A METHOD FOR INCREASING THE FIREPOWER OF VIRGINIA CLASS CRUISERS

Marc Levin
The ideas expressed in this paper are those of the author. The paper does not necessarily represent the views of the Center for Naval Analyses.
A METHOD FOR INCREASING
THE FIREPOWER OF VIRGINIA
CLASS CRUISERS

Marc Levin
In August 1980, the Proceedings published an article* examining the surface warfare capabilities of our surface combatants. Figure 1, reprinted from that article, shows the number of missiles that would be required against a battle group assuming that all of the targets are of equal value, are undefended, and must be hit by at least one attacking missile. The number of missiles required increases rapidly with the number of targets. Rogers and Palermo then showed how additional missiles could be fitted on Perry class frigates by modifying either the structure or the LAMPS Mk III capabilities of the ship.

This article examines another possible way of getting additional cruise missile firepower to sea in the near term. Virginia class (CGN 38-41, figure 2) cruisers were chosen because of their unique design—they are the first U.S. ships since World War II designed with a stern hangar. There is no place where additional missiles could be installed on the weather deck without structural changes or limiting the azimuth of the current guns and/or missiles. The hangar, though, provides the opportunity to add two additional quad launchers without modifying the ship’s structure. Currently these ships are required to be able to launch, recover, and stow either an SH-2 or SH-3 helicopter. While they regularly recover and launch helos, they have never deployed with a helicopter. The hangars have been used for various other purposes such as a crew's recreation area or as additional storage room. A decision should be made to require these ships to stow a helicopter or alternatively to be able to launch additional cruise missiles.

Figures 3 and 4 picture the Harpoon command and launch subsystem as it is presently installed on many surface ships. The “Grade B” launcher is fitted on cruisers and destroyers while the “Lightweight” launcher is to be installed on all FBM class ships. The difference between the launchers is their ability to withstand shock. The lightweight launcher is significantly narrower and weighs 8,532 pounds versus 13,867 pounds.
FIG. 2: LINE DRAWING OF VIRGINIA SHOWING CURRENT LAUNCHERS AND LOCATION OF HANGAR
FIG. 3: HARPOON COMMAND AND LAUNCH SUBSYSTEM
FIG. 4: HARPOON CANISTER LAUNCHER
for the Grade B launcher. The Virginia class is equipped with a stern hangar that is 42 feet long and 14 feet wide. The weather deck on the fantail folds forward and an elevator is lifted from the third deck using four cables. The elevator is capable of lifting an SH-3 weighing 20,500 pounds but was not able to lift a van of 30,000 pound in a recent trial. Due to the size of the launchers and the limitations of the Harpoon command system, only two launchers could be placed on the elevator. The launchers could be oriented 30 degrees off the centerline.

The Grade B launchers, weighing 13,867 pounds each, are too heavy for the elevator. The lightweight launcher, therefore, would have to be used for this installation. These missiles would be protected in the hangar until ready to fire and then elevated to deck level. They could not withstand as strong a blast as the current launchers while on the deck, but will be adequately protected from the environment and blast while stowed in the hangar.

Figure 5 pictures the additional launchers facing at 150 and 330 degrees relative. (The same results are obtained by placing the launchers at 30 and 210 degrees.) This results in eight missile coverage of all sectors, effectively doubling the current possible salvo size. A more advantageous positioning would put the missiles at 030 and 330 degrees (figure 6). This results in additional firepower in the forward sector where the probability of threat engagement should be higher. As many as
FIG. 6: ADDITIONAL LAUNCHERS AT 150° AND 330°
FIG. 6: ADDITIONAL LAUNCHERS AT 030° AND 330°
twelve missiles (figure 7) could be fired in a single salvo with this configuration. Both configurations greatly increase the surface firepower of these ships with only a minor modification. These ships would not be able to stow helicopters. There would be no change, however, in their ability to launch and recover helicopters. Since these ships do not currently (and will not in the foreseeable future) stow helos, such a change would have substantial positive impact on their real operational capability.

In conclusion, this plan provides for additional firepower in the near term at very little cost. Until the arrival of Tomahawk and vertical launch systems, our surface ships are critically lacking in ASUW capabilities and everything possible should be done to correct this.
FIG. 7: SALVO SIZES POSSIBLE WITH ADDITIONAL MISSILES FACING 030° AND 330°
PP 211
Mizreli, Maurice W., "On Approximating the Circular Coverage Function," 14 pp., Feb 1978, AD A054 420

PP 212

PP 213

PP 214

PP 215

PP 216

PP 217
Collie, Russell C., "Bibliometric Studies of Scientific Productivity," 17 pp., Mar 78 (Presented at the Annual meeting of the American Society for Information Science held in San Francisco, California, October 1978), AD A054 442

PP 218 - Classified

PP 219
Huntzinger, R. L., "Market Analysis with Rational Expectations: Theory and Estimation," 60 pp., Apr 78, AD A054 422

PP 220
Maurer, Donald E., "Diagonalization by Group Methods," 28 pp., Apr 78, AD A054 443

PP 221

PP 222

PP 223

PP 224

Portions of this work were started at the Institute of Applied Mathematics and Statistics, University of British Columbia, Vancouver, B.C., Canada

PP 225
Mengel, Marc, "Oscillations, Fluctuations, and the Hopf Bifurcation," 43 pp., Jun 1978, AD A054 500

Portions of this work were completed at the Institute of Applied Mathematics and Statistics, University of British Columbia, Vancouver, Canada.

PP 226

Bell Telephone Laboratories, Inc.

PP 227
Mengel, Marc, "Uniform Treatment of Fluctuations at Critical Points," 50 pp., May 1978, AD A056 539

PP 228
Mengel, Marc, "Relaxation at Critical Points: Deterministic and Stochastic Theory," 54 pp., Jun 1978, AD A056 540

PP 229

PP 230

PP 231
Wilson, Desmond P., Jr., "Naval Projection Forces: The Case for a Responsive NAF," Aug 1978, AD A054 543

PP 232
Jacobson, Laura, "Can Policy Changes Be Made Acceptable to Labor?" Aug 1978 (Submitted for publication in Industrial and Labor Relations Review), AD A061 528

"CSS Professional Papers with an AD number may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151. Other papers are available from the Management Information Office, Center for Naval Analyses, 2000 North Beauregard Street, Alexandria, Virginia 22311. An Index of Selected Publications is also available on request. The index includes a listing of Professional Papers; with abstracts; issued from 1968 to June 1981."


Ungoff, Kathy Glassen, and Brechling, Frank, "Flames and inflation," 25 pp., Nov 1979, AD A061 194


Thompson, James S., "Support Dependence and Inter-State Cooperation: The Case of Sub-Saharan Africa," 141 pp., Jan 1980, AD A081 193


Goldberg, Lawrence, "Recruiters Advertising and Navy Enlistments," 34 pp., Mar 1980, AD A082 221

Goldberg, Lawrence, "Calculating on Overhead and Ship's Equipment," 40 pp., May 1980, AD A083 093


University of Florida
Berloof, C. Bernard. "Aggregation of Conditional Absorbing Markov Chains." 7 pp., June 1982. (Presented to the Sixth European Meeting on Cybernetics and Systems Research, held at the University of Vienna, Apr 1982.)
