names does not constitute an

official endorsement or approval of the use of
such commercial products.

Cover photo by Steve Lissau. Photo originally ap-
peared in Oceans. a publication of the Oceanic
Society, Vol. 12, No. 1, Jan-Feb 1979.




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEr EAD INSTRUCTIONS
(1. REPORY NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
WIS Report 11 D’Af// ‘) ;J"f
4. TITLE (and Subtitie) o 5. YYPE OF REPORT & PERIOD COVERED

THEORY AND CALCULATION OF THE NONLINEAR ENERGY

TRANSFER BETWEEN SEA WAVES IN DEEP WATER Final report

6. PERFORMING ORG, REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Barbara A. Tracy
Donald T. Resio

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT.  PROJECT, TASK
U. S. Army Engineer Waterways Experiment Station AREA & WORK UNIT NUMBERS
Hydraulics Laboratory

P. 0. Box 631, Vicksburg, Miss. 39180

11. CONTROLLING OFFICE NAME AND ADORESS 12, REPORT DATE
Office, Chief of Engineers May 1982
U. S. Army 13. NUMBER OF PAGES

Washington, D. C. 20314
14, MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Ottice) 15. SECURITY CLASS. (of this report)

Unclassified
15s. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) .
o

- L3 &
GRRRCE
kS l

Approved for public release; distribution unlimited. :

1982

I AR
‘{u-
2

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES
Available from National Technical Information Service, 5285 Port Royal Road,
Springfield, Va. 22151.

19. XEY WORDS (Conti on re alde 1 y and Identify by dlock number)
Energy transfer

Integral equations, Nonlinear

Ocean waves

Transport theory

Water waves

20. ADS CY (Conthus an reverse sldy ¥ nagoasasy god identify dy block number)
¥ » procedure to integrate the energy transfer Boltzmann integrals has been

_~—1 set up by Webb using Hasselmann's theoretical development for the nonlinear
E wave-wave interactions between sea waves. This report discusses how the inte-
gration process has been made simpler and more efficient by the utilization of
a geometrically spaced polar grid over the spectral region. This grid allows
the locl and the coefficients inside the integrand to scale by various multi-
ples of the geometric scaling factor. Numerical results for the nonlinear
energy transfer are given for various spectra.ﬂ\

DD ,"ons 1473  £o1Tion OF 1 HOV 813 OBSOLETE 1
Uncl
SECUMTY CLASSIFICATION GF THIS PAGE (When Data Entersd)

3 Ny, o




l SECUMITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) '




Preface

In late 1976, a study to produce a wave climate for U. S. coastal
waters was initiated at the U. S. Army Engineer Waterways Experiment
Station (WES). This Wave Information Study (WIS) was authorized by the
Office, Chief of Engineers, U. S. Army, as a part of the Field Data
Collection Program which is managed by the U. S. Army Coastal Engineer-
ing Research Center. The U. S. Army Engineer Division, South Atlantic,
and the U. S. Army Engineer Division, New England, also authorized funds
during the initial year of this study (FY 1978) to expedite execution
of the Atlantic coast portion of this program.

This report, the eleventh in a series, is a technical report de-
scribing an integration routine to calculate nonlinear energy transfer
for waves in deep water. This work was done in the Hydraulics Laboratory
under the direction of Mr. H. B. Simmons, Chief of the Hydraulics Labora-
tory, Dr. R. W. Whalin, Chief of the Wave Dynamics Division, and
Mr. C. E. Chatham, Jr., Chief of the Wave Processes Branch. This report
was prepared by Mrs. B. A, Tracy and Dr. D. T. Resio. Mrs. D. S. Rags-
dale provided computer assistance, and Miss C. Lanford prepared some of
the graphs.

Commanders and Directors of WES during the conduct of the study
and the preparation and publication of this report were COL John L.
Cannon, CE, COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE.

Technical Director was Mr. F. R. Brown.
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THEORY AND CALCULATION OF THE NONLINEAR ENERGY
TRANSFER BETWEEN SEA WAVES IN DEEP WATER

Introduction

1. The sea-wave spectrum usually has its main peak just before a
low wave-number cutoff. The JONSWAP (Sell and Hasselmann 1972) experi-
ments have shown that this peak is higher and narrower than had been ex-
pected, and the peak moves to a lower wave-number cutoff as time in-
creases. Nonlinear interactions between sea waves contribute an energy
transfer that could be an explanation for the peak enhancement and the
shift to a lower wave-number cutoff. 1Integral values for the nonlinesar
energy transfer for a given spectrum can be used to show how this spec-
tral situation changes over a period of time.

2. Nonlinear wave-wave interactions become especially important
in the case of tropical wind systems, and the parameterization of wave-
wave interaction among components of an asymmetric spectrum is important
for the case of tropical systems with rapidly varying wind fields. Ex-
perimental data (Forristall et al. 1978) show that the spreading func-
tion is frequency-dependent; therefore, different frequency components
can propagate in significantly different directions. Investigators feel
that the nonlinear transfer may be the reason for extremely long low-
energv waves observed after severe storms (Hasselmann 1962). An integra-
tion technique that is valid for the nonlinear interactions in a sym-
metric spectrum can be easily extended to an asymmetiic spectral system
if that system has an analytical representation.

3. Hasselmann (1962) wrote the equations and evaluated the
boundary conditions that model the behavior of a system of waves under-
going nonlinear interactions. These equations involve the rate of
change of mean energy (or mean action density) at each wave number.
(This energy flux was evaluated by using a perturbation method.) Hassel-
mann formulated these equations by considering the waves as particles

and by considering the whole process as particle scattering. Webb (1978)
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has developed an integration approach that evaluates this rate of change
of the action density by evaluating the resulting Boltzmann integrals.
Development of a special type of grid for this integration scheme allows
a fast calculation of the nonlinear energy transfer for a whole spectrum.
This grid modification consists of a polar grid with equal angle rays
and with radial rings spaced by a geometric progression. A comparison
of the results of this method to Webb's results for a Pierson-Moskowitz
spectrum is shown. Results for various other symmetric spectral

situations are also shown.

Theoretical Development

4. Webb (1978) has taken Hasselmann's equations and written the .
mean action density equations in terms of a transfer function which {
gives the rate one wave is scattered into another. The action density

form of Hasselmann's equation is*

dn
1 _ > > > > > -+ T . X -k -k
o = [, R e By By B e sy +Fy - Ry - R
8wy +wy mwy = w) c [ngng(n, - ny) +myn, (ay - ny)) (1)

In this equation, ni is the action density at wave number Ki , and
wy is the angular velocity at ﬁi . 8(...) 1is the Dirac delta func-
tion and C(...) 1is the coupling coefficient. Energy conservation is
taken into account by the angular velocity delta function, and momentum
is conserved by the wave-number delta function. The process involves

a set of four waves with wave numbers: kl, k2, k3, and kh . Webd

introduces a transfer function T(§1,§3) where

* For convenience, symbols and unusual abbreviations are listed and
defined in the Notation (Apppendix B).




321-=‘IAK T(k, ,k
dt 3 1°k3) and

> > > > > > > > > > >
%,k = 2 1]dk2 dk, c() k) K k) s + K, - Ky - %)

> > > >
§luy +wy = wg - wy) - 9<|k1 -kl - TRy - k3|)

(nyny(n, = ny) +myn (g - npd) ()

8(x) =1if x>0

8(x) = 0 if x < O
_->~—>_->_—> 3
X = lkl k4‘ [kl k3| (3) 4

The 6(x) function determines a section of the integral which is not de-
fined due to the assumption that ﬁl is closer to KB than KZ .
5. The transfer function allows us to think of the process as

particle scattering where we consider the four waves as four particles

with their momentum related to their wave number. The transfer function ]
gives the rate at which KB is scattered into wave Kl . The density
products can be thought of as a diffusing and a pumping density term

where n1n3(n4 -~ n2) is the pumping term and nznh(n3 ~ nl) is the

diffusive term. The transfer integral can be thought of as a sum of a

diffusing transfer integral and a pumping transfer integral. J
6. The first consideration in the evaluation of the diffusing

and pumping transfer integrals is the limiting properties of the energy

and momentum delta functions. We will use the following property of

the Dirac delta function (Jackson 1962):

§(x - a) =01if x # a

where x and a are representative functions. Jk(x - a)dx =1 if

region includes x = a , and is zero otherwise. Consider




the dﬁ& part of the transfer integral:

> > > > >
Jok, s@ + &, - % - %
> > -+ > >
If kl + k2 - k3 = k4 for conservation of momentum, the dk4 integral
equals one and the transfer integral becomes
T, ,k,) = 2[dk, 6w, + 2 ) F(k

1’ 3) - f 2 (wl wz - (J3 - \*4) ( 1) "') (4)

where
F(k = c(k 0 ( + ] '
1 ves) = 1’ vee) (x)[nln3 n, - n2) nzna(n3 - nl) l

o

This delta function evaluation limits the wave number configuration to
> > > > > <> >

g LI - .
kl + k2 - k3 = k4 or kl - k3 = k& - k2 . This meaus that the tips of

the four wave-number vectors must form a parallelogram in wave-number
space., See Figure 1 for a description of what a wave-number configura-
tion would look like.

7. 1In order to evaluate the integral numerically, we must fix
values for il(x,y) and §3(x,y) and consider the limiting properties
of the angular velocity delta function. Then, for each set of (ﬁl,ﬁB) ,
let W(Kz) equal the argument of the angular velocity delta function.

To eliminate the angular velocity delta function, let W(Kz) be equal
to zero; then
>

(Kl + k., - k) (5)

-w 2 3

> >
W(kz) =0 = w, + w(kz) - w 4

1 3

>

The momentum conservation condition has been used to rewrite k4
> >
3 coordinate system—-one point in the kl - k3

Consider a Kl’ KZ’ ﬁ
plane would have a whole line of solutions parallel to the ﬁz-axis. The

set of solutions that will satisfy the conservation conditions can be

represented as an egg-shaped two-dimensicnal locus in a Cartesian coor-

dinate system in KZ space where k2x is the x-axis and ka is the
-

y-axis. On this locus n is in the normal or radial direction and s




Figure 1. A set of four wave numbers, E
> > > ) - > > >
kz, k3, and EA , where k1 + k2 - k3 = k&
(|k1{ is written as kl)

1’

is in the increasing 6 or tangential direction (see Figure 2).
8. Using a (;, ;) coordinate system for W(ﬁz) , the transfer

integral can be written in terms of the new coordinate system:

T(iZl,KB) = 2ffds dn §[W(3, M) IF(ky, ...) (6)
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Figure 2. A (n,s) coordinate system is set up using
the normal and tangential vectors relative to the locus

Another property of the Dirac delta function is (Jackson 1962):

§ (x - x )
S[E(x)] = —2 here f(x ) =0
df ©
dx

[6(£)df = §(x)dx]

where x and x, are representative functions. Using this property on

-0
dn-ﬁ[w(g,;)] , we find that G[W(g,;)] =-§—Q%:j;)-. We must integrate

AM(s,n)
an
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around the s-curve for this property to hold, so

T,k =2 [fds an E2=0) L pa, L
3W(s,n)
an
_ ds
s f e, 0
dW(s,n)
o9
since -[dn §(n -0) =1 . (Note that evaluation of the integral now re-

duces to evaluation of a line integral or contour.) The normal deriva-
tive in the denominator is the magnitude of a gradient and can be

written:

'aw(é’,ﬁ) -1

an

-1
= IVW(kZX,kzy)l (8)

UV W >

This term can be thought of as a phase space term.

9. The evaluation of the integral now entails evaluation of all |
the factors of the integrand at a series of evenly spaced points along
the k2—contour loop or locus. The factors of the integrand include the
phase space term, the coupling coefficient, and the density function.
Fach of these will be dealt with separately. Figures 3 and 4 show how
these three terms behave over a representative locus. A representative
locus is also shown in Figure 5. Fifty evenly spaced increments are
shown as the points on the locus,

10. The phase space term ;%g; can be evaluated at each point of
the locus by evaluating the gradiént of the locus equation (Equation 5).

1/2 (

For deep water w a k 1K{). The locus equation can be simpli-
-k

1/2
1

stant during calculation of the k2
3 = Kl - KB . Each interaction can be defined by a specific ﬁ-vector.

>
After evaluating the w-functions and substituting for Q and P , the

k:
1/2 . . .
3 (since kl and k3 will remain con-

-contour) and defining a new P-vector,

fied by using Q = k

expression for W(ﬁz) becomes:

Q+k;/2— (|3+T€2|)1/2=0 (9)
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The gradient of W is:

= iw— : ﬂ 5
W ~ 1* 5y (10)
where
o[ia’? - (18 + %,1)*7]
W _ L2 2 . (11)
Ix ax
and
1/2 _ > 1/2]
W a[k2 (|§ + k2|)
By 3y (12)

11
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Figure 5. A representative locus in Cartesian

coordinates. Locus coordinates have been

found by an iteration routine utilizing binary
search

Writing the vectors in rectangular components yields:

I+, = [o, + 0%+ o+ y)z]m (13)

where Px and Py are the rectangular corponents of P and x and y
are the rectangular components of Kz . The magnitude of the gradient

in the normal direction is:

12




o = [ ]

2 -3/4 (Px + x)

-3/4)?
={§(x2+y) ———Z——[(PX+x)2+(Py+y)2] }

=3/4 (P +y)
+ %% (x2 + y2) —-—JL7T~—— BPX + r‘z

' %]-3/4$2 e
+ (P + y)
y (14)
For ease in working with the angles involved, rectangular coordinates
were used for evaluation of this term.

11. The coupling coefficient from Hasselmann's work is a complex
algebraic expression and in Webb's paper was put in a usable form by an
algebraic manipulator. The expression given in Webb's work was used,
and the behavior of this term when plotted over a representative locus
exhibits the same shape as Webb's curve. The complete algebraic expres-
sion is listed in the appendix.

12. The density term in Hasselmann's equation, n1n3(n4 - n2) +
n2n4(n3 - nl) , can be thought of as the sum of two types of transfer.

) .

A diffusive transfer between k3 and kl is described by nzna(n3 - n

This diffusive transfer causes a pumped transfer between k2 and k4

-~ nz) . The 0, values are action densities and are re-

1
in n1n3(n4
lated to the amount of energy inherent in a given state, ki . The action
density subscripts correspond to the wave-number subscripts. The whole
purpose in constructing an evaluation scheme for the Boltzmann-type
integrals is to evaluate the rate of change of tho action density at a
certain wave number and, therefore, get a value for the energy transfer
there. Right now, we are interested in knowing the amount of action
density we have available to cause this diffusing and pumping effect in
the set of four wave numbers, kl, k2, k3, and kA .
13. The n, (ﬁi) values are directly calculated from the spectrum

13




that is being considere~.

tion where E 1s energy in mZ/Hz

Most spectra can be written as an E(f)

func-

The independent variable is fre-

quency, but we are dealing in wave-number space so we must transform

the energy density function from a function of frequency to a function

of wave number. The one-dimensional f

to a two-dimensional function by using a

requency function was transformed

cos2 ® spreading function.

The group velocity cg can be written as:
_
°g T 3k (15)
where w 1is angular velocity. The identity relating frequency to wave
number in deep water is
2
wa k or w= Ygk (16)
Then,
¢ --w_Yek_ 1 g 17)
g 2k 2k 2 k
The density function ni(ﬁi) can be written as:
. F(K,)
ni(ki) = — (18)
et

where F(Ki) is the two-dimensional s

ber and w is the angular frequency.

tion term in the amplitude of the wave
term to enable a transformation from a
wave-number dependent function.
plying E(f)

by multiplying the whole expression by

by the square of ¢ /w

number, the action density at a specif

using the above relationships. A Pler

pectrum with respect to wave num-
The term acts like a modula-

E(f)

c
g
function making up the

frequency-dependent function to a

The whole procedure amounts to multi-

and adding the spreading function

c052 0

™
ic wave number can be calculated

If we know the wave

son-Moskowitz spectral density func-

tion was used in the initial test case to match with Webb's work, but any

spectrum with an analytical wave-number representation could be used in

the calculations.

14




Geometric Spacing Technique for Grid

14. So far, the basic aspects of the factors of the integrand have

been dealt with. All these hinge on calculation of the k2
>

->
kz—locus for each kl - k3 interaction. It is possible to calculate a

locus by iteration or a combined interpolation-iteration scheme for

-contour or

each separate (Kl,ﬁ3) couplet, and this would be the approach to the
problem if we used a regularly spaced (k, 6) grid. However, using a
geometric progression spacing scheme for the k (radial) values allows

us to utilize some geometric vector relationships that will permit the

estimation of the kz— and k4—loci without having to calculate each

as an independent function of a (El,ﬁ3) couplet after one locus has
been iterated for each possible orientation of the (Kl,§3) couplet.
In this method an initial value is chosen for the magnitude of ko
where ko is the smallest value used for r on the (r, 8) grid. We

1 (MKS wave-number units) .

defined our value for ko to be 0.14 m
ko must be chosen to be a small wave number in the area where very
little interaction takes place. In k-space we are using polar coordi-
nates where iKl =r and 6 is incremented from 0° to 90° in 9° incre-
ments. Our first area of reference will be a circle of radius = ko .
The next reference circle around the origin will have r = Ako , Where
we have specified X = 1.2 . The next concentric circle will be Azko
and so on. Figure 6 shows the completed grid with X = 1.2 and

ko = 0.14 .

15. For each interaction we need to define a g—vector

(? ﬁl - 13) . This 3—vector will define the orientation of the inter-

action on the grid. As stated before, each interaction consists of a

constant ﬁl-vector and a constant 13—vector. |ﬁ3| will be assumed to
be greater than ‘K1| for ease in calculation. P can be calculated

> >
from the kl- and k3

each interaction. Considering Figure 7, it is obvious that on rays of

-vectors, and there exists a specific P-vector for

constant 6 a set of parallel ?—vectors is produced. These parallel
?—vectors can be related to the locus of the initial B-vector by the A

scaling factor.







ORIGIN

Figure 7. The geometric construction of a set of parallel
interaction vectors

16. Considering the geometry in Figure 7 with sin 61 = yl/(kko)
for triangle OBC, the Cartesian coordinates for the orientation of

- > >
P (one of the interaction P-vectors that utilize the ko—vector) are:

1
y = A ko sin el
X = A k0 cos 61 - ko
then,
17




| 2

’ 2.2 2
X ko sin 61 + (Ako cos 6l - ko)

ko A2 + 1 - 2X cos 9

1)

19)

1

The components of B

ODE in Figure 7:

, can be evaluated in the same way using triangle

sin 6

1 2 A

<
]
>
=
o
]
oS
=]
<

X = Xz k cos 8, - Ak
o o)

L}

(Azk cos 8. - Ak )2 + Aakz sin2 6
o 1 0 o} 1

k X\jIZ + 1 - 2X cos 8 (20)
o 1

Looking at the ratio of |§2| to |§ll , we find |32|/w3i| =X . 8o,

the ratio of the magnitude of two consecutive parallel B-vectors is X .
17. Considering the locus equation and the relationship between

|$2| and ]3 , we can show that if we have the locus for the P

1

1
interaction, we can calculate the locus for the 32 interaction. The
locus equation is:

Q+ k- (li” + R’2|)”2 = 0 (21)

where

18
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1/2 _,1/2

Q =k 3

- >
and P = k, -k

e ea o

First, let us write the kl and k3 interaction components (Figure 8)

for the locus equation for 31 :

k, = 2k 3 k. = Ak_cos 6, k Ak sin 6 (22)
o o Lo}
k, =k ; k. =k ,k =0 (23) !

Second, the k, and k interaction components for the locus for

1 3
13,1 = 2B, | are:
2 1 :
k. = ak; k. = Ak, k. =0 (24) '
1 o] X o] y
LT Ry {
k, = Azk ; k= Azk cos 6, k. = Azk sin 6 (25)
3 o’ X o y o Voo

3

Substituting the above information we find for the first locus equation:

1/2 /12 _ 1/ 1/2

Q= k% - o)t 12 -2
PlX = ko - Ako cos
Ply =0 - Ako sin ©
B, + &,] = \kplx +i, 00+ (P, + kzy)z
By algebraic manipulations and substitution,
1B, + &,| = ‘jkg + 1y (2K )L = ) cos 0) + ky (2¥Kk ) (-sin B) + 21 +3% - 25 cos 8 (26)

Using the general locus equation,

qQ + ké/z - (l? + TZZI)”Z =0 (27)

19
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the first locus equation becomes

W2 12
o

1/2 2
) + k2 - [kz + k2X(2ko)(1 - A cos 8)

9 ? 1/4
+ kzy(ZAko)(—sin 8) + ko(l + A% - 2X cos 6%] =0 (28)

Substituting the information for the second locus, we find

"
9= Ok )2 (Azk )1/2 < M2 4102,
[} ) [}
2
va = Xko - A ko cos ©
P, =0 - A’k sin @
2y o
> 2 2
‘32 + kzi = \jEPZX + ka) + (sz + kzy) 29
By algebraic manipulation and substitution,
B, + &, =‘j'k§ +k, (2K M1 - 1 cos 8) + kzy(-Zkox‘2 sin ) + 28207 - 21 cos 8 + 1) (30)

The second locus equation becomes

o (L - A ) + k2 )

kljzkl/z 1/2 1/2 - [?2 + k, (2k A)(1 - A cos 8)
. 2x o
1/4
+ Kk (TZk A% sin 8) + 32k%(3% - 23 cos 6 + 1) ! =0
2y o o (31

18. Using the assumption that the loci scale by a factor of A,

we should be able to substitute k = )k , k = Ak , and
52 5 2 2x9 2x7 2y2 2yq
k, = A7k + 27 k into the second locus and have an algebraic ex-

pression equivalent to the expression for the first locus. Substituting,

the second locus becomes,

21
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1/4
1/2.1/2 2 2 :
k / A / (1 - Al/ ) + Azk 2 + A7k 2 - sz 2 + Azk 2
o 2x1 2y1 2x 2

2
+ k2X(2k01)(1 - % cos §) + kzv(—ZkOX“ sin 6)

1/4
+ szz(kz - 2) cos 8 + 1{] =0 (32)

Divide the above equation by kl/z and it is equivalent to the expres-

sion for the first locus equation. Therefore, if we have the coordinates
of the initial locus, we can calculate the locus coordinates for any
interaction that has a P-vector parallel to the P-vector of the initial
interaction.

19. 1In calculation of the loci, we need only calculate a basic set
of loci where kl = ko , 91 = 0° , and k3 takes the position uf each
other point of intersection of the grid. Comparisons are shown in
Table 1. 1In this figure we have considered a basic locus where
klx = 0.1400 , kly =0, k3X = 0.2016 , and k3y =0 . The x and v
couordinates are given for this locus. The next set of values are X
times the coordinates of the basic locus. The third section contains
the coordinates for a locus with the same P-vector coordinates as the
second locus. The basic locus and the locus of the third section have
been iterated by a binary search routine that will be outlined later in
the section on the program method. (k = 0.1680 , k =0 ,

1x ly
k = 0.2419 , and k = 0 are the interaction components of the

siiond and third 1oci?§ The ratio of the P-vector of the second locus
to the P-vector of the basic locus is A . It is obvious that A times
the basic locus coordinates gives locus coordinates that are very close
to the iterated locus values. Figures 9 and 10 and Table 2 show two
loci where the ratio of P2 to Pl is 1.15 .

20. The solution to the problem of the calculation of the loci
reduces to the calculation of a basic set of loci. The loci for

>
parallel P-vectors for other higher order interactions can be calculated
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Table 1

Comparison of a Basic Locus and a Scaled Locus

Basic Locus Iterated Locus
tor for
1x - 0.1400 , kly = 0.0000 . «b; l%; klx = 0.1680 , kly = 0.0000
\ ) _ ambda mes _ _
[ 0.2016 , k3y = 0.0000 Basic Locus Values k3x = 0.2419 , k3y = 0.0000
X v X y X v
0.2016 0.V 0.2419 0.0 0.2419 0.0
0. 2007 0.0098 U.2408 0.0118 0.2409 0.0118
0.1982 0.0193 0.2378 0.0232 0.2378 0.0232
0.1940 0.0282 0.2328 0.0335 0.2329 0.0338
0.1886 0.0362 0.2263 0.0433 0.2264 0.0434
0.1822 0.0432 0.2186 0.0517 0.2187 0.0517
0.1750 U.0489 0.2100 0.0587 0.2100 0.0587
0.1674 0.0537 0.2009 0.0644 0.2008 0.0645
0.1594 0.0575 0.1913 0.0690 0.1913 0.0690
0.1513 0.0603 0.1816 0.0724 0.1815 0.0723
0.1431 0.0622 0.1717 0.0746 0.1717 0.0746
0.1350 0.0633 U.1620 0.0760 0.1620 0.0759
U.1269 0.0636 0.1523 0.0763 0.1523 0.0763
0.1189 0.0633 0.1427 0.0760 0.1427 0.0759
0.1110 0.0623 0.1332 0.0748 0.1332 0.0747
0.1032 0.0606 0.1238 0.0727 0.1239 0.0727
U.0955 0.0583 0.1146 0.0700 0.1146 0.0699
0.0879 0.0523 0.1055 0.0662 0.1054 0.0663
0.G6803 0.0515 0.0964 0.0618 0.0964 0.0618
0.0730 0.3469 0.0876 0.0563 0.0876 0.0563
0.0659 0.0415 0.0791 0.,0498 0.0790 0.0497
C.0592 0.0340 0.0710 0.0420 0.0710 0.0421
0.0532 0.0276 0.0638 0.0331 0.0638 0.0331
0.0482 0.0192 0.0578 0.0230 0.0579 0.0230
0.0448 0.0099 0.0538 0.0119 0.0538 0.0118
0.0436 0.0000 0.0523 0.0000 0.0524 0.0000
0.0448 -0.0099 0.0538 -0.0119 0.0538 -0.0118
0.0482 -0.0192 0.0578 -0.0230 0.0579 -0.0230
0.0532 -0.0276 0.0638 -0.0331 0.0635 -0.0331
0.0592 -0.0350 0.0710 -0.0420 0.0710 -0.0421
0.0659 -0.0415 0.0791 -0.0498 0.7090 -0.0497
0.0730 -0.0469 0.0876 -0.0562 0.0876 -0.0563
0.0803 -0.0513 0.0964 -0.0618 0.0964 ~-0.0618
0.0879 -0.0552 0.1055 ~0.0662 0.1054 -0.0663
0.0955 -0.0582 0.1146 -0.0698 0.1146 -0.0699
0.1032 -0.0606 0.1238 -0.0727 0.1239 -0.0727
0.1110 -0.0623 0.1332 -0.0748 0.1332 -0.0747
0.1189 -0.0633 0.1427 -0.0760 0.1427 -0.0759
0.1269 -0.0636 0.1523 -0.0763 0.1523 -0.0763
0.1350 -0.0633 0.1620 -0.0760 0.1620 -0.0759
0.1431 -0.0622 0.1717 -0.0746 0.1717 -0.0746
0.1513 -0.0603 0.1816 -0.0724 0.1815 -0.0723
0.1594 -0.0575 0.1913 -0,0690 0.1913 -0.0690
0.1674 -0.0537 0.2009 -0,0644 0.2008 -0.0645
0.1750 -0.0489 0.2100 -0.0587 0.2100 -0.0587
0.1822 -0.0431 0.2186 -0.0517 0.2187 -0.0517
0.1886 -0.0361 0.2263 -0.0433 0.2264 -0.0434
0.1940 -0.0282 0.2325 -0.0338 0.2329 -0.0338
0.1982 -0.0193 0.2378 -0.0232 0.2378 -0.0232
0.2007 -0.0098 0.2408 -0.0118 0.2409 -0.0118
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Table 2

A Comparison of the Two Loci in Figures 9 and 10

LOCUS 1 LOCUS 2 RATIOS
- = (ky)g
k1=0.100 ky=0.115 =1.1500
(‘(1 )1
k3=0.116 k3 = 0133 3)2 _ 1 4500
(kalq ’
P1=0.0575 P, = 0.066 B2 - 11478
P
(x)z -(-Y_)g
X Y X Y &—)_1' (y)1
05756 0.7806 0.6636 0.9000 11529  1.1530
0.3891 1.3550 0.4486 1.5623 11629  1.1530
-0.1155 1.5151 -0.1334  1.7477 1.1560 1.1535
-0.4703  1.2453 -0.5425 1.4360 11535 1.1535
-0.5763 0.8565 -0.6648 0.9875 11536  1.1529
-0.5032 0.4904 -0.5805 0.5653 1.1636  1.1527
-0.2664 0.1622 -0.3072 0.1871 11632 1.153§
0.1573 0.0852 0.1813 0.0982 11626  1.1526
0.4494 0.3817 0.5188 0.4394 11544  1.1512
0.5676 0.7120 0.6547 0.8208 11635 1.1528
25




from the tasic set. Two other factors of the integrand, l%gl and the
coupling coefficient, also scale by functions of the i-scaling factor

for the parallel P-vectors.

~1
h 21, The phase space term, !%% , scales by the /A . Let
le = IBW/anI_l for the basic locus for the interaction listed in
Table 1. Let DW2 = ]aw/an!"l for the locus that has a P-vector

>
parallel to the P-vector which is X times the first P-vector as

shown in the second column of Table 1. We find that Dwz/le =\ .
These ratios are shown in Table 3. The eight values listed here are
the calculated |8W/3n|—l values for the first eight locus coordinates
shown in Table 1. Similarly, the coupling coefficient scales by a
factor of A6 . Values of the calculated coupling coefficient for two
loci are shown in Table 4 for the same locus coordinates as were used
in the above discussion on the phase space term.

22. The IBW/anI_l term as stated before is the magnitude of the

gradient of the W expression for the locus where k2 = (ki + ki)l/z :

1/2

il - (27 + (2]

k ~3/4 (P + k)
X 2 2 X X 2
-3 ) - [“’x t kY
2|73/4 ? Ez 2 2\73/4
+ (P, + k) ] + 12 (Fx + ky) (33)
1/2

(P +k) 2

-3/4
_ Y y 2 2
3 [(PX + kx) + (Py + ky) ]

Let k = X k and k = ) ky and P AP . Then

26
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Table 3

Scaling of the Phase Space Term

: Phase Space Term Phase Space Term Ratio of
. - Phase Space Terms
'Jw‘ "l 4 IO_AI _l
! [ [y W, - W, -
: m BL n ABL }g_:i: 1 /l%\‘, 1
{ ABL BL
t
— L
i Basic Lecus ! 1 Times Basic Locus
[l A= 1.2 A= 1.2
k; = (0.14,.00) k; = (0.168,.00) Vi = 1.095
k5 = (0.2016,.00) I ky = (0.242,.00)
4.49 4,92 1.096
4.44 4.87 1.097
4.31 4,72 1.095
4.11 4.50 1.095
3.85 4.22 1.096 ' i
3.58 3.92 1.095
3.29 3.60 1.094
3.00 3.29 1.097
Table 4
Coupling Coefficient
Coupling Coefficient Coupling Coefficient Ratio of
-3 -3 Coupling Coefficients
C_. x 10 C x 10
BL *BL Cyp/CaL
Basic Locus A Times Basic Locus
A= 1.2 A= 1.2
kl = (0.14,.00) kl = (0.168,.00) X6 -2.986
k3 = (0.2016,.00) k3 = (0.242,.00)
0.196 0.586 2.990
.193 .576 2,984
.183 . 547 2.989
.168 .502 2.988
.149 . 446 2.993
.129 . 384 2.976
.108 .323 2.991 5
1
.0885 . 264 2.983 i




Ak -3/4 (P + k )r
_ X 2,2 2,2 X X 2 2
w| = [{=X ((*x +>\k) - X X
| vw| 5 ( . ” > [x(pxﬂcx)
) ,1-3/4 2 A 12
+ 25 (P + k) + —l’(xk +)\k)
y y 2 X y
1/2
(P, + kDA [, s 7=/ 2
-y ¥y
5 A+ k)T + (Py+ky)]
K -3/4 (P + k)
-1/2 "x {,2 2 1/2 “'x x 2
w| = A X X X
| vw| 5 (kx+ky) ) 5 [(Px+kx) |

-3/4 k -3/4
2 2 2
+(Py+ky)] + {— (k +k)
_ 1/2
A 1/2(1’1 + k) ) ;1374 2
- 3 BPX + kx) + (Py + ky) ]
|
]
= X—l/z (original |wW| ) 34) |

23, All these scaling factors will aid in the numerical evalua-
tion of the transfer integral by allowing us to use one basic set of
calculations and the scaling factors to evaluate the interactions for

the entire grid. The transfer integral can be written as:

T (R}, &y = f Fo(kys o2) D (kp, ..0) (35)

28
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-1

W

an k

F (kl, celd) = « C(k,, k

1° %9 k3, * ds

4)

Density, D (kl, «es) , is the sum of the diffusing and pumping densities
for a given set of four wave numbers and a given spectral representation.
Note that the 8(x) function has been left out of the integral repre-
sentation since we will not delete a section of the contour as Webb has.
The transfer integral can be written as a product of a geometric product

term and a density function. The density function is
nyny(n, = ny) +m,n, (g - ny) (36)

where n, is the action density at various wave numbers, ki . This
term can be calculated using the locus coordinates for the specific
interaction and the applicable spectral function. The F (kl’ ces)
term is a geometric product term depending on the specific locus. When
the basic locus coordinates are calculated, a geometric product term is
also calculated for each increment of the basic locus. This geometric
product factor can be scaled for A-multiples of the basic loci by a
product of the separate scaling terms as defined before. This product

of scaling terms is

e a8 =132 (37)

The last A is obtained from the polar differential increment for the
integral, r dr d6 or ds . The transfer integral can then be written

TN . ., 15/2
as T(k;,k,) —‘f D (ks ---) * GEOM (kp, ...) * A

value is determined by the interaction being considered. The basic geo-

where the X

metric product, GEOM (kl, «+.) , is determined by the basic locus that
has a P-vector orientation parallel to the P-vector of the interaction.

24. The integral in the above form has advantages when using com-
puter evaluation. The product form has a vectorizing potential that
will make evaluations of the nonlinear energy transfer for a whole spec-
trum fast and inexpensive.

25. Going back to the theoretical development, the
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nonlinear energy transfer can be written as:

Bnl N
TS = jT(kl,k3) dk3 (38)
In polar coordinates
on w 27
L. T(X, k) d8_ k,dk (39)
at !o 1’73 373773

As discussed before, the transfer at a specific orientation of k1 and

k3 will have an initial value which is a function of the basic locus.

This basic value of the transfer integral will be defined as To(ﬁl,i3)
Each successive transfer integral at the same orientation of El and §3
(parallel ﬁ-vectors) can be written as AlS/z . To
26. Therefore, at a fixed kl - k3 orientation (813) , the non-~

linear energy transfer can be written:

an 0

1 . _ n,15/2 . _
57 (8, fixed) ]0' oM Tk, dicy (40)
n+l

k3 can be written as A

(the number of the radial) begins at zero and progresses to infinity (in

ko for a specific interaction where n

reality, the edge of the grid). dk or Ak can be written as

3 3
(An+1 - An) ko . In summation notation, the transfer for one angular
section is:

anl

, _ - n,15/2 n+l n+l _ .n
== (0], fixed) = ¥ 771 ATk (1 Ak (41)

13 ~5

where n 1s the number of the radial and infinity is the edge of the

grid. The total nonlinear transfer for the whole grid can be written as:

an an

_l.y _1

T = & 50 (84 fixed) -« o, (42)
where the summation is over all possible 6 orientations.
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Program Method

27. A polar geometrically spaced grid as described in the pre-
vious section (Figure 6) was set up and used. The numerical results
given in this report were obtained by using a grid with kO = 0.14 in
MKS wave-number units and * = 1.1 . The 8 increments on the grid
were 4.5°. Thirty rings of different r values are used and eleven
positive and negative angle increments including zero were used.

28. A set of basic loci was calculated using the above grid

parameters. This was done in a separate program, and the output of this

program created a tape listing the basic locus coordinates with their
corresponding geometric product calculation for each possible interaction
angle. To determine the basic loci k3 assumed the position of each
intersection on the grid and kl remained equal to ko and oriented

at 6 = 0° . All the angular points of each ring were done first, and
then the program moved on to the next ring. The loci were stored in

this order.

29. To locate the coordinates for each of the basic loci the ana-
lytical expression (Equation 9) for the locus equation was solved using
El and K3 to find the coordinates (EZ) of a point on either end of
the egg-shaped locus; then the center for the locus was found by locating
the middle point of the line between two points on the ends of the locus.
A radius for the locus was calculated from this information and a binary
search procedure found 50 evenly spaced points of the locus within an
epsilon range of 10_6. The first coordinate of each locus is the point

L where the P-vector of the interaction would intersect it. The points
continue in a counterclockwise direction until the loop is complete.
All the coefficients of the integrand (the coup ing coefficient, the
phase term, and the ds term) except the densities are combined into
a product and saved for each locus increment. Each of these integrand
coefficients was calculated via a subroutine for each point on each locus.
These basic locus coordinates and a value for the product (geometric

product factor) of the integrand coefficients are available to be read

into the main program. The basic loci were read into the main program
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and indexed by the difference of the k.,-angle and the k]—angle, the ring

3
difference between k3 and k1 » and the number of the increment on the
specific locus for the k,; and k3 interaction. The geometric products

were also indexed by this same scheme. Loops were set up to define the

]K] values for each point of the grid using the »-scaling factor and
15/2)

to define the value of the geometric scaling factor (X for each

point of the grid. Loops were also set up to determine the values for
the angles used in the calculation.

30. The incrementation scheme in the integration program uses a
series of four nested do loops. The outermost loop is the angle of

kl . Directly inside this loop we increment kl by the ring. The

location of kl and the angle of kl will determine the position of

>
the P-vector for the interaction. The ring location of kl will deter-

mine the A-scaling factor for the corresponding set of kl - k3 inter-

actions that have the same angle orientation as kl . This will allow

us to calculate the locus coordinates and the geometric product factors

for all the interactions in this set. The k3~incrementation takes place

in the two inner loops. The density function is calculated using the

kl’ kZ’ k3, and k

31. The basic loci contain all the possible orientations of 4

4 values for the given interaction.

and §3 , but sometimes this orientation needs to be rotated to anothir
section of the grid. Simple rotation procedures can be used when the

6 wvalue of k3 is larger than the 8 value of kl . Values are tabu-
lated in Table 5 showing that loci with P-vectors of equal magnitude are
equivalent although their placement in space is different. This table
shows how loci from interactions with P-vectors of equal magnitude can
be obtained by a rotation of the basic loci. Two sets of locus coordi-
nates are shown--one set is the specific iterated coordinates for the
interaction and the other set is the rotation of the basic loci coordi-
nates. Values show that the rotation process is as valid as iterating
each specific locus. Table 5 refers to rotations where 6 is greater

3

than 61 , and this rotation procedure is the same as using a rotation
matrix on the basic loci coordinates (in polar coordinates this reduces

to addition of a rotation angle).
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32. Situations will exist where the & value of Kl is larger

than the 6 wvalue of k3 . An example is when kl has a 6 value of

9° and k3 has a value of 0°. A set of basic loci has not been defined

for this condition, but there are data for an interaction that has a
B-vector of equal magnitude. Figure 8 shows two interactions with equal
P-vectors. The data for the ?2—1ocus are given in the basic loci and the

data for 31 can be calculated by a rotation of the 32 data. gr

shows the geometrical orientation of gl . Table 6 shows 10 coordinates
of two loci with BP-vectors of the same magnitude. The third locus has
been obtained by using a rotation procedure on locus 1. The rotation

procedure amounts to entering the negative value of the 82 of locus 1

and adding 63 to the -62 for the angle coordinate of the rotated

locus. Comparison of the locus coordinates of the rotated locus to

locus 2 shows that they are the same locus although the corresponding

increment numbers may be different. Q_
33. The integration arrays are filled using the convention that

k3 is always larger than kl . To include the values for the transfer

for a situation where kl is larger than k3 , the program interchanges

the kl and k3 indices and enters a negative value equivalent to the

original kl - k3 transfer in the final integral array. The program

ends with the evaluation of dn/dt by using a summation technique for

each point of the grid.

Results

34, Figure 11 shows the contoured %% integration results for

the Pierson-Moskowitz spectrum that Webb obtained using his program
technique. Figure 12 shows the contoured g%- results obtained using
the integration technique discussed in the body of this report and the
Pierson-Moskowitz spectral function. Note that the contour plot in Fig-
ure 12 plots the wave number (or radial value) on the x-axis and the
0-value on the y-axis. Contour values in Figure 12 are multiplied by

-3 . . .
10 °. Comparison of the two contours show similar behavior, and numeri-

cal results agree very closely. Note that Webb's contour plot uses
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Figure 11. The nonlinear transfer dn/dt as a function of wave number.
The contours are marked in units of 1073 MKS units (from Webb 1978)
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NONLINEAR TRANSFER FOR PIERSON MOSKOWITZ SPECTRUM

Figure 12. Contour plot of the nonlinear energy transfer for

the Pierson-Moskowitz spectrum (all contour values are multiplied

by 10'5) as a function of wave-number magnitude and direction
(Tracy 1979)




Cartesian coordinates for the wave numbers. The computer time for the

Pierson-Moskowitz spectrum using 30 values of k (U.l14 m—l to 2.44 m-l)
and angular increments from -90° to +90° in 4.5° increments was 151 sec
on the CRAY computer.

35. The Pierson-Moskouwitz spectrum was used initiallv s results
from our technique could be compared with Webb's results using the same
spectrum. The JONSWAP researchers list a peneral analviical torm ror a
spectral density function (Sell and Hasselmann 1972). It (ontains vari-
ous shape parameters, Yy , 6 , and Tb , that can be varied easily in

a
the computer r~oding. This spectral density function can be written as:

9

c =4 -(f - f )~
-4 - _ 4 (
E(F) = ag” QU2 £ exp |2 (f—> T (43)
4 1t Les
m 207 f
m
where
f =0.3
m
a = 0.01
o= (g for f < £
a = m
ob for £ > fm

where o 1is the equilibrium renge coefficient, fm is the frequency of
the spectral peak, vy 1is the peak enhancement parameter and o, and

a are the left and right spectral widths of the spectrum. fm and «a

b
were treated as constants for the various spectra. This density function
was used with a cos2 8 spreading function. The Pierson-Moskowitz
spectrum corresponds to y =1 , o, = 0.07 , and Oy = 0.09 . Various
combinations of shape parameters were run and computer times are similar
to the run time for the Pierson-Moskowitz spectrum.

36. Figures 13-17 give the results of the calculations of the net
source functions for various spectra of the type described by Equation 43.
These results are given in terms of angularly integrated functions since
these are eacier to visualize than the corresponding two-~dimensional
source functions. Figure 13 shows the one-dimensional energy transfer
1, o, = 0.07 ,

function for the Pierson-iloskowitz spectrum (y

37
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ob = 0.09) . The one-dimensional transfer rate is calculated by S(f) =
]é(f,e) d6 where S(f,08) is %% and is graphed in Figure 13 and Fig-

ures 14-17 as a function of frequency. The spectral energy is graphed
on the right-hand side of the graph and is also a function of frequency.
Figure 13 can be compared with the JONSWAP results for the Pierson-
Moskowitz spectrum (Sell and Hasselmann 1972). Figures 14-16 can also
be compared with the JONSWAP results (Sell and Hasselmann 1972). Two
spectra that do not correspond to the JONSWAP analytical expression were
treated in Figure 17, The wave model spectrum has an f-5 tail and the
where fm = 0.3 and E o f;s . The SGONO spectrum also con-

f T
tains the f > tail and fm = 0.3 . The slope of the forward face of

forward face of the spectrum is represented by exp [—(fm/f)z] Ef %
m

the spectrum was determined from the input wind speed to create an

fm = 0.3 . E is in Mz/Hz and S or %% is calculated in MKS units.
Results indicate that this approach to calculation of the nonlinear
energy transfer agrees with previous research and is an efficient
process.

37. In a comparison of the S-curves in Figures 13 and 14-17 a
similar behavior is observed. This behavior shows the source-sink effect
of the nonlinear interactions within the spectrum. The variation of the
peak enhancement factor, Yy , shows that as the spectrum becomes steeper
the negative lobe of the wave-wave interactions shows a trend toward
the positive and in the very steep spectra the function even develops a
slight positive lobe within the usual negative region. 1In the steepest
spectra the nonlinear curve, S , approaches a sinusoidal damping curve.
The steep spectrum acts like a single energy packet at a certain Af
range and shows how the nonlinear reactions attempt to create a more

stable spectral form.
uiscussion

38. The main result of this report is to provide an efficient
integration technique to evaluate Boltzmann integrals of the type de-

rived for energy transfer due to wave-wave interaction in a wave spectrum.
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In the past, evaluation of these integrals required extensive computer
time. Webb's transformation of the form of the integrals simplified
the mathematics but did not significantly reduce the computational time
for their calculation. This report has demonstrated that by a straight
forward transformation of the integration space, a large increase in
computational efficiency is achieved. Webb has discussed various physi-
cal aspects of the results of the nonlinear transfer and the JONSWAP
study has shown these results in their experimental data. The reader is 4
referred to these papers for a complete discussion of these results.
39. Specialized numerical techniques and grids set up for a
specific problem are often only useful in one specific problem and have
no relation to the physical problem. The technique developed in this y
paper sets up a series of similar triangles for a given 63 and 61 4
orientation as shown in Figure 7. This sets up a similarity relation
between the energy transfer of the various B-vectors shown at a given
6, - 6 orientation. If a situation exists where the density function

3 1
scales, the nonlinear transfer at a fixed-angle difference could be eval- .3

uated by a summation. The approach outlined in this report follows the
actual physics of the interactions and gives a geometrical insight into
the actual process without obscuring the process with complex mathemati-~
cal manipulation. These concepts will be useful in describing the com-

plex nature of nonlinear wave-wave interactions.
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Appendix A: Computing Notes

This is the subroutine used to calculate the coupling coefficient.
The equation for the coupling coefficient is given by Webb (1978). In

the subroutine below WKl corresponds to Kl s Xl corresponds to p

KXl etc. i

FURCTION CFLE(X1.Y1,X22¥3,%3eY3,X4,Y4,1PF)
1pF =0
WR1=SQRT(X1aX1+Y1laY1)
WKZ=SORT(XRaX2+Y2aY2)
WKI=SAPT{XGaX3+Y3aY3)
WK4=SORTI(Xda¥4+YAuY4) ]
Wi=zSART(AKLY
W2=SGRT(AKD) 4
W3zSORY (AKD)
Hg=30RT(WK4) '
DOTi2=X1axP2+V1i0y2 .
DNTL32X1#%3+YLaYJ
DOTi4sX10XAeyY10Y4
NOT23=X28X5+Y24Y3
NOT24=X28X4+Y2%Y4
DOT3IA=zX3eXA+YIaY4
WSOPL2=SART((XL+X2)a( XL+ X2 )+ (YLeY2)0(V1eY2Y))
WGG12=(%W1l+liR2)a{WleW2)
722,950 122 (WK121K2-D0T12) & (YKIsWKA-DOTS4)
P1=2/(HSAPL2~WSA12)
NSEMIZI=SART XL ="13) a(X1=-XX)+(YLnY3 )0 (Yi=Y]))
KWGG13=(WialiZ)o (N -W3)
220, @WEN13a (HK1e i3+ D0T13 )2 (WK2aWKI+DOT24}
PR=22/(k5HLI~USNLI)
HSOM147SART( EX1=14)a(X1-X4)+(Y1-Yglalyi=Y4))
BSN14z{WiadreatlitaNg)
722,9WS014a (WK1« UK44D0T1L4) e (HK2oWKS+DOTZI)
P3=2/(HSIMAL4=WSQL4)
M F4=0;59(007124D0T34+00nT13eN0T244D0T14aDUT2Y) H
P52, 208 ¢(NOT1I+N0T24)eWSRL32KFSNL9-(D0TL4%10T34)
alWsi1P7#450123)
rgs0,25#(N0T14+DNT23) 2453142 UE01442,50HK10HK2 0K S0 KA
F7aW5Q12PWSGR13aWTAL42 (UKL WK+ WKIpHKE)
IF (IPP,2Q.,1) PRINT 100,P14P2,P3,P4:P5,P6,P7
101 FORMAT (4X,7r10.4)
DEP1*F2+?3= 4eP54pbP?
N=haD
CRLE=0:73539GeN/(Wler2ni3eyd)
RETUI'N
!
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Appendix B: Notation

Dummy variable for delta function
Group velocity

Coupling coefficient

Density function

Energy

Frequency

Frequency of peak of spectrum

Product of coupling coefficient, 8(x) , and density
function

Acceleration due to gravity
Geometric product

.th
Wave-number vector for i wave number
& |
Smallest value of r on (r,8) grid

. , . th

Action density of i wave number
Normal (radial) direction in K2~space

Number of radial

. > >
Interaction vector (kl - k3)

kilz - k§/2 (a magnitude)
k|

Tangential direction in k,-space

2
Transfer function
Locus equation = Q + kélz - (}ﬁ + ﬁzi)l/z -0

Phillips equilibrium constant

Bl
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8§(...)

8(x)

A measure of spectral width in spectral equation

Peak enhancement parameter in spectral equation
Angular velocity of ith wave number

Dirac delta function

Scaling factor in integral; geometric spacing nmultiple

> > > >
e(lkl AR k3|) ; has a value of 1 or O for
integral

Angle measurement in polar grid

B2
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