AD-Al16 359 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO==ETC F/6 17/2
SIGMA FINAL REPORT. VOLUME V, PART 1=3. INTRODUCTION: FUNCTIONA==ETC{U)
MAY 82 R STOTZs D WILCZYNSKIs» S FINKEL DAHC15=72~C=0308

UNCLASSIFIED ISI/RR=-B2-94=VOL=5=PT=1 N

| O 82 2
L2 =
I 1 -
= &
122 [l e

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAL 8 TAND Akl

AD A116359

MME Final Report
Volume V, Parts 1, 2, and 3
ISI/RR-82-94

MME

MILITARY MESSAGE EXPERIMENT

SIGMA Final Report:

Introduction, Functional
Description, and Evaluation

Robert Stotz
David Wilczynski
Steven Finkel
Robert Lingard
Donald QOestreicher
Leroy Richardson
Ronald Tugender

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3; RECIPIENT'S CATALOG NUMBER
. ISI/RR-82-94 Ce) L A
t 4. TITLE (and Subtitle) 1l - . ‘5. TYPE OF REPORT & PERIOD COVERED
SIGMA Final Report: Final Report
Introduction, Functional Description, and Evaluation 6 PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACY OR GRANT NUMBER(s)
Robert Stotz, David Wilczynski, Steven Finkel,
Robert Lingard, Donald Oestreicher, Leroy Richardson, DAHC 1572 C 0308
Ronald Tugender
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
USC/Information Sciences institute AREA & WORK UNIT NUMBERS
4676 Admiralty Way
Marina del Rey, CA 90291
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency May 1982
1400 Wilson Blvd. 3. NUMBER OF PAGES
Arlington, VA 22209 115
14. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Olfice) 18. SECURITY CLASS. (of this report) L
Unclassified i
""""" T8a. DECL ASSIFICATION/ DOWNGRADING b
SCHEDULE 4
16. DISTRIBUTION STATEMENT (of thia Report) :
This document is approved for public release and sale;
distribution is unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il ditferent from Report)
|
‘ 18. SUPPLEMENTARY NOTES .
19. KEY WORDS (Continue on reverae side if necessary and identify by block number) I
H
automated message handling, daemons, database organization, DEC PDP-10, editing, file system, i
HP/MME terminal, Hewlett-Packard 2649 terminal, interactive message processing, interactive §
message service, interactive terminal, message processing, military communications, Military 3
20. ABSTRACT (Continue on reverse side I necessary and identity by dlock number) ;
' The first part of this report introduces SIGMA, the automated message-handling system used in the
Military Message Experiment, developed at the Information Sciences Institute. This introduction is
divided into two parts. The first, from 1968 to 1975, covers the period from the recognition of the
need for improved communications at Camp Smith, Oahu, to the actual signing of a Memorandum of
Agreement to conduct the MME. The second part covers ISI's involvement in the planning and the
actual conducting of the MME, roughly from 1973 to 1979. —
DD M7 e o Unciassitied .
SECURITY CLASSIFICATIGN OF THIE PAGE (When Data Entered)

- — - WS sAm -

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

19. KEY WORDS (continued)

automated message handling, interactive message service, military communications, Military
Message Experiment, nonprofessional computer users, reliability, SIGMA message service, TENEX,
terminal-based message service, utility

20. ABSTRACT (continued)

. The second part of the SIGMA Fina! Report describes the functionality of SIGMA as a user views it.
This part introduces the reader to the system in roughly the sequence that a new user is exposed to it.
it starts with a discussion of the terminal, followed by the log.on procedure, then proceeds to the
various objects the user deals with in SIGMA and the operations he may perform on them.

The deveiopers of SIGMA learned a great deal during the MME about what the proper tunctions of
an automated message-handling system should be, but these lessons were only part of the
developers' education. The experimental results were affected more by several higher level issues
than by the details of the message service operation. This part of the SIGMA Final Report is divided
into the following major sections: high-level issues, functional and design considerations for a
message service, and lessons on development and operational environment for the experiment, Parts
one, two, and four of the SIGMA Final Report are factual; this part, on the other hand, p#‘marily
contains opinions of the authors (all members of the 1SI team that developed SIGMA), formed from
their review of data abstracted from the user interviews, discussions with users, and other peripleeral
observations.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Bntered)

MME Final Report
Volume V, Parts 1, 2, and 3
. ISI/RR-82-94

MME

MILITARY MESSAGE EXPERIMENT

:
1
1
E
]

SIGMA Final Report:

Introduction, Functional
Description, and Evaluation

Robert Stotz

David Wilczynski
Steven Finkel
Robert Lingard
Donald Oestreicher
Leroy Richardson
Ronald Tugender

ashdolinciest bbbt ibciodis,

This reseerch is supported by the Defense Advanced Ressarch Projects Agency under Contract
No. DAHC1S 72 C 0308. Views and conclusions contained in this report are the authors' and
should not be imerpreted ss representing the official opinion or policy of DARPA, the US.
Govemnment, or any person or agency connected with them.

CONTENTS

| 1. INTRODUCTION TO SIGMA 1-1
1.1 THE DEVELOPMENT OF SIGMA 1-1
~. 1.1.1 Background 1-1 :
f 1.1.2 The Initial System 1-2 :
: 1.1.3 The Evolution of SIGMA 1-6
{ 1.1.4 SIGMA Staff 1-10 .
g 1.2 SUPPORTING DOCUMENTS 1-10 i
' 2. FUNCTIONAL DESCRIPTION 2-1 o
2.1 INTRODUCTION 2-1
i 2.2 THE TERMINAL 2-1
23 LOGON 2-2
! 2.4 STANDARD SCREEN 2-3
' 2.5 INSTRUCTION ENTRY 24
2.6 FUNCTION KEYS 2-6
2.7 USER ASSISTANCE 2-6
2.7.1 Prompt 2-6
2.7.2 Help 27
2.7.2.1 Selectable terms 2-7
2.7.2.2 Requesting help 28
2.7.2.3 Use of the screen in help 2-8
2.7.3 Tutor 2-8
2.7.3.1 On-line lessons 2-8
2.7.3.2 On-line exercises 2-8
i 2.8 EDITING FACILITIES 2-9
! 2.9 DATA OBJECTS 2-11
: 2.9.1 General Operations on Data Objects 2-11
‘ 2.10 SECURITY 2-13
! 2.11 MESSAGES 213
! 2.11.1 AUTODIN Incoming Messages 2-13
2.11.2 Preparation AUTODIN Messages 2-15
i 2.11.3 Memos 2-17
‘ 2.11.4 Notes 2-19
i 2.12 INCOMING MESSAGE OPERATIONS 2-19
2.13 OUTGOING MESSAGE OPERATIONS 2-20
2.13.1 Preparing the Draft 2-20
2.13.2 Coordination 2-21
! 2.13.3 Release 2-24
: 2.14FILES 2-24
% 2.14.1 File Formats 24
! 2.14.2 Pending File 221
i 2.14.3 Date Files 2-27
| 2.14.4 Readboards 228
’ 2.14.5 Deleting Entries -8
2.14.6 Selection from Files 2-29
f
- TETTT L T IR

iv

2.14.7 Keywords

' 2.14.8 Route

3 2.14.9 Other Operations on Files

; 2.15 TEXT-OBJECTS

. 2.16 ALERTS

; 2.17 MISCELLANEOUS OPERATIONS
2.17.1 Log Off

. 2.17.2 Identify

2.17.3 Printing

! 2.17.4 System News

2.17.5 System Status

2.17.6 View Display

3. Lessons

‘ 3.1 LESSONS LEARNED
, 3.2 HIGH-LEVEL ISSUES
3.2.1 The Definition of Utility
3.2.2 The Value of SIGMA
3.2.3 Some Unqualified Successes
3.2.3.1 User interface
3.2.3.2 Better access to information
3.2.4 Limitations of Automated Message Handling Systems (AMHS)
3.2.4.1 Difficulties of user adaptation
3.2.4.2 Rigidity of automated systems
3.2.4.3 Particular limitations of SIGMA during MME
3.2.5 Lessons Concerning the Service
3.2.5.1 Reliability and availability
! 3.2.5.2 Integration of AMHS and the message exchange
3.2.5.3 Worldwide telecommunications procedures
3.2.6 General Questions Connected With Establishing an Automated System
3.2.7 Policies and Procedures
3.2.8 The Larger Goals of an Automated Message Handling System
3.3 LESSONS ON FUNCTION AND DESIGN
3.3.1 Architecture
3.3.1.1 Shared access to a single copy of messages
3.3.1.2 Files as a collection of citations to messages
3.3.1.3 Shared access to a single copy of files
3.3.1.4 Central data management
1.3.1.5 Foreground-background split
3.3.1.6 Archive
3.3.1.7 Intelligent terminal
3.3.2 Details about Function and Design
3.3.2.1 Start-up facilities
3.3.2.2 The display screen
3.3.2.3 Entering instructions
3.3.24 Help system
3.3.2.5 The tutor system

- —————

. - - ~ T i -

2-30
2-30
-2
2-32
2-33
2-34
2-34
2-35
2-35
2-35
2-35
2-35

N

s e e W

3.3.2.6 Editing
3.3.2.7 The structure of the SIGMA messages
3.3.2.8 Message format
3.3.2.9 Message types
3.3.2.10 Distribution of incoming messages
3.3.2.11 Alerts
3.3.2.12 Access to messages
3.3.2.13 Creating outgoing messages
3.3.2.14 Coordination process
3.3.2.15 Release of messages
3.3.2.16 File system
3.3.2.17 Text objects
3.3.2.18 Sectioned messages
3.3.2.19 Access control
3.3.2.20 Archive
3.3.2.21 Security
3.3.2.22 User model
3.3.2.23 Printing
3.3.2.24 News and status
3.3.2.25 Miscellaneous
3.3.2.26 What more we could have done
3.3.2.27 Other user requests
3.4 LESSONS ON SYSTEM DEVELOPMENT AND OPERATION
3.4.1 An AMHS is a Big System
3.4.2 Balance the Goals
3.4.3 Development Environment
3.4.3.1 Choosing a computer and operating system for development
3.4.3.2 The programming environment
3.4.3.3 Developers as users of the system
3.4.3.4 Developers ne~d access to the operating site system
3.4.3.5 Testing
3.4.3.6 Design for an unreliable environment
3.4.4 Operating Environment
3.4.4.1 Choice of on-site computer system
3.4.4.2 Computer operations
3.4.4.3 Understanding goals and maintaining motivation
3.4.5 Conducting an Experiment
3.4.6 Summary

Index

314
34
315
3-15
315
317
1
3-18
319
320
321
3-23
323
324
324
324
3-25
325
3-25
3-26
3-27
328
3-28

3-29
329
329

3-30
3-30
3-31
331
332
332
3-33
3-33

334

3-39

e e = e aiw

o st ¢ e e =

ACKNOWLEDGMENTS

The list of people who contributed to the Military Message Experiment and thereby to this réport is too
long to publish. A few people, however, deserve special recognition for their help in producing this
document. We especially appreciated the efforts of Dr. Nancy Bryan for her editorial contributions, Jim
Melancon for his assistance in the publication process, and Mel Pirtle for moral and intellectual support in
traversing the maze of the formatting program and the Penguin printer.

ey e

: PREFACE

This document comprises Parts One, Two, and Three of Volume V of the MME Final Report. The
volumes of the MME Final Report and their topics are:

Volume I Executive Summary
I Final Report
I User View
v Message System Ultility
\% SIGMA Final Report
VI Data Analysis and Discussion '’
VII Training g

The opinions expressed in this report are those of the authors and do not necessarily represent those of :
USC/Information Sciences Institute or the MME project sponsors. Readers interested in obtaining the 13
remaining volumes of the MME Final Report should contact: 11

Naval Research Laboratory
Washington, DC 20375
Atn: Code 7590

e 00, O I A €\ e T 3 48 UE T VAT ey 8 preT WY

————— - = . .
e W S o b -

PART ONE:

INTRODUCTION TO SIGMA

1.1 THE DEVELOPMENT OF SIGMA

The following discussion is the history of the Military Message Experiment as seen through the ‘eyes of the
system developers at the Information Sciences Institute (ISI). Section 1.2 describes other documents that will
provide a wider perspective of the experiment.

This history is divided into two parts. The first, from 1968 to 1975, covers the period from the recognition
of the need for improved communications on Qahu to the actual signing of a Memorandum of Agreement to
conduct the MME. The second part covers ISI's involvement in the planning and the actual conducting of
the experiment. roughly from 1973 to 1979.

1.1.1 Background

The MME had its roots in the Pueblo incident of early 1968. As a result of Congress’ special investigation
into the causes of that incident, the Secretary of Defense was directed to improve military communications on
the island of Qahu, which is the central focus of communications for all forces in the Pacific. The memo from
the Secretary of Defense identifying the need for a program to consolidate communications on Oahu signals
the beginning of the COTCO (Consolidation of Telecommunications on Qahu) program. The Assistant to the
Secretary of Defense for Telecommunications (ASD Telecommunications), the Joint Chiefs of Staff, and
CINCPAC (Commander in Chief, Pacific) exchanged a series of memoranda and communiques to establish
plans for development of COTCO: the Navy was given the task of assembling a specific program.

In late 1972-early 1973 (four years after the original memorandum), the director of DARPA's Information
Processing Techniques Office was invited to comment on the COTCO requirement. He felt that an
interactive message-handling system like the functioning. successful ARPANET message service might be
useful on Oahu, ISI was asked to study the problem, and a team of four spent two weeks on Qahu. primarily
at CINCPAC Headquarters, studying the state of communications. Their report is 4 Plan for Consolidation
and Automation of Military Telecommunications on Oahu {8).

The report proposes radical solutions to the communications problem: distribute around the island some
2000 terminals connected (via links similar to those used in the ARPANET) to five computers dedicated to
message processing, which would themselves receive network communications from both island and
mainland. Next, give the communications staff access to the terminals and (it is implied) instruct the staff in
the use of an already available computerized service for producing and receiving messages. The message
processing task itself was not studied in detail. The ARPANET message service was assumed to be sufficient.
The IS report was received with interest by people in Washington and at CINCPAC, but the Navy deemed it
100 extreme.

In January 1974 the Chief of Naval Operations submitted the Navy’s plan of action for COTCO. The
proposed COTCO plan, which ignored interactive message handling, called for improving communications in
two phases. Phase one used existing equipment on the island, eliminating redundancy and saving some
manpower; phase two would develop a rather large, sophisticated system to allow a single computer to handle
messages for the whole island. This system was expected to save expenses because of economies of scale, but
it presented no new approaches to the message-handling problem. The cost of the second phase was
projected to be approximately $40 million over a period of three to five years, with implementation occurring
in stages. The phase two plans only briefly mentioned a potential "conversational” mode during the latter
vears of developing that system. with the suggestion that some testing of the interactive mode take place. As
subrnitted by the Navy, the COTCO report was criticized by many. particularly by CINCPAC, who was to be
the primary user of the service, for being too expensive and offering no real improvement.

1-2 SIGMA FINAL REPORT

During this time, CINCPAC worked with DARPA to acquire a better understanding of interactive
communication. CINCPAC obtained a few ARPANET terminals and began to understand the implications
of an interactive message service. In early 1974 ISI, CINCPAC, DARPA, and the Navy began two years of
discussion of automated message handling. All parties agreed that the plan described in the ISI report could
never be practically implemented, but that conducting a test would demonstrate how this kind of service
could work in an operational context and how effective it would be. Whereas the Navy had been viewing
interactive message handling as something to try out after the main COTCO system was operational,
CINCPAC began to view this sort of message service as the means to improve its communications. If
COTCO was designed primarily to support the old style type of message handling, then its design would
probably not include the equipment necessary to implement interactive message handling, possibly the
dominant form of communications in the future.

Throughout 1974 and well into 1975, the COTCO plan was rewritten several times; each time the Joint
Chiefs of Staff, CINCPAC, and others contributed to it, the concept of including an interactive test received
greater emphasis. DARPA and the Navy began to talk about conducting a test with CINCPAC as the testbed.
CINCPAC also took a stronger position; in August 1975, CINCPAC stated in a message (5] to the Director of
Telecommunications and Command and Control Systems (DTACCS; formerly. Assistant Secretary of
Defense for Telecommunications) that interactive message handling should be a part of any planned message-
handling program. From January 1974 to August 1975, the Navy plan for COTCQ was considered, revised,
and reconsidered many times, until DTACCS disapproved the COTCO implementation on 20 August 1975.
DTACCS permitted phase one of COTCO (the consolidation of services and elimination of redundancy) to
be carried out, but cancelled the implementation of the proposed message-handling system. Instead, DARPA
and the Navy were to conduct a test of interactive message handling, using CINCPAC as the test site. The
Defense Communications Agency (DCA) headed a study to ensure that the test would take into account the
needs outlined in the COTCO plan. DARPA and the Navy worked very closely with CINCPAC trying to
define an appropriate test. In December 1975 DARPA, the Navy, and CINCPAC signed a Memorandum of
Agreement defining the Military Message Experiment program {27].

1.1.2 The Initial System

The ISI team’s report, issued in May 1973, indicated that the best way to consolidate telecommunications
on Oahu would be to give all communications staff on the island access to VDTs connected to message-
processing computers (i.e.. put the staff on-/ine). There would need to be 5 message processing systems, 37
TIPs (Terminal Interface Message Processors, which link the terminals to the computers), and 2000 terminals,
a conversion that would cost $22 million. The military viewed this approach as very radical, and ISI's
recommendations never had a serious chance of being adopted. They did stimulate much interest in on-line
interactive message handling, however, and this interest was channeled to Washington and CINCPAC.
DARPA received enough positive feedback on the plan to encourage ISI to study the problem further.

ISI initiated the Information Automation (IA) Project, which was to investigate the kind of support
required to implement an automated message service. The users of such a system would be naive about
computers and would require a great deal of support from the computer software, even though the current
state of the art was not yet adequate to contribute that support. Although intense research was not considered
appropriate, the project would need to distill into a single system knowledge already available about
previding a helpful and supportive user interface on a large scale,

The 1A Project got under way in the fall of 1973. During its first year, during which the suppon
requirements for this kind of system were studied. six reports were published [1.15,23.32.33.42]. In
additon to studying the computational possibilities. the project staff consulted with the Navy and with

Section 1.1.1

|
[}
!

1. INTRODUCTION TO SIGMA 13

CINCPAC to understand their message-handling needs and to educate them about on-line message-handling
systems. ARPANET terminals were installed at CINCPAC and the Naval Electronics Systems Command to
increase staff understanding of on-line service. Until then, the communications philosophy had always been
to deliver the message as fast as possible: the faster it could be gotten out of storage the better, because
communication was viewed as simply the delivery of messages. In contrast, on-line systems involve storing
the message in a computer "mailbox" and letting the user come to it. Instead of the message being held in the
computer for minutes, it would in fact be held there for months, to be filed and retrieved as desired. The
military makes a very sharp distinction between communication (the delivery of messages) and administration
(the storage and manipulation of messages after delivery). An interactive message-handling system blurs this
distinction.

In the fall of 1974 the notion of conducting a test in an actual operational environment began to get some
high-level DoD support. The Navy’s interest in this test was related to COTCO; such a test was viewed as
part of COTCO and was linked strongly to the $40 million program. In November ISI focused its design
efforts on a message service for military applications, particularly for CINCPAC’s environment. This service
was documented in a report called the Brown Bomb [20], a design proposal to DARPA. While details of the
proposed design changed almost entirely (little of the material on data structure, messages, and so forth
survived), the basic architecture did prevail. This architecture is described more completely in Part 4 of the
SIGMA Final Report (ISI/RR-81-95). The essential feature that distinguished the MME's message system
from most of the message systems already on the ARPANET was the idea of a central database serviced by
background processes, called daemons.! Instead of each addressee getting his own copy of a message, a
citation would be delivered, pointing to the message and supplying summary information about it. If the user
asked to read the message, the service would provide a copy from the central file, retaining the original for
others’ access. If the user changed his copy of the message, i.e., added a comment to it, the change would be
submitted to a background daemon to update the central copy. The Brown Bomb strongly emphasized the
design of a consistent supportive user interface; even though some of the particular aspects advocated in the
carly design were altered, the focus on supporting a computer-naive user prevailed throughout the program.

In February 1975, after DARPA essentially approved the design and gave the order to proceed, ISI began
the implementation of what eventually became SIGMA, the message service designed for the MME by ISL
The original plan called for using the NLS? back-end system for the basis of functional performance. NLS
was already being split into two parts, froni-end and back-end. for the National Software Works: The user
communicates with the front-end, which controls the display and communicates with the back-end; the back-
end accomplishes tasks given it by the front-end and communicates directly with the computer. The idea was
that the message itself would be manipulated and stored as NLS data; 1S would provide the front-end to that
system. So ISI's work started by investigating NLS, ways to work with it, and developing SIGMA’s front-end,
including the command language processor. the editor, the tutor, and the user monitor, to support the user.

SIGMA was to be implemented in two phases. The service to prepare outgoing messages was given
attention first because message preparation was the least developed part of then-current message services on
the ARPANET and especially because of the requirements of the military coordination process. Coordination
involves obtaining the approval of peers and superios.. before releasing a message, since each message has the
status of a formal document coming from the Commander-in-Chief of the organization. Nothing in the

! Imis approach was suggested by Albert Vezza of MIT.

5
“NLS (oM -Line System) was developed at the Stanford Research Insutute in the mid-60s and was one of the first office-automaton
systems

Section 1.1.2

|
|
i

14 SIGMA FINAL REPORT

available ARPANET message services adequately handled the coordination process, so this part of the system
would have to be designed from scratch. It was expected that this first phase would be complete in 1975; the
second phase, implementing an appropriate way to handle incoming messages, would be complete by October
1976. After a period of integration, in January 1977 SIGMA would be ready for testing with some (hand-
picked) users. By July of 1977, SIGMA would be ready for CINCPAC users to begin operational testing.

In the spring of 1975, ISI produced a document for DARPA proposing the format for a test plan of an
experiment involving automated message handling. MITRE was chosen to administer the test, so ISI's
proposal was shipped to MITRE for consideration. By September 1975, MITRE had a full test plan draft,
which was approved in final form a year later.

By the end of the summer of 1975, negotiations between DARPA, the Navy, and CINCPAC for
conducting a test looked very promising. ISI's work with NLS showed it to be so intractable that the plan for
using it was dropped; ISI would implement new message-access mechanisms. DARPA began to emphasize
the development of the new system. MITRE was put in charge of the message service security. In order to
assure that some system would be available for the experiment, DARPA asked BBN and MIT to develop
alternate message services for the test.

Early notions of the CINCPAC experiment had the message-processing computer housed at a Navy
installation in the continental United States; CINCPAC was to be connected to the computer by the
ARPANET. Because of network delays, ISI advocated reprogramming the t=rminal’s microcode to make it
intelligent; it was feit that response time would then be acceptable even though the host was 2000 miles away.
Indeed, the direction of ISI's project began to assume this type of architecture.

By the fall of 1975. SIGMA was working well enough to permit actual demonstration of the simulated
terminal interface, the language processor, the message editor, and the limited delivery facility. In early
December the Memorandum of Agreement was signed between DARPA, CINCPAC, Naval Electronics
Systems Command. and the Naval Telecommunications Command. The signing of this agreement deeply
committed DARPA 1o provide a useful service. In January 1976 a meeting was held at NAVTELCOM
facilities in Washington with DARPA, the Navy. MITRE and the three contractors: 1SI. BBN, and MIT. At
this meeting discussion centered upon a plan for the three contractors to work together to make the test
successful. Each of the contractors had its own proposed message service: it was agreed that there was no way
to combine the three systems for a single test because each was completely different from the others, so the
program became a three-way competition.

The three contractors concurred that the user should communicate with the message service through a
VDT. ISI's proposal for putting intelligence in the terminal, to provide multiple windows and two-
dimensional editing capability, was adopted; all agreed to use the ISI terminal. BBN later chose to stay with a
more conventional VDT,

Detailed plans for handling the MME itself were taking shape in the spring of 1976. Contracts were let to
CTEC and MITRE. CTEC would provide the test director, who would be independent of the implementors.
MITRE had developed the test plan, which called for the message system to collect data on how it was used.
The Navy planned to run the computer in Cheltenham, Maryland, near Washington D.C., and to start the test
in March 1977. After the dissolution of the COTCO plan, the Navy had incorporated the MME test into a
larger program called DISTAN (Distributed Interactive Secure Telecommunications Area Network). The
DISTAN program never went much further than MME: the Navy eventually dropped DISTAN.

Section 1.1.2

. et -

1. INTRODUCTION TO SIGMA 15

An IS1 staff member developed a technique called a Protocol Analysis Test, which comprised an extended
interview and simulation with candidate users to learn how potential users felt about an automated message
service, and to gain information about design, data format, functionality, vocabulary, and so forth. In May
1976, a test was conducted with Navy personnel in the Washington D.C. area to evaluate the utility of
protocol analysis. The results of the May interviews [16] justified a similar test on the island. In July, an ISI
team interviewed 24 CINCPAC users, collecting information on what an interactive message service could do
for them. how they could use it, and their preferred user interface. That information was used in ISI's design.
‘The report on that protocol analysis test appeared as a working paper in September of 1976 [17].

The original plan to locate the computer in Cheltenham, Maryland, was abandoned in 1976. Reduced
performance, potential unreliability, added expense, and CINCPAC's concern at having its messages appear
at the Navy site halfway around the world contributed to this decision. Instead, CINCPAC agreed to provide
room for the MME computer in the Command Center building, next to the WWMCCS (World-Wide
Military Command and Control System) computer. The plan thus changed from remote to local computer
access. Although CINCPAC felt its WWMCCS operation staff could support the MME computer, some
people with TENEX expertise were required to manage it. BBN was chosen to manage the operation and
maintenance of the hardware.

As 1976 drew 1o a close, a choice had to be made among the three message services. The decision was to
conduct a run-off in February 1977 to evaluate the three different services, and select which one would go on
the island. The other two were to be used at other sites, in structured tests. (These structured tests never
occurred.)

BBN was the site chosen for the evaluation; the evaluators were from CTEC, NAVELEX, CINCPAC, the
Naval Research Lab, and MITRE. The group was chaired by the MME program manager from DARPA.
Each message service was given a three-day evaluation. ISI sent seven terminals to BBN for use in the
evaluation. Each group had one day to prepare for the evaluation and one day to introduce and present its
message service to the evaluation team and to work with them on how to use it. On the third day, the
evaluation team worked on its own to judge the message service’s effectiveness.

In early March the evaluation team went to Washington to pool their opinions and make a selection. Each
message service was evaluated for functionality, security, and user interface. ISI's SIGMA was ranked the
highest in each category: its user interface was suited to the military, it had appropriate provisions for security,
and it provided functions that paralleled existing manual practice. SIGMA's deficiencies were mainly in
functionality and performance: it ran at such a slow rate that only three users could work reasonably well.
The decision was made to select SIGMA on the condition that ISI would eliminate SIGMA's deficiencies.

ISI devised a plan for doing so, the SIGMA Transition and Deficiency Amelioration Plan [37), which called
for installing SIGMA in May 1977 and allowing "friendly” users to shake down the system. New software
releases were scheduled every month from May through December: in December. the experiment itself
would begin with the final software release, and "real" users would be put on the system. During this period
some training and on-site testing would occur, connections would be made to LDMX. security evaluated. and
so on. In effect, 1SI had eight months to make the system work, with the test to begin in January of 1978. The
test was scheduled to run through June 1979, six months less than originally planned.

SIGMA's poor performance was only one of the deficiencies noted in the Deficiency Amelioration Plan.
Others included on-line lessons and exercises, considered essential for training at CINCPAC. Some utilities
to support the operation needed to be developed. such as a robust terminal protocol to allow for
communication errors and a data collection package to obtain information on the system's use. SIGMA had
to be extended to handle printers and to be coupled to the LDMX in order to receive messages. Some

Section 1.1.2

-

1-6 SIGMA FINAL REPORT

functional features still had to be incorporated into SIGMA: an archive system, an alert mechanism to
indicate the arrival of new messages, and modification of access control. Both routing of incoming messages
and procedures for handling outgoing messages had to be improved. In addition, an entire collection of
general improvements still had to be worked out.

The performance goals of this transition plan were to support 5 users on the system in June, 10 users in
September, and 25 users in December, a five-to-one increase in throughput within six months--a very
significant improvement. SIGMA would have to be overhauled considerably to be able to support this level
of performance.

In May 1977, a PDP-10 with a KA processor was installed at CINCPAC with 256K of core, only half of
what was planned. SIGMA was installed on the computer, and five terminals were delivered so that initial
system testing could begin. The equipment included two processors, two channel adaptors, two network
interfaces, two pagers, a single bank of memory, and a single disk drive and disk interface. Processors were
duplicated presumably for reliability; if one was down, the other would be available. Ironically, the most
fragile components, the disks and the memory, were the only pieces of equipment not duplicated.

1.1.3 The Evolution of SIGMA

From June through August 1977, ISI followed its transition plan fairly well, each month delivering a
release with new improvements directed toward functionality and improved performance. Project members
were also involved in security tests, installing a remote link to the block house, fixing bugs in SIGMA code,
coping with TENEX problems, testing new software, and making on-site visits to CINCPAC to assist in the
operation of SIGMA. ISI hired an on-site representative who took up residence at CINCPAC in late August.
Unfortunately. most performance improvements achieved during this time were counterbalanced by the
added functions, which tended to degrade performance.

In the summer of 1977, a second 256K of core was added, the single most important step toward
significantly improving performance up to this point. In October, when the goal had been to support ten
simultaneous users, only about five users could be supported.

Performance became the critical item in October, since the promised level had not been met. The schedule
was completely revised. with all the functions promised for the October, November, and December releases
postponed. It was decided that the project should focus strictly on performance; in December an evaluation
would be made of whether SIGMA's performance would ever be adequate to support the Military Message
Experiment goals. The functions promised for those fall releases were deferred until after January. The
November release (release 1.7), the critical one for performance. was deferred until early December to allow
extra time to make the necessary alterations.

TENEX itself seemed a likely source for performance improvements. Don Allen from BBN provided some
tools to measure the CPU’s use of time and to take program counter (PC) samples. These tools were very
helpful in determining why the computer’s response was so poor and how to improve it. The results not only
indicated that most of the planned changes for improving performance were correct, but also helped to
generate several new ideas for making improvements.

‘The basic problem was insufficient processor and memory. TENEX is set up to provide many general
capabilities that can be invoked from the user's code. It turned out that more than 75 percent of SIGMA’s
computing cycles were being spent in TENEX code, so it was necessary both to alter SIGMA to make it rely

Section 1.1.2

hed - gt

|
|
|

1. INTRODUCTION TO SIGMA 1

less heavily on TENEX functions and, where possible, to improve those TENEX functions. One slow
TENEX function, the String Output (SOUT) JSYS, was redesigned by BBN, cutting the use of computer
cycles 80 percent. Some of the changes made in SIGMA to improve performance went very deep in the
representation of data, permeating virtually every module, so they were difficult and time-consuming to
implement. After these changes had been completed, numerous bugs had to be eliminated. However, results
were promising: the amount of computer processing necessary to display messages, for instance, dropped
from 6.3 seconds of computer time to 2.3, better than a two-to-one improvement. There were improvements
in other commands too; for example, DISPLAY FILE was reduced by 50 percent. By the time of release 1.7,
performance had almost doubled. Thus, in December, SIGMA could comfortably support about ten users.
Although the target had been to support 25 users by December, even with the completed changes SIGMA
could not yet support half that number. There were still some other changes to improve response, but it
seemed doubtful that anything planned would provide another doubling.

Another approach seemed promising. The MME was using only one of the two available processors. The
other sat idle for backup. If SIGMA’s load were distributed between the two processors, it was felt
performance would almost double. Configuring the two processors to operate in tandem did not seem to be
too difficult; SUMEX at Stanford operates its PDP-10 this way normally, running two K1 processors together.
A consultant from SUMEX was asked to determine the feasibility of linking the two KAs at Camp Smith. He
indicated that connecting the two processors would be fairly easy and would provide about an 80 percent
increase in computing power. With other changes to SIGMA, this would allow it to handle 25 users. BBN,
however. who was operating the computer system, estimated the price to be approximately $600,000 for the
changeover to a dual processor system.

If $600,000 were to be spent, it made more sense to purchase a new DEC KL processor, which would
increase performance by a factor of three. ISI proposed this possibility, arguing that the easiest and cheapest
way 1o increase computing power was to enhance the hardware at Camp Smith. In the long run, purchasing
the KL would be cheaper than trving to force the SIGMA software to be more efficient; with the KL, there
would be an immediate and obvious gain in computer cycles. Once the experiment was over, the KL could be
used for another project. In general. the KL would provide more substantial results for the experiment.
results that the MME sponsors we, 2 anxious to see.

At the end of 1977, it was decided to acquire a new KL processor and continue with SIGMA at CINCPAC.
Operating TENEX with WWMCCS operators was not working well, so the plan also included having IS] take
over operations with a full, round-the-clock operations team, system programmers, and maintenance crew.
The experiment would have to be shaped differently to accommodate the now increased lead time before
proceeding with a full set of users.

Early in 1978, the ISI design team and the rest of the staff involved in MME re-evaluated the progress of
the experiment and planned for the future. Much time had been devoted to providing functions on SIGMA
while trying to improve performance. but the fundamental areas of reliability and operability had been
neglected. For example, the daemons badly needed reworking, both to simplify them and to provide beuer
controls from the operator’s point of view. Better controls were also needed for error situations and for
logging appropriate diagnostic data. The focus therefore turned to the serious problem of reliability. The
functionality enhancements were scheduled for gradual introduction; all would not be completed until after
the new machine arrived and performance increased.

SIGMA's reliability problems were compounded by reliability problems with TENEX. BBN had lost the

one programmer it had on the island and had had to run the computer without any real systems programming
expertise. In March. BBN replaced the systems programmer with the man who had written the original

Section 1.1.3

-——

e —————

P

-t

R

1-8 R SIGMA FINAL REPORT

TENEX-LDMX interface code for TENEX. He was able to strengthen that code and consolidate the entire
operator monitoring system. ISI was rewriting the daemons and improving some of the functions so that they
could be ready for release 2.0 in June. Releases 1.71, 1.72, and 1.73 delivered during this time fixed various
bugs.

About this time the Navy appointed a Blue Ribbon Committee to review the entire MME program to
determine whether the Navy should continue its support. This committee spent about a month examining the
SIGMA system and the installation at CINCPAC, interviewing the users and reviewing the program plans.
They concluded that although MME had experienced delays and system performance was inadequate. the
program had reasonable solutions under way and it should be given continuing Navy support.

By May 1278, the system was stabilizing well enough to permit messages to be taken from the LDMX on a
continuous basis. The daemons in SIGMA, though still the old version, were sufficiently reliable for storing
messages. Prior to this time, messages were coming in sporadically and there was no guarantee that all
messages were arriving,

SIGMA release 2.0, in June of 1978, had new daemons, archive facilities, and functiona! enhancements.
The resuliing improvements in the operability and reliability of SIGMA were very dramatic. Performance
also increased, since the new daemons were smaller, simpler, and required less resources to run. In general,
although the hoped-for number of users could not vet be supported, there was some semblance of stable
operation. July brought the decision to begin Limited Experimental Use, which allowed selected people from
CINCPAC Operations (J3) to use the system experimentally. These selected users would recommend
improvements to be incorporated into subsequent software releases.

Release 2.1 in September offered functional enhancements and performance improvements. Some plans
were made to install terminals at several other sites on Oahu (for example, the offices of the Commander-in-
Chief. Pacific Fleet and the Pacific Air Forces). but because of the already numerous tasks pressing on the
staff, it was decided not to extend the service beyond the CINCPAC Command Center. Extending the
service outside the Command Center would have provided some interesting data on use of the system (direct
message communication to these outside organizations would have been a truly .cw capability). The
extension of service would have stressed access control mechanisms and offered an opportunity to study the
practicality of an informal interorganization message service.

When the KL processor with 1024K of memory was installed in October, most of the problems with
SIGMA's performance vanished. Although the computer resources available even with the KL were not
sufficient for extending the service. they would support a meaningful test of SIGMA at CINCPAC. However.
as with any new piece of hardware, the KL introduced some problems. Time was needed to shake out the
btigs and get the processor working smoothly. The new operations crew needed time to work vut procedures
and learn to work as a team. During October and November, the computer ran with only a few difficulties,
but in December severe disk problems brought a reduction in SIGMA's availability. Uptime dropped from
95 to 86 percent. In addition. the entire disk file was destroyed and had to be restored from backup tape.

Release 2.2 was installed in January 1979 with functional improvements such as an Alert facility.
Readdressal, and better coordination features. With this release CINCPAC authorized the use of SIGMA for
outgoing messages to AUTODIN. After release 2.2, disk problems continued on and off. Uptime in January
was 93 percent. but in February only 83 percent. Despite the lack of reliability, Full Experimental Use began
in February. Users were encouraged to do their work with SIGMA and to take advantage of the capabilities
offered. SIGMA had almost all of the desired functions. Some problems with the outgoing message
capability were discovered during tests in January and were fixed in releases 2.21, 2.22. and 2.23, as were sume
operational aspects.

Section 1.1.3

1. INTRODUCTION TO SIGMA 19

In March, a bad filter was removed from the main power system. The filter was part of the equipment
maintained by the CINCPAC community and had probably been faulty for some time. After the bad filter
was removed, the system reliability increased dramatically. The recurrent disk troubles were also repaired.
By the end of this month, the system reliability improved to 96 percent.

Farly March was the time for the full-scale Exercise Power Play, a global exercise involving U.S. armed
forces centered primarily in Europe, which made CINCPAC's involvement considerably less than it would
have been if the exercise had been in the Pacific theater. The 24-hour watch team of Command Center
personnel conducting the exercise were free to use SIGMA to see how it would be helpful in a crisis, although
no one depended on SIGMA exclusively because of its reliability problems. Message handling on paper and
on SIGMA proceeded in parallel. involving double work for some of the staff.

The faulty power filter was being replaced at this time, so SIGMA was unavailable for significant periods
of the exercise. Questionnaires distributed to members of the exercise watch team showed that, although they
felt it had promise, they were not able to work with SIGMA enough to evaluate it adequately.

During the succeeding months. reliability continued to improve, but the system was still subject to
occasional fits of catastrophic failure. To store messages, SIGMA had depended on a single density disk,
which ran very full and could hold only two weeks of message traffic. In May a double density disk replaced
the old one, allowing 30 days of message traffic to be accommodated. Users were much more satisfied with
the increased storage: they could access more messages on-line and less often had to wait for their retrieval
from archive. In additon, system crashes resulting from overrun of disk space, a fairly common occurrence,
were climinated. Users became more inclined to use SIGMA as they gained confidence in its reliability.

Unfortunately, these improvements in reliability happened too late. The decision was made in the spring
of 1979 that the svstem would be removed from CINCPAC at the conclusion of the experiment, 1 October
1979. This decision was based primarily on the system's lack of reliability and that service could not be
extended throughout more of CINCPAC. The decision to remove SIGMA disappointed the staff of the
MME and many of the users who had become accustomed to working on the message service.

The last major SIGMA relcase. 2.3, was made in early June, although a few minor releases to fix bugs did
come out before the end of the experiment. Release 2.3 contained a collection of functional improvements.
many of which were responses to user requests, such as sorung files and highlighting messages. SIGMA
continued to be used during the summer months, even though it was scheduled for removal. New staff
members at Camp Smith, unaware of SIGMA''s earlier shaky reputation, used SIGMA and preferred it (o the
paper processing of messages. These new users of SIGMA seemed to believe that the system was worth
keeping. With both a new CINCPAC and a new J3 at Camp Smith. an attempt was made to reverse the
decision to remove SIGMA. CINCPAC notified the Joint Chiefs of Staff that he had re-evaluated SIGMA
and that SIGMA's much improved reliability and the staff's better understanding of the system'’s functional
capabilities justified keeping SIGMA. The appeal came too late; the system was removed as planned.

During a two-week period in August before SIGMA was dismantled, users were asked to work with
SIGMA 10 send outgoing messages so that evaluators could obtain a better understanding of this capability.
Detailed results of this evaluation are given in MITRE's reports [13, 14). During September, the last month of
the system’s operation, Exercise Power Play was re-run at CINCPAC in order to better evaluate the system’s
utility in a crisis. All the messages received in the previous exercise were retrieved, edited back to their
original state, and then re-entered into the system as new messages. An operator controlled the introduction
of the messages so the pace could be varied. The exercise was conducted essentially as it had been in March.
except this time SIGMA was the primary message-handling medium, and all messages, incoming and
outgoing, were kept within SIGMA.

Section 1.1.3

: ra 3 emilitbmte o

ey '_’ - b

Bk e aifesin ok eininibia

1-10 SIGMA FINAL REPORT

Messages were first introduced at a rate roughly equivalent to real time, and then as the users warmed up,
the message load increased. For the last six to eight hours, messages were submitted about every two minutes,
a fairly heavy load, although not a saturation point for the paper system. SIGMA performed very well; the
users found it worthwhile. However, the results were inconclusive in determining if an automated system is
more effective than a manual system in a crisis. More discussion of these results is presented in the official
MME Finat Report {29].

On October 1, 1979, the Military Message Experiment was completed. The users were allowed time to take
files off-line and convert them to paper form. The system was then shut off and sent back to ISI, where it has
since been added to the ARPANET. This was the official end of the operational part of the MME. The
remaining part of the MME is the documentation of its results, of which this report is one contribution. A
formal final report is being prepared by the Naval Research Laboratory.

1.1.4 SIGMA Staff

Although the experiment took place at Camp Smith, Hawaii, many people supporting the experiment were
not at CINCPAC itself. The largest group, of course, was ISI's Information Automation (IA) Project staff,
which ranged from 6 to 10 people over the five-year history of the project. The 1A Project developed the
SIGMA software (the computer program) and the terminal firmware (modifications to the operating software
for the VDT's standard microprocessor) used in the experiment, and was involved in all aspects of the service:
training [18. 34), security, and operation,

1.2 SUPPORTING DOCUMENTS

This volume of the MME Final Report is written by the staff of the the Information Automation project at
ISI and reflects only the experience and views of the experiment from the perspective of the software
developer. It is ISI's contribution--Volume V--to the full MME Final Report being compiled by the Naval
Research Laboratory. At the time of this writing the full official MME Final Report is not complete:
however. the volumes to be included are:

YVolume

I Executive Summary

I Final Report

111 User View

IV Message System Ultility

Vv SIGMA Final Report

VI Data Analysis and Discussion
VII Training

There are a number of other documents concerning the MME from which one can obtain a wider view of
the experiment. Of particular interest are two preliminary reports published by the Naval Research
Laboratory. The MME Quick Look Report [46) describes the progress of the experiment from May 1977 to
November 1978, Although there is limited data analysis presented, excerpts from interviews with the users
provide insight into how CINCPAC viewed the early experience with automated message handling. A similar
report [22] describes the conduct of the experiment from November 1978 through March 1979. Some
preliminary conclusions are drawn based on some early data analysis. observations of the use of SIGMA. and
more user interviews.

Section 1.1.3

! 1. INTRODUCTION TO SIGMA 111

Copies of the Quick Look Report, Mid Experiment Report, and all volumes of the Final Report, as they
become available, may be obtained from:

Naval Research Laboratory
Washington, D.C. 20375
Attn: Code 7503.

The bibliography of this report contains a collection of other documents that are relevant to the MME.
The more pertinent of these are cited in the text of this document.

Part 2 of the SIGM A Final Report (ISI/RR-81-94) describes the functionality of SIGMA as a user views it.
Part 3 (ISI/RR-81-94) contains opinions of the authors (all members of the ISI team that developed SIGMA)
formed from a review of data abstracted from user interviews, discussions with users, and other peripheral
observations. Part 4 (ISI/RR-81-95) describes the design of SIGMA in fair detail. There is more detailed
information about the design of SIGMA stored in the collection of TENEX directories that make up the
SIGMA program at ISI. The most extensive documentation is the source code itself, which is well

commented. The TENEX d:rec..ries constituting SIGMA are listed below: 3
CINCPAC Utility programs and data that are local to CINCPAC R
CMP-DAEMONS Configuration Management programs, runfiles, and documentation (i.e., :
SIGMA release procedure) K

E

DAEMON-LOCAL-STATE Support files for the operation of the daemons (e.g., Error-logs, Trace files,
Queues, Message Directories)

HP-MME Programs to generate Terminal firmware and firmware Sources
IA-ARCHIVE Archive daemon Source code (development directory; production directory
is MME-ARCHIVE) .
| 1A-BATCH Utility programs and files for the Batch Processor, used in the development 3
of SIGMA
IA-COMMON Source code for packages common to all SIGMA (e.g., error package, tools

to define micros, multiprint package) (development directory; production
directory is MME-COMMON)

IA-CITATION Citation daemon Source code (development directory; production directory
; is MME-CITATION)
' IA-FM Functional Module Source code (development directory; production
: directory is MME-FM)
]
? IA-FOLDER Folder daemon Source code (development directory: production directory
is MME-FOLDER) '
IA-GENERAL Source code for support of runtime SIGMA (JSYS package for interfacing
| 1
' Section 1.2

e . . - ; et e e e eme e e aerae v e W e a0
o ar i r - s - & AT .,

- - - e -

|)’ 1-12

IA-HELP
IA-MESSAGE
IA-OTHER
IA-RECEPTION
IA-RUNTIME
IA-SIGMA

IA-SUPERSTRUCTURE

IA-TERMINAL

IA-TEST

! MME-UTILITIES

: SIGMA-DOCUMENTATION

i SIGMA-LOCAL-STATE

SIGMA FINAL REPORT

to TENEX, binding specifications, pseudo-interrupts, facilities to effect
sharing of common code between forks, etc.) (development directory;
production directory is MME-GENERAL)

Source code and text for the Help and Tutor systems (development
directory; production directory is MME-HELP)

Message daemon Source code (development directory; production
directory is MME-MESSAGE)

Facmod and Msgmod Source code (development directory; production
directory is MME-OTHER)

Reception daemon Source code (development directory; production
directory is MME-RECEPTION)

The SIGMA running code and support programs running code (i.e., object
code) (development directory; production directory is MME-RUNTIME)

Command Language processor Source code and Command Table
(development directory; production directory is MME-SIGMA)

Source code for programs common to daemons (e.g, CCP, PC)
(development directory; production directory is MME-
SUPERSTRUCTURE)

Terminal Driver Source code (development directory; production directory
is MME-TERMINAL)

Files to support the testing of SIGMA (e.g., test scenarios, test messages)

Source code for most utility programs (e.g.. FCHECK, MSCAN, FLAGS)
and release procedures for User Job

Documentation files for various pieces of SIGMA

Files used by SIGMA during operation

Section 1.2

PART TWO:

FUNCTIONAL DESCRIPTION

- YA W, - ¢
Tl e - . " T "

—

i
|

- e - -

2.1 INTRODUCTION

This part of the SIGMA Final Report describes the functionality of SIGMA as a user views it. Before
continuing here, the reader might turn to the appendix of this part (following p. 2-35) to review "SIGMA--An
interactive message service for the Military Message Experiment” [38], a paper given at the 1979 National
Computer Conference, which gives an overview of SIGMA. In addition, it may be helpful to glance through
the SIGMA Reference Manual, which contains instruction formats, a level of detail not presented in this
document.

This part introduces the reader to the system in roughly the sequence that a new user is exposed to it. It
starts with a discussion of the terminal, followed by the log on procedure, then the various objects the user
deals with in SIGMA, and the operations he may perform on them.

2.2 THE TERMINAL

The HP/MME terminal, a special terminal developed for use with SIGMA, consists of a Hewlett-Packard
2649A terminal with minor physical modifications and special firmware developed by ISI[39]. It contains
12K of display memory, but at any time only 1920 characters may be presented on-screen (24 lines of 80
characters). Figure 2-1 illustrates the MME terminal. To the right of the CRT are 4 LED lights labeled TOP
SECRET, SECRET, CONFIDENTIAL and UNCLASSIFIED. They indicate the highest classification of
data on the screen. As a user views objects (e.g., files, messages) at different security levels, SIGMA
automatically changes these lights.

The keyboard unit is connected to the main terminal by cable so the user may adjust its position for
maximum comfort. The keyboard contains a standard typewriter keyset, a cluster of 23 additional keys to the
right, and a set of 26 function keys laid out above. The typewriter keyset is used for generating text. Fourteen
tan keys on the right side produce actions local to the terminal, such as moving the cursor and scrolling the
screen. The remaining keys (blue key caps on the right and the upper keyset) are Function keys. They send a
request to SIGMA to perform some operation. The specific function each key requests is labeled on the key
cap for the blue keys. or above and below the key on a plastic keyboard overlay for the upper keyset.
Functions whose labels are above the keys are activated by holding down the shift key while they are pushed.
The two keys on the left end of the upper keyvset ({!RESETY! and "ONLINE!) are not function keys: their
special role is described in the next section.? Seven LED lights show through the function key overlay. Only
the four centered in the yellow background area labeled "CURSOR SECURITY LEVEL" are meaningful in
SIGMA. These are similar to the screen security lights: there is one for each classification. These indicate the
level of the object where the cursor resides. The cursor indicates the position where data typed on the
keyboard will be entered. SIGMA defines different areas of the screen, called windows, for different
purposes. these windows can be at different security levels (described in section 2.10, page 2-13). If the cursor
is in a Secret window, any data typed is considered Secret and will be so treated by SIGMA. Thus the
keyboard security lights indicate the classification at which typed data will be entered.

3 In this document, funcuon key operations are shown bracketed with double exclamation points (e.g.. ""EXECUTE").

22 SIGMA FINAL REPORT

Figure 2-1: The MME Terminal

2.3 LOGON

As a user approaches an MME terminal to start up SIGMA, he must first determine if the terminal is
already in use. If the screen is blank (power off) or if it contains a single line of text saving

TERMINAL READY
or

TERMINAL FREE - previous user has
logged off

the terminal is free. If the terminal has a normal SIGMA presentation on screen, someone is already logged
on that terminal, and it cannot be used until he has logged off.

Before trying to start SIGMA, the user must place the terminal's "ONT INE" switch in the depressed
position (on-line). If the terminal power is off, turning it on is sufficient to cause SIGMA to start. If power is
already on and the terminal is free, holding down the "CNTI!! key and pushing '"RESETY will initiate a
SIGMA job. An alternative procedure is to push the "ESC! kev (see section 3.3.2.1, page 3-12. for a
discussion of startup procedures),

Section 2.3

o

2. FUNCTIONAL DESCRIPTION >3

SIGMA will respond to a startup request by presenting a "log on" template, as shown in Figure 2-2. The
user fills in this template by moving the cursor to each empty field and typing in the appropriate information.
Text editing features in the terminal facilitate filling in the form (see section 2.8, page 2-9. for a description of
these features).

Logon name:

Logon password:

Max. Sec. Level:

[If required enter] Identity:
ID password:

Figure 2-2: Log on Template

On the first line of the form, the user enters the name of his office code. On the second line the user enters
the appropriate office password; the password itself is not displayed. The third line requests the maximum
security level the user intends to use for the session. SIGMA inhibits a user from accessing objects that are
classified higher than the current session’s security level. The remaining two lines of the template are for the
user’s name and password,

This two-level log on procedure, office code and personal name, provides accountability. Each action that
SIGMA records, such as approving or releasing a message, contains the name of the office taking the action
and the individual who was acting in that role, even though only the office code shows on the message itself.
This allows secretaries or administrative assistants to act for their superiors (they first need the office
password), while keeping them accountable for their actions. A user may log on with his personal name
directly, without an office code, but he then cannot directly access objects belonging to the office or act for
that office. SIGMA will not allow a user to log on with an office code without a personal name (referred to in
SIGMA as his identity).

When the user presses WEXEC UTEY, SIGMA processes the log on request. If the passwords are correct
and the maximum security requested does not exceed a predefined maximum security for that user (office
code and identity) or that terminal, the job is started up and the log on phase is finished.

If the password for either the office code or identity is incorrect, SIGMA will reject the log on and produce
an error message telling the user the password is incorrect. As a security feature specified by CINCPAC, the
third time a user enters the wrong password SIGMA locks out that terminal. The System Security Officer
(SSO) must then intervene to unlock the terminal (see section 4.14.4, page 4-106 for a description of the SSO
program).

A user has 6 minutes to fill in a log on template. If he has not successfully logged on in that time, SIGMA

clears the screen and logs off the TENEX job. This housekeeping keeps the system clear of not-logged-on
jobs.

2.4 STANDARD SCREEN

Once log on is complete, SIGMA presents its standard screen format to the user. The top line, called the
Aleri fine. comains status information about the system and the job. including the SIGMA release number
(what version of the system is running). the "load a\erage™ (a figure indicating how heavily the computer is

Section 2.3

| 2-4 SIGMA FINAL REPORT

' loaded). the day of the week, the date, local time and Zulu (Greenwich Mean) time. This is also where
i SIGMA noitifies the user of the arrival of new messages and “alerts” (see section 2.16, page 2-33).

The Status line is the second line on the screen. It initially contains just the log on security level and office
code. As the user "opens” objects in the message service, the name, security level, and the type of cach object
will also be presented on the Status line.

The third line is the Feedback line. It provides dynamic feedback from SIGMA to the user as various
operations proceed. For instance, before log on it contains the message

**Please enter
the necessary information to log on.

During execution of instructions it may say something like
***clear view* being processed

to indicate it has accepted the "CLEA4R VIEWY! instruction and has started. If an error condition is
encountered, the user 15 informed on this line.

These top three status lines are continually updated. For example, the time is ¢changed <very minute on the
Alert tine. The terminal inhibits the user from putting his cursor into these lines; he can never alter their
contents.

Lines 4 and § arc permanently assigned as the /nstruction window. This is the area of the screen where the
user types instructions to the system. Instruction entry is discussed in more detail below. The beginning of
the Instruction window is marked by two bell-shaped characters. which in this document are shown as TF. If
the user types more than can fit on one line, the terminal automatically wraps onto the next line. If the
instruction spills onto a third line, the Instruction window automatically scroll' - sn the fire * »~ disappears, the
second line appears on line 4 and the new third line is on line 5. Instructic=- - ., bm requu« '° much space.

The rest of the screen is available for working space. where messages. files, and other SIGMA objects are
displayed and edited. This area may be occupied entirely by a Display window, entirely by a View window,
or, in split-screen mode, by both. An object that is "opened” for editing is shown in the Display window. An
object that is only expected to be referenced and not altered is normally shown in the View window. For
instance, when a user has completed I.og On, he is prescnted the System News in the View window, which
occupies the full working area (19 lines) since there are no open objects to present in the Display window.
The news, entered by the System Control Officer, contains general information relevant to SIGMA users.
such as scheduled down times, new features, or new procedures. The split-screen mode is used when a user is
working on one object in the Display window and wishes to reference some other information. In split-screen
mode the View window occupies the last 9 lines of the screen and is shown in lower intensity to distinguish it
from the Display window. Section 2.9.1 on page 2-11 describes how the user controls these windows,

Section 2.4

— —— . aae

2 FUNCTIONAL DESCRIPTION 25

2.5 INSTRUCTION ENTRY

Most wped instructions require that one or more parameters be specified. For example, the
DISPLAY FILE operation requires the user to specify the name of the file to be DISPLAYed,* while
CRFATE FILE needs the name of the file and its security level. SIGMA requires that the name of the
instruction be typed first in the Instruction window, followed by the appropriate parameters in any order.
When the instruction has been properly entered, the user depresses the WEXECUTE! key to tell SIGMA to
act. Pressing "EXECUTE"! automatically turns off the cursor and disables the keyboard. When SIGMA has
taken action on the typed instruction, the cursor is returned, and the keyboard is enabled.

SIGMA's first step is to try to interpret what has been typed as an instruction. As an aid to the user,
SIGMA will accept partially completed or improperly spelled instruction names and parameters. It will
expand and correct them to the degree it is able. The algorithm used in this process requires that the first
letter of the instruction be correct. The expanded instruction is parsed and presented in the Instruction
window in place of what the user originally typed. If the instruction is complete and unambiguous, the user is
told on the Feedback line

**pPlease confirm.
When he confirms by pushing "EXECUTE!! a second time, SIGMA proceeds to execute the instruction.

If the parsed instruction is incomplete or ambiguous (there is more than one possible interpretation),
SIGMA reports

**Your instruction is ambiguous. Use PROMPT for more information.

on the Feedback line. The user may use the PROMPT facility (see section 2.7.1, page 2-6), the HELP facility
(see section 2.7.2, page 2-7), the SI/C ‘A Reference Manual, or he may ask a friend for guidance. The
instruction, as parsed, stays in the instruction window, where it may be edited or erased and a new instruction
entered. The next time the user pushes ! EXYECUTE. SIGMA will attempt to interpret the instruction from
the beginning again.

After a user becomes experienced with SIGMA, he learns the minimum he must type to get his instructions
properly parsed. At that point having to confirm each instruction becomes annoying. The user may then ask
the System Security Officer to make him an intermediate user. Intermediate users are asked only to confirm
instructions that will permanently affect the database, such as DELETE FILE or LOG OFF.

Sometimes intermediate users are unsure whether the instruction they have entered will be correctly
interpreted. The function key MEXPAND!! causes SIGMA to parse what is entered in the Instruction
window and display the expanded form, but not execute it. The user then presses ' EXECUTEY! if he likes
it, or alters the expanded instruction if he does not.

At any time during the instruction entry, if the user wishes to cancel the instruction being entered, he can
use the WCANCEL"! function key. This key is effective until the final confirming "EXECUTE?! is entered.
NWCANCELY clears the Instruction window, and leaves it ready to accept fresh instruction.

4The names of SIGM A instruction are indicated by BOLD CAPITALS in this document

Section 2.5

Fo e

n- ' — ﬂv*—_w-*j

! 26 SIGMA FINAL REPORT

2.6 FUNCTION KEYS

The instructions most often used have been assigned function keys. Function key operations do not
require confirmation and do not take typed arguments, although some functions use the cursor position or the
location of special marks called "WHEREYs (see section28, page2-9). Function keys act like the
NEXECUTE?! key; they also lock the terminal keyboard and turn off the cursor. HEXECUTE!! is actually
just a particular function key which causes SIGMA to parse and execute what has been typed into the
Instruction window.

2.7 USER ASSISTANCE

There are three sources of user assistance in SIGMA: Prompt, Help, and the Tutor. The paper "On-line
tutorials and documentation for the SIGMA Message Service™ [35] describes these mechanisms in more
detail. The user's view of these facilities is abstracted from that paper and presented here.

2.7.1 Prompt

Prompt is a limited aid to the user for entry of instructions. When the user presses the key labeled
NPROMPI!, SIGMA presents all instructions that are legal in the current state, considering what has been
typed in the Instruction window. If nothing has been typed. he will see all the instructions valid in the current
situation. If the letter C has been typed. he will see all the forms of all instructions beginning with C. When
the user presses 1"PROMPTY! again, the original state of the screen will be returned. If the user types an
ambiguous instruction in the Instruction window and tries to execute it, SIGMA will respond with an error
message in the Feedback line telling the user that the instruction is ambiguous and suggesting he press
BPROMPTI. If the user then presses the 'PROMPT! key. SIGMA shows prompting for just those
instructions that it stll considers possible candidates for the instruction intended. based on what has been
typed in the Instruction window. Instructions that SIGMA interprets as "most likely candidates™ (which most
closely match the number and types of the given parameters) are shown highlighted.

For example. suppose the user has a tile named Pending and a text-object named Papa. If he types
ttD P

in the Instruction window and pushes "PROMPTN, the Prompt facility will show four possible instruction
interpretations:

Display Text <Existing Text Name>
Delete Text <Existing Text Name>
Disptay File <Existing File Name> <Security>
Delete File <Existing File Name>

With each instruction is shown a brief description of its function and a stylized form of the instruction with
its parameters.

Once an instruction (or list of instructions) is shown by Prompt. the user can select one of them by placing
the cursor on it and pressing "PROMPT! again: this expands the description of that particular instruction.
showing the svntax and meaning of cach of its parameters.

Section 2.6

B

i
|
]
I
i

2. FUNCTIONAL DESCRIPTION 27

While viewing a Prompt display, the user may edit the Instruction window. Hitting WEXECUTE! will
cause SIGMA 1o restore the original screen and attempt to execute the edited instruction. The screen will be
returned to its original state if the user hits "PROMPTY! with the cursor in the Instruction window.
NCANCELY! will also return the screen to normal, but the Instruction window will be cleared.

2.7.2 Help

If the user needs a more detailed description of an instruction or cannot remember which instruction to
use, he can request the next level of documentation: Help.

2.7.2.1 Selectable terms

The Help system provides documentation by describing Terms (names of instructions, facilities and
concepts relevant to SIGMA). The user can request documentation of the available Terms through the Help
processor’s flexible mechanisms. The upper window of the Help display appears as

HELP SERVICE FACILITIES Current Term: <some key phrase>
BACK FORWARD New Term:

The Current Term field shows the Term which is currently displayed (e.g., "<some key phrase>” in the
example above).

The New Term field allows the user to type in a new Term for which he wants Help. Spelling correction is
provided by means of the same algorithm employed in the Instruction window.

The other four fields in the upper window are shown with inverse video highlighting. The convention
followed in the Help facility (and explained in the top-level Help display) is that anything that appears in
inverse video is itself a Term for which the user can get Help simply by sclecting the highlighted field with the
cursor and pressing WHEI P! again. Thus the Terms HELP and SERVICE FACILITIES are always
available whenever the user is getting Help: he has only to move the cursor into either of these fields and
press WHEL P!,

The HELP Term displays the general information describing the use of the Help system itself, providing
the same display as if the user hit WHEL P! with an empty Instruction window.

SERVICE FACILITIES shows an Index-like list of the major topics and instructions in SIGMA: when it
is selected, the lower Help window shows a menu of topics on which Help is available. Any Term that
appears highlighted (in inverse video) in this list can be selected with the cursor. The user can thus use Help
as a menu-driven access facility, or he can type in specific Terms to be accessed (at New Term). Whenever the
Help display is changed. the Current Term field is changed to show the Term whose documentation is being
displayed.

The fields BACK and FORWARD are also shown highlighted. These are not really Terms, but are "virtual
function keys” which allow the user to retrace his steps through previous Terms for which Help has been
displayed.

Section 2.7.1

- e - -

T T

. — e s

28 SIGMA FINAL REPORT

2.7.2.2 Requesting help

If there is an instruction or part of an instruction in the Instruction window when the user presses the
WHELPY! key, Help is provided for the term corresponding to the instruction word. If the Instruction
window is empty, pressing !! HELP!! results in a "top-level” Help display which is a description of how to use
the Help facility itself.

2.7.2.3 Use of the screen in help

When Help is activated, the Feedback line displays a iessage telling the user that Help is being shown
below and how to "get out” (that is, how to return to what he was doing before he hit ' HELP!!). The Alert
and Status lines are unaffected. The Instruction window and work area (Display window and/or View
window) are mapped away, and the remainder of the screen is divided into two windows: the upper is used to
select the documentation to be presented (as described below), while the lower shows the text of the
documentation. When the user returns from Help, the screen is returned to the state it had before he hit
WHELPY,

2.7.3 Tutor

The final level of detail in on-line documentation of SIGMA consists of a full curriculum of on-line
Lessons and Exercises covering most of the features of the system. The primary goal of the Tutor is that the
user be able to take Lessons on-line and try out various instructions. The Tutor guarantees that the user can
do no harm when taking a Lesson.

The Tutor supports two related features: Lessons and Exercises. A Lesson is a detailed description of some
aspect of SIGMA. There are a dozen Lessons available. No order is enforced, though the Lessons are
arranged in a logical sequence for most users’ needs. A user can retake a Lesson any number of times, can
quit in the middle, and can start up in the middle the next time.

2.7.3.1 On-line lessons

The user asks for a lesson with the typed instruction LESSON. which takes a lesson number as an
argument. The available lessons are listed in the hardcopy SIGM A Reference Manual [34] and in the on-line
Help. When the user executes the LESSON instruction, the Lesson text is displayed in the working area of
the screen. The Feedback line shows a message telling the user he is in a Lesson and how to get back to what
he was doing before he entered the Lesson. The Lesson text shown in the working area can be scrolled. like
any display on the SIGMA terminal. Lessons provide complete discussions of the most important topics
having to do with using SIGMA. Most Lessons have associated Exercises, and the user is encouraged to use
them. .

2.7.3.2 On-line exercises

An Exercise is generally a very short and specific task that the user can try in the Tutor’s protected mode, a
special operating mode in which the user is prevented from harming any real data. Lesson 2, for example,
discusses a user’s special data object called the Pending File, and then suggests that the user try xercise 1 to
displav a Pending File. Later in the Lesson, the user is shown how to display messages from a file. and
Exercise 2. which allows the user to display a message. is suggested.

Section 2.7.2.2

" - ar

. £ a . oas ame o A

[U ¥ DO S D R ey

P P

2. FUNCTIONAL DESCRIPTION 29

In keeping with the nonassertne philosophy of the Tutor, the user is not coerced in any way into trying the
Exercises. He can skip some or all of them, can take them in any order, and can retake them any number of
times.

The user takes an Exercise by using the typed EXERCISE instructicn, giving the number of the desired
Exercise. The Exercise number automatically refers to that Exercise for the Lesson in progress. When the
user enters the Exercise, the working area of the screen (which had displayed the Lesson) is remapped to
display the Exercise. The Feedback line displays a message telling the user he is in an Exercise and how to get
out of it.

An Exercise describes how to specify some particular instruction or set of instructions and suggests that the
user try them. In order to try them, the user simply moves the cursor into the Instruction window and types
the instruction, just as he would if he were not in the Tutor. At this point, the Instruction window is parsed by
SIGMA as alw2:. However, the resultant parsed instruction is not immediately executed; it is first checked
to see if it is an allowed instruction for this Exercise. If there is a maich, the Tutor allows SIGMA to execute
the instruction; otherwise, it displays a message in the Feedback line telling the user the instruction iie typed
did not match any of those in the Exercise.

When the user executes an instruction within an Exercise, the working area of the screen is presented just
as it would be if it were not an Exercise. However, the Feedback line informs the user that he may switch
back and forth with the Exercise text by pressing ' HELP!! or return to the Lesson by pressing {{PROAMPT!.

2.8 EDITING FACILITIES

Before we delve into SIGMA's message service functions, it is best 10 understand the general text editing
facilities provided in the SIGMA system, performed in part in the terminal, which gives rapid response for
simple operations (e.g.. enter or delete characters via the keyboard. scroll a window). The more complex
operations are performed by SIGMA software in the host computer.

Fach editing function local to the terminal is associated with a key on the keyboard. The standard
wpewriter keys cause character insertion at the cursor location (if data entry is allowed at that spot). The
inserted character appears where the cursor was. and the rest of the characters on the line move right one
position. Overflow from a text line wraps to the line below: it occurs on word boundaries. There is no
"overtype” mode provided in the terminal; the user must delete and then enter to replace one string with
another. "Overtype” was purposely not provided because it was felt the consistency of a single mode of
operation was more important than any performance increase "overtype” would provide.

The NRETURN key starts a new line with whatever character is at the cursor position. If the cursor is at
the end of the text being edited. it acts like a standard typewriter. The tenminal retains the attribute that this
teat siarts on a new line (1t is called a formaried line). Inserted text on the line above will not overflow onto
this formatted line. but will cause a new line to be inserted above the formatted line instead.

The arrow keys (—. <. . 1) move the cursor in the direction indicated. However, the system does not
permit the cursor to be placed in areas of the screen which have not been specifically defined to be
“enterable”. Pushing an arrow key causes the cursor to move to the next “enterable” character position,
which may be more than one character position away. Text is considered as a concatenated string, so moving
the cursor right from the end of a line of text puts the cursor at the beginning of the next line. If there is no
enterable character position in the direction requested. the terminal "beeps.

Section 2.7.3.2

2k

uliadiuilioh

2-10 SIGMA FINAL REPORT

The up (and down) arrows attempt to put the cursor in the character position above (or below) its current
location. If there is not an enterable character position there, it will find the closesg enterable position to it.

The HWORD LEFT! and "WORD RIGHT! keys cause the cursor to move a word at a time. The
NFWD! key moves the cursor to the end of the current line, and subsequent pushes move the cursor to the
beginning of the next line, to the end of that line, etc.; ! BACK) acts the same way in the opposite direction.

These cursor movement keys are transparent to window boundaries, and will move into an adjacent
window if that is the next proper location. The "UP WINDOWN! and {DOWN WINDOW! keys jump the
cursor into the last known cursor position in the adjacent window. This is usually the most convenient way to
move the cursor between the Instruction window and the working window.

The "ROLL UP!! and NROLL DOWNM keys cause the data to scroll in the window containing the cursor.

Pushing the 11DEL key deletes the character at the cursor position. Characters to the right of the cursor
move left one position. The "DEL!! key with a left arrow over it deletes the character to the left of the cursor
(equivalent to moving left one position, then deleting). Holding the shift key down and pushing
UWWORD LEFTW or WWORD RIGHT! deletes the word to the left or right of the cursor. Similarly, shifted
NFWDY and V! BACKY! delete the contents of the line to the left or right of the cursor, respectively.

So long as the cursor remains on the same line, deleting characters merely shortens the line. When the
cursor is moved off that line, data from the line below is pulled up to fill out the line. This will not occur if
that next line is formatted.

The other "local” editing key is called "WHERE"!. This key is used to mark the character at the cursor for
some subsequent instruction. Pushing 1! HERE! inverts the video presentation of the character to give the
user visual feedback, and SIGMA is informed of the character in a manner that is not sensitive to subsequent
editing of text around the marked character. The marked character itself is made noneditable. When the next
instruction is executed (function key or NEXECUTEY! is pushed), SIGMA will interpret any WHEREW
markers as parameters 1o the instruction. A part of the instruction execution clears all W HER EVls,

The terminal editor is not very forgiving if a user puts in a ' RETURN!! he later wishes to remove, The
deletion of "RETURN!!s is a familiar problem in word processing systems because they are not normally
editable symbols. SIGMA provides a function key, WUPDATE!!, which will format the open text (text-object
or message) into paragraphs. A paragraph boundary is defined to be a blank line or any formatted line (one
which was initiated with a "RETURN) which has at least one leading space. This allows the user to enter
tables, equations, eic., and keep them formatted as they were entered. 1"UPDATEMing closes up text in the
paragraph by pulling out extra blank spaces and removing all formatted line attributes except paragraphs.
The user may specify reformatting of only a portion of the open text by bracketing the text to be formatted
with "WHER E'!s prior to pressing WUPDATEY.

All other editing operations are performed by executing SIGMA instructions. These operations generally
require data access 1o a larger context than can be held in the terminal.

HPICKUPY, when initiated with the function key, "picks up," i.e., deletes from the object but holds in
temporary storage, the text between two M"HEREs. Subsequent execution of the "PUT! function key
inserts the data from that temporary buffer at the cursor location, assuming it is an editable location. The
UAOVEY function key is the exact equivalent of doing a WPICKUP!! and a "PUTN!. The NCOPY

Section 2.8

i

2. FUNCTIONAL DESCRIPTION 211

function x=y is like "MOVE" except that it copies the data between two "HERE!s into the temporary
buffer withor:r deleting it.

The typea PICKUP instruction allows the user to specify the name of a permanent buffer (see 2.15) for
storing the text. [t also requires two "HEREYs to identify the text to be picked up. The typed PUT
instruction allows the specification of any of these named text-objects for insertion into the text on screen at
the location indicated with a WHEREY.

The typed FIND STRING instruction causes SIGMA to search the contents of the currently displayed .
object for the first occurrence of the specified string. The screen will be scrolled (or rewritten) by SIGMA so
this occurrence is on screen and the cursor is placed at its beginning.

2.9 DATA OBJECTS

SIGMA deals with four types of objects: Messages, Files, Text-Objects, and Selectors. Messages, of course,
are the primary data in a message handling system, and they occupy the largest share of the disk file storage in
SIGMA. The majority of messages on the system arrive from AUTODIN and are passed to SIGMA by the
LDMX.} Messages are stored just once in the system, and users share access to them.

SIGMA files, also called folders in SIGMA design documents to distinguish them from TENEX disk files,
may be thought of as collections of messages. In fact a file does not hold the actual messages, but contains
entries, which are pointers to messages. An entry is an abstract of the important fields of a message, (e.g..
From. Subject, or DTG®). When a user displays a file, he can thus recognize the messages it contains. There
are ten different types of entries that may appear in a file (see Table 2-1). A user may create and destroy his
own files, and he may share access to other users’ files. Each user has a special file called Pending, which is
the delivery point for messages sent to that user.

Selectors are user-created objects that are helpful in selecting certain classes of messages from a file. Their
use is described in detail in section 2.14.6, page 2-29.

Text-objects are named entities that contain free text. These can be used for storing address lists, message
body paragraphs, routing lists (see section 2.14.8, page 2-30), reports, leners, etc. Text-objects may also be
used in conjunction with PICKUP and PUT instructions.

2.9.1 General Operations on Data Objects

SIGMA allows a user to have open (i.e.. available for editing) simultaneously one message, one file, and one
text-object. An object is opened by the DISPLAY instruction, which also causes it to appear in the Display
window. Selectors cannot be edited, so SIGMA does not allow the user to DISPLAY a selector.

If an object is open, and the user executes a DISPLAY of the same type of object, the open object is closed,
and any editing changes are made permanent (i.e., the master copy on disk is updated). This updating process

sl.oml Digital Message eXchange. the AUTODIN message terminal computer in use at CINCPAC.

6Date~Time-Group‘ the militany imestamp for an outgoing message

Section 2.8

P E—————— ey wv

R -

e — e

212 SIGMA FINAL REPORT

is called finishing; it may also be activated directly by the !F/N/SH!! function key. A user may close an
object without updating it with the ABORT instruction. Any editing changes made since opening the object
are lost if it is closed with an ABORT.

If the user is displaying a file, and then asks to display a message, the message will be put into the Display
window but the file will remain open. The user can return the file to the Display window (without closing the
message) via the "SHOW FILE'! function key. There are also WSHOW MESSAGEY! and "SHOW TEXT'!
keys for switching the other open objects onto the screen. These function keys respond quickly because the
terminal retains the display data for each open object.

Messages, selectors, and text-objects may be viewed without opening them by the VIEW instruction.” A
VIEWed object appears in the View window of the terminal. If there is an open object, the View window will
occupy the lower 9 lines of the screen. If there is no open object, the View window will occupy the full
working space on screen. If nothing is being VIEWed, the Display window occupies that full working space.
A YIEWed object is removed by the WCLEAR VIEWY function key.

Since a VIEWed object is not open, it may not be edited. SIGMA allows the user to put his cursor in the
View window, but the terminal editing keys (with the exception of the ' HEREM key) will not function there.
A user may copy text out of the View window with the COPY instruction. but if he attempts to PICKUP or
MOYVE text, SIGMA will not perform the text delete portion of the operation. Thus MOVE TEXT gets
converted to COPY TEXT.

A user can generate a new object with the CREATE instruction. The user must specify the type of object,
its security classification, and its name as arguments to the instruction. For messages the user must also
specify the type of message being created (see section 2.11. page 2-13). CREATE MESSAGE and
CREATE TEXT also open and display the object so the user can type data into it. Creating a file or a selector
produces the object but does not open it.

Files. selectors. and text-objects may be deleted from the database with the DELETE instruction. A user
may delete only his own objects. Messages are created in a shared database where they are considered to
belong to the system. and may not be deleted. As a message becomes too old to remain on-line. it is put into a
magnetic tape archive. Messages on archive cannot be accessed directly. but can be retrieved from the archive
upon request (see section 2.12, page 2-19).

Data objects may be shared by SIGMA users. By design, messages are always shared. although there are
certain constraints on access to them (see section 4.12.7. page 4-82). To access a file, selector, or text-object
belonging to another SIGMA user, one must perform a GET operation, specifying the name and type of the
object (o be accessed and its owner. An optional argument of GET is the name by which this user wants 10
refer to the object; if this argument is not provided, SIGMA defau'ts the name to the owner's name. The
GET will succeed only if the appropriate access control constraints allow it (see section 3.3.2.19, page 3-24).

GETting a file gives the user a pointer to the file, so the user will always have access to the current version.
GETting a selector or text-object. on the other hand, creates for the user his own replica of the original object.
Changes to the original object will not be reflected in this new object.

'SIGMA does not permut the user to View a file because of implementauor. considerations; see 378 2

Section 2.9.1

2. FUNCTIONAL DESCRIPTION 213

!
i
' : One final facility common to data objects is the DIRECTORY instruction. Each user has his own
directories for files, selectors, and text-objects. A File Directory is an index to the names of all the SIGMA
files that the user can directly access, the classification of each, and its owner. Selector and Text ‘directories
are corresponding indexes of selectors and text-objects for a user. There is no message directory: this is the
function of SIGMA files. Function keys are provided for Viewing each directory. In addition, there is a
typed version of the VIEW instruction that allows a user to View other users’ directories (assuming access is
allowed).

2.10 SECURITY

i Before we consider the more specific message and file handling operations in SIGMA, one more general

‘ topic should be discussed: Security. The paper "Design of a message processing system for a multilevel

! secure environment” [3} discusses the SIGMA security model and why it was chosen. Although the system
did not implement this security model and made no claim to actually "be" multilevel secure, it did provide a
user interface that behaved as though the SIGMA security model had been provided. The effect of multilevel
security on the user could thus be observed.

The basic premise of the security model is that one cannot "trust” SIGMA’s large amount of code. The

only trusted parts of the system are the terminal, the user, the operating system, and a small kernel of security-

* relevant code called the "trusted job". Whenever a security-relevant instruction is executed, the trusted job

must verify that the user really wants to perform that operation. Function keys are interpreted directly by the

trusted job and are accepted at face value. However, typed security-relevant instructions must be

“acknowledged” by the user. The user executes the instruction in the normal manner, but after the

confirmation step the trusted job asks the user to acknowledge the operation by pressing the ! YES!! function

key. Pressing ''NOV or WCANCEL!! abons the instruction, The SIGMA security model also inhibits the

user from accessing objects at a higher classification than he is allowed and prevents him from putting
classified data into an object of lower classification (e.g., filing a Secret message into an Unclassified file).

Since the object data displayed on screen comes from untrusted code, the classification shown in the object
itself is suspect. The trusted job controls the terminal’s cursor and window security lights to give a positive
indication of the classification of each data object. This way the user can verify that the classification shown
on screen matches the classification indicated by the terminal security lights.

2.11 MESSAGES

SIGMA supports three different message types: AUTODIN, Memos. and Notes. For each type SIGMA
distinguishes between Preparation and Transmitted messages.

2.11.1 AUTODIN Incoming Messages

AUTODIN messages are formal record traffic passed to SIGMA from AUTODIN by the LDMX, or sent
out from SIGMA to LDMX (and thence to the addressees via AUTODIN). Figure 2-3 illustrates SIGMA's
presentation of an incoming AUTODIN message. AUTODIN message originators (From field) and
addressees (To and Info fields) are the commanders of military organizations (¢.g.. Commander, Naval
Electronics Systems Command [COMNAVELEX]). Since SIGMA users are offices and people within such
an organization, SIGMA does not use the address fields of an AUTODIN message for its internal deliven.
but instead tooks at two special internal distribution fields.

Section 79.1

2-)4 SIGMA FINAL REPORT

Ref Id: SEQ 2100585

CONFIDENTIAL [Autodin - Transmitted] PSN:752348
R(ROUTINE)

2216472 MAY 79

From: CINCPAC HONOLULU HI

To: JCS WASH DC

Info: CINCPAC HONOLULU HI
NAVSTA SUBIC BAY RP

Orig: J3

Internal: MME J324

Text:

CONFIDENTIAL
SUBJ: FORTHCOMING EXERCISE
A. MY 040012 JAN 79
THE UPCOMING EXERCISE NEEDS FURTHER DEFINITION. THE GOALS
SPECIFIED SO FAR DO NOT DETERMINE THE SCOPE OF THE OPERATION.
DECL
NNNN
---END OF MESSAGE---

Figure 2-3: Incoming AUTODIN message

The usual practice within the community of AUTODIN users is for cach command to determine who
within the organization should be assigned responsibility for the message and who should receive copies.
When they generate outgoing messages, they attemnpt to guide the recipients” distribution by naming within
the body of the message those people who should get copies. There is no standard for this practice. and, since
few organizations have the same algorithm for assigning distribution. the results are inconsistent.

At CINCPAC it is the LDMX that scans incoming AUTODIN messages and assigns internal distribution
(who will receive copies and who will be responsible for action on the message). This is accomplished by
means of a set of preprogrammed criteria. These assignments are appended to the incoming message as wo
additonal fields: Internal, for internal distribution, and Action. for responsibility. The action assignment,
however. is labeled Action only for incoming messages where CINCPAC s in the To field. 1f CINCPAC
appears in the Info field. the action assignment field is called Cog (for Cognizance). Back copie58 of outgoing
messages from CINCPAC are assigned to the originating group within the headquarters, and the field is
labeled Orig.

The receiving LDMX assigns a unique Processing Serial Number (PSN) w0 each incoming message. This
PSN is used internally by the LDMX, and occasionally an Action officer needs to know this number, so it 1s
printed on the message copies and is passed on to SIGMA as an additional field.

SIGMA puts its own sequence number on an incoming AUTODIN message. This is a name which
SIGMA uses to uniquely identify the message. This sequence number may be used to specify the message as

an argument to an instruction, such as

ttDISPLAY MESSAGE SEQ 271374

8 : .
“Confirmation copies returned from [DMX

Section 2.11.1

j

T

2. FUNCTIONAL DESCRIPTION 215

although this is not the usual practice. Users would like o be able to refer to messages by the combination of
sender and DTG (this is the common way messages are identified in the military community). SIGMA uses
this scheme for internal memos. but because of design considerations (see section 4.11.1, page 4-65) it cannot
use it for AUTODIN incoming messages.

The text of the AUTODIN message is up to the author, although certain standards are mutually agreed
upon by the different branches of the service. The first line of the text contains the classification of the
message in clear text. Special handling instructions, Standard Subject Index Codes (SSIC), and/or passing
instructions’ may follow the classification. The subject of the message should appear on its own line after the
classification line. References follow the subject; they are lettered in sequential order, and each starts on a
new line. Text paragraphs are numbered. Downgrading instructions'® appear on the final line of the body of
the message. The string "NNNN" denotes the end of the message.

Unfortunately, not every organization using AUTODIN follows these standards. Passing instructions come
in all forms. Not all messages have subjects. References seldom appear in the standard format. Special
markings to indicate AUTODIN Exercise messages seem to conflict with other standards. And, to top it all
off, each command seems free to adopt its own variation of format. It is, as a result, very difficult to reliably
extract special information from the body of an AUTODIN message (see section 3.2.5.3 for difficulties
encountered in subject extraction for building file entries). SIGMA therefore presents the text field just as it
comes in and does not highlight the subject or reference fields.

Incoming messages cannot be edited. but users may add comments to them. The user indicates with a
"WHER E'! where he wants the comment to appear and executes the COMMENT instruction. This is a typed
instruction because it takes an access control argument. If the access control is specified as public. the
comment will appear to anyone who reads the message. If the user specifies another user’s name with the
COMMENT instruction {personal), only that user and the author of the comment will see it. If no access
argument is given. the comment is made privare to its author.

When COMMENT is executed, the text of the message is opened up at the line indicated and an editable
comment field appears in inverted videco. The user now types in his annotation. When the message is
NFINISH"ed, this comment becomes a part of the message database.

SIGMA also allows the user to "highlight” portions of text in a received message. The user specifies with
WHIRF!s the beginning and end of the text to be highlighted and executes the HIGHLIGHT instruction.
The text is highlighted in inverted video. HIGHLIGHT has the samc kind of access control attributes as
COMNMENT.

2.11.2 Preparation AUTODIN Messages

Figure 2-4 illustrates a Preparation AUTODIN message just after the user has created it. The top line of
the message presents the unique message identifier SIGMA assigns to that message (a combination of an
internal DTG plus the drafter’s name). Users can access this message directly by providing that identifier as
the argument to a DISPLAY instruction (this is not the usual way to access a message).

9Sce NTP3(30] for discussion of these special markings

Wgee NP3 [30)

Section 2111

AT - -

216 SIGMA FINAL REPORT

Ref Id: J324 2200182 MAY 79 (J324's Version)
CONFIDENTIAL [Autodin - Preparation]
Briefing Memo:
Precedence: R{ROUTINE)
From: CINCPAC HONOLULU HI
To:
Info:
Exempt:

CONFIDENTIAL

Subj:

Ref:

Text:

Downgrade Instructions: DECL
Chop:
Release:

Originating office: J3
Distribution: J324
---END OF MESSAGE---

Figure 2-4: Preparation of AUTODIN message (before Chop)

The Briefing Memo is a public comment at the top of the Preparation message where the drafter can put
information to be used during coordination (see the description of coordination, section 2.13.2, page 2-21).
This field is stripped before the message goes to the LDMX.

The Precedence field is restricted to one of five possible values (Routine, Priority, Immediate. Flash.
Emergency). It is automatically filled to be Routine, but is left editable so the user can change it. He needs
only to change the first letter in the field, as this is what SIGMA uses when it parses the field. The user may
also add a second precedence after the first one if he wants Info addresses to have a lower precedence.

The From field. like Precedence. is automatically filled in to be CINCPAC. The field is left editable in case
the user wishes to send the message from some other organization. SIGMA does not parse this field but
simply passes it on to LDMX. The user fills in the address fields (To. Info, Exempt“). putting one addressee
per line. The "RETURN!! key will open space for another addressee. SIGMA does not have access to the
Plain Language Address Tables (PLAD) in LDMX. so it cannot verify these addressees.

The classification of a Preparation message is specified at the time the message is created, so the
classification is not editable. The user may add data at the end of the Classification line, however. This is
normally where the Standard Subject Indicator Code (SSIC). special handling. and passing instructions go. If
an unclassified message is to be handled as Encrypt For Transmission Only (EFTO), the user types "EFTO”
on this line immediately following the UNCLASS.

One major difference between the DD173 (military optical character reader message preparation form) and
the SIGMA Preparation message form is that SIGMA has a specific Subject field where the user is expected
to enter the message subject. Upon release, SIGMA will put that subject (along with the herald "SUBJ:™)

IlScc NTP(30] for usage of the Fxempt field

Section 2.11.2

2. FUNCTIONAL DESCRIPTION 217

n) into the outgoing message body at the proper place (after the Classification line). This guarantees that the
‘ back copy coming to SIGMA from LDMX will be correctly parsed. Similarly, SIGMA provides a distinct
Ref field so that references can be parsed. However, parsing references is one of the features that was never
implemented in SIGMA (see section 3.3.2.12, page 3-17).

‘The Text field expands as necessary. The amount of text that may be put in is essentially unlimited. The
AUTODIN Preparation message form indents the Text field 16 spaces so the longest line that can be passed
to the L DMX is 63 characters, 6 characters under the limit of 69 that LDMX will accept.

SIGMA has the facility to reformat text, so the user does not need to worry about ragged lines left around
from editing. The terminal does part of this, since it automatically wraps on word boundaries and closes up
lines when text is deleted. However, if the user does a carriage return in the text, the terminal wiil treat that as
the beginning of a new formatted line and will honor that forever unless SIGMA changes it. The only way for
a user to remove the carriage return entered from the keyboard is to ask SIGMA to reformat the text, via the
NUPD ATEY function key (see section 2.8, page 2-9).

Pre, aration messages may be commented, but the comments appear at the end of the paragraph indicated
by the ""HEREY! rather than at the end of the line. Highlights are not allowed in Preparation messages.

The Downgrade Instruction field appears only in classified messages and is preloaded as “DECL."1 It is
cditable, so the user can specify a date or can change the instruction. When the message is released, the
herald saying Downgrade Instruction is removed. and only the contents of the field are put into the message.

The last four lines of the AUTODIN Preparation message are fields to allow coordination and to define
distribution assignment for back copies. The Chop field contains the names of users the drafier wants to
“chop” (military jargon for approve) the message before release. The Release field specifies his choice for the
releaser of the message (section 2.13.2, page 2-21 describes the use of these fields in more detail). The
Originating office is the name of the Directorate from which the message will be released. SIGMA filis this in
with J3. since that is the directorate primarily served by the MME. but the user may specify another
directorate. The Distribution field specifies who should receive back copies when this message i< released.

2.11.3 Memos

Memos are used to transmit formal communications within CINCPAC headquarters. At the users’ request,
the format of Memos in SIGMA was made to look as much like CINCPAC's standard paper memos as
possible. Like AUTODIN messages, memos come in two forms, Preparation and Transmitted.

Figure 2-5 shows a Preparation Memo. The Briefing Memo, Chop, and Release fields serve the same role
as they do in an AUTODIN Preparation message. The Date field is automatically filled in with the date the
memo is released. Note that memos do not have precedence. The From field is preloaded by SIGMA with
the drafter’s log-in name. but it may be edited so that a user can prepare a memo from another person. The
To field and the Copy to fields are interpreted by SIGMA when the memo is released. If SIGMA does not
recognize a name in either of these fields to be a SIGMA user, it will put an asterisk after the name to indicate
it cannot deliver the memo to this user.

5
I‘Suc NP3 {30] for usage of Downgrade instructions

Section 2.11.2

- SN IR a -

—— e e ————————————t]

2-18 SIGMA FINAL REPORT

Directorate/Memo/Memo Number: 821
Date: 21 MAY 79

SECRET

MEMORANDUM

From: J324

To: J3

Subj: Test of Coordination of memos
Ref:

Encl:

Text:

Memos, as well as Autodin messages, may be coordinated using SIGMA.

Signature block:J31
Lt. Abel Cain USN
J324

SECRET

Copy to:
oDO

Orig: J3z4
Typed by:JBW

Briefing Memo: I want your advice on who else should get this memo.
Chop: J31 J3z J3az2
Release:
Ref 1d: J324 2123447 MAY 79 (J324's Version)
SECRET [Memorandum - Preparation]
---END OF MESSAGE---

Figure 2-5: Preparation Memo (Chopped)

The Encl. Orig, Typed by, and Signature block fields are fields of a standard CINCPAC memo.
uninterpreted by SIGMA. The Ref field appears at the bottom of a memo. Iis role is a unique identifier for
the memo. just as for an AUTODIN Preparation message.

The Transmitted Memo is generated by SIGMA from the Preparation Memo when it is released. The
fields of a Transmitted memo are not editable, but the user may add comments. Copies of a released memo
are delivered to the memo’s addressees. In addition, back copies of the memo are supplied for the Releaser
and anyone he puts into his Chop or Release field. To satisfv CINCPAC's desire for administrative control,
SIGMA also delivers a back copy of all released memos to J3's Administration Office, J301.

Section 2.11.3

2. FUNCTIONAL DESCRIPTION 219

2.11.4 Notes

Notes are intended for local informal communication and, as illustrated in Figure 2-6, have a simple
format. Notes cannot be coordinated, but Preparation Notes are still edited and then released to become
Transmitted Notes. At one time the plan was to underscore the informality of Notes by not archiving them,
so that after some period of time they would just vanish. The users did not like this idea, so Notes are
archived like all other messages.

Ref Id: J324 2200437 MAY 79
CONFIDENTIAL [Note - Transmitted]

From: J324

To: J301

CC:

Subj: Meeting tomorrow
Ref:

Text:

Can we move the meeting on SIGMA tomorrow from morning to afternoon?
Releaser: J324
---END OF MESSAGE---

Figure 2-6: A SIGMA note

2.12 INCOMING MESSAGE OPERATIONS

The most fundamental operation in a message system is to DISPLAY a message. As mentioned earlier, this
opens the message so it may be edited or commented on. The user may prefer to VIEW the message, if he
does not expect to edit it. The user may specify the message to be displayed or viewed by referring to it from
the open file (see section 2.14, page 2-24) or by typing in the Ref of the message (either sequence number for
AUTODIN received, or Message Identifier for Memos, Notes, and Preparation AUTODIN).

If the user tries to access (DISPLAY or VIEW) an old message, he will often be told

**Acknowledge YES to request the
retrieval of {(message>

Old messages (messages that have been on-line 30 days without being referenced) are moved to a secondary
tape storage archive. To get the message retrieved the user pushes ! YES!, which sends a special request to
the operator on the computer room floor. After the operator has gotten the proper tape and loaded the
message back into the on-line database, a Retrieved entry appears in the user’s Pending file. This operation
normally takes § to 10 minutes. If the user prefers not to bother with the message, he may respond !'NO!!
when he is asked to acknowledge the retrieval.

Section 2.11.4

S AL 4 i e b s A

—— — ——————— - T

220 SIGMA FINAL REPORT

Incoming messages may be forwarded to other users in two ways:

1. The FORWARD instruction sends the recipient the message for his information (For_Info entry),
and appends the recipient’s name to the Internal field.

2. The ACTION instruction sends the recipient the message for his action (For_ Action entry), and
appends the recipient’s name to the Action field. In this case, the name of the user assigning
action is also included, resulting in an Action field looking something like the following:

Action: J3 J31(by J301) J312(by J31)
This allows others to follow the chain of action assignments.

The ACTION instruction also puts a File_Copy entry (see 2.14.1) into the the action assigner’s file bearing
the special name ACTION_LOG. This may be the user’s own file, or one he has gotten from some other user.
The intent of this file is to allow an organization to track the action on the message from a central place. It is
especially designed to support crisis action teams. If the rest of the team shares access to this action log, they
can record their action status by writing comments on the entries.

A message may also be filed into any files that the user can access. The FILE instruction puts an entry into
the named file. There is no limit to the number of files into which the message can be put. It may also be
filed into the same file several times.

A limitation of FORWARD, ACTION, and FILE instructions is that they may be applied only to a single
message and to a single recipient at a time. See the discussion of the ROUTE instruction for a more powerful
operation (section 2.14.8, page 2-30).

2.13 OUTGOING MESSAGE OPERATIONS

2.13.1 Preparing the Draft

Messages may be created in several different ways, the most straightforward of which is to execute a
CREATE MESSAGE instruction. specifying the type of message (AUTODIN, Memo. Note) and its
classification.

If the message is a reply to an Incoming message, the user may prefer to use the REPLY instruction. This
creates a preparation message of the same type as the message it is answering (the original). In addition. it
automatically fills in the addressees for the message from the original. The To field is copied from the From
field in the original. The Info field (Copy to for Memos, CC for Notes) is filled in with the names of all the
Info, Copy to, or CC addressees from the original. The address fields are editable, so they may be easily
modified.

The WREPLY ENTRY' and WREPLY NEXT! function keys allow the user to reply to the Current, Next.
or an indicated (with a ! HERE) message from a file. Sometimes a REPLY should not carry the same
classification as the original message. In this case the user may type

Section 2.12

B

2. FUNCTIONAL DESCRIPTION 231

TTREPLY MESSAGE
<Classification>

into the instruction window, and specify the classification he wants for the REPLY.

Often a user sends a standard message out on a regular basis, with only minor variations. SIGMA eases the
job of producing these messages by allowing a user to COPY an already existing Preparation message. This
message may be filled in as much as desired. SIGMA creates a new message and copies into it all the fields
from the specified original. This can then be edited into final form.

A special form of outgoing request is Readdressal of an incoming AUTODIN message (i.e., sending it on to
a specified addressee, imbedded within a new AUTODIN message). LDMX already supports producing such
a Readdressal message, but it requires a special form of message from SIGMA to trigger it. This message
form looks like a standard AUTODIN header, but the body contains just the word "RADDR," followed by
the PSN of the message, and on the next line the DTG and sender of the readdressed meszage. In SIGMA
the user specifies the message to be readdressed and executes the READDRESS instruction. A standard
SIGMA preparation AUTODIN message is generated with the special Readdressal request format
automatically filled in. This data is editable, so the user may alter its contents. Except for its special form, a
Readdressal request message is treated like any other AUTODIN Preparation message in SIGMA.

2.13.2 Coordination

SIGMA is designed to assist in the process of reviewing AUTODIN messages and Memos preparatory to
their being released. This coordination process is essentially a message service within a message service. That
is, the drafter creates the initial version of the message and sends it to the people he wishes tu review it. Only
those people who are sent the message may read it. These reviewers (called coordinators) read and possibly
edit their versions of the draft, then indicate their overall disposition (“chop”). The drafter, after reading the
comments and changes from the first round of coordination, makes whatever alterations he feels are needed
and sends the modified draft out again to the same or to other reviewers. The process may take as many
iterations as are necessary. When the message is ready for release, it is sent to the person designated Releaser.
This section describes coordination in SIGMA for AUTODIN messages in more detail. The same process
applies 1o Memos. Notes cannot be coordinated.

As Figure 2-4 illustrates, there are a number of fields in a Preparation AUTODIN message that do not
appear in the message that eventually goes out to the addressees (the transmitted message). These same fields
appear in Preparation Memos as well. These fields are used in the Coordination phase and are stripped off at
the time of release.

The Briefing Memo is a text field where the drafter normally explains background information or special
instructions about the message. It appears before the draft message because it is information that generally
should be read prior to seeing the message.

The Chop field appears after the body of the draft message. This is where the drafter specifies the users he
wishes to review the message. The Release field contains the name of the drafter’s intended releaser. The
reviewers who are sent this draft are able 10 see the drafter's Chop and Release fields.

The field labeled Originating office is required by LDMX. It contains the office code of the Directorate
from which the message is emanating. Since MME is primarily serving J+ "IGMA fills in J3 automaticaliv at
the ume the message is created. It may be ecited.

Section 2.13.1

v —m—-—-‘:

2-22 SIGMA FINAL REPORT

The Distribution field specifies who will get back copies. At one time SIGMA automatically appended the
names of each coordinator, the releaser, and the drafter to this field on the theory that they were all interested
in seeing that the message got out. However, LDMX at CINCPAC does not normally distribute to office
codes below the level of the Directorate (e.g., J3), and the Communications Center personnel objected to
having to handle the paper copies produced for these additional offices. A compromise was struck, and
SIGMA was changed to append only the office code of the releaser to the Distribution field.

When the drafter has filled in the message and briefing memo completely, he enters into the Chop and
Release fields all the office codes he plans to coordinate with. He next must decide which people on the Chop
list he wants to review the message first. He indicates these by marking their names in the Chop list with
NWHEREWSs and presses the {COORDINATE!! function key. SIGMA responds by highlighting the names
selected that it recognizes as SIGMA users and indicating any unrecognized user names (i.e., not SIGMA
users) with an asterisk. It is important that the message service be able to accept user names that it cannot
recognize and indicate this on the display so the drafter can send these people a hard copy. The drafter is
asked to acknowledge the coordination to the highlighted users by pushing the ' YES!! function key. ''NOY!
or WCANCEL causes the operation to be aborted.

Coordinating a message to a user causes a For_Chop entry to be put into his Pending file. This indicates to
the coordinator that his chop is requested. When the coordinator displays the message he is given his own
copy of the drafter's original. The coordinator may edit this version and/or annotate. He normally would
then chop the message, either Yes or No (WCHOP YES! or W{CHOP NO! function keys). Chopping the
message puts a Chopped entry into the drafter’s Pending file.

Figure 2-7 shows how the Preparation message looks to a coordinator. Note that it shows the drafter’s
Chop and Release fields as nonenterable status fields and that new, empty Chop and Release ficlds are
provided for the coordinator. If the coordinator wishes, he may start his own coordination cycle by typing
into his Chop or Release fields the names of users, then coordinating the message to them in exactly the same
way the drafter did. Each subcoordinator will get an editable copy of his delegator’s (higher-level coordinator)
version of the message (not the original draft). The sub-coordinator will see the status of bott the coordinator
above him and the drafter, and will have Chop and Release fields of his own. When a subcoordinator chops
the message. a Chopped entry is delivered to the Pending file of the coordin~:or that sent the message to him.

Each coordinator (including the drafter and subcoordinators) sees the status of his own coordination and
the coordination of anyone above him in the process. Possible states that apply for each name are Nor Sent,
Not Read. Read, Chopped Yes, and Chopped No. In addition, if a coordinator has made any changes to the
message at all (an edit to a field of the message, a comment, or a name put in the Chop or Release field) the
status shows the letters ED (for edited). If the drafter has edited the message since a user has chopped, that
user’s status shows as OLD.

Whenever a user DISPLAYs a Preparation message (regardless of what file entry he uses to access it), he
always sees his own version. Any comments he makes appear only on his version. In order to see the changes
or comments of other users who have been coordinated on the message, he must execute the typed instruction
VIEW VERSION, specifying the name of the user whose version he wishes to see. This will put into his View
window that user’s version, where he can compare it with his own and see that user’s comments.

A typical scenario in the coordination of messages would have the drafter create the message, fill in the
Chop and Release fields with all the office codes he plans to coordinate with, and send it to a subset of these
for the first round. These coordinators would review the message, possibly edit it, and cither chop it or
coordinate it to someone of their own choosing (someone whose opinion they want before they make a

Section 2.13.2

2. FUNCTIONAL DESCRIPTION 223

Ref Id: J324 2200182 MAY 79 (J301's Version)
CONFIDENTIAL [Autodin - Preparation]
Briefing Memo: This field will not be included
in the final released message.
Precedence: R(ROUTINE)
From: CINCPAC HONOLULUL HI
To: JCS WASH DC
Info: CINCPAC HONOLULU HI
NAVSTA SUBIC BAY RP
Exempt:

CONFIDENTTIAL
Subj: FORTHCOMING EXERCISE
Ref: A. MY 04001Z JAN 79
Text: THE UPCOMING EXERCISE NEEDS FURTHER DEFINITION.
THE GOALS SPECIFIED SO FAR DO NOT DETERMINE THE
SCOPE OF THE OPERATION,
Downgrade Instructions: DECL
Chop:
Release:
Originating office: J3
Distribution: J324
J324's Chop: J301:chop_YES by SMITH, J38:not_sent, J31:not_read,
DDO:not_sent
J324's Release: J3:not_sent
---END OF MESSAGE---

Figure 2-7: Coordinator’s view of Preparation AUTODIN message (Chopped)

disposition of the message). The drafter monitors the progress by the Chopped entries he receives and by
looking at the chop status area of the message. If the status shows a particular user has edited his version of
the message, the drafter would look at that version. When the drafter has sufficient response to his draft, he
edits his version (the initial draft) incorporating whatever changes he desires from the versions or comments
of the coordinators. He then starts the second round of coordination by indicating with !'HER EV!s the users
he wishes to see this new rendition and pressing 'COORDINATE!!. Note that he can "COORDINATE!! to
anyone on his Chop list, including users who received the message in the first round. This causes this new
draft version to be substituted for that coordinator’s version, so that when he DISPLAYs the message he will
see the new draft and not his old version. At this point the coordinator can still access his old version by
executing a VIEW VERSION and indicating his own Log On name as the user. The old version appears in
the View window and is not editable. This old version is lost whenever he does a !WCHOP YES!,
HWCHOP NO'Y, or "FINISH" of the new draft (1o preserve the old version he must ABORT the new draft
message after he has read it).

At any time throughout the coordination process, the drafier or a coordinator may coordinate the message
to the user indicated in his Release field. This puts a For_Release entry in that user’s Pending file. This user
has all of the options that any other coordinator has, i.e., he may edit or comment on his version and then
chop it (Yes or No) back to whoever sent it to him, coordinate it on to someone else (either for chop or for
release), or "RELEASEY it. A user does not have to be in the release field in order to release it. The only
limitation on releasing is that the user be authorized to do so. The SSO maintains the database which
specifies who may release AUTODIN messages. Memos, and Notes.

Section 2.13.2

-4 SIGMA FINAL REPORT

2.13.3 Release

When a user does release the message, it is his version that is copied into the Transmitted message. All
comments and Preparation-only fields are stripped off. If it is an AUTODIN message, the contents are
reformatted for the LDMX and sent. If it is a Memo or Note, a new SIGMA Transmitted message is
generated and delivered to those SIGMA users whose names appear in the To and Copy to (or CC) fields.

AUTODIN back copies are sent to the users whose names appear in the Distribution field of the released
version of the message, and to the Releaser. Back_Copy entries of Memos are put into the Pending files of
the Releaser, and all of the coordinators. At CINCPAC the J3 Administrative office (J301) controls the
issuance of memos, so SIGMA sends a back copy of all Memos to this office as well.

Upon release the Preparation message status is updated to show that it has been released, and further
coordination on it is frozen. This Preparation message remains in the database in ¢.. .ne wishes to look
at its coordination history. All of the coordinators’ versions, comments, and stat.. remain intact. The
released Preparation message is still accessible only by coordinators, the drafter, and the releaser of the
message. Back_Copy entries point to the transmitted message, but they also show the message identifier of
the Preparation message that produced it (see Figure 2-8). This linkage is necessary to allow users to locate
the Preparation message containing the coordination history for the outgoing message.

2.14 FILES

Files are the basic message management tool in SIGMA. Although the user may think of files as
containing messages. in fact they contain an index to messages in the form of entries. A file entry is an
abstract of data from a message, plus a pointer to that message in the database. Users access messages through
file entries. A user may create and delete his own files, and he may access other users’ files. A file is named
and given a security level at the time it is created. A file name may be any arbitrary single-word alphabetic or
numeric string, except that it must start with an alphabetic. The underline character is treated as an
alphabetic, so multiword strings connected with underlines may be used for a file name, e.g.,

Merchant_Ship_Sightings_January_79

The classification of a file determines the maximum security level of its contents. SIGMA will not allow a
user to file a Secret message in an Unclassified file, but an Unclassified message may be filed in a Secret file.
Furthermore, a user who logs on as Unclassified will not be able to open a Secret file, even though it may
contain nothing but unclassified messages.

2.14.1 File Formats

Files are made up of entries. Each entry is an abstract of a message. Figure 2-8 illustrates the format of a
SIGMA file presented to a user. The first piece of information in an entry is its entry number, which serves as
a convenient handle for the user to specify arguments to instructions. Entry numbers are sequential and
remain fixed while a file is open; entries will be renumbered the next time the file is opened. File entry
numbers are shown in inverted video to make them stand out.

Files are not editable. Entries are appended to files through user instructions such as FILE. ACTION, or
FORWARD. Entries are removed by executing the DELETE ENTRY instruction. A file entry may be
annotated via the COMMENT instruction in the same way a message may be annotated (see section 2.11.1.

Section 2.13.3

".,-I—-I----—--—-----u--——--lIl—— — “"-l..lll——

2. FUNCTIONAL DESCRIPTION 225

File: PENDING Security: SSSS Length: 15

1 0 UU Auto 0422222 DEC 77 From: JCS WASHINGTON DC
Incoming Cog: J3
Subject: AIRCRAFT HIJACKING

2 R UU Auto 010024Z DEC 77 From: CINCPAC REP PHILIPPINES SUBIC BAY RP
Incoming Act: JO3
Subject: INFORMATION ON GAO ACTIVITY

3 SS Memo J322 020011Z DEC 77 From: J322
Incoming
Subject: Check out a message for me.

4 UU Note AMES 020333Z MAR 79 From: AMES
Incoming Subject: Action on Notes

5 R UU Auto J322 280038Z JAN 79
for_Chop By: J324
Subject: Exercise Procedures

6 R UU Auto J322 280040Z JAN 79
for_Releas By: J324
Subject: Elegant Eagle

7 R SS Auto 0823597 OCT 76 From: NISC WASHINGTON DC
for_Info By: J322 Act: J2 J3(by J322) J324(by J322)
Subject: NOFORN/WNINTEL //N03822// SECTION 01 OF 02

8 R SS Auto J31 0823587 OCT 78
Fitle_copy By: J324
Subject: RADDR FBIS BANGKOK//120852Z DEC 77

9 SS Memo J324 070027Z MAR 79 CID: J324 070020Z MAR 79

Back_copy
Subject: Handling of last week's exercise
10 R UU Auto 040130Z DEC 77 From: FBIS HONG KONG :

for_Action Act: J2 J324(by J301)
Subject: H BBC RUMJ

11 R UU Auto 041647Z DEC 77 From: FBIS OKINAWA JA
for_Action Act: J2 J301(by J301) 1
Subject: BBC

12 P UU Auto 0405557 DEC 77 From: FBIS BANGKOK

Retrieved Act: J2]
Subject: BBC RUMT
13 SS AAA 2306487 MAY 79 i
ERROR XMIT-FAIL: Your message had no TO list. 3
14 R SS Auto J324 2323327 MAY 79 :
Chop(Y)-Ed By: J301
Subject: Exercise Procedures :

15 CC Memo J324 2323387 MAY 79
Chop(N) By: J301
Subject: Review Meeting 4

---END OF FILE--- E

Figure 2-8: A Pending file

Section 2.14.1

226 SIGMA FINAL REPORT

page 2-15). File entries may also be highlighted. The subject line of a highlighted entry is shown in inverted
video.

Since files cannot be edited, SIGMA restricts the cursor from entering the text of the file. This means the
cursor will jump from one entry number to the next with a single push of the + key. All instructions that
accept a file entry number as an argument will accept a 1! HERE! marker on the entry number as well.

There are a variety of types of file entries, depending on what action caused the entry to be made, but their
format is basically the same. Next to the entry number is a single-letter precedence indicator (AUTODIN
only, Memo and Notes show a blank). Next on the first line is a two-letter classification designator.
Following that is the message type (AUTO, MEMO, NOTE), then the DTG and From fields (which for all
but incoming AUTODIN is also the Ref ID of the message). The second line of the entry is indented for
clarity. The first information on this line is the type of entry. Table 2-1 describes the meaning of each entry
type. The rest of line 2 and line 3 are dependent on the entry and message type. The subject line appears on
line 2 for Notes but gets line 3 to itself for AUTODIN messages and Memos. Most Transmitted Memos and
AUTODIN entries show the Action field of the message. Preparation messages usually show who sent it to
the user (e.g., "By: J31"). Error entries indicate the type of error that occurred.

Table 2-1: Types of file entries

Incoming: a message that has been sent to the user.

Error: an error condition has been detected. A brief description
of the error is provided in the entry.

For_Action: a message sent to this user for his action with ACTION.

For_Info: a message sent to this user for his info with FORWARD.

For_Chop: a -message sent to this user for his chop with COORDINATE.

For_Releas: a message sent to this user for his release with COORDINATE.

a

Chopped: message returned as either Chopped(Y) or Chopped(N).
File_Copy: an entry for a message that has been placed in the file.
Back_Copy: a comeback copy of a released message.

Retrieved: a message retrieved from Archive.

The last entry that the user has referenced is called the Curreas entry. It is distinguished by having its
number shown as white-on-black rather than inverse video. A number of function keys refer to the Current
entry or the Nex! entry (the one immediately following the Current entry). The user may step sequentially
through a file of messages by pushing !DISPLAY NEXTV,

Entries normally appear in files in the order they are received. most recent last. However, SIGMA does
provide 2 SORT instruction which will sort the named file into DTG order. most recent DTG last. This was
requested by users because they are used to seeing messages filed that way in the paper system. Since
SIGMA provides sophisticated retrieval features (see section 2.14.6, page 2-29), having messages in DTG
order does not particularly aid retrieval. However, it has proven to be helpful to users who deal with a paper
copy of the file contents. The Readboard is also sorted by Date Time Group, because "that is the way it is
done".

For each file in a user’s file directory SIGMA keeps a high nater mark. the highest numbered entry which
he has displaved. When he displays the file, this high water mark will be at his Current entry. SIGMA also

Section 2.14.]

4 S

2. FUNCTIONAL DESCRIPTION Y]

remembers which is the last entry when the user ' F/INISH!!es a file. When he next opens the file he can find
out which entries have arrived since the last time he saw the file through the selector Recent (see
section 2.14.6, page 2-29).

Two function keys are provided to facilitate moving around in a file. !GO TO NEXT! moves the current
entry to the next entry in the subset displayed. Pushing WCURRENT ENTR Y!! causes SIGMA 1o scroll the
file to put the Current entry on screen. If an entry is marked with a W HEREY when WCURRENT ENTRY!
is pressed, that entry will be made the Current entry.

2.14.2 Pending File

Each user has a special file called Pending, which is established when he is given a SIGMA account and
which he cannot delete. The Pending file is the delivery point for messages sent to that user. It is the analog
of his mailbox or in-basket. From the point of view of its manipulation, the Pending file is like any other file.
The user may file messages into it, delete messages from it, etc.

There is a Pending file for each office code and user name. When a user logs on as an office, his Pending
file is the one for his office. His personal Pending file is also available to him under the special name
"MyPending". Thus if Smith logs on as J34, he accesses J34’s Pending file as “Pending" and Smith’s Pending
as "MyPending".

Although a user has control over files he creates, they are maintained by a central process in SIGMA (see
section 4.12.5. page 4-79). They may be accessed and updated by other users even though the owner may not
be logged on at the time. When a user DISPLAYs a file, he gets a copy of the master file. Any changes he
makes during his session (delete entries, comments, etc.) are made immediately to his working copy. but will
not appear in the master copy unt! the user does a "FINISH!! (or DISPLAYs a different file, which does a
NFINISH" for him). For most files the user will not see new entries that are made while he has it open. The
one exception is the Perding file. If new messages are sent to a user while he has his Pending file open, they
will be delivered to his open working copy as well as to the master copy. This feature applies only to messages
sent to the user, not messages FILEd into his Pending file.

2.14.3 Date Files

Incoming AUTODIN message delivery is determined by the Action and Internal Distribution assignments
made by LDMX. In addition, SIGMA delivers a copy (really another file entry) to a special file called the
Date File based on the DTG of the message. There is a Date File for each day that SIGMA has accepted
traffic from LDMX.

If SIGMA receives a message with a DTG that does not have a corresponding Date File, a Date File is
created and the message is filed into it. Thus SIGMA keeps building new Date Files. These files remain on
the system and can be accessed at any time, even though the messages may have long since been archived.
The Date Files serve both as a log of the traffic SIGMA has received from LDMX and as the primary
database for message retrieval. At the completion of MME there were Date Files on-line for all waffic
received by SIGMA during the conduct of the experiment (nearly two years).

MME users found it valuable to search the most current Date File for traffic of interest rather than wait for
messages to be routed to them by J301. This way the user can get his messages sooner and, more important,
he is able to pick up messages that J301 misrouted which otherwise would escape his attention (see
section 2.14.6, page 2-29 for a description of the aids SIGMA provides for searching through a file).

Section 2.14.1

2-28 SIGMA FINAL REPORT

An AUTODIN readdressed message consists of a new message header with its own From and DTG
wrapped around the original AUTODIN message. Similarly, a readdressal of a readdressal will have three
Froms and DTGs. To insure that it can be found by any pertinent reference, SIGMA files incoming
readdressed messages into Date Files by all incorporated DTGs.

2.14.4 Readboards

Readboards are collections of messages deemed to be of interest to a particular person or group. Typically
a readboad is built for J3, and another for his Executive Officer, J30. Other readboards may be built to be
passed around among a number of Action offices. This is a major way message information is disseminated at
CINCPAC. Of particular interest are the Readboards given to J3. At CINCPAC this Readboard is built by
the watch team in the command center and screened by the Executive Officer. 'In the paper system J3 gets his
own Readboard and other officers can only surmise what is on it. However, the shared nature of files in
SIGMA allows other officers to access J3's Readboard and therefore know what messages he will be aware of.
This is deemed to be a valuable asset among SIGMA users at CINCPAC.

2.14.5 Deleting Entries

The DELETE ENTRY instruction marks a file entry in the open file for deletion and removes it from the
user’s screen. A user may delete entries only from files he has created. He is also limited to deleting entries
that are in the set of entries being displayed (see 2.14.6). Function keys are provided for deleting the Current
entry or the Next entry. A user may delete more than one entry by typing the DELETE ENTRY instruction
with the entry numbers of the messages to be removed. A dash between entry numbers refers to all entries
inclusive between those entries. If no entry number is given in front of the dash. SIGMA defaults that value
1o the first entry of the displayed set. If no entry number is given after the dash. SIGMA defaults to the last
entry of the displayed set. Thus the typed instruction

t1TDELETE ENTRY -
will delete all the entries currently displayed.

As previously stated, DELETE ENTRY only marks the entry for deletion. The entries are not actually
removed until the file is "F/NISH!'ed. Prior to the "FINISH!! the user may RESTORE any deleted entry.
which removes the deleted mark and restores the entry on screen. The user may also ABORT the file, which
will throw away all changes he has made to the file (deletes, comments, and highlights) and leave the file in
the state it was in before he opened it.

As an aid to users who prepare Readboards, an EMPTY instruction was added to SIGMA. This deletes all
entries in the named file without opening the file. Although a convenient way to expunge a file of its entries.
it is dangerous because such entries cannot be restored.

It has been mentioned that a user may FILE the message he is looking at into a named file, which puts a
File_Copy entry into the file. He may also FILE an entry from an open file to a named file, which puts a copy
of the entry (without changing its type) into the file. The MOVE instruction is the same as a FILE and
DELETE on the entry.

Section 2.14.3

2. FUNCTIONAL DESCRIPIION 229

é 2.14.6 Selection from Files

Perhaps the most useful feature of the SIGMA system is its facility for assisting the user .in finding
messages in the database. SIGMA allows the user to search a file for all messages meeting a specified
criterion. These selection criteria, which can be saved as objects called selectors,’> are combinations of
attributes of the entries in the file. Table 2-2 lists the attributes that can be used.

The RESTRICT instruction takes a selector as an argument and applies it to the open file. It then displays
on the user’s screen the subset of entries which meet the criteria. A subsequent RESTRICT applies to these
entries, further restricting them 1o those that meet both the first and second selection. This is equivalent to
the logical AND of the two selectors which, of course, the user could have specified the first ime. However,
very often it is not obvious that the second selector should be applied until the results of the first RESTRICT
are seen.

The user can perform the equivalent of ORing two selectors by executing a RESTRICT with the first
selector, followed by an AUGMENT instruction with the second. The user can apply any reasonable number
of RESTRICTs and AUGMENT;s 10 a file.

Predicting the results of applying complex selectors is often difficult, so SIGMA allows the user to take it a
step at a time. If the user makes a wrong choice by applying a particular selector, he may use the
WBACKUP ONEN function key to step back in the chain of selections, returning him to the set he had
previously. This may be applied sequentially to get back to any previous set of entries or unti! he backs up all
the way to the original file. To return to the original file in one step, BACKUP ALL is executed.

Often a user wants to preserve a complex selection so that it can be used over again, without having to type
in all of its components. When he has incrementally built up such a selector he executes a
CREATE SELECTOR instruction, specifving a name he wishes to remember it by. Since this selector may
contain strings of text (e.g., contents of subject field) which may be classified, the selector is defined to be at
the security level of the open file. To apply this selector at a later time he merely types:

TTRESTRICT WITH <selector name>

If the user prefers, he may define the contents of a selector when he creates it. He does not need to even
have a file open to create a selector in this manner. However, in this case, he must specify the security level of
the selector. Thus,

tTCREATE SELECTOR URGENT_JCS UU FROM "JCS" AND NOT
ROUTINE

builds an unclassified selector named URGENT_JCS which will select all high-precedence messages froin
JCS. Another user may do a GET on URGENT_JCS, assuming he has access (see 4.3.6), and give it the same
or a new name for his own use. This puts a copy of the selector into his database. It will not change if the
owner alters the original. SIGMA maintains a directory of selectors for each user, which can be VIEWed.

Typical usage of selection from files occurs when a niessage references an earlier message ', its DTG. To

13Selecuon critena are arbitran Boolean combinations of attnbute values: selectors are named SIGMA objects which can store these
selection critena Both of these forms can be used in the instrucuons which perform selection

Section 2.14.6

- ——

2-30 SIGMA FINAL REPORT

see that message in SIGMA, the user DISPLAYs the corresponding Date File, then RESTRICTs with the
DTG of the message. At other times a user will have only a rough idea of the date a desired message came in.
but he will know some other attributes of the message, such as whom it was from, its subject , etc. In this case
the user works through a series of Date Files, first DISPLAYing the file, then RESTRICTing with the
appropriate selector, untl he finds the message. This is somewhat tedious, and the users have asked for a
single instruction that allows them to search multiple files with the same selector. Even with this imitation,
the fact that SIGMA has Date Files and message archives that go back nearly a vear and a half means that
users have a way of retrieving old messages that they have never had before. The key consideration here is
that the user does not have to recognize at the time the message comes in that he may need the message later.

2.14.7 Keywords

One of the attributes on which a user can select (see Table 2-2) is keywords. Keywords must first be
assigned by the owner of the file before they can be used in a selector. This is done with the KEYWORD
instruction, which takes as arguments an entry and the keyword to be assigned. The same entry may have
more than one keyword., and a keyword may be assigned to more than one entry. The instruction
VIEW KEYWORDS will show all the keywords that are assigned to the open file,

It should be noted that keywords apply to entries, not to messages. Thus one cannot keyword a message
and have that keyword apply to whatever files the message appears in. Also keywords do not move with an
entry when that entry is MOVEd or FILEQ into another file. This makes keywords somewhat awkward to use
and may explain why they were used less than was expected.

2.14.8 Route

At CINCPAC the LDMX distributes message to the Directorate level. All messages for the J3 staff are
delivered to J3's Administration office, J301. J301 must go through approximately 700 messages a day. ’

assigning action. making distribution copic.. and filing copies into appropriate subject files. This process 1s
very time-consuming (approximately 4 hours in the early moming, plus additional time distributed over the
working day) in the paper system. The more common messages that arrive every day (c.g.. weather messages,
FBIS) are easilv recognized, but assignments must be made on them one at a time. Other messages require
looking in an index file (primarily based on subject keywords) to ascertain the distribution.

When SIGMA was first delivered to CINCPAC. it was not much of an improvement over the manual
method of distributing messages. Although classes of messages could be easily extracted from the file with
RESTRICTs. the ACTION, FORWARD, and FILE opcrations each still had to be done on a message-by-
message basis. Only DELETE ENTRY could be applied to the whole set of messages. J301 asked for a single
operation that performed the ACTION, FORWARD, FILE. and DELETE commands and could be applied
to a list of entries. The resultant ROUTE instruction also tried to capture the sens of the keyword index file.
as explained below.

The ROUTE instruction takes as arguments an entry list and the name of an existing text-object which we
call a Route Iist. As described in section 2.15, text-objects can hold any arbitrarily formatted text. To be a
Route List. the text-object has to conform to a very rigid format as shown in Figure 2-9.

The names used for Route lLists can be the keywords from the manual index file or, as was done at
CINCPAC. a separate text-object can be used to cross-index between keywords and Route Lists, Each Route
List is a separate distribution pattern. J301's normal style of distribution with SIGMA is to RESTRICT based

Section 2.14.6

2. FUNCTIONAL DESCRIPTION 231

From <{STRING>
Action <STRING>
Subject <STRING>
Keyword <STRING>
By <USER ID>
CSECURITY>
{PRECEDENCE>

{MESSAGE TYPE>
(MESSAGE PHASE>
<RESPONSIBILITY>

DTG <DTG>

Before <DTG>

After <DTG>

Around <DTG>

<Entry Number>
Before <Entry Number>
After <Entry Number>
Arcund <Entry Number>
Incoming:

Error:

For_Action:
For_Info:

For_Chop:
For_Releas:

Chopped:

File_Copy:
Back_Copy:
Retrieved:

Deleted:

Recent:

Examined:

- e s 4 o P

Table 2-2: Selector attributes

(e.g., From "J301" or From "FLEWEACEN")
{(e.g.., Action "J3")

(e.g., Subject "Gale Warning")

(e.g., Keyword "Cambodia")

(e.g., By J301)

(e.g., Secret or SSSS)

(e.g., Routine(R) , Priority(P), Immediate(O0),
Flash(Z))

(AUTODIN, Memo, Note)

(Preparation or Transmitted)

(Orig, Action, or Cog)

(e.g., DTG 0217452 OCT 77)

(Before and including this DTG, e.g, Before
0217452 OCT 77)

(After and incliuding this DTG, e.g., After

0217452 OCT 77)

(Within 24 hours of the DTG, e.g.., Around

0217452 OCT 77)

(e.g., 17)

(Before and including this entry, e.g., Before 17)
(After and including this entry, e.g., After 17)
(5 entries above and 5 below, e.g., Around 17)

a message that has been sent to the user.

an error condition has been detected. A brief
description of the error is provided in the entry.

a message sent to this user for his action with

ACTION.

a message sent to this user for his info with
FORWARD.

a message sent to this user for his chop with
COORDINATE.

a message sent to this user for his release with
RELEASE.

a message returned as either Chopped(Y) or
Chopped(N).

an entry for a message that has been placed in
the file.

a comeback copy of a released message.
a message retrieved from Archive.
entries deleted from the open file during that
work session. A1l deleted entries are destroyed
after the file is FINISHED.
newly arrived entries in a file since it was
last opened.
all entries in the file which the user has
displayed.

Section 2.14.8

r—-——w————-——————-——v

232 SIGMA FINAL REPORT

; * Any text between asterisks is ignored. *
* This is useful for commenting on the Route list *

5 ACTION: <user name>.
FORWARD: <1ist of user names separated by commas>.
FILE: {(list of files separated by commas>.
DELETE: <YES or NO>.
n Figure 2-9: Format of a Route List

on certain criteria, ROUTE all the entries selected with the appropriate Route List (which deletes the entries),
NWBACKUP ONEW, and repeat for the next class of messages. After all the easily classed messages are
handled in this way, J301 reads the remaining messages one at a time and ROUTEs each using the most
appropriate Route List from the index. The total process takes about one-fourth the time of the manual
system.

2.14.9 Other Operations on Files

Most of the operations that apply to messages (e.g. COPY, FILE, FORWARD, ACTION, PRINT,
READDRESS, REPLY, DISPLAY) apply as well as to file entries. The coordination functions (CREATE,

For large files it is often a very slow process to scroll through the file to move a particular entry into the
Display window. If the entry number is known. the user may execute the instruction

TFFIND <entry number>

e a . A

and SIGMA will automatically make the specified entry CURRENT and put it on screen. FIND BOTTOM
and FIND TOP move the contents of the screen to put the first entry or last entry on screen. These apply for
the selected subset or the entire file, whichever is the active view of the file,

If the user does not know the entry number he secks. but does know some text string in that entry that
makes it distinguishable. he may execute a FIND STRING. SIGMA will scroll the file to the first occurrence
of that string. To apply it again to find the next occurrence, the user must move the cursor down one entry,
hit "HERE!. and then type in the instruction again. This difficult sequence limits the utility of this
instruction.

R I 2 - e m i

e e

2.15 TEXT-OBJECTS !

Text-objects are arbitrary pieces of text that SIGMA allows to be created. stored, and used wherever text is
appropriate. An addressee list might be a text-ohject. Route Lists (see section 2.14.8) are text-objects. When
several users prepare individual parts of a message body (such as a SITREP). these parts can be generated as
text-objects and then easily assembled into the message. In fact, text-objects can be used to prepare any
written material. regardless of whether it is used in message processing. They are used for preparing briefings,
reports, letters. or whatever.

Section 2.14.8

[y

2. FUNCTIONAL DESCRIPTION 233

When a text-object is created, its name and classification must be specified. There are two ways to create a
text-object:

1. It can be done with the typed CREATE TEXT instruction. This causes an empty text-object to
appear in the Display window, ready for the user to enter data.

2. The user can also generate a text-object from already displayed material by bracketing the text
with 'HERFs and executing a typed COPY TEXT instruction with the name to be assigned to
the object. In this case the new text-object is created and stored without DISPLAYing it, and is
assigned the same security level as its source.

If the user wishes to edit a text-object he simply DISPLAYs it, makes the changes he wishes, and
NFINISH"es it.

Text-objects may be PUT into message fields, comments, or other text-objects. They, of course, can be
PRINTed, DELETEd, and VIEWed. Standard editing operations such as FIND STRING, "UPDATE"
{reformat), PICKUP, MOVE, and COPY apply as well. One can GET another user's text-object, which gives
him his own copy. It will not reflect future changes made to the original text. The Text-Object Directory
shows the names of all text-objects belonging to a user.

There are two instructions unique to text-objects. ''SAVE! stores the currently open and displayed text-
object into the disk file without closing the object. This operation is provided purely for protecting the user
from system crashes. If the system (TENEX or SIGMA) halts for some condition, the user generally loses
whatever editing he has done on the open objects. If he was preparing a ten page message, this could be very
frustrating. To minimize the potential of losing work. the user may ' F/INIS H'! the message every so often,
which will update the master copy of the message. But in this case the user will not be able to return 10
editing until he can display the message again, which cannot occur unti! the master copy update is complete.
This can take several minutes on a heavily loaded system. If, on the other hand, he were to write the message
body as a text-object. he could execute 'S4 'E)! whenever he wanted to store his work and continue.

The other special operation unique to text-objects is reclassification. SIGMA does not allow the
reclassification of messages. files, or selectors because these are complex structures in SIGMA’s internal
representation. and in the SIGMA security model the "trusted job" is not capable of handling them (s.-
section 2.10, page 2-13). Text-objects are just text strings and are simple enough that the "trusted job™ can
process them. The trusted job is involved since it is the only process in the SIGMA security model which can
pass data from a higher security level to a lower one.

When a user wants 10 RECLASSIFY a text-object he specifies the new security level. SIGMA presents
each page (screenful) to the user and asks for a ! YES! or {NO!! confirmation. This is intended to ensure
that the text being reclassified is exactly the text the user wants reclassified. This requirement comes from the
basic premise of the SIGMA security model that the bulk of SIGMA code cannot be trusted (only the
"trusted job." the operating system, the terminal, and the user can be believed).

2.16 ALERTS

The Alers facility calls a user's attention to important new messages as they arrive. He does this by defining
a standard selector with the special reserved name ALERT_SFLECTOR. This selector defines the criteria
that an incoming entry must meet to be considered an Alert. As entries arrive for a logged-on user’s Pending

Section 2.15

T e

2-34 SIGMA FINAL REPORT

file. they are automatically compared against the ALERT_ SELECTOR. If one meets the ALERT_
SELECTOR criteria, it is considered an Alert and it is appended to a special object called the Aler: List.

The number of Alerts that have arrived since log on is shown on the Flash line next to the notification of
new Pending file entries. Thus the flash line might say "Alert:]1 Pend:7." Each time an Alert arrives, the bell
is sounded.

To see his Alerts a user presses the function key WALERT ON/OFR). This puts his Alert List into his
View window. An Alert List looks like a SIGMA file, except that there are two blank inverted video spaces
where the entry number normally appears. Each Alert that has arrived shows as an entry in the Alert List.
Thus the Alert L.ist looks like the contents of the Pending file that has had the following applied to it:

TTRESTRICT WITH ALERT_SELECTOR AND RECENT

The user may do a ""WHERE! on an Alert List entry and a WDISPLAY ENTRYY, which will cause the
referenced message to be displayed. ‘The user may also execute the VIEW, COPY, REPLY, PRINT,
ACTION, FORWARD, or FIND STRING instructions for the indicated entry. The user may not execute any
instructions that require the actual Pending file or the concept of a current entry such as
WDELETE ENTRYVM, WDISPLAY NEXT!, ROUTE, COMMENT, or KEYWORD. AUGMENT,
RESTRICT, BACKUP ALL. and FIND ENTRY also do not have meaning for an Alert List.

If the Alert List 1s being Viewed when a new Alert arrives, the Alert List is updated dynamically and the
user sees the new entry added at the bottom. SIGMA does not allow the Alert List to get larger than 10
entries. Any additional Alert arriving after that will push out the first entry in the Alert List. The user can
clear his Alert List at any time by executing the RESET ALERTS instruction. This also resets the Alert count
to 0. Since each Alert that arrives also shows as an entry in the user's Pending file, the Alerts that are removed
are not really lost.

To remove the Alert List from the screen. the user may push ""ALERT ON/OFF, which returns the

screen to its previous state (including the View window). or "CLEAR VIEWM, which will clear the View
window and assign the space to the displayved object.

2.17 MISCELLANEOUS OPERATIONS

There are a handful of other operations available to the user which round out the SIGMA system. Most of
these can be executed at almost any time during a session.

2.17.1 Log Oft

To end a session on SIGMA the user executes the LOG OFF instruction. This instruction always requires
confirmation. It WF/NISH!es all open objects, making whatever changes are required to update the
database. When LOG OFF is complete. the terminal is cleared. leaving the top line to say

TERMINAL FREE - previous user has logged off

Section 2.16

R

E =

P

2. FUNCTIONAL DESCRIPTION 235

2.17.2 |dentify

In the Command Center and certain other locations, office codes stay logged on 24 hours a day, but
individual users change. The IDENTIFY instruction lets a new user assume the role of the logged on office.
This is done so that accountability for actions can be traced to the proper person,

2.17.3 Printing

SIGMA allows the user to print on paper any object or directory that he can access, by the typed PRINT
instruction with the name of the object to be printed. In addition, function keys are provided to print
whatever object is in the Display or View window. Each printed object is preceded by a header page which
identifies whose printout it is, what its classification is, and a security disclaimer.

For MME seven Versatec printers are distributed around the user offices. Each terminal has an associated
primary printer and a secondary printer. PRINT instructions executed at a terminal cause hardcopy to appear
at the primary printer, unless that printer is not functioning (power off, out of paper, out of toner, etc.), in
which case it prints at the secondary printer. If the secondary printer is also not operational, the Computer
Center line printer is the ultimate fallback unit. Iniually security procedures dictated that if a printer was
down and SIGMA switched its output to the secondary printer, the change back to the primary unit required
manual intervention (presumably by the System Security Officer). This procedure was found to be entirely
too awkward to be practical, so the algorithm was changed to automatically try the primary printer first for
each object to be printed. Unfortunately, SIGMA has no convenient way to inform the user when his
printout is switched to the backup printer (see section 4.12.9 on page 4-87).

2.17.4 System News

As mentioned in section 2.4, page 2-3. a user is presented the System News in his View window when he
first logs on. If a user wishes 10 see that news again later in his session he may execute the typed
SYSTEM NEWS instruction.

2.17.5 System Status

This typed instruction presents in the user's View window a list of the other users who are currently logged
on and at what security jevel they are operating.

2.17.6 View Display

The "VIEW DISPLAY" function key puts into the View window whatever object is currently in the
Display window.

Section 2.17.2

R

e e ek e s

R L S PP PSP NP

E NSNS

APPENDIX

This article originally appeared in AFIPS Conference Proceedings Volume 48 of the 1979 National
Computer Conference. It is reprinted here with permission of the AFIPS Press, Arlington, Va.

SIGMA—An interactive message service for the Military

Message Experiment

by ROBERT STOTZ, RONALD TUGENDER and DAVID WILCZYNSKI

USClinfo ion Sciences |
Marina del Rey. Californis

and

DONALD OESTREICHER

Xerox Corporation
El Segundo, California

MME OVERVIEW

The increasing sophistication of military systems and de-
creasing time frame for making decisions make it essential
to provide the military commander better quality informa-
tion faster. With today's technology, messages can traverse
several thousand miles in fractions of a second, but hours
are lost at either end. botk i+ entering the message into the
communications system and in delivering it to the person
who can act on it. Even after the messuge is delivered, an
officer acting on it requires backzround information to for-
mulate a proper response. More often than not. that infor-
mation is available only after time-consuning searching
through ponderous files. The response is usually an outgoing
message which must be coordinated with other people, many
of whom are not in the immediate vicinity of the message
drafter. Hand-carrying the draft to these people slows the
response still further. In times of crisis this system can casily
become overloaded. throwing the entire opcration into
disarray.

This message management problem seems an excellent
candidate for automation. Users of the ARPAnet have had
a form of on-line message service for more than seven years.
There is no question that the technology exists, but whether
it will be cost-effective in the military environment is not so
clear.

In December 1975 the Defense Advanced Research Pro-
jects Agency (DARPA), Commander Naval Telecommuni-
cations Command (NAVTELCOM), Commander Naval
Electronic Systems Command (NAVELEX), and Com-
mander-in-Chief, Pacific (CINCPAC) signed a Memorandum
of Agreement® stating their intention to conduct an experi-
ment at CINCPAC Headquarters whose express goal was
to ‘evaluate the utility of interactive message service ca-
pabilities in a military environment.'" The experiment is
called the Military Message Experiment (MME).

To have the military conduct an experiment of this sort
is highly unusual. More traditionally the user community

would state their requirements in a Request for Operational
Capability (ROC), which is interpreted and converted by
some agency of the service into a system specification in the
form of a Request For Proposal (RFP). The RFP is subject
to further interpretation by the various contractors, first in
their proposals in response to the RFP and later in the
implementation by the winning contractor(s).

Although this procedure has apparently served well for

‘procurement of more traditional systems, experience indi-

cates it has been less successful in the field of computer
automation, especially in data management systems like a
message service, where the requirement is seidom well
understood and the many levels of interpretation between
the ROC and the final system lead to products poorly suited
to the real requirement. The implications of a particular
system design are subtle. if some aspect is inappropniate, it
is often virtually impossibie to change. ARPAnet experience
has shown that the effectiveness of a message service is
strongly dependent on ease of access to the system, how
often people look at their messages, how “‘official’" such
messages are considered to be, ad infinitum. Further, the
message service is often just the tip of the iceberg as users
begin to understand the capabilities the system offers outside
pure message processing. If the message service is used
extensively, it intimately affects individuals® work style in
ways that are difficult to predict. Thus it is very risky to try
to specify "‘requirements’” when replacing a paper. pencil
and typewriter world with modern "“office automation™
tools. Attempts at management information systems have
shown it is particularly difficult to provide a user interface
that is acceptable to high-level managers, so it is not even
clear precisely who will sit at the terminals or how these
people will interact with senior officers.

The MME is a computer-world equivalent of a "*fly-be-
fore-buy ™" test of a message service in an operational military
environment. The test is relatively small and inexpensive
compared to the cost of multiple instaliations of a **produc-
tion'' system. The hope is the experiment will provide

PRI WY

nadh k.

839 !

i e e e

pea—4

840

National Computer Conference, 1979

enough experience and understanding of interactive message
handling that subsequent production systems will be suc-
cesses rather than expensive lessons in how not (10 automate
the process. In June 1977 the U.S. House Appropriations
Committee put a moratorium on virtually all new develop-
ment of ““message systems’” by the Department of Defense
until results from the MME can be evaluated.

The MME is being conducted at the CINCPAC Head-
quarters. Camp Smith, Oahu. The test community is ap-
proximately 100 officers and staff personnel in CINCPAC's
command center and “operations’” directorate (called J3).
Twenty-four video display terminals are provided for user
interaction with the service. Seven printers are located
throughout the headquarters for local hard copy. The host
processor is a PDP-10 (KL, processor) manufactured by Dig-
ital Equipment Corporation running the TENEX operating
system developed by Bolt. Beranek and Newman.* The
PDP 10 connects to CINCPAC's AUTODIN (AUTOmated
Digital Information Network) terminal computer. called the
LDMX (Local Digital Message eXchange). The LDMX sup-
ports the current message handling service at CINCPAC: it
prints copies of all CINCPAC's incoming AUTODIN mes-
sages and accepts outgoing messages through an optical
character reader. sending them to their specified addressees
via AUTODIN.

TECHNICAL RESPONSE TO THE MME

The message service being used for the MME is called
siGMa. developed at the University of Southern California’s
Information Sciences Institute especially for this experi-
ment As such it is an “expenmental” system to be used in
an “operational’” military environment to test the effective-
ness of a “secure” Uinteractive message processing’’ ser-
vice. Consider some of the issues implied by these terms.

“Experimental”

The primary purpose of the MME is to determine the
effectiveness of interactive message processing in a military
envitonment and to provide a technology-transfer path to
apply the knowledge and techniques gathered to future gen-
erations of mihtary systems. Many design philosophies are
implied in such a context. The system developed must be
flexible enough to adapt to a changing understanding of the
problem and additional requirements imposed by the user
community. It must concentrate on issues of functionality
and suitable user interfaces. This does not imply that other
issues such as sizing and performance are not important—
the system must still be responsive and large enough to
support a meaningful experiment—but the system need not
be cost-justified itself, merely sufficient to gain understand-
ing of the functional and cost issues. And, perhaps most
important. the system must be highly instrumented to allow
collection of various data reflecting the manner in which
users operate the message service. Analyses of these data
allow evaluation of user performance and usefulness of ser-

vice facilities, and provide a further understanding of the
potential role of interactive message services in the military
environment. All of these factors were considered and
respected in the development of SIGMA.

“Operational’”’

To gain the most accurate picture of the MME’s potential
impact on the military community. an early decision was
made to pertorm the experiment in an actual military envi-
ronment. the CINCPAC headquarters. Since CINCPAC al-
ready has an effective manual message system whose use is
well understood by its personnel. SIGMA prescnts a message
processing model which is intuitively similar to the existing
manual one in order to gain early user acceptance. This
decision implied choosing terminology which matched
standard military usage.® and providing functions which,
where possible. were similar to the manual ones. Since the
military users operate the on-line system as only a part of
their normal jobs. SIGMA has been designed to be highly self-
instructive.

“Secure'’

An important requirement for the SIGMA service is that it
meet military security specifications. Although this test sys-
tem will be operated only by personnel classified at Top
Secret, it is a test objective that the message service address
the multi-level security issues identified by previous re-
search.¥! To satisfy this objective. stGMa implements a se-
curity model which behaves as though SIGMA were running
in such a “"provably secure, kernel-based’” operating envi-
ronment; this model is described in Reference 2. Although
the provably secure environment does not yet exist on
TENEX. siGMA's emulation of it aliows the users to interact
in a manner virtually identical to that they would encounter
if SIGMA actually ran in the secure environment.

“Interactive message processing'’

SIGMA has been designed to be a “*complete™ interactive
message service for CINCPAC. Its user interface responds
to the needs of computer-naive users in several ways. Since
this community will not receive much special training in
SIGMA’s use, an online Tutor and Help facility has been
designed to take on the bulk of this responsibility.? The
Tutor, like the rest of siGMA. takes advantage of the spe-
cially designed MME terminal.® which features multi-win-
dow displays and two-dimensional editing.

The command formats are defined by sigMA’s Command
Language Processor (CLP). The user instructs SIGMA
through a set of function keys or by typing commands in a
predesignated ‘‘command window'" on the screen of the
MME terminal. The CLP parses and interprets these instruc-
tions; it is table-driven so instructions may be added or
modified easily. The CLP expands commands and parame-

Interactive Message Service for the Military Message Experiment 841

ters that are only partially entered and corrects misspelled
words to the degree that it can, based on the user's personal
directory of named objects as well as the command table.
A Prompt facility is provided which allows the user to ask
about required parameters for a given command without
losing any of his operational context. This powerful com-
mand language interface is an essential ingredient in provid-
ing the user the highly supportive environment needed for
users with little or no experience with computers.

SIGMA—APPLYING INTERACTIVE TECHNOLOGY
TO MILITARY MESSAGE PROCESSING

In common with other styles of mutual communication,
message processing has distinctly cyclic characteristics—a
message is initiated; its contents are refined from draft to
final form: it is approved and sent to its intended recipients;
a recipient reads it, perhaps forwards it to colleagues; the
information contained within invites (or requires) a reply;
the reply is initiated, and the process repeats. Message pro-
cessing as practiced at CINCPAC differs from other styles
primarily in its highly formal nature, with guidelines govern-
ing nearly every aspect.

The entire message processing task can be roughly sepa-
rated into three areas of closely related activities: Message
management, incoming message processing and outgoing
message processing. As implied by the cyclic nature of the
communication process, none of the activities in one area
is disjoint from those in other areas. For the purposes of
presentation, however. the facilities of the SiGMA message
service are described according to these three areas.

Message management

A message service must facilitate all phases of message
management. The following sections summarize SIGMA's
support in this area.

Messages

Messages are siGMA's fundamental concern. They are
composed of a diverse set of fields. a field's contents de-
pends on its type. For example, a **TO"" field contains a list
of addressees, a "TEXT"' field contains a succession of
uninterpreted paragraphs, while a *"SUBJECT"" field can
only have a single line of text (of arbitrary length). Although
AUTODIN traffic is its primary focus, SIGMA also supports

‘formal in-house communications (Memos) and informal mes-

sages (Nores). They differ slightly in the fields they contain
and the ways in which siGMA processes them.
Folders, entries, and selectors

Folders are the users’ basic mechanism for organizing and
storing collections of messages in siIGMA. They contain en-

tries which are pointers to messages. A folder entry, an
abstract of its message, contains information such as the
message's precedence. security, sender, type and subject,
which are considered by siGMa as attributes of the entry.
An entry for an incoming AUTODIN message might look
like

22 R UU Auto 0422222 DEC 78 From:
JCS WASHINGTON DC INCOMING Act: J3
Subject: AIRCRAFT INFORMATION

The above entry is number 22, with routine (R) precedence,
unclassified (UU) security, AUTODIN type. whose date
time is 042222Z DEC 78, etc. When a folder is DISPLAYed
(the capitalized part of verbs are SIGMA commands), a num-
bered list of entries is put on the terminal’s screen.

For use in commands, entries from folders can be iden-
tified in three ways: 1) By their number, 2) by default to the
current entry, 3) by HEREing the entry number, i.e., putiing
the terminal cursor into an entry and depressing the
“HERE'" key. With this scheme most folder entry com-
mands—DISPLAY, DELETE, FORWARD, etc.—have
three forms. Using DISPLAY as an example, they are

DISPLAY ENTRY entry-number
DISPLAY ENTRY
DISPLAY NEXT ENTRY

The first is a typed command. The second is a function key
which can take a HEREJ entry; without one it will display
the current entry. The last is also a function key. Some
commands like DELETE and FILE (which copies entries
from one folder to another) 1ake entry lists, in addition to
simple entry numbers. as parameters.

As objects themselves folders can be CREATEd, DIS-
PLAYed, DELETEd, RESTORLd (the inverse of DE-
LETE). and FILEd into. In addition, user directories of
folders can be VIEWed and assuming access is permitted,
folders can be shared among users.

Often a user wants to extract from a file a class of entries
which have some uniform characteristics. For example, he
might wish to work on his messages according to their prec-
edence. SIGMA provides selectors for this task. Selectors are
boolean expressions composed of attributes of entries.
When applied to folders thev act as filters. returning lists of
entries whose members satisfy their criteria. When the user
has a folder displayed he can use the two selector com-
mands, RESTRICT and AUGMENT. to change his display
to exactly those entries he has selected. Thus after DIS-
PLAYing a folder, a user can see all secret entries from
CINCPAC by typing the command

RESTRICT SELECTION SECRET AND FROM
CINCPAC

The user can AUGMENT his display in a similar manner.
If he now wants to add to this display those entries whose

842 National Computer Conference, 1979

precedence is routine, he types
AUGMENT SELECTION ROUTINE

AUGMENT and RESTRICT commands are “‘stacked” so
that the user can always back up to his previous display
using the BACKUP function key.

At any point during a sequence of RESTRICTs and AUG-
MENTS the user can CREATE a named selector which
reflects the logical ‘*ANDing’" (for RESTRICT) and
ORing"’ (for AUGMENT) which led to the current state.
In addition, he can CREATE a named selector directly by
typing in the boolean as an additional parameter. DELETE,
RESTORE, and VIEW commands apply to named selectors.
A user’s directory of named selectors can be VIEWed, and
if access is permitted selectors may be copied from other
users.

The richness of entry attributes makes selectors easy to
use for creating relevant folder displays. sSiGMA commands
that operate on entries apply only to those entries currently
in view, i.e., selected. So if entries 5, 15, 22, 27 were se-
lected, four uses of the DISPLAY NEXT function key
would step through only those messages.

Comments

Message fields and folder entries may be annotated with
arbitrary text strings by means of the COMMENT com-
mand. Comments are identified by the user making them
and have additional access properties; they can be public,
private (to the commentor), or restricted to a named user.
Comments are created by pulling a HERE in the desired
message field or folder entry. The COMMENT command is
then entered with the access specification and in response
SIGMA will create a new field ready for editing.

Editing and text objects

Fields can be edited in two ways—by modifying the dis-
play with local editing functions provided by the terminal,
and by various SIGMA commands. Suffice it to say the ter-
minal provides a full complement of editing capabilities.® In
addition to those capabilities, siGMA has its own editing
commands. The PICK UP function key command deletes the
characters between two HEREsSs, putting them into an un-
named buffer. The PUT function key inserts the contents of
the same text buffer at the current cursor position. The
MOVE function key. a composition of PICKUP and PUT.
moves the text between the two HEREs to the current
cursor position. COPY is the same as MOVE except the
characters are not erased. These commands give the user
the capabilities to erase, move and copy large amounts of
text conveniently.

Text that is 10 be reused in messages or commands can
be created and stored as a named rexr object. A text object
is nothing more than a series of uninterpreted paragraphs.
and can be CREATEd and edited using all the capabilities

described above. A user directory of text objects can be
VIEWed; they can be DISPLAYed, DELETEd, RE-
STOREd and, if the access is correct, copied from other
users. Named text objects can also be used in conjunction
with the PICKUP and PUT commands.

The content of a text object is unrestricted. No semantics
are applied until it is put into an interpretable field. Once it
is there, SIGMA acts on it depending on the type of field into
which it was put. For example, text in an address list is
checked for legal user names; when put into a field in which
multi-paragraphs are allowed, the text is formatted.

SIGMA has not explored all the potential of text editing.
So while it has a FINDSTRING command, it doesn’t have
one for text substitution. The experimental use of SIGMA at
CINCPAC will provide feedback related to the adequacy of
our editing model.

The SIGMA display

sIGMA divides the MME terminal screen into four win-
dows. The FLASH window at the top of the screen contains
three lines. The first is updated every minute and gives
general operating information, time of day, and so forth.
The FEEDBACK line tells the state of siGMA processing
and conveys error information. The STATUS line will be
described below. siGMA commands are typed into the two
line COMMAND window below the FLASH window.

The remainder of the screen is the user’s working space.
which may be occupied by one or two windows. When a
user DISPLAYs a folder, text object, or message. the object
is ""opened’’ and put into the EDIT window. If another
object of the same type is already opened. then it is FIN-
ISHed, i.e., stored away with all new edits saved. If the
open object is of a different type, then it is moved off the
screen, though still opened, to make room for the newly
DISPLAYed one. The STATUS line names all the open
objects with the first name on the list identifying the one
currently on the screen. Three function keys, SHOW
FOLDER, SHOW MESSAGE and SHOW TEXT. can be
used to put the appropriate object back into the EDIT win-
dow.

The VIEW window shows objects which the user names
with the VIEW command. It is cleared by the CLEAR
VIEW function key. This window is not editable and is used
only for reference (text can, however. be copied from it). It
is shown at lower intensity to distinguish it from the EDIT
window. The EDIT window occupies the full screen when
nothing is viewed; otherwise, both share the screen.

This section has given a functional view of SIGMA by
describing its objects and some of its legal operations. The
next two sections will give a more structured view of the
tasks which compose message processing.

Incoming message processing

In the military. formal AUTODIN messages are sent from
the commander of an organization to the commander of

Interactive Message Service for the Military Message Experiment 843

other organizations, never between individuals within the
organizations. This practice requires the receiving command
to determine the appropniate recipients within the command
for every incoming message. Naturally the correct assign-
ment of recipients is a critical part of the incoming pro-
cessing task.

CINCPAC employs a content-based scheme to determine
the correct recipients. The first stage of this process is im-
plemented by the LDMX message processor. By scanning
the header and selected fields of the message contents,
LDMX makes a preliminary assignment to the top manage-
ment level (directorate). Although LDMX is capable of more
delailed assignment, CINCPAC chooses to allow its direc-
torates to perform their own routing intemnally. Within the
MME. target population (J3. the Operations directorate). this
next level of routing is performed manually by an adminis-
trative office (J301). Using both catalogued tables of routing
assignment and his specialized training, J30) scans each
incoming message and determines its disposition. Such dis-
position can be any or all of the following:

Action Typically each message is assigned to an ac-
tion officer. He is responsible for any actions
or response to be made by the 13 directorate,
and is said to have the action for the message.

Info In addition to a responsible officer, the con-

tents of the message may be of interest to

other officers as well. Such officers are said
to receive an information copy of the mes-
sage.

Certain messages may be of interest to large

groups within the directorate. and occasion-

ally to all of J3. Such messages are placed in
binders called readboards, which are then
circulated through the directorate.

Readboard

While the J30] assignment is generally accurate, it is nei-
ther complete nor infallible. An officer receiving a copy of
a message may determine that other officers not designated
by 1301 should also receive copies. Occasionally the action
assignment for a message is not appropriate; after seeing a
message. an action officer may decide that another officer
is better qualified to handle it and *'sells the action™" to him.
Thus. the propagation of copies and/or action of a message
may continue for several stages beyond the J301 assignment.
Based on data compiled at CINCPAC, an average of 40
copies of a message is required to reach all its recipients.

SIGMA supports incoming message processing with a va-
riety of facilities. They can be roughly divided into the three
areas of delivery, reception. and redistribution.

Delivery

SIGMA was designed to merge naturally into the existing
message processing milieu at CINCPAC. Through the spe-
cial LDMX interface, sioma’s Reception Daemon receives
the text of incoming AUTODIN messages, parses them,
builds the siGMA internal representation, and stores the re-

sulting siGMa-formatted messages in its message data base.
To allow methodical retrieval of messages by arrival times,
SIGMA also places an entry in a special folder called a Dare
File, a new instance of which is created each day to contain
entries for all AUTODIN messages received during that day.
A user can then sce an index of all messages received on a
particular day by simply DISPLAYing the corresponding
Date File.

The high fan-out of incoming messages makes it impract-
ical to provide a separate copy of each message to each
eventual recipient. The scheme adopted in siIGMA was de-
signed to minimize on-line storage requirements while still
providing convenient access to messages. Messages are sto-
red only once, in the centra} message data base. Each re-
cipient receives not a copy of the message, but an abstract
containing a useful subset of the message's contents. An
instance of this abstract, called a cirarion. is created for each
message Iransaction between users. Each citation sent to a
folder causes a new folder entry to be appended (indeed, the
terms citation and folder eniry are often used interchange-
ably). a task performed by a special siGmMa background proc-
ess. the Citation Daemon. A citation is small (approximately
five percent the size of a message) and thus is much more
economical to replicate than the full message.

All users access and modify the single copy of a message.
Obviously such activity cannot occur unrestricted. or the
integrity of the message contents and the users’ intended
changes could not be preserved. To allow such operations,
a special scheme correctly assimilates parallel modifications,
preserving both the consistency of the message and the
users’ intentions.*

Since messages flow into the J3 directorate constantly
(approximately 1000 per day), the available secondary stor-
age would soon fill unless appropriate steps were taken to
reduce the number online. To make room for incoming mes-
sages. an archival scheme has been implemented. Using
frequency of access as a rough guide, SIGMA moves inactive
messages onto bulk storage (magnetic tape), from which
users needing access to messages can request retrieval.
Mechanisms are also provided to allow shorter retention
penods for selected messages.

Reception

Once citations have been sent to a user, he must be al-
lowed to see them, access their referenced messages, and
dispose of them as he sees fit. These capabilities revolve
around a repository for incoming citations, a special SIGMA
folder known to each user as his Pending File. Analogous
to a mail in-basket, a user's Pending File receives all cita-
tions destined for him.

Physically, a Pending File is implemented as & SIGMA
folder, and can thus be manipulated by the wide variety of
folder operations—DISPLAY of referenceu messages,
COMMENTing. cross-sectioning via RESTRICT and AUG-
MENT, etc.

Since all citations for a user are appended to his Pending
File, he must eventually delete nearly all of them, lest he

e o o

PR

844 National Computer Conference, 1979

exceed the folder size restriction (which is in excess of 6000
entnies). This does not imply that a user must lose references
to important messages, however, since a user may create an
arbitrary number of other folders where he may FILE them.

Frequently, messages of great urgency to a user may
arrive. In such cases the user would like to be notified
immediately, rather than wait until he happens to notice it
appear in his Pending File (which might be some time if he
were DISPLAYing some other folder). To allow a user to
specify criteria for incoming messages for which he wants
immediate notification. SiGMA provides the Alert facility.
The user activates the Alert facility by creating a SIGMA
selector named ALERT_SELECTOR. If such a selector
exists. each incoming citation is matched against it to de-
termine if it meets the Alert criteria. If so, the citation is
added to a special Alerr List, the format of which is very
similar 1o that of a folder. and the bell at the user's terminal
is rung. The user can then display the Alert list without
disturbing his open folder. and access any of the referenced
messages in a manner similar to that for folder entries. In
addition. a count recording the number of active alerted
citations is maintained in the siGMA flash line.

Redistribution

As explained in the description of the Delivery task, the
routing provided by LDMX is not sufficient to reach all
ar~ .pnate recipients. Addiional routing is provided by the
admimistrative J301 function. which supplies the bulk of the
spedific “outing assignment, and by individual officers, who
either supplement or correct the J301 assigments. SIGMA
provides this flexibility by means of its redistribution facil-
ies.

To effect the bulk routing assignment at the directorate
level. siGMa provides the ROUTE command. With this sin-
gle command. J301 can specify action assignment. info dis-
tribution. and readboard creation for an entire group of
messages. Using the RESTRICT and AUGMENT opera-
tions to select a class of similar messages. J301 can then
perform a complete routing assignment for the whole class
in a single step.

Individual officers needing to perform further redistribu-
tion have two more limited redistribution commands. The
FORWARD command allows one user to send an informa-
tion citation (*"FOR_INFO™') to another. The ACTION
command is similar, but implies that the originating officer
transfers the action assignment to the designee (by means
of the "FOR_ACTION" citation). Additionally. the AC-
TION command causes an entry to be placed in the issuing
user’s Action Log. a special folder which contains a record
of all action assignments he has made. Since CINCPAC
wishes to keep a central accounting of action assignments.
users normally share a single Action Log (via SIGMA™'s
shared folder capability).

All redistribution commands account for the further dis-
tribution of messages by appending records to certain mes-
sage fields. In each message a Distribution field records
each user who has received an info citation, while an Action

field records the full history of action assignments. Thus it
is possible to ascertain all users involved in a message's
redistribution by examining its appropriate fields.

Outgoing message processing

In the existing manual system, CINCPAC officers deal
exclusively with so-called “‘record traffic.”” Even when the
contents of a message are routine, the onus of representing
an entire command’s viewpoint adds a measure of impor-
tance. Consequently highly formalized procedures have de-
veloped at CINCPAC 1o ensure that messages transmitted
from the CINCPAC organization have been thoroughly re-
viewed and approved by a responsible authority.

In addition to supporting an on-line implementation of the
review/approval process. SIGMA has augmented the media
of communication. In addition to the existing formal traffic
(AUTODIN messages). SIGMA has added two new message
formats, formal internal and informal.

® Formal internal messages (memos) are similar to con-
tent and form to AUTODIN messages. but the address-
ees are other siGMA users. This provides CINCPAC
personnel with a formal (recorded) medium to send
official communications within the CINCPAC organi-
zation.

® Informal messages (notes) provide an off-the-record
message medium for informal communication. Such
messages. which are not reviewed or recorded. provide
an alternative to face-to-face or telephone communi-
cation.

The outgoing message processing in SIGMA is roughly di-
vided into four phases: drafting. coordination. release and
transmission.

Drafting

During the drafting phase the original message is com-
posed. The sources of the original contents of the body and
various fields vary, depending on the type of message being
prepared. SIGMA supports the following commands for mes-
sage drafting:
CREATE An empty message form is created. with
blanks for the editable message fields. The
contents of any desired fields must be filled
in by the drafter.

COPY This command. which requires an existing
message as a parameter, copies all of the non-
header fields into the new draft message. It
is useful for pro forma messages which are
sent frequently and whose contents are bas-
ically similar.

This command also takes a message param-
eter, and creates a new draft in reply to the
subject message. In this case, the addressees

REPLY

Interactive Message Service for the Military Message Experiment 84S

are derived from the subject message. the
subject is copied. and the referenced message
cites are copied with a cite to the subject
message appended as an additional reference.

Once he has created his draft message, the author has the
following alternatives:

® He can save the draft for later use (via the FINISH
function key). This can be done to hold an incomplete
draft for later completion. or to save a pro forma mes-
sage to make it available for later COPYing. To make
later retrieval of such saved drafts convenient, SIGMA
puts a citation referencing the draft in the user’s Pend-
ing File. so its existence is remembered and it remains
easy 10 access.

® He can send the message for review if it is a formal
message. This process, called Coordination, will be
descnbed in more detail.

e If authorized, he can cause the message to be trans-
mitted to its addressees. This will be described in the
section on Release.

Coordination

Within CINCPAC there exists a formal procedure for
review and revision of a message prior to its release. The
drafter can request several other officers to review the mes-
sage, make comments, suggest changes and give a general
disposition regarding the message. This procedure, called
chopping. permits CINCPAC to acquire a consolidated
opinion from a cross-section of responsible officers before
a message is sent.

SIGMA supports a style of coordination more general, al-
though perhaps less flexibie. than the manual CINCPAC
procedure. The message drafter may designate any number
of users in a field called the Chop List. With the special
COORDINATE command, the drafter can specify that any
or all of the users on the Chop List be requested to act as
reviewers for the message (they are referred to as coordi-
nators). causing a special **FOR_CHOP citation to be sent
to each of the designated users.

A coordinator is notified of the drafter’s request to review
a message by receipt of the FOR_CHOP citation in his
Pending File. He can display the message, and will see the
drafter’s most recent version. The coordinator can make
comments or suggest revisions to the message: if so, the
changes are not applied to the drafter’'s copy, but rather to
a copy belonging solely to the coordinator. In deciding upon
his changes he has access not only to his own version and
the drafter’s, but to other ¢coordinators’ as well.

When a coordinator decides that he in turn would like
comments from other users (perhaps subordinates or other
colleagues), he may further designate other coordinators.
This "“sub-coordination” is exactly analogous to that initi-
ated by the drafter. In this case his sub-coordinators see his
version of the message when they first display it.

When a coordinator has finished his review of a message

he may indicate his global disposition of the message by
means of the CHOP YES and CHOP NO function keys.
These commands cause a "CHOPPED"" citation indicating
the appropriate disposition to be sent to the drafter (or higher
level coordinator). who is thereby notified that this coordi-
nator has finished his review.

During the coordination process. the drafter (or a higher-
level coordinator) can monitor the coordination process by
means of a status field. whict .Adicates the progress of each
coordinator. When coord's2!ors have finished their reviews
he can view their versions an:" note suggested changes and
comments. He can incorporate changes by duplicating them
in his own version or by copying the changed sections from
the coordinators’ versions. If he is not satisfied with the
resulting message or wishes to elicit further review, he can
initiate another coordination cycle, which will result in ad-
ditional FOR_CHOP citations being sent. If the drafter is
satisfied with the content of the message. he can initiate the
Release process.

Release

Because of the formal nature of record communication,
certain officers, designated release authorities (releasers),
are solely empowered to approve outgoing record traffic.
SIGMA provides the same enforcement by checking each
attempt to transmit a message against a list of authorized
releasers (since the three different message formats have
different levels of formality, a separate list is maintained for
each).

When a drafter has determined that a draft message is
ready for transmission, he must gain the approval of an
appropriate releaser (unless he himself is one, in which case
he can release it himself). He does this by using the CO-
ORDINATE command after designating the releaser’s name
in a special Release field. causing a "FOR_RELEASE™
citation to be sent to the releaser. After receiving this cita-
tion a releaser has options similar to those of a coordinator.
He can display the drafter’s and coordinators’ versions,
seeing comments and suggested changes. In particular, he
may examine the “‘chop’’ disposition of the various coor-
dinators to determine whether he is satisfied that there is
sufficient agreement among them. If he is not satisfied he
can make his own comments and changes and specify CHOP
NO. in which case a citation is sent back to the drafter. But
if the message is in order and the releaser is satisfied, he
can initiate transmission via the RELEASE command.
whereupon the message leaves the preparation phase and is
sent for transmission processing.

Transmission

When approved by a releaser, a draft message is prepared
for transmission by the siGMA process called the Message
Daemon. First the draft is marked as transmitted: this pre-
vents it from being further modified or transmitted again. A
new message is then created to contain the transmitted ver-

e A 5 Tk it K B B

846 National Computer Conference, 1979

sion of the draft message. Fields which are appropriate for
transmission are copied from the draft; others which do not
belong in transmitted messages (such as comments. chop
lists) are omitted.

When the contents of the transmitted message are pre-
pared, the appropriate transmission medium is determined.
If the message is destined for AUTODIN, the message is
sent through the LDMX interface to be transmitted to the
AUTODIN network. If it is an internal message, the trans-
mitted message (in internal siGMA format) is entered into the
SIGMA message data base, and "INCOMING' citations are
sent to each of its addressees.

CONCLUSIONS AND USER REACTIONS

Our initial opinion after studying the CINCPAC environ-
ment was that an interactive message service could be ex-
tremely effective. The CINCPAC staff was enthusiastic
about the possibilities and endorsed the experiment to the
point that they were wiiling to serve as the test-bed for it.
Now the experiment is underway and we are beginning to
learn whether our optimism has been well founded.

Although at the wniting of this paper formal results are
not yet available, CINCPAC users have been using the ser-
vice for six months. They have already asked for changes
and extensions to the service: some, like ROUTE, have
been implemented. As expected, the use of such a service
1s altering the style in which many officers operate.

Probably the most dramatic effect is on J301 who previ-
ously required seven hours to process the new messages
that arrive overnight. Using siGMa this process is reduced
to less than an hour-and-a-half. Furthermore the feeling is
the assignments made are generally better. primarily be-
cause the same assignment is made to entire classes of
messages at once. thereby assuring uniformity.

Another group of users that has been heavily influenced
by SiGMA normally get their messages from 1301 about 9:00
AM. two hours after they come in in the morning. They have
found that with siGMA they can go directly to the Date Files
for the day and. using Selectors, get the messages of interest
without waiting for J301 to distribute them. They are also
able to find messages requiring their action that have been
assigned incorrectly to others, messages that they simply
never saw before SIGMA was available to them.

There are still many improvements requested by CINC-
PAC users which SIGMA has not yet addressed. Indeed. the
list is already large even at this early date:

® The ROUTE command was put into SIGMA in response
to a direct request from J301. Other composite com-
mands can be visualized. It would be nice to have a
powerful facility for building such “*macros™ from ex-
isting commands. However, such a feature touches
heavily on many difficult user interface issues.

® The ALERT mechanism is fundamental but acts only
on incoming messages. Some users have expressed in-
terest in a general facility based on a variety of different
events.

® Users have expressed a desire for the ability 1o search
the full message database with a mechanism like selec-
tors. siGMA has no model to support this expensive
operation at this time.

Although the experiment is just beginning to collect useful
information, it is clear that siGMa is having an impact on
the message processing at CINCPAC. siGMa appears (o be
rich and flexible enough to support the goals of the experi-
ment to gain insight for future military message systems. As
the users become more involved with interactive message
handling their awareness of its capabilities and potential is
being sharpened and their requests for functional enhance-
ments are more accurately based on realistic needs.

The injection of a research project. like siGMa. directly
into an operational military environment is an unusual event.
This approach offers the military a more active role in de-
veloping relevant software for sophisticated applications.
The MME effort is showing that the transition from the
laboratory to an operational setting can be accomplished for
such an experiment. which should dramatically shorten the
normal technology-transfer path.

REFERENCES

. Ames. S R, and W. W. Plummer. "TENEX Security Enhancements,”
MTR-3217, MITRE Corporation, Apnil, 1976

. Ames. §. R..and D. R. Oestreicher, "Design of a Message Processing
System for a Multilevel Secure Environment.” Proceedings of the Na-
tional Computer Conference. AFIPS, 1978

M Bell. D E., and E. L. Burke, *"Secure Computer Systems Mathematical
Foundations and Model,”” M74-224, MITRE Corporation, October. 1974,

. Bobrow. D. G., J. D. Burchfiel, D. L. Murphy. and R. S. Tombnson.

“TENEX, a Paged Time Sharing System for the PDP-10,”" Comm ACM.
Vol. 15, No. 3, March 1972, 135-143.
Heafner. J. F., and L. H. Miller, *'Design Considerations for a Comput-
erized Message Service Based on Tn-Service Operations Personnel at
CINCPAC Headquarters,”” Camp Smith. Oahu. ISUWP-3, USC/Informa-
tion Sciences Institute, September, 1976,

6. Memorandum of Agreement between Director. Defense Advanced Re-
scarch Projects Agency (DARPA!. Commander Naval Telecommunica-
tions Command (NAVTELCOM), Commander Naval Electronics Systems
Command (NAVELEX). and Commander-in- Pacific (CINCPAC). Unpub-
hished memorandum

. Rothenberg. J.. “"On-Line Tutonals and Documentation for the SIGMA
Message Service.'” Proceedings of the National Computer Conference.
AFIPS, May, 1979,

. Stotz, R., P. Raveling and J. Rothenberg. **The Terminal for the Military
Message Experiment,'” Proceedings for the National Computer Confer-
ence. AFIPS, May, 1979

9. Tugender. R., “"Maintaiung Order and Consistency in Multi-Access

Deia.”" Proceedings of the Nattonal Computer Conference. AFIPS. May.

1979.

2

-

A

~

This research was performed for the Advanced Research Projects Agency under Con-
tract No. DAHC 15 72 C 0308, ARPA Order No. 2223. The views and conclusions
expressed in this paper are not necessarily those of any person or organization except the

authorts).

e Boni

o

sl mmian el

PART THREE:

EVALUATION

3.1 LESSONS LEARNED

The Military Message Experiment was unique in many ways, for both the military and the research
community. It was perhaps the first deliberate attempt to install a large experimental computer application at
an operating military command cxpressly for the purpose of learning how (and whether) to build future
production systems. The experiment did not attempt to justify the cost of automated message handling--that
requires projecting design and operational costs for a system, estimating the operational benefits such a
system provides, determining how many such systems will be produced, etc. It is only after the experiment is
completed that a reasonable specification for that system can even be produced. An operational requirements
document (ROC) for automated message handling is being written at this ime by CINCPAC (Commander-
in-Chief, Pacific) and EUCOM (European Command).

We learned a great deal during the experiment about what should be the proper functions of this kind of
message system, but these lessons were only part of our education. The experimental results were affected
more by several higher level issues than by the details of the message service operation. This part of the
SIGM A Final Report is divided into the following major sections:

- High-level issues;
- Functional and design considerations for a message service;

- Lessons on development and operational environment for the experiment.

The previous parts of this report, which concerned the history of MME and the functions and design of
SIGMA, are factual; this part, on the other hand, primarily contains opinions of the authors (all members of
the IS] 1eam that developed SIGMA), formed from our review of data abstracted from the user interviews,
our own discussions with users, and other peripheral observations.

3.2 HIGH-LEVEL ISSUES

3.2.1 The Definition of Utility

According to the Memorandum of Agreement of its sponsoring agencies, the primary goal of MME was "to
determine the utility of an interactive message service in a major military headquarters.” But there is no
uniform, objective yardstick for measuring “utility.” Several consultants tried to define such a measure for
the experiment but did not succeed. primarily because most of the parameters could not be quantified (e.g..
quality of the end product, throughput speed, user satisfaction), and many variables in the operational setting
could not be precisely controlled. Therefore, one of the best measures of SIGMA’s utility is revealed in the
subjeciive evaluation of the system obtained by interviewing its users.

As the experiment drew to a close, people from MITRE, CTEC, and the Navy extensively interviewed 50
users to elicit their opinions of automated message handling in general and SIGMA in particular. In additon.
in March 1979, shortly after Exercise Power Play, 15 users were interviewed by Col. Clay Smith of the
CINCPAC staff. Abstracts of the user interviews contain many illuminating comments; the users express a
wide variety of opinions about the impact and utility of MME. With a few exceptions, the objections were
directed toward specific deficiencies that could be remedied in a new system. The general climate of opinion
was positive, but there were severe criticisms of system reliability and some individual reservations about
specific functional deficiencies. The final reports from CINCPAC, MITRF, and the Navy should contain
detailed analyses of these interviews.

- o A

3-2 SIGMA FINAL REPORT

3.2.2 The Value of SIGMA

We believe that SIGMA amply demonstrated the utility of automated message handling, both in everyday
use and in simulated crisis, a judgment based on the fact that CINCPAC ulumately wanted to keep SIGMA,
on the generally positive nature of the user interviews, and on the amount and type of usage SIGMA received
throughout the experiment.

Approximately six weeks before the experiment was to end, CINCPAC sent a message (CINCPAC
1617172 AUG79) to JCS stating, "This headquarters considers it most desirable to retain the MME system
past the experiment’s conclusion.” This statement was a reversal of CINCPAC's earlier position (as stated in
CINCPAC 260136Z MAY79) that the system should be removed at the conclusion of the experiment on
October 1, 1979. This reversal was ascribed to “significantly increased hardware reliability over the past eight
weeks, improved system software, and increased user appreciation of the system’s capabilities.” We assume a
future production message service would receive a similar endorsement if it provided the necessary reliability.
presented a good user interface, contained equivalent functional performance, and was introduced with
proper user-training procedures.

Qur strongest indication of the usefulness of automated message handling was the sustained use of SIGMA
not only throughout the experiment, but especially during the last few months when it was known the system
would be disconnected and there was little external motivation for its use: more user hours (4,178) were
recorded on SIGMA during August 1979 than during any other month of the experiment. If the system were
not wuly useful, usage would have dropped dramatically as users became aware the service would be
terminated.

Qur optimism about the usefulness of automated message handling is also encouraged by the
reasonableness of extensions that users have proposed to enhance the system. Sections 3.3.2.26 and 3.3.2.27
discuss the proposed enhancements and the design implications of each. It is clear that as the users learned
what SIGMA could do for them, they began to extend their own thinking about how SIGMA could be made
more effective. This tells us that SIGMA did indeed provide a useful tool for doing their work better and
faster. 2~ that it became an integral part of their thinking about their jobs. Our conclusions about SIGMA’s
usefulness inust be tempered by considering for whom and for what it was successful, and what parameters
affect this success. The bulk of this section is directed toward this consideration.

3.2.3 5ome Unqualified Successes

3.2.3.1 Userinterface

A good, consistent user interface is critical for the kinds of users we had at CINCPAC, With little
computer expericnce, and only a rudimentary grasp of the details of message handling (a small part of his
activities). the automated system user will not accept a system with baroque procedures that require much
training. It is imperative that the system be natural, intuitive. and easy to use. This point was recognized
from the beginning of SIGMA’s development. For example, the terminal was especially designed to support
highly responsive. two-dimensional “what-you-see-is-what-you-get” editing. A special study, performed at
CINCPAC in July 1976 nearly a vear before the system was installed, served to gather information as design
input. Recommendations from this study were directed toward a variety of user interface concerns, including
user vocabulary (for commands, message forms. and general system objects), instruction forms, screen
formats, and user attitudes. The report Design Considerations for a Computerized Message Service Based on
Tri-Service Operations Personnel at CINCPAC Headquariers, Camp Smith, Oahu [17) describes this study 1n
detail.

Section 3.2.1

3. Lessons 33

It is hard to provide any quantitative results regarding the user interface of SIGMA. Although there was
discussion of running "structured” tests (controlled experiments to evaluate individual user interface features)
outside the CINCPAC community, these tests were never conducted. Our conclusion that the basic user
interface was good is based on interviews and our own observations. There were no negative comments about
SIGMA's user interface during the interviews, New users were able to do useful work with very litde
training. During the exercises, users from directorates other than J3 were introduced to the system, and
though they did not understand the intricacies of the system, with only a few minutes training they could log
on, display their files, display messages, and scroll through their contents. With a little more training the users
were able to search the message database, create and edit text, and send messages.

We attribute our success to many factors: the "naturalness” of the terminal-based editor, the editor's
responsiveness to the user, the sophistication of the Command Language Processor, the attention paid to
presenting data in familiar forms, a system vocabulary that was familiar to the user community, and a
philosophy of always presenting the user with as much contextual information as we could. These factors are
critical to the success of future systems; while SIGMA did well, much remains to be learned.

3.2.3.2 Better access to information

SIGMA demonstrated to CINCPAC the benefits of improved communication through easier and more
universal access to information, more accurate use of data, faster delivery of messages, and relief from some of
the tedious work associated with text preparation and message handling. SIGMA selectors simplified access
to information by allowing users to build and store their own criteria for locating messages in a flexible file
system. Several offices and watch teams (e.g.. JRC. Nuclear Operations) used prestored SIGMA selectors
every day to scan incoming traffic for messages of interest to them. This allowed them to catch messages that
the [.DMX did not route to them--messages they otherwise would have missed. (Those offices that used
SIGMA early in their shift found they saw their messages several hours before the paper system delivered
them.) The Head of the Nuclear Operations group reported that by using sclectors to cull incoming messages
he was able to obtain an overview of what was going on within CINCPAC, a perspective he would n¢.er get
from the paper system. The ease of sharing data in SIGMA also allowed users to lcok at the readboard
prepared for J3, a feature that was extremely popular with the division chiefs,

Another form of information sharing was the automatic update of the Ac:ion and Information fields of' a
message. Whenever a new assignment was made to a message, these fields were alteied to reflect it. Since all
users shared access to the same copy of cach message. this information was alway s up-to-date.

I'he ability to share access to comments on a single up-to-date file or message made it possible 0 use
SIGMA to monitor and contro! user actions. For example. during the special CINCPAC-only rerun of
Fxercise Power Play, the Crisis Action Team actively managed their activity via SIGMA comments. A
cttation appeared in the Action Log for cach message on which action was assigned. When the action officer
had pertinent information to disseminate. he would append a public comment on the enuy in the Action [og
I'he Exccutive Officer (XO) of the team monitored the Action 1.og: wher comments indicated an action had
heen completed, he would move that entry to a "Completed Action Log.” Through the Action Log an vp-to-
date status of the team’s activities was instantly available to all users.

Shared access to text material also proved valuable. I'he text ediung and word processing features of
SIGMA were extensively used in preparing nonmessage 4 well as message material. One example was the
preparation of the daily summary during the rerun of Fxercise Power Play. Each member of the Crisi Action
Team prepared his section of the report as a text object. When all sections were ready, the XO merely moved
copies into the body of a prestored message., edited it for uniformity and clarity, and released the message.

Section 12301

- vt reewena A

PE—

T ke AN ke b

PR VIS,

ot il it {1 ax - e D in e m s aee

—l-—m—v:

34 SIGMA FINAL REPORT

The information contained in the individual sections of the daily summary was generally accurate
(transcription errors were virtually eliminated), since much of it was copied directly out of the original
messages.

In the manual message system, messages are kept in paper form for 30 days by J301. The Communications
Center keeps messza~s on-line for 15 days and on tape for 90 days; after that they are microfilmed. Itis a
great ordeal to track do+n an old message in this system. Once SIGMA began archiving messages there was a
simple and dependable procedure for retrieving all old messages. It was acclaimed as one of the best features
of the system.

3.2.4 Limitations of Automated Message Handling Systems (AMHS)

3.2.4.1 Difficulties of user adaptation

It is clear that there are also drawbacks and inherent limitations in systems like SIGMA. In large part,
these drawbacks have to do with the fact of life that users have to adapt to current computer systems, rather
than vice versa. Some users will adapt more readily than others, while the dissatisfaction of those who do not
will be reflected in their evaluation of the system. The best example is perhaps the display medium, the
cathode ray tube (CRT). CRTs have some distinct advantages over paper, but they have disadvantages as
well: they are often difficult to read, they are not portable, you can’t write on them with a pencil, they have a
limited working surface, and you can't leaf through their pages.

An automated message system is very different from a manual one. Models of manual procedures often do
not translate well into automated environments--what is easy to do manually may be very difficult to
automate (and vice versa). For instance, coordination of a draft message is most naturally a serial process on
paper. Parallel coordination in SIGMA is certainly faster, but it requires new procedures and a different
model of a draft message. Users without typing skills are seldom comfortable at a keyboard. The whole
interactive style of giving commands with parameters in an artificial language is intimidating to many people.
The longer an individual has been working in a particular style, the less willing he is to adopt a new way of
doing business, which perhaps explains why senior officers were especially reluctant to try SIGMA. In any
case there was ample evidence that it takes some people a long time 10 learn to use an automated message
service.

3.2.4.2 Rigidity of automated systems

Besides the adaptation that users had to make, there are a number of deficiencies inherent in automated
message handling systems. As mentioned above, paper can be a more flexible medium when scanning
through a moderate amount of data. In addition, an automated system cannot substitute for face-to-face
meetings when issues need to be discussed. It simply takes too long to conduct a written dialogue; it takes
considerable skill to show emphasis or emotion in the written word: and there is a certain "permanence”
about writing that can be inhibiting. The most severe objection to using SIGMA for coordination was the
lack of personal encounters. Interestingly, this view was generally held by the junior officers who wanted to
meet with their seniors to "explain the message.” but not by the senior officers who perhaps saw automation
as a chance to eliminate much of the personal interaction that occurs in staffing a message.

In addition. although automated systems can be very helpful in alerting an on-line user of the arrival of
new messages, if the user is not on-line, the system has no way to "find" him and deliver the message.
Furthermore. it is obvious that human beings can be more flexible than machines when flexibility is called for

Section 3.2.3.2

3. Lessons 35

i (when it suddenly becomes impossible to do things in the usual way). Procedures that can be easily bypassed
or altered in the manual system are often buried in the code of an automated service and are almost
impossible to circumvent or change.

3.2.4.3 Particular limitations of SIGMA during MME

Certain limitations were not inherent in automated systems, but only a reflection of the circumstances of
the MME. Everyone agreed that the lack of on-line access to all the reference material needed to process a
given message was an annoying drawback. Although primary references are to other messages, other kinds of
data are frequently relevant, too. Manuals, letters, operational plans, data of all sorts are pertinent; a system
that can deal only with messages is deficient. Since some information may never appear in an on-line form
(no matter what the system), this particular drawback may be an inherent limitation of automated systems.
SIGMA did allow the user to manipulate arbitrary text objects and associate comments with messages and
files, but several users remarked that it was awkward 0 have their message files separate from other
documents.

Even when references were to on-line messages, it was hard to move quickly back to the original message.
Mechanisms for directly accessing referenced messages and for the simultaneous presentation of multiple
messages are high on the list of enhancements that should appear in any operational AMHS. SIGMA
allowed internal memoranda to be produced and distributed on-line. However, since only a few of the
CINCPAC staff had access to SIGMA, most memos were only in the paper files. Having some memos arrive
via SIGMA was more of a hindrance than a help--no one wants to keep two sets of files. What few SIGMA
memos were generated were generally printed and filed in the paper files. The lesson is c.car. A user wants t0 é
receive, store, and retrieve all of his message traffic in a uniform fashion. The Jegree to which a message :
service must compromise this guideline will degrade its acceptability.

Response time is also a user interface consideration. one in which SIGMA was deficient. During the first F
vear and a half, SIGMA’s response time with moderate load was too slow for ¢ meaningful experiment. With

the installation of the KIL. processor in October of 1978. system response was satisfactory enough to proceed
with full experimental usage. Even then. under heavy load. response ime was marginally acceptable. This
judgment of "acceptable” performance is somewhat arbitrary. No controlled tests were conducted to attempt
to establish what is "acceptable.” We relied primarily on our own experience and users’ feedback.

If an operation can be done significantly better on-line than it can be done manually (e.g., RESTRICT.
which extracts a subset of messages from a large file). the user is generally quite happy regardless of the time 1t
takes. However, if it takes longer than he is used to (e.g.. DISPLAY MESSAGE, which takes 5-10 seconds).
he is not. It is not the absolute time required: it is more a matter of the user’s expectations. SIGMA treats all
operations the same. they are par-ed by the same CI.P. they are executed by the same Functional Module.
and they draw their data from the samne file system. Because SIGMA was built on a general-purpose tiine
sharing system, there was little opportunity to tailor the operating system performance to the application.
I'his was a restriction that we not only accepted but were comfortable with due to the experimental nature of
the system. However, a production message service should be designed to meet predetermined performance
goals, especially for the important, commonly used operations (e.g.. display file, display message. next page).
The operating system must be selected (or modified) to support these response time targets.

An aspect of the user interface that we considered but did not have time to explore was personalizing the
service to individuals. Early plans (see [20]) called for a heavy emphasis on keeping a user model, monitoring
the user’s dynamic activity, and altering the way the system appeared to him as he became more fluent with :i.
I'his goal was viewed as being too experimental for the CINCPAC user, so plans were reduced to keeping a

Section 3.2.4.2

4-——9--—-—————-—.-.,—

3-6 SIGMA FINAL REPORT

static user model which could be manually modified. Even these ideas were later simplified. As a result
MME users were given very little control over how the service appeared to them, an objection we generalized
from what we heard in the user interviews.

3.2.5 Lessons Concerning the Service

MME taught us some lessons that are critical to successful installation of an automated message system.
Like the user-oriented issues discussed in the previous section, these issues largely affect the usefulness of the
service.

3.2.5.1 Reliability and availability

The most painful lesson we learned during MME is that reliability and availability of an AMHS are
paramount. We had naively assumed that, since MME was an experiment, the SIGMA users could accept
less that 100 percent uptime. Emphasis on solid operations and maintainable software occurred too late in the
experiment, and therefore much of the system’s potential was never truly tested. Many users were afraid to
trust their time and vital files to SIGMA, using the automated system only for activities they could afford to
lose. To be useful, an AMHS system must be uitrareliable. A crisis will not come to a stop while the
computer is down,

Even with this attention to reliability, one can envision situations in which the normal service becomes
unavailable to some or all of a user community. During wartime, it is probably infeasible to maintain the
service level that can be achieved in peacetime operation; even if the service could be maintained, what if that
facility is destroyed? MME did not investigate this issue, but the architects of future AMHS must address this
problem. Pertinent research on the subject is being conducted by ARPA.

3.2.5.2 Integration of AMHS and the message exchange

SIGMA communicated with AUTODIN through the message exchange system called 1.DMX, a
completely separate computing facility designed without any anticipation of communicating with an on-line
message service. Creating an interface between SIGMA and LDMX proved to be a difficult task. The
resulting interface was neither efficient nor easy to operate. and several functions were impossible (for
example, LDMX could not deliver Top Secret traffic to SIGMA). LDMX facilities that should have been
made available to SIGMA users (such as the Plain Language Address Tables) were not. Redundant
processing took place (e.g.. outgoing message formats were checked in both machines). Information available
in LDMX was not passed to SIGMA (for example, linking of multipart messages). Feedback that a message
was accepted for release to AUTODIN was delayed.

Some features will be very difficult to implement without much closer coupling between the message
exchange and the AMHS. One prominent example is providing an on-line facility to update message
distribution tables. These tables exist in LDMX, but there is no provision for remote access or editing of their
contents. Ideally. the AMHS functions should be integrated with the message exchange functions.

3.2.5.3 Worldwide telecommunications procedures

After AUTODIN became operational, a set of standard operating procedures and formats were established
to facilitate the input, routing, editing, and other handling required. These protocols were concerned strictly
with that information nceded to get the message to the proper AUTODIN terminal: type of message.
precedence. addressees, classification. codes accepted. and message termination. This information was all

Section 3.2.4.3

3. Lessons 37

made a part of the message header. and since this information is computer-processed. the protocols are rigidly
enforced.

However, a great deal more information is needed to properly handle messages at the recipient site. This
includes such data as originator-proposed distribution (who should receive a copy of the message), the
subject, references, passing and special handling instructions, a unique identifier, paragraph indications,
individual paragraph classification markings, indication of multipart messages, identification of exercise
raffic, downgrading instructions, and standard subject index codes. Unfortunately, the procedures and
formats for these data are not clearly defined or rigidly enforced. Each service publishes its own guidelines
(these are similar but not identical), while some organizations such as the State Department seem to have
unique procedures. For manual handling of messages, this lack of uniform procedures is a nuisance; for
automated message handling it is a disaster. SIGMA was severely limited in the service it could provide
because of the difficulty in extracting this information from incoming messages.

This problem was most obvious in our attempts to locate the subject of an incoming message to be
displayed in the file entries. The subject was supposed to indicate the content of the message and suggest to
the user whether he should read it and how he should route it. Whenever the subject was wrong, the user was
upset. The problem, however, was not with SIGMA, but with the lack of a uniform method for extracting the
subject from the original message (if a subject was even given at all). Lack of formatting standards also
limited SIGMA's ability to extract proper references, recognize exercise traffic, link multipart messages, or
follow special handling instructions. Better standards alone are not enough; they must be enforced as well.
Until all AUTODIN traffic is input through devices that will check the validity of this data, there is bound to
be a large amount of human error on input.

3.2.6 General Questions Connected With Establishing an Automated
System

As a message service is intended to provide communications among users, the benefits gained are directly

related to how many people are on the system. who they are, and where they are located. An analogy with

telephones is useful. The more phones (or terminals) on the system, the more useful the system becomes to
evervone. In a message system, it takes a critical mass of users to contribute enough information to the shared
database to make that database valuable. Some minimum number of users is needed in order to justify an
automated service.

This phenomenon is amplified when the automated message service is not well integrated with the manual
message facilities, as was the case with SIGMA. If an action officer wished to forward a message to two other
officers, one on-line and the other not, he had to perform two completely separate operations. In most cases it
was easier to handle both transactions manually. A better integrated system would reduce this problem.

Another factor closely related to the number of users is the number of terminals. The style of use is
strongly influenced by whether or not a user shares his terminal. Obviously, if a user has his own terminal, he
can access the system whenever he wants. However, rerminal costs, system performance, the availability of
ports, etc., may temper the ideal of one terminal per user.

The comments of some of the users intervicwed made it clear that the number of terminals at MME (24)
was below the critical threshold for CINCPAC. The precise minimum number is a matter of conjecture,
though it was estimated by some at CINCPAC that 65 terminals would suffice to cover the J3 Directorate
(containing approximately 200 people). It is not clear that covering a single Directorate would be the most
effective use of that many terminals. Our guess is that 200 terminals would support automated message

Section 3.2.5.3

3-8 SIGMA FINAL REPORT

handling for the entire CINCPAC Headquarters. As an AMHS becomes an integratea
information/communication system, the distribution of terminals will no doubt go up.

If only a restricted number of terminals is available, as will surely be the case for any near-term AMHS
delivered to CINCPAC, someone must determine their optimum allocation. As noted earlier, a user is
directly affected by sharing a terminal. He will store essential data in paper files. If his job entails a great deal
of this essential data, he will simply opt for doing his job - ‘tirely off-line; he will benefit little from the
AMHS.

When only part of the user community has access to the on-line system, special procedures must be
designed to support the integration of the manual and automated systems. For example,we might have had
on-line users act as though everyone at CINCPAC were an on-line user. Then, whenever a message is
forwarded to an off-line user, the system prints a copy of it with the recipient’s name in the Communication
Center and its delivery becomes the center’s responsibility. Since no such procedure was tried during MME,
we cannot say whether it would have been effective.

3.2.7 Policies and Procedures

So far in this part we have concentrated on the user’s subjective reactions to the system. Now we focus on
the fact that in the military each user employs the system within a fairly well defined set of policies and
procedures.

Cilosely related to the issue of the number of terminals are the questions of specifying the users of the
system. determining how often they can access the system, defining what they are allowed or required to do
with the system, etc. The policies and procedures surrounding an AMHS are as important to optimizing the
system’s utility as the functional details. Especially important are the procedures relating to the interface
between the on-line world and the hard copy world.

It ic only through trial and error that optimum procedures can be discovered. This takes time, an
organization willing to experiment. a system with flexibility. and a manager who has the authority and
commitment to work ou these procedures. Unfortunately. very little attention was paid to issues of how to
best use SIGMA during the MME. so our results in this area are limited. Whatever automated assistance is
provided. it is essential to devote appropriate attention to developing policies and procedures within the user
community for the system’s use.

Simple policies, such as how often a user is expected to check his messages or who is allowed to file
messages into what files, determine the utility of an AMHS. For example, the policy of producing J3's daily
readboard on-line uncovered one of SIGMA's most appreciated features since it gave division chiefs access to
information they never had before. Although this readboard had to be prepared twice by the Command
Center Watch Team, one hard copy and another on-line, if the MME printer had been of better quality the
readboard could actually have been prepared entirely on-line and then printed for J3.

Changes in procedures often entail changes in various system parameters. It is therefore critical to have
automated aids to change access-control parameters for the various objects in the system, to introduce new
users, to change user parameters, to alter routing tables, to adjust security settings for users or terminal lines,
etc. Since policies and procedures are prone o change and evolve, it is imperative that the AMHS not lock
user procedures into its own code (even if this is done to "help the user”). For example, in SIGMA the
automatic generation of a citation to the file ACTION-LOG on execution of the ACTION instruction is

Section 326

3. Lessons 3-9

buried in SIGMA code that performs this function as an adjunct to forwarding a message. The name of the
instruction that calls this function, the citation type produced, and the name of the file to receive the citation
are parameters of the SIGMA Command Table, which can easily be changed without writing new code. But
if it were decided that action citations should be sent to two files, or that the COORDINATE instruction

should send a citation to a Coordination-Log file, the system could not accommodate this without generation
of new code and a full system release.

An AMHS is conceptually different from a paper system. Some of the most powerful features of an on-line
service (e.g., ease of data sharing) are the most difficult concepts to understand. If an organization’s
procedures are to be tied to these complicated concepts, it must be recognized that it will take additional time
to train users.

3.2.8 The Larger Goals of an Automated Message Handling System

An automated message handling system is much more than a delivery mechanism for getting a message
from point A to point B. In fact, we believe message handling will be the base for a broad, general-purpose
information/communication system of the future. To be useful, an AMHS must be a data management
system and a word processing system as well. Furthermore, in order for it to realize its full potential, it must
be a gateway into a host of other application programs, particularly retrieval of command and control data.

As such, an AMHS is an "administration” tool or, in more popular terms, an "office automation” system.
Only when viewing the system in this larger perspective can one appreciate the significance of the many
functions that should be provided. The AMHS must support a total organization whose different members
will derive benefits from its various parts in very different ways. MITRE's results (see [13]) and users’
remarks corroborate this finding. (Perhaps the best example is the ROUTE instruction, which was seidom

used by anyone other than J301. But his role was vital to the message delivery function, and to him the
instruction was essential.)

Since SIGMA was used as more than a message delivery system, it is not surpnsing that many of its
underlying functions are not unique to messages; in fact, only eight of the fifty instructions that SIGMA
executes are specific only to messages. Functions such as editing, printing, file manipulation. searching,
annotation, help, tutoring, alerting, and status display appear in nearly all good on-line computing services.
One of the compelling reasons for an integrated information/communication system (rathe: .han many
separate systems) is the way these functions can serve a wide range of data objects. Cne of the lessons we
learned best is the necessity of looking at any future system from the widest possible perspective.

One of SIGMA’s notable strong points has always been its attention to the real needs and preferences of its
users. We argue that this attitude is indispensable at all levels of system philosophy and design. In fact. the
necessity of finding out what these needs were is precisely why an experimental system was installed. One of
our most important conclusions is that the next AMHS must be built in an evolutionary manner. Early
models must be kept extremely flexible at the expense of performance or simplicity of programming, so they
can be adapted to accomplish their goal; experience will tell how to introduce more rigidity in subsequent
models. Though a system based on this mode of operation takes longer to build than a tightly coded system,
the long-range effect is to deliver a better quality product--acceptable to a wider community of users.
Although we feel that an AMHS has tremendous utility for military C3 environments, early delivery of an
inflexible, insufficient system will do more harm than good.

A final point about the workings of an AMHS: we do not yet know how to integrate such a general-
purpose service into a large organization. As an organization learns to use the functions of a given system. the

Section 3.2.7

3-10 SIGMA FINAL REPOR1

: user’s perception of his needs changes; many enhancements are suggested, new data objects are invented, and

! old ways of using a service are revised. Changes are introduced because system designers learn how to do the
lask better, see new benefits by extending the system’s capabilities, and realize how certain local variations
must be accommodated. The "evolutionary"” approach we see as crucial is not easy to achieve, especially in a
procurement environment designed to purchase tanks, airplanes, and guns. The Military Message
Experiment was a significant step toward "evolving” an AMHS. We hope that the next step is taken from this
solid footing.

3.3 LESSONS ON FUNCTION AND DESIGN

This section addresses those lessons that are specific to the functionality or design of an AMHS. Since the
experiment was confined to a single automated message system, SIGMA, our examples are necessarily
specific to that system. However, we have attempted to interpret the results as generally as we felt we could.

This section starts with a discussion of our opinion of the basic architecture of SIGMA. It follows with a
wide variety of lessons about details of the message system, directed toward people who specify or design
message systems.

3.3.1 Architecture

Section 4.2 of the Sigma Final Report, Part 3. discusses the architecture of SIGMA. The primary features
of the architecture are shared access to a single copy of messages, files as a collection of citations to messages,
shared access to a single copy of files, central data management. split between foreground-background
processes, archival, and the intelligent terminal.

3.3.1.1 Shared access to a single copy of messages

The fact that the system keeps a single copy of a message and users share access to it provides many
benefits, the most obvious of which is the cost saving in disk storage. Had we adopted the more conventional
approach of providing each user his own disk copy, we would have required considerably more disk space.
However, we feel the more important benefit is the inherent sharing of identical information. When a user
accesses a message, he always gets the most up-to-date copy of "the” message. Pertinent information about
that message (e.g.. who has gotten copies, who has the action, appropriate annotations) is right there with the
text; there is neve: an issue of having to send extra copies around to disseminate information about the
message or of getting the “wrong copy” (e.g.. the one without the annotation). This feature is especially
important to the coordination process, where more than one person’s version is involved and the message is
constantly changing.

3.3.1.2 Files as a collection of citations to messages

Files (or folders, as we call them in Part 4) are collections of messages. But since messages are kept
centrally, files necessarily contain pointers. In order to give the user enough information to recognize, select,
and manipulate the messages, file entries contain only pertinent information. The power of extracting
essential information into file entries is that it allows the user to perform the bulk of his manipulation of
messages with this compact information; this is faster both for the user and for the system. The concept of
files as a collection of pointers also makes the archive service work sinoothly, since it permits the messages to
be moved to tertiary storage without affecting the files that puint to them--those files are still available for user
manipulation.

Section 1.2.8

3. Lessons 31

3.3.1.3 Shared access to a single copy of files

Sharing files was even more successful than sharing messages. The Militzry Message Experiment bore out
our belief that message handling in a tightly knit organization like CINCPAC is more a matter of managing
mformation than of distributing messages: two thirds of the instructions executed in MME dealt with files or
file entries. Shared files played a central role in much of the use of SIGMA: for example, over one fourth of
the files opened were Date Files. The Readboard and the Action_Log were special files whose utlity was
completely associated with sharing the data they provided. During the last 7 months of the experiment there
were 315 links established to another user’s file (GET FILE instructions executed) for a average user
population of approximately 70 users, ample evidence that there was considerable sharing among users’ files.

3.3.1.4 Central data management

Central data management is what makes sharing messages and files possible. By controlling updates to
shared objects through a central process (daemon), we were able to allow users (o access objects
simultaneously and to do almost anything they wished with them.

3.3.1.5 Foreground-background split

The foreground/background division between the user job and daemons is sound. There are obvious tasks
which fall into one or the other category. What is not clear is how to make the division and where io0 put all
the functions. For example, in carly versions of SIGMA the user job waited for the daemon to finish his
request in case of error. This synchronization was costly and useless. Even at the end of SIGMA
development there was talk of putting Pending file updates in the user job for on-line users. All in all, the
strict separation we enforced in SIGMA simplified our system and gave us flexibility in the placement of
functions. both of which were important considerations.

3.3.1.6 Archive

The archive scheme provided by SIGMA is simple and clegant. It wasintroduced with abrolutely no user
disreption, since ne user imvohvement was required. Since tiles remamm after :nessages are archived. the

roes] Tactbies work s wedl for arned messages s for onsline messages. Ghe orchne functicn i
shaoutan reguired 1 ieng i Gears aocess o nformation sampoertont Unless the user cen search oy
TQUITL G i oratn toan e e Dot oot havng o bring the archived date bock onevnes U will rotserveats
purpose

3.3.1.7 Intelligent terminal

By having the termunal contain powerful local editing. most of the user’s text processing takes place in the
termingl. which prosides predictable, umely response. The local editing. muitiwindow capahilities. and
independent memory management resulted in a natural and highly respensive interaction style. Althcugh no
advantage was taken of 1t this responsiveness worked equally well over a communication link with long delay
(c.g.. satellite link or network delay). so SIGMA could comfortably support very remote users with very little
difference in perfonnance.

3.3.2 Details about Function and Design

Parte 2 and 4 discuss the way SIGMA looked to the user and how it was built. The following discussion
wdentifies particular lessons we fearned that we feel may be of value fur others faced with specifying or

Scction 3.3.13

312 SIGMA FINAL REPORT

designing a message for a military organization similar to CINCPAC. It is difficult to present this information
in a uniform and consistent manner; some is quite general, some is very specific, some deals with the function
the user sees, some deals with how a feature was implemented. The basic order of presentation follows the
organization of Part 2. Where a particular function or design is pertinent, a reference to the discussion of it in
an earlier part is supplied.

3.3.2.1 Start-up facilities

SIGMA did not allow users outside the boundaries of the system, i.e., they could not get into the TENEX
operating system or modify the system’s mode of operation. Users started up the system by simply turning
the terminal power on; if the terminal was already turned on but not in use, the user hit !CONTROL!! and
NRESET keys simultaneously. The terminal then reset itself, the screen cleared, and the message "Terminal
Ready" appeared.

There was a very significant delay (20-60 seconds) before SIGMA in fact started. One improved version
dramatically cut the delay from 20 seconds to 3 or 4, but the users were not given feedback that SIGMA was
starting up; they had to wait until the system got started before anything appeared on the screen. This was
unsatisfactory for two reasons: first, the lack of immediate feedback distressed the users; second, SIGMA
sometimes did not start, in which case users had to hit the button again. We recommend that any future
system make the start-up mechanism extremely simple and automatic. The user should be provided
immediate feedback that the start-up (which should be ultrareliable) has begun. Some intelligible error
message should appear if start-up fails.

3.3.2.2 The display screen

Three lines of text gave the user general status information: the flash line, the feedback line, and the status
line. We observed that this information was essential because it helped the user understand where he was.
The working space was broken into a display window and (potentially) a view window. The ability to split the
screen and show two separate objects at the same time was very popular--indeed, very important to the
success of the system. If a larger screen and more memory were available. we would advocate using the
working space more flexibly. There was no particular reason for the working space to be split only into two
windows or for text in one of those windows not to be editable: we did it this way only to simplify the control
code in the functional module. With a little more complexity (and a larger screen) the window management
could be made more flexible, and thus the system made more capable.

Although the facility for splitting the screen and displaying two objects received good grades, a few users
indicated that in split-screen mode, the working areas were too small, which has been our opinion for a long
time. The computer industry does not offer a large-screen. high-resolution (50 lines of 80 characters) terminal
as a standard product. even though such a terminal is quite common in the word processing industry:
apparently, the "market” does not demand it. For an application such as automated message handling, the
additional cost of such a terminal is justified if a suitable multiwindow capability is provided. An alternative
is to provide two separate CRT screens, as provided in NMIC-SS. We feel this alternative is more expensive,
less flexible (you cannot view a full page of a single document). and makes too large a package for an office
environment. With a higher performance display. you cou!d separate windows with lines across the page.
Actually a separator line could easily be a primitve if a terminal were designed from the start to provide
multiwindows. The computer research community has demonstrated the use of full-page CRT's with
multiple fonts and graphics capabilities in which windows can be set to arbitrany sizes and locations. even
overlapping cach other. These terminals mav be overkill for a system limited to message handling, but if the
AMHS eventually evolves into an integrated information/communication system, they will be well worth
their added cost.

Section 3.3.2

3. Lessons 313

3.3.2.3 Entering instructions

SIGMA’s very sophisticated command language parser not only allows users to enter arguments in any
order, but also automatically supplies defaults where appropriate, corrects spelling on mistyped parameters,
permits the correction of any typed-in errors before execution, and provides contextual promnpting at two
levels of detail. The generalized editing facilities available in the terminal applied to the command window,
so that the user did not have to operate in several different styles or modes. Users liked the avail: ~.e function
keys, although some were obscure and seldom used. On the other hand, some instructions would have
worked better as function keys (for example, "find top" and "find bottom"). In general, users had little
difficulty with the process of entering instructions, although they had their share of difficulty with the
execution of particular instructions (e.g., parameters missing, unexpected results). Very little was said in the
evaluation interviews about instruction entry, which we took to be a sign that the large amount of attention we
paid to this process paid off.

3.3.2.4 Help system

SIGMA offered two forms of reference material: a reference manual and an on-line help system. Both of
these were generated from the same source file; a Special program was run against that file to produce both
the information for the help dawabase (the on-line system) and text pages for a new copy of the reference
manual. There were slight variations (e.g.. the reference manual might speak of material on a different page.
while the on-line svstem would provide a direct link to it). but essentially they were identical. Interestingly
enough, the users rated the reference manual as "fairly useful” and the help system as "not very useful.” We
interpret this as simply a function of the communications medium: a CRT is much more difficult to use than
a printed manual when one is trying to find some particular information, since with the latter one can flip
through the pages. scan large amounts of information quickly. and zero in on the information of interest. The
CRT system just did not work very well because it did not fit the way people tend to operate. This was true
even though the system had direct imbedded finks that made it possible to jump directly from a word of
interest o the text describing to that item.

ihe dirficeln also “ciates 1o the users expectations. He simply does not expect a book to automatically
rrosent the cimswers he s Jooking for: he realizes he has o search for them. Ir the help database. with the on-
e mteracave suster, users seemed mech fess patient their general complaint was that the system never
Jo Our view s that this remains an unresehved research 1ssue:
s eeahb mors intotizenoe s required it the help sosiem than we were ahle to put o SIGMA - Anop-
Fnoheip ©odibin ds certianhy essenual, and the impiementers of future sysiems will have te devote considerable
altertion W content and form. The scheme to foree the on-line help to track the reference manual worked
well,

Crold” ke e informanon they waoe

3.3.2.5 The tutor system

STONTA oo offered o tetor] sostem that provided lessons and exercises to help users to learn the system
ond hecome mere temihar with 1 We undertook this with reservations because we had neither the expertise
noompeie cded instruction sor the ume reginred o develop high-quality training marenial.

Howener CINCPACS pecnlar arcumstances (they stand round-the-clock watches) forced us to provide
o en-tme snanmg capabilite Inogeneral. the lessons and exercises were reasonably well received: some
cornhanad ot the essors were oo words or Sadly wntten and that they presented only a few instructions at
a e when users wanted 1o saveral. Had we taken the time to incorporate the users’ suggesied
mprosoments o e esons and exercises, we could have improved that part of the service considerably

Section 3322

NECTWIFRSPRE SR S SO PR SN

3-14 SIGMA FINAL REPORT

Cenrtain aspects of the system could not be contained in exercises, because there was no easy way to simulate
interaction with another user (e.g., coordination). A much more sophisticated mechanism is required to solve
this problem.

In summary, the users found the tutor useful, but preferred one-on-one training. MITRE's report [26] on
the result of training presents this subject in much greater detail.

3.3.2.6 Editing

In SIGMA, editing is done partly inside the terminal and partly through command execution. The
naturalness of having editing functions built into the terminal, where they are fingertip responsive and always
operational, was very important. The rapid response to local key strokes encouraged the users to feel that they
were altering the document itself rather than using an editor (i.e., a third party making the changes for them).
The SIGMA editor was not only natural to use but omnipresent--the user did not have to change levels or
modes before acquiring the editing capability. We think this is one of SIGMA’s particularly strong points.

Early in SIGMA's career, a debate took place about whether the terminals should provide a replace
(overstrike) capability, which allows the user to type in new data overstriking the old data at the cursor
location. As it was, users replaced by deleting the old and inserting the new as two steps. Since we did not
conduct a controlled experiment, we cannot say whether the decision not to provide overstrike was correct
(users did not object to its absence). The point to be made here is not that SIGMA should be used as the best
model for the features to provide in the local editor (good word processing systems would be better models
for that). but that it is important to use a commu=ication protocol to the terminal that isolates the details of its
editing from the application program. This way different editing features can be adopted. and new, improved
term’nals can be incorporated into the system without having to rewrite the application code.

We found that the larger context editor--that is, the part of the c¢ditor executed in SIGMA--was generally
well accepted, although some potentially useful facilities were never provided (such as a global replace. which
allows users to replace every occurrence of a particular stnng with something else--for instance. every
* occurrence of "herring” changed to "trout™).

We did learn a lesson regarding SIGMA’s automatic formatting. At first, SIGMA formatted all text in the
display window whenever a command was executed. 1€ a user wanted to move text from a received message
into a draft message. SIGMA automatically reformatted using its format algorithm. Since formatting rules are
difficult to make flexible enough to suit the unique needs of each user. text was often formatted in a way the
users did not want. At the users’ insistence. we changed SIGMA so that it would only reformat text when the
users hit a particular key: otherwise, we left the information as it was before. Users were allowed to identify a
specific area of text to be formatted by placing a mark at the beginning and end of the text. This arrangement
was much more successful. We conclude that formatting is a very significant issue; considerable attention to
it is needed to provide the night degree of automatic assistance.

3.3.2.7 The structure of the SIGMA messages

In SIGMAL messages are highly structured objects made up of many fields. hnked together in 4 manner
that fecilitates their manipulation or alteration, as well as the insertion of new information. For this
expenimental system. we generalized many systein features hecause we wanted the flexibility to respond to
users’ suggestions quickly and easily. It wrned out that for the preparation of messages this was ven
appropriate. However, incoming messages inherited all the same generality, even though the only alteration
made o them was the insertion of a few fields (the Acuen ficld. the Information field). the inseruon of

Sechon 3328

3. L.essons

[
-
o

cominents, and the users’ highlighting of specific texts. Although this message structure provided great
Hexibility, the price paid was that messages were considerably larger (took up more disk space or core space),
and more processing was required to link the messages together again for display purposes. Since incoming
messages made up 90 percent of the traffic on the system, a severe price in performance and space was paid in
exchange for generality which had little utility for this large number of messages. Were we to build a
production system, we would look more closely at the presentation of transmitted messages and consider
treating them as more simply structured objects, different from preparation messages.

3.3.2.8 Message format

During the design of SIGMA we considered providing facilities to allow users to reformat a message for
their personal use, that is, to allow them to change the order in which fields are presented to them. The users
advised that this was not a particularly valuable aid. After several years' experience, we saw that they wers
correct. The only requests we had about the format of messages were a global change in the format of memos
and a request to allow users to select for themselves whether a displayed message would start at the top of the
message, showing all the addresses, or in the middle of the message, showing the text of the message first.
(This does not reorder the fields, but simply changes the initiation point of the display.) The message
ordering or tempilate facility of Hermes™ is a very powerful facility when one extends the message service
beyond simple message handling. [t certainly deserves investigation for any future message systems, but we
cannot make any particular case for its importance as a result of our experience with MME,

3.3.2.9 Message types

SIGMA handles the following types of messages: AUTODIN messages from commands outside of
CINCPAC, memos or formal messages internal to CINCPAC, and notes or informal messages between
SIGMA users. Although the statistics are not precise. about 90 percent of the messages dealt with in SIGMA
were AUTODIN messages. Of the remaining messages. notes were found to be quite useful; memos were
used very little, probably because they were used primarily between directorates, and the only directorate
with access to SIGMA was J3.

3.3.2.10 Distribution of incoming messages

The 1.DMX automatically assigned distribution to incoming AUTODIN messages. Those messages that
L.DMYX directed to the I3 directorate were passed on to SIGMA. At first SIGMA simply adopted the
zssignment made by LDMX for us internal distribution: later, however. it was recognized that the LDMX
assignments were not entirely appropriate for SIGMA. For example. LDMX assigned messages to go to J3
himseif. when actually his staff assistant. 1301, processed them. So a special distnbution mapping function
was put in SIGMA’s Reception daemon to allow the System Control Officer to give alternate directions for
inceming messages. This initial implementation permitted messages directed to one user to be redirected to
an alternate uSer or users.

ater. after las<ified messages were allowed on the ss<em, a potentially serious breach of security occurred
ahen g series of restriered messages were allowed inw the SIGMA database, A aroup of messages that were
not ' ogiven brood disribution were passed o SIGMAL which placed them tn Date Files where anvone
airyaccess 0 SICMA could see themn. A quick fix was installed by having the redistribution function
pronided in the Reception daemon changed to scan the first six lines of a message for one of several key text

e
Hermes 1» a message sy stem produced b Bolt Beranek and Newrarn. Inc

Section 3.3.2.7

3-16 SIGMA FINAL REPORT

strings set by the System Contro! Officer. When one of these strings was found, the message was rejected and
sent back 1o the 1.DMX. As we more carefully examined other possible message reception rules, it became
obvious that this quick fix was not sufficient; it was important to provide special scanning on a number of
criteria that would override a number of distribution assignments made by the 1.DMX (necessary for
handling Top Secret messages. special handling messages, private messages for a specific officer, etc.). The
lesson learned here is that a simple distribution scheme whereby each user provides the criterion for selecting
messages he wants to receive is not adequate: overriding principles must apply, which the current LDMX
algorithms were not adequate to detect. In fact, the overriding conditions are subtle: they require both
significant study and flexible algorithms that can be adjusted in the field. A user’s personalizing his own
interest profile “or internal distribution messages is a very appealing idea, and we have seen it claimed that
this is how it should be done in the future. We warn that it is more difficult than it seems to achieve proper
distribution.

i An even more difficult problem is the assignment of action on messages: again, since only one office can be
assigned the action, user interest profiles are inadequate. 1.DMX has a fairly sophisticated algorithm that
scquentially searches a message using up to seven different criteria, and, when it gets its first hit, will assign
action on the message on the basis of that criterion. The assignment is often wrong, despite the complexity of
the algorithm. Getting the action assignment correct is a nontrivial problem, and user-settable interest
profiles do not provide an adequate solution.

Another observation to be made about the distribution experience in SIGMA is the impornance of the
ROUTE command. ROUTE was absolutely essential to J301's task of distributing messages to the J3 staff; it
made a difference of at least a factor of two in the time spent handling the distribution of messages. J301 built
a set of Selectors which would designate different classes of messages. Applving a particular Selector, he
would route with an associated Route list, then he would apply another Selector and associated Route list. He
would work his way through the file of incoming messages until he finished the bulk of the processing, then
look at the remaining messages individually to distribute them. After a few months of doing this, the J301
people recognized that they were doing a highly automatic process which could be done entirely by SIGMA.
J301 asked for a facility which would string together the RESTRICT/ROUTE sequences they automatically
performed--essentially a form of automated message distribution. Note that this distribution form is not the
same as user-settable interest profiles, since it is under central control. Also it is applied after the restricted
distribution messages have been culled out.

Another lesson learned regarding the message distribution aspect of SIGMA was that the users liked
having the Action and Internal distribution noted on the message itself. They could look at the message and
see who was assigned the action (and, in fact. the whole history of how action assignment went): they could
also see who had opened the message. The Action assignment was particularly useful as a search criterion on
incoming messages: one popular style of reviewing traffic was to look first at all the messages with action
assigned to oneself, then at the ones with action to J3 (that is. anyone in J3), then all the rest. The Action_Log
automatically built by SIGMA was not employed much during the regular use of SIGMA, but during the
rerun of the Exercise Power Play it was tested and proved valuable. We suspect the feature should be
implemented in a more general fashion, so that special files could be associated with other instructions (e .g., a
Draft file for all CREATE MESSAGE commands).

We found that a number of users liked to pull messages from the Date Files using selectors built
beforchand: they could get the messages faster this way, because they did not have to wait for J301's routing.
By this means they also discovered messages that LDMX or J301 had distributed improperly, which would
never have gotten to them otherwise. . IMX criteria for handling messages were not as dvnamic as the users’
own selectors. Some users found it very valuable to search the Date File database for messages that were not

Section 31.1.2.10

3. lLessons 317

their action assignment, but that interested them for some other reason. They felt they obtained a much
better general overview of CINCPAC activities by perusing the Date File in this manner.

One objectionable aspect of interactive message handling was that when a message was forwarded. if the
user was not on-line the message just waited until he came on. If the user was expressly interested 1n a
particular message. no human interaction could locate him to tell him a message had arrived. In the manual
system, of course, he could leave instructions with his secretary or another officer.

We contemplated providing a "guard” facility as the solution to this. The user could build a special guard
list and assign a selector o it; if an incoming message met the selector criterion, the message would be
torwarded to the first person on the guard list who was logged in: if no one on the list was on-line, the system
operator would be notified. The miessage would be forwarded to the on-line user along with a highlighted
note, saving something like “please call me if this comes in.” We never tried the guard feature, but since this
lack was cited as an objection 1o interactive mcssage handling, it might be a good subject for future
investigation.

3.3.2.11 Alerts

The Alert mechanism was generally considered a good feature. Users appreciated being able to establish
the criteria for causing alerts, for it allowed them to restrict the alerts to their own interests. All users
unanimously agreed that this was a nice feature, and they appreciated the fact that personalization took
exactly the same form as their standard selector criteria. However, implementation of alerts was somewhat
less than ideal. Having a kind of shadow file (called the Alert list) with a maximum of ten entries was not the
best way to do it. One problem was that there were only ten entries; if the user did not check them soon
enough, some would be lost. More annoying. however, was that even after the alert was processed in the Alert
list, the entry still remained in the user's Pending file. Often a user had to deal with the entry twice: once in
the alert list, and again when he opened his Pending file. This was confusing instead of straightforward and
automatic. It would have been much more natural if alerts had been implemented as a special aspect of
Pending files (this would have required keeping the Pendmg file open at all imes). When a message meeting
the message alert criteria arrived, a user would get the same flash notification. When he pushed the
WAL ERT ON/OFR! buton, he would get the Pending file with the ALERT_SELECTOR applied to it.
Then taking action on it. he would be acting on the onc entry in the Pending file. This would have required
more mechanism in SIGMA, but the users would have much appreciated having their Pending file open at all
times even when other files were open as well. In fact. one of the users’ main objections was the limitation of
having only one object of a type open at one time. This was even more true in the message area, where users
said 1t was very desirable (o have several messages open at once.

3.3.2.12 Access to messages

The universally accepted indentifier for an AU TODIN message is the combination of its From and DTG
fields. Unforwnately. this is not guaranteed to be a umque identifier (due to multipart messages, corrected
retransinissions, operator errors, etc.). For this reason, SIGMA assigned its own unigue message identifier
through which users could directly access messages in the database, and no provision was made for directls
aceessing a message by its From/DTG To access a message by DTG the user had o open the approprate
Date File (thereby closing the current open file) and RESTRICT the file with the From and DTG
information. This was usually better than having to search for paper copies in file cabinets, so users gave
SIGMA good marks for it

Section 13.2.10

e+ et

— e e —v

3-18 SIGMA FINAL REPORT

It would have been more convenient and much faster for the user had we provided direct access by
From/DTG. This would have required SIGMA to handle the nonuniqueness problem and to parse *he From
and DTG fields. Since for many messages in AUTODIN these fields are manually generated (rather than by
computer, as for the LDMX), they are prone to be in error (misspelled or not valid); to make some of them
would require considerable intelligence in the Reception process and access to the AUTODIN Plain
Language Address Tables. or PLAD (the table of legitimate addresses in AUTODIN). Without a table of
valid addresses, it would be virtually impossible to recognize misspellings. The table is also needed to provide
automatic expansion when the user types the From field into the instruction window to access the message.
These tables are mentioncd in the LDMX, but SIGMA had no access to them. Some special intelligence
would also be required to interpret the DTG. Again, since users type these in, we found that DTGs were
often out of range; it was not unusual to find messages with DTGs for months or even years that had not even
occurred yet.

It would have been even nicer to place a link (a pointer to the referenced message) right in an incoming
message itself. The user could then have simply pointed at the reference, done a "HFERE, and pushed the
DISPLAY MESSAGE key. This would have required SIGMA to parse the reference in the incoming
messages and match the From/DTG found (as typed in the message) to the Fiom/DTG of the messages held
in the system. Unfortunately, not all writers of AUTODIN messages use the same rules for indicating a
reference message, so parsing the reference is very difficult. The second step would have been to recognize
the actual message based on DTG and From, extracted from the reference in the incoming message. Because
users often did not fill in all that information or supplied it in nonstandard form, that linking would be very
difficult. For example. when users type in a reference message they often abbreviaie the From field:; a
message from "CNO, Washington, D.C." might be referenced as simply "CNQ." or a reply to a message
might reference "YOUR"” (or even "UR") message rather than typing out the full name.

3.3.2.13 Creating outgoing messages

SIGMA provided a variety of ways to create outgoing messages. One was simply to say
CREATE MESSAGE. which would start the user with a fresh empty message. Another was to
COPY MESSAGE, which would copy a partially completed message as far as it had already been filled in.
but assign it a new message 1D date (this allowed the user to have preformatted messages all set up). Another
way 10 generate a message was to reply to a given message.

Readdressal was another avenue of generating outgoing messages, in which a special readdressal message
was created. By the time we had the facilities to create outgoing messages, the readdressal form was a fairly
trivial extension. It was, however, received by the users with great enthusiasm; some users claimed that it was
absolutely the best feature of SIGMA.

We think that this variety of ways of creating messages was very useful. We were surprised that
COPY MESSAGE was not used much (only 18 times) and ascribe its lack of use to users’ ignorance. During
the interviews some users asked for a facility to do just that and were surprised when told that it already
existed.

One feature of SIGMA outgoing message processing that never quite went smoothly was the automatic
filing of the draft message. Whenever a message was cteated. an entry to that message was automatically
made in some file, defaulting to th Pending file if another file was not specified. For messages that might
have coordination (MEMO and AUTODIN), it was important to ensure that the draft appeared in some file
so it could be easily accessed. But for NOTES, which did not allow coordination, it was often confusing. If
the user created a message and then sent it immediately. there were two pointers in the file: one to the original
preparation message and another to the transmitted message. In SIGMA, these were treated as two separate

Section 3.3.2.12

3. Lessons 3-19

entities--necessary because in the coordination process they indeed are two separate entities. If the message is
created and immediately released, the preparation version of the message is rather useless, and having two
citations often confused the user. We do not have an answer to this. If we did not create that pointer to the
preparation message for a note, the message might be lost if the user stopped what he was doing or was
interrupted, or if the system crashed.

3.3.2.14 Coordination process

Although in the final MME questionnaire users did state a preference for automated over manual
coordination (14 to 2), our conclusion is that the coordination process is very complex and difficult to
automate. Users generally found SIGMA’s version hard to understand and unnatural to use. Part of the
problem is that there is no model of coordination everyone can agree on.

In SIGMA, each user is given his own version as soon as he reads a message sent to him for coordination.
This was done so that he could make changes if he wished; he could alter the message and pass it on to
somebody else or send it back to the originator; it was even more important if the coordinator wanted to alter
the message and immediately release it (a user cannot edit another user’s version). When a user adds
comments, he is putting the comments on his own version of the message, not the originator's. Somehow, the
users never understood this. The originator would look at the message he sent out for coordination and not
understand why he didn't see the coordinator’s comments on it; he did not realize that he had to look at the
coordinator’s version to see the coordinator’'s comments. It would probably have been more understandable
to have the user normally get the originator’s version and be able only to comment on it. If he wanted to
create his own version, he would have to take some other explicit action. One of the keys to the success of
coordination in SIGMA is that these various user versions are all tied together as the same message, so that
other uscrs automatically have access to each other's versions without having to find them in the database.
Another serious problem with on-line automated coordination is the difficulty in presenting editing changes
made by a coordinator. Thatis. if a user edits a message on paper, his remarks are fairly cbvious because they
appear in red pencil: the parts he didn't want would be crossed out and substitute words added in the margin
This is hard to show on a CRT. There was a plan o do a source compare between two versions and highlight
areas that had been changed. but we never had the time to pursue it. This research issue still needs
considerable attention before a solution is found.

We once planned that the originator of 4 message could automate the full coordination scenario (that is, the
routing of messages to the various coordinators) without any further intenention. He could set up serial and
parallel lists and. when the message was chopped by various coordinators, the svstem would automatically
deliver the message to the next coordinator on the serial list. This proved to be too complex and not what the
users wanted: we ended up making the drafter initiate each coordination cvcle manuaily. He would type in
the full list of coordinators in a single coordination list and then select any users on the list for the next cvcle
of coordination; this proved more successful.

Interestingly, the users asked that more status information be provided about each coordinator. We
originally started with merely a notation of approval or disapproval. later. we added at the users’ request
more information: whether the coordinator edited the message at all, whether the message he had chopped
was an old version of the message or the latest. and who did the chopping (that is, the personal name of the
individual, not just the role). Even though this made the Chop Status field more complicated and difficult to
read, users asked for even more information. such as time of chop.

There were other problems with coordination. One is the same problem of linking to references, discussed
carlier in the section on incoming messages. Another serious problem is accessing nonmessage references.

Section 3.3.2.13

itk ekt i

rre v

i

3-20 SIGMA FINAL REPORT

Very often, reference material included books, manuals, letters, or other materials that were not on-line. The
coordinator would see the references but would have no way to access them. Another objection the users
raised was that there was no way to force the attention of the coordinator. In the manual system, when they
handcarried the message around, they knew they were going to get the attention of the coordinator because
they stood at his desk. In SIGMA an important message could be sent for coordination, but since there was
no way to force the user to respond to it for chopped citation, the originator felt that he had in some sense lost
control of the coordination.

A final objection voiced (a very serious one) was that very frequently many of the people on the
coordination list did not have access to SIGMA. Coordination could thus be only partly done on SIGMA,
and having some of the coordination done off-line and some on-line was not satisfactory since each form only
showed what had been done in that medium. Users vastly preferred to stick with one medium all the way.

3.3.2.15 Release of messages

In SIGMA, anyone who received a preparation message, whether he was its originator or the coordinator
on the list, was empowered to release it, if he had release authority for that type of message. Usually,
everybody had release authority for NOTES, only certain people for MEMOS, and a more restricted set for
AUTODIN messages. SIGMA’s coordination facilities allowed the releaser to edit the message before he
released it; if he did the release, his edited version would be the one that was sent.

When a message was released, SIGMA would create an entirely new message that it passed to AUTODIN.
The Preparation message was closed (i.e., it could not be edited any more) and returned to the database.
When a Back_copy of the message was received from AUTODIN, the message ID of the preparation message
was included in the citation produced. Because one could always get back to the preparation message, the
history of what people said, who chopped the message, what the comments were, and so forth, was always
available. It might have been even better to have provided the link to the preparation message in the SIGMA
back copy itself.

We took considerable effort to fix all the difficulties we encountered in releasing outgoing messages to the
LDMX. One such problem was making sure that the format of the message as it left SIGMA met AUTODIN
requirements, which incidentally we never found completely documented in any single reference. We found,
for instance, that if the address field was longer than 54 characters per line or the text field longer than 63
characters per line the message would be rejected; if the user tried to put two addressees on a single line, the
message would also be rejected. This was confusing to users who normally did not think about these matters
because their secretaries had always written the messages. With an on-line system they tended to write their
own messages. and would typically cony a hardcopy form of an incoming message which (for example)
showed two addressees on a line (LDMX formatting rules for printing bear no relation to acceptable input
forms for messages). In general, our solution was to change the preparation message form to remove some of
these problems. We indented the text line so that it was impossible to provide more than the specified
number of characters on a line, and we indented the address field even further so that those specifications
would not be exceeded. SIGMA did a considerable amount of checking of format and data to catch as manv
errors as possible before they were given to LDMX: however, SIGMA did not have access to the Plain
Language Address table, so it could not validate addresses filled in by the users (it treated them as plain text).
It was the job of the LDMX to catch those kinds of errors. If the .DMX found an error that could not be
resolved by the Communication Watch Officer, the message would be rejected and sent back to SIGMA,
L.DMX notified SIGMA of the problem by sending the system operator something called a Service Message,
which had no particular relation to the rejected message: there was no automatic way to field that service
message and get it to the user who had released the offending message. Instead. the service message went to

Section 3.3.2.14

i
!
H
|
{
!

3. Lessons 32

the vperator of SIGMA, who usually had no idea how to correct the deficiency in the message; in fact, it was
very difficult for that operator to manually trace back and find which message had given the problem. Even if
he did. by that time the releaser could easily have logged off and gone home.

The basic underlying lesson from all of this is that it is essential to have the automated on-line message
system verify a released message and notify the releaser inmediately if his message is not suitable for release.
If it passes that verification, there should be no subsequent rejection. Essentially, SIGMA should have been
able to apply all the rules that LDMX applied; if we had ever learned what they were, we might have been
able to do that. As it was, LDMX did its own verification, and we had unhappy users if there was any
difficulty.

Another area of contention was the question of who should receive back copies of a released message. Our
original proposal was that the releaser, the originator, and all coordinators would get back copies of an
outgoing message. This produced some problems in the Communication Center because LDMX
automatically made one paper copy for each of those users. This confused the Communication Center
personnel if they were users to whom LDMX normally did not distribute. We compromised by sending a
back copy only to the releaser. As a result, users often did not know if an outgoing message was in fact out or
not: they never got verification from SIGMA because we did not send them back copies, and there was no
way for SIGMA to know if LIDMX had accepted the message or not. Users had to keep searching the Date
File 10 see if the back copy had arrived yet. This is just another example of how important it is to closely
integrate the AMHS with the message exchange.

3.3.2.16 File system

SIGMA’s facilities for manipulating messages via files consisting of entries that contain pointers to the
messages were generally well received. The main objection to the file entry was the poor content of the
Subject fields. As mentioned elsewhere. this was not a fault of SIGMA but primarily the result of lack of
standards in the AUTODIN community. Because of this. some users said they would have preferred to see
the first five lines of text rather than have the system try to pull the subject out. We resisted this suggestion.
since it would have made the file entries rather large for the limited size screen. An important attribute of
files is that vou can sce 4 lot of entries at once: ours had three lines per file entry, so we could only show about
<Ix messages on a single screen. A larger size screen would have helped significantly.

Some people feel that users should be able to personalize the format of file entries (that is, to reformat
themn with different ficlds of information shown in different places). We never had any request from users to
do this: however. it may have proven helpful.

For security purposes SIGMA treated the Pending file in a special manner. There were four levels of files,
one for cach security level: the users were allowed to set them up with combinations of all messages: Top
Secrct messages in one file and the rest of the imessages in a second file. or four separate files. The utility of
this was never tested because we never got Top Secret messages; users set their files to have all their messages
appear in one file. We suspect that a separate Top Secret Pending file would have proven unpopular,

In SIGMA the user could create his own personal files, naming them arbitrarily; this was viewed as a useful
feature. Users would like to have been able to control access to files, but it was never high on the priority list
because access was limited by other means. Users liked the generality of the file system and its flexibility,
although one user complained that he wanted to start a file name with a number rather than with a letter (a
feature which made instruction parsing easier and more powerful).

Section 3.3.2.15

3-22 SIGMA FINAL REPORT

Date Files provided a record of messages that had arrived and a means to access messages by Date Time
Group, which turned out to be a very important feature of the system. Date Files allowed users to search the
i database for messages of interest, using a variety of arbitrary criteria to pick out messages.

An important lesson was learned in the generation of Readboard files. A significant value of a message
handling system like SIGMA lies in the sharing of data. In the manual system Readboards are prepared for
13; no one else in the command knows what messages J3's Readboard contains. SIGMA'’s provision of broad
access to the Readboard prepared for J3 was much appreciated. Division Chiefs scanned the messages in the
Readboard, discovering what messages J3 had seen and therefore what messages they should be prepared to
respond to.

Unfortunately, building the on-line Readboard required extra work for the Command Center staff, since
they had to build a manual one as well. Because J3 himself actually only read the paper Readboard, the
command center personnel were not too enthusiastic about building the on-line Readboard, but the rest of the
user community appreciated the information so much that they insisted it be continued. This pointed up a
global lesson already mentioned--that is, the importance of integrating the paper-handling facility with the
on-line facility. Had the printer been of adequate quality, the Command Center personnel could build the
Readboard on-line, then produce the paper copy by printing the file’s contents.

SIGMA provided a variety of file manipulation commands such as FILE, MOYE, DELETE, ACTION,
and so forth. Some of these, like FILE, MOVE, and DELETE, could be applied to multiple entries at one
time. But SIGMA did not allow the user to assign action or to forward more than a single entry at once. This
sort of inconsistency in the user interface is annoying to users and should have been avoided.

One of the ways of indicating to which messages the command applied was pointing out the message with a
NWHERE"Y. Users requested that they be allowed to provide multiple "WHEREs and apply the command to
all the messages that were HEREJ; so, for instance, if a user wanted to scan through the message file and
DELETE some messages, he would just scan, mark each one he did not want with a HERE, and execute a :
DELETE command. Again, SIGMA never provided that capability, although it was on the list to be done
had there been more time.

We provided a couple of special commands: one was for sorting entries in the file by Date Time Group, 4
another for emptying the contents of a file. These were both found to be useful, especially in building the
Readboard. : i

Perhaps the best feature of SIGMA was the facility for selecting subsets of a file, The selector capability 4
and the ability to RESTRICT and AUGMENT were used a great deal in very effective ways. Allowing users]
to build their own named selectors was also very valuabie and much appreciated. SIGMA offered two ways
to build selectors: One was to simply state the criteria in the CREATE SELECTOR command itself; the other
was to do a series of RESTRICT and AUGMENT operations until you had the selected subset you wanted.]
then to save that series of selection steps as a single-named selector. Both techniques were used extensively to]
build selectors. :

[t was a nice human iuterface feature that SIGMA always presented on screen the subset of messages the 4
user was dealing with: if he performed a RESTRICT on a file. SIGMA presented him with the message
subset that he had restricted, which gave the users a comfortable fecling that they knew what they were
dealing with at all times. We discussed with users the possibility of extending the selection criteria to apply to
strings from any comments that were hooked on to message entries: we think this would have been a very
powerful addition. It could have served as an alternative form of kevwording. which moved with the entry to
other files.

Section 3.3.2.16

3. Lessons 3-23

The keyword feature in SIGMA was not generally well accepted, probably because the keyword was
associated with the file and not with the message. This meant that the user could not assign the keyword
while displaying the message, the natural time to make such an assignment; he assigned the keyword to the
message entry while displaying the file. If the user then moved the message to a different file, the keyword
did not go with it. We suspect that a nore acceptable implementation would have been to have keyword be
one of the message fields that would be extracted as part of a message summary, so users could select on it.

U'sers requested that they be allowed to do selection on more than one file at once and, in particular, to do
selection on a range of dates from the Date Files. This would have been very valuable for finding messages
when the DTG was not known. As it w.s the user had to open and search each day’s file individually.
SIGMA needed some new mechanism to per ‘orm such an operation, but it would have been very valuable.
We recommend that it be provided in any future message system.

Users expressed a desire to be able to put objects other than messages into files just as in their file drawers
they could file any arbitrary objects. SIGMA allowed users to put messages in and to comment on entries,
but not to put text objects in the files.

3.3.2.17 Text objects

Users found text objects to be very helpful; they were used for address lists, route lists, general data files,
and a variety of applications. People wrote letters as text objects, using the system essentially as a word
processing system; they wrote status reports and did many things that had not been envisioned as part of the
basic use of the SIGMA system. One of the most important uses of a text object was a general data file where
users could put information extracted from messages: since they could move the text of the object in a single,
simple way, they had very accurate information with ng transcription errors. Some users kept databases in
this manner.

Another use of text objects was to generate status reports. Information was extracted from many incoming
messages and put into a single text object that formed the basis of a status report that the user could then edit
Or a single outgoing message could be formed from the accumulation of status reports from a number of 4
people. Essentially, this was using the system as a word processing facility with shared data; it proved
extremely valuable. One can imagine extending the text object handling into even more word processing
applications to enhance the productivity of the organization in areas other than message handling.

aa

3.3.2.18 Sectioned messages 4

In incoming messages, there were some multipart messages (messages that were broken into two or more
separate messages because they were too long for AUTODIN to handle). These were treated as completely
separate messages in SIGMA, because they were handed to the system that way. LDMX gave us no
indication that such messages were related: although in the body of the text, near the top, one usually could :
find words something like “Part one of five.” The standards for indicating a multipart message were never
enunciated or uniformly applied, so it was difficult to use this clue. Multipart messages were especially
troublesome when a user tried to readdress one. Each separate part had to be readdressed. all with the same
DTG. SIGMA had no capability for assigning the same DTG on two outgoing messages.

Lo

Section 3.3.2.16

- ——_ - . {

PR -
-
- et .

3-24 SIGMA FINAL REPORT

3.3.2.19 Access control

One of SIGMA’s important features was a command called GET, which permitted access to other users’
files, selectors, and text objects. Once a user did a GET on a file, he could access it as his own and was able to
see the changes to the file as they occurred. The GET feature allowed--in fact, encouraged--data sharing.
There are other ways to provide sharing, such as allowing access directly by name (as was done for viewing the
directories of other users); each method has its advantages and disadvantages.

If a system provides access to other users’ data, it must also provide facilities to limit that access. Access
control was viewed as an important system feature to test; we simply did not know which access control
parameters were important, to what degree and on what objects they would be used, the granularity of the
access, and so forth. A minimal access control using TENEX to limit access to entire user directories was
established early in the program. A fairly complete access-control scheme that would allow users to protect
individual objects was proposed, although its very completeness implied a significant effort required to
implement it. Other things seemed more important to the users, so this discretionary access-control capability
was continually deferred in favor of other features and in the end was never completely implemented.
Therefore we do not have the information we would like on the kind of access control that is appropriate.

Since the MME provided terminals only for the J3 directorate, we never were able to address the question
of privacy of messages for J3. and their openness outside of J3 itself. There was no access control on the Late
Files, so anyone with access to SIGMA could get to them. Messages that came to J3 were normally open to all
J3 personnel, but if J4 or J5 had had access to SIGMA., it is not clear that freedom of access would have been
tolerated; there was some privacy of information, and we suspect that access control problems would have
arisen. We believe the appropriate solution is to provide access control to the messages, although possibly
separate Darte Files are required for different directorates. The problem becomes even more severe if the
message system is extended to allow access by people outside of the command itself, i.e., outside CINCPAC.
At one time it was planned to provide several terminals at CINCPACFLT and PACAF but this was never
done, so we never tested that aspect of the system. We believe there are many unanswered questions
regarding access control.

3.3.2.20 Archive

Date Files are an index to all messages on the system: not just the messages currently on disk files, but all
the messages that have ever been processed. They provide an organized on-line index to the archived
messages. Users can even find messages that are one or two years old, searching the Date Files with the
selector criteria and getting the entries for the massages of interest. All the manipulation can be done with the
Date Files up to reading the message itself. only then does the user have to break into the archive to retrieve
that specific message. Good response from the archive system is essential, howevc If it takes much longer
than 10 minutes to retrieve an old message from tape, the users will often prefer to ao without. It would be
helpful if the user could indicate the urgency of a retrieval request, so the operators could respond
appropriately.

3.3.2.21 Security

A major issue in SIGMA's design was to formulate a security mode] acceptable t0 both the users and the
people responsible for computer security. The model we designed was based on a security kerne! or trusted
process that understood a few security primitives and that processed all security-relevant activities. The rest
of SIGMA’s code could then be written without special verification. The users were asked to make special
security acknowledgments and to verify the classification of objects matched with the security lights supplied

Section 3.3.2.19

1. Lessons 3-28

on the terminal to insure that SIGMA code did not violate security rules. The security acknowledgments and
security lights were used to check on SIGMA’s operation. not on the users. The users never understood this:
they found the acknowledgments to be somewhat annoying and stupid, but not a major aggravation. We
conclude that a future message system based on this user interface to system security would be acceptable. A
more therough treatment of the security issue may be found in [29].

3.3.2.22 User model

SIGMA provided a two-level log-in, since it was important that users be able to log in to the role that they
were filling, i.e.. J342 or 1317, as well as being recorded as the individual who was in fact filling that role.
Some roles were always filled by the same individual, others were not. The air desk, for instance, was filled by
a number of different people who changed every twelve hours. This two-level log-in was reasonably
successful, but it introduced the problem of having two Pending files. To get around this, SIGMA provided a
concept of My_Pending. which was a way 10 access one's personal file as distinct from the title file.
Unfortunately, when the user was in the My Pending file, the system still thought of him as the title rather
than the individual. Certain access control mechanisms did not allow the individual to operate in his M)y _
Pending file as freely as in his Pending file. The problem was most serious when the user ook some action
(c.g.. read a message); SIGMA always treated it as the title taking the action, but frequently this violated
access-control rights. For instance, the user might make a comment to himself for an entry in his My _
Pending file; since the comment was thought to be made by the title rather than the individual, evervone with
that title could see the comment, though this was not intended. This area needs more attention before the
next message system is built.

3.3.2.23 Printing

MME used a high-speed, low print quality, quiet-operation printer. The machine’s special paper did not
produce high-contrast print and its glossy coating did not have the feel of normal paper. Almost
unanimously, the users objected to the print quality. They wanted to use SIGMA's output for messages to
show their boss, to do coordination off-line, and to put the messages in their files; they also would like to have
used the printed copies for the word processing types of applications (generating letters, creating briefing
memos. etc.). The quality of the printer was simply not good enough for many of these uses.

In future message systems, print quality must be taken into account. The printer itself was successful
because of its speed and low noise factor, matters which should also be considered in future choices among
printers.

3.3.2.24 News and status

Two bulletin board facilities were provided in SIGMA: SYSTEM NEWS and SYSTEM STATUS. The
former was text, printed at log-on, that informed users about the operation of the system and other general
information of interest. The latter showed who was logged on and information about them. Both objects
could be accessed by special commands. No doubt there was more information that would have been of
interest 1o users (a bulletin board, for example, where users could place messages of general interest for
everyone to read. or a calendar of events). Providing such other types of information was never tried on the
SIGMA system, but when a message system of this sort has broad distribution, it is very easy to enhance 1t
with tools of this kind to disseminate general information.

Section 3.3.2.21 3

3-26 SIGMA FINAL REPORT

3.3.2.25 Miscellaneous

One serious objection to SIGMA's operation was that once a user executed a command, there was no way
to abort it. Users strongly objected to this, particularly when response time was poor and the command to be
executed took a long time displaying something on the screen. A future niessage system needs to make it
possible for users to inhibit the further execution of an operation if they so wish,

A small point to illustrate a lesson learned. After the first six months or so, we added to the end of
messages and text files a special indicator of the end of the object. Previous to that, users were never sure
what was the bottom of these objects. This was a small oversight, but a friendly user interface consists of a
great number of just these sorts of facilities. No cookbook recipe of all such features exists, so builders of
future systems should be responsive to user’s requests to add them after the service is in use.

Obviously, good response to the users is essential, but we found that the user in general wants good
response for those operations which he views as simple and which in his world should be fast. Probably the
best example of this was the displaying of a message. In the paper world, displaying a message means just
turning the pages to the message of interest. In SIGMA this could be a very slow process; a user sometimes
waited 10 seconds before the message would appear. This is simply unacceptable; it was very important to
provide a very fast response time for the simple operation of displaying. editing. scrolling, or paging
information. When performing more sophisticated operations. such as RESTRICT and FILE entries. users
are more willing to wait, because they equate this with a time-consuming manual operation that they would
otherwise have to perform. However, this too should be relatively swift if the system is 1o provide an
advantage over manual methods rather than simple parity with them.

Users expressed a desire to have a macro facility: the ability to write a sequence of commands and execute
it in one step. A number of users became fairly sophisticated at using the message service and would have
been able to take great advantage of this macro capability if we had provided it. Doing this cleanly, however,
introduces many significant problems, including command syntax, how to handie errors. etc.

When SIGMA allowed only private comments on user files, the facility was not used. When we extended
the commenting facility to allow public and personal comments on file entries, it suddenly became very
useful; in fact. in the second running of Exercise Power Plav. the ability to comment on file entries was used
extensively in the Acrion_Log. and for understanding the status of action. SIGMA’s commenting facility was
another extremely valuable form of data sharing. We did envision a time when users would prefer to be able
to see an object without its comments.

An improvement the users suggested was to be able to mark objects with multiple HEREs to select
parameters of an instruction: we did allow users to mark a single file entry number and execute the DISPLAY
instruction. However. SIGMA did not allow the users to select multiple entries to execute instructions
applying to more than one entry, such as FILE and MOVE.

Another suggestion by the users was to improve the general algorithm used to clear HEREs. If a user
executed any "HERFs, they would be cleared whenever the user executed the next instruction. However,
this prevented a user from doing a Move operation on a large document by executing a FIND TOP, doing a
NWHERE" at the beginning of the document, executing a FIND BOTTOM, doing a "HERE! at the end.
then executing a MOVE TEXT. The first HERE after the FIND TOP would have been removed as soon as
the FIND BOTTOM was executed. This meant the user would have to go to the top of the document
indicate the first "HERE, then scroll through the entire document in order to get to the bottom of it to do
the second HERE before executing the NIOVE TENXNT. If the document were large, this could take a very
long time.

Section 3.3.2.25

[
v
~3

3. Lessons

3.3.2.26 What more we could have done

While we sull thought SIGMA would be retained at CINCPAC bevond the experiment’s end we made «
Istof improvements we would consider making during the next year. The list is nct in an, priority oider and
is intended te show how much farther we might have pushed SIGMA.

Fast VIEW MESSAGE -
A message was tered s g collection of separate fields. To Jdisplay it, cach fleld was
accessed separately [was possible te make a single compournd 2xt of the message so that
the enure message cidd be brought ap as one uninterpreicd stoing. This would have
saved a large amount U orocessing ume. 1t would oniv work for VIEW since the struciure

necessary for edisng was lost.

Search multiple Date Files -
To accomplish this we would nasve had to expand the RESTRICT and AUGMENT mucros
to accept e rames, wind build new commands out ot thein. The resclung set o erarics
would rot Belong woany file. so certain operations would be excluded (e.g.. CONMMENT.
KEYWORD). Sulll it weuld have proven useful to those who were searching for a message
ter which thes did net have the DTG.

Accept maltple HERES -
We could support muiupte HEREs of entries in a file 1o act like entry lists.

Discretionary access control -
We never implemented the full access control «cherie that was criginally planned. Thes
would have allowed specicl access wo be upplicd windividual ohijects by their gwness.

mprove reference capabilities -
Tt was feasible 1o allow o eser o desionate @ message to be displaved myits DTG b oone of
several schemes, The Sfortwouid be venitficant. bt < atlite would probably have made

wwworth doing

AMore maanenance support -
SIGMA necdo. e Cali progrens o supporUin g INCEH v sveop proarammens,
Foo VT and termin o deficiencies -
casionally. the MATE @rmmal s o SIGMA would get into dfegal states. SIGMAN
S lUUOR W o Leal 1o an Oen wnd e e usetou Prsach o cases SIGNIA shewTd rese
the terminal and retnansnut os erire siate,. "Centralizing” e VT and, thus improamg &
CORLTOT ST, was i nedessaty Sep tymaking such snpros anents.

Mose to TOPS-20 -
JOPS-20 iy an operating systens on the PDP-10 which oy hased on PENEX] but b
number of improvements, ospectally i the file system. W beieve tus would make for o
more reliable svstem.

Rur termuinals at 9600 baud -

The MME termimals are capabie of runming at 9600 baud. Tie PDP-IT enmanal
concenrator needed to be npgraded o support hegher speed operaties,

Section 33208

38 SIGMA FINAL REPORT

Bigger screen terminals -
ISI has modified the HP 2649 basic terminal used for MME to drive a high-resolution
large-screen monitor. A small change to the terminal firmware would have allowed
operation with these larger screen units without any change to SIGMA. There are ways
that the terminal display memory could be expanded above the 12K byte limit, although
this has not been tested in the lab.

3.3.2.27 Other user requests

Throughout the experiment users suggested changes to SIGMA which they felt would enhance its utility.
A number of features in the later releases of SIGMA were in response to such requests. Many were
reasonable. but we did not have time to implement them: these have been described above. The following
requests would have been very difficult because they did not fit the structure of SIGMA well. We felt their
benefit was marginal compared to the task and therefore did not plan to attempt them. A different system
architecture might be able to respond better. so we mention them here.

Full text search - One request we received was the ability to retrieve messages based on a string search of the
full text of the message. Because of the size of the message database this would have been
an extremely slow operation and would have consumed considerable resources.
Furthermore, such a search would only touch those messages which were still on-line. To
extend the search to the archive tapes would have been prohibitive. A full test search (sav,
for key words) of incoming messages as they arrive is not unreasonable (each message gets
thi< treatment just once), but to allow users to trigger such a search on the database of past
messages did not seem to us to warrant the effort required (at least for an experiment).

Continuous message display -

Another request we chose to decline was to provide a continuous message display. that is.
each message stuck onto the bottom of its predecessor in a file. so the user could simply
scroll through them all. This request was in reaction to the slow response of SIGMA tw the
DISPLAY NEXT (Message) instruction. SIGMA had no concept to support such a
structure so it would have required a veny large effort to implement. Our view is that such
a factlity is an artificial way to get areund a performance deficiency and tha:r a future
message svstem should address the performance issue directly.

3.4 LESSONS ON SYSTEM DEVELOPMENT AND OPERATION

This final section deals with our experience in developing and running a large experimental system of this
sort. Much of what we learned is particularly pertinent to experimental svstems, but, in general, applies to
any large system. In The STGM A experience -~ 4 study i the evolutionary design of a large sojiware system
(44]. a phitosophy and associated principles pertaining to the implementation of a sysiem like SIGMA are
presented. In this section issues more specific to the development and operation of SIGMA will be discussed.

3.4.1 An AMHS is a Big System

Orne often hears about microprocessor-based computers that cupport message svsiems: basically they
conform to seme message transmission protocol and provide o local file system. As noted carlier. we found an
AMHS 0 he g great deal more than that. Besides having a nich set of message-handling functions, it alse
word processor, i database manager and, ultimately, a gateway into a wide range of computer services. When

Section 33226

" AD-A116 359 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO=~ETC F/6 17/2
SIGMA FINAL REPORT, VOLUME V, PART 1=3, INTRODUCTIONs FUNCYIONA=—ETC(U)
MAY 82 R STOTZs D WILCZYNSKI» S FINKEL DAHC15=72=C~0308

UNCLASSIFIED ISI/RR=82=94=VOL=~5-PT=1 NL

END
oate
Fimen
7 82
oTIC

"m 10 I e
= - i3
= F
"m TR =
— | EE2

N
O

22 lie

MICROCOPY RESOLUTION TEST CHART

STANDAR[YS 1t e A

NATIONAL BUREAD 0F

.- - e Bt v A < o a———

et e e e

- p— = R

3. Lessons 3-29

coupled with fast access to a large common database, these needs dictate a high level of processing power.
And still, this functionality is just a beginning. A consistent and supportive user interface is paramount,
adding significant development and processing time to an already large system.

3.4.2 Balance the Goals

Any computer system design begins with a set of goals that can be mapped against the dimension of
development time, cost (developmental and operational), function, ease of use, performance, reliability, and
flexibility. SIGMA was tightly constrained in nearly all of them with early design decisions made at the
expense of performance and reliability. When performance became the critical issue, development time was
extended (and operation time of the experiment shortened), and eventually purchase of the KL processor
increased the cost.

We learned that all participants must clearly understand what is expected along each dimension and must
be careful not to overconstrain the problem. For the SIGMA developers to take the "experimental” nature
too seriously was inappropriate when the users did not share the same views.

For a new system that has little precedence, the target specification should be left soft. Had we recognized
early in the program that cost was flexible, while the poorly understood performance issue was not, the
decision to purchase the KL would have been made much sooner, saving much work and allowing the
experiment to start sooner.

3.4.3 Development Environment

We have separated the discussion of the development environment from that of the operating
environment. In MME this refers respectively to the computing system at ISI in which we developed
SIGMA, and the computing environment at CINCPAC in which we ran SIGMA.

3.4.3.1 Choosing a computer and operating system for development

Our choice 1o use the TENEX operating system on a PDP-10 processor was not really a choice at all. 1S]
supports this system fully and (at the time) no other. Since TENEX provides good interactive support for
developmental systems, ISI and most other ARPA research sites use it. That SIGMA was developed on
TENEX was the natural conclusion. The decision to use the same computer at CINCPAC has similar
motivations and will be discussed in section 3.4.4.1.

Part of the reason that TENEX is a popular choice for time-sharing interactive computing is its flexibility.
ease of use, and file-sharing capabilities. However, when TENEX is overloaded, these characteristics are lost.
SIGMA was developed on a TENEX system being shared with 60 other researchers. Often the only way to
get effective work done was to work at night. In comparison, during the two weeks prior to its shipment to
CINCPAC, the KL processor system was made available exclusively to the MME project. In that period the
Alert facility was coded and revised several times. This was a major piece of of programming that we estimate
would have taken at least six weeks under normal conditions, even without the fine tuning in design that we
did.

The point is clear. In developing advanced systems with severe time constraints, only the best
environments for designers and programmers will do. Psychological and morale problems aside, the best
design and implementation will not be discovered by the development team when their development
environment blocks their ability to innovate.

Section 34.1

- —— -

e vowry

PrETPYRR AT v

v e mhd s A

o — e dae .

3-30 SIGMA FINAL REPORT

3.4.3.2 The programming environment

We decided to implement SIGMA in BLISS, a high-level language oriented toward system programming.
This decision was prompted by a number of issues specific to our situation (adequate support, local expertise,
efficiency of code on TENEX, etc.). Other than to strongly urge for the use of a high-level programming
language, we have little to say about which language should be chosen for any other development.

A much more important issue is the nature of the programming and development environment in which
any particular language is embedded. The BLISS environment was totally inadequate and was made bearable
only due to our modest effort in enhancing it. We built a package of macros, a modified editor with source
line updating, a special batch processor, and a facility that helped in the generation of new SIGMA software
releases. Though these few utilities were of the simplest quality, they had a big payoff for us. Any major
software development should have the kind of programming environment that is currently beyond the state-
of-the-art. Since one does not exist, resources should be dedicated to improving what is avajlable. A quality
environment will supply a large set of modular utility packages that can be used by application programmers.
As it was, we had to develop our own error-handling package, queue-management routines, interprocess
communication protocols, text-handling functions, etc. There were many tools we could have used--a
multiprocess runtime debugger, a configuration management system, and so forth, but we did not have time
to develop them.

Our strongest advice for the developers of future AMHS is to have a high-quality programming
environment. TENEX represents the state-of-the-art for 1970, but it is inappropriate for developing large,
highly responsive, reliable applications like AMHS. It is disappointing that even now, five years afier the
MME project began, there is no widely available programming system obviously superior to the one we used.

3.4.3.3 Developers as users of the system

The earliest version of SIGMA was interfaced to the ARPANET message community. We were able to use
it in our everyday work with two important side effects: we exercised the code, and we gained an appreciation
of the user’s perspective. Unfortunately, SIGMA used so much of the computer’s resources that other users
on the system complained until we st-,;ped. Of course we realize that the use of the system in the developers’
environment might differ significantly from its use in an operational setting, so we don’t suggest this as the
ultimate solution to system testing. However, many errors appear in boundary conditions that are only
unveiled during sustained use. Learning about them all at the operational site is not elegant. It appears to be
a distinct advantage to use the system under development in day-to-day work.

There are costly implications in such a strategy: there may be extra work in making the new system
compatible with existing systems; a working version of the system ought to be around at all times; the daily
work of the developers may be slowed by using the experimental system; and so on. However, the gain ought
to be considerable, a better engineered and more reliable system.

3.4.3.4 Developers need access to the operating site system

Security reasons prevented ISI from having remote network access to the CINCPAC system, completely
decoupling the development team from the operational system. The combination of on-site system
programmers, who were unfamiliar with the SIGMA code, and SIGMA’s error package, which produced a
snapshot of the runtime state when an unrecoverable error occurred, were our only diagnostic "tools.” Error
Logs were purged of classified data and mailed back to the development team at ISI every week., Thus, our
reaction time to fix bugs was extremely slow and haphazard. Often, the data collected in the Error Logs was

Section 34.3.1

Y

3. Lessons

331

insufficient to identify the problem. To cope with these difficulties, programmers from the development team

were sent to Camp Smith to diagnose bugs as they were occurring. Though important, these absences
resulted in delays to release schedules.

The nature of an operational context simply makes it unsuitable to debug errors. Users, anxious to get back
on-line, are reluctant to call system programmers when errors occur; usually the user simply powered his
terminal down for a minute (which normally logged him off) and started up a new job. This, of course, is a
direct result of running code that is not fully debugged in an operational environment, an unfortunate
consequence of the type of experiment we were conducting and the level of testing we were able to do.

3.4.3.5 Testing

Although we often discussed it, we never expended the large investment required to provide an automated
test capability for SIGMA. So prior to each release, we would convene in late night sessions (when we had
the machine to ourselves) and run our manual five-user test scenarios. Though the scenarios were constantly
changed to reflect new features and the test took over two hours to complete, the procedure was incomplete
and did not examine any stress or overload conditions.

It would be too simplistic to just say "we should have provided automated test facilities in SIGMA." Such
facilities are not well understood and would have required an immense design and implementation effort to
do well. It was not a case of needing test-case generators to test all branches, but one of needing a self-
running system, exercising itself to stress interactions between processes and hard-to-anticipate boundary
conditions. Such a facility would be expensive to produce. Qur conclusion is that while simple automated

test tools designed into a system at the outset will have definite payof?, a fully automatic test of large systems
is a research topic which deserves more attention.

3.4.3.6 Design for an unreliable environment

We have already stated that a computer system has to be reliable in an operational environment, regardless
of its experimental nature. A design corollary is to expect unreliability. The SIGMA design was based on an
assumption of reliability in the underlying operating and file system; SIGMA was not built to be robust in the
face of operating system errors. A robust design anticipates inconsistencies in the data coming from 1/0
devices. checks for all anomalous conditions early, and, if an error is detected, takes some sensible action.
Unfortunately, one may find a programming effort debilitated by religious attention to these concerns. It is
an art and not a science to find the right balance.

To further complicate the problem, error handling during development is different from error handling in
the production system. In development you might choose to freeze the state of the machine when an error is

detected in order to track down a problem. a solution totally out of place in a production system where you
must get the user operating again.

In SIGMA there were many consistency checks throughout the development code; they were compiled out
of the production system because of their deleterious impact on performance. We later discovered the need
to differentiate between tests on system data and those that tested the running code. Only the latter should
have been removed from the production system. Data errors from 1/0 devices could propagate through the
system and cause failures 1o many users in ways that were extremely difficult to track back to their source.

Debugging is one thing; recovery is another. A robust design also provides operator support for quick and
complete recovery when major system crashes do occur. This may entail providing enough redundancy in the

Section 34.3.4

332 SIGMA FINAL REPORT

file system to be able to detect smashed data, or utility programs to check the data on disk after a system
crash. The completeness of any reconstruction procedure depends, of course, on the effort and expenditure
the designers decide upon. For MME, we could not allow a significant loss of any of its major objects, so full
and incrematal dumps were taken frequently. Procedures for restoring lost data from those dumps were part
of normal TENEX operations. Even so we had one disastrous experience several months after the KL was
installed. A disk crash totally destroyed the TENEX files (a weakness of the TENEX file system) and the
operator restored the file system incorrectly. When SIGMA came up, many of its files were missing or simply
the wrong versions. SIGMA offered no help in detecting the bad state of the file system, other than to crash
when someone tried to use inconsistent data. It also provided no assistance to the system programmers who
had to incrementally patch the file system back to a consistent state. Although neither the system crash nor
the bad restoration of the files was the fault of SIGMA, its passive role extended the impact of the disaster for
weeks. :

Robustness must also be designed into communication protocols with external devices, notably the
terminal. Communication lines are notorious sources of errors, but a good protocol should be able to reduce
this error rate to any desired figure (at the price of bandwidth). The protocol between SIGMA and the MME
terminal started with a single-character checksum, which allowed one error in 64 to get through. This proved
to be too weak, so the protocol was revised to carry a two-character checksum. Yet even this good work had
hidden flaws. We discovered later that there was a long resident bug in the PDP-11 terminal concentrator
which was never detected because the retransmission protocol entirely masked its effects. One must be
careful not to allow the robustness of one part of a system to mask other weak parts.

3.4.4 Operating Environment

The software development environment is important to the developer, and a good one will produce a better
product; but of more direct concern to the users is the on-site computer environment.

3.4.4.1 Choice of on-site computer system

Our decision to use a TENEX system at CINCPAC was based primarily on its advantages for development
and our limited time and resources. Its general-purpose nature was good for development but turned out to
be poor in production. Specifically, file access, terminal 170, and interprocess communication were all very
slow, logically sequential file pages were scattered all over the disk, address space limitation forced process
(fork) divisions between which no efficient communication methods existed, and so on. We improved a
particular performance problem by rewriting a small terminal output module, but could do little about the
other deficiencies.

An operating system tailored to our application would have made a dramatic inprovement in performance.
Our MME experience also taught us that a computer and message systemn architecture must support
expansion to hundreds of users in a reasonably incremental fashion. It is unlikely that a system will be built
to full size from its inception; like the functional performance, we expect the user community to gradually
grow. Add to this the importance of reliability and robustness of the underlying computer and operating
system, and it seems that the "right” computer system for this application may not be available off the shelf.
We suspect the solution lies in the domain of the multiprocessor computer systems designed for ultra-reliable
operation, such as Tandem or Delta II. Considering the large software effort it takes to develop an AMHS
and the long life expectancy of such a system, any hardware (and software) decisions must be made with a
view toward improved and perhaps interchangeable hardware. Building the AMHS for a specific computer
with no predesigned plans for migration to alternative hardware simply ignores the reality of hardware
progress and immense software costs.

Section 3.4.3.6

3. Lessons

3.4.4.2 Computer operations

There were so many mainline problems in developing SIGMA that we totally underestimated the
importance of the operational environment that would house the physical computer and its associated impact
on the experiment. At CINCPAC, the MME TENEX system occupied the same room as the WWMCCS
system, presumably a stable computer environment. Although no-break power was a specified requirement,
the facilities at CINCPAC never supported it. The MME computer ran on ordinary power supplied by
Hawaiian Electric through a motor generator and filter equipment installed by the Navy. That liability was
compounded by the constant remodeling of the building that housed the computers and most of the terminals
and by a power supply that was continually distorted and interrupted. These problems not only disrupted
operation of SIGMA, but were a source of stress on the components of the computer. In addition, air
conditioning failed on several occasions, components suffered from fungus growth, and the power filter
eventually completely failed. The combination of a rather fragile operating systemn and a hostile environment
led to totally unacceptable computer system reliability.

Unfortunately, we did not allocate enough resources to operation and maintenance of the MME
environment. For the first 17 months we tried to run the computer with WWMCCS operators, who were
insufficiently trained and who had a higher priority commitment to the other machines. That situation
improved after the installation of the KL, when a specially trained operations staff was dedicated to MME.
By the end of the experiment system uptime began to approach the 98 percent goal.

To underscore the scope covered by what "operations” means, we can point to our problems with the
crypto units. The crypto units operated on the communication lines to the two clusters of terminals installed
in unclassified areas outside the blockhouse. These units would fall out of synchronization with no indication
of failure; to the user it was as though his terminal was disconnected from the computer. To recover,
someone first had to diagnose the problem (there was no visual indication) and then call the crypto room to
have someone reset the unit. Here was a case of existing hardware, completely out of our control, that greatly
influenced a user’s view of our system.

3.4.4.3 Understanding goals and maintaining motivation

Besides the now obvious requirements of the physical operating environment, it is important to acquaint
the users with the goals for the operational system and to keep them motivated to these goals. Many users
view computer systems with skepticism and will have strong biases (some for and some against). Few will
fully understand what the presence of a computerized system will mean to them. We found this view
particularly true for the MME. For example, several users were reluctant to print messages because they
thought the purpose of an AMHS was to eliminate paper. One user, touted as the "most hostile user at
CINCPAC." objectéd to the service because he thought the MME was a field test of a production system that
had not had a “cost/benefit analysis” before installation. He continually asked, "What is the problem it is
supposed to solve?" Once he understood that the test was to evaluate the utility of a concept which would be
part of an eventual cost/benefit analysis, he became very cooperative and gave a fair evaluation of the system.

Even if the goals are understood, having those roles in the user organization that are key to the program
filled by qualified, motivated people makes a tremendous difference. When a few important positions were
filled by interested officers, acceptance of the whole program shifted dramatically. The experiment proved to
be a fragile enterprise that needed competent, active sponsors to see it through.

Section 3.44.2

S———— e — .- S e - PP - ——— e
- — - - - - . - ~ ey » poy h

2 alkie £3 ag e oes

haf o daen

t
i
)

334 SIGMA FINAL REPORT

3.4.5 Conducting an Experiment

Having discussed what we feel we have learned, it is necessary to describe some things we hoped to but did
not learn. Because of the limitations of the system (number of users it could support, reliability, time to
develop good procedures, integration with the manual system) we were never able to provide any quantitative
evaluation of the utility of the system. We were especially anxious to evaluate it in a crisis situation. This
would have required supporting users throughout CINCPAC, not just in J3, better computer response time,
reliable operations, and a real crisis (or a test of similar proportions). The second running of Exercise Power
Play gave encouraging results, but it was not an adequate test.

We would have liked to see the impact of providing informal secure communications between CINCPAC
and its subordinate commands. We believe that this ability would have cut down dramatically on the amount
of formal traffic and would have led to better information dissemination. This theory remains untested.

Although we think we have contributed to the understanding of the functional design required for an
interactive message service for a community like CINCPAC, we do not have much to say about how to build
a system that can support 200 or more users, is up 100 percent of the time, and provides all the functionality
required with appropriate response.

We did not gain experience in making a multilevel secure system; we did, however, get a sense of the
acceptability of a particular model of a user interface to such a system.

The user interface for SIGMA was far advanced for systems of this type. Its universal acceptance
redirected our planned efforts in this area to more immediate problems. Thus, many of our goals (user
modeling, better user error handling, etc.) went undesigned and untested.

Having built SIGMA, we would like to transfer the developed technology to future AMHS projects. Yet
documents can only begin to convey the experience we gained. At one time, we had plans to include
programmers from the Naval Command Systems Support Activity on our design team, so they could gain
direct experience for future Navy systems. This, however, never took place.

3.4.6 Summary

As is obvious, an AMHS like MME is a large effort. Conflicting goals, highly interactive components,
unforseeable developments do much to complicate the project. Many of the problems go beyond cost, project
size, and length of development time. If one thing surfaces from our experience, it is that the project as a
whole needs to be flexible from the beginning in order to react to changing conditions. A "design,
implement, and deliver” paradigm is inappropriate for an AMHS. There are t0oo many sensitive human
factors involved that separate an AMHS from other, more easily understood systems. The evolutionary
development we are espousing responds not to the limitations of the design team, but to the fundamental
nature of the message-handling domain itself,

Section 3.4.5

A

e e A o —

10.

11

12.

13.

14.

15.

16.

3-35

REFERENCES

Abbott, R. J., A Command Language Processor for Flexible Interface Design, USC/Information Sciences
Institute, ISI/RR-74-24, 1974.

Ames, S. R., and W. W. Plummer, TENEX Security Enhancements, MITRE Corporation, Technical
Report MTR-3217, April 1976.

Ames, S. R., and D. R. Oestreicher, "Design of a message processing system for a multilevel secure
environment,” in Proceedings of the National Computer Conference, AFIPS,, 1978. Also appeared as
Mitre Corporation Technical Report MTR-3449, June 1978.

Bobrow, D. G., J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "TENEX, a paged time sharing
system for the PDP-10," Communications of the ACM 15, (3), March 1972, 135-143.

AUTODIN message CINCPAC 070200Z. August 1975.

Military Message Experiment Selection Criteria, 17 September 1976. Prepared by CTEC, Inc., 7777
Leesburg Pike, Falls Church, Virginia 22043.

DISTAN Program. Prepared by Naval Electronic Systems Command, Material Acquisition Directorate
Telecommunication Division, July 1976.

Ellis, T. O., L. Gallenson, J. F. Heafner, and J. T. Melvin, A Plan for Consolidation and Automation of
Military Telecommunications on Oahu, USC/Information Sciences Institute, ISI/RR-73-12, May 1973.

Goodwin, N, C,, J. Mitchell, and P. S. Tasker, Evaluation of ARPANET Message- Handling Systems for
Use by the Military, MITRE Corporation, Technical Report MTR-3096, August 1975.

Goodwin, N, C,, J. Mitchell, and P. S. Tasker, Concept of Operations for Message- Handling in
CINCPAC, MITRE Corporation, Technical Report MTR-3323, October 1976.

Goodwin, N. C., J. Mitchell, and S. W. Slesinger, Test Plan for Military Message Handling Experiment,
MITRE Corporation, Technical Report MTR-3268. July 1976.

Goodwin, N. C., Military Message Experiment Baseline Data Report Test Group, MITRE Corporation,
Technical Report MTR-3665, September 1978.

Goodwin, N, C,, and S. W. Hosmer, A User-Oriented Evaluation of Computer- Aided Message Handling,
MITRE Co., MTR 3920, April 1980. (MME Final Report, Volume VI, Part 1. [29])

Goodwin, N. C., and S. W. Hosmer, Appendices to a User-Oriented Evaluation of Computer- Aided
Message Handling, MITRE Co., MTR 3946, April 1980. (MME Final Report, Volume VI, Part 2. [29)])

Heafner, J. F., A Methodology for Selecting and Refining Man-Computer Languages to Improve Users'
Performance, USC/Information Sciences Institute, ISI/RR-74-21, 1974.

Heafner, J. F., Analysis of Man-Computer Languages: Design and Preliminary Findings,
USC/Information Sciences Institute, ISI/RR-75-34, 1975.

- e —— m———w-r T —

3-36

17. Heafner, J. F., and L. H. Miller, Design Considerations for a Computerized Message Service Based on Tr-
Service Operations Personnel at CINCP AC Headquarters, Camp Smith, Oahu, USC/Information
; Sciences Institute, Technical Report ISI/WP-3, September 1976.

18. Holg, Chloe, The Military Message Experiment SIGM A Primer, USC/Information Sciences Institute,
1977. ISI/TM-77-9.

19; ----- , 26454 Display Station Reference Manual, Hewlett-Packard Company, , 1976.

20. [A Project, Military Message Processing System Design. Unpublished design document. 10 January
1975.

21, Intel, Intel 8080 Microcomputer System’s User’s Manual, Intel Corporation, Technical Report, 1975.

22, Kallander, J. W., N, C. Goodwin, S. Hosmer, C. Smith, D. Fralick, L. Klitzkie, and S. H. Wilson,
. Military Message Experiment Mid Experiment Report, Naval Research Laboratory, NRL Memorandum
Report 4094, November 1979,

23. Mandell, R. L., An Executive Design to Support Military Message Processing Under TENEX,
USC/Information Sciences Institute, ISI/RR-74-25, 1975. draft only

24, Miller, D., Military Message Handling Experiment Training Requirements, MITRE Corporation,
Technical Report MTR-3263, June 1976.

25. Miller, David G., Military Message Experiment Training Experience, MITRE Corporation, Technical
Report MTR-3644, August 1978.

26. Miller, D. G., MME - Final Training Report, MITRE Corporation, Bedford, Mass., Technical
I Report MTR-3919, May 1980.

f 2]. -----, Memorandum of Agreement between Director, Defense Advanced Research Projects Agency
(DARPA), Commander, Naval Telecommunications Command (NAVTELCOM), Commander, Naval
Electronic Systems Command (NAVELEX), and Commander-in-Chief, Pacific (CINCPAC), 1975.
Unpublished memorandum.

28. House Appropriations Committee, Report 95-451. U.S. Congress. 21 June 1977.

29. MME Final Report. The MME Final Report is being prepared by various individuals and organizations
involved in the MME. It will consist of eight volumes; some of the volumes themselves consist of more
than one part. References [13] and [14] are Volume VI. For information about how to obtain the other
volumes of the MME Final Report, contact the Naval Research Laboratory, Washington, D.C. 20375,
Attn: Code 7503.

Ce e e t——

30. Naval Telecommunications Procedures, Telecommunications Users Manual, NTP3, 4401 Massachusetts
Ave., N.W., Washington, D.C. 20390, 1974.

t

t

!

! 31. Oestreicher, D., P. Raveling, and R. Stotz, HP/MME Teminal - Application Specification,
l USC/Information Sciences Institute, Technical Report ISI/TM-78-10, March 1978.

32. Rothenberg, J. G., An Intelligent Tutor: On-line Documeniation and Help for a Military Message Service,
USC/Information Sciences Institute, Technical Report ISI/RR-74-26, May 1975.

1.

35.

36.

37.

38.

39.

4],

42,

43,

3-37

Rothenberg, J. G., An Editor to Support Military Message Processing Personnel, USC/Information
Sciences Institute, ISI/RR-74-27, June 1975,

Rothenberg, J.,, DARPA Navy CINCPAC Military Message Experiment SIGM A Message Service
Reference Manual, USC/Information Sciences Institute, Technical Manual 78-11.2, June 1979.

Rothenberg, J., "On-line tutorials and documentation for the SIGMA Message Service," in Proceedings
of the National Computer Conference, AFIPS, June 1979,

Slesinger, S. W_, and N. C. Goodwin, Test Procedures for Military Message- Handling Experiment,
MITRE Corporation, Technical Report MTR-3521, October 1977.

Oestriecher, D., et al., SIGMA Transition and Deficiency Amelioration Plan, 1977. Unpublished note.

Stotz, R., R. Tugender, D. Wilczynski, and D. Oestreicher, "SIGMA -- An interactive message service for
the Military Message Experiment,” in Proceedings of the National Computer Conference, AFIPS,, June
1979.

Stotz, R., P. Raveling, and J. Rothenberg, "The terminal for the Military Message Experiment,” in
Proceedings of the National Computer Conference, AFIPS, June 1979.

Tangney, J. D., S. R. Ames, and E. L. Burke, Security Evaluation Criteria for MME Message Service
Selection, MITRE Corporation, Technical Report MTR-3433, June 1977.

Tangney, John D., MME Security Test Procedures, MITRE Corporation, Technical Report MTR-3615,
June 1978.

Tugender, R., and D. R. Oestreicher, Basic Functional Capabilities for a Military Message Processing
Service, USC/Information Sciences Institute, Technical Report ISI/RR-74-23, 1975.

Tugender, R., "Maintaining order and consistency in multi-access data,” in Proceedings of the National
Computer Conference, AFIPS,, June 1979.

Wilczynski, D., R. Tugender, and D. Qestreicher, "The SIGMA experience -- A study in the evolutionary
design of a large software system," in Proceedings of the National Computer Conference, AFIPS,, June
1979.

. Wilczynski, D., R. Stotz, R. Tugender, and R. Lingard, "Message system architecture -- Experience at

CINCPAC with the SIGMA System,” in Compcon Spring ‘80, IEEE, February 1980.

. Wilson, S. H., J. W. Kallander, N, M. Thomas I1I, L. C. Klitzkie, and J. R. Bunch, Jr., Military Message

Experiment Quick Look Report, Naval Research Laboratory, NRL Memorandum Report 3992, April
1979.

. Wulf, W. A, D. B. Russell, and A. N. Habermann, "BLISS: A language for systems programming,”

Communications of the ACM 14, (12), December 1971, 780-790.

ST VAT NOURPINEIPRE PR

Goted g

et e e i a8,

3-39

INDEX

! ABORT instruction 2-12, 2-23, 2-28
i Access control 3-24, 3-27
: Access Modules 4-37, 4-38
! Access to information 2-12, 3-3, 3-10, 3-11, 4-5
; ACK protocol signal 4-55
s Acknowledgment Processor 4-55
Action assignment 3-16 .
! ACTION instruction 2-20, 2-24, 2-30, 2-32, 2-34, 3-8, 3-22, 4-42
! Action log 3-3, 4-43
Action message field 2-14, 2-20, 2-26
AK/FSM 4-55
Alert line 2-3
' WALERT ON/OFF! function key 2-34, 3-17, 4-19, 4-36
' ALERT_SELECTOR 3-17
Alerts 1-6, 2-33, 3-17,4-36
Architecture of SIGMA 3-10, 4-1 3
Archive 1-6, 3-11, 3-24, 4-7,4-10 1

Archive daemon 4-42, 4-85 ;
ARPA 3-6,3-29 3
ARPANET 1-3,3-30 3
AUGMENT instruction 2-29, 2-34, 3-22, 3-27, 4-34

Auto-logout 4-55 }
Automated testing 3-31 4

Availability 3-6

Back copies of messages 2-14

NBACKY function key 2-10

Back_Copy citation 2-24, 3-20, 4-79, 2-24, 4-78, 4-79
BACKUP ALL instruction 2-29, 2-34
NBACKUP ONE function key 2-29, 2-30, 4-34
BBN - Bolt Beranek and Newman Inc, 1-4, 1-§

: BIN JSYS 4-85

i : BLISS programming language 3-30

‘ Blue Ribbon Committee 1-8

BODY message field 4-40

BOUT JSYS 4-92

Briefing Memo message field 2-15, 2-17, 2-21

Y
i
1
0
i
{
i

| NCANCELY function key 2-5,2-7, 2-13, 2-22

CC message field 2-20, 2-24

CCP Configuration Control Program 4-3, 4-7§

WCHQP YES!! function key 2-22

Chop message field 2-17, 2-18, 2-21, 2-22, 2-23

NWCHOP NO! function key 2-22, 2-23,2-32

i HWCHOP YES!! function key 2-23,2-32
Chopped citation 2-22,4-77.4-79

1 CINCPACFLT 3-24

. -
s . e S Ml - -- A - -

3-40

Citation daemon 4-38, 4-41, 4-81

Citations 4-6, 4-43

Classification message field 2-16

WCLEAR VIEWN! function key 2-4,2-12,2-34
CMSGETTE 4-39

UCNTL! function key 2-2

Cog message field 2-14

Command Center Watch Team 3-8
Command Language Processor 3-3, 4-14, 4-101
Command table 4-14

COMMENT instruction 2-15, 2-24, 2-34, 3-27
Comments 4-33,4-34

Communications Center 3-21

Computer Operations at CINCPAC 3-33
NCONTROL!! function key 3-12
HWCOORDINATE! function key 2-22,2-23,2-32
COORDINATE instruction 3-9

Coordination 2-21, 3-4, 3-18, 3-19, 4-39
NCOPY function key 2-10

COPY instruction 2-12, 2-21, 2-32, 2-33,2-34
COPY MESSAGE instruction 3-18

NWCOPY TEXT! function key 4-39

COPY TEXT instruction 2-12, 2-33

Copy to message field 2-17, 2-20, 2-24
COTCO 1-1,1-2,1-3,1-4

CREATE MESSAGE instruction 3-16
CREATE FILE instruction 2-4

CREATE instruction 2-12, 2-32, 4-32
CREATE MESSAGE instruction 2-12, 2-20, 3-18
CREATE SELECTOR instruction 2-29, 3-22
CREATE TEXT instruction 2-12,2-33

Crisis Action Team 3-3

Crypto 3-33

CTEC Inc. 1-4,1-5, 3-1

NWCURRENT ENTRY!! function key 2-27
Currententry 4-34

NWCURRENT ENTRY!! function key 2-27
Current Messagette 4-39

Cursor keys 2-9

Daemons 1-7,4-1,4-70

Daily Summary 3-3

DARPA 1-1,1-2

Data Collection Facility 4-104

Data objects 2-11, 4-33

Date files 2-27, 3-17, 3-21, 3-24, 3-27, 4-43
Date message field 2-17

Date Time Group 2-11, 3-17, 3-22
Decision to terminate MME 1-9

UDELY function key 2-10

Delegator 4-39

UWDELETE ENTRY" function key 2-34
DELETE ENTRY instruction 2-24, 2-28, 2-30
DELETE FILE instruction 2-5

DELETE instruction 2-12, 2-28, 2-30, 2-33, 3-22, 4-31, 4-32
Delta-file 4-38

Direct-loaded MSGMOD 4-41

Directories 2-12

Directory Access packages 4-99

DIRECTORY instruction 2-12

Dispatch 4-48

Dispatch processing in the terminal 4-64
Dispatch Queue 4-52, 4-53

DISPLAY MESSAGE instruction 3-5, 3-18
NWDISPLAY NEXTV! function key 2-26
UWDISPLAY ENTRY!! function key 2-34,4-37
DISPLAY FILE instruction 2-4

DISPLAY instruction 2-4, 2-11, 2-15, 2-19, 2-22, 2-23, 2-27, 2-29, 2-30, 2-32, 2-33, 3-26

UWDISPLAY NEXT! function key 2-34

DISPLAY NEXT instruction 3-28

UDISPLAY OPEN MESSAGE"! function key 4-25
Display screen 3-12

Display window 2-4

DISTAN 1-4

Distribution message field 2-17,2-22, 2-24

Domains 4-20, 4-57, 4-62

UDOWN WINDOWN! function key 2-10, 4-58
Downgrade Instruction message field 2-17
Downgrading Instructions 3-7

Driver Inter-fork interface 4-49

Driver share buffer 4-49

DTACCS 1-2

DTG message field 2-11,2-26, 2-28, 3-17, 3-18, 3-23, 3-27

Editing 2-9, 3-14, 4-31

EMPTY instruction 2-28,4-34

Encl message field 2-17

ENQR protocol signal 4-55

Entering SIGMA Instructions 3-13
Equipment configuration for MME 1-6
ER Package 4-92

ERB Execution Request Blocks 4-11
Error logs 3-30

Error package 4-90, 4-92

HESC! function key 2-2

Evolution of AMHS 3-9

EXCEPT program 4-105
NWEXECUTE function key 2-1, 2-3, 2-5, 2-6, 2-10, 4-14
Execution Request Blocks 4-29, 4-30
Exempt message field 2-16

341

s e

3-42

EXERCISE instruction 2-9, 4-16

Exercise Power Play 1-9, 3-1, 3-3, 3-16, 3-26, 3-34
Exercises 2-8, 4-16

NWEXPAND'! function key 2-5

FACMOD 4-38, 4-43
FACMOD functions 4-46
Fast folder update 4-46
Fat citations 4-43
FCHECK program 4-105
Feedback line 2-4
FILE instruction 2-20, 2-24, 2-27, 2-28, 2-30, 2-32, 3-22, 3-26
File_Copy citation 2-20, 2-28, 4-79
Files 2-11,2-24, 3-10, 3-21
FIND STRING instruction 2-32
FIND TOP instruction 3-26
FIND BOTTOM instruction 2-32, 3-26
FIND ENTRY instruction 2-34
FIND STRING instruction 2-11, 2-33, 2-34
FIND TOP instruction 2-32
WFINISH! function key 2-11,2-15, 2-23, 2-26, 2-27, 2-28, 2-33, 2-34,4-32
FLAGS program 4-106
Flash line 4-16
~ rolder daemon 4-46, 4-79
Folder database 4-69
Folder processing design 4-33
Folder security 4-47
Folder structure 4-44
Folders 4-6,4-33
For_Action citation 2-20, 4-42, 4-79
For_Chop citation 2-22, 4-43, 4-77,4-79
: For_Infocitation 2-20, 4-42, 4-79
i For_Release citation 2-23, 4-43, 4-79
Formatting 3-14
FORWARD instruction 2-20, 2-24, 2-30, 2-32, 2-34, 4-42
! From message field 2-11, 2-13, 2-16, 2-17, 2-20, 2-26, 2-28, 3-17, 3-18
' Frontend 4-12
i Function keys 2-1, 2-6
! Functional Module 4-17
NWFWD!! function key 2-10

. GET FILE instruction 3-11

; GET instruction 2-12, 2-29, 2-33, 3-24, 4-32, 4-35, 4-36
11GO TO NEXT! function key 2-27

! Guarding 3-17

i Hardcopy daemon 4-87
WHELP! function key 2-7, 2-8, 2-9, 4-16
HELP system 2-7, 3-13,4-16
WHERRE\! function key 2-6, 2-10, 2-11, 2-12, 2-15, 2-17, 2-20, 2-22, 2-23, 2-26, 2-27, 2-32, 2-33, 2- 34,
3-18, 3-22, 3-26, 4-25, 4-29, 4-58

341

Delegator 4-39

WDELETE ENTRY"! function key 2-34
DELETE ENTRY instruction 2-24, 2-28, 2-30
DELETE FILE instruction 2-§
DELETE instruction 2-12, 2-28, 2-30, 2-33, 3-22, 4-31, 4-32

Delta-file 4-38

Direct-loaded MSGMOD 4-41

Directories 2-12

Directory Access packages 4-99

DIRECTORY instruction 2-12

Dispatch 4-48

Dispatch processing in the terminal 4-64

Dispatch Queue 4-52, 4-53

DISPLAY MESSAGE instruction 3-5, 3-18

UWDISPLAY NEXT function key 2-26

UWDISPLAY ENTRY! function key 2-34,4-37

DISPLAY FILE instruction 2-4

DISPLAY instruction 2-4, 2-11, 2-15, 2-19, 2-22, 2-23, 2-27, 2-29, 2-30, 2-32, 2-33, 3-26
UWDISPLAY NEXT!! function key 2-34

DISPLAY NEXT instruction 3-28

NDISPLAY OPEN MESSAGE! function key 4-25
Display screen 3-12

Display window 2-4

DISTAN 1-4

Distribution message field 2-17,2-22, 2-24
Domains 4-20, 4-57, 4-62

NDOWN WINDOWN function key 2-10, 4-58
Downgrade Instruction message field 2-17
Downgrading Instructions 3-7

Driver Inter-fork interface 4-49

Driver share buffer 4-49

DTACCS 1-2

DTG message field 2-11, 2-26, 2-28, 3-17, 3-18, 3-23, 3-27

Editing 2-9, 3-14,4-31

EMPTY instruction 2-28,4-34

Encl message field 2-17

ENQR protocol signal 4-55

Entering SIGMA Instructions 3-13
Equipment configuration for MME 1-6
ER Package 4-92

ERB Execution Request Blocks 4-11
Error logs 3-30

Error package 4-90, 4-92

NESCY function key 2-2

Evolution of AMHS 3-9

EXCEPT program 4-105
WEXECUTE! function key 2-1,2-3, 2-5, 2-6, 2-10, 4-14
Execution Request Blocks 4-29, 4-30
Exempt message field 2-16

3-42

EXERCISE instruction 2-9, 4-16

Exercise Power Play 1-9, 3-1, 3-3, 3-16, 3-26, 3-34
Exercises 2-8, 4-16

NEXPAND! function key 2-§

FACMOD 4-38,4-43

FACMOD functions 4-46

Fast folder update 4-46

Fat citations 4-43

FCHECK program 4-105

Feedback line 2-4

FILE instruction 2-20, 2-24, 2-27, 2-28, 2-30, 2-32, 3-22, 3-26
File_Copy citation 2-20, 2-28, 4-79

Files 2-11, 2-24, 3-10, 3-21

FIND STRING instruction 2-32

FIND TOP instruction 3-26

FIND BOTTOM instruction 2-32, 3-26

FIND ENTRY instruction 2-34

FIND STRING instruction 2-11, 2-33, 2-34

FIND TOP instruction 2-32

NWFINISH! function key 2-11, 2-15, 2-23, 2-26, 2-27, 2-28, 2-33, 2-34,4-32
FLAGS program 4-106

Flash line 4-16

~ Folder daemon 4-46,4-79

Folder database 4-69

Folder processing design 4-33

Folder security 4-47

Folder structure 4-4

Folders 4-6,4-33

For_Action citation 2-20, 4-42, 4-79

For_Chop citation 2-22, 4-43,4-77,4-79
For_Infocitation 2-20, 4-42, 4-79

For_Release citation 2-23, 4-43, 4-79

Formatting 3-14

FORWARD instruction 2-20, 2-24, 2-30, 2-32, 2-34, 4-42
From message field 2-11, 2-13, 2-16, 2-17, 2-20, 2-26, 2-28, 3-17, 3-18
Frontend 4-12

Function keys 2-1,2-6

Functional Module 4-17

1FWDY function key 2-10

GET FILE instruction 3-11

GET instruction 2-12, 2-29, 2-33, 3-24, 4-32, 4-35, 4-36
11GO TO NEXT! function key 2-27

Guarding 3-17

Hardcopy daemon 4-87

WHELP function key 2-7, 2-8, 2-9,4-16

HELP system 2-7, 3-13,4-16

HWHERE function key 2-6, 2-10, 2-11, 2-12, 2-15, 217, 2-20, 2-22, 2-23, 2-26, 2-27, 2-32, 2-33, 2- M4,
3-18, 3-22, 3-26, 4-25, 4-29, 4-58

High water mark 2-26, 4-34
HIGHLIGHT instruction 2-15
Highlights 4-33, 4-34

IDENTIFY instruction 2-35§

Identity 2-3

IFCP 4-12,4-38, 4-40

IM/FSM 4-53

In-preparation messages 4-39

Incoming citation 4-78

Incoming message processing 2-13, 2-19
Info message field 2-13, 2-14, 2-16, 2-20
Information Automation project 1-2, 1-10
Input Multiplexer 4-53

Instruction entry 2-4

Instruction parsing 4-14

Instruction processing 4-29

Instruction window 2-4

Integration of AMHS 3-7, 3-9

Internal message field 2-14, 2-20
Inversion lexicon 4-44

KA processor 1-6, 1-7

KEYWORD instruction 2-30, 2-34, 3-27
Keyword lexicon 4-44

KI processor 1-7

KL processor 1-7, 1-8

LDMX 1-7, 1-8, 2-11, 3-3, 3-6, 3-15, 3-16, 3-18, 3-20
LESSON instruction 2-8, 4-16

Lessons 2-8, 4-16

Lexicon package 4-100

Lexicons 4-44

Load average 2-3

LOG OFF instruction 2-5, 2-34

Logging off 2-34

Macro facility 3-26
Maintenance daemon 4-89
MEDIT program 4-107
Message daemon 4-77

Message directory 4-65
Message distribution 3-15
Message processing design 4-33
Message release 3-20

Message sequence number 2-14
Message structure 3-14, 4-39
Message types 2-13, 3-15
Message versions 4-39

343

B VR

w

bt it Sl b 3

344

Message-ID 2-15, 4-39, 4-65
Messagette 4-39

Messagette directory 4-39
Messagette storage area 4-39
Messagette structure 4-40

MIT 14

MITRE Corporation 1-4, 1-§, 3-1, 3-9
MME Terminal 4-39, 4-48

"MOVEY function key 2-10, 4-29
MOVE instruction 2-12, 2-28, 2-30, 2-33, 3-22, 3-26
MOVE TEXT instruction 2-12, 3-26
MP package 4-91

MSCAN program 4-108

MSGMOD 4-38,4-39

MSGMOD functions 4-42
Multiprint package 4-91
My_Pending file 3-25

NAK protocol signal 4-55
Naval Research Lab 1-5

Naval Research Laboratory 1-10
NAVELEX 1-3,1-§

NLS 1-3,4-37

NMIC-SS 3-12

HNO! function key 2-13, 2-19, 2-22, 2-33
Note processing 2-19

Notice 4-48

Notice queues 4-56

NOUT JSYS 4-92

Number of terminals 3-7
Number of users 1-6, 1-7, 3-7

ODTIM JSYS 4-92

NONLINE! function key 2-1, 2-2
Operations on data objects 2-11

Orig message field 2-14,2-17

Originating office message field 2-17, 2-21
Outgoing message processing 2-20

PACAF 3-4

Paging 4-37

Parsing the Subject 2-15, 3-7

Pending file 2-11, 2-27, 3-17, 3-21, 4-43, 4-46
Personal file 4-43

NPICKUP function key 2-10,4-29
PICKUP instruction 2-11, 2-12, 2-33

PLAD Plain Language Address Tables 3-6, 3-18, 3-20
Precedence message field 2-16

PRINT instruction 2-32, 2-33, 2-34, 2-35
Printing 2-35, 3-2§ ’

- a— - w o~

Procedures for use of AMHS 3-8

Prompt 2-6

UPROMPN! function key 2-6, 2-7, 2-9, 4-14, 4-15
Protocol Analysis Test 1-4

Protocol reset 4-55

PSN Processing Serial Number 2-14

HPUTY function key 2-10

PUT instruction 2-11, 2-33

Q/FSM 4-54
Queue nackage 4-102

R/FSM 4-54

Readboards 2-28, 3-22, 4-43
READDRESS instruction 2-21, 2-32
Readdressal 3-18

Receiver 4-52, 4-53

Reception daemon 4-38, 4-41, 4-82, 4-101
RECLASSIFY instruction 2-33

Ref message field 2-17, 2-18, 2-19
References 3-5, 3-7, 3-17, 3-19, 3-27
NRELEASEY! function key 2-23,2-32
Release message field 2-17, 2-18,2-21, 2-22, 2-23
Releasing messages 2-24

Reliability 1-8, 1-9, 3-6, 3-31, 3-33
WREPLY ENTRY" function key 2-20
REPLY instruction 2-20, 2-21, 2-32, 2-34
NREPLY NEXT! function key 2-20
RESET ALERTS instruction 2-34
URESET! function key 2-1,2-2, 3-12
RESET protocol signal 4-55

RESETACK protocol signal 4-55
Response time 1-6, 1-8, 3-5, 3-26
RESTORE instruction 2-28, 4-31, 4-32
RESTRICT instruction 2-29, 2-30, 2-34, 3-5, 3-16, 3-17, 3-22, 3-26, 3-27, 4-34
Retrieval from Archive 2-19

Retrieved citation 2-19, 4-86

NRETURN function key 2-9, 2-10, 2-16
ROC Required Operational Capability 3-1
NROLL DOWN!! function key 2-10, 4-57
"ROLL UP! function key 2-10, 4-57
ROUTE instruction 2-20, 2-30, 2-32, 2-34, 3-9, 3-16, 4-42
Route lists 2-30

USAVE! function key 2-33
Sectioned messages 3-23
Security 2-13,3-24
Security lights 2-1, 3-24
Selection 2-29,4-34
Selector attributes 2-30

345

Selectors 2-11, 2-29, 3-24, 4-36, 4-46
NSHOW FILEY! function key 2-12
NSHOW MESSAGEM function key 2-12
NSHOW TEXT! function key 2-12
SIGMA messages 4-33, 4-39
Signature block message field 2-17
SIN JSYS 4-85

SORT instruction 2-26, 4-34
SOUT2 JSYS 4-52

$SO program 4-106

SSO System Security Officer 2-3,2-5
Standard Subject Index Codes 3-7
Starting up SIGMA 2-2, 3-12, 412, 4-17
Statefiles 4-31,4-32

Status line 2-4

Subject message field 2-11, 2-16, 4-40
SYNC protocol signal 4-55
SYSTEM NEWS instruction 3-25
System News 2-3§

SYSTEM NEWS instruction 2-35
SYSTEM STATUS instruction 3-25

TBUF 4-49

TENEX 1-6, 1-7, 2-11, 3-27, 3-29, 3-30, 3-32, 4-37
TENEX Directories 4-8

TENEX File system 4-8

TENEX Processes (forks) 4-7

Terminal 1-4, 2-1, 3-11, 3-27, 3-28, 4-7, 4-24, 4-56
Terminal Driver 4-48

Terminal dump facilities 4-108

Terminal firmware design 4-60

Terminal memory management 4-59

Text message field 2-17

Text objects 2-11, 2-32, 3-23, 4-35

Text Package 4-96

TID Text Identifier 4-97

To message field 2-13, 2-14, 2-16, 2-17, 2-20, 2-24, 4-40
TOPS20 3-27

Transmission Buffer 4-49

Transmission protocol 4-48

Transmitted messages 4-39

Transmitter 4-49

Tutor system 2-8, 3-13, 4-16

Typed by message field 2-17

Types of file entries 2-26

NUP WINDOWY! function key 2-10, 4-58
NWUPDATE function key 2-10, 217, 2-33, 4-33,4-35
User adaptation 3-4

User interface 3-2, 4-7

User job 4-1, 4-7,4-11, 4-12
User model 3-25

User motivation 3-33
Utility of SIGMA 3-1

VIEW KEYWORDS instruction 2-30

WVIEW DISPLAY function key 2-35

VIEW instruction 2-12, 2-13, 2-19, 2-29, 2-33, 2-34, 3-27
VIEW MESSAGE instruction 3-27

VIEW VERSION instruction 2-22, 2-23, 4-39

View window 2-4

Virtual address space 4-7, 4-37

Virtual terminal 4-20, 4-24

Volume of messages 4-4

Windows 2-1,4-24, 4-57, 4-62
WWORD LEFT function key 2-10
NWWORD RIGHT! function key 2-10
WWMCCS 1-5,1-7,3-33

Xmit_Fail citation 4-79
XSIGMA 4-11

"M YES! function key 2-13, 2-19, 2-22, 2-33

347

b o s e

