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Preface

In late 1976, a study to produce a wave climate for U. S. coastal

waters was initiated at the U. S. Army Engineer Waterways Experiment

Station (WES). This Wave Information Study (WIS) was authorized by the

Office, Chief of Engineers, U. S. Army, as a part of the Field Data

Collection Program which is managed by the U. S. Army Coastal Engineer-

ing Research Center. The U. S. Army Engineer Division, South Atlantic,

and the U. S. Army Engineer Division, New England, also authorized funds

during the initial year of this study (FY 1978) to expedite execution

of the Atlantic coast portion of this program.

This report, the eleventh in a series, is a technical report de-

scribing an integration routine to calculate nonlinear energy transfer

for waves in deep water. This work was done in the Hydraulics Laboratory

under the direction of Mr. H. B. Simmons, Chief of the Hydraulics Labora-

tory, Dr. R. W. Whalin, Chief of the Wave Dynamics Division, and

Mr. C. E. Chatham, Jr., Chief of the Wave Processes Branch. This report

was prepared by Mrs. B. A. Tracy and Dr. D. T. Resio. Mrs. D. S. Rags-

dale provided computer assistance, and Miss C. Lanford prepared some of

the graphs.

Commanders and Directors of WES during the conduct of the study

and the preparat.on and publication of this report were COL John L.

Cannon, CE, COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE.

Technical Director was Mr. F. R. Brown.
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THEORY AND CALCULATION OF THE NONLINEAR ENERGY

TRANSFER BETWEEN SEA WAVES IN DEEP WATER

Introduction

1. The sea-wave spectrum usually has its main peak just before a

low wave-number cutoff. The JONSWAP (Sell and Hasselmann 1972) experi-

ments have shown that this peak is higher and narrower than had been ex-

pected, and the peak moves to a lower wave-number cutoff as time in-

creases. Nonlinear interactions between sea waves contribute an energy

transfer that could be an explanation for the peak enhancement and the

shift to a lower wave-number cutoff. Integral values for the nonlinear

energy transfer for a given spectrum can be used to show how this spec-

tral situation changes over a period of time.

2. Nonlinear wave-wave interactions become especially important

in the case of tropical wind systems, and the parameterization of wave-

wave interaction among components of an asymmetric spectrum is important

for the case of tropical systems with rapidly varying wind fields. Ex-

perimental data (Forristall et al. 1978) show that the spreading func-

tion is frequency-dependent; therefore, different frequency components

can propagate in significantly different directions. Investigators feel

that the nonlinear transfer may be the reason for extremely long low-

energy waves observed after severe storms (Hasselmann 1962). An integra-

tion technique that is valid for the nonlinear interactions in a sym-

metric spectrm can be easily extended to an asymmetric spectral system

if that system has an analytical representation.

3. Hasselmann (1962) wrote the equations and evaluated the

boundary conditions that model the behavior of a system of waves under-

going nonlinear interactions. These equations involve the rate of

change of mean energy (or mean action density) at each wave number.

(This energy flux was evaluated by using a perturbation method.) Hassel-

mann formulated these equations by considering the waves as particles

and by considering the whole process as particle scattering. Webb (1978)
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has developed an integration approach that evaluates this rate of change

of the action density by evaluating the resulting Boltzmann integrals.

Development of a special type of grid for this integration scheme allows

a fast calculation of the nonlinear energy transfer for a whole spectrum.

This grid modification consists of a polar grid with equal angle rays

and with radial rings spaced by a geometric progression. A comparison

of the results of this method to Webb's results for a Pierson-Moskowitz

spectrum is shown. Results for various other symmetric spectral

situations are also shown.

Theoretical Development

4. Webb (1978) has taken Hasselmann's equations and written the

mean action density equations in terms of a transfer function which

gives the rate one wave is scattered into another. The action density

form of Hasselmann's equation is*

dn I f dk ddt + Ck -k)6(-"
d = i'dk2 dk3 1 k2 1 k 3 9 4 ) " 1  k2  3 4

6(w 1 + W2 - 3 - W4) (n1n3 (n4 - n 2 ) + n2n4 (n3 - nl)] (I)

In this equation, n is the action density at wave number k , and1 1

Wi is the angular velocity at (i  (...) is the Dirac delta func-

tion and C(...) is the coupling coefficient. Energy conservation is

taken into account by the angular velocity delta function, and momentum

is conserved by the wave-number delta function. The process involves

a set of four waves with wave numbers: kl, k2, k3 , and k4 . Webb

introduces a transfer function T(k ,k3) where

* For convenience, symbols and unusual abbreviations are listed and

defined in the Notation (Apppendix B).
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dnl d
dt -  d 3 T('kIS 3 ) and

r(lt 3 = 2 ffdr 2 d14 C(tlSk2,k 3, 4) 6(I + 2  3 - k4 )

6(w1 + W2 - w3 - w4) "( - 4 1 - - k3 1)

[n1n3 (n4 - n2) + n2n4 (n3 - n1 )] (2)

e(x) = 1 if x > 0

e(x) = 0 if x < 0

x 1 k1 4 1 - 1 -k 3 1 (3)

The 6(x) function determines a section of the integral which is not de-

fined due to the assumption that kI  is closer to k 3  than k 2

5. The transfer function allows us to think of the process as

particle scattering where we consider the four waves as four particles

with their momentum related to their wave number. The transfer function

gives the rate at which k3  is scattered into wave k The density

products can be thought of as a diffusing and a pumping density term

where n1n3 (n4 - n2 ) is the pumping term and n2n4 (n3 - n1 ) is the

diffusive term. The transfer integral can be thought of as a sum of a

diffusing transfer integral and a pumping transfer integral.

6. The first consideration in the evaluation of the diffusing

and pumping transfer integrals is the limiting properties of the energy

and momentum delta functions. We will use the following property of

the Dirac delta function (Jackson 1962):

6(x - a) = 0 if x 0 a

where x and a are representative functions. J6(x - a)dx = 1 if

region includes x = a , and is zero otherwise. Consider
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the dk4 part of the transfer integral:

fdk4 6(l + k 2 - k3 - r4 )

If k 1 + k2 - k3 = k4  for conservation of momentum, the dk4  integral

equals one and the transfer integral becomes

T(kl,k 3) 2fdk 2 6(w1 + W2 3 - 4) F(kl ...) (4)

where

F(k I .... )= C(ki, ... )e(x)[nln 3 (n 4  - n2) + n 2 n 4 (n 3  - n1)]

This delta function evaluation limits the wave number configuration to

+ - k 3 = k4 or k - k3 = k - k This meatus that the tips of

the four wave-number vectors must form a parallelogram in wave-number

space. See Figure 1 for a description of what a wave-number configura-

tion would look like.

7. In order to evaluate the integral numerically, we must fix

values for k I(x,y) and i 3 (x,y) and consider the limiting properties

of the angular velocity delta function. Then, for each set of (ilk 3)

let W(k2 ) equal the argument of the angular velocity delta function.

To eliminate the angular velocity delta function, let W(k 2) be equal

to zero; then

W(k 2) = 0 = Wi +(k 2 ) - w- w (k + - k (5)

The momentum conservation condition has been used to rewrite k4

Consider a kl k2, k3 coordinate system--one point in the k - k3

plane would have a whole line of solutions parallel to the k 2-axis. The

set of solutions that will satisfy the conservation conditions can be

represented as an egg-shaped two-dimensional locus in a Cartesian coor-

dinate system in t2 space where k2x is the x-axis and k2y is the

y-axis. On this locus n is in the normal or radial direction and s
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-0.5 0.5 1.0
WAVE NUMBER, m

LOCUS FOR k2

Figure 2. A (n,s) coordinate system is set up using
the normal and tangential vectors relative to the locus

Another property of the Dirac delta function is (Jackson 1962):

6 (x - x )

WWIf =)0 where f(x 0 0

dx

[6(f)df = 6(x)dxJ

where x and x 0are representative functions. Using this propertV on
-~~ -~- (n-0)

dn-,5[W(s,n)] we find that 6[W(s,n)] = -----. We mus;t integrate
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around the s-curve for this property to hold, so

T(IS 3  = 2 ffds dn 6(n - 0) F(k ..,aW('s,')n [" F k l . .)

=2 ds= 2, IF(k I, . ... ) (7)

since fdn 6(n - 0) = 1 . (Note that evaluation of the integral now re-

duces to evaluation of a line integral or contour.) The normal deriva-

tive in the denominator is the magnitude of a gradient and can be

written:

= IVW(k 2 ,k 2 y)9 n 2x (8)

This term can be thought of as a phase space term.

9. The evaluation of the integral now entails evaluation of all

the factors of the integrand at a series of evenly spaced points along

the k2-contour loop or locus. The factors of the integrand include the

phase space term, the coupling coefficient, and the density function.

Each of these will be dealt with separately. Figures 3 and 4 show how

these three terms behave over a representative locus. A representative

locus is also shown in Figure 5. Fifty evenly spaced increments are

shown as the points on the locus.

10. The phase space term can be evaluated at each point of

the locus by evaluating the gradient of the locus equation (Equation 5).
1/2

For deep water w a k (k = ik). The locus equation can be simpli-

fied by using Q = k I
2 - k12 (since k and k will remain con-

stant during calculation of the k -contour) and defining a new P-vector,

P = k - k 3 . Each interaction can be defined by a specific P-vector.

After evaluating the t6-functions and substituting for Q and P , the

expression for W(k 2 ) becomes:

Q + k1/2 )1/2 0 (9)
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COUPLING COEFFICIENT

C(k,. k2, k3, k4) x 102

S
6 _

0
x 5

2

C0 5 10 5 20 25 30 35 40 45 50
INCREASING 6 ON K2 LOCUS

Figure 4. Behavior of the coupling coefficient over a

representative locus

The gradient of W is:

VW = +W (10)aw=3x D+ j 1o

where

9W - + k(2

and

+1 ai/2 -( +k1) 1/2](2

111

aw 2 +

TY ai



rz

-0.5 
0.l

WAVE NUMBER. rW'

LOCUS FOR k2

Figure 5. A representative locus in Cartesian
coordinates. Locus coordinates have been
found by an iteration routine utilizing binary

search

Writing the vectors in rectangular components yields:

1/4

P k ) (P~ + Y) ]/4(13)

where P and P are the rectangular cotponents of P and x and y
x y

are the rectangular components of k 2 The magnitude of the gradient

in the normal direction is:
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IVWI [= -W- + ay\ 2]1I~ r-

2 + 2) 3  4  (P 2 + x)
2  + (P y + y)

+ 2 )2 -3/4 (P + y) 2
2 (x2 + y 2 (P x

1/

21-3/) (14

For ease in working with the angles involved, rectangular coordinates

were used for evaluation of this term.

11. The coupling coefficient from Hasselmann's work is a complex

algebraic expression and in Webb's paper was put in a usable form by an

algebraic manipulator. The expression given in Webb's work was used,

and the behavior of this term when plotted over a representative locus

exhibits the same shape as Webb's curve. The complete algebraic expres-

sion is listed in the appendix.

12. The density term in Hasselmann's equation, n1n3 (n4 - n2 ) +

n2n4 (n3 - n1 ) , can be thought of as the sum of two types of transfer.

A diffusive transfer between k3 and k is described by n 2n4 (n3 - n 1)

This diffusive transfer causes a pumped transfer between k2 and k4

in nln3(n - n2 ) . The n. values are action densities and are re-

lated to the amount of energy inherent in a given state, k. . The action1

density subscripts correspond to the wave-number subscripts. The whole

purpose in constructing an evaluation scheme for the Boltzmann-type

integrals is to evaluate the rate of change of th;, action density at a

certain wave number and, therefore, get a value for the energy transfer

there. Right now, we are interested in knowing the amount of action

density we have available to cause this diffusing and pumping effect in

the set of four wave numbers, kl, k2, k3, and k4 .

13. The ni (ki) values are directly calculated from the spectrum
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that is being considereA. Most spectra can be written as an E(f) func-

tion where E is energy in m 2/Hz . The independent variable is fre-

quency, but we are dealing in wave-number space so we must transform

the energy density function from a function of frequency to a function

of wave number. The one-dimensional frequency function was transformed

to a two-dimensional function by using a cos 2 0 spreading function.

The group velocity c can be written as:
g

c w (15)
g k

where w is angular velocity. The identity relating frequency to wave

number in deep watc.r is

2a k or w = gk (16)

Then,

Cg 2k 2k2 (17)

The density function ni(k i) can be written as:

F(k i )ni(i i) = -- (18)

W i

where F(k i) is the two-dimensional spectrum with respect to wave num-

ber and wi is the angular frequency. The c term acts like a modula-

tion term on the amplitude of the wave function making up the E(f)

term to enable a transformation from a frequency-dependent function to a

wave-number dependent function. The whole procedure amounts to multi-

plying E(f) by the square of c /w and adding the spreading function
g 2 2

by multiplying the whole expression by -- cos 0 . If we know the wave

number, the action density at a specific wave number can be calculated

using the above relationships. A Pierson-Moskowitz spectral density func-

tion was used in the initial test case to match with Webb's work, but any

spectrum with an analytical wave-number representation could be used in

the calculations.
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Geometric Spacing Technique for Grid

14. So far, the basic aspects of the factors of the integrand have

been dealt with. All these hinge on calculation of the k2-contour or

k 2-locus for each k - k3 interaction. It is possible to calculate a

locus by iteration or a combined interpolation-iteration scheme for

each separate (klSk3) couplet, and this would be the approach to the

problem if we used a regularly spaced (k, 6) grid. However, using a

geometric progression spacing scheme for the k (radial) values allows

us to utilize some geometric vector relationships that will permit the

estimation of the k2- and k4 -loci without having to calculate each

as an independent function of a (ik 3 ) couplet after one locus has

been iterated for each possible orientation of the (klSk3) couplet.

In this method an initial value is chosen for the magnitude of k0

where k is the smallest value used for r on the (r, 0) grid. We

defined our value for k to be 0.14 m (MKS wave-number units)0

k must be chosen to be a small wave number in the area where very0

little interaction takes place. In k-space we are using polar coordi-

nates where Iki = r and 0 is incremented from 0* to 900 in 9' incre-

ments. Our first area of reference will be a circle of radius = k
0

The next reference circle around the origin will have r = Xk , where2

we have specified X = 1.2 . The next concentric circle will be X k0

and so on. Figure 6 shows the completed grid with X = 1.2 and
k = 0.14

0

15. For each interaction we need to define a P-vector

= t 1 3) . This P-vector will define the orientation of the inter-

action on the grid. As stated before, each interaction consists of a

constant k1-vector and a constant k 3-vector. k31 will be assumed to

be greater than J iI for ease in calculation. can be calculated

from the kI - and k -vectors, and there exists a specific i-vector for
1 3

each interaction. Considering Figure 7, it is obvious that on rays of

constant 6 a set of parallel n-vectors is produced. These parallel

n-vectors can be related to the locus of the initial P-vector by the

scaling factor.

15



7t

/63*

2P7°

ORIGIN 0'-1-"- (f

O0. 14 x 1.2 m

0. 14 x (1.2)
3 m-

"I

0. 14 x (1.2)4 rn
-
1-0o. 14 x (1.2,5 M-,1

414 x (1.2)6 m
- I

al o 14 x (I,.)P n?~

a 014 x (1.2)
8 M

"
'

0. 14 x (1.2)
9 m

"l

Figure 6. Geometrically spaced polar grid
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Figure 7. The geometric construction of a set of parallel
interaction vectors

16. Considering the geometry in Figure 7 with sin 81= yl/(Xko)

for triangle OBC, the Cartesian coordinates for the orientation of
P1  (one of the interaction P-vectors that utilize the k -vector) are:

0

oo1

x = I k cog e1 - k

then,,

17
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2 -2

= sin6 + k cos 01 k

k0 119

The components of P can be evaluated in the same way using triangle

ODE in Figure 7:

sin 0 -=
1 A 2 k

0

y = A2 k sin 0

x2
x = A k cos 0 - Ak

2 k cos e 12 + A k2  sin 0I

= koX 2 + 1 - 2X cos 01 (20)

Looking at the ratio of 1*21 to P , we find IP /1l = A So,

the ratio of the magnitude of two consecutive parallel P-vectors is A

17. Considering the locus equation and the relationship between

12 and JPIj , we can show that if we have the locus for the P1

interaction, we can calculate the locus for the P2  interaction. The

locus equation is:

112 P 112 0 (21)
Q + /2 - + k2 1) =

where

18



1/2 1/2
Q k k and = k

Q~ 1  3/ 1

First, let us write the k1  and k3  interaction components (Figure 8)

for the locus equation for P

k3 = k; k Ak cos 6, k =ko sin e (22)
33 o3

kI = k; k k, k = 0 (23)

Second, the k1  and k3  interaction components for the locus for

Ip2 1 = IPI are:

k1 = xko; kx =ko, ky =0 (24)

k3 = A 2k; kx3 = A k cos e, ky3 A 2k sin 6 (25)

Substituting the above information we find for the first locus equation:

k/2 /(Xko)/2 = k1/2(l _ x1/2Qk -(A) = o -
0 0 0

Plx = ko - Ak0 cos 0

Ply =0-k sin 0ly 0 0 k

1 + 21 = 4J(P l + k2x) 
2 + (P1l + k2

By algebraic manipulations and substitution,

IP + " Ik2 + k (2ko)(I - A cos 0) + ky(MO)-sin e) + k 2 2(26)
'1 21 - 2 k2x2( 2 0(l 0) k (1 2- cos ) (6

Using the general locus equation,

Q 1/ 2  + I)1/2 (27)Q + k 2  - +=2

19
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the first locus equation becomes

1l/2( 1/2) 1/2 Fk2
k o( 1 ) + k 2 - Lk2 + kx(2ko)(l - A cos 6)

+ k (2Xko)(-sin e) + k2(l + X2 _ 2X cos e = 0 (28)

Substituting the information for the second locus, we find

Q = (Ako1/2 - (A2ko)/2 k1 1/ 2 (2o- 11/ 2)

P2x =Xk X2k cosO

P2y = 0- X2k sin 6

S2 2

IP? + k21 = (P2x + k2x) + (P2y + k2y (29)

By algebraic manipulation and substitution,

I f k2 2 + kx(2koX)( - A cos ) + 2 sin 0) + 2 2k 2 2 cos + 1) (30)

2 21 = k2 2kx) k2y-k 0 (0

The second locus equation becomes

k1/2X1/2(1 - A /2 ) + k 2  [k2.+ k2 (2koA)(1 - A cos e)

+ k2 (2koX2 sin e + A2 k2(A 2 _ 2A cos 0 + 1)] = 0 (31)

18. Using the assumption that the loci scale by a factor of X,

we should be able to substitute k2x 2 = Ak , k = k2y , and

k = A 2k 2 A2 k 2 into the second locus and have an algebraic ex-k2 '2x I  2y I

pression equivalent to the expression for the first locus. Substituting,

the second locus becomes,

21



1/2 1/2 1/2 + 2 2 2 2k  2 + 2
0 2x 1 2y 1 2x

9
+ k,, x(2k 0 )(1 - N cos 0) + k2y(-2k 0  sin 0)

+ 2k2 (X2 - 2 cos 0 + 1)] = 0 (32)
1

Divide the above equation by 1/2 and it is equivalent to the expres-

sion for the first locus equation. Therefore, if we have the coordinates

of the initial locus, we can calculate the locus coordinates for any

interaction that has a P-vector parallel to the P-vector of the initial

interaction.

19. In calculation of the loci, we need only calculate a basic set

of loci where k, = ko  I9 = 0' , and k3  takes the position of each

other point of intersection of the grid. Comparisons are shown in

Table 1. In this figure we have considered a basic locus where

klx = 0.1400 , kly = 0 , k3x = 0.2016 , and k3y = 0 . The x and y

coordinates are given for this locus. The next set of values are N

times the coordinates of the basic locus. The third section contains

the coordinates for a locus with the same p-vector coordinates as the

second locus. The basic locus and the locus of the third section have

been iterated by a binary search routine that will be outlined later in

the section on the program method. (k = 0.1680 , k I 0

k3x = 0.2419 , and k3y = 0 are the interaction components of the

second and third loci.) The ratio of the P-vector of the second locus

to the i-vector of the bnsic locus is N . It is obvious that N times

the basic locus coordinates gives locus coordinates that are very close

to the iterated locus values. Figures 9 and 10 and Table 2 show two

loci where the ratio of P2  to P is 1.15 .

20. The solution to the problem of the calculation of the loci

reduces to the calculation of a basic set of loci. The loci for

parallel P-vectors fir other higher order interactions can be calculated
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table I

Comparisun ol a Basic Locus and a Scaled Locus

Basic Locus Iterated Locus
ior for

k x = 0.1400 , kly 0.OOu a- 1. k = 0.1680 , kly = 0.0000

k =0.2016 k =. 0 Lambda Times k 0.2419 k = 0.0000=3x 3y Basic Locus Values 3 ' 3y

x x y x V

0.2016 0.0 0.2419 0.0 0.2419 0.0
0.2007 0.0098 0.2408 0.0118 0.2409 0.0118
0.1982 0.0193 0.2378 0.0232 0.2378 0.0232
0.1940 0.0282 0.2328 0.0335 0.2329 0.0338
0.1886 0.0362 0.2263 0.0433 0.2264 0.0434
0.1822 0.0432 0.2186 0.0517 0.2187 0.0517
0.175U 0.0489 0.2100 0.0587 0.2100 0.0587
0.1674 0.0537 0.2009 0.0644 0.2008 0.0645
0.1594 0.0575 0.1913 0.0690 0.1913 0.0690
0.1513 0.0603 0.1816 0.0724 0.1815 0.0723
0.1431 0.0622 0.1717 0.0746 0.1717 0.0746
0.1350 0.0633 0.1620 0.0760 0.1620 0.0759
0.1269 0.0636 0.1523 0.0763 0.1523 0.0763
0.1189 0.0633 0.1427 0.0760 0.1427 0.0759
0.1110 0.0623 0.1332 0.0748 0.1332 0.0747
U.1032 0.0606 0.1238 0.0727 0.1239 0.0727
0.0955 0.0583 0.1146 0.0700 0.1146 0.0699
0.0879 0.0523 0.1055 0.0662 0.1054 0.0663
0.0803 0.0515 0.0964 0.0618 0.0964 0.0618
0.0730 0.0469 0.0876 0.0563 0.0876 0.0563
0.0659 0.0415 0.0791 0,0498 0.0790 0.0497
0.0592 0.0340 0.0710 0.0420 0.0710 0.0421
0.0532 0.0276 0.0638 0.0331 0.0638 0.0331
0.0482 0.0192 0.0578 0.0230 0.0579 0.0230
0.0448 0.0099 0.0538 0.0119 0.0538 0.0118
0.0436 0.0000 0.0523 0.0000 0.0524 0.0000
0.0448 -0.0099 0.0538 -0.0119 0.0538 -0.0118
0.0482 -0.0192 0.0578 -0.0230 0.0579 -0.0230
0.0532 -0.0276 0.0638 -0.0331 0.0635 -0.0331
0.0592 -0.0350 0.0710 -0.0420 0.0710 -0.0421
0.0659 -0.0415 0.0791 -0.0498 0.7090 -0.0497
0.0730 -0.0469 0.0876 -0.0562 0.0876 -0.0563
0.0803 -0.0513 0.0964 -0.0618 0.0964 -0.0618
0.0879 -0.0552 0.1055 -0.0662 0.1054 -0.0663
0.0955 -0.0582 0.1146 -0.0698 0.1146 -0.0699
0.1032 -0.0606 0.1238 -0.0727 0.1239 -0.0727
0.1110 -0.0623 0.1332 -0.0748 0.1332 -0.0747
0.1189 -0.0633 0.1427 -0.0760 0.1427 -0.0759
0.1269 -0.0636 0.1523 -0.0763 0.1523 -0.0763
0.1350 -0.0633 0.1620 -0.0760 0.1620 -0.0759
0.1431 -0.0622 0.1717 -0.0746 0.1717 -0.0746
0.1513 -0.0603 0.1816 -0.0724 0.1815 -0.0723
0.1594 -0.0575 0.1913 -0.0690 0.1913 -0.0690
0.1674 -0.0537 0.2009 -0.0644 0.2008 -0.0645
0.1750 -0.0489 0.2100 -0.0587 0.2100 -0.0587
0.1822 -0.0431 0.2186 -0.0517 0.2187 -0.0517
0.1886 -0.0361 0.2263 -0.0433 0.2264 -0.0434
0.1940 -0.0282 0.2325 -0.0338 0.2329 -0.0338
0.1982 -0.0193 0.2378 -0.0232 0.2378 -0.0232
0.2007 -0.0098 0.2408 -0.0118 0.2409 -0.0118
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Table 2

A Comparison of the Two Loci in Figures 9 and 10

LOCUS 1 LOCUS 2 RATIOS

k1 =0.100 k, =0.115 (kl)2 1.1500
(kj)1

k3=0.115 k3 = 0.133 (k3 )2 1.1500
(k3(1

P1 =0.0575 P2 = 0.066 iP)2 = 1.1478
(P) I

(X)2  (Y)2
x y x W)1  (Y)1

0.5756 0.7806 0.6636 0.9000 1.1 ,29 1.1530

0.3891 1.3550 0.4486 1.5623 1,1529 1.1530

-0.1155 1.5151 -0.1334 1.7477 1.1550 1.1535

-0.4703 1.2453 -0.5425 1.4360 1.1535 1.1535

-0.5763 0.8565 -0.6648 0.9875 1.1536 1.1529

-0.5032 0.4904 -0.5805 0.5653 1.1536 1.1527

-0.2664 0.1622 -0.3072 0.1871 1.1532 1.1535

0.1573 0.0852 0.1813 0.0982 1.1526 1.1526

0.4494 0.3817 0.5188 0.4394 1.1544 1.1512

0.5676 0.7120 0.6547 0.8208 1.1535 1.1528
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from the basic set. Two other factors of the integrand, 3n and the

coupling coefficient, also scale by functions of the A-scaling factor

for the parallel P-vectors. -1

21. The phase space term, , scales by the /7 . Let

DW1 = aW/an -I for the basic locus for the interaction listed in

Table 1. Let DW2 = laW/anl
-I for the locus that has a P-vector

parallel to the P-vector which is A times the first P-vector as
shown in the second column of Table 1. We find that DW 2/DW1 = /7

These ratios are shown in Table 3. The eight values listed here are

the calculated 13W/3nl - l values for the first eight locus coordinates

shown in Table 1. Similarly, the coupling coefficient scales by a
6

factor of X . Values of the calculated coupling coefficient for two

loci are shown in Table 4 for the same locus coordinates as were used

in the above discussion on the phase space term.

22. The laW/an -I term as stated before is the magnitude of the

gradient of the W expression for the locus where k (k2 + k2)1 /2

= Raw )1/2

(P= +4 ( )Px + k]-34)2
2 (k x - k)2 [(P + k )

)1342 + k 2 2-3/4

+ (P + k ) + (k2 + k(33)

------- (Py+Y P +kx)2 + (P + k)]3 )
2 x xy

Let k =A k and k X k and P= XP. Then
x x y y

26



Table 3

Scaling of the Phase Space Term

Phase Space Term Phase Space Term Ratio of
Phase Space Terms

-L -1 - _
-w- I J-W, -1:in n w, -1

BLBL BL

Basic Locus X Times Basic Locus
A - 1.2 A=1.2

kI . (0.14,.00) kI = (0.168,.00) -= 1.095

k3 = (0.2016,.00) k3 = (0.242,.00)

4.49 4.92 1.096

4.44 4.87 1.097

4.31 4.72 1.095

4.11 4.50 1.095

3.85 4.22 1.096

3.58 3.92 1.095

3.29 3.60 1.094

3.00 3.29 1.097

Table 4

Coupling Coefficient

Coupling Coefficient Coupling Coefficient Ratio of
Coupling CoefficientsiCBL I0-3 C ABL X103 C 1

BL CXBL /CBL

Basic Locus A Times Basic Locus
X = 1.2 A-1.2

kI = (0.14,.00) k1 . (0.168,.00) x6 2.986

k3 = (0.2016,.00) k3 = (0.242,.00)

0.196 0.586 2.990

.193 .576 2.984

.183 .547 2.989

.168 .502 2.988

.149 .446 2.993

.129 .384 2.976

.108 .323 2.991

.0885 .264 2.983



IVW1 =(Ak X 2k 2 + x 2k 2) 3/4 (P x +k )X 2( +k)2

2 ( x 2 IX x x J
+ x2 (P + k)2-34 2 + { +i( k2 + X2k2)

- (P+ k )X [2 ( + k ) 2~ +x
2 (P + k )2-/4 2)/2

x )2  
( P_y

-VWI X k (k2 + k2 ) - 1 /2 (P + k ) x + kx) 2

-1/2X1/

+ (Py + k) + 225/2

S(PX + k)+(Py +ky) 2]34 /

2 LX+

-112 (original JVW) (34)

23. All these scaling factors will aid in the numerical evalua-

tion of the transfer integral by allowing us to use one basic set of

calculations and the scaling factors to evaluate the interactions for

the entire grid. The transfer integral can be written as:

T (k 1 , k3 ) J F (k I , ... ) D (kI, ... ) (35)

28
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where

F (ki p ... ) = • C(kl, k2$ k ) ds

Density, D (kI, ... ) , is the sum of the diffusing and pumping densities

for a given set of four wave numbers and a given spectral representation.

Note that the e(x) function has been left out of the integral repre-

sentation since we will not delete a section of the contour as Webb has.

The transfer integral can be written as a product of a geometric product

term and a density function. The density function is

n1 n3 (n4 - n2 ) + n2 n4 (n 3 - n1 ) (36)

where n. is the action density at various wave numbers, k. . This

I I

term can be calculated using the locus coordinates for the specific

interaction and the applicable spectral function. The F (kl, ...)

term is a geometric product term depending on the specific locus. When

the basic locus coordinates are calculated, a geometric product term is

also calculated for each increment of the basic locus. This geometric

product factor can be scaled for A-multiples of the basic loci by a

product of the separate scaling terms as defined before. This product

of scaling terms is

/T . A6 . A = A15/ 2  (37)

The last A is obtained from the polar differential increment for the

integral, r dr dO or ds . The transfer integral can then be written
as T(kl-k 3  D (k. . GEOM (k 1 A where the A

value is determined by the interaction being considered. The basic geo-

metric product, GEOM (kI l ... ) , is determined by the basic locus that

has a P-vector orientation parallel to the P-vector of the interaction.

24. The integral in the above form has advantages when using com-

puter evaluation. The product form has a vectorizing potential that

will make evaluations of the nonlinear energy transfer for a whole spec-

trum fast and inexpensive.

25. Going back to the theoretical development, the
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nonlinear energy transfer can be written as:

at= fT k , 3 ) dk3  (38)

In polar coordinates

=fo T(k1  ) dO 3 k3 dk3  (39)

As discussed before, the transfer at a specific orientation of k and

k will have an initial value which is a function of the basic locus.

This basic value of the transfer integral will be defined as To(kl ,k3)

Each successive transfer integral at the same orientation of k and k3
* 15/2

(parallel P-vectors) can be written as A T
0

26. Therefore, at a fixed kI - k3 orientation (e)13 the non-

linear energy transfer can be written:

a1 M7 k5/2
t (613 fixed) ( k dK3 (40)

k 3 can be written as X k for a specific interaction where n

(the number of the radial) begins at zero and progresses to infinity (in

reality, the edge of the grid). dk3 or Ak3 can be written as

(,n+l - An) k . In summation notation, the transfer for one angularo

section is:

n (0 3 fixed) 0 n=)15/2 T A k (A 1 - X)k (41)

where n is the number of the radial and infinity is the edge of the

grid. The total nonlinear transfer for the whole grid can be written as:

an , anI
= - (613 fixed). Ae1 3  (42)

where the summation is over all possible 6l3 orientations.
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Program Method

27. A polar geometrically spaced grid as described in the pre-

vious section (Figure 6) was set up and used. The numerical results

given in this report were obtained by using a grid with k = 0.14 in0

MKS wave-number units and ) = 1.1 . The 0 increments on the grid

were 4.5' . Thirty rings of different r values are used and eleven

positive and negative angle increments including zero were used.

28. A set of basic loci was calculated using the above grid

parameters. This was done in a separate program, and the output of this

program created a tape listing the basic locus coordinates with their

corresponding geometric product calculation for each possible interaction

angle. To determine the basic loci k assumed the position of each
3

intersection on the grid and kI remained equal to k and oriented

at 0 = 00 . All the angular points of each ring were done first, and

then the program moved on to the next ring. The loci were stored in

this order.

29. To locate the coordinates for each of the basic loci the ana-

lytical expression (Equation 9) for the locus equation was solved using

K1 and k3 to find the coordinates (k2 ) of a point on either end of

the egg-shaped locus; then the center for the locus was found by locating

the middle point of the line between two points on the ends of the locus.

A radius for the locus was calculated from this information and a binary

search procedure found 50 evenly spaced points of the locus within an

epsilon range of 10- 6 . The first coordinate of each locus is the point

where the P-vector of the interaction would intersect it. The points

continue in a counterclockwise direction until the loop is complete.

All the coefficients of the integrand (the coup ing coefficient, the

phase term, and the ds term) except the densities are combined into

a product and saved for each locus increment. Each of these integrand

coefficients was calculated via a subroutine for each point on each locus.

These basic locus coordinates and a value for the product (geometric

product factor) of the integrand coefficients are available to be read

into the main program. The basic loci were read into the main program
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and indexed by the difference of the k3-angle and the k]-angle, the ring

difference between k3 and k, , and the number of the increment on the

specific locus for the k! and k3 interaction. The geometric products

were also indexed by this same scheme. Loops were set up to define the

Iki values for each point of the grid using the J-scaling factor and

to define the value of the geometric scaling factor (A1 51 2 ) for each

point of the grid. Loops were also set up to determine the values for

the angles used in the calculation.

30. The incrementation scheme in the integration program uses a

series of four nested do loops. The outermost loop is the angle of

k Directly inside this loop we increment k by the ring. The
1 '
location of k and the angle of k I will determine the position of1 1

the P-vector for the interaction. The ring location of k will deter-

mine the A-scaling factor for the corresponding set of kI - k3 inter-

actions that have the same angle orientation as kI * This will allow

us to calculate the locus coordinates and the geometric product factors

for all the interactions in this set. The k 3-incrementation takes place

in the two inner loops. The density function is calculated using the

k1 , k2, k3, and k4 values for the given interaction.

31. The basic loci contain all the possible orientations of k

and k3 , but sometimes this orientation needs to be rotated to another

section of the grid. Simple rotation procedures can be used when the

8 value of k3 is larger than the e value of k Values are tabu-

lated in Table 5 showing that loci with P-vectors of equal magnitude are

equivalent although their placement in space is different. This table

shows how loci from interactions with P-vectors of equal magnitude can

be obtained by a rotation of the basic loci. Two sets of locus coordi-

nates are shown--one set is the specific iterated coordinates for the

interaction and the other set is the rotation of the basic loci coordi-

nates. Values show that the rotation process is as valid as iterating

each specific locus. Table 5 refers to rotations where e3 is greater

than 61 , and this rotation procedure is the same as using a rotation

matrix on the basic loci coordinates (in polar coordinates this reduces

to addition of a rotation angle).
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32. Situations will exist where the 8 value of k is larger

than the 8 value of k3 * An example is when k has a 0 value of

90 and k3 has a value of 00. A set of basic loci has not been defined

for this condition, but there are data for an interaction that has a

f-vector of equal magnitude. Figure 8 shows two interactions with equal

i-vectors. The data for the 2-locus are given in the basic loci and the

data for P can be calculated by a rotation of the P2 data. Pr

shows the geometrical orientation of Table 6 shows 10 coordinates

of two loci with P-vectors of the same magnitude. The third locus has

been obtained by using a rotation procedure on locus 1. The rotation

procedure amounts to entering the negative value of the 02 of locus 1

and adding 03 to the -e2  for the angle coordinate of the rotated

locus. Comparison of the locus coordinates of the rotated locus to

locus 2 shows that they are the same locus although the corresponding

increment numbers may be different.

33. The integration arrays are filled using the convention that

k3 is always larger than kI . To include the values for the transfer

for a situation where kI is larger than k3 , the program interchanges

the k and k3 indices and enters a negative value equivalent to the

original k - k3 transfer in the final integral array. The program

ends with the evaluation of dn/dt by using a summation technique for

each point of the grid.

Results

dn
34. Figure 11 shows the contoured d- integration results for

the Pierson-Moskowitz spectrum that Webb obtained using his program
dn

technique. Figure 12 shows the contoured ! results obtained using

the integration technique discussed in the body of this report and the

Pierson-Moskowitz spectral function. Note that the contour plot in Fig-

ure 12 plots the wave number (or radial value) on the x-axis and the

8-value on the y-axis. Contour values in Figure 12 are multiplied by

10- 5. Comparison of the two contours show similar behavior, and numeri-

cal results agree very closely. Note that Webb's contour plot uses
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Cartesian coordinates for the wave numbers. The computer time for the-1 -

Pierson-Moskowitz spectrum using 30 values of k (0.14 m to 2.44 m- )

and angular increments from -90' to +90' in 4.50 increments was 151 sec

on the CRAY computer.

35. The Pierson-Moskowitz spectrum was used initiillv s results

from our technique could be compared with Webb's rt.-ults using tie same

spectrum. The JONSWAP researchers list a general anal..i, ,1 ,rm for a

spectral density function (Sell and Hasselmann lq72). It ,,ntains vari-

ous shape parameters, y , o ' and -b ' that can be varied easily in

the computer rading. This spectral density function can be written as:

7

r2 -4 -5 exp m

E(f) = f (27)(43)

[4 2
m

where

f = 0.3
m
O= 0.01

a = Iza for f < f
a m

ab for f > f

where a is the equilibrium range coefficient, f is the frequency ofm

the spectral peak, y is the peak enhancement parameter and a a and

ab are the left and right spectral widths of the spectrum. fm and a

were treated as constants for the various spectra. This density function
2

was used with a cos e spreading function. The Pierson-Noskowitz

spectrum corresponds to y = 1 , a = 0.07 , and ob  0.09 . Variousa n = 00 aiu

combinations of shape parameters were run and computer times are similar

to the run time for the Pierson-Moskowitz spectrum.

36. Figures 13-17 give the results of the calculations of the net

source functions for various spectra of the type described by Equation 43.

These results are given in terms of angularly integrated functions since

these are eazier to visualize than the corresponding two-dimensional

source functions. Figure 13 shows the one-dimensional energy transfer

function for the Pierson-Aoskowitz spectrum (y = 1 , a = 0.07
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= 0.09) . The one-dimensional transfer rate is calculated by S(f) =

S(f,e) d6 where S(f,O) is - and is graphed in Figure 13 and Fig-

ures 14-17 as a function of frequency. The spectral energy is graphed

on the right-hand side of the graph and is also a function of frequency.

Figure 13 can be compared with the JONSWAP results for the Pierson-

Moskowitz spectrum (Sell and Hasselmann 1972). Figures 14-16 can also

be compared with the JONSWAP results (Sell and Hasselmann 1972). Two

spectra that do not correspond to the JONSWAP analytical expression were

treated in Figure 17. The wave model spectrum has an f-5  tail and the

forward face of the spectrum is represented by exp [_(f/f)2]Efm

where f = 0.3 and E fm . The SGONO spectrum also con-
m 5

tains the f tail and f = 0.3 . The slope of the forward face ofm

the spectrum was determined from the input wind speed to create an

f =0.3 . E is in M 2/Hz and S or -- is calculated in MKS units.

Results indicate that this approach to calculation of the nonlinear

energy transfer agrees with previous research and is an efficient

process.

37. In a comparison of the .S-curves in Figures 13 and 14-17 a

similar behavior is observed. This behavior shows the source-sink effect

of the nonlinear interactions within the spectrum. The variation of the

peak enhancement factor, y , shows that as the spectrum becomes steeper

the negative lobe of the wave-wave interactions shows a trend toward

the positive and in the very steep spectra the function even develops a

slight positive lobe within the usual negative region. In the steepest

spectra the nonlinear curve, S , approaches a sinusoidal damping curve.

The steep spectrum acts like a single energy packet at a certain Af

range and shows how the nonlinear reactions attempt to create a more

stable spectral form.

Discussion

38. The main result of this report is to provide an efficient

integration technique to evaluate Boltzmann integrals of the type de-

rived for energy transfer due to wave-wave interaction in a wave spectrum.
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In the past, evaluation of these integrals required extensive computer

time. Webb's transformation of the form of the integrals simplified

the mathematics but did not significantly reduce the computational time

for their calculation. This report has demonstrated that by a straight

forward transformation of the integration space, a large increase in

computational efficiency is achieved. Webb has discussed various physi-

cal aspects of the results of the nonlinear transfer and the JONSWAP

study has shown these results in their experimental data. The reader is

referred to these papers for a complete discussion of these results.

39. Specialized numerical techniques and grids set up for a

specific problem are often only useful in one specific problem and have

no relation to the physical problem. The technique developed in this

paper sets up a series of similar triangles for a given 0 and e
3 1

orientation as shown in Figure 7. This sets up a similarity relation

between the energy transfer of the various P-vectors shown at a given

o3 - e1 orientation. If a situation exists where the density function

scales, the nonlinear transfer at a fixed-angle difference could be eval-

uated by a summation. The approach outlined in this report follows the

actual physics of the interactions and gives a geometrical insight into

the actual process without obscuring the process with complex mathemati-

cal manipulation. These concepts will be useful in describing the com-

plex nature of nonlinear wave-wave interactions.
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Appendix A: Computing Notes

This is the subroutine used to calculate the coupling coefficient.

The equation for the coupling coefficient is given by Webb (1978). In

the subroutine below WKl corresponds to K1 , 9X corresponds to1

KXi etc.
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Appendix B: Notation

a Dummy variable for delta function

c Group velocityg

C(kI  ...) Coupling coefficient

D(kf .... ) Density function

E Energy

f Frequency

f Frequency of peak of spectrumn

F(kI , ... Product of coupling coefficient, e(x) , and density
function

g Acceleration due to gravity

GEOM(k.. ) Geometric product

th
k1 Wave-number vector for i wave number

n. Action density of i wave number1

n Normal (radial) direction in k2-space

n Number of radial

P Interaction vector (kl - k )

Q 1/2 _k/2 (a magnitude)
1 k3

r ki~

s Tangential direction in k2-space

T( i, 3) Transfer function

W(k 2) Locus equation = Q + k 2  - + k 2 =

Oa Phillips equilibrium constant

Bi



a A measure of spectral width in spectral equation

Y Peak enhancement parameter in spectral equation

th
w Angular velocity of i wave number

s...) Dirac delta function

x Scaling factor in integral; geometric spacing multiple

O(x) e - k41 - I - k31) ; has a value of I or 0 for

integral

e Angle measurement in polar grid

B2
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