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NOTATION

A Duct area, ft2

CD Drag coefficient

CL  Lift coefficient

CJet flap momentum coefficient

D Drag, lb

L Lift, lb

m Mass flow, slugs/sec

P Total pressure, lb/ft
2

S Wing area, ft 2

T Thrust, lb

t Total temperature, R

V Velocity, ft/sec

V2  Takeoff velocity, ft/sec

W Weight, lb

aAngle of attack, deg

6 Jet deflection, deg

Subscripts

a Atmospheric

b Bleed

e Engine

f Fan

J Jet

0 Nozzle

r Sea level-static thrust rating of engine
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ABSTRACT

The engines in modern combat aircraft are sized by combat
maneuverability considerations. These aircraft therefore have
much more thrust available than is needed at normal takeoff and
landing speeds. Only the Harrier, which can vector the thrust
of the centrally-mounted engine through the center of gravity
can use its excess thrust to reduce the takeoff and landing
distance (to zero at low operating weights). The engines on
the others are too far aft for direct thrust vectoring. This
paper examines other possibilities. The main emphasis is on
the possibility of using bleed air from the high pressure
compressor to blow the wing and/or a canard for STOL performance.
Alternately, the use of this high pressure bleed to drive fold-
out fans to achieve STO-VL performance is also examined.

ADMINISTRATIVE INFORMATION

This study was completed for the David W. Taylor Naval Ship Research and

Development Center (DTNSRDC) under Navy contract N00167-81-M-3207. Mr. Kuhn was

engaged in V/STOL (vertical and/or short takeoff and landing) aircraft research with

the NASA Langley Research Center for many years. He now serves as a V/STOL consult-

ant to both industry and the Government.

INTRODUCTION

Design studies of V/STOL aircraft show that requiring VTOL performance results

in a large weight penalty relative to CTOL (Conventional) aircraft. However, the

only V/STOL aircraft that has been put into service, the Harrier, is seldom operated

in the VTOL mode. Instead, it is usually operated in the STO-VL mode; using a short

takeoff run to lift-off much greater loads than it could in a vertical takeoff, and

return to a vertical landing at the end of the mission. In this STO-VL mode of

operation the penalty for short field operation is relatively small, as shown in

Figure 1.

The empty weight, the design or normal takeoff weight, and the maximum overload

takeoff weight of several fighter and attack aircraft, including the AV-8A and AV-8B

versions of the Harrier, are compared in Figure 1. The maximum useful load (taken

as the difference between the maximum overload takeoff weight and the empty weight)

of the Harriers is the lowest of those compared. However, the Harriers are also the
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smallest and lightest aircraft. When the ratio of the useful load to empty weight

(a rough measure of the job that can be done per pound of aircraft required to do it)

are compared, the Harriers (particularly the AV-8B which has the improved wing-flap-

nozzle arrangement) are comparable to the CTOL aircraft. And the Harrier requires

only one-half to one-fourth the takeoff distance needed by conventional aircraft at

the maximum takeoff weight.

The Harrier achieves this performance by virtue of the high installed thrust

which can be deflected to add to the wing lift for takeoff. The F-15, F-16, and

F-18 also have considerable excess thrust at takeoff conditions, but the arrangement

of the aircraft precludes direct use of this excess thrust to lower the takeoff

speed and improve takeoff performance. In this class of aircraft, the need for

supersonic performance and good transonic maneuverability argue against placing the

engine at the center of the aircraft so that the thrust can be vectored through the

center of gravity.

This paper attempts to illustrate the principal factors that contribute to the

good short field performance of the vectored thrust Harrier STO-VL aircraft and to

examine alternate approaches that could be used to achieve STOL and STO-VL per-

formance without placing the engine at the center of the aircraft.

TAKEOFF PERFORMANCE

THRUST VECTORING FOR SHORT TAKEOFF

The Harrier makes its takeoff run with the jets undeflected until the takeoff

speed is reached. At this speed the nozzles are rotated to a predetermined deflec-

tion and the vertical component of thrust adds to the aerodynamic wing lift to

achieve lift-off. A vector diagram of the lift, drag, and thrust components at

lift-off speed is shown in Figure 2. The jet deflection is chosen such that the

horizontal component of the gross thrust, T cos 6, equals the sum of the inlet and

aerodynamic drag plus an allowance for acceleration and/or climb. The lift is the

sum of the vertical component of thrust, the aerodynamic lift and the jet induced

lift (which is negative on the AV-8A, but is almost zero on the AV-8B).

The relative magnitude of these components and their variation with speed are

shown in Figure 3 for the AV-SB at its maximum takeoff weight of 29,550 lb. The
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large amount of excess thrust and the large contribution of the thrust to lift are

evident. Without the ability tc deflect the thrust, the only contribution of thrust

to lift would be the smaller increment given by T sin a. By deflecting the thrust

about 60 deg the takeoff speed is reduced about 40 percent.

A similar presentation for the F-18 is presented in Figure 4. Even at its

maximum overload takeoff weight of 47,000 lb, the F-18 has almost as much excess

thrust as the AV-8B, but the potential reduction in takeoff speed cannot be realized

because the thrust cannot be vectored through the center of gravity.

The takeoff ground runs are compared in Figure 5. Without vectoring, the

takeoff distance of the AV-8B would be about three times the approximately 1200 ft

that can be achieved with vectoring. The takeoff speed of the F-18 is lower than

that for the AV-8B without vectoring because the F-18 is taking off at a lower wing

loading and has a more sophisticated high lift system.

A brief examination of the thrust, drag, and lift variations with takeoff speed

for other modern fighter aircraft at their maximum overload takeoff weights shows

that they all have similar characteristics; see Figure 6. And they all have large

excess thrust and potentially lower takeoff speeds; even lower than the AV-8B because

they are operating at lower wing loadings and have more sophisticated high lift

systems. Unfortunately these lower takeoff speeds, and the shorter takeoff distances

that would result, cannot be realized because the thrust cannot be vectored through

the center of gravity. Other methods of using this excess thrust to lower the

takeoff speed should be investigated.

ALTERNATE APPROACHES TO SHORT TAKEOFF PERFORMANCE

The engines in modern fighter aircraft are installed aft in order to control
the area distribution of the configuration and minimize wave drag so that good

transonic maneuverability and supersonic performance can be achieved. The thrust

can only be deflected downward to contribute to lift if a corresponding lift force

can be generated forward of the center of gravity to balance the nosedown moment due

to deflecting the thrust at the rear. Possibilities include a nose jet or a jet flap

canard as illustrated in Figure 7. Bleeding the engines to power a nose jet or a jet

flap canard would reduce the thrust but, as shown in Figures 4 and 6, there is

considerable excess thrust available; part of the excess can be used for bleed and

part for thrust deflection.

3
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As the takeoff speed is reduced, the control that can be obtained from conven-

tional surfaces reduces and must be augmented. The Harrier has a hovering control

system (control jets at the extremities of the airplane) that provides this augmen-

tation. As shown in Figure 7, the prese tnt study assumes that this control augmenta-

tion would be achieved by additional vectoring of the main nozzle thrust.

The effect of bleed on the engine thrust and bleed pressure used in this study

is shown in Figure 8. The lapse rate, shown here, is an extrapolation of information

on the effects of small bleed rates (less than 5 percent). It has been suggested

that the effect of bleed can be reduced by using variable area turbines or turbine1*
bypass features, however, generalized data that could be used in a study of this

type are not available. Also, these features would essentially require developing

a new engine. Bleed rates assumed in the present study may be possible with existing

engines, but would require modification and requalification of the engine.

The thrust available from bleed air and the duct area required are presented

in Figure 9. Duct losses of 35 percent of the total pressure and 20 percent of the
total temperature are assumed. The aerodynamic characteristics used in the analysis

of the takeoff performance are shown in Figures 10 and 11. The canard is assumed to

have the same planform as the wing and to have one-fourth the area.

The effect of a nose jet alone (canard off) on the takeoff speed is shown in

Figure 12. As the bleed air taken from the engine is increased, the nose jet thrust

increases and the deflection of the primary jet that can be balanced by the nose
jet increases. However, the net thrust, after the effects of bleed and jet deflec-

tion are accounted for, reduces. Takeoff speed is defined as the speed at which the

tctal lift equals the weight (T/W=l.0) and an acceleration allowance of at least

0.05 g's (D/W=0.05) can be maintained. This occurs with the nose jet alone on the

present configuration at about 15 percent bleed. With the nose jet, the takeoff

speed is reduced only about 8 or 9 knots. Fifteen percent bleed produces only about
2350 lb of thrust from the nose jet which requires deflecting the primary thrust only

about 12 deg to balance. A method of greatly augmenting the lifting power produced

by the bleed air is required if significant increases in jet deflection and

reduction in takeoff speed are to be achieved.

*A complete listing of references is given on page 41.
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At forward speeds the best way to augment jet thrust is to blow the jet over

the surface of a lifting surface. A properly designed jet flap configuration can

produce lift up to an order of magnitude greater than the jet thrust used.

The effect of using a jet flap canard surface on the present configuration is

shown in Figure 13. Unfortunately, the canard cannot be placed as far forward as

the nose jet, and the downwash from the canard acting on the wing produces a down

load that reduces the net lift obtained from the canard. In this study it has been

assumed that only one quarter of the lift of the isolated canard is realized as net

canard lift, but that the full canard lift acts to produce a nose up moment to

balance the nose down moment from the deflected main jet. Also the extra drag of the

highly loaded jet flap canard must be included. With the jet flap canard, the bleed

that can be used is reduced to about 8 percen, "ut the jet deflection that can be

used is doubled and the takeoff speed is reduced about 25 knots.

Further gains can be made if bleed air is used to blow both the wing and the

canard (Figure 14). As noted above, about three-quarters of txte canard lift is lost

due to the downwash of the canard on the wing. This large penalty is largely elimi-

nated if most of the bleed air is used to blow the wing. However, a large part of

the nose up moment produced by the canard is used to balance the diving moment from

the jet flapped wing and the main jet deflection can only be about 10 deg. Neverthe-

less, the takeoff speed is reduced by about 35 knots.

One of the factors in the above studies that has made it difficult to achieve

large jet deflections has been the far aft location of the engines. The effect of

moving the engines forward is shown in Figure 15 and the configuration assumed is

shown in Figure 16. Moving the engines forward approximately doubles the jet

deflection that can be used and decreases the takeoff speed by an additional 6 to

8 knots.

A comparison of the takeoff distances required by each of the above configura-

tions is presented in Figure 17. This work suggests that takeoff distances of high

performance fighter configurations can be approximately halved by proper use of high

pressure bleed air.
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LANDING PERFORMANCE

The space required for landing an aircraft depends upon a number of variables.

The primary factors are the touchdown speed (which depends upon the capability of the

high lift system and on the wing loading of the airplane) and the deceleration (which

depends upon the brakes and runway conditions, the drag of the airplane, and the

amount of reverse thrust that can be achieved). In addition, the time delay in

actuating the thrust reversers and in reducing the wing lift, the allowance that must

be made for touchdown dispersion, and the length of the aircraft must be considered.

Figure 18 presents a generalized presentation of the effects of these factors on the

total landing distance.

The one-second delay used in Figure 18 assumes that an in-flight thrust reverser

or some other technique is used so that the engine can be maintained at full RPM to

minimize time lag in establishing thrust reversal. The one second allows for pilot

reaction, brake and thrust reverser actuation, and switching off the bleed air to the

blown flaps or other power augmentation of lift that may be used. The touchdown

dispersion allowance is based on NASA experience with the upper surface blowing

research airplane, the QSRA (Quiet STOL Research Airplane). Using a fresnel lens

landing guidance system, a touchdown dispersion of + 30 ft or less at an approach

speed of about 65 knots was experienced. 3 The touchdown dispersion allowance used

in Figure 18 was assumed to be proportional to the landing speed and to be double the

QSRA experience at 65 knots in order to be conservative. An allowance of 50 ft was

included for the aircraft to turn and taxi away at the end of the landing run.

The variation of lift and drag with landing speed for a conventional fighter

(approximately the F-18) at maximum landing weight (based on the aerodynamic charac-

teristics presented in Figure 19) are presented in Figure 20. The potential reduc-

tion in landing speed cannot be realized, of course, because the thrust cannot be

vectored through the center of gravity.

A significant reduction in landing speed can be realized by using bleed-air

powered jet flaps (Figure 21). The landing approach would be made at minimum after-

burning power in order to keep the engine RPM up so that full bleed capability would

be available to blow the flaps and so that time would not be required to spool up the

engine to achieve good thrust reverser performance for the deceleration after

6



touchdown. The bleed air to the canard is double that used in takeoff, in order to

increase the drag and decrease the net thrust. The latter is necessary to achieve

the excess drag required for descent at the landing speed. The three-degree approach

shown would result in a sink speed of about 7 ft per second at touchdown in a no-

flare landing. Using minimum afterburner in the approach makes it possible to

maintain maximum jet flap effectiveness and still be able to take a wave-off by

going to full afterburner.

The landing performance shown in Figure 21 was estimated for a weight of

30,000 lb; nearly maximum landing weight. The effect of landing weight on the

landing speeds is shown in Figure 22.

The use of powered lift can reduce the landing distance by almost half

(Figure 23). The actual landing space required depends upon the deceleration that

can be achieved. The deceleration on ice using brakes alone would be only about 0.1

g or less. The QSRA, using brakes alone on dry runways, has shown an average

deceleration of about 0.3 g's. Decelerations of 0.5 g's or greater will require

effective and fast acting thrust reversers.

LIFT FAN STO-VL CONFIGURATIONS

As indicated in the introduction, the Harriers are normally operated in the

STO-VL mode; using a short takeoff run to lift large payloads and returning to a

vertical landing at the end of the mission when the aircraft is lighter. They also

retain the capability of carrying out reduced radius missions from a vertical takeoff

when necessary.

The Harrier, however, is an attack, not an air superiority, aircraft. The per-

formance and transonic maneuverability of modern fighters requires a higher fineness

ratio configuration with the engine(s) moved further aft. However, a simple bleed-

air jet at the nose is not sufficient to balance the deflected thrust of the main

engines; it must be augmented. The best way to augment jet thrust at zero speed,

and to retain a relatively cool front-end footprint, is to use the bleed air to drive

a fan. Augmentation factors of four to five can be obtained with a fan.

A type of configuration envisioned is shown in Figure 24. Foldout fans

(Figure 25) are mounted as far forward as possible and ADEN type nozzles are used on

the engines to deflect the thrust to the vertical. Space considerations require

7



using relatively highly loaded two-stage fans. The data of Reference 4 were used to

size the fans in the present conceptual study. In order to maximize the thrust that

could be obtained with the limited fan diameter, an interburner was assumed that

would raise the temperature of the air entering the tip turbine to the maximum value

used in Reference 4, 1998 R. The estimated fan thrust is shown in Figure 26. The

main jet thrust reduces with bleed rate but the total thrust of the system is

increased (at the lower bleed rates at least) because the bypass ratio of the system

has been increased.

Control in hovering is achieved by thrust transfer and thrust deflection. Pitch

control is obtained by differential change of thrust between the fans and the main

nozzles; increasing the fan thrust and decreasing the main nozzle thrust for nose up

control and the reverse for nose down control. Variable inlet guide vanes would be

required on the fans to obtain the response rates required and varying the inlet

area to the fan tip turbine would be required to accommodate the change in bleed rate.

Roll control would be obtained by diagonal transfer of thrust; having the right

engine drive the left fan and the left engine drive the right fan, so that shifting

thrust forward from the right engine to the left fan and rearward from the right

fan to the left nozzle would give a rolling moment to the right, for instance.

Figure 27 shows that, with the geometry of the configuration chosen for this example

(Figure 24), the thrust shift required for roll control is greater than that required

for pitch control. Roll control therefore sets the design point of the fan. Yaw

control is obtained by differential lateral deflection of the thrust vectors of the

fan and main nozzles.

The vertical takeoff and landing performance is presented in Figure 28. Instal-

lation losses include inlet, power takeoff and an allowance of 5 percent of the rear

nozzle thrust for the 90-deg deflection. The ground effects were estimated by the

method of Reference 6. In ground effect, the widespread four-poster arrangement of

the fan and rear nozzle jet streams produce a favorable fountain effect between them

that largely offsets the suckdown normally experienced in ground effect and more than

compensates at the lowest heights. Hot-gas ingestion is minimized using a top inlet

and by designing the strakes on the bottom of the fuselage to deflect the fountain

flow laterlly as recommended in Reference 7.
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The short takeoff performance at a maximum overload weight of 47,000 lb is

estimated in Figure 29. Takeoff is made with the fans at a deflection of 60 deg;

that is, with the fan thrust deflected 30 deg aft of the vertical, with the main

nozzles undeflected (full aft), and at minimum fan thrust (minimum bleed) so as to

maximize the main nozzle thrust and acceleration. At lift-off speed, the fan thrust

is increased to rotate the aircraft to about 15 deg angle of attack and the main

nozzles are deflected 48 deg to achieve lift-off. The main nozzles are located at

the wing trailing edge to produce a favorable jet induced lift increment

(Reference 8) that more than offsets the unavoidable lift loss induced by the fan

flow. Takeoff speed is reduced to about 60 percent of that for the corresponding

CTOL airplane. The takeoff distance is only about 30 percent of that for the CTOL

(Figure 30) and a little over half that of the corresponding STOL concepts.

The lift fan STO-VL configuration has the penalty of the added weight and

complexity of the lift fans, but this is partially offset by not having the thrust

reversers and the jet flap system required for STOL.

CONCLUDING REMARKS AND SUGGESTIONS FOR ADDITIONAL WORK

This brief study has indicated that the takeoff and landing distance of high

performance fighter class aircraft can be approximately halved by using jet flaps

driven by high pressure compressor bleed air. Alternatively, if STO-VL performance

is needed, compressor exit bleed can be used to drive fold-out lift fans to augment

the deflected thrust of the primary nozzles. The bleed rates required are much

greater than those for which engines are normally rated, however, Reference 9

suggests that these bleed rates can be achieved. The engines would have to be

modified and requalified if these high bleed rates were to be used operationally.

The effect of bleed on the engine thrust and bleed pressure ratio used in this

study is an extrapolation of information available at low bleed rates. The actual

reduction in thrust at high bleed rates will depend upon the engine type and design.

If the concepts suggested in this study are of interest and are to be pursued,

further studies of specific candidate engines should be undertaken to obtain more

accurate data on the effects of bleed on the engine performance and to determine the

engine modifications and requalification program that would be required.

9
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It has been suggested that the penalties of high bleed rates could be reduced

by using new concepts such as variable area turbines or the turbine bypass. The

development effort in applying these concepts is probably comparable to developing

a new engine, but they should be investigated. Studies of engine concepts designed

to provide large amounts of high pressure bleed air with minimum performance penalty

should be undertaken to determine the cost and payoff of new technology engines

relative to modifications of existing engines.

The sizing of the foldout fan used in the present study was based on the tip

turbine fan study of Reference 4 which covered fan pressure ratios up to 1.7. Space

limitations in fighter configurations require high fan pressure ratios, and the data

of Reference 4 had to be extrapolated for the present study. Design studies similar

to the study of Reference 4 of fan-engine systems suitable for STO-VL fighter

configurations should be undertaken. The high fan pressure ratios required for

fighter installations require high hub-to-tip radius ratios which suggest that a

multiple stage hub turbine instead of the tip turbine may be used. The possibility

that a hub turbine driven fan may package better in a fighter configuration than a

tip turbine configuration should also be investigated.

The bleed air and high power levels used in STOL and STO-VL operation are only

required for very short periods of time. The high power portions of takeoff and

landing operations are measured in seconds rather than minutes. This circumstance

is recognized in the Harrier operation and the engine is qualified to a special

rating system. This should also be recognized in the above studies and special

techniques for increasing the thrust and bleed rates for very short periods of time

should be investigated. The studies should assume the the propulsion system will

be rated on a special rating system similar to that used in the Pegasus engine used

in the Harriers, Reference 10.
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MAX TAKEOFF WEIGHT (OVERLOAD)

DESIGN OR NORMAL TAKEOFF WEIGHT

MAX. USEFUL LOAD
EMPTY WEIGHT

A-6
60.000 F 15

A-1O
F/A.S18

40 ,0 0 0  F- --

AV-S8
AV-8A
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F-15 AV-SA
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.511

Figure I- Comparison of Useful Load Capability of Several
Fighter and Attack Aircraft

(Reference -- Jane's All the Worlds Aircraft, 1979-80)
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