
AD-AlSb 359 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO-ETC F/6 17/2
SIGMA FINAL REPORT. VOLUME V. PART 1-3. INTRODUCTION. FUNCTIONA-ETC(U)
MAY 82 R STOTZ, D WILCZYNSKI, S FINKEL DA CIS-72-C-0308

UNCLASSIFIED ISI/RR-82-94-VOL-5-PT-I ILl2EEEEEEEEE
llllllllllllEl
IIIIIIIIIIIIIIffllfllf
EIIIIIIIIIIIIE
IIIEIIIIEIIIII
111111111111flfflfflEllllllEEllEE

H ~28 ",2,5

11111 ..25 .411111 ii1.6

MICROCOPY RESOLUTION TEST CHAFT

N W

MME Final Report
Volume V, Parts 1, 2, and 3
ISI/FiR-82-94

SIGMA Final Report:

Introduction, Functional
Description, and Evaluation

Robert Stotz
David Wilczynski
Steven Finkel

Q Robert Lingard
C.) Donald Oestreicher

Leroy Richardson
Ronald Tugender

82 06 28 7
iF. tOMAN

I_ _ _ _ _
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONSREPORT DOCMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ISI/RR-82-94./ . ,-

4. TITLE (and Subtitle) S. TYPE OF REPORT I PERIOD COVERED

SIGMA Final Report: Final Report

Introduction, Functional Description, and Evaluation 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMDER(8)

Robert Stotz, David Wilczynski, Steven Finkel,
Robert Lingard, Donald Oestreicher, Leroy Richardson, DAHC 15 72 C 0308
Ronald Tugender

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

USC/Information Sciences Institute AREA & WORK UNIT NUMBERS

4676 Admiralty Way
Marina del Rey, CA 90291

II CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency May 1982
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 115
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

Unclassified
IS.. DECL ASSI FICATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale;
distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abettec entered In Block 20, it different Ifrom Report) , . Z

1S. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on revere ide if necessary and Identify by block number)

automated message handling, daemons, database organization, DEC PDP-10, editing, file system,
HP/MME terminal, Hewlett-Packard 2649 terminal, interactive message processing, interactive
message service, interactive terminal, message processing, military communications, Military

20. ABSTRACT (Continue on re.ee elde If neceeary and identity by block number)

The first part of this report introduces SIGMA, the automated message-handling system used in the
Military Message Experiment, developed at the Information Sciences Institute. This introduction is
divided into two parts. The first, from 1968 to 1975, covers the period from the recognition of the
need for improved communications at Camp Smith, Oahu, to the actual signing of a Memorandum of
Agreement to conduct the MME. The second part covers ISI's involvement in the planning and the
actual conducting of the MME, roughly from 1973 to 1979.

DD , JoNs 1473 EDITION OF INOV, Uncla.Iif9ed
S/CURITY CLAWIICAViON Of TMIS PAGE (tem DIMe 111t1400d)

-1

Unclmlifed

SECURITY CLAESIPSCAT|ON OP THIS PAgRuh(Ma Doma Etw*

19. KEY WORDS (continued)

automated message handling, interactive message service, military communications, Military
Message Experiment, nonprofessional computer users, reliability, SIGMA message service, TENEX,
terminal-based message service, utility

20. ABSTRACT (continued)

The second part of the SIGMA Final Report describes the functionality of SIGMA as a user views it.
This part introduces the reader to the system in roughly the sequence that a new user is exposed to it.
it starts with a discussion of the terminal, followed by the log.on procedure, then proceeds to the
various objects the user deals with in SIGMA and the operations he may perform on them.

The developers of SIGMA learned a great deal during the MME about what the proper functions of
an automated message-handling system should be, but these lessons were only part of the
aevelopers' education. The experimental results were affected more by several higher level issues
than by the details of the message service operation. This part of the SIGMA Final Report is divided
into the following major sections: high-level issues, functional and design considerations for a
message service, and lessons on development and operational environment for the experiment Parts
one, two, and four of the SIGMA Final Report are factual; this part, on the other hand, pimarily
contains opinions of the authors (all members of the ISI team that developed SIGMA), formed from
their review of data abstracted from the user interviews, discussions with users, and other peripheral
observations.

/ \0

\

0'ItC

Av OO5 "" ' ":

(,ov iUnclassfied

~~SECURITY CLASIFICATION OF THIS PAGlIlrhm Datae gntw*Qm4

MME Final Report
Volume V, Parts 1, 2, and 3
ISI/RR.82-94

SIGMA Final Report:

Introduction, Functional
Description, and Evaluation

Robert Stotz
David Wilczynski
Steven Finkel
Robert Lingard
Donald Oestreicher
Leroy Richardson
Ronald Tugender

This merch is wpolc by tM OfWens MAvanc Amwwch PrO. AaEcy -ni Conwc
No. DAC15 72 C 0OM. VWs and oncklons conain of 3n npt r s a e m ' m
shouwW no be t e o le a sresenl ihe offci opinion or paly of DA A, ft U&
Go~emmsn. or e Iposon or qwcy aeonnectme wlliim.

CONTENTS

1. INTRODUCTION TO SIGMA 1-1

1.1 THE DEVELOPMENT OF SIGMA 1-1
1.1.1 Background 1-1
1.1.2 The Initial System 1-2
1.1.3 The Evolution of SIGMA 1-6
1.1.4 SIGMA Staff 1-10

1.2 SUPPORTING DOCUMENTS 1-10

2. FUNCTIONAL DESCRIPTION 2-1

2.1 INTRODUCTION 2-1
2.2 THE TERMINAL 2-1
2.3 LOG ON 2-2
2.4 STANDARD SCREEN 2-3
2.5 INSTRUCTION ENTRY 2-4
2.6 FUNCTION KEYS 2-6
2.7 USER ASSISTANCE 2-6

2.7.1 Prompt 2-6
2.7.2 Help 2-7

2.7.2.1 Selectable terms 2-7
2.7.2.2 Requesting help 2-8
2.7.2.3 Use of the screen in help 2-8

2.7.3 Tutor 2-8
2.7.3.1 On-line lessons 2-8
2.7.3.2 On-line exercises 2-8

2.8 EDITING FACILITIES 2-9
2.9 DATA OBJECTS 2-11

2.9.1 General Operations on Data Objects 2-11
2.10 SECURITY 2-13
2.11 MESSAGES 2-13

2.11.1 AUTODIN Incoming Messages 2-13
2.11.2 Preparation AUTODIN Messages 2-15
2.11.3 Memos 2-17
2.11.4 Notes 2-19

2.12 INCOMING MESSAGE OPERATIONS 2-19
2.13 OUTGOING MESSAGE OPERATIONS 2-20

2.13.1 Preparing the Draft 2-20
2.13.2 Coordination 2-21
2.13.3 Release 2-24

2.14 FILES 2-24
2.14.1 File Formats 2-24
2.14.2 Pending File 2-27
2.14.3 Date Files 2-27
2.14.4 Readboards 2-28
2.14.5 Deleting Entries 2-28
2.14.6 Selection from Files 2-29

--C " s. -- I '

I
iv

2.14.7 Keywords 2-30
2.14.8 Route 2-30
2.14.9 Other Operations on Files 2-32

2.15 TEXT-OBJECTS 2-32
2.16 ALERTS 2-33
2.17 MISCELLANEOUS OPERATIONS 2-34

2.17.1 Log Off 2-34
2.17.2 Identify 2-35
2.17.3 Printing 2-35
2.17.4 System News 2-35
2.17.5 System Status 2-35
2.17.6 View Display 2-35

3. Lessons 3-1

3.1 LESSONS LEARNED 3-1
3.2 HIGH-LEVEL ISSUES 3-1

3.2.1 The Definition of Utility 3-1
3.2.2 The Value of SIGMA 3-2
3.2.3 Some Unqualified Successes 3-2

3.2.3.1 User interface 3-2
3.2.3.2 Better access to information 3-3

3.2.4 Limitations of Automated Message Handling Systems (AMHS) 3-4
32.4.1 Difficulties of user adaptation 3-4
3.2.4.2 Rigidity of automated systems 3-4
3.2.4.3 Particular limitations of SIGMA during MME 3-5

3.2.5 Lessons Concerning the Service 3-6
3.2.5.1 Reliability and availability 3-6
3.2.5.2 Integration of AMHS and the message exchange 3-6
3.2.5.3 Worldwide telecommunications procedures 3-6

3.2.6 General Questions Connected With Establishing an Automated System 3-7
3.2.7 Policies and Procedures 3-8
3.2.8 The Larger Goals of an Automated Message Handling System 3-9

3.3 LESSONS ON FUNCTION AND DESIGN 3-10
3.3.1 Architecture 3-10

3.3.1.1 Shared access to a single copy of messages 3-10
3.3.1.2 Files as a collection of citations to messages 3-10
3.3.1.3 Shared access to a single copy of files 3-11
3.3.1.4 Central data management 3-11
3.3.1.5 Foreground-background split 3-11
3.3.1.6 Archive 3-11
3.3.1.7 Intelligent terminal 3-11

3.3.2 Details about Function and Design 3-11
3.3.2.1 Start-up facilities 3-12
3.3.2.2 The display screen 3-12
3.3.2.3 Entering instructions 3-13
3.3.2.4 Help system 3-13
3.3.2.5 The tutor system 3-13

-- F ~--. - --.~.d

Iv
3.3.2.6 Editing 3-14
3.3.2.7 The structure of the SIGMA messages 3-14
3.3.2.8 Message format 3-15
3.3.2.9 Message types 3-15
3.3.2.10 Distribution of incoming messages 3-15
3.3.2.11 Alerts 3-17
3.3.2.12 Access to messages 3-17
3.3.2.13 Creating outgoing messages 3-18
3.3.2.14 Coordination process 3-19
3.3.2.15 Release of messages 3-20
3.3.2.16 File system 3-21
3.3.2.17 Text objects 3-23
3.3.2.18 Sectioned messages 3-23
3.3.2.19 Access control 3-24
3.3.2.20 Archive 3-24
3.3.2.21 Security 3-24
3.3.2.22 User model 3-25
3.3.2.23 Printing 3-25
3.3.2.24 News and status 3-25
3.3.2.25 Miscellaneous 3-26
3.3.2.26 What more we could have done 3-27
3.3.2.27 Other user requests 3-28

3.4 LESSONS ON SYSTEM DEVELOPMENT AND OPERATION 3-28
3.4.1 An AMHS is a Big System 3-28
3.4.2 Balance the Goals 3-29
3.4.3 Development Environment 3-29

3.4.3.1 Choosing a computer and operating system for development 3-29
3.4.3.2 The programming environment 3-30
3.4.3.3 Developers as users of the system 3-30
3.4.3.4 Developers ne'd access to the operating site system 3-30
3.4.3.5 Testing 3-31
3.4.3.6 Design for an unreliable environment 3-31

3.4.4 Operating Environment 3-32
3.4.4.1 Choice of on-site computer system 3-32
3.4.4.2 Computer operations 3-33
3.4.4.3 Understanding goals and maintaining motivation 3-33

3.4.5 Conducting an Experiment 3-34
3.4.6 Summary 3-34

Index 3-39

vi

ACKNOWLEDGMENTS

The list of people who contributed to the Military Message Experiment and thereby to this report is too
long to publish. A few people, however, deserve special recognition for their help in producing this
document. We especially appreciated the efforts of Dr. Nancy Bryan for her editorial contributions, Jim
Melancon for his assistance in the publication process, and Mel Piftle for moral and intellectual support in
traversing the maze of the formatting program and the Penguin printer.

"I
vii

PREFACE

This document comprises Parts One, Two, and Three of Volume V of the MME Final Report. The
volumes of the MME Final Report and their topics are:

Volume I Executive Summary
II Final Report
III User View
IV Message System Utility
V SIGMA Final Report
VI Data Analysis and Discussion
VII Training

The opinions expressed in this report are those of the authors and do not necessarily represent those of
USC/Information Sciences Institute or the MME project sponsors. Readers interested in obtaining the
remaining volumes of the MME Final Report should contact:

Naval Research Laboratory
Washington, DC 20375
Atm: Code 7590

. -~~~~~*-. .." -. . . ."

PART ONE:

INTRODUCTION TO SIGMA

-~1

1.1 THE DEVELOPMENT OF SIGMA

The following discussion is the history of the Military Message Experiment as seen through the'eyes of the
system developers at the Information Sciences Institute (ISI). Section 1.2 describes other documents that will
provide a wider perspective of the experiment.

This history is divided into two parts. The first, from 1968 to 1975, covers the period from the recognition
of the need for improved communications on Oahu to the actual signing of a Memorandum of Agreement to
conduct the MME. The second part covers IS's involvement in the planning and the actual conducting of

the experiment. roughly from 1973 to 1979.

1.1.1 Background

The MME had its roots in the Pueblo incident of early 1968. As a result of Congress' special investigation
into the causes of that incident, the Secretary of Defense was directed to improve military communications on

the island of Oahu, which is the central focus of comnmunications for all forces in the Pacific. The memo from
the Secretary of Defense identifying the need for a program to consolidate communications on Oahu signals
the beginning of the COTCO (Consolidation of Telecommunications on Oahu) program. The Assistant to the
Secretary of' Defense for Telecommunications (ASD Telecommunications), the Joint Chiefs of Staff, and
CINCPAC (Commander in Chief, Pacific) exchanged a series of memoranda and communiques to establish
plans for development of COTCO: the Navy was given the task of assembling a specific program.

In late 1972-early 1973 (four years after the original memorandum), the director of DARPA's Information
Processing Techniques Office was invited to comment on the COTCO requirement. He felt that an
interactive message-handling system like the functioning. successfu , ARPANET message service might be
useful on Oahu. ISI A as asked to study the problem, and a team of four spent two weeks on Oahu. primarily
at CINCPAC Headquarters, studying the state of communications. Their report is A Plan for Consolidation

and Aulornation of Alilitar, Telecommunications on Oahu [8].

The report proposes radical solutions to the communications problem: distribute around the island some
2000 terminals connected (via links similar to those used in the ARPANET) to five computers dedicated to
message processing, which would themselves receive network communications from both island and
mainland. Next, give the communications staff access to the terminals and (it is implied) instruct the staff in
the use of an already available computerized service for producing and receiving messages. The message
processing task itself was not studied in detail. The ARPANET message service was assumed to be sufficient.
The ISI report was received with interest by people in Washington and at CINCPAC, but the Navy deemed it
too extreme.

In January 1974 the Chief of Naval Operations submitted the Navy's plan of action for COTCO. The
proposed COTCO plan. which ignored interactive message handling, called for improving communications in
two phases. Phase one used existing equipment on the island, eliminating redundancy and saving some
manpower: phase two would develop a rather large, sophisticated system to allow a single computer to handle
messages for the whole island, This system was expected to save expenses because of economies of scale, but
it presented no new approaches to the message-handling problem. The cost of the second phase %as

projected to be approximately $40 million over a period of three to five years, with implementation occurring
in stages. The phase two plans only briefly mentioned a potential "conversational" mode during the latter

years of developing that system. with the suggestion that some testing of the interactive mode take place. As
submitted b) the Navy. the COTCO report was criticized by many. particularly by CINCPAC, who %as to be

the primary user of the service, for being too expensi'e and offering no real improvement.

1-2 SIGMA FINAL REPORT

During this time, CINCPAC worked with DARPA to acquire a better understanding of interactive
communication. CINCPAC obtained a few ARPANET terminals and began to understand the implications
of an interactive message service. In early 1974 ISI, CINCPAC, DARPA, and the Navy began two years of
discussion of automated message handling. All parties agreed that the plan described in the ISI report could
never be practically implemented, but that conducting a test would demonstrate how this kind of service
could work in an operational context and how effective it would be. Whereas the Navy had been viewing
interactive message handling as something to try out after the main COTCO system was operational,
CINCPAC began to view this sort of message service as the means to improve its communications. If
COTCO was designed primarily to support the old style type of message handling, then its design would
probably not include the equipment necessary to implement interactive message handling, possibly the
dominant form of communications in the future.

Throughout 1974 and well into 1975, the COTCO plan was rewritten several times; each time the Joint
Chiefs of Staff, CINCPAC, and others contributed to it, the concept of including an interactive test received
greater emphasis. DARPA and the Navy began to talk about conducting a test with CINCPAC as the testbed.
CINCPAC also took a stronger position; in August 1975, CINCPAC stated in a message (5] to the Director of
Telecommunications and Command and Control Systems (DTACCS: formerly, Assistant Secretary of
Defense for Telecommunications) that interactive message handling should be a part of any planned message-
handling program. From January 1974 to August 1975, the Navy plan for COTCO was considered, revised,
and reconsidered many times, until DTACCS disapproved the COTCO implementation on 20 August 1975.
DTACCS permitted phase one of COTCO (the consolidation of services and elimination of redundancy) to
be carried out, but cancelled the implementation of the proposed message-handling system. Instead, DARPA
and the Navy were to conduct a test of interactive message handling, using CINCPAC as the test site. The
Defense Communications Agency (DCA) headed a study to ensure that the test would take into account the
needs outlined in the COTCO plan. DARPA and the Navy worked very closely with CINCPAC trying to
define an appropriate test. In December 1975 DARPA, the Navy, and CINCPAC signed a Memorandum of
Agreement defining the Military Message Experiment program [27].

1.1.2 The Initial System

The ISI team's report, issued in May 1973, indicated that the best way to consolidate telecommunications
on Oahu would be to give all communications staff on the island access to VDTs connected to message-
processing computers (i.e.. put the staff on-line). There would need to be 5 message processing systems, 37
TIPs (Terminal Interface Message Processors, which link the terminals to the computers), and 2000 terminals,
a conversion that would cost $22 million. The military viewed this approach as very radical, and ISI's
recommendations never had a serious chance of being adopted. They did stimulate much interest in on-line
interactive message handling, however, and this interest was channeled to Washington and CINCPAC.
DARPA received enough positive feedback on the plan to encourage ISI to study the problem further.

ISI initiated the Information Automation (IA) Project, which was to investigate the kind of support
required to implement an automated message service. The users of such a system would be naive about
computers and would require a great deal of support from the computer software, even though the current
state of the art was not yet adequate to contribute that support. Although intense research was not considered
appropriate, the project would need to distill into a single system knowledge already available about
pro\ iding a helpful and supportive user interface on a large scale.

The 1\ Project got under v&ay in the fall of 1973. During its first year, during which the support
requircmecnt, for this kind of s.stern were studied. six reports were published [1, 15, 23. 32, 33, 42]. In
addition to stud.ing the computational possibilities, the project staff consulted with the Navy and with

Section 1.1.1

1. INTRODUCTION TO SIGMA 1-3

CINCPAC to understand their message-handling needs and to educate them about on-line message-handling
systems. ARPANET terminAs were installed at CINCPAC and the Naval Electronics Systems Command to
increase staff understanding of on-line service. Until then, the communications philosophy had always been
to deliver the message as fast as possible: the faster it could be gotten out of storage the better, because
communication was viewed as simply the delivery of messages. In contrast, on-line systems involve storing
the message in a computer "mailbox" and letting the user come to it. Instead of the message being held in the
computer for minutes, it would in fact be held there for months, to be filed and retrieved as desired. The
military makes a very sharp distinction between communication (the delivery of messages) and administration
(the storage and manipulation of messages after delivery). An interactive message-handling system blurs this
distinction.

In the fall of 1974 the notion of conducting a test in an actual operational environment began to get some
high-level DoD support. The Navy's interest in this test was related to COTCO; such a test was viewed as
part of COTCO and was linked strongly to the $40 million program. In November ISI focused its design
efforts on a message service for military applications, particularly for CINCPAC's environment. This service
was documented in a report called the Brown Bomb [20], a design proposal to DARPA. While details of the
proposed design changed almost entirely (little of the material on data structure, messages, and so forth
survived), the basic architecture did prevail. This architecture is described more completely in Part 4 of the
SIGMA Final Report (ISI/RR-81-95). The essential feature that distinguished the MME's message system
from most of the message systems already on the ARPANET was the idea of a central database serviced by
background processes, called daemons.' Instead of each addressee getting his own copy of a message, a
citation would be delivered, pointing to the message and supplying summary information about it. If the user
asked to read the message, the service would provide a copy from the central file, retaining the original for
others' access. If the user changed his copy of the message, i.e., added a comment to it, the change would be
submitted to a background daemon to update the central copy. The Brown Bomb strongly emphasized the
design of a consistent supportive user interface; even though some of the particular aspects advocated in the
early design were altered, the focus on supporting a computer-naive user prevailed throughout the program.

In February 1975, after DARPA essentially approved the design and gave the order to proceed, ISI began
the implementation of what eventually became SIGMA, the message service designed for the MME by ISI.
The original plan called for using the NLS2 back-end system for the basis of functional performance. NLS
was already being split into two parts, front-end and back-end, for the National Software Works: The user
communicates with the front-end, which controls the display and communicates with the back-end; the back-
end accomplishes tasks given it by the front-end and communicates directly with the computer. The idea was
that the message itself would be manipulated and stored as NLS data; ISI would provide the front-end to that
system. So ISI's work started by investigating NLS, ways to work with it, and developing SIGMA's front-end,
including the command language processor, the editor, the tutor, and the user monitor, to support the user.

SIGMA was to be implemented in two phases. The service to prepare outgoing messages was given
attention first because message preparation was the least developed part of then-current message services on
the ARPANET and especially because of the requirements of the military coordination process. Coordination
involves obtaining the approval of peers and superioi. before releasing a message, since each message has the
status of a formal document coming from the Commander-in-Chief of the organization. Nothing in the

[his approach was suggested b.% Albert Vezza of 1IT

2NI-S (o-Line Sstem) %%as de~cloped at the Stanford Research Institute in the mid-60s and was one of the first office-automation
sN stems

Section 1.1.2

- : - mamm ,~~~- '- t. r - -u mm - nIII

1-4 SIGMA FINAL REPORT

available ARPANET message services adequately handled the coordination process, so this part of the system
would have to be designed from scratch. It was expected that this first phase would be complete in 1975; the
second phase, implementing an appropriate way to handle incoming messages, would be complete by October
1976. After a period of integration, in January 1977 SIGMA would be ready for testing with some (hand-
picked) users. By July of 1977, SIGMA would be ready for CINCPAC users to begin operational testing.

In the spring of 1975, ISI produced a document for DARPA proposing the format for a test plan of an
experiment involving automated message handling. MITRE was chosen to administer the test, so ISI's
proposal was shipped to MITRE for consideration. By September 1975, MITRE had a full test plan draft,
which was approved in final form a year later.

By the end of the summer of 1975, negotiations between DARPA, the Navy, and CINCPAC for
conducting a test looked very promising. ISl's work with NLS showed it to be so intractable that the plan for
using it was dropped; ISI would implement new message-access mechanisms. DARPA began to emphasize
the development of the new system. MITRE was put in charge of the message service security. In order to
assure that some system would be available for the experiment, DARPA asked BBN and MIT to develop
alternate message services for the test.

Early notions of the CINCPAC experiment had the message-processing computer housed at a Navy
installation in the continental United States; CINCPAC was to be connected to the computer by the
ARPANET. Because of network delays, ISI advocated reprogramming the terminal's microcode to make it
intelligent; it was felt that response time would then be acceptable even though the host was 2000 miles away.
Indeed, the direction of ISI's project began to assume this type of architecture.

By the fall of 1975, SIGMA was working well enough to permit actual demonstration of the simulated
terminal interface, the language processor. the message editor, and the limited delivery facility. In early
December the Memorandum of Agreement was signed between DARPA, CINCPAC, Naval Electronics
Systems Command, and the Nasal Telecommunications Command. The signing of this agreement deeply
committed DARPA to provide a useful service. In January 1976 a meeting was held at NAVTELCOM
facilities in Washington with DARPA, the Navy. MITRE and the three contractors: ISI. BBN, and MIT. At
this meeting discussion centered upon a plan for the three contractors to work together to make the test
successful. Each of the contractors had its own proposed message service: it was agreed that there was no way
to combine the three systems for a single test because each was completely different from the others, so the
program became a three-way competition.

The three contractors concurred that the user should communicate with the message service through a
VDT. ISl's proposal for putting intelligence in the terminal, to provide multiple windows and two-
dimensional editing capability, was adopted: all agreed to use the ISI terminal. BBN later chose to stay with a
more conventional VDT.

Detailed plans for handling the MME itself were taking shape in the spring of 1976. Contracts were let to
CTEC and MITRE. CTEC would provide the test director, who would be independent of the implementors.
MITRE had developed the test plan, which called for the message system to collect data on how it was used.
The Navy planned to run the computer in Cheltenham, Maryland, near Washington D.C., and to start the test
in March 1977. After the dissolution of the COTCO plan, the Navy had incorporated the MME test into a
larger program called DISTAN (Distributed Interacti~e Secure Telecommunications Area Network). The
DISTAN program never went much further than MME: the Navy eventually dropped DISTAN.

Section 1.1.2

1. INTRODUCTION TO SIGMA l-S

\n ISI staff member developed a technique called a Protocol Analysis Test, which comprised an extended
interview and simulation with candidate users to learn how potential users felt about an automated message
service, and to gain information about design, data format, functionality, vocabulary, and so forth. In May
1976. a test was conducted with Navy personnel in the Washington D.C. area to evaluate the utility of
protocol analysis. The results of the May interviews [16] justified a similar test on the island. In July, an 1SI
team interviewed 24 CINCPAC users, collecting information on what an interactive message service could do
for them. how they could use it, and their preferred user interface. That information was used in ISI's design.
The report on that protocol analysis test appeared as a working paper in September of 1976 [17).

The original plan to locate the computer in Cheltenham, Maryland, was abandoned in 1976. Reduced
performance, potential unreliability, added expense, and CINCPAC's concern at having its messages appear
at the Navy site halfway around the world contributed to this decision. Instead, CINCPAC agreed to provide
room for the MME computer in the Command Center building, next to the WWMCCS (World-Wide
Military Command and Control System) computer. The plan thus changed from remote to local computer
access. Although CINCPAC felt its WWMCCS operation staff could support the MME computer, some
people with TENEX expertise were required to manage it. BBN was chosen to manage the operation and
maintenance of the hardware.

As 1976 drew to a close, a choice had to be made among the three message services. The decision was to
conduct a run-off in February 1977 to evaluate the three different services, and select which one would go on
the island. The other two were to be used at other sites, in structured tests. (These structured tests never
occurred.)

BBN was the site chosen for the evaluation; the evaluators were from CTEC, NAVELEX, CINCPAC, the
Naval Research Lab, and MITRE. The group was chaired by the MME program manager from DARPA.
Each message service was given a three-day evaluation. ISI sent seven terminals to BBN for use in the
evaluation. Each group had one day to prepare for the evaluation and one day to introduce and present itsmessage service to the evaluation team and to work with them on how to use iL On the third day, the
evaluation team worked on its own to judge the message service's effectiveness.

In early March the evaluation team went to Washington to pool their opinions and make a selection. Each
message service was evaluated for functionality, security, and user interface. 1Sl's SIGMA was ranked the
highest in each category: its user interface was suited to the military, it had appropriate provisions for security,
and it provided functions that paralleled existing manual practice. SIGMA's deficiencies were mainly in
functionality and performance: it ran at such a slow rate that only three users could work reasonablN well.
The decision was made to select SIGMA on the condition that ISI would eliminate SIGMA's deficiencies.

ISI devised a plan for doing so, the SIGMA Transition and Deficiency Amelioration Plan [371, which called
for installing SIGMA in May 1977 and allowing "friendly" users to shake down the system. New software
releases were scheduled every month from May through December: in December, the experiment itself
would begin with the final software release, and "real" users would be put on the system. During this period
some training and on-site testing would occur, connections would be made to LDMX. security evaluated, and
so on. In effect, ISI had eight months to make the system work, with the test to begin in January of 1978. The
test was scheduled to run through June 1979, six months less than originally planned.

SIGMA's poor performance was only one of the deficiencies noted in the Deficiency Amelioration Plan.
Others included on-line lessons and exercises, considered essential for training at CINCPAC. Some utilities
to support the operation needed to be developed, such as a robust terminal protocol to allow for
communication errors and a data collection package to obtain information on the system's use. SIGMA had
to be extended to handle printers and to be coupled to the IDMX in order to receive messages. Some

Section 1.1.2

1-6 SIGMA FINAL REPORT

functional features still had to be incorporated into SIGMA: an archive system, an alert mechanism to
indicate the arrival of new messages, and modification of access control. Both routing of incoming messages
and procedures for handling outgoing messages had to be improved. In addition, an entire collection of
general improvements still had to be worked ouL

The performance goals of this transition plan were to support 5 users on the system in June. 10 users in
September, and 25 users in December, a five-to-one increase in throughput within six months--a very
significant improvement. SIGMA would have to be overhauled considerably to be able to support this level
of performance.

In May 1977, a PDP-10 with a KA processor was installed at CINCPAC with 256K of core, only half of
what was planned. SIGMA was installed on the computer, and five terminals were delivered so that initial
system testing could begin. The equipment included two processors, two channel adaptors, two network
interfaces, two pagers, a single bank of memory, and a single disk drive and disk interface. Processors were
duplicated presumably for reliability; if one was down, the other would be available. Ironically, the most
fragile components, the disks and the memory, were the only pieces of equipment not duplicated.

1.1.3 The Evolution of SIGMA

From June through August 1977, ISI followed its transition plan fairly well, each month delivering a
release with new improvements directed toward functionality and improved performance. Project members
were also involved in security tests, installing a remote link to the block house, fixing bugs in SIGMA code,
coping with TENEX problems, testing new software, and making on-site visits to CINCPAC to assist in the
operation of SIGMA. ISI hired an on-site representative who took up residence at CINCPAC in late August.
Unfortunately. most' performance improvements achieved during this time were counterbalanced by the
added functions, which tended to degrade performance.

In the summer of 1977, a second 256K of core was added, the single most important step toward
significantly improving performance up to this point. In October, when the goal had been to support ten
simultaneous users, only about five users could be supported.

Performance became the critical item in October, since the promised level had not been met. The schedule
was completely revised, with all the functions promised for the October, November, and December releases
postponed. It was decided that the project should focus strictly on performance: in December an evaluation
would be made of whether SIGMA's performance would ever be adequate to support the Military Message
Experiment goals. The functions promised for those fall releases were deferred until after January. The
November release (release 1.7), the critical one for performance. was deferred until early December to allow
extra time to make the necessary alterations.

TENEX itself seemed a likely source for performance improvements. Don Allen from BBN provided some
tools to measure the CPU's use of time and to take program counter (PC) samples. These tools were very
helpful in determining why the computer's response was so poor and how to improve it. The results not only
indicated that most of the planned changes for improving performance were correct, but also helped to
generate several new ideas for making improvements.

The basic problem was insufficient processor and memory. TENEX is set up to provide many general
capabilities that can be invoked from the user's code. It turned out that more than 75 percent of SIGMA's
computing cycles were being spent in TENEX code, so it %%as necessary both to alter SIGMA to make it rely

Section 1.1.2

-

1. INTRODUCTION TO SIGMA 1-7

less heavily on TENEX functions and, where possible, to improve those TENEX functions. One slow
TENEX function, the String Output (SOUT) JSYS, was redesigned by BBN, cutting the use of computer
cycles 80 percent. Some of the changes made in SIGMA to improve performance went very deep in the

representation of data, permeating virtually every module, so they were difficult and time-consuming to
implement. After these changes had been completed, numerous bugs had to be eliminated. However, results
were promising: the amount of computer processing necessary to display messages, for instance, dropped
from 6.3 seconds of computer time to 2.3, better than a two-to-one improvement. There were improvements
in other commands too; for example, DISPLAY FILE was reduced by 50 percent. By the time of release 1.7,
performance had almost doubled. Thus, in December, SIGMA could comfortably support about ten users.
Although the target had been to support 25 users by December, even with the completed changes SIGMA
could not yet support half that number. There were still some other changes to improve response, but it
seemed doubtful that anything planned would provide another doubling.

Another approach seemed promising. The MME was using only one of the two available processors. The
other sat idle for backup. If SIGMA's load were distributed between the two processors, it was felt
performance would almost double. Configuring the two processors to operate in tandem did not seem to be
too difficult; SUMEX at Stanford operates its PDP-10 this way normally, running two KI processors together.
A consultant from SUMEX was asked to determine the feasibility of linking the two KAs at Camp Smith. He
indicated that connecting the two processors would be fairly easy and would provide about an 80 percent
increase in computing power. With other changes to SIGMA, this would allow it to handle 25 users. BBN,
however, who was operating the computer system, estimated the price to be approximately $600,000 for the
changeover to a dual processor system.

If $600,000 were to be spent, it made more sense to purchase a new DEC KL processor, which would
increase performance by a factor of three. ISI proposed this possibility, arguing that the easiest and cheapest
way to increase computing power was to enhance the hardware at Camp Smith. In the long run, purchasing
the KL would be cheaper than trying to force the SIGMA software to be more efficient with the KL, there
would be an immediate and obvious gain in computer cycles. Once the experiment was over, the KL could be
used for another project. In general. the KL would provide more substantial results for the experiment.
results that the MME sponsors wer,, anxious to see.

At the end of 1977, it was decided to acquire a new KL processor and continue with SIGMA at CINCPAC.
Operating TENEX with WWMCCS operators was not working well, so the plan also included having ISI take
over operations with a full, round-the-clock operations team, system programmers, and maintenance crew.
The experiment would have to be shaped differentl% to accommodate the now increased lead time before
proceeding with a full set of users.

Early in 1978, the ISI design team and the rest of the staff involved in MME re-evaluated the progress of
the experiment and planned for the future. Much time had been devoted to providing functions on SIGMA
while trying to improve performance, but the fundamental areas of reliability and operability had been
neglected. For example, the daemons badly needed reworking, both to simplify them and to provide better
controls from the operator's point of view. Better controls were also needed for error situations and for
logging appropriate diagnostic data. The focus therefore turned to the serious problem of reliability. The
functionality enhancements were scheduled for gradual introduction; all would not be completed until after
the new machine arrived and performance increased.

SIGMA's reliability problems were compounded by reliability problems with TENEX. BBN had lost the
one programmer it had on the island and had had to run the computer without any real systems programming
expertise. In March. BBN replaced the s)stems programmer with the man who had written the original

Section 1.1.3

1-8 SIGMA FINAL REPORT

TENEX-LDMX interface code for TENEX. He was able to strengthen that code and consolidate the entire
operator monitoring system. IS1 was rewriting the daemons and improving some of the functions so that they
could be ready for release 2.0 in June. Releases 1.71, 1.72, and 1.73 delivered during this time fixed various
bugs.

About this time the Navy appointed a Blue Ribbon Committee to review the entire MME program to
determine whether the Navy should continue its support. This committee spent about a month examining the
SIGMA system and the installation at CINCPAC. interviewing the users and reviewing the program plans.
They concluded that although MME had experienced delays and system performance was inadequate, the
program had reasonable solutions under way and it should be given continuing Navy support.

By May 10.8. the system was stabilizing well enough to permit messages to be taken from the IDMX on a
continuous basis. The daemons in SIGMA, though still the old version, were sufficiently reliable for storing
messages. Prior to this time, messages were coming in sporadically and there was no guarantee that all
messages were arriving.

SIGMA release 2.0, in June of 1978. had new daemons, archive facilities, and functional enhancements.
The resulting improvements in the operability and reliability of SIGMA were very, dramatic. Performance
also increased, since the new daemons -ere smaller, simpler, and required less resources to run. In general.
although the hoped-for number of users could not yet be supported, there was some semblance of stable
operation. July brought the decision to begin Limited Experimental Use, which allowed selected people from
CINCPAC Operations (J3) to use the system experimentally. These selected users would recommend
improvements to be incorporated into subsequent software releases.

Release 2.1 in September offered functional enhancements and performance improvements. Some plans
were made to install terminals at several other sites on Oahu (for example, the offices of the Commander-in-
Chief, Pacific Fleet and the Pacific Air Forces). but because of the already numerous tasks pressing on the
staff, it was decided not to extend the service beyond the CINCPAC Command Center. Extending the
serxice outside the Command Center would have provided some interesting data on use of the system (direct
message communication to these outside organizations would have been a truly ,cw capability). The
extension of service would have stressed access control mechanisms and offered an opportunity to study the
practicalit. of an informal interorganization message service.

When the KL processor with 1024K of memory was installed in October, most of the problems with
SIGMA's performance vanished. Although the computer resources available even with the KL were not
sufficient for extending the service, they would support a meaningful test of SIGMA at CINCPAC. However,
as with an\ new piece of hardware, the KL introduced some problems. Time was needed to shake out the
bugs and get the processor working smoothly. The new operations crew needed time to work out procedures
and learn to work as a team. During October and November. the computer ran with only a few difficulties,
but in)ecember severe disk problems brought a reduction in SIGMA's availability. Uptime dropped from
95 to 86 percent. In addition. the entire disk file was destroyed and had to be restored from backup tape.

Release 2.2 was installed in January 1979 with functional improvements such as an Alert facility.
Readdressal. and better coordination features. With this release CINCPAC authorized the use of SIGMA for
outgoing messages to AULODIN. After release 2.2, disk problems continued on and off. Uptime in January
"as 93 percent. but in Februar onlv 83 percent. Despite the lack of reliability, Full Experimental Use began
in February. Users %erc encouraged to do their work with SIGMA and to take advantage of the capabilities
offered. SIGMA had almost ,ill of the desired functions. Some problems with the outgoing message
capabiltN were discovered during tests in JanuaR and were fixed in releases 2.21, 2.22, and 2.23, as were some
operational aspects.

Section 1.1.3

1. INTRODUCTION TO SIGMA 1-9

In March, a bad filter was removed from the main power system. The filter was part of the equipment
maintained by the CINCPAC community and had probably been faulty for some time. After the bad filter
was removed, the system reliability increased dramatically. The recurrent disk troubles were also repaired.
By the end of this month, the system reliability improved to 96 percent.

Early March was the time for the full-scale Exercise Power Play, a global exercise involving U.S. armed
forces centered primarily in Europe, which made CINCPAC's involvement considerably less than it would
have been if the exercise had been in the Pacific theater. The 24-hour watch team of Command Center
personnel conducting the exercise were free to use SIGMA to see how it would be helpful in a crisis, although
no one depended on SIGMA exclusively because of its reliability problems. Message handling on paper and
on SIGMA proceeded in parallel. involving double work for some of the staff.

he faulty power filter was being replaced at this time, so SIGMA was unavailable for significant periods
of the exercise. Questionnaires distributed to members of the exercise watch team showed that, although they
felt it had promise, they were not able to work with SIGMA enough to evaluate it adequately.

l)uring the succeeding months, reliability continued to improve, but the system was still subject to
occasional fits of catastrophic failure. To store messages, SIGMA had depended on a single density disk.
which ran very full and could hold only two weeks of message traffic. In May a double density disk replaced
the old one, allowing 30 days of message traffic to be accommodated. Users were much more satisfied with
the increased storage: they could access more messages on-line and less often had to wait for their retrieval
from archise. In addition, system crashes resulting from overrun of disk space, a fairly common occurrence,
were eliminated. Users became more inclined to use SIGMA as they gained confidence in its reliability.

L nfortunately, these improvements in reliability happened too late. The decision was made in the spring
of 1979 that the system would be removed from CINCPAC at the conclusion of the experiment, I October
1979. Ibis decision was based primarily on the system's lack of reliability and that service could not be
extended throughout more of CINCPAC. The decision to remove SIGMA disappointed the staff of the
MME and many of the users who had become accustomed to working on the message service.

The last major SIGMA release. 2.3, was made in early June, although a few minor releases to fix bugs did
come out before the end of the experiment. Release 2.3 contained a collection of functional improvements.
man) of which were responses to user requests, such as sorting files and highlighting messages. SIGMA
continued to be used during the summer months, even though it was scheduled for removal. New staff
members at Camp Smith. unaware of SIGMA's earlier shaky reputation, used SIGMA and preferred it to the
paper processing of messages. These new users of SIGMA seemed to believe that the system was worth
keeping. With both a new CINCPAC and a new J3 at Camp Smith. an attempt was made to reverse the
decision to remove SIGMA. CINCPAC notified the Joint Chiefs of Staff that he had re-evaluated SIGMA
and that SIGMA's much improved reliabilit) and the staffs better understanding of the system's functional
capabilities justified keeping SIGMA. The appeal came too late: the system was removed as planned.

Dunng a two-week period in August before SIGMA was dismantled, users were asked to work with
SIGMA to send outgoing messages so that evaluators could obtain a better understanding of this capability.
Detailed results of this evaluation are given in MITRE's reports 113, 14). During September. the last month of
the s.stem's operation. Exercise Power Play was re-run at CINCPAC in order to better evaluate the system's
utility in a crisis. All the messages received in the pre ious exercise were retrieved, edited back to their t
original state, and then re-entered into the system as ne% messages. An operator controlled the introduction
of the messages so the pace could be varied. The exercise was conducted essentially as it had been in March.
except this time SIGMA was the primar. message-handling medium, and all messages, incoming and
outgoing, were kept within SIGMA.

7Section 1.1.3

• 1

1-10 SIGMA FINAL REPORT

Messages were first introduced at a rate roughly equivalent to real time, and then as the users warmed up,
the message load increased. For the last six to eight hours, messages were submitted about every two minutes,
a fairly heavy load, although not a saturation point for the paper system. SIGMA performed very well: the
users found it worthwhile. However, the results were inconclusive in determining if an automated system is
more effective than a manual system in a crisis. More discussion of these results is presented in the official
MME Final Report [29].

On October 1, 1979, the Military Message Experiment was completed. The users were allowed time to take
files off-line and convert them to paper form. The system was then shut off and sent back to ISI, where it has
since been added to the ARPANET. This was the official end of the operational part of the MME. The
remaining part of the MME is the documentation of its results, of which this report is one contribution. A
formal final report is being prepared by the Naval Research Laboratory.

1.1.4 SIGMA Staff

Although the experiment took place at Camp Smith, Hawaii, many people supporting the experiment were
not at CINCPAC itself. The largest group, of course, was ISI's Information Automation (IA) Project staff,
which ranged from 6 to 10 people over the five-year history of the project. The IA Project developed the
SIGMA software (the computer program) and the terminal firmware (modifications to the operating software
for the VDT's standard microprocessor) used in the experiment, and was involved in all aspects of the service:
training [18. 34]. security, and operation.

1.2 SUPPORTING DOCUMENTS

[his volume of the MME Final Report is written by the staff of the the Information Automation project at
IS] and reflects only the experience and views of the experiment from the perspective of the software
developer. It is ISl's contribution--Volume V--to the full MME Final Report being compiled by the Naval
Research Laboratory. At the time of this writing the full official MME Final Report is not complete:
however, the 'olumes to be included are:

Volume
I Executive Summary
II Final Report
III User View
IV Message System Utility
V SIGMA Final Report
VI Data Analysis and Discussion
VII Training

There are a number of other documents concerning the MME from which one can obtain a wider view of
the experiment. Of particular interest are two preliminary reports published by the Naval Research
Laboratory. The MME Quick Look Report [46] describes the progress of the experiment from May 1977 to
November 1978. Although there is limited data analysis presented, excerpts from interviews with the users
pro% ide insight into how CINCPAC viewed the early experience with automated message handling. A similar
report [221 describes the conduct of the experiment from November 1978 through March 1979. Some
prelimin .r, conclusions are drawn based on some early data analysis. observations of the use of SIGMA. and
more user inter% iews.

Section 1.1.3

. -. A

1. INTRODUCTION TO SIGMA 11

Copies of the Quick Look Report, Mid Experiment Report, and all volumes of the Final Report, as they
become available, may be obtained from:

Naval Research Laboratory
Washington, D.C. 20375
Attn: Code 7503.

The bibliography of this report contains a collection of other documents that are relevant to the MME.
The more pertinent of these are cited in the text of this document.

Part 2 of the SIGMA Final Repori (ISI/RR-81-94) describes the functionality of SIGMA as a user views it.
Part 3 (ISI/RR-81-94) contains opinions of the authors (all members of the ISI team that developed SIGMA)
formed from a review of data abstracted from user interviews, discussions with users, and other peripheral
observations. Part 4 (ISI/RR-81-95) describes the design of SIGMA in fair detail. There is more detailed
information about the design of SIGMA stored in the collection of TENEX directories that make up the
SIGMA program at ISI. The most extensive documentation is the source code itself, which is well
commented. The TENEX 6&rec,,ries constituting SIGMA are listed below:

CINCPAC Utility programs and data that are local to CINCPAC

CMP-DAEMONS Configuration Management programs, runfiles, and documentation (i.e.,
SIGMA release procedure)

DAEMON-LOCAL-STATE Support files for the operation of the daemons (e.g., Error-logs, Trace files,
Queues, Message Directories)

HP-MME Programs to generate Terminal firmware and firmware Sources

IA-ARCHIVE Archive daemon Source code (development directory; production directory
is MME-ARCHIVE)

IA-BATCH Utility programs and files for the Batch Processor, used in the development
of SIGMA

IA-COMMON Source code for packages common to all SIGMA (e.g.. error package, tools
to define micros, multiprint package) (development directory; production
directory, is MME-COMMON)

IA-CITATION Citation daemon Source code (development directory; production directory
is MME-CITATION)

IA-FM Functional Module Source code (development directory; production
directory is MME-FM)

IA-FOLDER Folder daemon Source code (development directory: production directorN
is MME-FOLDER)

IA-GENERAL Source code for support of runtime SIGMA (JSYS package for interfacing

Section 1.2

•L- -.---

1-12 SIGMA FINAL REPORT

to TENEX, binding specifications, pseudo-interrupts, facilities to effect
sharing of common code between forks, etc.) (development directory;
production directory is MME-GENERAL)

IA-HELP Source code and text for the Help and Tutor systems (development
directory; production directory is MME-HELP)

IA-MESSAGE Message daemon Source code (development directory; production
directory is MME-MESSAGE)

IA-OTHER Facmod and Msgmod Source code (development directory; production
directory is MME-OTHER)

IA-RECEPTION Reception daemon Source code (development directory; production
directory is MME-RECEPTION)

IA-RUNTIME The SIGMA running code and support programs running code (i.e., object
code) (development directory; production directory is MME-RUNTIME)

IA-SIGMA Command Language processor Source code and Command Table
(development directory; production directory is MME-SIGMA)

IA-SUPERSTRUCTURE Source code for programs common to daemons (e.g, CCP, PC)
(development directory; production directory is MME-
SUPERSTRUCTURE)

IA-TERMINAL Terminal Driver Source code (development directory: production directory

is MME-TERMINAL)

IA-TEST Files to support the testing of SIGMA (e.g., test scenarios, test messages)

MME-UTILITIES Source code for most utility programs (e.g.. FCHECK, MSCAN, FLAGS)
and release procedures for User Job

SIGMA-DOCUMENTATION Documentation files for various pieces of SIGMA

SIGMA-LOCAL-STATE Files used by SIGMA during operation

Section 1.2

PART TWO:

FUNCTIONAL DESCRIPTION

t
j

2.1 INTRODUCTION

This part of the SIGMA Final Report describes the functionality of SIGMA as a user views it. Before
continuing here, the reader might turn to the appendix of this part (following p. 2-35) to review "SIGMA--An
interactive message service for the Military Message Experiment" [381, a paper given at the 1979 National
Computer Conference, which gives an overview of SIGMA. In addition, it may be helpful to glance through
the SIGMA Reference Manual, which contains instruction formats, a level of detail not presented in this
document.

This part introduces the reader to the system in roughly the sequence that a new user is exposed to it. It
starts with a discussion of the terminal, followed by the log on procedure, then the various objects the user
deals with in SIGMA, and the operations he may perform on them.

2.2 THE TERMINAL

The HP/MME terminal, a special terminal developed for use with SIGMA, consists of a Hewlett-Packard
2649A terminal with minor physical modifications and special firmware developed by ISI [391. It contains
12K of display memory, but at any time only 1920 characters may be presented on-screen (24 lines of 80
characters). Figure 2-1 illustrates the MME terminal. To the right of the CRT are 4 LED lights labeled TOP
SECRET, SECRET, CONFIDENTIAL and UNCLASSIFIED. They indicate the highest classification of
data on the screen. As a user views objects (e.g., files, messages) at different security levels, SIGMA
automatically changes these lights.

The keyboard unit is connected to the main terminal by cable so the user may adjust its position for
maximum comfort. The keyboard contains a standard typewriter keyset, a cluster of 23 additional keys to the
right, and a set of 26 function keys laid out above. The typewriter keyset is used for generating text. Fourteen
tan keys on the right side produce actions local to the terminal, such as moving the cursor and scrolling the
screen. The remaining keys (blue key caps on the right and the upper keyset) are Function keys. They send a
request to SIGMA to perform some operation. The specific function each key requests is labeled on the key
cap for the blue keys. or above and below the key on a plastic keyboard overlay for the upper keyseL
Functions whose labels are above the keys are activated by holding down the shift key while they are pushed.
The two keys on the left end of the upper keyset (!!RESE7.! and !!ONLINE.!) are not function keys: their
special role is described in the next section.3 Seven LED lights show through the function key overlay. Only
the four centered in the yellow background area labeled "CURSOR SECURITY LEVEL" are meaningful in
SIGMA. These are similar to the screen security lights: there is one for each classification. These indicate the
level of the object where the cursor resides. The cursor indicates the position where data typed on the
keyboard will be entered. SIGMA defines different areas of the screen, called windows, for different
purposes: these windows can be at different security levels (described in section 2.10, page 2-13). If the cursor
is in a Secret window, any data typed is considered Secret and will be so treated by SIGMA. Thus the
keyboard security lights indicate the classification at which typed data will be entered.

31n this document, function ke' operations are shown bracketed %'.th double exclamation points (e.g.. "EXECTE11).

2-2 SIGMA FINAL REPORT

Figure 2-1: The MME Terminal

2.3 LOG ON

As a user approaches an MME terminal to start up SIGMA, he must first determine if the terminal is
already in use. If the screen is blank (power off) or if it contains a single line of text saying

TERMINAL READY

or

TERMINAL FREE - previous user has
logged off

the terminal is free. If the terminal has a normal SIGMA presentation on screen, someone is already logged
on that terminal, and it cannot be used until he has logged off.

Before trying to start SIGMA, the user must place the tenninal's !!O,' I I,! switch in the depressed
position (on-line). If the terminal power is off, turning it on is sufficient to cause SIGMA to start. If power is
already on and the terminal is free, holding down the !!C,\TI!! key and pushing !!RESE! will initiate a
SIGMA job. An alternative procedure is to push the !!ISC! key (see section 3.3.2.1, page 3-12, for a
discussion of startup procedures).

Section 2.3

2. FUNCTIONAL DESCRIPTION >3

SIGMA will respond to a startup request b. presenting a "log on" template, as shown in Figure 2-2. The
user fills in this template by mo\ ing the cursor to each empty field and typing in the appropriate information.
Text editing features in the terminal facilitate filling in .he form (see section 2.8, page 2-9, for a description of
these features).

Logon name:
Logon password:
Max. Sec. Level:
[If required enter] Identity:
I password:

Figure 2-2: Log on Template

On the first line of the form, the user enters the name of his office code. On the second line the user enters
the appropriate office password; the password itself is not displayed. The third line requests the maximum
security level the user intends to use for the session. SIGMA inhibits a user from accessing objects that are
classified higher than the current session's security level. The remaining two lines of the template are for the
user's name and password.

This two-level log on procedure, office code and personal name, provides accountability. Each action that
SIGMA records, such as approving or releasing a message, contains the name of the office taking the action
and the individual who was acting in that role, even though only the office code shows on the message itself.
This allows secretaries or administrative assistants to act for their superiors (they first need the office
password), while keeping them accountable for their actions. A user may log on with his personal name
directly, without an office code, but he then cannot directly access objects belonging to the office or act for
that office. SIGMA will not allow a user to log on with an office code without a personal name (referred to in
SIGMA as his identity).

When the user presses !!EXE(UTE!!, SIGMA processes the log on request. If the passwords are correct
and the maximum security requested does not exceed a predefined maximum security for that user (office
code and identity) or that terminal, the job is started up and the log on phase is finished.

If the password for either the office code or identity is incorrect, SIGMA will reject the log on and produce
an error message telling the user the password is incorrect. As a security feature specified by CINCPAC, the
third time a user enters the wrong password SIGMA locks out that terminal. The System Security Officer
(SSO) must then intervene to unlock the terminal (see section 4.14.4, page 4-106 for a description of the SSO
program).

A user has 6 minutes to fill in a log on template. If he has not successfuly logged on in that time, SIGMA
clears the screen and logs off the TENEX job. This housekeeping keeps the system clear of not-logged-on
jobs.

2.4 STANDARD SCREEN

Once log on is complete. SIGMA presents its standard screen format to the user. The top line, called the
Alert itne, contains status information about the system and the job. including the SIGMA release number
N' hat %ersion of the sstem is running), the "load a\erage" (a figure indicating how heavily the computer is

Section 2.3

2-4 SIGMA FINAL REPORT

loaded), the day of the week, the date, local time and Zulu (Greenwich Mean) time. This is also where
SIGMA notifies the user of the arrival of new messages and "alerts" (see section 2.16, page 2-33).

The Staius line is the second line on the screen. It initiall% contains just the log on security level and office
code. As the user "opens" objects in the message service, the name, security level, and the type of each object
will also be presented on the Status line.

The third line is the Feedback line. It provides dynamic feedback from SIGMA to the user as various
operations proceed. For instance, before log on it contains the message

"Please enter

the necessary information to log on.

During execution of instructions it may say something like

***clear view* being processed

to indicate it has accepted the !!CLEAR VIEII! instruction and has started. If an error condition is
encountered, the user is informed on this line.

These top three status lines are continually updated. For example, the time is changed .ery minute on the
Alert line. The tenninal inhibits the user from putting his cursor into these lines; he can nexer alter their
contents.

Lines 4 and 5 are permanenzl assigned as the Instruction window. This is the area of the screen where the
user types instructions to the system. Instruction entry is discussed in more detail below. The beginning of
the Instruction window is marked by too bell-shaped characiers. which in this document are sho\An as "t. If
the user types more than can fit on one line, the terminal automatically wraps onto the next line. If the
instruction spills onto a third line, the Instruction window automatically scrol --) the fir- ' ", disappears, the
second line appears on line 4 and the new third line is on line 5. Instructi,.'-.- ,,' .,)m requj,: Lh'! much space.

The rest of the screen is available for working space, where messages, files, and other SIGMA objects are
displayed and edited. This area may be occupied entirely by a Display window, entirely by a View windo\N.
or, in split-screen mode, by both. An ohject that is "opened" for editing is shown in the Displa. window. An
object that is only expected to he referenced and not altered is normally sho%n in the View window. For
instance, when a user has completed Log On, he is presented the System News in the Vie% window, which
occupies the full working area (19 lines) since there are no open objects to present in the Display window.
The news, entered by the System Control Officer, contains general information relevant to SIGMA users.
such as scheduled down times, new features, or new procedures. The split-screen mode is used when a user is
working on one object in the Display window and wishes to reference some other information. In split-screen
mode the View window occupies the last 9 lines of the screen and is shown in lower intensity to distinguish it
from the Display window. Section 2.9.1 on page 2-11 describes how the user controls these windows.

Section 2.4

2. FUNCTIONAL DESCRIPTION 2-5

2.5 INSTRUCTION ENTRY

%Most t\ ped instructions require that one or more parameters be specified. For example, the
DISPLAY FILE operation requires the user to specify the name of the file to be DISPLAYed, 4 while
CREATE FILE needs the name of the file and its security level. SIGMA requires that the name of the
instruction be typed first in the Instruction window, followed by the appropriate parameters in any order.
When the instruction has been properly entered, the user depresses the !!EXECUTE!! key to tell SIGMA to
act. Pressing !!EXECUTE!! automatically turns off the cursor and disables the keyboard. When SIGMA has
taken action on the typed instruction, the cursor is returned, and the keyboard is enabled.

SIGMA's first step is to try to interpret what has been typed as an instruction. As an aid to the user,
SIGMA will accept partially completed or improperly spelled instruction names and parameters. It will
expand and correct them to the degree it is able. The algorithm used in this process requires that the first
letter of the instruction be correct. The expanded instruction is parsed and presented in the Instruction
window in place of what the user originally typed. If the instruction is complete and unambiguous, the user is
told on the Feedback line

**Please confirm.

When he confirms by pushing !!EXECUTE!! a second time, SIGMA proceeds to execute the instruction.

If the parsed instruction is incomplete or ambiguous (there is more than one possible interpretation),
SIGMA reports

"Your instruction is ambiguous. Use PROMPT for more information.

on the Feedback line. The user may use the PROMPT facility (see section 2.7.1, page 2-6), the HELP facility
(see section 2.7.2, page 2-7), the SIC 'A Reference Manual, or he may ask a friend for guidance. The
instruction, as parsed, stays in the instruction window, where it may be edited or erased and a new instruction
entered. The next time the user pushes !!EXECUTE.!. SIGMA will attempt to interpret the instruction from
the beginning again.

After a user becomes experienced with SIGMA, he learns the minimum he must type to get his instructions
properly parsed. At that point having to confirm each instruction becomes annoying. The user may then ask
the System Security Officer to make him an intermediate user, Intermediate users are asked only to confirm
instructions that will permanently affect the database, such as DELETE FILE or LOG OFF.

Sometimes intermediate users are unsure whether the instruction they have entered will be correctly
interpreted. The function key !!EXPAND!! causes SIGMA to parse what is entered in the Instruction
window and display the expanded form, but not execute it. The user then presses !!EXECUTEI! if he likes
it, or alters the expanded instruction if he does not.

At any time during the instruction entry, if the user wishes to cancel the instruction being entered, he can
use the !!CANCEL!! function key. This key is effective until the final confirming !!EXECUTE!! is entered.
!!CANCEL!! clears the Instruction window, and leaves it ready to accept fresh instruction.

The names of SIGMA instruction are indicated b.i BOLD CAPITALS in this document

Section 2.5

2-6 SIGMA FINAL REPORT

2.6 FUNCTION KEYS

The instructions most often used have been assigned function keys. Function key operations do not
require confirmation and do not take typed arguments, although some functions use the cursor position or the
location of special marks called !!HERE!!s (see section 2.8, page 2-9). Function keys act like the
!!EXTCUTE!! key; they also lock the terminal keyboard and turn off the cursor. !!EA'ECUTE!! is actually
just a particular function key which causes SIGMA to parse and execute what has been typed into the
Instruction window.

2.7 USER ASSISTANCE

There are three sources of user assistance in SIGMA: Prompt, Help, and the Tutor. The paper "On-line
tutorials and documentation for the SIGMA Message Service" [351 describes these mechanisms in more
detail. The user's view of these facilities is abstracted from that paper and presented here.

2.7.1 Prompt

Prompt is a limited aid to the user for entry of instructions. When the user presses the key labeled
!!PROMPi!. SIGMA presents all instructions that are legal in the current state, considering what has been
typed in the Instruction window. If nothing has been typed, he will see all the instructions \alid in the current
situation. If the letter C has been typed. he will see all the forms of all instructions beginning with C. When
the user presses !!PROMIPT!! again, the original state of the screen will be returned. If the user types an
ambiguous instruction in the Instruction window and tries to execute it, SIGMA will respond with an error
message in the Feedback line telling the user that the instruction is ambiguous and suggesting he press
!!PROMIPT!. If the user then presses the !!PROMPP! key,-SIGMA shots prompting for just those
instructions that it still considers possible candidates for the instruction intended, based on what has been
typed in the Instruction window. Instructions that SIGMA interprets as "most likely candidates" (which most
closel match the number and types of the given parameters) are shown highlighted.

For example. suppose the user has a file named Pending and a text-object named Papa. If he types

tff P

in the Instruction window and pushes !!PROIP7-.!, the Prompt facility will show four possible instruction
interpretations:

Display Text <Existing Text Name>
Delete Text <Existing Text Name>
Display File <Existing File Name> <Security)
Delete File <Existing File Name>

With each instruction is shown a brief description of its function and a stylized form of the instruction %ith
its parameters.

Once an instruction (or list of instructions) is shown by Prompt. the user can select one of them by placing
the cursor on it and pressing !!PROMIPt!! again: this expands the description of that particular instruction.
show ing the syntax and meaning of each of its parameters.

Section 2.6

2. FUNCTIONAL DESCRIPTION 2-7

While viewing a Prompt display, the user may edit the Instruction window. Hitting !!EXECUTE!! will
cause SIGMA to restore the original screen and attempt to execute the edited instruction. The screen will be
returned to its original state if the user hits !!PROMPI! with the cursor in the Instruction window.
!!CANCEL!! will also return the screen to normal, but the Instruction window will be cleared.

2.7.2 Help

If the user needs a more detailed description of an instruction or cannot remember which instruction to
use, he can request the next level of documentation: Help.

2.7.2.1 Selectable terms

The Help system provides documentation by describing Terms (names of instructions, facilities and
concepts relevant to SIGMA). The user can request documentation of the available Terms through the Help
processor's flexible mechanisms. The upper window of the Help display appears as

HELP SERVICE FACILITIES Current Term: <some key phrase>
BACK FORWARD New Term:

The Curren Term field shows the Term which is currently displayed (e.g., "<some key phrase>" in the
example above).

The New Tern field allows the user to type in a new Term for which he wants Help. Spelling correction is
provided by means of the same algorithm employed in the Instruction window.

[he other four fields in the upper window are shown with inverse %ideo highlighting. The convention
followed in the Help facility (and explained in the top-level Help display) is that anything that appears in
inverse video is itselfa Term for which the user can get Help simply by selecting the highlighted field with the
cursor and pressing !!HELP!! again. Thus the Terms HELP and SERVICE FACILITIES are always
available whenever the user is getting Help: he has only to move the cursor into either of these fields and
press !! HELP!!.

The HELP Term displays the general information describing the use of the Help system itself, providing
the same display as if the user hit !!HELP!! with an empty Instruction window.

SERVICE FACIL ITIES shows an Index-like list of the major topics and instructions in SIGMA: when it
is selected, the lower Help window shows a menu of topics on which Help is available. Any Term that
appears highlighted (in inverse Nideo) in this list can be selected with the cursor. The user can thus use Help
as a menu-drixen access facility, or he can type in specific Terms to be accessed (at New Term). Whenever the
Help display is changed, the Current Term field is changed to show the Term whose documentation is being
displayed.

The fields BACK and FOR WARD are also shown highlighted. These are not really Terms, but are "virtual
function keys" which allow the user to retrace his steps through previous Terms for which Help has been
displayed.

Section 2.7.1

i

2-8 SIGMA FINAL REPORT

2.7.2.2 Requesting help

If there is an instruction or part of an instruction in the Instruction window when the user presses the
!!HELPI! key, Help is provided for the term corresponding to the instruction word. If the Instruction
window is empty, pressing !! HELP!! results in a "top-level" Help display which is a description of how to use
the Help facility itself.

2.7.2.3 Use of the screen in help

When Help is activated, the Feedback line displays a message telling the user that Help is being shown
below and how to "get out" (that is. how to return to what he was doing before he hit !!HELP !). The Alert
and Status lines are unaffected. The Instruction window and work area (Display window and/or View
window) are mapped away, and the remainder of the screen is divided into two windows: the upper is used to
select the documentation to be presented (as described below), while the lower shows the text of the
documentation. When the user returns from Help, the screen is returned to the state it had before he hit
!!HELP'!.

2.7.3 Tutor

The final level of detail in on-line documentation of SIGMA consists of a full curriculum of on-line
Lessons and Exercises covering most of the features of the system. The primary goal of the Tutor is that the
user be able to take Lessons on-line and try out various instructions. The Tutor guarantees that the user can
do no harm when taking a Lesson.

The Tutor supports two related features: Lessons and Exercises. A Lesson is a detailed description of some
aspect of SIGMA. There are a dozen Lessons available. No order is enforced, though the Lessons are
arranged in a logical sequence for most users' needs. A user can retake a Lesson any number of times, can
quit in the middle, and can start up in the middle the next time.

2.7.3.1 On-line lessons

The user asks for a lesson with the typed instruction LESSON. which takes a lesson number as an
argument. The available lessons are listed in the hardcopy SIGM A Reference Manual [34] and in the on-line
Help. When the user executes the LESSON instruction, the Lesson text is displayed in the working area of
the screen. The Feedback line shows a message telling the user he is in a Lesson and ho% to get back to what
he was doing before he entered the Lesson. The Lesson text shown in the working area can be scrolled, like
any display on the SIGMA terminal. Lessons provide complete discussions of the most important topics
having to do with using SIGMA. Most Lessons have associated Exercises, and the user is encouraged to use
them.

2.7.3.2 On-line exercises

An Exercise is generally a very short and specific task that the user can try in the Tutor's protected mode, a
special operating mode in which the user is prevented from harming any real data. Lesson 2, for example,
discusses a user's special data object called the Pending File, and then suggests that the user try Lxercise I to
display a Pending File. Later in the Lesson, the user is shown how to display messages from a file. and
Exercise 2. which allows the user to display a message. is suggested.

Section 2.7.2.2

2. FUNCTIONAL DESCRIpFION 2-9

In keeping with the nonasserti'e philosophy of the Tutor. the user is not coerced in any way into trying the
Exercises. He can skip some or all of them, can take them in any order, and can retake them any number of
times.

The user takes an Exercise by using the typed EXERCISE instruction, giving the number of the desired
Exercise. The Exercise number automatically refers to that Exercise for the Lesson in progress. When the
user enters the Exercise, the working area of the screen (which had displayed the Lesson) is remapped to
display the Exercise. The Feedback line displays a message telling the user he is in an Exercise and how to get
out of it.

An Exercise describes how to specify some particular instruction or set of instructions and suggests that the
user try them. In order to try them, the user simply moves the cursor into the Instruction window and types
the instruction, just as he would if he were not in the Tutor. At this point, the Instruction window is parsed by
SIGMA as alwr". .. However, the resultant parsed instruction is not immediately executed; it is first checked
to see if it is an allowed instruction for this Exercise. Ifthere is a match, the Tutor allows SIGMA to execute
the instruction: otherwise, it displays a message in the Feedback line telling the user the instruction ie typed
did not match any of those in the Exercise.

When the user executes an instruction within an Exercise, the working area of the screen is presented just
as it would be if it were not an Exercise. However, the Feedback line informs the user that he may switch
back and forth with the Exercise text by pressing !!HELP!! or return to the Lesson by pressing !!PROAPP!.

2.8 EDITING FACILITIES

Before we delve into SIGMA's message service functions, it is best to understand the general text editing
facilities provided in the SIGMA system, performed in part in the terminal, which gives rapid response for
simple operations (e.g.. enter or delete characters via the keyboard, scroll a window). The more complex
operations are performed by SIGMA software in the host computer.

Fa,-h editing function local to the terminal is associated with a key on the keyboard. The standard
typewriter keys cause character insertion at the cursor location (if data entry is allowed at that spot). The
inerted character appears where the cursor was. and the rest of the characters on the line move right one
poition. Overflow from a text line \kraps to the line below" it occurs on word boundaries. There is no
o\ertype" mode provided in the terninal: the user must delete and then enter to replace one string with

another. "Overtype" was purposely not provided because it was felt the consistency of a single mode of
operation was more important than any performance increase "overtype" would provide.

The !!RFTURA'!! key starts a new line with whatever character is at the cursor position. If the cursor is at
the end of the text being edited, it acts like a standard typewriter. The terminal retains the attribute that this
text starts on a new line (it is called a Jbrmautcd line). Inserted text on the line above will not overflow onto
this formatted line. but will cause a new line to be inserted above the formatted line instead.

The arrow keys (-t. -. ., t) move the cursor in the direction indicated. However, the system does not
permit the cursor to be placed in areas of the screen which have not been specifically defined to be
"enterable". Pushing an arrow key causes the cursor to move to the next "enterable" character position,
which may be more than one character position away. Text is considered as a concatenated string, so mo\ ing
the cursor right from the end of a line of text puts the cursor at the beginning of the next line. If there is no
enterible character position in the direction requested. the terminal "beeps".

Section 2.7.3.2

2-10 SIGMA FINAL REORT

The up (and down) arrows attempt to put the cursor in the character position above (or below) its current
location. If there is not an enterable character position there, it will find the closest enterable position to it.

The !! WORD LEFT.! and !! WORD RIGHTV! keys cause the cursor to move a word at a time. The
!!FWD!! key moves the cursor to the end of the current line, and subsequent pushes move the cursor to the
beginning of the next line, to the end of that line, etc.; !!BACI .! acts the same way in the opposite direction.

These cursor movement keys are transparent to window boundaries, and will move into an adjacent
window if that is the next proper location. The !! UP WINDO WI! and !!DOWN WINDO WT keys jump the
cursor into the last known cursor position in the adjacent window. This is usually the most convenient way to
move the cursor between the Instruction window and the working window.

The !!ROLL UP!! and !!ROLL DOWN!! keys cause the data to scroll in the window containing the cursor.

Pushing the !!DEL!! key deletes the character at the cursor position. Characters to the right of the cursor
move left one position. The !!DEL!! key with a left arrow over it deletes the character to the left of the cursor
(equivalent to moving left one position, then deleting). Holding the shift key down and pushing
!!WORD LEFT'.! or !! WORD RIGHT.! deletes the word to the left or right of the cursor. Similarly, shifted
!IFWD!! and !!BACKI! delete the contents of the line to the left or right of the cursor, respectively.

So long as the cursor remains on the same line, deleting characters merely shortens the line. When the
cursor is moved off that line, data from the line below is pulled up to fill out the line. This will not occur if
that next line is formatted.

The other "local" editing key is called !!HERE'!. This key is used to mark the character at the cursor for
some subsequent instruction. Pushing !!HERD! inverts the video presentation of the character to give the
user visual feedback, and SIGMA is informed of the character in a manner that is not sensitive to subsequent
editing of text around the marked character. The marked character itself is made noneditable. When the next
instruction is executed (function key or !!EXECUTE!! is pushed), SIGMA will interpret any !!HERD.!
markers as parameters to the instruction. A part of the instruction execution clears all !!HERE.!s.

The terminal editor is not very forgiving if a user puts in a !!RETURN!! he later wishes to remove. The
deletion of !!RETURN!!s is a familiar problem in word processing systems because they are not normally
editable symbols. SIGMA provides a function key, !! UPDATE!!, which will format the open text (text-object
or message) into paragraphs. A paragraph boundary is defined to be a blank line or any formatted line (one
which was initiated with a !!RETURN!!) which has at least one leading space. This allows the user to enter
tables. equations, etc., and keep them formatted as they were entered. !!UPDATE.!ing closes up text in the
paragraph by pulling out extra blank spaces and removing all formatted line attributes except paragraphs.
The user may specify reformatting of only a portion of the open text by bracketing the text to be formatted
with !!HEREs prior to pressing !!UPDATE!.

All other editing operations are performed by executing SIGMA instructions. These operations generally
require data access to a larger context than can be held in the terminal.

!PICK'UP!!, when initiated with the function key, "picks up." i.e., deletes from the object but holds in
temporary storage, the text between two !!HERE!!s. Subsequent execution of the !!PU7.! function key
inserts the data from that temporary buffer at the cursor location, assuming it is an editable location. The
!! %IO[,!! function key is the exact equivalent of doing a !!PICKUP!! and a !!PUf.!. The !!COP}.!

Section 2.8

2. FUNCTIONAL DESCRIPTION 2-11

function k."v is like !!MOVE!! except that it copies the data between two !!HERE.!s into the temporary
buffer %itho,.r deleting it.

The tbpeo PICKUP instruction allows the user to specify the name of a permanent buffer (see 2.15) for
storing the text. It also requires two !!HERE.!s to identify the text to be picked up. The typed PUT
instruction allows the specification of any of these named text-objects for insertion into the text on screen at
the location indicated with a !!HERD!.

The typed FIND STRING instruction causes SIGMA to search the contents of the currently displayed
object for the first occurrence of the specified string. The screen will be scrolled (or rewritten) by SIGMA so
this occurrence is on screen and the cursor is placed at its beginning.

2.9 DATA OBJECTS

iGMA deals with four types of objects: Messages, Files, Text-Objects, and Selectors. Message-;, of course,
are the primary data in a message handling system, and they occupy the largest share of the disk file storage in
SIGMA. The majority of messages on the system arrive from AUTODIN and are passed to SIGMA by the
LDMX.5 Messages are stored just once in the system, and users share access to them.

SIGMA files, also called folders in SIGMA design documents to distinguish them from TENEX disk files,
may be thought of as collections of messages. In fact a file does not hold the actual messages, but contains
entries, which are pointers to messages. An entry is an abstract of the important fields of a message, (e.g..
From. Subject, or DTG 6). When a user displays a file, he can thus recognize the messages it contains. There
are ten different types of entries that may appear in a file (see Table 2-1). A user may create and destroy his
own files, and he may share access to other users' files. Each user has a special file called Pending, which is
the delivery point for messages sent to that user.

Selectors are user-created objects that are helpful in selecting certain classes of messages from a file. Their
use is described in detail in section 2.14.6, page 2-29.

Text-objects are named entities that contain free text. These can be used for storing address lists, message
body paragraphs, routing lists (see section 2.14.8, page 2-30). reports, letters, etc. Text-objects may also be
used in conjunction with PICKUP and PUT instructions.

2.9.1 General Operations on Data Objects
SIGMA allows a user to have open (i.e., available for editing) simultaneously one message, one file, and one

text-object. An object is opened by the DISPLAY instruction, which also causes it to appear in the Display
window. Selectors cannot be edited, so SIGMA does not allow the user to DISPLAY a selector.

If an object is open, and the user executes a DISPLAY of the same type of object, the open object is closed,
and any editing changes are made permanent (i.e., the master copy on disk is updated). This updating process

5Local Digital Message eXchange, the AUTODIN message terminal computer in use at CINCPAC.

6 Date-Time-Group. the tlitarI timestamp for an outgoing message

Section 2.8

2-12 SIGMA FINAL REPORT

is called finishing; it may also be activated directly by the !!FfNISH!! function key. A user may close an
object without updating it with the ABORT instruction. Any editing changes made since opening the object
are lost if it is closed with an ABORT.

If the user is displaying a file, and then asks to display a message, the message will be put into the Display
window but the file will remain open. The user can return the file to the Display window (without closing the
message)j via the !!SHOW FILE!! function key. There are also !!SHOW MESSAGE! and !!SHOW TEXT'.!
keys for switching the other open objects onto the screen. These function keys respond quickly because the
terminal retains the display data for each open object.

Messages, selectors, and text-objects may be viewed without opening them by the VIEW instruction. 7 A
VIEWed object appears in the View window of the terminal. If there is an open object, the View window will
occupy the lower 9 lines of the screen. If there is no open object, the View window will occupy the full
working space on screen. If nothing is being VIEWed, the Display window occupies that full working space.
A VIEWed object is removed by the !!CLEAR VIEWI! function key.

Since a VIEWed object is not open, it may not be edited. SIGMA allows the user to put his cursor in the
View window, but the terminal editing keys (with the exception of the !!HERE!! key) will not function there.
A user may copy text out of the View window with the COPY instruction, but if he attempts to PICKUP or
MOVE text, SIGMA will not perform the text delete portion of the operation. Thus MOVE TEXT gets
converted to COPY TEXT.

A user can generate a new object Aith the CREATE instruction. The user must specify the type of object,
its security classification, and its name as arguments to the instruction. For messages the user must also
specify the type of message being created (see section 2.11. page 2-13). CREATE MESSAGE and
CREATE TEXT also open and display the object so the user can type data into it. Creating a file or a selector
produces the object but does not open it.

Files. selectors, and text-objects may be deleted from the database with the I)ELE1E instruction. A user
may delete only his own objects. Messages are created in a shared database %here they are considered to
belong to the system. and may not be deleted. As a message becomes too old to remain on-line, it is put into a
magnetic tape archive. Messages on archive cannot be accessed directly, but can be retriexed from the archive
upon request (see section 2.12, page 2-19).

Data objects may be shared by SIGMA users. By design, messages are always shared, although there are
certain constraints on access to them (see section 4.12.7. page 4-82). To access a file, selector, or text-object
belonging to another SIGMA user, one must perform a GET operation, specifying the name and type of the
object to be accessed and its owner. An optional argument of GET is the name by which this user wants to
refer to the object; if this argument is not provided, SIGMA defauts the name to the owner's name. The
GET will succeed only if the appropriate access control constraints allow it (see section 3.3.2.19, page 3-24).

GETting a file gixes the user a pointer to the file, so the user will always have access to the current version.
GETting a selector or text-object, on the other hand, creates for the user his own replica of the original object.
Changes to the original object will not be reflected in this new object.

SIGIA does not permit the user to \iew a file because of implementauoi considerations. see 4 7 8 2

Section 2.9.1

2. FUNCTIONAL DESCRIPTION 2-13

One final facility common to data objects is the DIRECTORY instruction. Each user has his own
directories for files, selectors, and text-objects. A File Directory is an index to the names of all the SIGMA
files that the user can directly access, the classification of each, and its owner. Selector and Text directories
are corresponding indexes of selectors and text-objects for a user. There is no message directory; this is the
function of SIGMA files. Function keys are provided for Viewing each directory. In addition, there is a
typed version of the VIEW instruction that allows a user to View other users' directories (assuming access is
allowed).

2.10 SECURITY

Before we consider the more specific message and file handling operations in SIGMA, one more general
topic should be discussed: Security. The paper "Design of a message processing system for a multilevel
secure environment" 131 discusses the SIGMA security model and why it was chosen. Although the system
did not implement this security model and made no claim to actually "be" multilevel secure, it did provide a
user interface that behaved as though the SIGMA security model had been provided. The effect of multilevel
security on the user could thus be observed.

The basic premise of the security model is that one cannot "trust" SIGMA's large amount of code. The
only trusted parts of the system are the terminal, the user, the operating system, and a small kernel of security-
relevant code called the "trusted job". Whenever a security-relevant instruction is executed, the trusted job
must verify that the user really wants to perform that operation. Function keys are interpreted directly by the
trusted job and are accepted at face value. However, typed security-relevant instructions must be
"acknowledged" by the user. The user executes the instruction in the normal manner, but after the
confirmation step the trusted job asks the user to acknowledge the operation by pressing the !! YES!! function
key. Pressing !!NO!! or !!CANCEL!! aborts the instruction. The SIGMA security model also inhibits the
user from accessing objects at a higher classification than he is allowed and prevents him from putting
classified data into an object of lower classification (e.g., filing a Secret message into an Unclassified file).

Since the object data displayed on screen comes from untrusted code, the classification shown in the object
itself is suspect. The trusted job controls the terminal's cursor and window security lights to give a positive
indication of the classification of each data object. This %ay the user can verify that the classification shown
on screen matches the classification indicated b) the terminal security lights.

2.11 MESSAGES

SIGMA supports three different message types: ALUTODIN, Alemos. and Notes. For each type SIGMA
distinguishes between Preparation and Transmitted messages.

2.11.1 AUTODIN Incoming Messages

AUTODIN messages are formal record traffic passed to SIGMA from AUTODIN by the LDMX. or sent
out from SIGMA to LDMX (and thence to the addressees via AUTODIN). Figure 2-3 illustrates SIGMA's
presentation of an incoming AUTODIN message. AUTODIN message originators (From field) and
addressees (To and Info fields) are the commanders of military organizations (e.g., Commander. Naval
Electronics Systems Command [COMNAVELEX). Since SIGMA users are offices and people within such
an organization. SIGMA does.not use the address fields of an AUTODIN message for its internal deliiern.
but instead looks at two special internal distribution fields.

Section 7.9.1

2-14 SIGMA FINAL REPORT

Ref Id: SEQ 2100585
CONFIDENTIAL [Autodin - Transmitted] PSN:752348
R(ROUTINE)
221647Z MAY 79
From: CINCPAC HONOLULU HI
To: JCS WASH DC
Info: CINCPAC HONOLULU HI

NAVSTA SUBIC BA.Y RP
Orig: J3
Internal: MME J324
Text:
CONFIDENTIAL
SUBJ: FORTHCOMING EXERCISE
A. MY 04001Z JAN 79
THE UPCOMING EXERCISE NEEDS FURTHER DEFINITION. THE GOALS
SPECIFIED SO FAR DO NOT DETERMINE THE SCOPE OF THE OPERATION.
DECL
NNNN
---END OF MESSAGE---

Figure 2-3: Incoming AUTODIN message

The usual practice within the community of AUTODIN users is for each command to determine who
within the organization should be assigned responsibilit. for the message and who should receive copies.
When they generate outgoing messages, the attempt to guide the recipients* distribution by naming within
the body of the message those people who should get copies. There is no standard for this practice, and, since
few organizations have the same algorithm for assigning distribution, the results are inconsistent.

At CINCPAC it is the I.DMX that scans incoming AUTODIN messages and assigns internal distribution
(who will receive copies and who will be responsible for action on the message). This is accomplished by
means of a set of preprogrammed criteria. These assignments are appended to the incoming message as tw o
additional fields: Internal, for internal distribution, and Action, for responsibility. The action assignment.
howexer. is labeled Action only for incoming messages %here CINCPAC is in the To field. If CINCPAC
appears in the Info field, the action assignment field is called Cog (for Cognizance). Back copies of outgoing
messages from CINCPAC are assigned to the originating group within the headquarters, and the field is
labeled Orig.

The receiving LDMX assigns a unique Processing Serial \umber (PSN) to each incoming message. This
PSN is used internally by the LDMX, and occasionally an Action officer needs to know this number, so it is
printed on the message copies and is passed on to SIGMA as an additional field.

SIGMA puts its own sequence number on an incoming AUTODIN message. This is a name which
SIGMA uses to uniquely identify the message. This sequence number may be used to specify the message as
an argument to an instruction, such as

ftDISPLAY MESSAGE SEQ 271374

C o ntfi r -a tvi n c o p ie s re u r n e d fro m I I) M X

Section 2.11.1

2. FUNCTIONAL DESCRIPTION 2-15

although this is not the usual practice. Users would like to be able to refer to messages by the combination of
sender and DTG (this is the common way messages are identified in the military community). SIGMA uses
this scheme for internal memos, but because of design considerations (see section 4.11.1, page 4-65) it cannot
use it for AUTODIN incoming messages.

The text of the AUTODIN message is up to the author, although certain standards are mutually agreed
upon by the different branches of the service. The first line of the text contains the classification of the
message in clear text. Special handling instructions, Standard Subject Index Codes (SSIC), and/or passing
instructions 9 may follow the classification. The subject of the message should appear on its own line after the
classification line. References follow the subject: they are lettered in sequential order, and each starts on a
new line. Text paragraphs are numbered. Downgrading instructions1° appear on the final line of the body of
the message. The string "NNNN" denotes the end of the message.

Unfortunately, not every organization using AUTODIN follows these standards. Passing instructions come
in all forms. Not all messages have subjects. References seldom appear in the standard format. Special
markings to indicate AUTODIN Exercise messages seem to conflict with other standards. And, to top it all
off, each command seems free to adopt its own variation of format. It is, as a result, very difficult to reliably
extract special information from the body of an AUTODIN message (see section 3.2.5.3 for difficulties
encountered in subject extraction for building file entries). SIGMA therefore presents the text field just as it
comes in and does not highlight the subject or reference fields.

Incoming messages cannot be edited, but users ma add comments to them. The user indicates with a
!!HERE!! where he wants the comment to appear and executes the COMMENT instruction. This is a typed
instruction because it takes an access control argument. If the access control is specified as public, the
comment \ill appear to anyone who reads the message. If the user specifies another user's name with the
COMMENT instruction (persona,), only that user and the author of the comment will see it. If no access
argument is gxen. the comment is made pritate to its author.

When COMMENT is executed, the text of the message is opened up at the line indicated and an editable
comment field appears in inverted \ideo. The user no\ types in his annotation. When the message is
!!FIXISH!!ed, this comment becomes a part of the message database.

SIGMA also allows the user to "highlight" portions of text in a receised message. The user specifies with
!!HVRF!!s the beginning and end of the text to be highlighted and executes the HIGHLIGHT instruction.
The text is highlighted in inverted \ideo. HIGHLIGHT has the same kind of access control attributes as
COMMENT.

2.11.2 Preparation AUTODIN Messages

Figure 2-4 illustrates a Preparation AUTODIN message just after the user has created it. The top line of
the message presents the unique messagc identifier SIGMA assigns to that message (a combination of an
internal I)TG plus the drafter's name). Users can access this message directly by providing that identifier as
the argument to a DISPLAY instruction (this is not the usual way to acces a message).

9See \TPN 1301 for discussion of these Tecia markin

lNsee \I P3 f30J

Section 21I.I| I

2-16 SIGMA FINAL REPORT

Ref Id: J324 220018Z MAY 79 (J324's Version)
CONFIDENTIAL [Autodin - Preparation]
Briefing Memo:

Precedence: R(ROUTINE)
From: CINCPAC HONOLULU HI
To:
Info:
Exempt:

CON F I ENT I AL
Subj:
Ref :
Text:
Downgrade Instructions: DECL

Chop:
Release:
Originating office: J3
Distribution: J324
---END OF MESSAGE---

Figure 2-4: Preparation of AUTODIN message (before Chop)

The Briefing Memo is a public comment at the top of the Preparation message where the drafter can put
information to be used during coordination (see the description of coordination, section 2.13.2, page 2-21).
This field is stripped before the message goes to the LDMX.

The Precedence field is restricted to one of five possible values (Routine, Priority, Immediate. Flash,
Emergency). It is automatically filled to be Routine. but is left editable so the user can change it. He needs
only to change the first letter in the field, as this is what SIGMA uses when it parses the field. The user may
also add a second precedence after the first one if he wants Info addresses to have a lower precedence.

The From field, like Precedence. is automatically filled in to be CINCPAC. The field is left editable in case
the user wishes to send the message from some other organization. SIGMA does not parse this field but
simply passes it on to LDMX. The user fills in the address fields (To, Info, Exempt'I). putting one addressee
per line. The !!RETURN!! key will open space for another addressee. SIGMA does not have access to the
Plain Language Address Tables (PLAD) in LDMX, so it cannot verify these addressees.

The classification of a Preparation message is specified at the time the message is created, so the
classification is not editable. The user may add data at the end of the Classification line, however, This is
normally where the Standard Subject Indicator Code (SSIC). special handling, and passing instructions go. If
an unclassified message is to be handled as Encrypr For Transmission Only (EFTO). the user types "EFTO"
on this line immediately following the UNCLASS.

One major difference between the DD173 (military optical character reader message preparation form) and
the SIGMA Preparation message form is that SIGMA has a specific Subject field where the user is expected
to enter the message subject. Upon release, SIGMA will put that subject (along with the herald "SUBJ:")

lSec I Pl 1301 for usage of the Exempt field

Section 2.11.2

2. FUNCTIONAL DESCRIPTION 2-17

into the outgoing message body at the proper place (after the Classification line). This guarantees that the
back copy coming to SIGMA from LDMX will be correctly parsed. Similarly, SIGMA provides a distinct
Ref field so that references can be parsed. However, parsing references is one of the features that was never
implemented in SIGMA (see section 3.3.2.12, page 3-17).

'he Text field expands as necessary. The amount of text that may be put in is essentially unlimited. The
AUTODIN Preparation message form indents the Text field 16 spaces so the longest line that can be passed
to the LDMX is 63 characters, 6 characters under the limit of 69 that LDMX will accept.

SIGMA has the facility to reformat text, so the user does not need to worry about ragged lines left around
from editing. 'he terminal does part of this, since it automatically wraps on word boundaries and closes up
lines when text is deleted. However, if the user does a carriage return in the text, the terminal wiil treat that as
the beginning of a new fonnatted line and will honor that forever unless SIGMA changes it. The only way for
a user to remo% e the carriage return entered from the keyboard is to ask SIGMA to reformat the text, via the
!! UPDA TE! function key (see section 2.8, page 2-9).

Pre, araion messages ma be commented, but the comments appear at the end of the paragraph indicated
bt, the !1 HERE! rather than at the end of the line. Highlights are not allowed in Preparation messages.

'he I)owngrade Instruction field appears only in classified messages and is preloaded as "DECL." 12 It is
editable, so the user can specify a date or can change the instruction. When the message is released, the
herald saying Doingrade Instruction is remoa ed, and only the contents of the field are put into the message.

The last four lines of the AJFODIN Preparation message are fields to allow coordination and to define
distribution assignment for back copies. The Chop field contains the names of users the drafter wants to
"chop" (military jargon for approve) the message before release. The Release field specifies his choice for the
releaser of the message (section 2.13.2, page 2-21 describes the use of these fields in more detail). The
Originating office is the name of the Directorate from which the message will be released. SIGMA fills this in
with J3. since that is the directorate primaril ser'.ed by the MME, but the user may specifi another
directorate. The Distribution field specifies who should recei e back copies when this message is released.

2.1 1.3 Memos

Memos are used to transmit formal communications within CINCPAC headquarters. At the users' request.
the format of Memos in SIGMA was made to look as much like CINCPAC's standard paper memos as
possible. Like AUlODIN messages, memos come in two forms, Preparation and Transmitted.

Figure 2-5 shows a Preparation Memo. The Briefing Memo, Chop, and Release fields serve the same role
as they do - an AUTOI)IN Preparation message. The Date field is automatically filled in with the date the
memo is released. Note that memos do not have precedence. The From field is preloaded by SIGMA with
the drafter's log-in name, but it may be edited so that a user can prepare a memo from another person. The
To field and the Copy to fields are interpreted by SIGMA when the memo is released. If SIGMA does not
recognize a name in either of these fields to be a SIGMA user, it will put an asterisk after the name to indicate
it cannot deliver the memo to this user.

cc \ P3 [301 for usage of t)o nerade rnstrucuons

Section 2.11.2

2-18 SIGMA FINAL REPORT

Directorate/Memo/Memo Number: 821
Date: 21 MAY 79

SECRET

MEMORANDUM

From: J324
To: J3

Subj: Test of Coordination of memos

Ref:

Encl:

Text:
Memos, as well as Autodin messages, may be coordinated using SIGMA.

Signature block:J31
Lt. Abel Cain USN
J324

SECRET

Copy to:
DDO

Orig: J324
Typed by:JBW

Briefing Memo: I want your advice on who else should get this memo.
Chop: J31 J32 J322
Release:
Ref Id: J324 212344Z MAY 79 (J324's Version)
SECRET [Memorandum - Preparation]
---END OF MESSAGE---

Figure 2-5: Preparation Memo (Chopped)

The End. Orig, Typed by, and Signature block fields are fields of a standard CINCPAC memo.
uninterpreted by SIGMA. The Ref field appears at the bottom of a memo. Its role is a unique identifier for
the memo, just as for an AUTODIN Preparation message.

'he Transmitted Memo is generated by SIGMA from the Preparation Memo when it is released. The

fields of a Transmitted memo are not editable, but the user may add comments. Copies of a released memo

are deliered to the memo's addressees. In addition, back copies of the memo are supplied for the Releaser
and anyone he puts into his Chop or Release field. To satisfy CINCPAC's desire for administrative control,
SIGMA also delivers a back copy of all released memos to J3's Administration Office, J301.

Section 2.1 1.3

2. FUNCTIONAL DESCRIPTION 2-19

2.1 1.4 Notes

Notes are intended for local informal communication and, as illustrated in Figure 2-6, have a simple
format. Notes cannot be coordinated, but Preparation Notes are still edited and then released to become
Transmitted Notes. At one time the plan was to underscore the informality of Notes by not archiving them,
so that after some period of time they would just vanish. The users did not like this idea, so Notes are
archived like all other messages.

Ref Id: J324 220043Z MAY 79
CONFIDENTIAL [Note - Transmitted]
From: J324
To: J301
CC:
Subj: Meeting tomorrow
Ref:
Text:
Can we move the meeting on SIGMA tomorrow from morning to afternoon?
Releaser: J324
---END OF MESSAGE---

Figure 2-6: A SIGMA note

2.12 INCOMING MESSAGE OPERATIONS

The most fundamental operation in a message system is to DISPLAY a message. As mentioned earlier, this

opens the message so it may be edited or commented on. The user may prefer to VIEW the message, if he
does not expect to edit it. The user may specify the message to be displayed or viewed by referring to it from
the open file (see section 2.14, page 2-24) or by typing in the Ref of the message (either sequence number for
AUTODIN received, or Message Identifier for Memos, Notes, and Preparation AUTODIN).

If the user tries to access (DISPLAY or VIEW) an old message, he will often be told

**Acknowledge YES to request the
retrieval of <message>

Old messages (messages that have been on-line 30 days without being referenced) are moved to a secondary
tape storage archive. To get the message retrieved the user pushes !! YES!!, which sends a special request to
the operator on the computer room floor. After the operator has gotten the proper tape and loaded the
message back into the on-line database, a Reirieved entry appears in the user's Pending file. This operation
normally takes 5 to 10 minutes. If the user prefers not to bother with the message, he may respond !!NO!!

when he is asked to acknowledge the retrieval.

Section 2.11.4

2-20 SIGMA FINAL REPORT

Incoming messages may be forwarded to other users in two ways:

1. The FORWARD instruction sends the recipient the message for his information (For Info entry),
and appends the recipient's name to the Internal field.

2. The ACTION instruction sends the recipient the message for his action (For Action entry), and
appends the recipient's name to the Action field. In this case, the name of the user assigning
action is also included, resulting in an Action field looking something like the following:

Action: J3 J31(by J301) J312(by J31)

This allows others to follow the chain of action assignments.

The ACTION instruction also puts a File Copy entry (see 2.14.1) into the the action assigner's file bearing
the special name ACTIONLOG. This may be the user's own file, or one he has gotten from some other user.
The intent of this file is to allow an organization to track the action on the message from a central place. It is
especially designed to support crisis action teams. If the rest of the team shares access to this action log, they
can record their action status by writing comments on the entries.

A message may also be filed into any files that the user can access. The FILE instruction puts an entry into
the named file. There is no limit to the number of files into which the message can be put. It may also be
filed into the same file several times.

A limitation of FORWARD, ACTION, and FILE instructions is that they may be applied only to a single
message and to a single recipient at a time. See the discussion of the ROUTE instruction for a more powerful
operation (section 2.14.8, page 2-30).

2.13 OUTGOING MESSAGE OPERATIONS

2.13.1 Preparing the Draft

Messages may be created in several different ways, the most straightforward of which is to execute a
CREATE MESSAGE instruction, specifying the type of message (AUTODIN, Memo. Note) and its
classification.

If the message is a reply to an Incoming message, the user may prefer to use the REPLY instruction. This
creates a preparation message of the same type as the message it is answering (the original). In addition, it
automatically fills in the addressees for the message from the original. The To field is copied from the From
field in the original. The Info field (Copy to for Memos, CC for Notes) is filled in with the names of all the
Info, Copy to, or CC addressees from the original. The address fields are editable, so they may be easily
modified.

The !!REPLY ENTRY!! and !!REPLY NEXT!! function keys allow the user to reply to the Current, Next.
or an indicated (with a !!HERE!!) message from a file. Sometimes a REPLY should not carry the same
classification as the original message. In this case the user may type

Section 2.12

2. FUNCTIONAL DESCRIPTION 2-21

ttREPLY MESSAGE
<Classification>

into the instruction window, and specify the classification he wants for the REPLY.

Often a user sends a standard message out on a regular basis, with only minor variations. SIGMA eases the
job of producing these messages by allowing a user to COPY an already existing Preparation message. This
message may be filled in as much as desired. SIGMA creates a new message and copies into it all the fields
from the specified original. This can then be edited into final form.

A special form of outgoing request is Readdressal of an incoming AUTODIN message (i.e., sending it on to
a specified addressee, imbedded within a new AUTODIN message). LDMX already supports producing such
a Readdressal message, but it requires a special form of message from SIGMA to trigger it. This message
form looks like a standard AUTODIN header, but the body contains just the word "RADDR," followed by
the PSN of the message, and on the next line the DTG and sender of the readdressed mes-.age. In SIGMA
the user specifies the message to be readdressed and executes the READDRESS instruction. A standard
SIGMA preparation AUTODIN message is generated with the special Readdressal request format
automatically filled in. This data is editable, so the user may alter its contents. Except for its special form, a
Readdressal request message is treated like any other AUTODIN Preparation message in SIGMA.

2.13.2 Coordination

SIGMA is designed to assist in the process of reviewing AUTODIN messages and Memos preparatory to
their being released. This coordination process is essentially a message service within a message service. That
is, the drafter creates the initial version of the message and sends it to the people he wishes tu review it. Only
those people who are sent the message may read it. These reviewers (called coordinators) read and possibly
edit their versions of the draft, then indicate their overall disposition ("chop"). The drafter, after reading the
comments and changes from the first round of coordination, makes whatever alterations he feels are needed
and sends the modified draft out again to the same or to other reviewers. The process may take as many
iterations as are necessary. When the message is ready for release, it is sent to the person designated Releaser.
This section describes coordination in SIGMA for AUTODIN messages in more detail. The same process
applies to Memos. Notes cannot be coordinated.

As Figure 2-4 illustrates, there are a number of fields in a Preparation AUTODIN message that do not
appear in the message that eventually goes out to the addressees (the transmitted message). These same fields
appear in Preparation Memos as well. These fields are used in the Coordination phase and are stripped off at
the time of release.

The Briefing Memo is a text field where the drafter normally explains background information or special
instructions about the message. It appears before the draft message because it is information that generally
should be read prior to seeing the message.

The Chop field appears after the body of the draft message. This is where the drafter specifies the usern he
wishes to review the message. The Release field contains the name of the drafter's intended releaser. The
reviewers who are sent this draft are able to see the drafter's Chop and Release fields.

The field labeled Originating office is required by LDMX. It contains the office code of the Directorate
from which the message is emanating. Since MME is primarily serving J, 'IGMA fills in J3 automatical at
the time the message is created. It may be edited.

Section 2.13.1

2-22 SIGMA FINAL REPORT

The Distribution field specifies who will get back copies. At one time SIGMA automatically appended the
names of each coordinator, the releaser, and the drafter to this field on the theory that they were all interested
in seeing that the message got out. However, LDMX at CINCPAC does not normally distribute to office
codes below the level of the Directorate (e.g., J3), and the Communications Center personnel objected to
having to handle the paper copies produced for these additional offices. A compromise was struck, and
SIGMA was changed to append only the office code of the releaser to the Distribution field.

When the drafter has filled in the message and briefing memo completely, he enters into the Chop and
Release fields all the office codes he plans to coordinate with. He next must decide which people on the Chop
list he wants to review the message first. He indicates these by marking their names in the Chop list with
!!HERD.!s and presses the !!COORDINATEV! function key. SIGMA responds by highlighting the names
selected that it recognizes as SIGMA users and indicating any unrecognized user names (i.e., not SIGMA
users) with an asterisk. It is important that the message service be able to accept user names that it cannot
recognize and indicate this on the display so the drafter can send these people a hard copy. The drafter is
asked to acknowledge the coordination to the highlighted users by pushing the !! YES!! function key. !!NO!!
or !! CANCEL!! causes the operation to be aborted.

Coordinating a message to a user causes a For Chop entry to be put into his Pending file. This indicates to
the coordinator that his chop is requested. When the coordinator displays the message he is given his own
copy of the drafter's original. The coordinator may edit this version and/or annotate. He normally would
then chop the message, either Yes or No (!!CHOP YES!! or !!CHOP NO!! function keys). Chopping the
message puts a Chopped entry into the drafter's Pending file.

Figure 2-7 shows how the Preparation message looks to a coordinator. Note that it shows the drafter's
Chop and Release fields as nonenterable status fields and that new, empty Chop and Release fields are
provided for the coordinator. If the coordinator wishes, he may start his own coordination cycle by typing
into his Chop or Release fields the names of users, then coordinating the message to them in exactly the same
way the drafter did. Each subcoordinator will get an editable copy of his delegator's (higher-level coordinator)
version of the message (not the original draft). The sub-coordinator will see the status of both the coordinator
above him and the drafter, and will have Chop and Release fields of his own. When a subcoordinator chops
the message, a Chopped entry is delivered to the Pending file of the coordin':or that sent the message to him.

Each coordinator (including the drafter and subcoordinators) sees the status of his own coordination and
the coordination of anyone above him in the process. Possible states that apply for each name are Not Sent,
Not Read, Read, Chopped Yes, and Chopped No. In addition, if a coordinator has made any changes to the
message at all (an edit to a field of the message, a comment, or a name put in the Chop or Release field) the
status shows the letters ED (for edited). If the drafter has edited the message since a user has chopped, that
user's status shows as OLD.

Whenever a user DISPLAYs a Preparation message (regardless of what file entry he uses to access it). he
always sees his own version. Any comments he makes appear only on his version. In order to see the changes
or comments of other users who have been coordinated on the message, he must execute the typed instruction
VIEW VERSION, specifying the name of the user whose version he wishes to see. This will put into his View
window that user's version, where he can compare it with his own and see that user's comments.

A typical scenario in the coordination of messages would have the drafter create the message, fill in the
Chop and Release fields with all the office codes he plans to coordinate with, and send it to a subset of these
for the first round. These coordinators would review the message, polsibl) edit it, and either chop it or
coordinate it to someone of their own choosing (someone whose opinion they want before they make a

Section 2.13.2

2. FUNCTIONAL DESCRIPTION 2-23

Ref Id: J324 220018Z MAY 79 (301's Version)
CONFIDENTIAL [Autodin - Preparation]
Briefing Memo: This field will not be included

in the final released message.
Precedence: R(ROUTINE)

From: CINCPAC HONOLULU HI
To: JCS WASH DC
Info: CINCPAC HONOLULU HI

NAVSTA SUBIC BAY RP
Exempt:

CONFIDE NT IAL
Subj: FORTHCOMING EXERCISE
Ref: A. MY 04001Z JAN 79
Text: THE UPCOMING EXERCISE NEEDS FURTHER DEFINITION.

THE GOALS SPECIFIED SO FAR DO NOT DETERMINE THE
SCOPE OF THE OPERATION.

Downgrade Instructions: DECL
Chop:
Release:
Originating office: J3
Distribution: J324
3324's Chop: J301:chopYES by SMITH, J38:not_sent, J31:not_read,

DDO:not sent
0324's Release: J3:notsent
---END OF MESSAGE---

Figure 2-7: Coordinator's view of Preparation AUTODIN message (Chopped)

disposition of the message). The drafter monitors the progress by the Chopped entries he receives and by
looking at the chop status area of the message. If the status shows a particular user has edited his version of
the message, the drafter would look at that version. When the drafter has sufficient response to his draft, he
edits his version (the initial draft) incorporating whatever changes he desires from the versions or comments
of the coordinators. He then starts the second round of coordination by indicating with !!HERE.!s the users
he wishes to see this new rendition and pressing !!COORDINATE!!. Note that he can !!COORDINATE.! to
anyone on his Chop list, including users who received the message in the first round. This causes this new
draft version to be substituted for that coordinator's version, so that when he DISPLAYs the message he will
see the new draft and not his old version. At this point the coordinator can still access his old version by
executing a VIEW VERSION and indicating his own Log On name as the user. The old version appears in
the View window and is not editable. This old version is lost whenever he does a !!CHOP YES.!,
!!CHOP NO!!, or !!FINISH!! of the new draft (to preserve the old version he must ABORT the new draft
message after he has read it).

At any time throughout the coordination process, the drafter or a coordinator may coordinate the message
to the user indicated in his Release field. This puts a For._Release entry in that user's Pending file. This user
has all of the options that any other coordinator has, i.e., he may edit or comment on his version and then
chop it (Yes or No) back to whoever sent it to him, coordinate it on to someone else (either for chop or for
release), or !!RELEASe! it. A user does not have to be in the release field in order to release it. The only
limitation on releasing is that the user be authorized to do so. The SSO maintains the database which
specifies who may release AUTODIN messages. Memos, and Notes.

Section 2.13.2

2-24 SIGMA FINAL RORT

2.13.3 Release

When a user does release the message, it is his version that is copied into the Transmitted message. All
comments and Preparation-only fields are stripped off. If it is an AUTODIN message, the contents are
reformatted for the LDMX and sent. If it is a Memo or Note, a new SIGMA Transmitted message is
generated and delivered to those SIGMA users whose names appear in the To and Copy to (or CC) fields.

AUTODIN back copies are sent to the users whose names appear in the Distribution field of the released
version of the message, and to the Releaser. Back Copy entries of Memos are put into the Pending files of
the Releaser, and all of the coordinators. At CINCPAC the J3 Administrative office (J301) controls the
issuance of memos, so SIGMA sends a back copy of all Memos to this office as well.

Upon release the Preparation message status is updated to show that it has been released, and further
coordination on it is frozen. This Preparation message remains in the database in c. . Ae wishes to look
at its coordination history. All of the coordinators' versions, comments, and stat. remain intact. The
released Preparation message is still accessible only by coordinators, the drafter, and the releaser of the
message. BackCopy entries point to the transmitted message, but they also show the message identifier of
the Preparation message that produced it (see Figure 2-8). This linkage is necessary to allow users to locate
the Preparation message containing the coordination history for the outgoing message.

2.14 FILES

Files are the basic message management tool in SIGMA. Although the user may think of files as
containing messages. in fact they contain an index to messages in the form of entries. A file entry is an
abstract of data from a message, plus a pointer to that message in the database. Users access messages through
file entries. A user may create and delete his own files, and he may access other users' files. A file is named
and given a security level at the time it is created. A file name may be any arbitrary single-word alphabetic or
numeric string, except that it must start with an alphabetic. The underline character is treated as an
alphabetic, so multiword strings connected with underlines may be used for a file name, e.g.,

MerchantShipSightings_January_79

The classification of a file determines the maximum security level of its contents. SIGMA will not allow a
user to file a Secret message in an Unclassified file, but an Unclassified message may be filed in a Secret file.
Furthermore, a user who logs on as Unclassified will not be able to open a Secret file, even though it may
contain nothing but unclassified messages.

2.14.1 File Formats

Files are made up of entries. Each entry is an abstract of a message. Figure 2-8 illustrates the format of a
SIGMA file presented to a user. The first piece of information in an entry is its entry number, which serves as
a convenient handle for the user to specify arguments to instructions. Entry numbers are sequential and
remain fixed while a file is open: entries will be renumbered the next time the file is opened. File entry
numbers are shown in inverted video to make them stand out.

Files are not editable. Entries are appended to files through user instructions such as FILE. ACTION, or
FOR\\ARD. Entries are removed by executing the DELETE ENTRY instruction. A file entry may be
annotated via the COMMENT instruction in the same way a message may be annotated (see section 2.11.1.

Section 2.13.3

2. FUNCTIONAL DESCRIPTION 2-25

File: PENDING Security: SSSS Length: 15
1 0 UU Auto 042222Z DEC 77 From: JCS WASHINGTON DC

Incoming Cog: J3
Subject: AIRCRAFT HIJACKING

2 R UU Auto 010024Z DEC 77 From: CINCPAC REP PHILIPPINES SUBIC BAY RP
Incoming Act: J03
Subject: INFORMATION ON GAO ACTIVITY

3 SS Memo J322 020011Z DEC 77 From: J322
Incoming
Subject: Check out a message for me.

4 UU Note AMES 020333Z MAR 79 From: AMES
Incoming Subject: Action on Notes

5 R UU Auto J322 280038Z JAN 79

for Chop By: J324
Subject: Exercise Procedures

6 R UU Auto J322 280040Z JAN 79

for Releas By: J324
Subject: Elegant Eagle

7 R SS Auto 082359Z OCT 76 From: NISC WASHINGTON DC
for Info By: J322 Act: J2 J3(by J322) J324(by J322)
Subject: NOFORN/WNINTEL //N03822// SECTION 01 OF 02

8 R SS Auto J31 082358Z OCT 78
File copy By: J324
Subject: RADDR FBIS BANGKOK//120852Z DEC 77

9 SS Memo J324 070027Z MAR 79 CID: J324 070020Z MAR 79
Backcopy
Subject: Handling of last week's exercise

10 R UU Auto 040130Z DEC 77 From: FBIS HONG KONG
for Action Act: J2 J324(by J301)
Subject: H BBC RUMJ

11 R UU Auto 041647Z DEC 77 From: FBIS OKINAWA JA
for Action Act: J2 J301(by J301)
Subject: BBC

12 P UU Auto 040555Z DEC 77 From: FBIS BANGKOK
Retrieved Act: J2
Subject: BBC RUMT

13 SS AAA 230648Z MAY 79
ERROR XMIT-FAIL: Your message had no TO list.

14 R SS Auto J324 232332Z MAY 79
Chop(Y)-Ed By: J301
Subject: Exercise Procedures

15 CC Memo J324 232338Z MAY 79
Chop(N) By: J301
Subject: Review Meeting

---END OF FILE---

Figure 2-8: A Pending file

Section 2.14.1

2-26 SIGMA FINAL REPORT

page 2-15). File entries may also be highlighted. The subject line of a highlighted entry is shown in inverted
video.

Since files cannot be edited, SIGMA restricts the cursor from entering the text of the file. This means the
cursor will jump from one entry number to the next with a single push of the t key. All instructions that
accept a file entry number as an argument will accept a !!HERD! marker on the entry number as well.

There are a variety of types of file entries, depending on what action caused the entry to be made, but their
format is basically the same. Next to the entry number is a single-letter precedence indicator (AUTOD[N
only, Memo and Notes show a blank). Next on the first line is a two-letter classification designator.
Following that is the message type (AUTO, MEMO, NOTE), then the DTG and From fields (which for all
but incoming AUTODIN is also the Ref ID of the message). The second line of the entry is indented for
clarity. The first information on this line is the type of entry. Table 2-1 describes the meaning of each entry
type. The rest of line 2 and line 3 are dependent on the entry and message type. The subject line appears on
line 2 for Notes but gets line 3 to itself for AUTODIN messages and Memos. Most Transmitted Memos and
AUTODIN entries show the Action field of the message. Preparation messages usually show who sent it to
the user (e.g., "By: 131"). Error entries indicate the type of error that occurred.

Table 2-1: Types of file entries

Incoming: a message that has been sent to the user.
Error: an error condition has been detected. A brief description

of the error is provided in the entry.
ForAction: a message sent to this user for his action with ACTION.
ForInfo: a message sent to this user for his info with FORWARD.
For_Chop: a-message sent to this user for his chop with COORDINATE.
ForReleas: a message sent to this user for his release with COORDINATE.
Chopped: a message returned as either Chopped(Y) or Chopped(N).
File_Copy: an entry for a message that has been placed in the file.
Back_Copy: a comeback copy of a released message.
Retrieved: a message retrieved from Archive.

The last entry that the user has referenced is called the Current enm. It is distinguished by having its
number shown as white-on-black rather than inverse video. A number of function keys refer to the Current
entry or the Next entry (the one immediately following the Current entry). The user may step sequentially
through a file of messages by pushing !!DISPLA Y NEXT'!.

Entries normally appear in files in the order they are received, most recent lasL However, SIGMA does
provide a SORT instruction which will sort the named file into DTG order, most recent DTG last. This was
requested by users because they are used to seeing messages filed that way in the paper system. Since
SIGMA pro% ides sophisticated retrieval features (see section 2.14.6. page 2-29), having messages in DTG
order does not particularly aid retrieval. However, it has proven to be helpful to users who deal with a paper
copy of the file contents. The Readboard is also sorted by Date Time Group, because "that is the way it is
done".

For each file in a user's file directory SIGMA keeps a high mater mark. the highest numbered entry which
he has displayed. When he displays the file, this high water mark will be at his Current entry. SIGMA also

Section 2.14.1

2. FUNCTIONAL DESCRIPTION 2-27

remembers which is the last entry when the user !!FINISH!!es a file. When he next opens the file he can find
out which entries have arrived since the last time he saw the file through the selector Recent (see
section 2.14.6, page 2-29).

Two function keys are provided to facilitate moving around in a file. !!GO TO NEXT! moves the current
entry to the next entry in the subset displayed. Pushing !!CURRENT ENTR Y!! causes SIGMA to scroll the
file to put the Current entry on screen. If an entry is marked with a !!HERD! when !!CURRENT ENTRY!!
is pressed, that entry will be made the Current entry.

2.14.2 Pending File

Each user has a special file called Pending, which is established when he is given a SIGMA account and
which he cannot delete. The Pending file is the delivery point for messages sent to that user. It is the analog
of his mailbox or in-basket. From the point of view of its manipulation, the Pending file is like any other file.
The user may file messages into it, delete messages from it, etc.

There is a Pending file for each office code and user name. When a user logs on as an office, his Pending
file is the one for his office. His personal Pending file is also available to him under the special name
"MyPending". Thus if Smith logs on as J34. he accesses J34's Pending file as "Pending" and Smith's Pending
as "MyPending".

Although a user has control over files he creates, they are maintained by a central process in SIGMA (see
section 4.12.5. page 4-79). They may be accessed and updated by other users even though the owner may not
be logged on at the time. When a user DISPLAYs a file, he gets a copy of the master file. Any changes he
makes during his session (delete entries, comments, etc.) are made immediately to his working copy. but will
not appear in the master copy until the user does a !!FINISH!! (or DISPLAYs a different file, which does a
!!FINISH!! for him). For most files the user will not see new entries that are made while he has it open. The
one exception is the Pending file. If new messages are sent to a user while he has his Pending file open, they
will be deli'ered to his open working copy as well as to the master copy. This feature applies only to messages
sent to the user, not messages FILEd into his Pending file.

2.14.3 Date Files

Incoming AUTODIN message delivery is determined by the Action and Internal Distribution assignments
made by LDMX. In addition, SIGMA delivers a copy (really another file entry) to a special file called the
Date File based on the DTG of the message. There is a Date File for each day that SIGMA has accepted
traffic from LDMX.

If SIGMA receives a message with a DTG that does not have a corresponding Date File, a Date File is
created and the message is filed into it. Thus SIGMA keeps building new Date Files. These files remain on
the system and can be accessed at any time, even though the messages may have long since been archived.
The Date Files serve both as a log of the traffic SIGMA has received from LDMX and as the primary
database for message retrieval. At the completion of MME there were Date Files on-line for all traffic
received by SIGMA during the conduct of the experiment (nearly two years).

MME users found it valuable to search the most current Date File for traffic of interest rather than wait for
messages to be routed to them by J301. This way the user can get his messages sooner and, more important
he is able to pick up messages that J301 misrouted which otherwise would escape his attention (see
section 2.14.6. page 2-29 for a description of the aids SIGMA provides for searching through a file).

Section 2.14.1

""- " ' .. ,,, -

2-28 SIGMA FINAL REPORT

An AU [ODIN readdressed message consists of a new message header with its own From and DTG
wrapped around the original AUTODIN message. Similarly, a readdiessal of a readdressal will have three
Froms and DTGs. To insure that it can be found by any pertinent reference, SIGMA files incoming
readdressed messages into Date Files by all incorporated DTGs.

2.14.4 Read boards

Readboards are collections of messages deemed to be of interest to a particular person or group. Typically
a readboad is built for J3, and another for his Executive Officer, J30. Other readboards may be built to be
passed around among a number of Action offices. This is a major way message information is disseminated at
CINCPAC. Of particular interest are the Readboards given to 3. At CINCPAC this Readboard is built by
the watch team in the command center and screened by the Executive Officer. In the paper system J3 gets his
own Readboard and other officers can only surmise what is on it. However, the shared nature of files in
SIGMA allows other officers to access J3's Readboard and therefore know what messages he will be aware of.
This is deemed to be a valuable asset among SIGMA users at CINCPAC.

2.14.5 Deleting Entries

The DELETE ENTRY instruction marks a file entry in the open file for deletion and removes it from the
user's screen. A user may delete entries only from files he has created. He is also limited to deleting entries
that are in the set of entries being displayed (see 2.14.6). Function keys are provided for deleting the Current
entry or the Next entry. A user may delete more than one entry by typing the DELETE ENTRY instruction
with the entry numbers of the messages to be removed. A dash between entry numbers refers to all entries
inclusive between those entries. If no entry number is given in front of the dash. SIGMA defaults that value
to the first entry of the displayed set. If no entry number is given after the dash, SIGMA defaults to the last
entry of the displayed set. Thus the typed instruction

ttDELETE ENTRY -

will delete all the entries currently displayed.

As previously stated. DELETE ENTRY only marks the entry for deletion. The entries are not actually
removed until the file is !!FINISH!!ed. Prior to the !!FINISH!! the user may RESTORE any deleted entry,
which removes the deleted mark and restores the entry on screen. The user may also ABORT the file, which
will throw away all changes he has made to the file (deletes, comments, and highlights) and leave the file in
the state it was in before he opened it.

As an aid to users who prepare Readboards, an EMPTY instruction was added to SIGMA. This deletes all
entries in the named file without opening the file. Although a convenient way to expunge a file of its entries,
it is dangerous because such entries cannot be restored.

It has been mentioned that a user may FILE the message he is looking at into a named file, which puts a
File Copy entry into the file. He may also FILE an entry from an open file to a named file, which puts a copy
of the entryv (without changing its type) into the file. The MOVE instruction is the same as a FILE and
DELETE on the entry.

Section 2.14.3

kL .. . ,

2. FUNCTIONAL L)ESCRIlFION 2-29

2.14.6 Selection from Files

Perhaps the most useful feature of the SIGMA s~tem is its facility for assisting the user in finding
messages in the database. SIGMA allows the user to search a file for all messages meeting a specified
criterion. These selection criteria, which can be saved as objects called selectors,13 are combinations of
attributes of the entries in the file. Table 2-2 lists the attributes that can be used.

The RESTRICr instruction takes a selector as an argument and applies it to the open file. It then displays
on the user's screen the subset of entries which meet the criteria. A subsequent RESTRICT applies to these
entries, further restricting them to those that meet both the first and second selection. This is equivalent to
the logical AND of the two selectors which, of course, the user could have specified the first time. However,
very often it is not obvious that the second selector should be applied until the results of the first RESTRICT
are seen.

The user can perform the equivalent of ORing two selectors by executing a RESTRICT with the first
selector, followed by an AUGMENT instruction with the second. The user can apply any reasonable number
of RESTRICTs and AUGMENTs to a file.

Predicting the results of applying complex selectors is often difficult, so SIGMA allows the user to take it a
step at a time. If the user makes a wrong choice by applying a particular selector, he may use the
!!BACKUP ONE.! function key to step back in the chain of selections, returning him to the set he had
previously. This may be applied sequentially to get back to any presious set of entries or until he backs up all
the way to the original file. To return to the original file in one step, BACKUP ALL is executed.

Often a user wants to preserve a complex selection so that it can be used over again, without having to t)pe
in all of its components. When he has incrementally built up such a selector he executes a
CREATE SELECTOR instruction, specifying a name he wishes to remember it by. Since this selector may
contain strings of text (e.g., contents of subject field) which may be classified, the selector is defined to be at
the security level of the open file. To apply this selector at a later time he merely types:

ttRESTRICT WITH <selector name>

If the user prefers, he may define the contents of a selector when he creates it. He does not need to e'en
have a file open to create a selector in this manner. However, in this case, he must specify the security level of
the selector. Thus,

ttCREATE SELECTOR URGENTJCS UU FROM "JCS" AND NOT
ROUTINE

builds an unclassified selector named URGENT_ JCS which will select all high-precedence messages from
JCS. Another user may do a GET on URGENTJCS, assuming he has access (see 4.3.6), and give it the same
or a new name for his own use. This puts a copy of the selector into his database. It will not change if the
owner alters the original. SIGMA maintains a directory of selectors for each user, which can be VIEWed.

Typical usage of selection from files occurs when a message references an earlier message its DTG. To

13 Selection criteria are arbitrar\ Boolean combinations of attribute %alues: selectors are named SIGMA objects which can store these

selecton crtena Both of thew. forms can be used in the instructbons which perform selection

Section 2.14.6

2-30 SIGMA FINAL REPORT

see that message in SIGMA, the user DISPLAYs the corresponding Date File, then RESTRICTs with the
DTG of the message. At other times a user will have only a rough idea of the date a desired message came in.

but he will know some other attributes of the message, such as whom it was from, its subject, etc. In this case
the user works through a series of Date Files, first DISPLAYing the file, then RESTRICTing with the

appropriate selector, until he finds the message. This is somewhat tedious, and the users have asked for a
single instruction that allows them to search multiple files with the same selector. Even with this hmitation.

the fact that SIGMA has Date Files and message archives that go back nearly a year and a half means that
users ha~e a way of retrieving old messages that they have never had before. The key consideration here is
that the user does not have to recognize at the time the message comes in that he may need the message later.

2.14.7 Keywords

One of the attributes on which a user can select (see Table 2-2) is keywords. Keywords must first be
assigned b the owner of the file before they can be used in a selector. This is done with the KEYWORD
instruction, which takes as arguments an entry and the keyword to be assigned. The same entry may have
more than one keyword, and a keyword may be assigned to more than one entry. The instruction

VIEW KEYWORDS will show all the keywords that are assigned to the open file.

It should be noted that keywords apply to entries, not to messages. Thus one cannot keyword a message
and have that keyword apply to whatever files the message appears in. Also keywords do not move with an
entr' when that entry is MO\'Ed or FILEd into another file. This makes keywords somewhat aAkward to use
and may explain why they were used less than was expected.

2.14.8 Route

At CINCPAC the LDMX distributes message to the Directorate level. All messages for the J3 staff are
delivered to 3's Administration office, J301. J301 must go through approximately 700 messages a day.
assigning action, making distribution copic , and filing copies into appropriate subject files. This process is
very time-consuming (approximatel 4 hours in the early morning, plus additional time distributed over the
working day) in the paper system. The more common messages that arrive every day' (e.g., weather messages,
FBIS) are easily recognized, but assignments must be made on them one at a time. Other messages require
looking in an index file (primarily based on subject keyAordsl to ascertain the distribution.

When SIGMA was first delivered to CINCPAC. it "as not much of an improvement over the manual
method of distributing messages. Although classes of messages could be easily extracted from the file v ith
RESTRICTs, the ACTION. FORW.ARD, and FILE operations each still had to be done on a message-b.-
message basis. Only DELETE ENTRY could be applied to the whole set of messages. J301 asked for a single
operation that performed the .%CTION. FORWARD, FILE, and DELETE commands and could be applied
to a list of entries. The resultant ROUTE instruction also tried to capture the sens of the keyword index file.
as explained below.

The ROUTE instruction takes as arguments an entry list and the name of an existing text-object which we

call a Route List. As described in section 2.15, text-objects can hold any arbitrarily formatted text. To be a
Route List. the text-object has to conform to a very rigid format as shown in Figure 2-9.

The names used for Route lists can be the keywords from the manual index file or, as was done at
CINCPAC. a separate text-object can be used to cross-index between keywords and Route Lists. Each Route
List is a separate distribution pattern. J301's normal style of distribution with SIGMA is to RESTRICT based

Section 2,14.6

2. FUNCTIONAL DESCRIPTION 2-31

Table 2-2: Selector attributes

From <STRING> (e.g. From "J301" or From "FLEWEACEN")
Action <STRING> (e.g.. Action "J3")
Subject (STRING> (e.g. Subject "Gale Warning")
Keyword <STRING> (e.g. Keyword "Cambodia")
By <USER ID> (e.g., By J301)
(SECURITY> (e.g. Secret or SSSS)
(PRECEDENCE> (e.g. Routine(R) , Priority(P). Immediate(O),

Flash(Z))
(MESSAGE TYPE> (AUTODIN, Memo, Note)
(MESSAGE PHASE> (Preparation or Transmitted)
(RESPONSIBILITY> (Orig, Action, or Cog)
DTG <DTG> (e.g., DTG 021745Z OCT 77)
Before <DTG> (Before and including this DTG. e.g. Before

021745Z OCT 77)
After <DTG> (After and including this DTG, e.g., After

021745Z OCT 77)
Around <DTG> (Within 24 hours of the DTG, e.g., Around

021745Z OCT 77)
<Entry Number> (e.g., 17)
Before (Entry Number> (Before and including this entry, e.g., Before 17)
After <Entry Number> (After and including this entry, e.g.. After 17)
Around (Entry Number> (5 entries above and 5 below, e.g., Around 17)
Incoming: a message that has been sent to the user.
Error: an error condition has been detected. A brief

description of the error is provided in the entry.
ForAction: a message sent to this user for his action with

ACTION.
ForInfo: a message sent to this user for his info with

FORWARD.

ForChop: a message sent to this user for his chop with
COORDINATE.

ForReleas: a message sent to this user for his release with
RELEASE.

Chopped: a message returned as either Chopped(Y) or
Chopped(N).

File_Copy: an entry for a message that has been placed in
the file.

Back_Copy: a comeback copy of a released message.
Retrieved: a message retrieved from Archive.
Deleted: entries deleted from the open file during that

work session. All deleted entries are destroyed
after the file is FINISHED.

Recent: newly arrived entries in a file since it was
last opened.

Examined: all entries in the file which the user has
displayed.

Section 2.14.8

2-32 SIGMA FINAL REPORT

* Any text between asterisks is ignored.
* This is useful for commenting on the Route list

ACTION: <user name>.

FORWARD: (list of user names separated by commas>.

FILE: (list of files separated by commas>.

DELETE: <YES or NO>.

Figure 2-9: Format of a Route List

on certain criteria, ROUTE all the entries selected with the appropriate Route List (which deletes the entries),
!!BACKUP ONE!, and repeat for the next class of messages. After all the easily classed messages are
handled in this way, J301 reads the remaining messages one at a time and ROUTEs each using the most
appropriate Route List from the index. The total process takes about one-fourth the time of the manual
system.

2.14.9 Other Operations on Files

Most of the operations that apply to messages (e.g., COPY, FILE, FORWARD, ACTION, PRINT,
READDRESS, REPLY, DISPLAY) apply as well as to file entries. The coordination functions (CREATE,
!!COORDINATE!!, !!CHOP YES!!. !!CHOP NO!!, !!RELEASE!!) are the principal exceptions.

For large files it is often a very slow process to scroll through the file to move a particular entry into the
Display window. If the entry number is known, the user may execute the instruction

ttFIND <entry number>

and SIGMA will automaticalls make the specified entur CURRENT and put it on screen. FIND BOTTOM
and FIND TOP move the contents of the screen to put the first entry or last entry on screen. These apply for
the selected subset or the entire file, whichever is the active 'iew of the file.

If the user does not know the entry number he seeks, but does know some text string in that entry that
makes it distinguishable. he may execute a FIND STRING. SIGMA will scroll the file to the first occurrence
of that string. To apply it again to find the next occurrence, the user must move the cursor down one entry.,
hit !!HERE!!. and then type in the instruction again. This difficult sequence limits the utility of this
instruction.

2.15 TEXT-OBJECTS

Text-objects are arbitrar\ pieces of text that SIGMA allo~s to be created, stored, and used wherever text is
appropriate. An addressee list might be a text-ohject. Route lists (see section 2.14.8) are text-objects. When
sevcral users prepare indi\ idual parts of a message bod (such as a SITREP), these parts can be generated as
text-objects and then easil. issembled into the message. In fact, text-objects can be used to prepare any
written material, regardless of ' hether it is used in message processing. The are used for preparing briefings,
reports, letters, or whate'.er.

Section 2.14.8

2. FUNCTIONAL DESCRIPTION 2-33

When a text-object is created, its name and classification must be specified. There are two ways to create a
text-object:

1. It can be done with the typed CREATE TEXT instruction. This causes an empty text-object to
appear in the Display window, ready for the user to enter data.

2. The user can also generate a text-object from already displayed material by bracketing the text
with !!HERE!!s and executing a typed COPY TEXT instruction with the name to be assigned to
the object. In this case the new text-object is created and stored without DISPLAYing it, and is
assigned the same security level as its source.

If the user wishes to edit a text-object he simply DISPLAYs it, makes the changes he wishes, and
!!FINISH!!es it.

Text-objects may be PUT into message fields, comments, or other text-objects. They, of course, can be
PRINTed, DELETEd, and VIEWed. Standard editing operations such as FIND STRING, !!UPDATE!
(reformat), PICKUP, MOVE, and COPY apply as well. One can GET another user's text-object, which gives
him his own copy. It will not reflect future changes made to the original text. The Text-Objeci Directory
shows the names of all text-objects belonging to a user.

There are two instructions unique to text-objects. !!SAVE! stores the currently open and displayed text-
object into the disk file without closing the object. This operation is provided purely for protecting the user
from system crashes. If the system (TENEX or SIGMA) halts for some condition, the user generally loses
whatever editing he has done on the open objects. If he was preparing a ten page message, this could be very
frustrating. To minimize the potential of losing work. the user may !!FINISHI! the message every so often,
which will update the master copy of the message. But in this case the user will not be able to return to
editing until he can display the message again, which cannot occur until the master copy update is complete.
This can take several minutes on a heavily loaded system. If. on the other hand, he were to write the message
body as a text-object, he could execute !!SA VD! whenever he wanted to store his work and continue.

The other special operation unique to text-objects is reclassification. SIGMA does not allow the
reclassification of messages, files, or selectors because these are complex structures in SIGMA's internal
representation. and in the SIGMA security model the "trusted job" is not capable of handling them (s.
section 2.10, page 2-13). Text-objects are just text strings and are simple enough that the "trusted job" can
process them. The trusted job is involved since it is the only process in the SIGMA security model which can
pass data from a higher security level to a lower one.

When a user wants to RECLASSIFY a text-object he specifies the new security level. SIGMA presents
each page (screenful) to the user and asks for a !! YES!! or !!NO!! confirmation. This is intended to ensure
that the text being reclassified is exactly the text the user wants reclassified. This requirement comes from the
basic premise of the SIGMA security model that the bulk of SIGMA code cannot be trusted (only the
"trusted job." the operating system, the terminal, and the user can be believed).

2.16 ALERTS

rhe Alert facility calls a user's attention to important new messages as they arrive. He does this by defining
a standard selector with the special reserved name ALERT_ SELECTOR. This selector defines the criteria
that an incoming entry must meet to be considered an Alert. As entries arrive for a logged-on user's Pending

Section 2.15

2-34 SIGMA FINAL REPORT

file. they are automatically compared against the ALERT_ SELECTOR. If one meets the ALERT_
SELECTOR criteria, it is considered an Alert and it is appended to a special object called the Alert Lis.

The number of Alerts that have arrived since log on is shown on the Flash line next to the notification of
ne% Pending file entries. Thus the flash line might say "Alert:l Pend:7." Each time an Alert arrives, the bell
is sounded.

To see his Alerts a user presses the function key !!ALERT ON/OFFI!. This puts his Alert List into his
View window. An Alert List looks like a SIGMA file, except that there are two blank inverted video spaces
where the entry number normally appears. Each Alert that has arrived shows as an entry in the Alert List.
Thus the Alert list looks like the contents of the Pending file that has had the following applied to it:

ftRESTRICT WITH ALERTSELECTOR AND RECENT

The user may do a !!HERE!! on an Alert List entry and a !!DISPLAY ENTRY!!, which will cause the
referenced message to be displayed. [he user may also execute the VIEW. COPY, REPLY, PRINT.
ACTION, FORWARD, or FIND STRING instructions for the indicated entry. The user may not execute any
instructions that require the actual Pending file or the concept of a current entry such as
!!DElETE ENTRY!!. !!DISPLAY NEXT!, ROUTE, COMMENT, or KEYWORD. AUGMENT.
RESTRICT, BACKUP ALL, and FIND ENIRY also do not have meaning for an Alert List.

If the Alert List is being Viewed when a new Alert arrives, the Alert List is updated dynamically and the
user sees the new entry added at the bottom. SIGMA does not allow the Alert List to get larger than 10
entries. Any additional Alert arriving after that will push out the first entry in the Alert List. The user can
clear his Alert List at any time by executing the RESET ALERTS instruction. This also resets the Alert count
to 0. Since each Alert that arrives also shows as an entry in the user's Pending file. the Alerts that are removed
are not really lost.

lo remove the Alert list from the screen, the user may push !!ALERT ON/OF!, which returns the
screen to its previous state (including the View windo\). or !!CLEAR V'illF.!, which will clear the View
winow and assign the space to the displayed object.

2.17 MISCELLANEOUS OPERATIONS

['here are a handful of other operations available to the user Ahich round out the SIGMA system. Most of
these can be executed at almost any time during a session.

2.17.1 Log Off

Io end a session on SIGMA the user executes the LOG OFF instruction. This instruction always requires
confirmation. It !!FINISH!!es all open objects, making whate~cr changes are required to update the
datahase. When LOG OFF is complete. the terminal is cleared. Ica% ing the top line to say

TERMINAL FREE - previous user has logged off

Section 2.16

2. FUNCTIONAL DESCRIION 2-35

2.17.2 Identify

In the Command Center and certain other locations, office codes stay logged on 24 hours a day, but
individual users change. The II)ENTIFY instruction lets a new user assume the role of the logged on office.
This is done so that accountability for actions can be traced to the proper person.

2.17.3 Printing

SIGMA allows the user to print on paper any object or directory that he can access, by the typed PRINT
instruction with the name of the object to be printed. In addition, function keys are provided to print
whatever object is in the Display or View window. Each printed object is preceded by a header page which
identifies whose printout it is, what its classification is, and a security disclaimer.

For MME seven Versatec printers are distributed around the user offices. Each terminal has an associated
primary printer and a secondary printer. PRINT instructions executed at a terminal cause hardcopy to appear
at the primary printer, unless that printer is not functioning (power off, out of paper, out of toner, etc.), in
which case it prints at the secondary printer. If the secondary printer is also not operational, the Computer
Center line printer is the ultimate fallback unit. Initially security procedures dictated that if a printer was
down and SIGMA switched its output to the secondary printer, the change back to the primary unit required
manual intervention (presumably by the System Security Officer). This procedure was found to be entirely
too awkward to be practical, so the algorithm was changed to automatically try the primary printer first for
each object to be printed. Unfortunately, SIGMA has no convenient way to inform the user when his
printout is switched to the backup printer (see section 4.12.9 on page 4-87).

2.17.4 System News

As mentioned in section 2.4, page 2-3, a user is presented the System News in his View window when he
first logs on. If a user wishes to see that news again later in his session he may execute the typed
SYSTEM NEWS instruction.

2.17.5 System Status

This typed instruction presents in the user's View window a list of the other users who are currently logged
on and at what security level they are operating.

2.17.6 View Display

The !! VIEW DISPLA Y!! function key puts into the View window whatever object is currently in the
Display window.

Section 2.17.2

VIA".

APPENDIX

This article originally appeared in AFIPS Conference Proceedings Volume 48 of the 1979 National
Computer Conference. It is reprinted here with permission of the AFIPS Press, Arlington, Va.

SIGMA-An interactive message service for the Military
Message Experiment

by ROBERT STOTZ, RONALD TUGENDER and DAVID WILCZYNSKI
USClItformagion Sciences Institute
Marina del Rey. California
end

DONALD OESTREICHER
Xeroz Coporation
El Seundo. California

MME OVERVIEW would state their requirements in a Request for Operational
Capability (ROC), which is interpreted and converted by

The increasing sophistication of military systems and de- some agency of the service into a system specification in the
creasing time frame for making decisions make it essential form of a Request For Proposal (RFP). The RFP is subject
to provide the military commander better quality informa- to further interpretation by the various contractors, first in
tion faster, With today's technology, messages can traverse their proposals in response to the RFP and later in the
several thousand miles in fractions of a second, but hours implementation by the winning contractor(s).
are lost at either end. boty ;", entering the message into the Although this procedure has apparently served well for
communications system and in delivering it to the person -procurement of more traditional systems, experience indi-
who can act on it. Even after the niess6ge is delivered, an cates it has been less successful in the field of computer
officer acting on it requires background information to for- automation, especially in data management systems like a
mulate a proper response. More often *han not. that infor- message service, where the requirement is seldom well
mation is available only after time-consum~ing searching understood and the many levels of interpretation between
through ponderous files. The response is usually an outgoing the ROC and the final system lead to products poorly suited
message which must be coordinated with other people, many to the real requirement. The implications of a particular
of whom are not in the immediate vicinity of the message system design are subtle; if some aspect is inappropriate, it
drafter. Hand-carrying the draft to these people slows the is often virtually impossible to change. ARPAnet experience
response still further. In times of crisis this system can easily has shown that the effectiveness of a message service is
become overloaded, throwing the entire opc"ation into strongly dependent on ease of access to the system, how
disarray, often people look at their messages, how "official" such

This message management problem seems an excellent messages are considered to be, ad infinitum. Further, the
candidate for automation. Users of the ARPAnet have had message service is often just the tip of the iceberg as users
a form of on-line message service for more than seven years. begin to understand the capabilities the system offers outside
There is no question that the technology exists, but whether pure message processing. If the message service is used
it will be cost-effective in the military environment is not so extensively, it intimately affects individuals' work style in
clear. ways that are difficult to predict. Thus it is very risky to try

In December 1975 the Defense Advanced Research Pro- to specify "requirements" when replacing a paper, pencil
jects Agency (DARPA). Commander Naval Telecommuni- and typewriter world with modern "office automation"
cations Command (NAVTELCOM). Commander Naval tools. Attempts at management information systems have
Electronic Systems Command (NAVELEX), and Com- shown it is particularly difficult to provide a user interface
mander-in-Chief, Pacific (CINCPAC) signed a Memorandum that is acceptable to high-level managers, so it is not even
of Agreement$ stating their intention to conduct an experi- clear precisely who will sit at the terminals or how these
ment at CINCPAC Headquarters whose express goal was people will interact with senior officers.
to "evaluate the utility of interactive message service ca- The MME is a computer-world equivalent of a "fly-be-
pabilities in a military environment." The experiment is fore-buy" test ofa mesage service in an operational military
called the Military Message Experiment (MME). environment. The test is relatively small and inexpensive

To have the military conduct an experiment of this son compared to the cost of multiple installations of a "produc-
is highly unusual. More traditionally the user community tion" system. The hope is the experiment will provide

839

840 National Computer Conference. 1979

enough experience and understanding of interactive message vice facilities, and provide a further understanding of the
handling that subsequent production systems will be suc- potential role of interactive message services in the military
cesses rather than expensive lessons in how not to automate environment. All of these factors were considered and
the process. In June 1977 the U.S. House Appropriations respected in the development of SIGMA.
Committee put a moratorium on virtually all new develop-
ment of -message systems- by the Department of Defense
until results from the MME can be evaluated. "'Operational"

The MME is being conducted at the CINCPAC Head-
quarters, Camp Smith. Oahu The test community is ap- To gain the most accurate picture of the MME's potential
proximately I10 officeis and staff personnel in CINCPAC's impact on the military community, an early decision was
command center and "operations" directorate (called J3). made to perform the experiment in an actual military envi-
I went-four video display terminals are provided for user ronment. the CINCPAC headquarters. Since CINCPAC al-
interaction with the service. Sesen printers are located ready has an effective manual message system whose use is
throughout the headquarters for local hard cop). The host well understood by its personnel. SIGMA presents a message
pio .essor is a PDP- 10 (KI. processor) manufactured by Dig- processing model which is intuitively similar to the existing
ital Equipment Corporation running the TENEX operating manual one in order to gain early user acceptance. This
system deseloped by Bolt. Beranek and Newman.' The decision implied choosing terminology which matched
PDP 0 connects to CINCPAC's ALTTODIN (AUTOmated standard military usage.5 and providing functions which.
Digital Information Netork) terminal computer. called the where possible. were similar to the manual ones. Since the
LDMX (Local Digital Message eXchange). The LDMX sup- military users operate the on-line system as only a part of
ports the current message handling service at CINCPAC; it their normal jobs. SIGMA has been designed to be highly self-
prints copies of all CINCPAC's incoming AUTODIN mes- instructive.
sages and accepts outgoing messages through an optical
character reader, sending them to their specified addressees
,ia AUTODIN. 'Secure'"

An important requirement for the SIGMA service is that it
TECHNICAL RESPONSE TO THE: MME meet military security specifications. Although this test sys-

tem will be operated only by personnel classified at Top

I he message ser ice being used for the MME is called Secret, it is a test objective that the message service address
SIGMA. developed at the University of Southern California's the multi-level security issues identified by previous re-
Information Sciences Institute especially for this experi- search. t To satisfy this objective. SIGMA implements a se-
mcnt As such it is an 'experimental' s),stem to be used in curity model which behaves as though SIGMA were running
an 'operational' military enoirnmeit to test the effectise- in such a "provably secure, kernel-based" operating ensi-
ness of a "secure intcra,:tie message processing" ser- ronment: this model is described in Reference 2. Although
Sic C onsider some of the issues implied by these terms. the provably secure environment does not yet exist on

TENEX. SIGMA'S emulation of it allows the users to interact
in a manner virtually identical to that they would encounter

'Lrprim'nll if SIGMA actually ran in the secure environment.

The primary purpose of the MMI. is to determine the
effectiveness of interactive message processing in a military "'Interactive message processing"
envil'onment and to provide a technology-transfer path to
apply the knowkledge and techniques gathered to future gen- SIGMA has been designed to be a "complete" interactive
erations of military systems. Many design philosophies are message service for CINCPAC. Its user interface responds
implied in such a context. The system developed must be to the needs of computer-naive users in several ways. Since
flexible enough to adapt to a changing understanding of the this community will not receive much special training in
problem and additional requirements imposed by the user SIGMA's use, an online Tutor and Help facility has been
community. It must concentrate on issues of functionality designed to take on the bulk of this responsibility.' The
and suitable user interfaces. This does not imply that other Tutor, like the rest of SIGMA. takes advantage of the spe-
issues such as sizing and performance are not important- cially designed MME terminal.s which features multi-win-
the system must still be responsive and large enough to dow displays and two-dimensional editing.
support a meaningful experiment-but the system need not The command formats are defined by SIGMA's Command
be cost-justified itself, merely sufficient to gain understand- Language Processor (CLP). The user instructs SIGMA
ing of the functional and cost issues. And, perhaps most through a set of function keys or by typing commands in a
important, the system must be highly instrumented to allow predesignated "command window" on the screen of the
collection of various data reflecting the manner in which MME terminal. The CLP parses and interprets these instruc-
users operate the message service. Analyses of these data tions: it is table-driven so instructions may be added or
allow evaluation of user performance and usefulness of ser- modified easily. The CLP expands commands and parame-

Interactive Message Service for the Military Message Experiment 841

ters that are only partially entered and corrects misspelled tries which are pointers to messages. A folder entry, an
words to the degree that it can, based on the user's personal abstract of its message, contains information such as the
directory of named objects as well as the command table. message's precedence. security, sender, type and subject,
A Prompt facility is provided which allows the user to ask which are considered by SIGMA as attributes of the entry.
about required parameters for a given command without An entry for an incoming AUTODIN message might look
losing any of his operational context. This powerful com- like
mand language interface is an essential ingredient in provid-
ing the user the highly supportive environment needed for 22 R UU Auto 042222Z DEC 78 From:
users with little or no experience with computers. JCS WASHINGTON DC INCOMING Act: J3

Subject: AIRCRAFT INFORMATION
SIGMA-APPLYING IN rERACTIVE TECHNOLOGY

TO MILITARY MESSAGE PROCESSING The above entry is number 22, with routine (R) precedence.
unclassified (UU) security, AUTODIN type, whose date,

In common with other styles of mutual communication, time is 042222Z DEC '8, etc. When a folder is DISPLAYed
message processing has distinctly cyclic characteristics-a (the capitalized part of verbs are SIGMA commands), a num-
message is initiated; its contents are refined from draft to bered list of entries is put on the terminal's screen.
final form: it is approved and sent to its intended recipients; For use in commands, entries from folders can be iden-
a recipient reads it, perhaps forwards it to colleagues, the tified in three ways: I) By their number, 2) by default to the
information contained within invites (or requires) a reply; current entry, 3) by HEREing the entry number, i.e., putting
the reply is initiated, and the process repeats. Message pro- the terminal cursor into an entry and depressing the
cessing as practiced at CINCPAC differs from other styles "HERE" key. With this scheme most folder entry com-
primarily in its highly formal nature, with guidelines govern- mands-DISPLAY. DELETE, FORWARD, etc.-have
ing nearly every aspect. three forms. Using DISPLAY as an example, they are

The entire message processing task can be roughly sepa-
rated into three areas of closely related activities: Message DISPLAY ENTRY entry-number
management, incoming message processing and outgoing DISPLAY ENTRY
message processing. As implied by the cyclic nature of the DISPLAY NEXT ENTRi
communication process, none of the activities in one area
is disjoint from those in other areas. For the purposes of The first is a typed command. The second is a function key
presentation, however, the facilities of the SIGMA message which can take a HEREd entry; without one it will display
service are described according to these three areas. the current entry. The last is also a function key. Some

commands like DELETE and FILE (which copies entries
Message management from one folder to another) take entry lists, in addition to

simple entry numbers, as parameters.
A message service must facilitate all phases of message As objects themselves folders can be CREATEd. DIS-

management. The following sections summarize SIGMA'S PLAYed, DELETEd, RESTOREd (the inverse of DE-
support in this area. LETE). and FILEd into. In addition, user directories of

folders can be VIEWed and assuming access is permitted,
folders can be shared among users.

Messages Often a user wants to extract from a file a class of entries
which have some uniform characteristics. For example, he

Messages are SIGMA'S fundamental concern. They are might wish to work on his messages according to their prec-
composed of a diverse set of fields. a field's contents de- edence. SIGMA provides selectors for this task. Selectors are
pends on its type. For example, a "TO" field contains a list boolean expressions composed of attributes of entries.
of addressees, a "TEXT" field contains a succession of When applied to folders they act as filters, returning lists of
uninterpreted paragraphs, while a "SUBJECT" field can entries whose members satisfy their criteria. When the user
only have a single line of text (of arbitrary length). Although has a folder displayed he can use the two selector com-
AUTODIN traffic is its primary focus, StGMA also supports mands, RESTRICT and kUGMENT. to change his display

'formal in-house communications (Memos) and informal mes- to exactly those entries he has selected. Thus after DIS-
sages (Notes). They differ slightly in the fields they contain PLAYing a folder, a user can see all secret entries fromand the ways in which SIGMA processes them. CINCPAC by typing the command

RESTRICT SELECTION SECRET AND FROM
Folders, entries, and selectors CINCPAC

Folders are the users' basic mechanism for organizing and The user can AUGMENT his display in a similar manner.
storing collections of messages in SIGMA. They contain en- If he now wants to add to this display those entries whose

842 National Computer Conference, 1979

precedence is routine, he types described above. A user directory of text objects can be
VIEWed; they can be DISPLAYed, DELETEd, RE-

AUGMENT SELECTION ROUTINE STOREd and, if the access is correct, copied from other
users. Named text objects can also be used in conjunction

AUGMENT and RESTRICT commands are 'stacked- so with the PICKUP and PUT commands.
that the user can always back up to his previous display The content of a text object is unrestricted. No semantics
using the BACKUP function key. are applied until it is put into an interpretable field. Once it

At any point during a sequence of RESTRICTs and AUG- is there. SIGMA acts on it depending on the type of field into
MENTs the user can CREATE a named selector which which it was put. For example, text in an address list is
reflects the logical 'ANDing" (for RESTRICT) and checked for legal user names: when put into a field in which
"ORing" (for AUGMENT) which led to the current state. multi-paragraphs are allowed, the text is formatted.
In addition, he can CREATE a named selector directly by SIGMA has not explored all the potential of text editing.
typing in the boolean as an additional parameter. DELETE, So while it has a FINDSTRING command, it doesn't have
RESTORE, and VIEW commands apply to named selectors, one for text substitution. The experimental use of SIGMA at
A user's directory of named selectors can be VIEWed, and CINCPAC will provide feedback related to the adequacy of
if access is permitted selectors may be copied from other our editing model.
users.

The richness of entry attributes makes selectors easy to
use for creating relevant folder displays. SIGMA commands The SIGMA display
that operate on entries apply only to those entries currently
in view, i.e., selected. So if entries 5, 15. 22, 27 were se- SIGMA divides the MME terminal screen into four win-
lected, four uses of the DISPLAY NEXT function key dows. The FLASH window at the top of the screen contains
would step through only those messages. three lines. The first is updated every minute and gives

general operating information, time of day, and so forth.
The FEEDBACK line tells the state of SIGMA processing

Comments and conveys error information. The STATUS line will be
described below. SIGMA commands are typed into the two

Message fields and folder entries may be annotated with line COMMAND window below the FLASH window.
arbitrary text strings by means of the COMMENT com- The remainder of the screen is the user's working space,
mand. Comments are identified by the user making them which may be occupied by one or two windows. When a
and have add'tional access properties- they can be public, user DISPLAYs a folder, text object, or message, the object
private (to the commentor), or restricted to a named user. is "opened" and put into the EDIT window. If another
Comments are created by pulling a HERE in the desired object of the same type is already opened, then it is FIN-
message field or folder entry. The COMMENT command is ISHed, i.e., stored away with all new edits saved. If the
then entered with the access specification and in response open object is of a different type. then it is moved off the
SIGMA will create a new field ready for editing. screen, though still opened, to make room for the newly

DISPLAYed one. The STATUS line names all the open
objects with the first name on the list identifying the one

Editing and text objects currently on the screen. Three function keys, SHOW
FOLDER, SHOW MESSAGE and SHOW TEXT, can be

Fields can be edited in two ways-by modifying the dis- used to put the appropriate object back into the EDIT win-
play %, ith local editing functions provided by the terminal, dow.
and by various SIGMA commands. Suffice it to say the ter- The VIEW window shows objects which the user names
minal provides a full complement of editing capabilities.$ In with the VIEW command. It is cleared by the CLEAR
addition to those capabilities, SIGMA has its own editing VIEW function key. This window is not editable and is used
commands. The PICKUP function key command deletes the only for reference (text can, however, be copied from it). It
characters between two HEREs. putting them into an un- is shown at lower intensity to distinguish it from the EDIT
named buffer. The PUT function key inserts the contt;nts of window. The EDIT window occupies the full screen when
the same text buffer at the current cursor position. The nothing is viewed; otherwise, both share the screen.
MOVE function key. a composition of PICKUP and PUT. This section has given a functional view of SIGMA by
moves the text between the two HEREs to the current describing its objects and some of its legal operations. The
cursor position. COPY is the same as MOVE except the next two sections will give a more structured view of the
characters are not erased. These commands give the user tasks which compose message processing.
the capabilities to erase, move and copy large amounts of
text conveniently.

Text that is io be reused in messages or commands can Inuoming message processing
be created and stored as a named text object. A text object
is nothing more than a series of uninterpreted paragraphs, In the military, formal AUTODIN messages are sent from
and can be CREATEd and edited using all the capabilities the commander of an organization to the commander of

Interactive Message Service for the Military Message Experiment 543

other organizations, never between individuals within the suiting SIGMA-formatted messages in its message data base.
organizations. This practice requires the receiving command To allow methodical retrieval of messages by arrival times,
to determine the appropriate recipients within the command SIGMA also places an entry in a special folder called a Date
for every incoming message. Naturally the correct assign- File, a new instance of which is created each day to contain
ment of recipients is a critical part of the incoming pro- entries for all AUTODIN messages received during that day.
cessing task. A user can then see an index of all messages received on a

CINCPAC employs a content-based scheme to determine particular day by simply DISPLAYing the corresponding
the correct recipients. The first stage of this process is im- Date File.
plemented by the LDMX message processor. By scanning The high fan-out of incoming messages makes it impract-
the header and selected fields of the message contents, ical to provide a separate copy of each message to each
LDMX makes a preliminary assignment to the top manage- eventual recipient The scheme adopted in SIGMA was de-
ment level (directorate). Although LDMX is capable of more signed to minimize on-line storage requirements while still
detailed assignment, CINCPAC chooses to allow its direc- providing convenient access to messages. Messages are sto-
torates to perform their own routing internally. Within the red only once, in the central message data base. Each re-
MMF. target population (03. the Operations directorate), this cipient receives not a copy of the message, but an abstract
next level of routing is performed manually by an adminis- containing a useful subset of the message's contents. An
trative office 0301). Using both catalogued tables of routing instance of this abstract, called a citation, is created for each
assignment and his specialized training, J30) scans each message transaction between users. Each citation sent to a
incoming message and determines its disposition. Such dis- folder causes a new folder entry to be appended (indeed, the
position can be any or all of the following: terms citation and folder eniry are often used interchange-

ably), a task performed by a special SIGMA background proc-
Action Typically each message is assigned to an ac- ess. the Citation Daemon. A citation is small (approximately

lion officer. He is responsible for any actions five percent the size of a message) and thus is much more
or response to be made by the 13 directorate, economical to replicate than the full message.
and is said to have the action for the message. All users access and modify the single copy of a message,

Info In addition to a responsible officer, the con- Obviously such activity cannot occur unrestricted, or the
tents of the message may be of interest to integrity of the message contents and the users' intended
other officers as well. Such officers are said changes could not be preserved. To allow such operations.
to receive an information copy of the mes- a special scheme correctly assimilates parallel modifications.
sage. preserving both the consistency of the message and the

Readboard Certain messages may be of interest to large users' intentions.'
groups within the directorate. and occasion- Since messages flow into the J3 directorate constantly
ally to all of 13. Such messages are placed in (approximately 1000 per day), the available secondary stor-
binders called readboards, which are then age would soon fill unless appropriate steps were taken to
circulated through the directorate. reduce the number online. To make room for incoming mes-

sages, an archival scheme has been implemented. Using
While the J301 assignment is generally accurate, it is nei- frequency of access as a rough guide, SIGMA moves inactive

ther complete nor infallible. An officer receiving a copy of messages onto bulk storage (magnetic tape), from which
a message may determine that other officers not designated users needing access to messages can request retrieval.
by J301 should also receive copies. Occasionall) the action Mechanisms are also provided to allow shorter retention
assignment for a message is not appropriate: after seeing a periods for selected messages.
message, an action officer may decide that another officer
is better qualified to handle it and "sells the action" to him.
Thus, the propagation of copies and/or action of a message Reception

may continue for several stages beyond the J301 assignment.
Based on data compiled at CINCPAC, an average of 40 Once citations have been sent to a user, he must be al-
copies of a message is required to reach all its recipients. lowed to see them, access their referenced messages, and

SIGMA supports incoming message processing with a va- dispose of them as he sees fit. These capabilities revolve
riety of facilities They can be roughly divided into the three around a repository for incoming citations, a special SIGMA

areas of delivery, reception, and redistribution, folder known to each user as his Pending File. Analogous
to a mail in-basket, a user's Pending File receives all cita-
tions destined for him.

Delivery Physically, a Pending File is implemented as a STOMA

folder, and can thus be manipulated by the wide variety of
SIGMA was designed to merge naturally into the existing folder operations-DISPLAY of referenceu messages.

message processing milieu at CINCPAC. Through the spe- COMMENTing. cross-sectioning via RESTRICT and AUG-
cial LDMX interface, SIGMA's Reception Daemon receives MENT, etc.
the text of incoming AUTODIN messages, parses them. Since all citations for a user are appended to his Pending
builds the SIGMA internal representation, and stores the re- File. he must eventually delete nearly all of them, lest he

844 National Computer Conference, 1979

exceed the folder size restriction (which is in excess of 6000 field records the full history of action assignments. Thus it
entries). This does not imply that a user must lose references is possible to ascertain all users involved in a message's
to important messages, however, since a user may create an redistribution by examining its appropriate fields.
arbitrary number of other folders where he may FILE them.

Frequently, messages of great urgency to a user may
arrive. In such cases the user would like to be notified Outgoing message processing

immediately, rather than wait until he happens to notice it
appear in his Pending File (which might be some time if he in the existing manual system. CINCPAC officers deal
were DISPLAYing some other folder). To allow a user to exclusively with so-called "record traffic." Even when the

specify criteria for incoming messages for which he wants contents of a message are routine, the onus of representing

immediate notification. SIGMA provides the Alert facility, an entire command's viewpoint adds a measure of impor-

The user activates the Alert facility by creating a SIGMA tance. Consequently highly formalized procedures have de-

selector named ALERT-SELECTOR. If such a selector veloped at CINCPAC to ensure that messages transmitted

exists, each incoming citation is matched against it to de- from the CINCPAC organization have been thoroughly re-

termine if it meets the Alert criteria. If so. the citation is viewed and approved by a responsible authority.

added it) a special Alcrt List, the format of which is very In addition to supporting an on-line implementation of the

similar to that of a folder, and the bell at the user's terminal review/approval process, SIGMA has augmented the media

is rung. The user can then display the Alert list without of communication. In addition to the existing formal traffic

disturbing his open folder, and access any of the referenced (AUTODIN messages), SIGMA has added two new message

messages in a manner similar to that for folder entries. In formats, formal internal and informal.

addition, a count recording the number of active alerted
citations is maintained in the SIGMA flash line. * Formal internal messages (memos) are similar to con-

tent and form to AUTODIN messages, but the address-
ees are other SIGMA users. This provides CINCPAC

Redistribution personnel with a formal (recorded) medium to send
official communications within the CINCPAC organi-

As explained in the description of the Delivery task, the zation.
routing provided by LDMX is not sufficient to reach all 0 Informal messages (notes) provide an off-the-record
ar- .priate recipients Additional routing is provided by the message medium for informal communication. Such

administrative J30) function. Ahich supplies the bulk of the messages. which are not reviewed or recorded, provide
specific -outing assignment, and by individual officers, who an alternative to face-to-face or telephone communi-
either supplement or correct the J301 assigments. SIGMA cation.
pro% ides this flexibility by means of its redistribution facil-
ities. The outgoing message processing in SIGMA is roughly di-

To effect the bulk routing assignment at the directorate vided into four phases: drafting, coordination, release and
level. SIGMA provides the ROUTE command, With this sin- transmission.
gle command. J301 can specify action assignment. info dis-
tribution, and readboard creation for an entire group of
messages. Using the RESTRICT and AUGMENT opera- Drafting
tions to select a class of similar messages. J301 can then
perform a complete routing assignment for the whole class During the drafting phase the original message is com-
in a single step. posed. The sources of the original contents of the body and

Individual officers needing to perform further redistribu- various fields vary, depending on the type of message being
tion have two more limited redistribution commands. The prepared. SIGMA supports the following commands for mes-
FORWARD command allows one user to send an informa- sage drafting:
tion citation ("FOR-INFO") to another. The ACTION
command is similar, but implies that the originating officer CREATE An empty message form is created. %ith

transfers the action assignment to the designee (by means blanks for the editable message fields. The
of the FORACTION" citation). Additionally, the A(- contents of any desired fields must be filled
TION command causes an entry to be placed in the issuing in by the drafter.
user's A(tion Log. a special folder which contains a record COPs This command, which requires an existing
of all action assignments he has made. Since CINCPAC message as a parameter. copies all of the non-
wishes to keep a central accounting of action assignments, header fields into the new draft message. It
users normally share a single Action Log (via SIGMA"S is useful for pro forma messages which are
shared folder capability), sent frequently and whose contents are bas-

All redistribution commands account for the further dis- ically similar.
tribution of messages by appending records to certain mes- REPLY This command also takes a message param-
sage fields. In each message a Distribution field records eter, and creates a new draft in reply to the
each user who has received an info citation, while an Action subject message. In this case, the addressees

T!

Interactive Message Service for the Military Message Experiment 845

are derived from the subject message, the he may indicate his global disposition of the message b)
subject is copied. and the referenced message means of the CHOP YES and CHOP NO function keys.
cites are copied with a cite to the subject These commands cause a "CHOPPED" citation indicating
message appended as an additional reference. the appropriate disposition to be sent to the drafter (or higher

level coordinator), who is thereby notified that this coordi-
Once he has created his draft message. the author has the nator has finished his revie%,.

following alternatives: During the coordination process. the drafter (or a higher-
level coordinator) can monitor ?he coordination process by

* He can save the draft for later use (via the FINISH means of a status field. whif, . -,dicates the progress of each
function key). This can be done to hold an incomplete coordinator, When coor,2;-.'-rs have finished their reviews|
draft for later completion. or to save a pro forma mes- he can viewk their versiotis an, note suggested changes and
sage to make it available for later COPYing. To make comments. He can incorporate changes by duplicating them
later retrieval of such saved drafts convenient, SIGMA in his own version or by copying the changed sections from
puts a citation referencing the draft in the user's Pend- the coordinators' versions. If he is not satisfied with the
ing File. so its existence is remembered and it remains resulting message or wishes to elicit further review, he can
easy to access. initiate another coordination cycle, which will result in ad-

" He can send the message for review if it is a formal ditional FOR-CHOP citations being sent. If the drafter is
message. This process, called Coordination, will be satisfied with the content of the message, he can initiate the
described in more detail. Release process.

* If authorized, he can cause the message to be trans-
mitted to its addressees. This will be described in the
section on Release. Release

Because of the formal nature of record communication.
Coordination certain officers, designated reh'ase authorities (reh-asers).

are solely empowered to approve outgoing record traffic.
Within CINCPAC there exists a formal procedure for SIGMA provides the same enforcement by checking each

review, and revision of a message prior to its release. The attempt to transmit a message against a list of authorized
drafter can request several other officers to review the mes- releasers (since the three different message formats have
sage, make comments, suggest changes and give a general different levels of formality, a separate list is maintained for
disposition regarding the message. This procedure, called each).
chopping, permits CINCPAC to acquire a consolidated When a drafter has determined that a draft message is
opinion from a cross-section of responsible officers before ready for transmission, he must gain the approval of an
a message is sent. appropriate releaser (unless he himself is one, in which case

SIGMA supports a style of coordination more general, al- he can release it himself). He does this by using the CO-
though perhaps less flexible, than the manual CINCPAC ORDINATE command after designating the releaser's name
procedure. The message drafter may designate any number in a special Release field, causing a "'FOR-RELEASE"
of users in a field called the Chop List. With the special citation to be sent to the releaser. After receiving this cita-
COORDINATE command, the drafter can specify that any tion a releaser has options similar to those of a coordinator.
or all of the users on the Chop List be requested to act as He can display the drafter's and coordinators' versions,
reviewers for the message (they are referred to as coordi- seeing comments and suggested changes. In particular, he
narors), causing a special "FOR.CHOP citation to be sent may examine the "chop" disposition of the various coor-
to each of the designated users. dinators to determine whether he is satisfied that there is

A coordinator is notified of the drafter's request to review sufficient agreement among them. If he is not satisfied he
a message by receipt of the FOR-CHOP citation in his can make his own comments and changes and specify CHOP
Pending File. He can display the message, and will see the NO. in which case a citation is sent back to the drafter. But
drafter's most recent version. The coordinator can make if the message is in order and the releaser is satisfied, he
comments or suggest revisions to the message: if so, the can initiate transmission via the RELEASE command.
changes are not applied to the drafter's copy, but rather to whereupon the message leaves the preparation phase and is
a copy belonging solely to the coordinator. In deciding upon sent for transmission processing.
his changes he has access not only to his own version and
the drafter's, but to other coordinators' as well.

When a coordinator decides that he in turn would like Tramsmision
comments from other users (perhaps subordinates or other
colleagues), he may further designate other coordinators. When approved by a releaser, a draft message is prepared
This "sub-coordination" is exactly analogous to that initi- for transmission by the SIGMA process called the Message
ated by the drafter. In this case his sub-coordinators see his Daemon. First the draft is marked as transmitted: this pre-
version of the message when they first display it. vents it from being further modified or transmitted again. A

When a coordinator has finished his review of a message new message is then created to contain the transmitted ver-

846 National Computer Conference, 1979

sion of the draft message. Fields which are appropriate for 0 The ALERT mechanism is fundamental but acts only
transmission are copied from the draft; others which do not on incoming messages. Some users have expressed in-
belong in transmitted messages (such as comments, chop terest in a general facility based on a variety of different
lists, are omitted. events.

When the contents of the transmitted message are pre- 0 Users have expressed a desire for the ability to search
pared, the appropriate transmission medium is determined, the full message database with a mechanism like selec-
If the message is destined for AUTODIN, the message is tors. SIGMA has no model to support this expensive
sent through the LDMX interface to be transmitted to the operation at this time.
AUTODIN network. If it is an internal message, the trans-
mitted message (in internal SIGMA format) is entered into the Although the experiment is just beginning to collect useful
SIGMA message data base, and "INCOMING" citations are information, it is clear that SIGMA is having an impact on
sent to each of its addressees, the message processing at CINCPAC. SIGMA appears to be

rich and flexible enough to support the goals of the experi-

CONCLUSIONS AND USER REACTIONS ment to gain insight for future military message systems. As
the users become more involved with interactive message

Our initial opinion after studying the CINCPAC environ- handling their awareness of its capabilities and potential is
ment was that an interactive message service could be ex- being sharpened and their requests for functional enhance-
tremely effective. The CINCPAC staff was enthusiastic ments are more accurately based on realistic needs.
about the possibilities and endorsed the experiment to the The injection of a research project, like SIGMA. directly
point that they were willing to serve as the test-bed for it. into an operational military environment is an unusual event.
Now the experiment is underway and we are beginning to This approach offers the military a more active role in de-
learn whether our optimism has been well founded. veloping relevant software for sophisticated applications.

Although at the writing of this paper formal results are The MME effort is showing that the transition from the
not yet available, CINCPAC users have been using the ser- laboratory to an operational setting can be accomplished for
vice for six months. They have already asked for changes such an experiment, which should dramatically shorten the
and extensions to the service: some. like ROUTE, have normal technology-transfer path.
been implemented. As expected, the use of such a service
is altering the style in which many officers operate,

Probably the most dramatic effect is on J301 who previ-
ously required seven hours to process the new messages REFERENCES
that arrive overnight, Using SIGMA this process is reduced
to less than an hour-and-a-half. Furthermore the feeling is I. Ames. S R. and W W Plummet. "TENEX Secunty Enhancements,"

MTR-3217, MITRE Corporation, April. 1976the assignments made are generally better, primarily be- 2. Ames. S R.. and D. R. Oestreicher. "'Desw of a Message Processing
cause the same assignment is made to entire classes of System for a Multilevel Secure Environment." Proceedings of the Na-
messages at once. thereby assuring uniformity. tional Computer Conference. AFIPS. 1978

Another group of users that has been heavily influenced 3 Bell. D E. and E. L. Burke. "Secure Computer Systems Mathematical
by SIGMA normallN get their messages from J301 about 9:00 Foundations and Model," M'74-224. MITRE Corporation, October. 1974

4 Bobrow. D. G.. J D. Burchfiel, D L. Murphy. and R. S Tomlinson.
AM. two hours aft'er they come in in the moning. They have "TENEX. a Paged Time Sharing System for the PDP-10," Comm ACM,
found that with SIGMA they can go directly to the Date Files Vol. 15. No. 3, March 1972. 135-143.
for the day and. using Selectors, get the messages of interest 5 Heifner. J. F.. and L. H Miller, "Design Considerations for a Comput-
without waiting for J301 to distribute them. They are also enzed Message Service Based on Tri-Service Operations Personnel at

CINCPAC Headquarters., Camp Sith. Oahu. IStWP-3. USC/Informa-able to find messages requiring their action that have been tion Sciences Institute, September. 1976
assigned incorrectly to others, messages that they simply 6 Memorandum of Agreement between Director. Defense Advanced Re-
never saw before SIGMA was available to them. search Projects Agency (DARPA!. Commander Naval Telecommunica-

There are still many improvements requested by CINC- tions Command (NAVTELCOM). Commander Naval Electronics Systems
Command (NAVELEX). and Commander-in-Pacific ICINCPAC Unpub-PAC users which SIGMA has not yet addressed. Indeed, the lished memorandum

list is already large even at this early date: 7. Rothenberg. J. "On-Line Tutorials and Documentation for the SIGMA

Message Service." Proceedings of the National Computer Conference.* The ROUTE command was put into SIGMA in response AFIPS. M y. 1979
to a direct request from J301. Other composite com- S. Stotz, R.. P. Rveling and J. Rothenberg. "'The Terminal for the Mihtar.
mands can be visualized. It would be nice to have a Message Expernment," Proceedings for the National Computer Confer-''hmacros' from ex- ence. AFIPS, May. 1979powerful facility for building such acfeatur es 9 Tugender. R., "Maintaining Order and Consistency in Multi-Access
sting commands. However, such a feature touches Data." Proceedings of the National Computer Conference. AFIPS. May.

heavily on many difficult user interface issues. 1979

This research was performed for the Advanced Research Projects Agency under Con-
tract No. DAHC 15 72 C 0308, ARPA Order No. 2223. The views and conclusions
expressed in this paper are not necessarily those of any person or organization except the
authors).

-.I.-

PART THREE:

EVALUATION

3.1 LESSONS LEARNED

The Military Message Experiment was unique in many ways, for both the military and the research
community. It %as perhaps the first deliberate attempt to install a large experimental computer application at
an operating military command expressly for the purpose of learning how (and whether) to build future
production systems. The experiment did not attempt to justify the cost of automated message handling--that
requires projecting design and operational costs rbr a system, estimating the operational benefits such a
system provides, determining how many such systems will be produced, etc. It is only after the experiment is
completed that a reasonable specification for that system can even be produced. An operational requirements
document (ROC) for automated message handling is being written at this time by CINCPAC (Commander-
in-Chief, Pacific) and EUCOM (European Command).

We learned a great deal during the experiment about what should be the proper functions of this kind of
message system, but these lessons were only part of our education. The experimental results were affected
more by several higher level issues than by the details of the message service operation. This part of the
SIGMA Final Report is divided into the following major sections:

- High-level issues-

- Functional and design considerations for a message service;

- Lessons on development and operational environment for the experiment.

The previous parts of this report, which concerned the history of MME and the functions and design of
SIGMA, are factual; this part, on the other hand, primarily contains opinions of the authors (all members of
the IS team that developed SIGMA), formed from our review of data abstracted from the user interviews.
our own discussions with users, and other peripheral observations.

3.2 HIGH-LEVEL ISSUES

3.2.1 The Definition of Utility

According to the Memorandum of Agreement of its sponsoring agencies, the primary goal of MME was "to
determine the utility of an interactive message service in a major military headquarters." But there is no
uniform, objective yardstick for measuring "utility." Several consultants tried to define such a measure for
the experiment but did not succeed, primarily because most of the parameters could not be quantified (e.g..

quality of the end product, throughput speed, user satisfaction), and many variables in the operational setting
could not be precisely controlled. Therefore, one of the best measures of SIGMA's utility is revealed in the
subiective evaluation of the system obtained by interviewing its users.

As the experiment drew to a close, people from MITRE, CTEC, and the Navy extensively interviewed 50
users to elicit their opinions of automated message handling in general and SIGMA in particular. In addition,
in March 1979, shortly after Exercise Power Play, 15 users were interviewed by Col. Clay Smith of the
CINCPAC staff. Abstracts of the user interviews contain many illuminating comments: the users express a
wide variety of opinions about the impact and utility of MME. With a few exceptions, the objections %ere

directed toward specific deficiencies that could be remedied in a new system. The general climate of opinion
was positive, but there were severe criticisms of system reliability and some individual reservations about
specific functional deficiencies. The final reports from CINCPAC, MITRE, and the Navy should contain
detailed analyses of these interviews.

3-2 SIGMA FINAL REPORT

3.2.2 The Value of SIGMA

We believe that SIGMA amply demonstrated the utility of automated message handling, both in ever day
use and in simulated crisis, a judgment based on the fact that CINCPAC ultimately wanted to keep SIGMA.
on the generally positive nature of the user interviews, and on the amount and type of usage SIGMA receiv ed
throughout the experiment.

Approximately six weeks before the experiment was to end, CINCPAC sent a message kCINCPAC
1617172 AUG79) to JCS stating, "This headquarters considers it most desirable to retain the MME system
past the experiment's conclusion." This statement was a reversal of CINCPAC's earlier position (as stated in
CINCPAC 260136Z MAY79) that the system should be removed at the conclusion of the experiment on
October 1, 1979. This reversal was ascribed to "significantly increased hardware reliability over the past eight
weeks, improved system software, and increased user appreciation of the system's capabilities." We assume a
future production message service would receive a similar endorsement if it provided the necessary reliability,
presented a good user interface, contained equivalent functional performance, and was introduced with
proper user-training procedures.

Our strongest indication of the usefulness of automated message handling was the sustained use of SIGMA
not only throughout the experiment, but especially during the last few months when it was known the system
would be disconnected and there was little external motivation for its use: more user hours (4,178) were
recorded on SIGMA during August 1979 than during any other month of the experiment. If the system were
not truly useful, usage would have dropped dramatically as users became aware the service would be
terminated.

Our optimism about the usefulness of automated message handling is also encouraged by the
reasonableness of extensions that users have proposed to enhance the system. Sections 3.3.2.26 and 3.3.2.27
discuss the proposed enhancements and the design implications of each. It is clear that as the users learned
what SIGMA could do for them, they began to extend their own thinking about how SIGMA could be made
more effectixe. This tells us that SIGMA did indeed provide a useful tool for doing their work better and
faster, a- - that it became an integral part of their thinking about their jobs. Our conclusions about SIGMA's
usefuln%.-'. nust be tempered by considering for whom and for what it was successful, and what parameters
affect this success. The bulk of this section is directed toward this consideration.

3.2.3 Some Unqualified Successes

3.2.3.1 User interface

A good, consistent user interface is critical for the kinds of users we had at CINCPAC. With little
computer expericnce, and only a rdimentary grasp of the details of message handling (a small part of his
activities), the automated system user will not accept a system with baroque procedures that require much
training. It is imperative that the system be natural, intuitive, and easy to use. This point was recognized
fora the beginning of SIGMAs development. For example, the terminal was especially designed to support

highly responsive, two-dimensional "what-you-see-is-what-y ou-get" editing. A special study, performed at

CINCPAC in July 1976 nearly a year before the system was installed, served to gather information as design
input. Recommendations from this study were directed toward a variety of user interface concerns, including
user \ocabulary (for commands, message forms, and general system objects), instruction forms, screen
formats, and user attitudes. The report Design Considerations for a Computerized Afessage Service Based on
Tri-Service Operations Personnel at CINUPAC Headquarters, Camp Smith, Oahu [17] describes this stud\ in
detail.

Section 3.2.1

3. Lessons 3-3

It is hard to provide any quantitative results regarding the user interface of SIGMA. Although there was
discussion of running "structured" tests (controlled experiments to evaluate individual user interface features)
outside the CINCPAC community, these tests were never conducted. Our conclusion that the basic user
interface was good is based on interviews and our own observations. There were no negative comments about
SIGMA's user interface during the interviews. New users were able to do useful work with very little
training. During the exercises, users from directorates other than 13 were introduced to the system, and
though they did not understand the intricacies of the system, with only a few minutes training they could log
on. display their files, display messages, and scroll through their contents. With a little more training the users
were able to search the message database, create and edit text, and send messages.

We attribute our success to many factors: the "naturalness" of the terminal-based editor, the editor's
responsiveness to the user, the sophistication of the Command Language Processor, the attention paid to
presenting data in familiar forms, a system vocabulary that was familiar to the user community, and a
philosophy of always presenting the user with as much contextual information as we could. These factors are
critical to the success of future systems; while SIGMA did well, much remains to be learned.

3.2.3.2 Better access to information

SIGMA demonstrated to CINCPAC the benefits of improved communication through easier and more
universal access to information, more accurate use of data, faster delivery of messages, and relief from some of
the tedious work associated with text preparation and message handling. SIGMA selectors simplified access
to information by allowing users to build and store their own criteria for locating messages in a flexible file
system. Several offices and watch teams (e.g., JRC. Nuclear Operations) used prestored SIGMA selectors
exer da\ to scan incoming traffic for messages of interest to them. This allowed them to catch messages that
the IDMX did not route to them--messages they otherwise would have missed. (Those offices that used
SIGMA early in their shift found they saw their messages several hours before the paper system delivered
them.) The lHead of the Nuclear Operations group reported that by using selectors to cull incoming messages
he Aas able to obtain an overview of what was going on within CINCPAC. a perspective he would nu.er get
from the paper system. The ease of sharing data in SIGMA also allow ed users to look at the readboard
prepared for J3, a feature that was extreme]\ popular with the division chiefs.

Another form of information sharing \kas the automatic update of the Ac'ion and Information fields of a
messace. Whenever a newh assienment \kas made to a message, these fields were alteied to reflect it. Since all
users sh~ired access to the same copy of each message. this information \aN al\wa. s up-to-date.

['he l hilit\ to share access to comments on a single Up-to-date file or message made it possible to use
SIGNIA to monitor and contro! user actions. For example, during the special CINCPAC-only rerun of
[:xercise Po'hcr Play. the Crisis Action Tearn activel managed their jcti\itv via SIGMA comments. A

citation appeared in the Action Log for each message on Ahich action \kas assigned. When the action olficer
h.d pertinent information to disseminate, he %,ould append a public comment on the entrv in the Action I og
I he -xecutivc Officer (XO) of the team monitored the Action log: wher comments indicated an action had
been completed, he would move that entry to a "Completed Action Log." through the Action Log an up-to-
date status of the team's activities A as instantly av ailable to all users.

Shared access to text material also proved \aluable. Ihe text editing and \ord pr(essing features of
SIG\I.\ sere extensively used in preparing nonmessage is \%ell as message material. One example Ahas the
preparation of the daily summar\ during the rerun of Exercise Power Play. Each member of the Crisi., Action
I e.am prepared his section of the report as a text object. When all sections were ready, the XO merely movedcopies into the body of a prestored message, edited it for uniformit and clarity, and released the message.

Section 3.2.3.1

3-4 SIGMA FINAL REPORT

The information contained in the individual sections of the daily summary was generally accurate
(transcription errors were virtually eliminated), since much of it was copied directly out of the original
messages.

In the manual message system, messages are kept in paper form for 30 days by J301. The Communications
Center keeps messz, on-line for 15 days and on tape for 90 days; after that they are microfilmed. It is a
great ordeal to track d,,.,n an old message in this system. Once SIGMA began archiving messages there was a
simple and dependable pyocedure for retrieving all old messages. It was acclaimed as one of the best features
of the system.

3.2.4 Limitations of Automated Message Handling Systems (AMHS)

3.2.4.1 Difficulties of user adaptation

It is clear that there are also drawbacks and inherent limitations in systems like SIGMA. In large part,
these drawbacks have to do with the fact of life that users have to adapt to current computer systems, rather
than vice versa. Some users will adapt more readily than others, while the dissatisfaction of those who do not
will be reflected in their evaluation of the system. The best example is perhaps the display medium, the
cathode ray tube (CRT). CRTs have some distinct advantages over paper, but they have disadvantages as
well: they are often difficult to read, they are not portable, you can't write on them with a pencil, they have a
limited working surface, and you can't leaf through their pages.

An automated message system is very different from a manual one. Models of manual procedures often do
not translate well into automated envirornments--what is easy to do manually may be very difficult to
automate (and vice versa). For instance, coordination of a draft message is most naturally a serial process on
paper. Parallel coordination in SIGMA is certainly faster, but it requires new procedures and a different
model of a draft message. Users without typing skills are seldom comfortable at a keyboard. The whole
interactive style of giving commands with parameters in an artificial language is intimidating to many people.
The longer an individual has been working in a particular style, the less willing he is to adopt a new way of
doing business, which perhaps explains why senior officers were especially reluctant to try SIGMA. In any
case there was ample evidence that it takes some people a long time to learn to use an automated message
service.

3.2.4.2 Rigidity of automated systems

Besides the adaptation that users had to make. there are a number of deficiencies inherent in automated
message handling systems. As mentioned above, paper can be a more flexible medium when scanning
through a moderate amount of data. In addition, an automated system cannot substitute for face-to-face
meetings when issues need to be discussed. It simply takes too long to conduct a written dialogue; it takes
considerable skill to show emphasis or emotion in the written word: and there is a certain "permanence"
about Ariting that can be inhibiting. The most severe objection to using SIGMA for coordination was the
lack of personal encounters. Interestingly, this view was generally held by the junior officers who wanted to
meet with their seniors to "explain the message," but not b the senior officers who perhaps saw automation
as a chance to eliminate much of the personal interaction that occurs in staffing a message.

In addition, although automated systems can be \cry helpful in alerting an on-line user of the arrival of
ne" messages. if the user is not on-line, the system has no way to "find" him and deliver the message.
Furthermore. it is obvious that human beings can be more flexible than machines when flexibility is called for

Section 3.2.3.2

3. Lessons i-s

(when it suddenly becomes impossible to do things in the usual way). Procedures that can be easily bypassed
or altered in the manual system are often buried in the code of an automated service and are almost
impossible to circumvent or change.

3.2.4.3 Particular limitations of SIGMA during MME

Certain limitations were not inherent in automated systems, but only a reflection of the circumstances of
the MME. Everyone agreed that the lack of on-line access to all the reference material needed to process a
given message was an annoying drawback. Although primary references are to other messages, other kinds of
data are frequently relevant, too. Manuals, letters, operational plans, data of all sorts are pertinent; a system
that can deal only with messages is deficient. Since some information may never appear in an on-line form
(no matter what the system), this particular drawback may be an inherent limitation of automated systems.
SIGMA did allow the user to manipulate arbitrary text objects and associate comments with messages and
files, but several users remarked that it was awkward to have their message files separate from other
documents.

Even when references were to on-line messages, it was hard to move quickly back to the original message.
Mechanisms for directly accessing referenced messages and for the simultaneous presentation of multiple
messages are high on the list of enhancements that should appear in any operational AMHS. SIGMA
allowed internal memoranda to be produced and distributed on-line. However, since only a few of the
CINCPAC staff had access to SIGMA, most memos were only in the paper files. Having some memos arrive
via SIGMA was more of a hindrance than a help--no one wants to keep two sets of files. What few SIGMA
memos were generated were generally printed and filed in the paper files. The lesson is c tar. A user wants to
receive, store, and retrieve all of his message traffic in a uniform fashion. The degree to which a message
sern ice must compromise this guideline will degrade its acceptability.

Response time is also a user interface consideration, one in which SIGMA was deficient. During the Frst
)car and a half, SIGMA's response time with moderate load was too slo for - meaningful experiment. With
the installation of the KI processor in October of 1978. system response 'kas satisfactory enough to proceed
'Aith full experimental usage. Even then, under heav% load. response rime %as marginally acceptable. This
judgment of "acceptable" performance is somewhat arbitrary. No controlled tests were conducted to attempt
to establish what is "acceptable." We relied primarily on our own experience and users' feedback.

If an operation can be done significanty better on-line than it can be done manually (e.g., RESTRICT.
vhich extracts a subset of messages from a large file), the user is generally quite happy regardless of the time it
takes. However, if it takes longer than he is used to (e.g.. DISPLAY MESSAGE, which takes 5-10 seconds).
he is not. It is not the absolute time required: it is more a matter of the user's expectations. SIGMA treats all
operations the same, they are par-ed by the same CI.P. the. are executed by the same Functional Module.
and they draw their data from the same file system. Because SIGMA mas built on a general-purpose time
shdring s)stem, there "as little opportunity to tailor the operating system perfirmance to the application.
Ihis "as a restriction that we not only accepted but were comfortable with due to the experimental nature of
the s stem. However, a production message service should be designed to meet rcedetermined performance
goals. especially for the important, commonly ised operations (e.g.. display file, display message, next page).
lhe operating system must be selected (or modified) to support these response time targets.

An aspect of the user interface that we considered but did not ha~e time to explore %as personalizing the
scr% ice to individuals. Early plans (see 120]) called for a heavy emphasis on keeping a user model, monitoring
th.e user's dy namic acti% ity, and altering the way the system appeared to him as he became more fluent Aith u.
Ihi goal %as viewed as being too experimental for the CINCPAC user, so plans were reduced to keeping a

Section 3.2.4.2

'- ira lu l -- - - ---m ,s .. m-m -

3-6 SIGMA FINAL REPORT

static user model which could be manually modified. Even these ideas were later simplified. As a result
MME users were given very little control over how the service appeared to them, an objection we generalized
from what we heard in the user interviews.

3.2.5 Lessons Concerning the Service

MME taught us some lessons that are critical to successful installation of an automated message system.
Like the user-oriented issues discussed in the previous section, these issues largely affect the usefulness of the
service.

3.2.5.1 Reliability and availability

The most painful lesson we learned during MME is that reliability and availability of an AMHS are
paramount. We had naively assumed that, since MME was an experiment, the SIGMA users could accept
less that 100 percent uptime. Emphasis on solid operations and maintainable software occurred too late in the
experiment, and therefore much of the system's potential was never truly tested. Many users were afraid to
trust their time and vital files to SIGMA, using the automated system only for activities they could afford to
lose. To be useful, an AMHS system must be ultrareliable. A crisis will not come to a stop while the
computer is down.

Even with this attention to reliability, one can envision situations in which the normal service becomes
unavailable to some or all of a user community. During wartime, it is probably infeasible to maintain the
service level that can be achieved in peacetime operation; even if the service could be maintained, what if that
facility is destroyed? MME did not investigate this issue, but the architects of future AMHS must address this
problem. Pertinent'research on the subject is being conducted by ARPA.

3.2.5.2 Integration of AMHS and the message exchange

SIGMA communicated with AUTODIN through the message exchange system called ILDMX, a
completely separate computing facility designed without any anticipation of communicating with an on-line
message service. Creating an interface between SIGMA and LDMX proved to be a difficult task. The
resulting interface was neither efficient nor easy to operate. and several functions were impossible (for
example, LDMX could not deliver Top Secret traffic to SIGMA). LDMX facilities that should have been
made available to SIGMA users (such as the Plain Language Address Tables) were not. Redundant
processing took place (e.g.. outgoing message formats were checked in both machines). Information available
in LDMX was not passed to SIGMA (for example, linking of multipart messages). Feedback that a message
was accepted for release to AUTODIN was delayed.

Some features will be very difficult to implement without much closer coupling between the message
exchange and the AMHS. One prominent example is providing an on-line facility to update message
distribution tables. These tables exist in LDMX, but there is no provision for remote access or editing of their
contents. Ideally. the AMHS functions should be integrated with the message exchange functions.

3.2.5.3 Worldwide telecommunications procedures

Aftcr AL IODIN became operational, a set of standard operating procedures and formats were established
to facilitate the input, routing. editing, and other handling required, These protocols were concerned strictly
\&th that information nceded to get the message to the proper AUTODIN terminal: type of message.
precedence. addressees, classification, codes accepted. and message termination. This information was all

Section 3.2.4.3

J

3. Lessons 3-7

made a part of the message header, and since this information is computer-processed. the protocols are rigidly
enforced.

However, a great deal more information is needed to properly handle messages at the recipient site. This
includes such data as originator-proposed distribution (who should receive a copy of the message), the
subject, references, passing and special handling instructions, a unique identifier, paragraph indications,
individual paragraph classification markings, indication of multipart messages, identification of exercise
traffic, downgrading instructions, and standard subject index codes. Unfortunately, the procedures and
formats for these data are not clearly defined or rigidly enforced. Each service publishes its own guidelines
(these are similar but not identical), while some organizations such as the State Department seem to have
unique procedures. For manual handling of messages, this lack of uniform procedures is a nuisance: for
automated message handling it is a disaster. SIGMA was severely limited in the service it could provide
because of the difficulty in extracting this information from incoming messages.

This problem was most obvious in our attempts to locate the subject of an incoming message to be
displayed in the file entries. The subject was supposed to indicate the content of the message and suggest to
the user whether he should read it and how he should route it. Whenever the subject was wrong, the user was
upset The problem, however, was not with SIGMA, but with the lack of a uniform method for extracting the
subject from the original message (if a subject was even given at all). Lack of formatting standards also
limited SIGMA's ability to extract proper references, recognize exercise traffic, link multipart messages, or
follow special handling instructions. Better standards alone are not enough; they must be enforced as well.
Until all AUTODIN traffic is input through devices that will check the validity of this data, there is bound to
be a large amount of human error on input

3.2.6 General Questions Connected With Establishing an Automated
System

As a message service is intended to provide communications among users, the benefits gained are directly
-related to how many people are on the system, who they are, and where they are located. An analogy with
telephones is useful. The more phones (or terminals) on the system, the more useful the system becomes to
everyone. In a message system, it takes a critical mass of users to contribute enough information to the shared
database to make that database valuable. Some minimum number of users is needed in order to justify an
automated service.

This phenomenon is amplified when the automated message service is not well integrated with the manual
message facilities, as was the case with SIGMA. If an action officer wished to forward a message to two other
officers, one on-line and the other not, he had to perform two completely separate operations. In most cases it
was easier to handle both transactions manually. A better integrated system would reduce this problem.

Another factor closely related to the number of users is the number of terminals. The style of use is
strongly influenced by whether or not a user shares his terminal. Obviously, if a user has his own terminal, he
can access the system whenever he wants. However, rerminal costs, system performance, the availability of
ports, etc., may temper the ideal of one terminal per user.

The comments of some of the users inter% icwed made it clear that the number of terminals at MME (24)
'kas below the critical threshold for CINCPAC. The precise minimum number is a matter of conjecture,
though it was estimated by some at CINCPAC that 65 terminals would suffice to cover the J3 Directorate
(containing approximately 200 people). It is not clear that covering a single Directorate would be the most
effectie use of that many terminals. Our guess is that 200 terminals would support automated message

Section 3.2.5.3

3-8 SIGMA FINAL REPORT

handling for the entire CINCPAC Headquarters. As an AMHS becomes an integrateo
information/communication system, the distribution of terminals will no doubt go up.

If only a restricted number of terminals is available, as will surely be the case for any near-term AMHS
delivered to CINCPAC, someone must determine their optimum allocation. As noted earlier, a user is
directly affected by sharing a terminal. He will store essential data in paper files. If his job entails a great deal
of this essential data, he will simply opt for doing his job - tirely off-line: he will benefit little from the
AMHS.

When only part of the user community has access to the on-line system, special procedures must be
designed to support the integration of the manual and automated systems. For example,we might have had
on-line users act as though everyone at CINCPAC were an on-line user. Then, whenever a message is
forwarded to an off-line user, the system prints a copy of it with the recipient's name in the Communication
Center and its delivery becomes the center's responsibility. Since no such procedure was tried during MME,
we cannot say whether it would have been effective.

3.2.7 Policies and Procedures

So far in this part we have concentrated on the user's subjective reactions to the system. Now we focus on
the fact that in the military each user employs the system within a fairly well defined set of policies and
procedures.

Closely related to the issue of the number of terminals are the questions of specifying the users of the
system, determining how often they can access the system, defining what they are allowed or required to do
with the system, etc. The policies and procedures surrounding an AMHS are as important to optimizing the
system's utility as the functional details. Especially important are the procedures relating to the interface
between the on-line world and the hard copy world.

It is only through trial and error that optimum procedures can be discovered. This takes time, an
organization willing to experiment, a system with flexibility, and a manager who has the authority and
commitment to work o : these procedures. Unfortunately. %er little attention was paid to issues of how to
best use SIGMA during the MME. so our results in this area are limited. Whatever automated assistance is
prox ided. it is essential to devote appropriate attention to dex eloping policies and procedures within the user
community for the system's use.

Simple policies, such as how often a user is expected to check his messages or who is allowed to file
messages into what files, determine the utility of an AMHS. For example, the policy of producing 3's daily
readboard on-line uncovered one of SIGMA's most appreciated features since it gave division chiefs access to
information they never had before. Although this readboard had to be prepared twice by the Command
Center Watch Team, one hard copy and another on-line, if the MME printer had been of better quality the
readboard could actually have been prepared entirely on-line and then printed for 13.

Changes in procedures often entail changes in various system parameters. It is therefore critical to have
automated aids to change access-control parameters for the Narious objects in the system, to introduce new
users, to change user parameters, to alter routing tables, to adjust security settings for users or terminal lines.
etc. Since policies and procedures are prone to change and evolve, it is imperative that the AMHS not lock
user procedures into its own code (even if this is done to "help the user"). For example, in SIGMA the
automatic generation of a citation to the file ACIION-LOG on execution of the ACTION instruction is

Section 3.2.6

3. Lessons 3-9

buried in SIGMA code that performs this function as an adjunct to forwarding a message. The name of the
instruction that calls this function, the citation type produced, and the name of the file to receive the citation
are parameters of the SIGMA Command Table, which can easily be changed without writing new code. But
if it were decided that action citations should be sent to two files, or that the COORDINATE instruction
should send a citation to a Coordination-Log file, the system could not accommodate this without generation
of new code and a full system release.

An AMHS is conceptually different from a paper system. Some of the most powerful features of an on-line
service (e.g., ease of data sharing) are the most difficult concepts to understand. If an organization's
procedures are to be tied to these complicated concepts, it must be recognized that it will take additional time
to train users.

3.2.8 The Larger Goals of an Automated Message Handling System

An automated message handling system is much more than a delivery mechanism for getting a message
from point A to point B. In fact, we believe message handling will be the base for a broad, general-purpose
information/communication system of the future. To be useful, an AMHS must be a data management
system and a word processing system as well. Furthermore, in order for it to realize its full potential, it must
be a gateway into a host of other application programs, particularly retrieval of command and control data.

As such, an AMHS is an "administration" tool or, in more popular terms, an "office automation" system.
Only when viewing the system in this larger perspective can one appreciate the significance of the many
functions that should be provided. The AMHS must support a total organization whose different members
will derive benefits from its various parts in very different ways. MITRE's results (see [131) and users'
remarks corroborate this finding. (Perhaps the best example is the ROUTE instruction, which was seldom
used by anyone other than J301. But his role was vital to the message delivery function, and to him the
instruction was essential.)

Since SIGMA was used as more than a message delivery system, it is not surprising that many of its
underlying functions are not unique to messages; in fact, only eight of the fifty instructions that SIGMA
executes are specific only to messages. Functions such as editing, printing, file manipulation. searching,
annotation, help, tutoring, alerting, and status display appear in nearly all good on-line computing services.
One of the compelling reasons for an integrated information/communication system (rathe; ,.an many
separate systems) is the way these functions can serve a wide range of data objects. One of the lessons we
learned best is the necessity of looking at any future system from the widest possible perspective.

One of SIGMA's notable strong points has always been its attention to the real needs and preferences of its
users. We argue that this attitude is indispensable at all levels of system philosophy and design. In fact. the
necessity of finding out what these needs were is precisely why an experimental system was installed. One of
our most important conclusions is that the next AMHS must be built in an evolutionary manner. Early
models must be kept extremely flexible at the expense of performance or simplicity of programming, so they
can be adapted to accomplish their goal; experience will tell how to introduce more rigidity in subsequent
models. Though a system based on this mode of operation takes longer to build than a tightly coded system,
the long-range effect is to deliver a better quality product--acceptable to a wider community of users.
Although we feel that an AMHS has tremendous utility for military C3 environments, early delivers of an
inflexible, insufficient system will do more harm than good.

A final point about the workings of an AMHS: we do not yet know how to integrate such a general-
purpose service into a large organization. As an organization learns to use the functions of a given system, the

Section 3.2.7

3-10 SIGMA fINAL REPORI

user's perception of his needs changes- many enhancements are suggested, new data objects are invented, and
old ways of using a service are revised. Changes are introduced because system designers learn how to do the
task better, see new benefits by extending the system's capabilities, and realize how certain local variations
must be accommodated. The "evolutionary" approach we see as crucial is not easy to achieve, especially in a
procurement environment designed to purchase tanks, airplanes, and guns. The Military Message
Experiment was a significant step toward "evolving" an AMHS. We hope that the next step is taken from this
solid footing.

3.3 LESSONS ON FUNCTION AND DESIGN

This section addresses those lessons that are specific to the functionality or design of an AMHS. Since the
experiment was confined to a single automated message system, SIGMA, our examples are necessarily
specific to that system. However, we have attempted to interpret the results as generally as we felt we could.

This section starts with a discussion of our opinion of the basic architecture of SIGMA. It follows with a
wide variety of lessons about details of the message system, directed toward people who specify or design
message systems.

3.3.1 Architecture

Section 4.2 of the Sigma Final Report, Part 3. discusses the architecture of SIGMA. The primary features
of the architecture are shared access to a single copy of messages, files as a collection of citations to messages,
shared access to a single copy of files, central data management, split between foreground-background
processes. archival, and the intelligent terminal.

3.3.1.1 Shared access to a single copy of messages

The fact that the system keeps a single copy of a message and users share access to it provides many
benefits, the most obvious of which is the cost saving in disk storage. Had we adopted the more conventional
approach of providing cacti user his own disk copy, we would have required considerably more disk space.
However, we feel the more important benefit is the inherent sharing of identical information. When a user
accesses a message, he always gets the most up-to-date copy of "the" message. Pertinent information about
that message (e.g., who has gotten copies, who has the action, appropriate annotations) is right there with the
text: there is neve7 an issue of having to send extra copies around to disseminate information about the
message or of getting the "wrong copy" (e.g., the one without the annotation). This feature is especially
important to the coordination process, where more than one person's version is involved and the message is
constantly changing.

3.3.1.2 Files as a collection of citations to messages

Files (or folders, as we call them in Part 4) are collections of messages. But since messages are kept
centrally, files necessarily contain pointers. In order to give the user enough information to recognize, select,
and manipulate the messages, file entries contain only pertinent information. The power of extracting
essential information into file entries is that it allows the user to perform the bulk of his manipulation of
messages with this compact information: this is faster both for the user and for the system. The concept of
files as a collection of pointers also makes the archive ser% ice A ork onoothly, since it permits the messages to
be mo\ ed to tertiary storage " ithout affecting the files that point to -.,cm--those files are still available for user
manipulation.

Section 3.2.8

3. Lessons 31

3.3.1.3 Shared access to a single copy of files

Sharing files was even more successful than sharing messages. The Milit; ry Message Experiment bore out
our belief that message handling in a tightly knit organization like CINCPAC is more a matter of managing
information than of distributing messages: two thirds of the instructions executed in MME dealt with files or
file entries. Shared files played a central role in much of the use of SIGIMA; for example, over one fourth of
the files opened were Daie Files. The Readboard and the Action -Log were special files whose utility was
completely associated with sharing the data they provided. During the last 7 months of the experiment there
were 315 links established to another user's file (GET FILE instructions executed) for a average user
population of approximately 70 users, ample evidence that there was considerable sharing among users' files.

3.3.1.4 Central data management

Central data management is what makes sharing messages and files possible. By controlling updates to
shared objects through a central process (daemon), we were able to allow users to access objects
simultaneously and to do almost anything they wished with them.

3.3.1.5 Fo reg round- background split

The foreground/background di% ision betw een the user job and daemons is sound. There are obvious tasks
which fall into one or the other categor). What is not clear is how to make the division and where ao put all
the functions. For example, in early versions of SIGMA the user job waited for the daemori to finish his
request in case of error. TIhis synchronization was costly and useless. Even at the end of SIGMA
de~elopment there \%as talk of putting Pending file updates in the user job for on-line users. All in all, the
s~trict separation we enforced in SIGMA simplified our systemn and gave us flexibility in the placement of
functions, both of w hich were important considerations.

3.3.1.6 A rc h ive

Thechi Me scheme nrc, ided h' SIGNl.\ is; .iniple ind eg~,rit. It A is inwroduiccd with absolutcl', no user
d'\'a);Ln 'anc ia'2r i Cment \i,ias rv~ired. SinLC files rernit ifter :ri-e-sagOS are ilrchi'o d. the

r~ ~ ~ ~ ~ ~~, !I-l lr1%ir . ~ .:k ; ,u eC, ' fPI 'ti1-line rev -Igc . ,he ..rchi~ c i.2'

1eNru.rqi~iCli 1. "L ::aa11>. L~h.f.'r,1ation 1,; imnpk-rrnt Lnl,- i ucer L~~.T. c 'r-
i~qlr~ ;: 'P~~ I' ti7 ~ . it\,~!to hr,:TnL the ar~hi\e1dO d,,,:k,, oi.-ri. ' ro: 1cre it,

3.3.1 .7 Intelligent terminal

13 \ IM:~ 111 the airrni1a Lontain pow erfail local editing. miost of the user's text proccssing takes place in the
ter-minal. Ahach pro-i\ is predictable. tiey response. 1Ihe local editing muitiwindow capabilities and
Iindpenident memrory mitauacenlent resulted in at natural itna hiplh responsive interaction style . Althouph noa
ad~ antage was taken of it. this responsiveness "orked equall\ well os era commrunication link withi long dei:iy
WCC.. satellite link or nct%%ork delay). so SIGNIA could comlfortably support \ery remnote users w ith cry Ittle
difference in perfon-nance.

3.3.2 Details about Function and Design

Pl,artr 2 and 4 dsa the wk a\ SIGMNA looked to the usecr and how it Aas built. Thei followking discussion
identirfe, paticular \csNs e learned that we feel ma\ be of \alue for others faced with specifying or

Section 3.3.1 3

3-12 SIGMA FINAL REPORT

designing a message for a military organization similar to CINCPAC. It is difficult to present this information
in a uniform and consistent manner; some is quite general, some is very specific, some deals with the function
the user sees, some deals with how a feature was implemented. The basic order of presentation follows the
organization of Part 2. Where a particular function or design is pertinent, a reference to the discussion of it in
an earlier part is supplied.

3.3.2.1 Start-up facilities

SIGMA did not allow users outside the boundaries of the system, i.e., they could not get into the TENEX
operating system or modify the system's mode of operation. Users started up the system by simply turning
the terminal power on- if the terminal was already turned on but not in use, the user hit !!CONTROL!! and
!!RESE71! keys simultaneously. The terminal then reset itself, the screen cleared, and the message "Terminal
Ready" appeared.

There was a very significant delay (20-60 seconds) before SIGMA in fact started. One improved version
dramatically cut the delay from 20 seconds to 3 or 4, but the users were not given feedback that SIGMA was
starting up' they had to wait until the system got started before anything appeared on the screen. This was
unsatisfactory for two reasons: first, the lack of immediate feedback distressed the users: second, SIGMA
sometimes did not start, in which case users had to hit the button again. We recommend that any future
system make the start-up mechanism extremely simple and automatic. The user should be provided
immediate feedback that the start-up (which should be ultrareliable) has begun. Some intelligible error
message should appear if start-up fails.

3.3.2.2 The display screen

Three lines of text gave the user general status information: the flash line, the feedback line, and the status
line. We observed that this information was essential because it helped the user understand where he was.
The %orking space was broken into a display window and (potentially) a view window. The ability to split the
screen and sho two separate objects at the same time was %ery popular--indeed, very important to the
success of the system. If a larger screen and more memory were available, we would advocate using the
working space more flexibly. There %as no particular reason for the working space to be split only into two
%,indows or for text in one of those windows not to be editable: "e did it this way only to simplif' the control
code in the functional module. With a little more complexity (and a larger screen) the window management
could be made more flexible, and thus the system macte more capable.

Although the facility for splitting the screen and displaying two objects received good grades. a few users
indicated that in split-screen mode, the working areas were too small, which has been our opinion for a long
time. The computer industry does not offer a large-screen, high-resolution (50 lines of 80 characters) terminal
as a standard product, even though such a terminal is quite common in the word processing industry:
apparently, the "market" does not demand it. For an application such as automated message handling, the
additional cost of such a terminal is justified if a suitable multiindow capability is provided. An alternative
is to provide two separate CRT screens, as provided in NMIC-SS. We feel this alternative is more expensive,
less flexible (you cannot view a full page of a single document). and makes too large a package for an office
enironment. With a higher performance display. \ou cou!d separate windows with lines across the page.
Actually a separator line could easily be a primitixc if a terminal \%ere designed from the start to provide
multiwindoAs. lhe computer research community has demonstrated the use of full-page CRT's \ith
multiple fonts and graphics capabilities in which Aindoks can be set to arbitrary sizes and locations, even
overlapping each other. These terminals may be omerkill for a stem limited to nessage handling, but if the
AMHS eentuall% exol\es into an integrated intormation/communicition s\stem, the\ will be well worth

their added cost.

Section 3.3.2

3. Lessons 3-13

3.3.2.3 Entering instructions

SIGMA's verN sophisticated command language parser not only allows users to enter arguments in any
order, but also automatically supplies defaults where appropriate, corrects spelling on mistyped parameters,
permits the correction of any typed-in errors before execution, and provides contextual prompting at two
levels of detail. The generalized editing facilities available in the terminal applied to the command window,
so that the user did not hae to operate in several different styles or modes. Users liked the avaik -.e function
keys, although some were obscure and seldom used. On the other hand, some instructions would have
worked better as function keys (for example, "find top" and "find bottom"). In general, users had little
difficulty with the process of entering instructions, although they had their share of difficulty with the
execution of particular instructions (e.g., parameters missing, unexpected results). Very little was said in the
evaluation interviews about instruction entry, which we took to be a sign that the large amount of attention we
paid to this process paid off.

3.3.2.4 Help system

SIGMA offered two forms of reference material: a reference manual and an on-line help system. Both of
these were generated from the same source file: a special program was run against that file to produce both
the information for the help database (the on-line system) and text pages for a new copy of the reference
manual. There were slight variations (e.g.. the reference manual might speak of material on a different page.
while the on-line system would provide a direct link to it), but essentially they were identical. Interestingly
enough, the users rated the reference manual as "fairly useful" and the help system as "not very useful." We
interpret this as simply a function of the communications medium: a CRT is much more difficult to use than
a printed manual when one is tring to find some particular information, since with the latter one can flip
through the pages, scan large amounts of information quickly. and zero in on the information of interest. The
CRT s-stem just did not work very well because it did not fit the way people tend to operate. This was true
e',en though the s 'stcm had direct imbedded links that made it possible to jump directly from a word of
interest to the text descrihing to that item.

ihe dWu!. also e'ts t(, The eser s expectations. He simplh does not expect a book to automatica!h
->men.: the ,rer\ he [s Lkis for: c eli's he has c, search tbr them. Ir the help database, with the on-

i:,, :n!crav, ti\ K:,':. :scr M s Ten d in!h CN, paticnt their general complaint Aas that the system ne\er
,d" t ,cmt t f' ' ti :h .o', , . :O. cA ieA rhat this rem..in, an unresl,'!ed research isue:

2 , : k. . . ; i r: . '.:':C-" e ! r '01rci, iii t±c hlelp -, .errn than s C. ere able t" put toe SIGM A \,n o,-

:.n. heip 1. iit'. is .. r, il e,,e'nial. an.U th implernentcrs cf future s. stems "ill ha~e tv de\ote considcrable
,ttc;.tion to vontent and fhnn. The scheme to force the on-line help to track the reference manual worked
\Aell,

3.3.2.5 The tutor system

SI(\I .\ , ,ffcred .1 'vt,:l . stem that pio,'\ided lessrons and exercises to help users to learn the s.stem
.11d 2 re t...mi-ia i Aih i t. \e undertook this Ath reservations because we had neither the expertise

11 i d lntIlu tiOn)or the time rciired to deselop high-quality training maicral.

if \ k.ci I \(' \(_ pe.i2,,, cirCutst,.,ces (the\ stand round-the-clock watches) forced us to proide

i -:i;. :: .utll .~iphiltbl In gonerL. the lessons Mnd exercises Aere reasonably well received: some
it the l,.i . ,o kw l\ or -ral sritten and that they presented on]. a few instructions at

., ; h"!c kht:
, .inld : -. c erl. lad Ase taken the time to incorporate the users' suggested

mp :. :s:t, . tie e,,,: ,:id e\rcci,e,. \kC could hase improved that part of the service considerably

Section 332.2

3-14 SIGMA FINAL REPORT

Certain aspects of the system could not be contained in exercises, because there was no easy way to simulate

interaction with another user (e.g., coordination). A much more sophisticated mechanism is required to solve
this problem.

In summary, the users found the tutor useful, but preferred one-on-one training. MITRE's report 1261 on
the result of training presents this subject in much greater detail.

3.3.2.6 Editing

In SIGMA, editing is done partly inside the terminal and partly through command execution. The
naturalness of having editing functions built into the terminal, where they are fingertip responsive and always
operational, v. as very important. The rapid response to local key strokes encouraged the users to feel that they
were altering the document itself rather than using an editor (i.e., a third party making the changes for them).
The SIGMA editor was not only natural to use but omnipresent--the user did not have to change levels or
modes before acquiring the editing capability. We think this is one of SIGMA's particularly strong points.

Early in SIGMA's career, a debate took place about whether the terminals should provide a replace
(overstrike) capability, which allows the user to type in new data overstriking the old data at the cursor
location. As it was, users replaced by deleting the old and inserting the new as two steps. Since we did not
conduct a controlled experiment, we cannot say whether the decision not to provide overstrike was correct
(users did not object to its absence). The point to be made here is not that SIGMA should be used as the best
model for the features to provide in the local editor (good word processing systems would be better models
for that), but that it is important to use a communication protocol to the terminal that isolates the details of its
editing from the application program. This way different editing features can be adopted, and new, improved
term nals can be incorporated into the system without has ing to re\ rite the application code.

We found that the larger context editor--that is, the part of the edizor executed in SIGMA--was generally
%ell accepted, although some potentiallY useful facilities vkere neser provided (such as a global replace, which
allows users to replace every occurrence of a particular string Aith something else--for instance, every
occurrence of "herring" changed to "trout").

We did learn a lesson regarding SIGMA's automatic formatting. At first. SIGMA formatted all text in the
displas window whenever a Lommand was executed. Ifa user kanted to mose text from a received message
into a draft message. SIGMA automatically reformatted using its format algoriihm. Since fomiatting rules are
difficult to make flexible enough to suit the unique needs of each user. text was often formatted in a was the
users did not want. At the uers' insistence, we changed SIGMA\ so that it would only reformat text when the
users hit a particular key: otherwise, we left the information as it "as before. Users Aere alloked to identif\ a
specific area of text to be formatted by placing a mark at the beginning and end of the text. This arrangement
"as much more successful. We conclude that formatting is a ser. significant issue: considerable attention to
it is needed to provide the right degree of automatic assistance.

3.3.2.7 The structure of the SIGMA messages

In SIGMA. messvages arc highl% structured objects made up ot man. fields, linked together in a manner
that ficiliites their manipultion or alteration, as , eli as 0he insertion of new information. For thi;
experimentl A stem. e genealized man.\ s.stein fcatureN hec.,usc Ae -aanted the flexibilit\ to respond to
users suggestions quickl. and easily. It turned out that f'or the preparation of messages this \ka-. \ers
appiopridate. -lo" es er, incoming mcssegc inherited ill t1 0ame cne;alit \. es en though the onl\ alteration
made to them wkas the insertion of a feA fields (the \ctlori field, the Information field), the insertion ot

Section 3.3.2.

3. lessons 3-'5

comments, and the users' highlighting of specific texts. Although this message structure provided great
flexibility, the price paid was that messages Acre considerably larger (took up more disk space or core space),
and more processing was required to link the messages together again for display purposes. Since incoming
messages made up 90 percent of the traffic on the system, a severe price in performance and space was paid in
exchange for generality which had little utility for this large number of messages. Were we to build a

production system, we Aould look more closely at the presentation of transmitted messages and consider
treating them as more simply structured objects, different from preparation messages.

3.3.2.8 Message format

During the design of SIGMA "e corsidered proxiding facilities to allow users to reformat a message for
their personal use, that is. to allvoA them to change the order in which fields are presented to them. The use-s
advised that this was not a particularly valuable aid. After several ears' experience, we saw that they vker?
correct. The only requests we had about the format of messages were a global change in the format of memos
and a request to allow users to select for themselves whether a displayed message would start at the top of the
message, showing all the addresses, or in the middle of the message, showing the text ot the message first.

(This does not reorder the fields, but simply changes the initiation point of the display.) The message
ordering or template facility of Hermes14 is a very powerful facility when one extends the message service
beyond simple message handling. It certainly deserves investigation for any future message systems. but we
cannot make any particular case for its importance as a result of our experience with MME.

3.3.2.9 Message types

SIGMA handles the following types of messages: AUTODIN messages from commands outside of
CINCPAC, memos or formal messages internal to CINCPAC, and notes or informal messages between
SIGMA users. Although the statistics are not precise, about 90 percent of the messages dealt with in SIGMA
were AUTODIN messages. Of the remaining messages. notes were found to be quite useful; memos were
used \ern little, probably because they were used primarily between directorates, and the only directorate
with access to SIGMA was J3.

3.3.2.10 Distribution of incoming messages

The LDMX automatically assigned distribution to incoming AUTODIN messages. Those messages that
.I)MY directed to the .3 directorate were passed on to SIGMA. At first SIGMA simply adopted the

%,,signment made by L)MX for it, internal distribution: later, however, it was recognized that the LDMX
a",ignments were not entirely appropriate for SIGMA. For example. LDMX assigned messages to go to J3
hiuseif. vhen actually his staff assistant. J301, processed them. So a special distribution mapping function
xAas put in SIGMA's Reception daemon to alloA the Sxstem Control Officer to give alternate directions for
incoming mescages. This initial implementation permitted messages directed to one user to be redirected to

at alternate usei or users.

iluer. after lasifed messages \kerc alo'aed on the v.em, a potcntiall\ serious breach of securit\ occurred
,A ''- a series o: rclryclc.i messages \cre allowed into the SIGMA database. A group of messages That \ere

0 C ,~CI hr,.d .i trih~ltion "cre passed to SIG\ . which placed them in Date Files s'here a:;x,"ne

.Acccs -,SI(. .uld see them. A quick fix nas installed b\ having the redistribution function
pi , ided in the Reception daenon changed to scan the first six lines of a message for one of several kc\ text

Iiemie, i, a message s .stem produced h% Bolt Beranek and N Iar tnc

Section 3.3.2.7

3-16 SIGMA FINAL REPORT

strings set by the System Control Officer. When one of these strings was found, the message was rejected and
sent back to the l.DMX. As we more carefully examined other possible message reception rules, it became
obvious that this quick fix \as not sufficient; it was important to provide special scanning on a number of
criteria that would override a number of distribution assignments made by the I.DMX (necessary for
handling Top Secret messages. special handling messages, private messages for a specific officer, etc.). TVhe
lesson learned here is that a simple distribution scheme whereby each user provides the criterion for selecting
messages he wants to receive is not adequate: overriding principles must apply, which the current LDMX
algorithms were not adequate to detect. In fact, the overriding conditions are subtle: they require both
significant study and flexible algorithms that can be adjusted in the field. A user's personalizing his own
interest profile 'or internal distribution messages is a very appealing idea, and we have seen it claimed that
this is how it should be done in the future. We warn that it is more difficult than it seems to achieve proper
distribution.

An even more difficult problem is the assignment of action on messages: again, since only one office can be
assigned the action, user interest profiles are inadequate. LDMX has a fairly sophisticated algorithm that
secquentially searches a message using up to seven different criteria, and, when it gets its first hit, will assign
action on the message on the basis of that criterion. The assignment is often wrong, despite the complexity of
the algorihm. Getting the action assignment correct is a nontrivial problem, and user-settable interest
profiles do not provide an adequate solution.

Another observation to be made about the distribution experience in SIGMA is the importance of the
ROUTE command. ROUTE was absolutely essential to J301's task of distributing messages to the J3 staff: it
made a difference of at least a factor of two in the time spent handling the distribution of messages. J301 built
a set of Selectors which would designate different classes of messages. Applying a particular Selector, he
would route with an associated Route list, then he would apply another Selector and associated Route list. He
would work his way through the file of incoming messages until he finished the bulk of the processing, then
look at the remaining messages individually to distribute them. After a few months of doing this, the J301
people recogniLed that they were doing a highly automatic process which could be done entirely by SIGMA.
J301 asked for a facility which would string together the RESTRICT/ROUTE sequences they automatically
performed--essentially a form of automated message distribution. Note that this distribution form is not the
same as user-settable interest profiles, since it is under central control. Also it is applied after the restricted
distribution messages have been culled out.

Another lesson learned regarding the message distribution aspect of SIGMA was that the users liked
having the Action and Internal distribution noted on the message itself. They could look at the message and
see who was assigned the action (and, in fact, the whole history of how action assignment went): they could
also see who had opened the message. The Action assignment was particularly useful as a search criterion on
incoming messages: one popular style of reviewing traffic was to look first at all the messages with action
assigned to oneself, then at the ones with action to J3 (that is. anyone in J3), then all the rest The ActionLog
automatically built by SIGMA was not employed much during the regular use of SIGMA, but during the
rerun of the Exercise Power Play it was tested and proved %aluable. We suspect the feature should be
implemented in a more general fashion, so that special files could be associated with other instructions (e.g., a
Draft file for all CREATE MESSAGE commands).

We found that a number of users liked to pull messages from the Date Files using selectors built
beforehand: they could get the messages faster this wa., because they did not have to wait for J301's routing.
By this means they also discoered messages that LDMX or J301 had distributed improperly, which would
never ha\e gotten to them otherwise. IlDMX criteria for hardling messages were not as dynamic as the users'
own selectors. Some users found it \erv valuable to search the Date File database for messages that were not

Section 3.3.2.10

.. o o

3. Lessons 3-17

ther action assigninent, but that interested them for some other reason. [hey felt they obtained a muchbctter general overuic" oftCINCP.C actiitics b\ perusing the Daie File in this manner.

One objectionable aspect of interactise message handling was that Alhen a message was forwarded, if the
user Aa is not on-line the message just waited until he came on. If the user was expressly interested in a
particular message. no human interaction could locate him to tell him a message had arrived. In the manual
s stein, of course, he could leave instnctions with his secretary or another officer.

We contemplated providing a "guard" ftacility as the solution to this. [he user could build a special guard
list and assign a selector to it: if an incoming message met the selector criterion, the message wNould be
f'rx arded to the first person on the guard list who was logged in: if no one on the list was on-line, the system
operator would be notified. The message would be forwarded to the on-line user along with a highlighted
n,tC, .;aying something like "please call me if this comes in." We never tried the guard feature, but since this
lack ',as cited as an objection to interacti\e message handling, it might be a good subject for future
in' estigation.

3.3.2.1 1 Alerts

[he Alert mechanism was generally considered a good feature. Users appreciated being able to establish
the criteria for causing alerts, for it allowed them to restrict the alerts to their own interests. All users
unanimously agreed that this was a nice feature, and they appreciated the fact that personalization took
exactl\ the same form as their standard selector criteria. However. implementation of alerts was somewhat
less than ideal. Having a kind of shadow file (called the Alert list) with a maximum often entries was not the
best w'ay to do it. One problem was that there were only ten entries: if the user did not check them soon
enough, some would be lost. More annoying, ho, e\er, \kas that even after the alert \%as processed in the Alert
list, the entry still remained in the user's Pending file. Often a user had to deal with the entry twice: once in
the alert list, and again when he opened his Pending file. This was confusing instead of straightforward and
automatic. It would have been much more natural if alerts had been implemented as a special aspect of
Pending files (this wsould have required keeping the Pending file open at all times). When a message meeung
the message alert criteria arrived, a user would get the same flash notification. When he pushed the
!!A1 FRT ON/OF11! button, he mould get the Pending file with the ALERT SEIECTOR applied to it.
Then taking action on it. he would be acting on the one entry in the Pending file. This would have required
more mechanism in SIGMA, but the users \sould haae much appreciated having their Pending file open at all
times exen when other files were open as \,ell. In fact, one of the users' main objections \%as the limitation of
having only one object of a type open at one time, This was even more true in the message area, where users
sid it was Net-\- desirable to have seeral messages open at once.

3.3.2.12 Access to messages

[he uni\ersally accepted indentifier for an At.' lO)IN message is the combination of its From and DI'G
fields. t 7nfortunatelb. this is not guaranteed to be a unique identifier (due to multipart messages, corrected
iett.,nismis,,ions. operator errors. etc.). For this reaison. SIGMA assigned its ov, n unique message identifier
through A hich users could directly access mess.iges in the database, and no pro\ision \as made for dlrectl.\
.icc'sg a message b\ its Froi/l)l'(; Fo acce" a ncssage by)I'G the user had to open the appropriate
)at lil (thereby closing the current open file) and RFSTRICT the file usith the Fromn and DrG

infornation. lhis \kas usuaillv better thian Ira\ ing to sea rch for paper copies in file cabinets, so users ga\ e
SIGMA good marks for it.

Section 332.10

3-18 SIGMA FINAL REPORT

It would have been more conenient and much faster for the user had we provided direct access b\
From/DTG. This would have required SIGMA to handle the nonuniqueness problem and to parse ,he From
and DTG fields. Since for many messages in AUTODIN these fields are manually generated (rather than b
computer, as for the LDMX), they are prone to be in error (misspelled or not valid): to make some of them
would require considerable intelligence in the Reception process and access to the AUTODIN Plain
Language Address Tables, or PLAD (the table of legitimate addresses in AUTODIN). Without a table of
Nalid addresses, it would be virtually impossible to recognize misspellings. The table is also needed to provide
automatic expansion when the user types the From field into the instruction window to access the message.
These tables are mentioned in the LDMX, but SIGMA had no access to them. Some special intelligence
would also be required to interpret the DTG. Again, since users type these in, we found that DTGs were
often out of range; it was not unusual to find messages with DTGs for months or even years that had not even
occurred yet.

It would have been even nicer to place a link (a pointer to the referenced message) right in an incoming
message itself. The user could then have simply pointed at the reference, done a !!HERE!, and pushed the
DISPLAY MESSAGE key. This would have required SIGMA to parse the reference in the incoming
messages and match the From/DTG found (as typed in the message) to the Fiom/DTG of the messages held
in the system. Unfortunately, not all writers of AUTODIN messages use the same rules for indicating a
reference message, so parsing the reference is very difficult. The second step would have been to recognize
the actual message based on DTG and From, extracted from the reference in the incoming message. Because
users often did not fill in all that information or supplied it in nonstandard form, that linking would be very
difficult. For example, when users type in a reference message they often abbreviate the From field a
message from "CNO, Washington, D.C." might be referenced as simply "CNO," or a reply to a message
might reference "YOUR" (or even "UR") message rather than typing out the full name.

3.3.2.13 Creating outgoing messages

SIGMA provided a variety of ways to create outgoing messages. One was simply to say
CREATE MESSAGE, which would start the user with a fresh empty message. Another was to
COPY MESSAGE, which would copy a partially completed message as far as it had already been filled in,
but assign it a new message ID date (this allowed the user to have preformatted messages all set up). Another
way to generate a message was to reply to a given message.

Readdressal was another avenue of generating outgoing messages, in which a special readdressal message
was created. By the time we had the facilities to create outgoing messages, the readdressal form was a fairly
trivial extension. It was, however, received by the users with great enthusiasm: some users claimed that it was
absolutely the best feature of SIGMA.

We think that this variety of ways of creating messages was very useful. We were surprised that
COPY MESSAGE was not used much (only 18 times) and ascribe its lack of use to users' ignorance. During
the interviews some users asked for a facility to do just that and were surprised when told that it already
existed.

One feature of SIGMA outgoing message processing that never quite went smoothly was the automatic
filing of the draft message. Whenever a message was created, an entry to that message was automatically
made in some file, defaulting to thc Pending file if another file Aas not specified. For messages that might
have coordination (MEMO and AUTODIN), it %kas important to CnT1Ure that the draft appeared in some file
so it could be easily accessed. But for NOTES, which did not allom coordination, it was often confusing. If
the user created a message and then sent it immediate\. there Acre t~o pointers in the file: one to the original
preparation message and another to the transmitted message. In SIGMA, these were treated as two separate

Section 3.3.2.12

3. Lessons 3-19

entities--necessary because in the coordination process they indeed are two separate entities. If the message is
created and immediately released, the preparation version of the message is rather useless, and having two
citations often confused the user. We do not have an answer to this. If we did not create that pointer to the
preparation message for a note, the message might be lost if the user stopped what he was doing or was
interrupted, or if the system crashed.

3.3.2.14 Coordination process

Although in the final MME questionnaire users did state a preference for automated over manual
coordination (14 to 2), our conclusion is that the coordination process is very complex and difficult to
automate. Users generally found SIGMA's version hard to understand and unnatural to use. Part of the
problem is that there is no model of coordination everyone can agree on.

In SIGMA, each user is given his own version as soon as he reads a message sent to him for coordination.
This was done so that he could make changes if he wished: he could alter the message and pass it on to
somebody else or send it back to the originator; it was even more important if the coordinator wanted to alter
the message and immediately release it (a user cannot edit another user's version). When a user adds
comments, he is putting the comments on his own version of the message, not the originator's. Somehow, the
users never understood this. The originator would look at the message he sent out for coordination and not
understand why he didn't see the coordinator's comments on it; he did not realize that he had to look at the
coordinator's version to see the coordinator's comments. It would probably have been more understandable
to have the user normally get the originator's version and be able only to comment on it. If he wanted to
create his own version, he would have to take some other explicit action. One of the keys to the success of
coordination in SIGMA is that these various user versions are all tied together as the same message, so that
other users automatically haxe access to each other's versions without having to find them in the database.
Another serious problem with on-line automated coordination is the difficulty in presenting editing changes
made by a coordinator. That is. if a user edits a message on paper, his remarks are fairly obvious because they
appear in red pencil: the parts he didn't want would be crossed out and substitute words added in the margin
'his is hard to show on a CRT. There was a plan to do a source compare between two versions and highlight

areas that had been changed. but we never had the time to pursue it. This research issue still needs
considerable attention before a solution is found.

We once planned that the originator of a message could automate the full coordination scenario (that is, the
routing of messages to the \ arious coordinators) w ithout any further interention. He could set up serial and
parallel lists and, when the message was chopped by various coordinators, the system would automatically
delixcr the message to the next coordinator on the serial list. This proved lo be too complex and not what the
users wanted: we ended up making the drafter initiate each coordination cycle manually. He would type in
the full list of coordinators in a single coordination list and then select any users on the list for the next cycle
of coordination: this proved more successful.

Interestingly, the users asked that more status information be provided about each coordinator. We
originally started with mcrel% a notation of approxal or disapproval, later, we added at the users' request
more information: whether the coordinator edited the message at all, whether the message he had chopped
was an old version of the message or the latest, and who did the chopping (that is, the personal name of the
indi\ idual, not just the role). Even though this made the Chop Status field more complicated and difficult to
read, users asked for e\en more information, such as time of chop.

There were other problems with coordination. One is the same problem of linking to references, discussed
earlier in the section on incoming messages. Another serious problem is accessing nonmessage references.

Section 3.3.2.13

3-20 SIGMA FINAL REPORT

Very often, reference material included books, manuals, letters, or other materials that were not on-line. The
coordinator would see the references but would have no way to access them. Another objection the users
raised was that there was no way to force the attention of the coordinator. In the manual system, when they
handcarried the message around, they knew they were going to get the attention of the coordinator because
they stood at his desk. In SIGMA an important message could be sent for coordination, but since there was
no way to force the user to respond to it for chopped citation, the originator felt that he had in some sense lost
control of the coordination.

A final objection voiced (a very serious one) was that very frequently many of the people on the
coordination list did not have access to SIGMA. Coordination could thus be only partly done on SIGMA,
and having some of the coordination done off-line and some on-line was not satisfactory since each form only
showed what had been done in that medium. Users vastly preferred to stick with one medium all the way.

3.3.2.15 Release of messages

In SIGMA, anyone who received a preparation message, whether he was its originator or the coordinator
on the list, was empowered to release it, if he had release authority for that type of message. Usually,
everybody had release authority for NOTES, only certain people for MEMOS, and a more restricted set for
AUTODIN messages. SIGMA's coordination facilities allowed the releaser to edit the message before he
released it; if he did the release, his edited version would be the one that was sent.

When a message was released, SIGMA would create an entirely new message that it passed to AUTODIN.
The Preparation message was closed (i.e., it could not be edited any more) and returned to the database.
When a Back copy of the message was received from AUTODIN, the message ID of the preparation message
was included in the citation produced. Because one could always get back to the preparation message, the
history of what people said, who chopped the message, what the comments were, and so forth, was always
available. It might have been even better to have provided the link to the preparation message in the SIGMA
back copy itself.

We took considerable effort to fix all the difficulties we encountered in releasing outgoing messages to the
LDMX. One such problem was making sure that the format of the message as it left SIGMA met AUTODIN
requirements, which incidentally we never found completely documented in any single reference. We found,
for instance, that if the address field was longer than 54 characters per line or the text field longer than 63
characters per line the message would be rejected: if the user tried to put two addressees on a single line, the
message would also be rejected. This was confusing to users who normally did not think about these matters
because their secretaries had always written the messages. With an on-line system they tended to write their
own messages, and would typically cony a hardcopy form of an incoming message which (for example)
showed two addressees on a line (LDMX formatting rules for printing bear no relation to acceptable input
forms for messages). In general, our solution was to change the preparation message form to remove some of
these problems. We indented the text line so that it was impossible to provide more than the specified
number of characters on a line, and we indented the address field exen further so that those specifications
would not be exceeded. SIGMA did a considerable amount of checking of format and data to catch as man"
errors as possible before they were given to LDMX: however, SIGMA did not have access to the Plain
Language Address table. so it could not validate addresses filled in by the users (it treated them as plain text).
It %kas the job of the LDMX to catch those kinds of errors. If the LDMX found an error that could not be
resolhed b\ the Communication Watch Officer, the message would be rejected and sent back to SIGMA.
L)MX notified SIGMA of the problem by sending the system operator something called a Service Message,
which had no particular relation to the rejected message: there \.as no automatic \%ay to field that service
message and get it to the user who had released the offending message. Instead. the service message went to

Section 3.3.2.14

3. Lessons 3-21

the operator of SIGMA, who usually had no idea how to correct the deficiency in the message; in fact, it was
very difficult for that operator to manually trace back and find which message had given the problem. Even if
he did. by that time the releaser could easily have logged off and gone home.

The basic underlying lesson from all of this is that it is essential to have the automated on-line message
system verify a released message and notify the releaser immediately if his message is not suitable for release.
If it passes that verification, there should be no subsequent rejection. Essentially, SIGMA should have been
able to apply all the rules that LDMX applied; if we had ever learned what they were, we might have been
able to do that. As it was, LDMX did its own verification, and we had unhappy users if there was any
difficulty.

Another area of contention was the question of who should receive back copies of a released message. Our
original proposal was that the releaser, the originator, and all coordinators would get back copies of an
outgoing message. This produced some problems in the Communication Center because LDMX
automatically made one paper copy for each of those users. This confused the Communication Center
personnel if they were users to whom LDMX normally did not distribute. We compromised by sending a
back copy only to the releaser. As a result, users often did not know if an outgoing message was in fact out or
not: they never got verification from SIGMA because we did not send them back copies, and there was no
%ay for SIGMA to know if LDMX had accepted the message or not. Users had to keep searching the Date
,File to see if the back copy had arrived yet. This is just another example of how important it is to closely
integrate the AMHS with the message exchange.

3.3.2.16 File system

SIGMA's facilities for manipulating messages via files consisting of entries that contain pointers to the
messages %ere generall] %ell receivcd. The main objection to the file entry was the poor content of the
Subject fields. As mentioned elsewhere, this was not a fault of SIGMA but primarily the result of lack of
,tandards in the -\'"IOl)IN communit.. Because of this. some users said they would have preferred to see
the first fie lines of text rather thin ha\e the system try to pull the subject out. We resisted this suggestion.
since it Aould ha\e made the file entries rather large for the limited size screen. An important attribute of
files is that wou can see a lot of entries at once: ours had three lines per file entry, so we could only show about
,ix messages on a single screen. A larger size screen \ould have helped significantly.

So1me people feel that users should be able to personalize the format of file entries (that is, to reformat
them " ith different fields of inforrtion shoA n in different places). We never had any request from users to
do this: however, it may have proven helpful.

f-or security purposes SIGMA treated the Pending file in a special manner. There were four levels of files,

one for each security leel: the users were allowed to set them up with combinations of all messages: Top
Secret messages in one file and the rest of the messages in a second file. or four separate files. The utility of
this %%as never tested because we nexer got Top Secret messages, users set their files to have all their messages
appear in one file. We suspect that a separate Top Secret Pending file would have proven unpopular.

In SIGMA the user could create his own personal files, naming them arbitrarily: this was viewed as a useful
feature. Users would like to have been able to control access to files, but it was never high on the priority list
because access \kas limited by other means. Users liked the generality of the file system and its flexibility.
although one user complained that he wanted to start a file name with a number rather than with a letter (a
feature \& hich made instruction parsing easier and more powerful).

Section 3.3.2.15

3-22 SIGMA FINAL REPORT

Date Files provided a record of messages that had arrived and a means to access messages by Date Time
Group, which turned out to be a very important feature of the system. Date Files allowed users to search the
database for messages of interest, using a variety of arbitrary criteria to pick out messages.

An important lesson was learned in the generation of Readboard files. A significant value of a message
handling system like SIGMA lies in the sharing of data. In the manual system Readboards are prepared for
J3. no one else in the command knows what messages J3's Readboard contains. SIGMA's provision of broad
access to the Readboard prepared for J3 was much appreciated. Division Chiefs scanned the messages in the
Readboard, discovering what messages J3 had seen and therefore what messages they should be prepared to
respond to.

Unfortunately, building the on-line Readboard required extra work for the Command Center staff, since
they had to build a manual one as well. Because J3 himself actually only read the paper Readboard the
command center personnel were not too enthusiastic about building the on-line Readboard, but the rest of the
user community appreciated the information so much that they insisted it be continued. This pointed up a
global lesson already mentioned--that is, the importance of integrating the paper-handling facility with the
on-line facility. Had the printer been of adequate quality, the Command Center personnel could build the
Readboard on-line, then produce the paper copy by printing the file's contents.

SIGMA provided a variety of file manipulation commands such as FILE, MOVE, DELETE, ACTION,
and so forth. Some of these, like FILE, MOVE, and DELETE, could be applied to multiple entries at one
time. But SIGMA did not allow the user to assign action or to forward more than a single entry at once. This
sort of inconsistency in the user interface is annoying to users and should have been avoided.

One of the ways of indicating to which messages the command applied was pointing out the message with a
!!HERE"!. Users requested that they be allowed to provide multiple !!HERE!!s and apply the command to
all the messages that were HEREd; so, for instance, if a user wanted to scan through the message file and
DELETE some messages, he would just scan, mark each one he did not want with a HERE, and execute a
DELETE command. Again. SIGMA never provided that capability, although it was on the list to be done
had there been more time.

We provided a couple of special commands: one was for sorting entries in the file by Date Time Group,
another for emptying the contents of a file. These were both found to be useful, especially in building the
Readboard.

Perhaps the best feature of SIGMA was the facility for selecting subsets of a file. The selector capability
and the ability to RESTRICT and AUGMENT were used a great deal in very! effective ways. Allowing users
to build their own named selectors was also very valuable and much appreciated. SIGMA offered two ways
to build selectors: One was to simply state the criteria in the CREATE SELECTOR command itself: the other
was to do a series of RESTRICT and AUGMENT operations until you had the selected subset you wanted.
then to save that series of selection steps as a single-named selector. Both techniques were used extensively to
build selectors.

It was a nice human iuterface feature that SIGMA always presented on screen the subset of messages the
user was dealing %ith: if he performed a RESTRICT on a file. SIGMA presented him with the message
subset that he had restricted, which gave the users a comfortable feeling that they knew what they were
dealing with at all times. We discussed with users the possibility of extending the selection criteria to apply to
strings from an. comments that were hooked on to message entries: we think this would have been a very
powerful addition. It could have served as an alternative form of ke%\%ording. which moved with the entry to
other files.

Section 3.3.2.16

3. Lessons 3-23

The ke ,Aord feature in SIGMA was not generall well accepted, probably because the keyword was
associated with the file and not with the message. This meant that the user could not assign the keyword
while displaying the message, the natural time to make such an assignment- he assigned the keyword to the
message entry while displaying the file. If the user then mo~ed the message to a different file, the keyword
did not go with it. We suspect that a more acceptable implementation would have been to have keyword be
one of the message fields that would K' extracted as part of a message summary, so users could select on it.

Users requested that they be allowed to do selection on more than one file at once and, in particular, to do
selection on a range of dates from th. Date Files. This would have been very valuable for finding messages
when the DTG was not known. As it A,,s the user had to open and search each day's file individually.
SIGMA needed some new mechanism to per 'orm such an operation, but it would have been very valuable.
We recommend that it be provided in any future message system.

Users expressed a desire to be able to put objects other than messages into files just as in their file drawers
they could file any arbitrary objects. SIGMA allowed users to put messages in and to comment on entries,
but not to put text objects in the files.

3.3.2.17 Text objects

Users found text objects to be very helpful: they were used for address lists, route lists, general data files,
and a variety of applications. People wrote letters as text objects, using the system essentially as a word
processing system; they wrote status reports and did many things that had not been envisioned as part of the
basic use of the SIGMA system. One of the most important uses of a text object was a general data file where
users could put information extracted from messages: since they could move the text of the object in a single,
simple way, they had very accurate information with no transcription errors. Some users kept databases in
this manner.

Another use of text objects was to generate status reports. Information was extracted from many incoming
messages and put into a single text object that formed the basis of a status report that the user could then edit.
Or a single outgoing message could be formed from the accumulation of status reports from a number of
people. Essentially, this was using the system as a word processing facility with shared data; it proved
extremely valuable. One can imagine extending the text object handling into even more word processing
applications to enhance the productivity of the organization in areas other than message handling.

3.3.2.18 Sectioned messages

In incoming messages, there were some multipart messages (messages that were broken into two or more
separate messages because they were too long for AUTODIN to handle). These were treated as completely
separate messages in SIGMA, because they were handed to the system that way. LDMX gave us no
indication that such messages were related: although in the body of the text, near the top, one usually could
find words something like "Part one of five." The standards for indicating a multipart message were never
enunciated or uniformly applied, so it was difficult to use this clue. Multipart messages were especially
troublesome when a user tried to readdress one. Each separate part had to be readdressed. all with the same
DTG. SIGMA had no capability for assigning the same DTG on two outgoing messages.

Section 3.3.2.16

3-24 SIGMA FINAL REPORT

3.3.2.19 Access control

One of SIGMA's important features was a command called GET, which permitted access to other users'
files, selectors, and text objects. Once a user did a GET on a file, he could access it as his own and was able to
see the changes to the file as they occurred. The GET feature allowed--in fact, encouraged--data sharing.
There are other ways to provide sharing, such as allowing access directly by name (as was done for viewing the
directories of other users), each method has its advantages and disadvantages.

If a system provides access to other users' data, it must also provide facilities to limit that access. Access
control was viewed as an important system feature to test, we simply did not know which access control
parameters were important, to what degree and on what objects the) would be used, the granularity of the
access, and so forth. A minimal access control using TENEX to limit access to entire user directories was
established early in the program. A fairly complete access-control scheme that would allow users to protect
individual objects was proposed, although its very completeness implied a significant effort required to
implement it. Other things seemed more important to the users, so this discretionary access-control capability
was continually deferred in favor of other features and in the end was never completely implemented.
Therefore we do not have the information we would like on the kind of access control that is appropriate.

Since the MME provided terminals only for the J3 directorate, we never were able to address the question
of privacy of messages for J3. and their openness outside of J3 itself. There was no access control on the Dale
Files, so anyone with access to SIGMA could get to them. Messages that came to J3 were normally open to all
J3 personnel, but if J4 or J5 had had access to SIGMA, it is not clear that freedom of access would have been
tolerated: there was some privacy of information, and we suspect that access control problems would have
arisen. We believe the appropriate solution is to provide access control to the messages, although possibly
separate Date Files are required for different directorates. The problem becomes even more severe if the
message system is extended to allow access by people outside of the command itself, i.e., outside CINCPAC.
At one time it was planned to provide several terminals at CINCPACFLT and PACAF but this was never
done, so we never tested that aspect of the system. We believe there are many unanswered questions
regarding access control.

3.3.2.20 Archive

Date Files are an index to all messages on the system: not just the messages currently on disk files, but all
the messages that have ever been processed. They provide an organized on-line index to the archived
messages. Users can even find messages that are one or two years old, searching the Date Files with the
selector criteria and getting the entries for the massages of interest. All the manipulation can be done with the
Date Files up to reading the message itself: only then does the user have to break into the archive to retrieve
that specific message. Good response from the archive system is essential, howevc If it takes much longer
than 10 minutes to retrieve an old message from tape, the users will often prefer to ao without. It would be
helpful if the user could indicate the urgency of a retrieval request, so the operators could respond
appropriately.

3.3.2.21 Security

A major issue in SIGMA's design was to formulate a security model acceptable to both the users and the
people responsible for computer security. The model we designed was based on a security kernel or trusted
process that understood a few security primitives and that processed all security-relevant activities. The rest
of SIGMA's code could then be written without special verification. The users were asked to make special
security acknowledgments and to verify the classification of objects matched with the security lights supplied

Section 3.3.2.19

3. Lessons 3-25

on the terminal to insure that SIGMA code did not violate security rules. 'he security acknowledgments and
security lights were used to check on SIGMA's operation. not on the users. The users never understood this:
they found the acknowledgments to be somewhat annoying and stupid, but not a major aggravaton. We
conclude that a future message s)stem based on this user interface to system security would be acceptable. A
more thorough treatment of the security issue may be found in [29].

3.3.2.22 User model

SIGMA provided a two-level log-in, since it was important that users be able to log in to the role that they
were filling, i.e., J342 or J317, as well as being recorded as the individual who was in fact filling that role.
Some roles were always filled by the same individual, others were not. The air desk, for instance, was filled by
a number of different people who changed every twelve hours. This two-level log-in was reasonably
successful, but it introduced the problem of having two Pending files. To get around this, SIGMA provided a
concept of VY__ Pending. which was a way to access one's personal file as distinct from the title file.
Unfortunately, when the user was in the My _ Pending file, the system still thought of him as the title rather
than the individual. Certain access control mechanisms did not allow the individual to operate in his Afy_
Pending file as freely as in his Pending file. The problem was most serious when the user took some action
(e.g., read a message); SIGMA always treated it as the title taking the action, but frequently this violated
access-control rights. For instance, the user might make a comment to himself for an entry in his My_
Pending file: since the comment was thought to be made by the title rather than the individual, everyone with
that title could see the comment, though this was not intended. This area needs more attention before the
next message system is built.

3.3.2.23 Printing

MME used a high-speed, low print quality, quiet-operation printer. The machine's special paper did not
produce high-contrast print and its glossy coating did not have the feel of normal paper. Almost
unanimously, the users objected to the print quality. They wanted to use SIGMA's output for messages to
show their boss, to do coordination off-line, and to put the messages in their files: they also would like to have
used the printed copies for the word processing types of applications (generating letters, creating briefing
memos. etc.). The quality of the printer was simply not good enough for many of these uses.

In future message systems, print quality must be taken into account. The printer itself was successful
because of its speed and low noise factor, matters which should also be considered in future choices among
printers.

3.3.2.24 News and status

Two bulletin board facilities were provided in SIGMA: SYSTEM NEWS and SYSTEM STATUS. The
former was text, printed at log-on, that informed users about the operation of the system and other general
information of interest. The latter showed who was logged on and information about them. Both objects
could be accessed by special commands. No doubt there was more information that would have been of
interest to users (a bulletin board, for example, where users could place messages of general interest for
everyone to read, or a calendar of events). Providing such other types of information was never tried on the
SIGMA system, but when a message system of this sort has broad distribution, it is very easy to enhance it
with tools of this kind to disseminate general information.

Section 3.3.2.21

3-26 SIGMA FINAL REPORT

3.3.2.25 Miscellaneous

One serious objection to SIGMA's operation was that once a user executed a command, there was no way
to abort it. Users strongly objected to this, particularly when response time was poor and the command to be
executed took a long time displaying something on the screen. A future message system needs to make it
possible for users to inhibit the further execution of an operation if they so wish.

A small point to illustrate a lesson learned. After the first six months or so, we added to the end of
messages and text files a special indicator of the end of the object. Previous to that, users were never sure
what was the bottom of these objects. This was a small oversight, but a friendly user interface consists of a
great number of just these sorts of facilities. No cookbook recipe of all such features exists, so builders of
future systems should be responsive to user's requests to add them after the service is in use.

Obviously, good response to the users is essential, but "e found that the user in general wants good
response for those operations which he views as simple and Ahich in his world should be fast. Probably the
best example of this was the displaying of a message. In the paper world, displaying a message means just
turning the pages to the message of interest. In SIGMA this could be a very slow process; a user sometimes
waited 10 seconds before the message would appear. This is simply unacceptable; it was very important to
provide a very fast response time for the simple operation of displaying, editing, scrolling, or paging
information. When performing more sophisticated operations. such as RESTRICT and FILE entries, users
are more willing to wait, because they equate this with a time-consuming manual operation that they would
otherwise have to perform. However, this too should be relatively swift if the system is to provide an
advantage over manual methods rather than simple parity with them.

Users expressed a desire to have a macro facility: the ability to write a sequence of commands and execute
it in one step. A number of users became fairly sophisticated at using the message service and would ha'e
been able to take great advantage of this macro capability if we had provided it. Doing this cleanly, however,
introduces many significant problems, including command syntax, how to handle errors, etc.

When SIGMA allowed only private comments on user files, the facility was not used. When we exte-.ded
the commenting facility to allow public and personal comments on file entries, it suddenly became ver,
useful: in fact. in the second running of Exercise Power Play. the ability to comment on file entries was used
extensively in the Action_Log, and for understanding the status of action. SIGMA's commenting facility vas
another extremely %aluable form of data sharing. We did envision a time when users would prefer to be able
to see an object without its comments.

An improvement the users suggested was to be able to mark objects with multiple HEREs to select
parameters of an instruction: we did allow users to mark a single file entry number and execute the DISPLAY
instruction. However. SIGMA did not allot the users to select multiple entries to execute instructions
applying to more than one entry, such as FILE and MOVE.

Another suggestion by the users was to improve the general algorithm used to clear HEREs. If a user
executed any P"HEREIs, they would be cleared whenever the user executed the next instruction. However.
this prevented a user from doirg a Move operation on a large document by executing a FIND TOP, doing a
!!HERE!! at the beginning of the document, executing a FIND BOTTOM, doing a !!HERD.! at the end,
then executing a MOVE TEXT. The first HERE after the FIND TOP would have been removed as soon as
the FIND BOTTOM was executed. This meant the user would have to go to the top of the document.
indicate the first !!HERE!!. then scroll through the entire document in order to get to the bottom of it to do
the second !!HERE!! before executing the MOVE TEXT. lf the document were large, this could take a \ery
long time.

Section 3.3.2.25

3. Lessons 3-27

3.3.2.26 What more we could have done

A'hile "e still ,hought SIGM1A Awuld ') retained at CINCPAC beyond the expcriments e-id- ve -iae i
li!,t ot'impromeements Ae \4uuLld consider making during the next year. The list is net in an, frrorty cider and
is intended to shoA hoA muILCh farther \A- mnight hi\e pushed SIGMA.

Fas~t VIEW MESS %6Y
A\ messaIc h s red as" A c'llect;On of separate fields. To displa\ it, cacti Field ~Ais

accessed11 \epA'te I~po'slinle to Make a single compound '?xt of the mnessage so that
the etre m sae Ldhe hioughi ap as one urtinterprc-Lcc SD-ing. iTh~s Aould h, e
s~liCd a 1,1,C AIIIOWn: : OxSSIng nine. It wvould oni %,vork for MIAN since- the str-uc[Lre
lleCCessair\ ['0 editing "k'is lost.

Search multiple Daie lilts -
.I o accomnplsh :1-!, A, A(uld na~e had to expand the RLSTRICT and NLYNIENT mairos
to' a:cpt :-11t namc lci -uil nev, coniraniis out or Icon. The. 7esaLtineU sot o. Cr~r

t
I s

V\MOi Pit lulne sn file, 50o ceriain operations vw:uld be excludedu (e.g.. CONIMEN !.
K FNVOR D). Still. It \OUld hav e pro\ven useful to those hot were- searching for a iness ie
for tkhich Llie. didl rot(Itaese the Dl)TG.

\c-ept mualtiple IHEFRES -

W~e could Nuppor01t MI-1tiple HEREs of entries in a file to act like entry lists.

D~iscretionary access control -

We never implemented the full ac,)ntrol scheric that was ,riginall: T-larined. Th's
\kaIll ha', c 3alie" ca spe:ia I acccv' to ')e applie'd to irdidl I ob"Jects h'y !hej'r owne-s.

Iripres eo~ referen-c capahilitie -

It k as feasile] eo 'a.'si2 .!'(I~.i e4 ~t he diS)Li\ ed b.% it-, 1) 1 G h crC Of
s,,cral sCcmes. IlA' ::l'rt oudj he 11111cnt hi J!Htlt. \kOl-ld piohabl.,av madt:

,I \korth domec-

c a s o n a \ t h N N i H C ,t n i O X N I \ OC l d 1t s i l h 1- ' . L I (' sL i h , " ; 1t, N I N' l

the orciiii,il wnd icirtn 1 c;',, ; : itc, 'Cc::trali.'t:e'' \> N I and. Jalm it *g

Linsiilt Cr. I'lN .1 1o[i'' ' icp A II- tiUa " izigr (u P upin iLt.

V,.'e to OPS-20
I ()lS-2() Is 'In opev'ine io E' the 111 ;s t ~c ~ cf\ ,PthI

camherof mp s eiecs.speiaLIII the file si S[Cein \ ceILilCs eths "Ould inaik e (r.
m-ore reliable ss stem.

ki ' 1- rITINiia t %UO0 hAud-
ihe MMF I termituls .;IC Wa~t~ 't r..:11cg at '4t(Inii hd. I he PI)P- 1 eil~

cOnectru*,tor needed to he 1pgrajdedl io ppori hieher speed siperxati'

SectioIn 31.2.25

3-28 SIGMA FINAL REPORT

Bigger screen terminals -
ISl has modified the HP 2649 basic terminal used for MME to drive a high-resolution
large-screen monitor. A small change to the terminal firmware would have allowed
operation with these larger screen units without any change to SIGMA. There are ways
that the terminal display memory could be expanded above the 12K byte limit, although
this has not been tested in the lab.

3.3.2.27 Other user requests

Throughout the experiment users suggested changes to SIGMA which they felt would enhance its utility.
A number of features in the later releases of SIGMA were in response to such requests. Many were
reasonable, but we did not have time to implement them: these have been described above. The following
requests would have been very difficult because they did not fit the structure of SIGMA well. We felt their
benefit was marginal compared to the task and therefore did not plan to attempt them. A different system
architecture might be able to respond better, so we mention them here.

Full text search - One request we received was the ability to retrieve messages based on a string search of the
full text of the message. Because of the size of the message database this would have been
an extremely slow operation and would have consumed considerable resources.
Furthermore, such a search would only touch those messages which were still on-line. To
extend the search to the archive tapes would have been prohibitive. A full test search (sa\.
for key words) of incoming messages as they arrive is not unreasonable (each me-sage gets
this treatment just once), but to allow users to trigger such a search on the database of past
messages did not seem to us to warrant the effort required (at least for an experiment).

Continuous message display -
Another request we chose to decline Aas to provide a continuous message display, that is.
each message stuck onto the bottom of its predecessor in a file. so the user could simpl
scroll thiough them all. This request " as in reaction to the sloA response of SIGM. to the
DISPLAY NEXT (Message) insmiction. SIGMA had no concept to support such a
structure so it would have required a \er. large effort to implement. Our view is that such
a facilit$ is an artificial wa to get around a performance deficienc\ and that a fuwre
message system should address the performnce issue direct.

3.4 LESSONS ON SYSTEM DEVELOPMENT AND OPERATION

This final section deals " ith our experience in de% eloping and running a large experimental system of th!s
sort. Much of Ahat sAe learned is particularly pertinent to experimental systems. but, in general, applies to
any large s stem. In The SIGM1A experience -- .4 siudi !n ihc tiohtionar, dcsign (a large sojiware sist'i,
(441, a philosophy and associated principles pertaining to the implementation of a system like SIGMA are
presented. In this section issues more specific to the deselopment and operation of SIGMA will be discussed.

3.4.1 An AMHS is a Big System

O(rc, ,Jltei hears al-out microprocks,, sr-ba,,ed coinpticrs that 'upport mesagc s,'tems: basicalls t e

conf t- o \vioe message transmisson protocol and pros ide t local file , stem. \, noted earlier, we found an
AMH S ie a great deal in r- than tht. Beside, ha ino ai rich ,et of inessage-handling functions, it Is also i
vArd prc,,or. . database manager and, ultimateix, a ctc i nto a "Aide range of olpUter seT icNC \, hen

Sejiii 3.3.2 26

AO-Allb 359 UNIVERSITY OF SOUTHERN CALIFORNIA MAR INA DEL REY INFO-ETC F/B 17/2

SIMFIA EOT.VLM ATI NRDCIN FNTOAECUMAY 82 R STOTZ. D WILCZYNSKI. S FINKEL DACI-72-C-0308

UNCLASSIFIED ISI/RR-82-9'4-VOL-5PT-1 L

22D A S S F LlfOT.LUMlfPRlflflTOUCIO.flflflflflTC

3IIIIIh"

111 6 II
_ 1.4 6

MICROCOPY RESOLUTION lEST CHART

NAtINNAL ALI l I- A IA

3. Lessons 3-29

coupled with fast access to a large common database, these needs dictate a high level of processing power.
And still, this functionality is just a beginning. A consistent and supportive user interface is paramount,
adding significant development and processing time to an already large system.

3.4.2 Balance the Goals

Any computer system design begins with a set of goals that can be mapped against the dimension of
development time, cost (developmental and operational), function, ease of use, performance, reliability, and
flexibility. SIGMA was tightly constrained in nearly all of them with early design decisions made at the
expense of performance and reliability. When performance became the critical issue, development time was
extended (and operation time of the experiment shortened), and eventually purchase of the KL processor
increased the cost.

We learned that all participants must clearly understand what is expected along each dimension and must
be careful not to overconstrain the problem. For the SIGMA developers to take the "experimental" nature
too seriously was inappropriate when the users did not share the same views.

For a new system that has little precedence, the target specification should be left soft. Had we recognized
early in the program that cost was flexible, while the poorly understood performance issue was not, the
decision to purchase the KL would have been made much sooner, saving much work and allowing the
experiment to start sooner.

3.4.3 Development Environment

We have separated the discussion of the development environment from that of the operating
environment. In MME this refers respectively to the computing system at ISI in which we developed
SIGMA. and the computing environment at CINCPAC in which we ran SIGMA.

3.4.3.1 Choosing a computer and operating system for development

Our choice to use the TENEX operating system on a PDP-10 processor was not really a choice at all. ISI
supports this system fully and (at the time) no other. Since TENEX provides good interactive support for
developmental systems, ISI and most other ARPA research sites use it. That SIGMA was developed on
TENEX was the natural conclusion. The decision to use the same computer at CINCPAC has similar
motivations and will be discussed in section 3.4.4.1.

Part of the reason that TENEX is a popular choice for time-sharing interactive computing is its flexibility.
ease of use, and file-sharing capabilities. However, when TENEX is overloaded, these characteristics are lost.
SIGMA was developed on a TENEX system being shared with 60 other researchers. Often the only way to
get effective work done was to work at night. In comparison, during the two weeks prior to its shipment to
CINCPAC. the KL processor system was made available exclusively to the MME project. In that period the
Alert facility was coded and revised several times. This was a major piece of of programming that we estimate
would have taken at least six weeks under normal conditions, even without the fine tuning in design that we
did.

The point is clear. In developing advanced systems with severe time constraints, only the best
environments for designers and programmers will do. Psychological and morale problems aside, the best
design and implementation will not be discovered by the development team when their development
environment blocks their ability to innovate.

Section 3.4.1

= i '' " . . . -- - - f -

3-30 SIGMA FINAL REPORT

3.4.3.2 The programming environment

We decided to implement SIGMA in BLISS, a high-level language oriented toward system programming.
This decision was prompted by a number of issues specific to our situation (adequate support, local expertise,
efficiency of code on TENEX, etc.). Other than to strongly urge for the use of a high-level programming
language, we have little to say about which language should be chosen for any other development.

A much more important issue is the nature of the programming and development environment in which
any particular language is embedded. The BLISS environment was totally inadequate and was made bearable
only due to our modest effort in enhancing it. We built a package of macros, a modified editor with source
line updating, a special batch processor, and a facility that helped in the generation of new SIGMA software
releases. Though these few utilities were of the simplest quality, they had a big payoff for us. Any major
software development should have the kind of programming environment that is currently beyond the state-
of-the-art. Since one does not exist, resources should be dedicated to improving what is available. A quality
environment will supply a large set of modular utility packages that can be used by application programmers.
As it was, we had to develop our own error-handling package, queue-management routines, interprocess
communication protocols, text-handling functions, etc. There were many tools we could have used--a
multiprocess runtime debugger, a configuration management system, and so forth, but we did not have time
to develop them.

Our strongest advice for the developers of future AMHS is to have a high-quality programming
environment. TENEX represents the state-of-the-art for 1970, but it is inappropriate for developing large,
highly responsive, reliable applications like AMHS. It is disappointing that even now, five years after the
MME project began, there is no widely available programming system obviously superior to the one we used.

3.4.3.3 Developers as users of the system

The earliest version of SIGMA was interfaced to the ARPANET message community. We were able to use
it in our everyday work with two important side effects: we exercised the code, and we gained an appreciation
of the user's perspective. Unfortunately, SIGMA used so much of the computer's resources that other users
on the system complained until we st- sped. Of course we realize that the use of the system in the developers'
environment might differ significantly from its use in an operational setting, so we don't suggest this as the
ultimate solution to system testing. However, many errors appear in boundary conditions that are only
unveiled during sustained use. Learning about them all at the operational site is not elegant. It appears to be
a distinct advantage to use the system under development in day-to-day work.

There are costly implications in such a strategy: there may be extra work in making the new system
compatible with existing systems; a working version of the system ought to be around at all times; the daily
work of the developers may be slowed by using the experimental system, and so on. However, the gain ought
to be considerable, a better engineered and more reliable system.

3.4.3.4 Developers need access to the operating site system

Security reasons prevented ISI from having remote network access to the CINCPAC system, completely
decoupling the development team from the operational system. The combination of on-site system
programmers, who were unfamiliar with the SIGMA code, and SIGMA's error package, which produced a
snapshot of the runtime state when an unrecoverable error occurred, were our only diagnostic "tools." Error
Logs were purged of classified data and mailed back to the development team at ISI every week. Thus, our
reaction time to fix bugs was extremely slow and haphazard. Often, the data collected in the Error Logs was

Section 3.4.3.1

- ' -- .

3. Lessons 3-31

insufficient to identify the problem. To cope with these difficulties, programmers from the development team
were sent to Camp Smith to diagnose bugs as they were occurring. Though important, these absences
resulted in delays to release schedules.

The nature of an operational context simply makes it unsuitable to debug errors. Users, anxious to get back
on-line, are reluctant to call system programmers when errors occur: usually the user simply powered his
terminal down for a minute (which normally logged him off) and started up a new job. This, of course, is a
direct result of running code that is not fully debugged in an operational environment, an unfortunate
consequence of the type of experiment we were conducting and the level of testing we were able to do.

3.4.3.5 Testing

Although we often discussed it, we never expended the large investment required to provide an automated
test capability for SIGMA. So prior to each release, we would convene in late night sessions (when we had
the machine to ourselves) and run our manual five-user test scenarios. Though the scenarios were constantly
changed to reflect new features and the test took over two hours to complete, the procedure was incomplete
and did not examine any stress or overload conditions.

It would be too simplistic to just say "we should have provided automated test facilities in SIGMA." Such
facilities are not well understood and would have required an immense design and implementation effort to
do well, It was not a case of needing test-case generators to test all branches, but one of needing a self-
running system, exercising itself to stress interactions between processes and hard-to-anticipate boundary
conditions. Such a facility would be expensive to produce. Our conclusion is that while simple automated
test tools designed into a system at the outset will have definite payoff, a fully automatic test of large systems
is a research topic which deserves more attention.

3.4.3.6 Design for an unreliable environment

We have already stated that a computer system has to be reliable in an operational environment, regardless
of its experimental nature. A design corollary is to expect unreliability. The SIGMA design was based on an
assumption of reliability in the underlying operating and file system: SIGMA was not built to be robust in the
face of operating system errors. A robust design anticipates inconsistencies in the data coming from I/0
devices, checks for all anomalous conditions early, and, if an error is detected, takes some sensible action.
Unfortunately, one may find a programming effort debilitated by religious attention to these concerns. It is
an art and not a science to find the right balance.

To further complicate the problem, error handling during development is different from error handling in
the production system. In development you might choose to freeze the state of the machine when an error is
detected in order to track down a problem. a solution totally out of place in a production system where you
must get the user operating again.

In SIGMA there were many consistency checks throughout the development code; they were compiled out
of the production system because of their deleterious impact on performance. We later discovered the need
to differentiate between tests on system data and those that tested the running code. Only the latter should
have been removed from the production system. Data errors from 1/0 devices could propagate through the
system and cause failures to many users in ways that were extremely difficult to track back to their source.

Debugging is one thing: recovery is another. A robust design also provides operator support for quick and

complete recovery when major system crashes do occur. This may entail providing enough redundancy in the

Section 3.4.3.

3-32 SIGMA FINAL REPORT

file system to be able to detect smashed data, or utility programs to check the data on disk after a system
crash. The completeness of any reconstruction procedure depends, of course, on the effort and expenditure
the designers decide upon. For MME, we could not allow a significant loss of any of its major objects, so full
and incrematal dumps were taken frequently. Procedures for restoring lost data from those dumps were part
of normal TENEX operations. Even so we had one disastrous experience several months after the KL was
installed. A disk crash totally destroyed the TENEX files (a weakness of the TENEX file system) and the
operator restored the file system incorrectly. When SIGMA came up, many of its files were missing or simply
the wrong versions. SIGMA offered no help in detecting the bad state of the file system, other than to crash
when someone tried to use inconsistent data. It also provided no assistance to the system programmers who
had to incrementally patch the file system back to a consistent state. Although neither the system crash nor
the bad restoration of the files was the fault of SIGMA, its passive role extended the impact of the disaster for
weeks.

Robustness must also be designed into communication protocols with external devices, notably the
terminal. Communication lines are notorious sources of errors, but a good protocol should be able to reduce
this error rate to any desired figure (at the price of bandwidth). The protocol between SIGMA and the MME
terminal started with a single-character checksum, which allowed one error in 64 to get through. This proved
to be too weak, so the protocol was revised to carry a two-character checksum. Yet even this good work had
hidden flaws. We discovered later that there was a long resident bug in the PDP-11 terminal concentrator
which was never detected because the retransmission protocol entirely masked its effects. One must be
careful not to allow the robustness of one part of a system to mask other weak parts.

3.4.4 Operating Environment

The software development environment is important to the developer, and a good one will produce a better
product: but of more direct concern to the users is the on-site computer environment.

3.4.4.1 Choice of on-site computer system

Our decision to use a TENEX system at CINCPAC %as based primarily on its advantages for development
and our limited time and resources. Its general-purpose nature was good for development but turned out to
be poor in production. Specifically, file access, terminal I/O, and interprocess communication were all very
slow. logically sequential file pages were scattered all over the disk, address space limitation forced process
(fork) divisions between which no efficient communication methods existed, and so on. We improved a
particular performance problem by rewriting a small terminal output module, but could do little about the
other deficiencies.

An operating system tailored to our application would have made a dramatic improvement in performance.
Our MME experience also taught us that a computer and message system architecture must support
expansion to hundreds of users in a reasonably incremental fashion. It is unlikely that a system will be built
to full size from its inception: like the functional performance, we expect the user community to gradually
grow. Add to this the importance of reliability and robustness of the underlying computer and operating
system, and it seems that the "right" computer system for this application may not be available off the shelf.
We suspect the solution lies in the domain of the multiprocessor computer systems designed for ultra-reliable
operation, such as Tandem or Delta II. Considering the large software effort it takes to develop an AMHS
and the long life expectancy of such a system, any hardware (and software) decisions must be made with a
view toward improved and perhaps interchangeable hardware. Building the AMHS for a specific computer
with no predesigned plans for migration to alternative hardware simply ignores the reality of hardware
progress and immense software costs.

Section 3.4.3.6

- -.

3. Lessons 3-33

3.4.4.2 Computer operations

There were so many mainline problems in developing SIGMA that we totally underestimated the
importance of the operational environment that would house the physical computer and its associated impact
on the experiment. At CINCPAC, the MME TENEX system occupied the same room as the WWMCCS
system, presumably a stable computer environment. Although no-break power was a specified requirement,
the facilities at CINCPAC never supported it. The MME computer ran on ordinary power supplied by
Hawaiian Electric through a motor generator and filter equipment installed by the Navy. That liability was
compounded by the constant remodeling of the building that housed the computers and most of the terminals
and by a power supply that was continually distorted and interrupted. These problems not only disrupted
operation of SIGMA, but were a source of stress on the components of the computer. In addition, air
conditioning failed on several occasions, components suffered from fungus growth, and the power filter
eventually completely failed. The combination of a rather fragile operating system and a hostile environment
led to totally unacceptable computer system reliability.

Unfortunately, we did not allocate enough resources to operation and maintenance of the MME
environment. For the first 17 months we tried to run the computer with WWMCCS operators, who were
insufficiently trained and who had a higher priority commitment to the other machines. That situation
improved after the installation of the KL, when a specially trained operations staff was dedicated to MME.
By the end of the experiment system uptime began to approach the 98 percent goal.

To underscore the scope covered by what "operations" means, we can point to our problems with the
crypto units. The crypto units operated on the communication lines to the two clusters of terminals installed
in unclassified areas outside the blockhouse. These units would fall out of synchronization with no indication
of failure; to the user it was as though his terminal was disconnected from the computer. To recover,
someone first had to diagnose the problem (there was no visual indication) and then call the crypto room to
have someone reset the unit. Here was a case of existing hardware, completely out of our control, that greatly
influenced a user's view of our system.

3.4.4.3 Understanding goals and maintaining motivation

Besides the now obvious requirements of the physical operating environment, it is important to acquaint
the users with the goals for the operational system and to keep them motivated to these goals. Many users
view computer systems with skepticism and will have strong biases (some for and some against). Few will
fully understand what the presence of a computerized system will mean to them. We found this view
particularly true for the MME. For example, several users were reluctant to print messages because they
thought the purpose of an AMHS was to eliminate paper. One user, touted as the "most hostile user at
CINCPAC," objected to the service because he thought the MME was a field test of a production system that

had not had a "cost/benefit analysis" before installation. He continually asked, "What is the problem it is
supposed to solve?" Once he understood that the test was to evaluate the utility of a concept which would be
part of an eventual cost/benefit analysis, he became very cooperative and gave a fair evaluation of the system.

Even if the goals are understood, having those roles in the user organization that are key to the program
filled by qualified, motivated people makes a tremendous difference. When a few important positions were
filled by interested officers, acceptance of the whole program shifted dramatically. The experiment proved to
be a fragile enterprise that needed competent, active sponsors to see it through.

Section 3.4.4.2

7.-in

3-34 SIGMA FINAL REORT

3.4.5 Conducting an Experiment

Having discussed what we feel we have learned, it is necessary to describe some things we hoped to but did
not learn. Because of the limitations of the system (number of users it could support, reliability, time to
develop good procedures, integration with the manual system) we were never able to provide any quantitative
evaluation of the utility of the system. We were especially anxious to evaluate it in a crisis situation. This
would have required supporting users throughout CINCPAC, not just in J3, better computer response time,
reliable operations, and a real crisis (or a test of similar proportions). The second running of Exercise Power
Play gave encouraging results, but it was not an adequate test.

We would have liked to see the impact of providing informal secure communications between CINCPAC
and its subordinate commands. We believe that this ability would have cut down dramatically on the amount
of formal traffic and would have led to better information dissemination. This theory remains untested.

Although we think we have contributed to the understanding of the functional design required for an
interactive message service for a community like CINCPAC, we do not have much to say about how to build
a system that can support 200 or more users, is up 100 percent of the time, and provides all the functionality
required with appropriate response.

We did not gain experience in making a multilevel secure system; we did, however, get a sense of the
acceptability of a particular model of a user interface to such a system.

The user interface for SIGMA was far advanced for systems of this type. Its universal acceptance
redirected our planned efforts in this area to more immediate problems. Thus, many of our goals (user
modeling, better user error handling, etc.) went undesigned and untested.

Having built SIGMA, we would like to transfer the developed technology to future AMHS projects. Yet
documents can only begin to convey the experience we gained. At one time, we had plans to include
programmers from the Naval Command Systems Support Activity on our design team, so they could gain
direct experience for future Navy systems. This, however, never took place.

3.4.6 Summary
As is obvious, an AMHS like MME is a large effort. Conflicting goals, highly interactive components,

unforseeable developments do much to complicate the project. Many of the problems go beyond cost, project
size, and length of development time. If one thing surfaces from our experience, it is that the project as a
whole needs to be flexible from the beginning in order to react to changing conditions. A "design,
implement, and deliver" paradigm is inappropriate for an AMHS. There are too many sensitive human
factors involved that separate an AMHS from other, more easily understood systems. The evolutionary
development we are espousing responds not to the limitations of the design team, but to the fundamental
nature of the message-handling domain itself.

Section 3.4.5

3-35

REFERENCES

1. Abbott, R. J., A Command Language Processor for Flexible Interface Design, USC/Information Sciences
Institute, ISI/RR-74-24, 1974.

2. Ames, S. R., and W. W. Plummer, TENEX Security Enhancements, MITRE Corporation. Technical
Report MTR-3217, April 1976.

3. Ames, S. R., and D. R. Oestreicher, "Design of a message processing system for a multilevel secure
environment," in Proceedings of the National Computer Conference, AFIPS,, 1978. Also appeared as
Mitre Corporation Technical Report MTR-3449, June 1978.

4. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "TIENEX, a paged time sharing
system for the PDP- 10," Communications of the ACM 15, (3), March 1972, 135-143.

5. AUTODIN message CINCPAC 070200Z. August 1975.

6. Military Message Experiment Selection Criteria, 17 September 1976. Prepared by CTEC, Inc., 7777
Leesburg Pike, Falls Church, Virginia 22043.

7. DISTAN Program. Prepared by Naval Electronic Systems Command, Material Acquisition Directorate
Telecommunication Division, July 1976.

8. Ellis, T. 0., L. Gallenson, J. F. Heafner, and J. T. Melvin, A Plan for Consolidation and Automation of
Military Telecommunications on Oahu, USC/Information Sciences Institute, ISI/RR-73-12, May 1973.

9. Goodwin, N. C., J. Mitchell, and P. S. Tasker, Evaluation of ARPANET Message-Handling Systems for
Use by the Military, MITRE Corporation, Technical Report MTR-3096, August 1975.

10. Goodwin, N. C., J. Mitchell, and P. S. Tasker, Concept of Operations for Message-Handling in
CINCPAC, MITRE Corporation, Technical Report MTR-3323, October 1976.

11. Goodwin, N. C., J. Mitchell, and S. W. Slesinger, Test Plan for Military Message Handling Experiment,
MITRE Corporation, Technical Report MTR-3268, July 1976.

12. Goodwin, N. C., Military Message Experiment Baseline Data Report Test Group, MITRE Corporation,
Technical Report MTR-3665, September 1978.

13. Goodwin, N. C., and S. W. Hosmer. A User-Oriented Evaluation of Computer-Aided Message Handling,
MITRE Co., MTR 3920, April 1980. (MME Final Report, Volume VI, Part 1. [29])

14. Goodwin, N. C., and S. W. Hosmer, Appendices to a User-Oriented Evaluation of Computer-Aided
Message Handling, MITRE Co.. MTR 3946, April 1980. (MME Final Report, Volume VI, Part 2. 1291)

15. Heafner, J. F., A Methodology for Selecting and Refining Man-Computer Languages to Improve Users'
Performance, USC/Information Sciences Institute, ISI/RR-74-21, 1974.

16. Heafner, J. F., Analysis of Man-Computer Languages: Design and Preliminary Findings,
USC/Information Sciences Institute, ISI/RR-75-34, 1975.

3-36

17. Heafner, J. F., and L. H. Miller, Design Considerations for a Computerized Message Service Based on Tr-
Service Operations Personnel at CINCPAC Headquarters, Camp Smit& Oahu, USC/Information
Sciences Institute, Technical Report ISI/WP-3, September 1976.

18. HoIg, Chloe, The Military Message Experiment SIGMA Primer, USC/Information Sciences Institute,
1977. ISI/TM-77-9.

19 2645A Display Station Reference Manual, Hewlett-Packard Company,. 1976.

20. IA Project, Military Message Processing System Design. Unpublished design document. 10 January
1975.

21. Intel, Intel 8080 Microcomputer System's User's Manual, Intel Corporation, Technical Report, 1975.

22. Kallander, J. W., N. C. Goodwin, S. Hosmer, C. Smith, D. Fralick, L. Klitzkie, and S. H. Wilson,
Military Message Experiment Mid Experiment Report, Naval Research Laboratory, NRL Memorandum
Report 4094, November 1979.

23. Mandell, R. L., An Executive Design to Support Military Message Processing Under TENEX,
USC/Information Sciences Institute, ISI/RR-74-25, 1975. draft only

24. Miller, D., Military Message Handling Experiment Training Requirements, MITRE Corporation,
Technical Report MTR-3263, June 1976.

25. Miller, David G., Military Message Experiment Training Experience, MITRE Corporation, Technical
Report MTR-3644, August 1978.

26. Miller, D. G., MME - Final Training Report, MITRE Corporation, Bedford, Mass., Technical
Report MTR-3919, May 1980.

27. - ----, Memorandum of Agreement between Director, Defense Advanced Research Projects Agency
(DARPA), Commander, Naval Telecommunications Command (NAVTELCOM), Commander, Naval
Electronic Systems Command (NAVELEX), and Commander-in-Chief, Pacific (CINCPAC), 1975.
Unpublished memorandum.

28. House Appropriations Committee, Report 95-451. U.S. Congress. 21 June 1977.

29. MME Final Report. The MME Final Report is being prepared by various individuals and organizations
involved in the MME. It will consist of eight volumes; some of the volumes themselves consist of more
than one part. References [131 and [141 are Volume VI. For information about how to obtain the other
volumes of the MME Final Report, contact the Naval Research Laboratory, Washington, D.C. 20375,
Attn: Code 7503.

30. Naval Telecommunications Procedures, Telecommunications Users Manua NTP3, 4401 Massachusetts
Ave., N.W., Washington, D.C. 20390, 1974.

31. Oestreicher, D., P. Raveling, and R. Stotz, HP/MME Terminal - Application Specification,
USC/Information Sciences Institute, Technical Report ISI/TM-78-10, March 1978.

32. Rothenberg, J. 0., An Intelligent Tutor: On-line Documentation and Help for a Military Message Service,
USC/Information Sciences Institute, Technical Report ISI/RR-74-26, May 1975.

. - .-2. I

3-37

33. Rothenberg, J. G., An Editor to Support Military Message Processing Personnel, USC/Information
Sciences Institute, ISI/RR-74-27, June 1975.

34. Rothenberg, J., DARPA Navy CINCPAC Military Message Experiment SIGMA Message Service
Reference Manual, USC/Information Sciences Institute, Technical Manual 78-11.2, June 1979.

35. Rothenberg, J., "On-line tutorials and documentation for the SIGMA Message Service," in Proceedings
of the National Computer Conference, AFIPS, June 1979.

36. Slesinger, S. W., and N. C. Goodwin, Test Procedures for Military Message-Handling Experiment,
MITRE Corporation, Technical Report MTR-3521, October 1977.

37. Oestriecher, D., et al., SIGMA Transition and Deficiency Amelioration Plan, 1977. Unpublished note.

38. Stotz, R., R. Tugender, D. Wilczynski, and D. Oestreicher, "SIGMA -- An interactive message service for
the Military Message Experiment," in Proceedings of the National Computer Conference, AFIPS,, June
1979.

39. Stotz, R., P. Raveling, and J. Rothenberg, "The terminal for the Military Message Experiment," in
Proceedings of the National Computer Conference, AFIPS, June 1979.

40. Tangney, J. D., S. R. Ames, and E. L. Burke, Security Evaluation Criteria for MME Message Service
Selection, MITRE Corporation, Technical Report MTR-3433, June 1977.

41. Tangney, John D., MME Security Test Procedures, MITRE Corporation, Technical Report MTR-3615,
June 1978.

42. Tugender. R., and D. R. Oestreicher, Basic Functional Capabilities for a Military Message Processing
Service, USC/Information Sciences Institute, Technical Report ISI/RR-74-23, 1975.

43. Tugender, R., "Maintaining order and consistency in multi-access data," in Proceedings of the National
Computer Conference, AFIPS,, June 1979.

44. Wilczynski, D., R. Tugender, and D. Oestreicher, "The SIGMA experience -- A study in the evolutionary
design of a large software system," in Proceedings of the National Computer Conference, AFIPS,, June
1979.

45. Wilczynski, D., R. Stotz, R. Tugender, and R. Lingard, "Message system architecture -- Experience at
CINCPAC with the SIGMA System," in Compcon Spring '80, IEEE, February 1980.

j 46. Wilson, S. H., J. W. Kallander, N. M. Thomas III, L. C. Klitzkie, and J. R. Bunch, Jr., Military Message
Experiment Quick Look Report, Naval Research Laboratory, NRL Memorandum Report 3992, April
1979.

47. Wulf, W. A., D. B. Russell, and A. N. Habermann, "BLISS: A language for systems programming,"
Communications of the ACM 14, (12), December 1971, 780-790.

*

3-39

INDEX

ABORT instruction 2-12, 2-23, 2-28
Access control 3-24, 3-27
Access Modules 4-37, 4-38
Access to information 2-12, 3-3, 3-10, 3-11, 4-5
ACK protocol signal 4-55
Acknowledgment Processor 4-55
Action assignment 3-16
ACTION instruction 2-20, 2-24, 2-30, 2-32, 2-34, 3-8, 3-22,4-42
Action log 3-3, 4-43
Action message field 2-14, 2-20, 2-26
AK/FSM 4-55
Alert line 2-3
!!ALERTON/OFP! function key 2-34, 3-17, 4-19, 4-36
ALERTSELECTOR 3-17
Alerts 1-6, 2-33, 3-17, 4-36
Architecture of SIGMA 3-10, 4-1
Archive 1-6, 3-11, 3-24, 4-7, 4-10
Archive daemon 4-42,4-85
ARPA 3-6, 3-29
ARPANET 1-3, 3-30
AUGMENT instruction 2-29, 2-34, 3-22, 3-27,4-34
Auto-logout 4-55
Automated testing 3-31
Availability 3-6

Back copies of messages 2-14
!!BACK!! function key 2-10
BackCopy citation 2-24, 3-20, 4-79, 2-24, 4-78, 4-79
BACKUP ALL instruction 2-29, 2-34
!!BACKUP ONE!! function key 2-29, 2-30, 4-34
BBN - Bolt Beranek and Newman Inc. 1-4, 1-5
BIN JSYS 4-85
BLISS programming language 3-30
Blue Ribbon Committee 1-8
BODY message field 4-40
BOUT JSYS 4-92
Briefing Memo message field 2-15, 2-17, 2-21

!!CANCEL!! function key 2-5, 2-7, 2-13, 2-22
CC message field 2-20, 2-24
CCP Configuration Control Program 4-3, 4-75

!!CHOP YES!! function key 2-22
Chop message field 2-17, 2-18, 2-21.2-22, 2-23
!!CHOP NO!! function key 2-22, 2-23, 2-32
!!CHOP YES!! function key 2-23, 2-32
Chopped citation 2-22, 4-77. 4-79
CINCPACFLT 3-24

i-

3-40

Citation daemon 4-38. 4-41,4-81
Citations 4-6, 4-43
Classification message field 2-16
!!CLEAR VIEW.! function key 2-4, 2-12. 2-34
CMSGEITE 4-39
!!CNTL!! function key 2-2
Cog message field 2-14
Command Center Watch Team 3-8
Command Language Processor 3-3, 4-14,4-101
Command table 4-14
COMMENT instruction 2-15,2-24, 2-34, 3-27
Comments 4-33,4-34
Communications Center 3-21
Computer Operations at CINCPAC 3-33
!!CONTROL!! function key 3-12
!!COORDINATD.! function key 2-22,2-23, 2-32
COORDINATE instruction 3-9
Coordination 2-21, 3-4, 3-18, 3-19, 4-39
!!COPY! function key 2-10
COPY instruction 2-12, 2-21, 2-32, 2-33, 2-34
COPY MESSAGE instruction 3-18
!!COPY TEXT! function key 4-39
COPY TEXT instruction 2-12, 2-33
Copy to message field 2-17, 2-20, 2-24
COTCO 1-1, 1-2, 1-3, 1-4
CREATE MESSAGE instruction 3-16
CREATE FILE instruction 2-4
CREATE instruction 2-12, 2-32, 4-32
CREATE MESSAGE instruction 2-12, 2-20, 3-18
CREATE SELECTOR instruction 2-29, 3-22
CREATE TEXT instruction 2-12, 2-33
Crisis Action Team 3-3
Crypto 3-33
CTEC Inc. 1-4, 1-5, 3-1
!!CURRENT ENTRY!! function key 2-27
Current entry 4-34
!!CURRENTENTRY!! function key 2-27
Current Messagette 4-39
Cursor keys 2-9

Daemons 1-7, 4-1, 4-70
Daily Summary 3-3
DARPA 1-1, 1-2
Data Collection Facility 4-104
Data objects 2-11, 4-33
Date files 2-27, 3-17, 3-21, 3-24, 3-27, 4-43
Date message field 2-17
Date Time Group 2-11,3-17, 3-22
Decision to terminate MME 1-9
!!DEL!! function key 2-10

3-41

Delegator 4-39
!!DELETE ENTR Y!! function key 2-34
DELETE ENTRY instruction 2-24, 2-28, 2-30
DELETE FILE instruction 2-5
DELETE instruction 2-12, 2-28, 2-30, 2-33, 3-22, 4-31, 4-32
Delta-file 4-38
Direct-loaded MSGMOD 4-41
Directories 2-12
Directory Access packages 4-99
DIRECTORY instruction 2-12
Dispatch 4-48
Dispatch processing in the terminal 4-64
Dispatch Queue 4-52, 4-53
DISPLAY MESSAGE instruction 3-5, 3-18
!!DISPLAY NEXT!! function key 2-26
!!DISPLAYENTRY!! function key 2-34, 4-37
DISPLAY FILE instruction 2-4
DISPLAY instruction 2-4, 2-11, 2-15, 2-19, 2-22, 2-23, 2-27, 2-29, 2-30, 2-32, 2-33, 3-26
!!DISPLA YNEXT1! function key 2-34
DISPLAY NEXT instruction 3-28
!!DISPLA Y OPEN MESSAGE!! function key 4-25
Display screen 3-12
Display window 2-4
DISTAN 1-4
Distribution message field 2-17, 2-22, 2-24
Domains 4-20, 4-57, 4-62
!!DOWN WINDOW.! function key 2-10, 4-58
Downgrade Instruction message field 2-17
Downgrading Instructions 3-7
Driver Inter-fork interface 4-49
Driver share buffer 4-49
DTACCS 1-2
DTG message field 2-11, 2-26, 2-28, 3-17, 3-18, 3-23, 3-27

Editing 2-9, 3-14, 4-31
EMPTY instruction 2-28,4-34
End message field 2-17
ENQR protocol signal 4-55
Entering SIGMA Instructions 3-13
Equipment configuration for MME 1-6
ER Package 4-92
ERB Execution Request Blocks 4-11
Error logs 3-30
Error package 4-90. 4-92
!!ESC! function key 2-2
Evolution of AMHS 3-9
EXCEPT program 4-105
!!EXECUTEI! function key 2-1, 2-3. 2-5, 2-6. 2-10, 4-14
Execution Request Blocks 4-29, 4-30
Exempt message field 2-16

;1' " ".-1

3-42

EXERCISE instruction 2-9, 4-16
Exercise Power Play 1-9, 3-1, 3-3, 3-16, 3-26, 3-34
Exercises 2-8, 4-16
!!EXPAND!! function key 2-5

FACMOD 4-38, 4-43
FACMOD functions 4-46
Fast folder update 4-46
Fat citations 4-43
FCHECK program 4-105
Feedback line 2-4
FILE instruction 2-20, 2-24, 2-27, 2-28, 2-30, 2-32, 3-22, 3-26
File Copy citation 2-20, 2-28, 4-79
Files 2-11, 2-24, 3-10, 3-21
FIND STRING instruction 2-32
FIND TOP instruction 3-26
FIND BOTTOM instruction 2-32, 3-26
FIND ENTRY instruction 2-34
FIND STRING instruction 2-11, 2-33, 2-34
FIND TOP instruction 2-32
!!FINISH!! function key 2-11, 2-15, 2-23, 2-26, 2-27, 2-28, 2-33, 2-34, 4-32
FLAGS program 4-106
Flash line 4-16
Folder daemon 4-46,4-79
Folder database 4-69
Folder processing design 4-33
Folder security 4-47
Folder structure 4-44
Folders 4-6, 4-33
ForAction citation 2-20, 4-42, 4-79
ForChop citation 2-22, 4-43,4-77,4-79
For Info citation 2-20, 4-42, 4-79
For Release citation 2-23, 4-43, 4-79
Formatting 3-14
FORWARD instruction 2-20, 2-24, 2-30, 2-32, 2-34, 4-42
From message field 2-11, 2-13, 2-16, 2-17, 2-20, 2-26, 2-28, 3-17, 3-18
Front end 4-12
Function keys 2-1, 2-6
Functional Module 4-17
!!FWD!! function key 2-10

GET FILE instruction 3-11
GET instruction 2-12, 2-29, 2-33, 3-24, 4-32, 4-35, 4-36
!!GO TO NEX7.! function key 2-27
Guarding 3-17

Hardcopy daemon 4-87
!!HELPI! function key 2-7, 2-8, 2-9, 4-16
HELP system 2-7. 3-13, 4-16
!!HEREI! function key 2-6, 2-10, 2-11, 2-12, 2-15, 2-17, 2-20, 2-22, 2-23, 2-26, 2-27, 2-32, 2-33, 2-34,

3-18, 3-22, 3-26, 4-25,4-29,4-58

3-41

Delegator 4-39
!!DELETE ENTR Y! function key 2-34
DELETE ENTRY instruction 2-24. 2-28. 2-30
DELETE FILE instruction 2-5
DELETE instruction 2-12. 2-28.2-30, 2-33, 3-22, 4-31, 4-32
Delta-file 4-38
Direct-loaded MSGMOD 4-41
Directories 2-12
Directory Access packages 4-99
DIRECTORY instruction 2-12
Dispatch 4-48
Dispatch processing in the terminal 4-64
Dispatch Queue 4-52, 4-53
DISPLAY MESSAGE instruction 3-5. 3-18
!!DISPLAYNEXT!! function key 2-26
!!DISPLA Y ENTR YI! function key 2-34,4-37
DISPLAY FILE instruction 2-4
DISPLAY instruction 2-4, 2-11, 2-15, 2-19, 2-22, 2-23, 2-27, 2-29, 2-30, 2-32, 2-33.3-26
!!DISPLAYNEXT.! function key 2-34
DISPLAY NEXT instruction 3-28
!!DISPLA Y OPEN MESSAGE!! function key 4-25
Display screen 3-12
Display window 2-4
DISTAN 1-4
Distribution message field 2-17, 2-22, 2-24
Domains 4-20, 4-57, 4-62
!!DOWN WINDOW!.! function key 2-10, 4-58
Downgrade Instruction message field 2-17
Downgrading Instructions 3-7
Driver Inter-fork interface 4-49
Driver share buffer 4-49

DTACCS 1-2
DTG message field 2-11.2-26, 2-28, 3-17,3-18, 3-23. 3-27

Editing 2-9, 3-14. 4-31
EMPTY instruction 2-28,4-34
Encl message field 2-17

ENQR protocol signal 4-55
Entering SIGMA Instructions 3-13
Equipment configuration for MME 1-6
ER Package 4-92
ERB Execution Request Blocks 4-11
Error logs 3-30
Error package 4-90.4-92
!IESC! function key 2-2
Evolution of AMHS 3-9
EXCEPT program 4-105
!!EXECUTE1! function key 2-1,2-3, 2-5, 2-6. 2-10. 4-14
Execution Request Blocks 4-29, 4-30
Exempt message field 2-16

-. !

3-42

EXERCISE instruction 2-9, 4-16
Exercise Power Play 1-9, 3-1, 3-3, 3-16, 3-26, 3-34
Exercises 2-8, 4-16
!!EXPAND!! function key 2-5

FACMOD 4-38, 4-43
FACMOD functions 4-46
Fast folder update 4-46
Fat citations 4-43
FCHECK program 4-105
Feedback line 2-4
FILE instruction 2-20. 2-24, 2-27, 2-28, 2-30, 2-32, 3-22, 3-26
File_Copy citation 2-20, 2-28, 4-79
Files 2-11, 2-24, 3-10, 3-21
FIND STRING instruction 2-32
FIND TOP instruction 3-26
FIND BOTTOM instruction 2-32, 3-26
FIND ENTRY instruction 2-34
FIND STRING instruction 2-11, 2-33, 2-34
FIND TOP instruction 2-32
!!FINISH!! function key 2-11, 2-15, 2-23, 2-26, 2-27, 2-28, 2-33, 2-34, 4-32
FLAGS program 4-106
Flash line 4-16
Folder daemon 4-46,4-79
Folder database 4-69
Folder processing design 4-33
Folder security 4-47
Folder structure 4-44
Folders 4-6, 4-33
ForAction citation 2-20, 4-42,4-79
ForChop citation 2-22, 4-43,4-77,4-79
For Info citation 2-20,4-42, 4-79
For Release citation 2-23, 4-43, 4-79
Formatting 3-14
FORWARD instruction 2-20, 2-24, 2-30, 2-32, 2-34, 4-42
From message field 2-11, 2-13, 2-16, 2-17, 2-20, 2-26, 2-28, 3-17, 3-18
Front end 4-12
Function keys 2-1, 2-6
Functional Module 4-17
!FWD!! function key 2-10

GET FILE instruction 3-11
GET instruction 2-12, 2-29, 2-33, 3-24, 4-32, 4-35, 4-36
!IGO TONEX71! function key 2-27
Guarding 3-17

Hardcopy daemon 4-87
I!HELP!! function key 2-7, 2-8, 2-9, 4-16
HELP system 2-7, 3-13.4-16
!IHERE!! function key 2-6, 2-10, 2-11, 2-12. 2-15. 2-17, 2-20, 2-22, 2-23, 2-26, 2-27, 2-32, 2-33, 2- 34,

3-18, 3-22, 3-26,4-25.4-29, 4-58

li

3-43

High water mark 2-26, 4-34

HIGHLIGHT instruction 2-15
Highlights 4-33, 4-34

IDENTIFY instruction 2-35
Identity 2-3
IFCP 4-12, 4-38, 4-40
IM/FSM 4-53
In-preparation messages 4-39
Incoming citation 4-78
Incoming message processing 2-13, 2-19
Info message field 2-13, 2-14, 2-16, 2-20
Information Automation project 1-2, 1-10
Input Multiplexer 4-53
Instruction entry 2-4
Instruction parsing 4-14
Instruction processing 4-29
Instruction window 2-4
Integration of AMHS 3-7, 3-9
Internal message field 2-14, 2-20
Inversion lexicon 4-44

KA processor 1-6, 1-7
KEYWORD instruction 2-30,2-34,3-27
Keyword lexicon 4-44
KI processor 1-7
KL processor 1-7, 1-8

LDMX 1-7, 1-8, 2-11, 3-3. 3-6, 3-15, 3-16, 3-18. 3-20
LESSON instruction 2-8, 4-16
Lessons 2-8, 4-16
Lexicon package 4-100
Lexicons 4-44
Load average 2-3
LOG OFF instruction 2-5,2-34
Logging off 2-34

Macro facility 3-26
Maintenance daemon 4-89
MEDIT program 4-107
Message daemon 4-77
Message directory 4-65
Message distribution 3-15
Message processing design 4-33
Message release 3-20
Message sequence number 2-14
Message structure 3-14, 4-39
Message types 2-13.3-15
Message versions 4-39

I

3-44

Message-ID 2-15, 4-39, 4-65
Messagette 4-39
Messagette directory 4-39
Messagette storage area 4-39
Messagette structure 4-40
MIT 1-4
MITRE Corporation 1-4, 1-5, 3-1, 3-9
MME Terminal 4-39, 4-48
!!MOVE.! function key 2-10,4-29
MOVE instruction 2-12, 2-28, 2-30, 2-33, 3-22, 3-26
MOVE TEXT instruction 2-12, 3-26
MP package 4-91
MSCAN program 4-108
MSGMOD 4-38, 4-39
MSGMOD functions 4-42
Multiprint package 4-91
MyPending file 3-25

NAK protocol signal 4-55
Naval Research Lab 1-5
Naval Research Laboratory 1-10
NAVELEX 1-3, 1-5
NLS 1-3, 4-37
NMIC-SS 3-12
!!NO!! function key 2-13, 2-19, 2-22, 2-33
Note processing 2-19
Notice 4-48
Notice queues 4-56
NOUT JSYS 4-92
Number of terminals 3-7
Number of users 1-6, 1-7. 3-7

ODTIM JSYS 4-92
!'ONLINE.! function key 2-1, 2-2
Operations on data objects 2-11
Otrig message field 2-14, 2-17
Originting office message field 2-17, 2-21
Outgoing message processing 2-20

PACAF 3-24
Paging 4-37
Parsing the Subject 2-15, 3-7
Pending file 2-11, 2-27, 3-17, 3-21, 4-43,4-46
Personal file 4-43
!!PICKUPII function key 2-10, 4-29
PICKUP instruction 2-11, 2-12, 2-33
PLAD Plain Language Address Tables 3-6.3-18.3-20
Precedemce message field 2-16
PRINT instruction 2-32. 2-33, 2-34, 2-35
Printing 2-35. 3-25

3-45

Procedures for use of AMHS 3-8
Prompt 2-6
!!PROMPT.! function key 2-6, 2-7, 2-9, 4-14,4-15
Protocol Analysis Test 1-4
Protocol reset 4-55
PSN Processing Serial Number 2-14
IfPUT7! function key 2-10
PUT instruction 2-11, 2-33

Q/FSM 4-54
Queue package 4-102

R/FSM 4-54
Readboards 2-28, 3-22. 4-43
READDRESS instruction 2-21, 2-32
Readdressal 3-18
Receiver 4-52,4-53
Reception daemon 4-38. 4-41, 4-82,4-101
RECLASSIFY instruction 2-33
Ref message field 2-17, 2-18, 2-19
References 3-5. 3-7. 3-17. 3-19, 3-27
!!RELEASE.! function key 2-23, 2-32
Release message field 2-17, 2-18, 2-21, 2-22, 2-23
Releasing messages 2-24
Reliability 1-8, 1-9, 3-6, 3-31.3-33
!!REPLY Y ENTR Y! function key 2-20
REPLY instruction 2-20, 2-21, 2-32. 2-34
!!REPLY NEX ! function key 2-20
RESET ALERTS instruction 2-34
!!RESE7!! function key 2-1, 2-2, 3-12
RESET protocol signal 4-55
RESETACK protocol signal 4-55
Response time 1-6. 1-8. 3-5. 3-26
RESTORE instruction 2-28.4-31.4-32
RESTRICT instruction 2-29. 2-30, 2-34. 3-5, 3-16. 3-17. 3-22, 3-26. 3-27. 4-34
Retrieval from Archive 2-19
Retrievedcitation 2-19, 4-86
!!RETURN!! function key 2-9, 2-10. 2-16
ROC Required Operational Capability 3-1
!!ROLL DOWN!! function key 2-10, 4-57
!!ROLL UP!! function key 2-10. 4-57
ROUTE instruction 2-20. 2-30. 2-32, 2-34, 3-9. 3-16, 4-42
Route lists 2-30

!SAVW! function key 2-33
Sectioned messages 3-23
Security 2-13. 3-24
Security lights 2-1, 3-24
Selection 2-29.4-34
Selector attributes 2-30

-Id

-pr

3-46

Selectors 2-11, 2-29, 3-24, 4-36, 4-46
!ISHOW FILE!! function key 2-12
!ISHOWMESSAGE!! function key 2-12
!!SHOW TEXT! function key 2-12
SIGMA messages 4-33,4-39
Signature block message field 2-17
SIN JSYS 4-85
SORT instruction 2-26, 4-34
SOUT2 JSYS 4-52
SSO program 4-106
SSO System Security Officer 2-3, 2-5
Standard Subject Index Codes 3-7
Starting up SIGMA 2-2, 3-12, 4-12, 4-17
Statefiles 4-31. 4-32
Status line 2-4
Subject message field 2-11, 2-16. 4-40
SYNC protocol signal 4-55
SYSTEM NEWS instruction 3-25
System News 2-35
SYSTEM NEWS instruction 2-35
SYSTEM STATUS instruction 3-25

TBUF 4-49
TENEX 1-6, 1-7, 2-11, 3-27, 3-29. 3-30, 3-32, 4-37
TENEX Directories 4-8
TENEX File system 4-8
TENEX Processes (forks) 4-7
Terminal 1-4, 2-1,3-11, 3-27, 3-28, 4-7.4-24, 4-56
Terminal Driver 4-48
Terminal dump facilities 4-108
Terminal firmware design 4-60
Terminal memory management 4-59
Text message field 2-17
Text objects 2-11, 2-32. 3-23, 4-35
Text Package 4-96
TID Text Identifier 4-97
To messae field 2-13. 2-14, 2-16, 2-17, 2-20, 2-24, 4-40
TOPS20 3-27
Transmission Buffer 4-49
Transmission protocol 4-48
Transmitted messages 4-39
Transmitter 4-49
Tutor system 2-8, 3-13, 4-16
Typed by message field 2-17
Types of file entries 2-26

!!UP WINDOW! function key 2-10, 4-58
1!UPDATE!! function key 2-10. 2-17, 2-33, 4-33,4-35
User adaptation 3-4
User interface 3-2, 4-7

3-47

Userjob 4-1, 4-7, 4-11,4-12
User model 3-25
User motivation 3-33
Utility of SIGMA 3-1

VIEW KEYWORDS instruction 2-30
!I VIEW DISPLA Y! function key 2-35
VIEW instruction 2-12, 2-13, 2-19, 2-29, 2-33, 2-34, 3-27
VIEW MESSAGE instruction 3-27
VIEW VERSION instruction 2-22, 2-23, 4-39
View window 2-4
Virtual address space 4-7, 4-37
Virtual terminal 4-20.4-24
Volume of messages 4-4

Windows 2-1. 4-24,4-57,4-62
!I WORD LEFT!! function key 2-10
!! WORD RIGH71! function key 2-10
WWMCCS 1-5, 1-7, 3-33

Xmit Fail citation 4-79
XSIGMA 4-11

!! YES!! function key 2-13, 2-19, 2-22, 2-33

ii
* -.

,..DATEI

ILME,

