

ON THE THEORY OF MULTIVARIATE ELLIPTICALLY CONTOURED DISTRIBUTIONS AND THEIR APPLICATIONS

BY
T. W. ANDERSON and KAI-TAI FANG

TECHNICAL REPORT NO. 54
MAY 1982

PREPARED UNDER CONTRACT NOOO14-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH
THEODORE W. ANDERSON, PROJECT DIRECTOR

T. W. Anderson
Stanford University
and
Kai-Tai Fang
Staford University
and
Institute of Applied Mathematics Academia Sinica, Beijing, China

TECHNICAL REPORT NO. 54
MAY 1982

PREPARED UNDER CONTRACT N00014-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH

Theodore W. Anderson, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the liited States Government.
Approved for public release; distribution unlimited.

T. W. Anderson
Stanford University
and
Kai-Tai Pang Stanford University
and
Institute of Applied Mathematics Academia Sinica, Beijing, China

1. Introduction.

If the characteristic function of an n-dimensional random vector x
 we say that $\underset{\sim}{x}$ is distributed according to an elliptically contoured distribution with parameters $\underset{\sim}{\mu}, \underset{\sim}{\sum}$, and ϕ, and we write $\underset{\sim}{x} \sim E_{n}\left(\underset{\sim}{\mu}, \underset{\sim}{\sum}, \phi\right)$.

The class of elliptically contoured distributions has been studied by several authors: Schoenberg (1938), Kelker (1970), Devlin, Gnanadesikan and Keltenring (1976), Kariya and Eaton (1977), Muirhead (1980), Cambanis, Huang and Simons (1981), and Anderson and Fang (1982).

Statisticians have been trying to extend the sample theory in multivariate analysis to the case of samples being dependent or the case of samples being from nonnormal populations. In this paper we consider sampling theory in which the distribution of the population belongs to the class of elliptically contoured distributions and the samples are dependent. According to this requirement multivariate elliptically contoured distributions are defined and some basic properties are discussed in Section 1 and Section 2. The distributions of some important statistics in the
sampling theory (such as the correlation coefficients, the multiple correlation coefficients, Hotelling- T^{2}, the sample covariance matrix, the generalized variance, the quadratic forms, etc.) are obtained in Sections 3 to Section 6. As applications of the theory on multivariate elliptically contoured distributions we consider the model of multiple regression with the error matrix being distributed according to a multivariate elliptically contoured distribution.

Kariya and Eaton (1977), and Muirhead (1980) discussed the effects of elliptical distributions on some standard procedures involving correlation coefficients, but the model that we consider in this paper is different from theirs.

Throughout the paper, $N_{n}(\underset{\sim}{\mu}, \underset{\sim}{\Sigma})$ denotes the n-dimensional normal distribution with mean $\underset{\sim}{\mu}$ and covariance matrix $\sum_{\sim} ; X_{k}^{2}$ denotes the chisquared variable with k degrees of freedom; $B\left(\alpha_{1}, \alpha_{2}\right)$ denotes the Beta distribution with parameters α_{1} and $\alpha_{2} ; D_{m}\left(\alpha_{1}, \ldots, \alpha_{m-1} ; \alpha_{m}\right)$ denotes the Dirichlet distribution with parameters $\alpha_{1}, \ldots, \alpha_{m} ; F(k, l)$ denotes F-distribution with k and l degrees of freedom, t_{n} denotes the t-distribution with n degrees of freedom; $W_{p}(\underset{\sim}{N}, n)$ denotes the Wishart distribution with covariance matrix $\underset{\sim}{E}: p \times p$ and n degrees of freedom; $U_{p, m, n}$ denotes Wilks' statistic which is the ratio $|G| /|\underset{\sim}{G} \underset{\sim}{H}|$, where $\underset{\sim}{G} \sim{\underset{p}{p}}^{W_{\sim}}(\underset{\sim}{ }, n)$, $\underset{\sim}{H} \sim W_{p}(\underset{\sim}{(}, m)$, and $\underset{\sim}{H}$ and $\underset{\sim}{G}$ are independent; $\underset{\sim}{I}$ denotes the $n \times n$ identity matrix; $\underset{\sim}{\varepsilon}$ denotes the $n \times 1$ vector with elements $1 ; r(A)$ denotes the rank of the matrix $\underset{\sim}{A}$ and ${\underset{\sim}{A}}^{-}$denotes a generalized inverse of \mathbf{A}.

2. Definitions and Basic Properties.

Let $\underset{\sim}{X}, \underset{\sim}{M}$ and $\underset{\sim}{T}$ be $n \times p$ matrices. We express them in terms of elements, columns, and rows as

Here $\underset{\sim}{x}=\operatorname{vec} \underset{\sim}{x}{ }^{\prime}=\left(x_{(1)}^{\prime}, x_{(2)}^{\prime}, \ldots, x_{(n)}^{\prime}\right)^{\prime}$ and with the same meaning for $\underset{\sim}{\mu}$ and $\underset{\sim}{t}$.

Definition 2.1. If the characteristic function of a random matrix $\underset{\sim}{X}$ has the form
with ${\underset{\sim}{1}}^{p} \ldots, \sum_{\mathrm{n}} \geq 0$, we say that $\underset{\sim}{X}$ is distributed according to a mitivariate (rows) elliptically contoured distribution and write $\underset{\sim}{x} \approx \operatorname{MES}_{n \times p}\left(\underset{\sim}{\left(X ; \Sigma_{1}\right.}, \ldots, \Sigma_{n} ; \phi\right)$.

Obviously, when $n=1$ the multivariate elliptically contoured distribution reduces to the common elliptically contoured distribution. Let ${\underset{\sim}{u}}^{(q)}$ denote a random vector which is uniformly distributed on the unit sphere in \mathbf{R}^{q} and $\Omega_{q}\left(\left\|_{v}\right\|^{2}\right)$ denote its characteristic function.

Let $\Phi_{m_{1}, \ldots, m_{n}}$ be the class of all functions $\phi:[0, \infty) \times[0, \infty) \times \cdots \times[0, \infty)$ $=[0, \infty)^{n} \rightarrow \mathbb{R}$ such that $\phi\left(\left\|{\underset{\sim}{1}}_{1}\right\|^{2}, \ldots,\left\|t_{\sim}\right\|^{2}\right)$ is a characteristic function, where t_{\sim}, \ldots, t_{n} are $m_{1} \times 1, \ldots, m_{n} \times 1$ vectors, respectively.

By a method similar to Schoenberg (1938), it can be shown that $\phi \in \Phi_{m_{1}, \ldots, m_{n}}$ if and only if

$$
\begin{equation*}
\phi\left(u_{1}, \ldots, u_{n}\right)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} \Omega_{m_{1}}\left(r_{1}^{2} u_{1}\right), \ldots, \Omega_{m_{n}}\left(r_{n_{n}}^{2}\right) d F\left(r_{1}, \ldots, r_{n}\right) \tag{2.2}
\end{equation*}
$$

for some distribution function $F\left(x_{1}, \ldots, x_{n}\right)$ on $[0, \infty)^{n}$. When $n=1$ (2.2) reduces to

$$
\begin{equation*}
\phi(u)=\int_{0}^{\infty} \Omega_{m}\left(u r^{2}\right) d F(r) \tag{2.3}
\end{equation*}
$$

Schoenberg (1938) pointed out that $\Phi_{m} \supset \Phi_{n}$ if $m<n$. If the distribution function F of R is related to $\phi \in \Phi_{n}$ as in (2.3) with n substituted for m, then also $\phi \in \Phi_{m}, m<n$, and there exists a distribution function $F^{*}(x)$ of R^{*} being related to ϕ as in (2.3) with F^{*} substituted for F. Cambanis, Huang and Simons pointed out that $R^{*} g R \cdot b$, where $b \geq 0, b^{2} \sim B(m / 2,(n-m) / 2)$ and b is independent of R. For convenience we denote these relationships by $R \leftrightarrow \phi \in \Phi_{n}$ and $R^{*} \stackrel{d}{\equiv} R \cdot b_{m / 2,(n-m) / 2} \leftrightarrow \phi \in \Phi_{m}$
 if and only if

$$
\begin{equation*}
X \underset{\sim}{d} \underset{\sim}{M}+\left(\operatorname{R}_{\sim} A_{\sim 1}^{\prime} u_{\sim 1}^{\left(k_{1}\right)}, \ldots,{\underset{\sim}{R}}_{R_{\sim n \sim n}^{\prime} u^{\prime}}^{\left(k_{n}\right)}\right)^{\prime} \tag{2.4}
\end{equation*}
$$

 are independent, $\sum_{\sim j}=A_{i j}^{\prime} A_{j}$ is a factorization of $\sum_{\sim j}, j=1, \ldots, n$, and the joint distribution function $F\left(x_{1}, \ldots, x_{n}\right)$ of $\left(R_{1}, \ldots, R_{n}\right)$ is related to ϕ as

$$
\begin{equation*}
\phi\left(u_{1}, \ldots, u_{n}\right)=\int_{[0, \infty)} \cdots \int_{[0, \infty)} \Omega_{k_{1}}\left(r_{1}^{2} u_{1}\right), \ldots, \Omega_{k_{n}}\left(r_{n}^{2} u_{n}\right) d F\left(r_{1}, \ldots, r_{n}\right) \tag{2.5}
\end{equation*}
$$

and "X $\underset{\sim}{d} \underset{\sim}{Y}$ " denotes that the distribution of $\underset{\sim}{X}$ is the same as that of $\underset{\sim}{X}$.
The proof is similar to one of Theorem 1 (Cambanis, Huang and Simons (1981)). The properties of the operation "d" are discussed by Anderson and Fang (1982). The following two properties are important in this paper:
(1) Assume that $\underset{\sim}{X} \underset{\sim}{X} \underset{j}{Y}$ and $f_{j}(\cdot), j=1, \ldots, m$, are Borel functions, then
(1i) Assume that $\underset{\sim}{X}$ and $\underset{\sim}{Y}$ are $n \times p$ random matrices, z is a random variable and is independent of $\underset{\sim}{X}$ and $\underset{\sim}{Y}$, respectively. If

$$
\begin{equation*}
p(z>0)=1 \tag{2.6}
\end{equation*}
$$

By using the first property and (2.4) we have

$$
\begin{equation*}
\left(R_{1}^{2}, \ldots, R_{n}^{2}\right) d\left(\left(\underset{\sim}{x}(1)^{-\mu} \underset{\sim}{\mu}(1)^{\prime} \sum_{\sim}^{-}\left(\underset{\sim}{x}(1)^{-\mu}(1)\right), \ldots,\left(\underset{\sim}{x}(n)_{\sim}^{-\mu}(n)^{\prime} \sum_{\sim}^{-}(\underset{\sim}{x}(n) \underset{\sim}{\mu}(n))\right\}\right.\right. \tag{2.7}
\end{equation*}
$$

where A_{\sim}^{-}is a generalized inverse of $\underset{\sim}{A}$. In particular, if ${\underset{\sim}{j}}^{f}=\underset{\sim}{I}$. $j=1,2, \ldots, n, \quad$ then (2.7) becomes

$$
\begin{equation*}
\left(R_{1}^{2}, \ldots, R_{n}^{2}\right) \stackrel{d}{\underline{s}}\left(\left\|{\underset{\sim}{x}(1)}^{x^{2}}\right\|^{2}, \ldots,\left\|x_{\sim}^{x}(n)\right\|^{2}\right) \tag{2.8}
\end{equation*}
$$

where $\|\underset{\sim}{x}(i)\|^{2}=\underset{\sim}{x}(i) \underset{\sim}{x}(1), i=1, \ldots, n, \quad$ or
(2.8)

$$
\left.\left(R_{1}, \ldots, R_{n}\right) \stackrel{d}{=}\left\|{\underset{\sim}{x}}_{(1)}\right\|, \ldots,\left\|{\underset{\sim}{x}}_{(n ;} ;\right\|\right)
$$

In this case, if $p(\underset{\sim}{X}=0)=0$, we have

$$
\begin{equation*}
\left[\frac{\underset{\sim}{x}(1)}{\| \underset{\sim}{x}(1)}\left\|, \ldots, \frac{\underset{\sim}{x}(n)}{\| \underset{\sim}{x}(n)}\right\|\right) \underset{\sim}{\underset{\sim}{u}}(p), \ldots,{\underset{\sim}{n}}_{(p)}^{(p)}, \tag{2.9}
\end{equation*}
$$

When $\underset{\sim}{X} \sim M E C_{n \times p}\left(\underset{\sim}{M} ; \sum_{\sim} ; \ldots, \sum_{\sim} ; \phi\right)$ with $\phi\left(u_{1}, \ldots, u_{n}\right)=\exp \left[-\left(u_{1}+\cdots+u_{n}\right) / 2\right]$, the corresponding population is normal, ice. $\left.\underset{\sim}{x}(j) \sim{\underset{p}{p}}_{\underset{\sim}{N}}^{\underset{\sim}{\mu}}(j),{\underset{\sim}{j}}_{j}\right), j=1, \ldots, n$, and $\underset{\sim}{x}(1), \ldots,{\underset{\sim}{x}}_{(n)}$ are independent. Now $R_{1}^{2}, \ldots, R_{n}^{2}$ are independently distributed according to $X_{k_{1}}^{2}, \ldots, x_{k_{n}}^{2}$, respectively. If the joint distribution of $R_{1}^{2}, \ldots, R_{n}^{2}$ is a multivariate chi-square distribution (or generalized Rayleigh distribution)(cf. Johnson and Kotz (1972), p. 220), then
 this method, we could generalize the theory of the distribution and estimation in the multiple normal population to the dependent case.
 i.e. $\left.\underset{\sim}{x}(j) \sim C_{p} \underset{\sim}{(\mu}(j),{\underset{\sim}{j}}, \phi^{*}\right)$, where $\phi^{*} \in \Phi_{k_{j}} \leftrightarrow R_{j}$. It is easy to see that $\phi^{*}(u)=\phi(0, \ldots, 0, u, 0, \ldots, 0)$ where u is in the $j-t h$ position.

What is the marginal distribution of ${\underset{\sim}{f}}_{f}$? From (2.4) we have
where ${\underset{\sim}{a}}_{\underset{j}{(l)}}$ is the j-th column of $\underset{\sim}{A_{l}}, j=1, \ldots, p ; \ell=1, \ldots, n$. Let

$$
{\underset{\sim}{a}}_{(\ell)}^{\left(u_{\sim}\right.}{ }^{\left(k_{\ell}\right)} \underset{\sim}{d}{\underset{\sim}{a}}_{(\ell)}^{y_{\ell}} /\left\|y_{\ell}\right\| \frac{d}{=} \sqrt{\sigma_{j j}^{(\ell)}} y_{\ell j} /\left\|{\underset{\sim}{l}}^{\prime}\right\|
$$

 Fang (1982)). Hence

$$
\underset{\sim}{x}={\underset{\sim}{u}}^{\mu}+\left(\begin{array}{cc}
R_{1} \sqrt{\sigma_{j j}^{(1)}} & z_{1} \tag{2.11}\\
\vdots & \\
R_{n} \sqrt{\sigma_{j j}^{(n)}} & z_{n}
\end{array}\right],
$$

where z_{1}, \ldots, z_{n} are independent, $z_{j} \geq 0, z_{j}^{2} \sim B\left(\frac{1}{2}, \frac{k_{j}-1}{2}\right), R_{1}, \ldots, R_{n}$ are independent of z_{1}, \ldots, z_{n} and $\left(R_{1}, \ldots, R_{n}\right) \sim F\left(x_{1}, \ldots, x_{n}\right)$.

We believe some further reaults similar to the elliptically contoured distribution could be obtained by the method used by Cambanis, Huang and Simons (1981). In this paper we mainly pay attention to a specific subclass of multivariate elliptically contoured distributions which will be defined in the next section.
3. The Case in Which the Characteristic Function is Composed of

Addition of Arguments.
From now on we assume

$$
\begin{equation*}
\phi\left(u_{1}, \ldots, u_{n}\right)=\phi\left(u_{1}+\cdots+u_{n}\right), \tag{3.1}
\end{equation*}
$$

and we still denote the multivariate elliptically contoured distribution by MEC ${ }_{n \times p}\left(\underset{\sim}{m} ; \sum_{\sim}, \cdots, \Sigma_{\sim} ; \phi\right)$.

Theorem 1. $\underset{\sim}{X} \sim M E C_{n \times p}\left(\underset{\sim}{M} ; \sum_{\sim}, \ldots, \Sigma_{\sim} ; \phi\right)$ if and only if $\underset{\sim}{x} \sim E C_{n p}$ $(\underset{\sim}{\mu}, \underset{\sim}{V}, \phi)$ with
(3.2)

$$
\underset{\sim}{V}=\left(\begin{array}{llll}
{\underset{\sim}{1}}_{1} & \underset{\sim}{0} & \cdots & \underset{\sim}{0} \\
\underset{\sim}{\underset{\sim}{\sim}} & \underset{\sim}{\underset{2}{2}} & \cdots & \underset{\sim}{0} \\
\vdots & \vdots & & \vdots \\
\underset{\sim}{0} & \underset{\sim}{0} & \cdots & \underset{\sim}{\Sigma}
\end{array}\right)
$$

 of $\underset{\sim}{X}$ is (cf. (2.1) and (3.1).)
1.e. $\underset{\sim}{x} \approx E C_{n p}(\underset{\sim}{\mu}, \underset{\sim}{V}, \phi)$. The " $1 f$ " part is obvious and the theorem follows.

Theorem 1 shows us that for any $\phi \in \Phi_{k}$ we can construct a $\phi\left(u_{1}, \ldots, u_{n}\right)$ by (3.1) such that $\phi \in \Phi_{k_{1}, \ldots, k_{n}}$ with $k_{1}+\cdots+k_{n}=k$.

Corollary. $\quad \underset{\sim}{X} \sim \operatorname{MHBC}_{n \times p}\left(\underset{\sim}{M} ; \sum_{\sim}, \ldots, \sum_{\sim} ; \phi\right)$ if and only if $\underset{\sim}{x} \sim E C_{n p}(\underset{\sim}{\mu}, \underset{\sim}{V}, \phi)$ with $\underset{\sim}{V}={\underset{\sim}{n}}^{\otimes} \otimes \underset{\sim}{\Sigma}$.

Definition 3.1. If the random vector $\left(z_{1}, \ldots, z_{m}\right)$ satisfies

$$
\begin{equation*}
\left(z_{1}, \ldots, z_{m}\right)=R^{2}\left(d_{1}, \ldots, d_{m}\right) \tag{3.3}
\end{equation*}
$$

where $\left(d_{1}, \ldots, d_{m-1}\right) \sim D_{m}\left(\alpha_{1}, \ldots, \alpha_{m-1} ; \alpha_{m}\right), d_{m}=1-\sum_{i=1}^{m-1} d_{i}, R \geq 0, R \sim F(x)$ and R is independent of d_{1}, \ldots, d_{m-1}, then we write $\left(z_{1}, \ldots, z_{m}\right) \sim$ $G_{m}\left(\alpha_{1}, \ldots, \alpha_{m-1}, \alpha_{m} ; \phi\right)$ and $\left(z_{1}, \ldots, z_{m-1}\right) \sim G_{m}\left(\alpha_{1}, \ldots, \alpha_{m-1} ; \alpha_{m} ; \phi\right)$, where $\phi \in \Phi_{\mathrm{n}} \leftrightarrow$ the distribution function $F(x)$ of R and $n=2 \Sigma_{1}^{m} \alpha_{i}$.

Anderson and Fang (1982) point out that if $P(R=0)=0$ the density of z_{1}, \ldots, z_{m-1} is
(3.4) $\frac{\Gamma\left(\frac{n}{2}\right)}{\frac{m}{m} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{m} z_{i}^{\alpha_{i}^{-1}} \int_{\sqrt{\sum_{1}^{-1} z_{1}}}^{\infty}$

$$
\begin{aligned}
& r^{-(n-2)}\left(r^{2}-\sum_{1}^{m-1} z_{i}\right)^{\alpha_{m}^{-1}} d F(r), \\
& \text { for } z_{1}, \ldots, z_{m-1} \geq 0 .
\end{aligned}
$$

Further if $\underset{\sim}{x} \sim E C_{n}\left(\underset{\sim}{\mu}, \underset{\sim}{\sum}, \phi\right)$ has a density, which must have the form

$$
\begin{equation*}
|\Sigma|_{\sim}^{-\frac{1}{2}} g\left((\underset{\sim}{x}-\underset{\sim}{\mu})^{\prime} \sum_{\sim}^{-1}(\underset{\sim}{x}-\underset{\sim}{\mu})\right) \tag{3.5}
\end{equation*}
$$

for a suitable function $g(\cdot)$, then the density of R related to ϕ Is

$$
\begin{equation*}
f(r)=\frac{2 \pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} x^{n-1} g\left(x^{2}\right) \tag{3.6}
\end{equation*}
$$

In this case the density of $G_{m}\left(\alpha_{1}, \ldots, \alpha_{m-1}, \alpha_{m} ; \phi\right)$ has the simpler form

$$
\begin{equation*}
\prod_{\prod_{1}^{m} \Gamma\left(\alpha_{i}\right)}^{\pi^{n / 2}} \prod_{i=1}^{m} z_{i}^{\alpha_{i}^{-1}} g\left(\sum_{1}^{m} z_{i}\right) \tag{3.7}
\end{equation*}
$$

 then $\underset{\sim}{x} \sim E C_{n p}(\underset{\sim}{\mu}, \underset{\sim}{V}, \phi)$ where $\underset{\sim}{V}$ is defined by (3.2). Hence, $\underset{\sim}{x}$ has the stochastic representation (cf. Cambanis, Huang and Simons (1981))

$$
\begin{equation*}
\underset{\sim}{x}{ }^{\mathrm{d}} \underset{\sim}{\mu}+\underset{\sim}{R B}{\underset{\sim}{u}}^{(k)}, \quad k=\sum_{j=1}^{n} k_{j}, \tag{3.8}
\end{equation*}
$$

where $\underset{\sim}{B}{ }_{\sim}^{B}=\underset{\sim}{V}$ and $\underset{\sim}{B}$ is an $n p \times k$ matrix. On the other hand, there is the stochastic representation (2.4) for $\underset{\sim}{X}$; what is the relationship between R and R_{1}, \ldots, R_{n}, and between $\underset{\sim}{B}$ and $\underset{\sim}{A}(i=1, \ldots, n)$?

Theorem 2.

$$
\begin{equation*}
\text { (i) }\left(R_{1}^{2}, \ldots, R_{n}^{2}\right) \sim G_{n}\left(\frac{k_{1}}{2}, \ldots, \frac{k_{n-1}}{2}, \frac{k_{n}}{2} ; \phi\right) \text {, } \tag{ii}
\end{equation*}
$$

$$
\underset{\sim}{B}=\left(\begin{array}{llll}
{\underset{\sim}{A}}_{1} & \underset{\sim}{0} & \cdots & \underset{\sim}{0} \tag{3.9}\\
0 & \underset{\sim}{A} & \cdots & \underset{\sim}{0} \\
\vdots & \vdots & & \vdots \\
\underset{\sim}{0} & \underset{\sim}{0} & \cdots & \underset{\sim}{A}
\end{array}\right) .
$$

Proof. Comparing (2.4) and (3.8), the formula (3.9) follows and we have

$$
\underset{\sim}{R_{u}}(k) d\left(\begin{array}{c}
R_{1}^{\left(k_{1}\right)} \\
R_{1}{ }_{1} \\
\vdots \\
\left(k_{n}\right) \\
R_{n}{ }_{n}
\end{array}\right) \text {. }
$$

 have k_{1}, \ldots, k_{n} elements of $\underset{\sim}{y}$, respectively. Therefore
because $\underset{\sim}{\underset{j}{j}}{ }^{\left(k_{j}\right)} \underset{=}{d}{\underset{Z}{ }}^{(j)} /\left\|{\underset{\sim}{y}}^{(j)}\right\|, j=1, \ldots, n$, and $\underset{\sim}{y}{ }^{(j)}\left\|{\underset{\sim}{y}}^{(j)}\right\|$ is independent of $\|\underset{\sim}{\underset{\sim}{(j)}}\|$, and therefore ${\underset{\sim}{y}}^{(j)} /\|\underset{\sim}{(j)}\|$ is independent of $\left\|{\underset{\sim}{y}}^{(j)}\right\| /\|\underset{\sim}{y}\|$. Now

$$
\left(R_{1}^{2}, \ldots, R_{n}^{2}\right) \stackrel{d}{=} R^{2}\left(\frac{\left\|{\underset{\sim}{y}}^{(1)}\right\|^{2}}{\|\underline{y}\|^{2}}, \ldots, \frac{\left\|{\underset{\sim}{y}}^{(n)}\right\|^{2}}{\|\underset{\sim}{y}\|^{2}}\right)
$$

the theorem follows. Q.E.D.
 $\left(R_{1}^{2}, \ldots, R_{n}^{2}\right) \sim G_{n}(l / 2, \ldots, \ell / 2, \ell / 2 ; \phi)$ and

$$
\underset{\sim}{\mathbf{B}}=\left(\begin{array}{cccc}
\underset{\sim}{\mathbf{A}} & \underset{\sim}{0} & \cdots & \underset{\sim}{0} \\
\underset{\sim}{\mathbf{A}} & \cdots & \underset{\sim}{0} \\
\vdots & \vdots & & \vdots \\
\underset{\sim}{0} & \underset{\sim}{0} & \cdots & \underset{\sim}{\mathbf{A}}
\end{array}\right) .
$$

Definition 3.2. If $\underset{\sim}{X} \sim \operatorname{MEC}_{n \times p}\left(\underset{\sim}{M} ; \sum_{i}, \ldots, \sum_{\sim}^{n} ; \phi\right),{\underset{\sim}{1}}=\cdots=\sum_{\sim}=\sum_{\sim}$ and $\underset{\sim}{M}=\varepsilon_{\sim}^{\varepsilon} \otimes \underset{\sim}{\tilde{\mu}}$, we write $\underset{\sim}{X} \sim L E C_{n \times p}\left(\underset{\sim}{\tilde{\mu}}, \sum_{\sim}, \phi\right)$.

Corollary 2. Assume $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{\tilde{\mu}}, \underset{\sim}{\sum}, \phi\right)$ and $r k(\underset{\sim}{\Sigma})=\ell$, then

$$
\begin{equation*}
\underset{\sim}{X}{\underset{\sim}{\|}}_{\varepsilon_{n}} \otimes \underset{\sim}{\mu}{ }^{\prime}+\underset{\sim}{R U A} \tag{3.10}
\end{equation*}
$$

where $\underset{\sim}{A^{\prime}} \underset{\sim}{A}=\underset{\sim}{\sum}, \underset{\sim}{A}: \ell \times p, U: n \times \ell$, vec $\underset{\sim}{U}={\underset{\sim}{u}}_{(n \ell)}^{(n)} R \leftrightarrow \phi \varepsilon \Phi_{n \ell}$ and R is independent of $\underset{\sim}{U}$.
 Let $\underset{\sim}{U}=\left(\underset{\sim}{U}(1), \cdots,{\underset{\sim}{u}}_{(n)}\right)^{\prime}$, then

$$
\begin{aligned}
& {\underset{\sim}{x}}^{d}{\underset{\sim}{\varepsilon}}_{n} \otimes \underset{\sim}{\tilde{\mu}}+R\left(\begin{array}{ccc}
A^{\prime} & \cdots & \underset{\sim}{0} \\
\vdots & & \vdots \\
\underset{\sim}{0} & \cdots & {\underset{\sim}{A}}^{\prime}
\end{array}\right) \underset{\sim}{\underset{u}{u}}(n l) \\
& \underset{\underline{E}}{\underset{\sim}{E}}{ }_{n} \otimes \underset{\sim}{\tilde{\mu}}+R\left(\begin{array}{c}
A^{\prime} \underset{\sim}{u}(1) \\
\vdots \\
A^{\prime} \underset{\sim}{u}(n)
\end{array}\right),
\end{aligned}
$$

because ${\underset{\sim}{u}}^{(n l)}=\operatorname{vec} \underset{\sim}{U} \underset{(}{\mathbf{d}} \operatorname{vec} \underset{\sim}{U}{ }^{\prime}$. Thus

In order to obtain the marginal distribution of $\underset{\sim}{X}$, we need the following Lemma which is from Cambanis, Huang and Simons (1981), and Anderson and Pang (1982).

Leman 2. Assume $\underset{\sim}{y} \sim \operatorname{EC}_{n}(\underset{\sim}{\mu}, \underset{\sim}{I}, \phi), \phi \in \Phi_{n}$ corresponds to R and C
 where $\phi \in \Phi_{p} \leftrightarrow R^{*} \stackrel{d}{=} \mathrm{Rb}_{\mathrm{p}} / 2,(\mathrm{n}-\mathrm{p}) / 2^{\circ}$
 1 and Lema 2 we imediately obtain the marginal distributions of rows and columns of $\underset{\sim}{X}$:
(1) $\underset{\sim}{x}(j) \sim E C_{p}\left(\underset{\sim}{\sim}, \sum_{\sim}, \phi\right)$, where $\phi \in \Phi_{\ell} \leftrightarrow R^{*} \underset{=}{d} \mathbf{R b}_{\ell / 2, \ell(n-1) / 2^{\circ}}$
 μ_{j} is the $j-t h$ component of $\underset{\sim}{\tilde{\mu}}$ and $\underset{\sim}{\sum}=\left(\sigma_{i j}\right)$.

The following corollaries concern the distributions of linear functions of $\underset{\sim}{x}$.

Corollary 1. Assume $\underset{\sim}{x} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{\mu}, \sum_{\sim}, \phi\right), \quad \operatorname{rk}\left(\underset{\sim}{\sum}\right)=\ell, \quad \phi \in \Phi_{n \ell} \leftrightarrow R$, and $\underset{\sim}{B}$ is a $p \times q$ matrix with $r k(\underset{\sim}{B})=\min (p, q)$, then
(1) $\underset{\sim}{X B} \sim L E C_{n \times q}\left(\underset{\sim}{B} \underset{\sim}{\underset{\sim}{\sim}}, \underset{\sim}{B}{ }_{\sim}^{P B}, \phi\right)$ with $\phi \in \Phi_{\sim}{ }_{n \ell} \rightarrow R$ if $q \geq \ell$;
(2) $\underset{\sim}{X B} \sim L E C_{n \times q}\left(B_{\sim}^{\prime} \underset{\sim}{\tilde{\mu}}, \underset{\sim}{B} \underset{\sim}{\sum B}, \phi\right) \quad$ with $\phi \in \Phi_{n q} \leftrightarrow R^{*}=R b_{n q} / 2, n(\ell-q) / 2$ if $q<\ell$.

Proof. As $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{\tilde{u}}, \underset{\sim}{\sum}, \phi\right)$ with $\operatorname{rk}\left(\underset{\sim}{\sum}\right)=\ell$, then

$$
\underset{\sim}{X}{ }^{d} \underset{\sim}{E} \varepsilon_{n} \otimes \underset{\sim}{\underset{\sim}{\mu}}{ }^{\prime}+\underset{\sim}{R U A}
$$

where $\underset{\sim}{A^{\prime}} \underset{\sim}{A}=\underset{\sim}{\mathcal{E}}$. Thus

$$
\begin{aligned}
& =\varepsilon_{\mathrm{n}} \otimes\left(\underset{\sim}{\tilde{\sim}}{ }_{\sim}^{\mathrm{B}}\right)+\underset{\sim}{\mathrm{RU}}(\underset{\sim}{\mathrm{AB}}),
\end{aligned}
$$

or

The corollary follows from Lema 2 and Corollary 2 of Theorem 2. Q.E.D.

Corollary 2. Assume $\underset{\sim}{x} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{\sim}, \underset{\sim}{\sum}, \phi\right), r k\left(\underset{\sim}{\sum}\right)=\ell, \phi \in \Phi_{n \ell} \leftrightarrow R$, and $\underset{\sim}{B}$ is a $q \times n$ matrix with $r k \underset{\sim}{k}=q<n$. Then

$$
\begin{equation*}
\operatorname{vec}(\underset{\sim}{B X}) \sim E C_{q p}\left(\underset{\sim}{\tilde{\sim}} \otimes(\underset{\sim}{B E}),{\underset{\sim}{x}}_{\mathcal{E}}^{\otimes}(\underset{\sim}{B B} \cdot,, \phi),\right. \tag{3.11}
\end{equation*}
$$

where $\phi \in \Phi_{q l} \leftrightarrow R^{*}=\mathrm{Rb}_{\mathrm{q} \ell / 2,(\mathrm{n}-\mathrm{q}) \ell / 2}$.

Proof. From the assumption

$$
\underset{\sim}{X}{ }_{\sim}^{\mathbf{d}}{\underset{\sim}{n}}^{(\otimes \underset{\sim}{\tilde{\mu}}}{ }^{\prime}+\underset{\sim}{\operatorname{RUN}},
$$

where $\underset{\sim}{U}: n \times \ell, \underset{\sim}{A}: \ell \times P$ and $\underset{\sim}{A^{\prime}} \underset{\sim}{A}=\underset{\sim}{\sum}$. It can be shown that

Thus

$$
\begin{aligned}
& \equiv \underset{\sim}{\tilde{\mu}} \otimes \underset{\sim}{(B \varepsilon})+R C^{\prime} u^{(n \ell)} \quad \text { (say). }
\end{aligned}
$$

Remark. The above two corollaries show us that the distribution of $\underset{\sim}{X B}$ still belongs to the class of the multivariate elliptically contoured distributions, but the distribution of $\underset{\sim}{B X}$ in general does not belong to this class unless $\underset{\sim}{B B}{ }^{\prime}=c^{2} \underset{\sim}{I} q$ where c is a constant.

Theorem 3. Suppose that $\underset{\sim}{x} \sim L E C_{n \times p}\left(\underset{\sim}{\tilde{\sim}}, \underset{\sim}{\sum}, \phi\right)$ with $\underset{\sim}{\sum}>0$, then
(1) $R^{2} \stackrel{d}{=} \operatorname{tr}{\underset{\sim}{\Sigma}}^{-1} \underset{\sim}{G}$ where $R \leftrightarrow \phi \in \Phi_{n p}$ and

$$
\begin{equation*}
\underset{\sim}{G}=\sum_{i=1}^{n}(\underset{\sim}{x}(i)-\tilde{\sim})(\underset{\sim}{x}(i)-\tilde{\sim})^{\prime}=\left(x-\varepsilon_{n} \otimes \tilde{\sim}^{\prime}\right)^{\prime}\left(\underset{\sim}{x}-\underset{\sim}{\varepsilon} \otimes \tilde{\sim}^{\tilde{\mu}}\right) ; \tag{3.12}
\end{equation*}
$$

(2) The density of $\underset{\sim}{X}$ has the form of

$$
\begin{equation*}
|\Sigma \underset{\sim}{\mid}|^{-n / 2} g\left(\operatorname{tr}{\underset{\sim}{\sim}}^{-1} \underset{\sim}{G}\right) \tag{3.13}
\end{equation*}
$$

if it exists.
 From Corollary 1 of Cambanis, Huang and Simons (1981)

$$
\begin{aligned}
& \left.R^{2} \stackrel{d}{\left(x-\varepsilon_{n}\right.} \otimes \underset{\sim}{\tilde{\mu}}\right)^{\prime}(\underset{\sim}{I} \otimes \underset{\sim}{x})^{-1}\left(\underset{\sim}{x}-\varepsilon_{n} \otimes \underset{\sim}{\tilde{\mu}}\right) \\
& =\left(\underset{\sim}{x}-\varepsilon_{\sim} \otimes \underset{\sim}{\tilde{\mu}}\right)^{\prime}\left(\underset{\sim}{I} \otimes \underset{\sim}{\Sigma}{ }^{-1}\right)\left(\underset{\sim}{x}-\varepsilon_{n} \otimes \underset{\sim}{\tilde{\sim}}\right) \\
& =\sum_{i=1}^{n}\left(\underset{\sim}{x}(1)^{-\tilde{\mu}}\right)^{\prime} \sum_{\sim}^{-1}(\underset{\sim}{x}(i)-\underset{\sim}{\tilde{\mu}})=\operatorname{tr} \sum_{i=1}^{n}{\underset{\sim}{\sim}}^{-i}(\underset{\sim}{x}(i)-\underset{\sim}{\tilde{\mu}})(\underset{\sim}{x}(i)-\tilde{\sim})^{\prime} \\
& =\operatorname{tr}{\underset{\sim}{\sim}}^{-1} \underset{\sim}{G} .
\end{aligned}
$$

If $\underset{\sim}{x}$ has a density, so does $\underset{\sim}{x}$ and the density of $\underset{\sim}{x}$ has the form of (cf. (3.5))

$$
\begin{aligned}
& =|\underset{\sim}{\mid}|^{-n / 2} g\left(\operatorname{tr}{\underset{\sim}{x}}^{-1} \underset{\sim}{G}\right) \text { Q.E.D. }
\end{aligned}
$$

Corollary 1. Under the supposition of Theorem 3, if $\underset{\sim}{X}$ has the density (3.13), then R has the density

$$
\begin{equation*}
\frac{2 \pi^{\frac{1}{2} n p}}{\Gamma\left(\frac{1}{2} n p\right)} r^{n p-1} g\left(r^{2}\right) \tag{3.14}
\end{equation*}
$$

The proof uses (3.6).
 $\underset{\sim}{x}(1) \cdots, X_{\sim}^{x}(n)$ are independent, then $\operatorname{tr} \underset{\sim}{{\underset{\sim}{n}}^{-1}} \sim X_{n p}^{2}$.

Proof. Take $\phi=\exp (-t / 2)$ in Theorem 3. As we know $R^{2} \eta \chi_{n p}^{2}$, the corollary follows.
4. The Distributions of Correlation Coefficients, the Multiple Correlation Coefficients, and T^{2}.

Throughout the rest of this paper we assume $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{\mu}, \sum_{\sim}, \phi\right)$ with $\underset{\sim}{\sum}>0$ and $\phi \in \Phi_{n p} \leftrightarrow$ the distribution function F of R.

According to the common definition of the correlation coefficient $r_{i j}$,

$$
r_{i j}=\frac{\left({\underset{\sim}{x}}_{i}-\bar{x}_{i} \varepsilon_{\sim n}\right)^{\prime}\left(\underset{\sim}{x}{\underset{j}{j}}^{\left.-\bar{x}_{j} \varepsilon_{\sim n}\right)}\right.}{\| \underset{\sim i}{x_{i}-\bar{x}_{i \sim n} \varepsilon_{i}\|\cdot\| \underset{\sim j}{ }-\bar{x}_{j \sim n}^{\varepsilon_{\sim}} \|}}
$$

where $\bar{x}_{i}=\frac{1}{n}{\underset{\sim}{n}}_{\prime}^{\prime} x_{i}, i=1, \ldots, p$. Let $\underset{\sim}{D}=I_{\sim}-\frac{1}{n}{\underset{\sim n}{n}}^{\varepsilon} \varepsilon_{n}^{\prime}$; then

$$
\begin{equation*}
r_{i j}=\frac{x_{i}{ }_{i} x_{\sim j}}{\sqrt{x_{i}^{\prime} D x_{i} \cdot x_{j}^{p} D x_{\sim j}}} . \tag{4.1}
\end{equation*}
$$

At first we consider $\left.\underset{\sim}{x}(j) \sim{\underset{p}{p}}^{N_{\sim}} \underset{\sim}{\tilde{\mu}}, \underset{\sim}{\Sigma}\right), j=1, \ldots, n$, and suppose $\underset{\sim}{x}(1), \ldots, \underset{\sim}{x}(n)$ are independent. There exist $\left.\underset{\sim}{y}(j) \sim{\underset{p}{N}}^{N_{p}} \underset{\sim}{0}, \underset{\sim}{I_{p}}\right), j=1, \ldots, n$, $y_{(1)}, \cdots, Y_{(n)}$ independent such that

$$
\begin{equation*}
\underset{\sim}{x}(j) \underset{\sim}{d}+A_{\sim}^{A} y_{(j)}, j=1, \ldots, n \tag{4.2}
\end{equation*}
$$

where $\underset{\sim}{\sum}=\underset{\sim}{A^{\prime}}$ A. Let

$$
\underset{\sim}{Y}=\left(\begin{array}{c}
\underset{\sim}{y^{\prime}}(1) \tag{4.3}\\
\vdots \\
{\underset{\sim}{y}}^{\prime}(n)
\end{array}\right), \underset{\sim}{A}=(\underset{\sim}{a}, \ldots, \underset{\sim}{a}) \quad \text { and } \quad \underset{\sim}{\tilde{\mu}}=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{p}
\end{array}\right) ;
$$

it is easy to see that

$$
\begin{equation*}
\underset{\sim}{x}{ }_{1}^{d} \mu_{1} \varepsilon_{\sim}+\underset{\sim}{Y a}{ }_{\sim}, \quad i=1, \ldots, p \tag{4.4}
\end{equation*}
$$

Hence we have

Secondly, we come back to the case of $\underset{\sim}{X} \sim L E C_{n \times p}\left(\underset{\sim}{\tilde{\mu}}, \underset{\sim}{\sum}, \phi\right)$. From (3.10)

$$
\underset{\sim}{x} \underset{j}{d} \mu_{j \sim n} \varepsilon_{\sim}+\operatorname{RUa}_{\sim},
$$

where $\underset{\sim}{U}: n \times p$ and rec $\underset{\sim}{U} \stackrel{d}{\underline{\mathbf{d}}} \underset{\sim}{(n p)}$. Hence
because $\underset{\sim}{U} \mathbb{\#} \underset{\sim}{Y} /\left(\operatorname{tr} \underset{\sim}{Y}{ }_{\sim}^{Y}\right)^{\frac{1}{2}}$, now (4.1) becomes
which is equivalent to the normal case by the properties (i) and (ii) of the operation "d".

Theorem 4. Suppose that $\underset{\sim}{x} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{\tilde{\mu}}, \underset{\sim}{\sum}, \phi\right)$ with $\underset{\sim}{\Sigma}>0$, then the joint distribution of $r_{i j}, 1=1, \ldots, j-1 ; j=2, \ldots, p$ is the same as the
 independent.

Corollary 1. Suppose that $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p}(\underset{\sim}{\sim}, \underset{\sim}{T}, \phi)$ and $\underset{\sim}{R}=\left(r_{i j}\right)$, then the foint density of $r_{i j}, i<j$ is

$$
\begin{equation*}
\frac{\left[\Gamma\left(\frac{1}{2} m\right)\right]^{p}}{\Gamma_{p}\left(\frac{1}{2} n\right)}|\underline{\sim}|^{\frac{1}{2}(m-p-1)} \tag{4.6}
\end{equation*}
$$

where $\Gamma_{p}\left(\frac{m}{2}\right)=\pi^{\frac{1}{4} p(p-1)} \underset{\prod_{i=1}}{p} \Gamma\left(\frac{m-i+1}{2}\right)$ and $m=n-1$. In particular, the density of $r_{i j}$ is

$$
\begin{equation*}
\frac{\Gamma\left(\frac{1}{2} m\right)}{\sqrt{\pi} \Gamma\left(\frac{1}{2}(m-1)\right)}\left(1-r_{i j}^{2}\right)^{\frac{1}{2}(m-3)} \tag{4.7}
\end{equation*}
$$

(cf. Anderson (1958), Section ?.6; .

Corollary 2. Suppose that $\underset{\sim}{x} \sim \operatorname{LEC}_{n \times p} \underset{\sim}{\left(\tilde{\sim}, \sum_{\sim}, \phi\right)}$ and $\rho_{i j}=\sigma_{i j} / \sqrt{\sigma_{i 1} \sigma_{j j}}$ $\neq 0$, then the density af $r_{i j}$ is

$$
\begin{equation*}
\frac{2^{m-2}\left(1-\rho_{j i}^{2}\right)^{m / 2}\left(1-r_{i j}^{2}\right)^{(m-3) / 2}}{(m-2)!\pi} \sum_{\alpha=0}^{\infty} \frac{\left(2 \rho_{i j} r_{i j}\right)^{\alpha}}{\alpha!} r^{2}\left(\frac{1}{2}(m+\alpha)\right) \tag{4.8}
\end{equation*}
$$

(cf. Anderson (1958), Section 4.2).

Now we consider the distribution of the multiple correlation coefficient, for inatance, the multiple correlation coefficient between the first variable and the rest of the variables. Denote (cf. (3.12)).

$$
\underset{\sim}{G}=\left(\begin{array}{ll}
g_{11} & {\underset{\sim}{12}}^{G_{21}} \\
{\underset{\sim}{G}}_{21} & {\underset{\sim}{G}}_{22}
\end{array}\right) \text { and } \underset{\sim}{\Sigma}=\left(\begin{array}{ll}
\sigma_{11} & {\underset{\sim}{\Sigma}}_{12} \\
{\underset{\sim}{21}} & {\underset{\sim}{\Sigma}}_{22}
\end{array}\right) \text {, }
$$

where g_{11} and σ_{11} are the first diagonal elements of $\underset{\sim}{G}$ and $\underset{\sim}{\Sigma}$,
respectively. According to the definition of the sample multiple correlatron coefficient

$$
R_{*}^{2}=\frac{\mathrm{G}_{12} \mathrm{G}_{22}^{-1} \mathrm{G}}{\mathrm{~g}_{11}}
$$

 $\underset{\sim}{G 2}=\underset{\sim}{X}(2) \underset{\sim}{D}(2) \quad$ where $\underset{\sim}{X}(2)=\left(\underset{\sim}{x}{ }_{2}, \ldots, \underset{\sim}{x}\right)$. By the same method as in the case of the correlation coefficients we have
where $\underset{\sim}{A}(2)=(\underset{\sim}{a}, \ldots, \underset{\sim}{a})$ for the normal case and the same expression for R_{*}^{2} in the case of $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p}(\underset{\sim}{\tilde{\mu}}, \underset{\sim}{\Sigma}, \phi)$.

Theorem 5. Suppose $\underset{\sim}{X} \sim \operatorname{LEC} \underset{n \times p}{ }\left(\underset{\sim}{\tilde{\mu}}, \underset{\sim}{\sum}, \phi\right)$ with $\underset{\sim}{\sum}>0$.
(1) If

$$
\overline{\mathrm{R}}^{2} \equiv \frac{\sum_{12} \sum_{22}^{-1} \Sigma_{21}}{\sigma_{11}}=0
$$

then $\left[R_{k}^{2} /\left(1-R_{*}^{2}\right)\right](n-p) /(p-1) \sim F(p-1, n-p)$.
(2) If $\vec{R}^{2}>0$, then the density of R_{*}^{2} is

$$
\frac{\left(1-R_{*}^{2}\right)^{\frac{1}{2}(n-p-2)}\left(1-\bar{R}^{2}\right)^{\frac{1}{2}(n-1)}}{\Gamma\left(\frac{1}{2}(n-p)\right) \Gamma\left(\frac{1}{2}(n-1)\right)} \sum_{\alpha=0}^{\infty} \frac{\left(\bar{R}^{2}\right)^{\alpha}\left(R_{*}^{2}\right)^{\frac{1}{2}(p-1)+\alpha-1} \Gamma^{2}\left(\frac{1}{2}(n-1)+\alpha\right)}{\alpha!\Gamma\left(\frac{1}{2}(p-1)+\alpha\right)} .
$$

(cf. Anderson (1958) Section 4.4)).

Suppose $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{\tilde{\sim}}, \underset{\sim}{\sum}, \phi\right)$ with $\underset{\sim}{\sum}>0$ we want to test

$$
\mathrm{H}_{0}: \underset{\sim}{\tilde{\tilde{}}}={\underset{\sim}{\mu}}_{0} \text { and } \mathrm{H}_{1}: \underset{\sim}{\tilde{\sim}} \neq{\underset{\sim}{\mu}}_{0} \text {. }
$$

Without loss of generality we can assume $\underset{\sim}{\underset{\sim}{\mu}}=0$. It is well-known that we can use Hotelling's $\mathrm{T}^{\mathbf{2}}$-test for testing the null hypothesis under the normal distribution. What is the distribution of T^{2} in the case of the multiple elliptically contoured distributions?

According to the definition of $\mathrm{T}^{\mathbf{2}}$ we have

$$
\begin{equation*}
T^{2}=n(n-1) \underset{\sim}{\bar{x}}{\underset{\sim}{G}}^{-1} \underset{\sim}{\bar{x}}, \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{\sim}{\bar{x}}=\frac{1}{n} \sum_{j=1}^{n} \underset{\sim}{x}(j)=\frac{1}{n}{\underset{\sim}{x}}^{\prime} \varepsilon_{\sim}, \tag{4.10}
\end{equation*}
$$

and $\underset{\sim}{G}$ is defined by (3.12). Using $\underset{\sim}{G}=\underset{\sim}{X} \underset{\sim}{D X}$ and (4.10) we have

$$
\begin{equation*}
T^{2}=n(n-1)\left(\frac{1}{n}{\underset{\sim}{n}}_{n}^{\prime} X\right)\left(\underset{\sim}{x}{\underset{\sim}{x}}^{D x}\right)^{-1}\left(\frac{1}{n}{\underset{\sim}{x}}^{\prime} \varepsilon_{n}\right) \tag{4.11}
\end{equation*}
$$

 (4.2)-(4.4)). If the null hypothesis is true we have

By (3.10) and $\underset{\sim}{U} \underset{\sim}{\mathbf{d}} \underset{\sim}{Y} /(t r \underset{\sim}{Y} \underset{\sim}{Y})^{\frac{1}{2}}$, when the null hypothesis is true we obtain the same expression as (4.12) for T^{2} in the case of $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{\tilde{\sim}}, \underset{\sim}{\sum}, \phi\right)$.
 is defined by (4.9), if $\underset{\sim}{\tilde{\mu}}=0$ the distribution of $\left[r^{2} /(n-1)\right][(n-p) / p]$ is $F(p, n-p)$.

5. The Distributions of the Sample Covariance Matrix and Generalized

 Variance.5.1. The distribution of the sample covariance matrix. It is a wellknown fact that the distribution of the sample covariance matrix of multivariate normal population is the Wishart distribution. If the sample $\underset{\sim}{x}(1), \ldots, \underset{\sim}{x}(N)$ is from the population of ${\underset{p}{N}}^{(\underset{\sim}{\mu}, \Sigma} \underset{\sim}{\sim})$ and

$$
\underset{\sim}{A}=\sum_{\alpha=1}^{N}(\underset{\sim}{x}(\alpha)-\bar{x})\left(\underset{\sim}{x}(\alpha)^{-\bar{x}}\right)^{\prime},
$$

then $\underset{\sim}{A}{ }^{d} \sum_{\alpha=1}^{n} \underset{\sim}{z} \alpha_{\sim}^{\prime}{ }_{\alpha}^{\prime}$ where $n=N-1$ and $z_{(1)}, \ldots, z_{(n)}$ arei.i.d. distributed according to $N_{p}\left(\underset{\sim}{n}, \underset{\sim}{\sum}\right)$. Now we want to f ind the corresponding distribution for multivariate elliptically distributions. Assume $\underset{\sim}{\sim} \sim L_{n \times p} \underset{\sim}{\left(0, \sum, \phi\right)}$ with $\underset{\sim}{\sum}>0$ we want to obtain the distribution of

$$
\begin{equation*}
\underset{\sim}{W}=\sum_{\alpha=1}^{n} \underset{\sim}{x}(\alpha) \underset{\sim}{x^{\prime}}(\alpha)={\underset{\sim}{x}}^{\prime} \underset{\sim}{x}=\left(w_{i j}\right) \tag{5.1}
\end{equation*}
$$

(1) Assume $\underset{\sim}{X}$ has a density. Theorem 3 shows us that the density of $\underset{\sim}{X}$ is

$$
\begin{equation*}
|\Sigma|^{-n / 2} g\left(t r \sum_{\sim}^{-1} x_{\sim}^{\prime} \underset{\sim}{x}\right)=\left|\sum_{\sim}\right|^{-n / 2} g\left(t r \sum_{\sim}^{-1} \underset{\sim}{W}\right) \tag{5.2}
\end{equation*}
$$

ae $\underset{\sim}{\tilde{\mu}}=0$ and $\underset{\sim}{\boldsymbol{\sim}}=\underset{\sim}{G}$. By Lemma 13.3.1 (p. 319, Anderson (1958)), the density of $\underset{\sim}{W}$ (1.e. the density of $w_{11}, \ldots, w_{1 p}, w_{22}, \ldots, w_{2 p}, \ldots, w_{p p}$) is
(5.3) $\quad \frac{\pi^{n p / 2-p(p-1) / 4}}{\underset{\alpha}{\underset{\alpha}{p}} \Gamma \Gamma\left(\frac{n-\alpha+1}{2}\right)}|\underset{\sim}{W}|^{(n-p-1) / 2}\left|\underset{\sim}{\sum}\right|^{-n / 2} g(t r \underset{\sim}{\underset{\sim}{W}} \underset{\sim}{-1})$.

In the normal case (5.3) reduces to the Wishart density.
(2) Assume $p(\underset{\sim}{X} \underset{\sim}{0})=0$. In this case it is possible that $\underset{\sim}{X}$ does not have a density, but all the marginal distributions of $\underset{\sim}{X}$ will have densities (cf. Kelker (1970)). We consider the following interesting and important situations:
(A) Let

$$
{\underset{\sim}{x}}^{X_{k}}=\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 k} \tag{5.4}\\
\vdots & & \vdots \\
x_{n 1} & \cdots & x_{n k}
\end{array}\right) \quad \text { and } \quad \underset{\sim}{W_{k}}={\underset{\sim}{k}}^{\prime} X_{k}, 1 \leq k<p .
$$

In order to obtain the density of ${\underset{\sim}{x}}$ we need the following Lemma.

Lemma 3. Assume $\underset{\sim}{x} \sim E C_{n}\left(\underset{\sim}{0}, \underset{\sim}{\sum}, \phi\right)$ with $\underset{\sim}{\sum}>0$ and $p(\underset{\sim}{X}=\underset{\sim}{0})=0$. Let $\underset{\sim}{x}=\left(\underset{\sim}{x}(1),{\underset{\sim}{x}}_{\sim}^{x}(2)\right)^{\prime}$ where $\underset{\sim}{x}(1)$ is an $m \times 1$ vector, $m<n$, then the density of $\underset{\sim}{x}(1)$ is
(5.5) $\frac{\Gamma\left(\frac{n}{2}\right)\left|\sum_{\sim 11}\right|^{-\frac{1}{2}}}{\pi^{m / 2}} \underset{\Gamma\left(\frac{n-m}{2}\right)}{\infty} \int_{\sim}^{x}(1){\underset{\sim}{n}}^{-1} 1_{\sim}^{x}(1)^{)^{\frac{1}{2}}} r^{-(n-2)}\left(r^{2-x^{\prime}}(1)^{\Sigma_{11}^{-1} 1^{x}(1)^{(n-m) / 2-1}} \mathrm{dF}(r)\right.$,
where $\sum_{\sim} 11$ is the first principal minor of order m of $\underset{\sim}{\sum}$.

Proof. If $\underset{\sim}{\sum}=I_{\sim}^{n}$, the density of $\underset{\sim}{x}(1)$ is

$$
\begin{equation*}
\left.\frac{\Gamma\left(\frac{n}{2}\right)}{\pi^{m / 2} \Gamma\left(\frac{n-m}{2}\right)} \int_{\sqrt{{\underset{\sim}{x}}^{\prime}(1)_{\sim}^{x}(1)}}^{\infty} r^{-(n-2)}\left(r^{2}-\underset{\sim}{x}(1)_{\sim}^{x}\right)\right)^{(n-m) / 2-1} d F(r) . \tag{5.6}
\end{equation*}
$$

(cf. (21), Cambanis, Huang and Simons (1981); the lower limit of the integral in that paper should be \sqrt{u}, not u). When $\underset{\sim}{\sum} \neq I_{n}$ the Lemma follows by using the transformation $\underset{\sim}{y}=\sum_{\sim}^{-d_{2}} \underset{\sim}{x}$. Q.E.D.

Using Lemma 3 and noting the structure of ${\underset{\sim}{X}}^{x}$, the density of X_{k} is
(5.7) $\frac{\Gamma\left(\frac{n p}{2}\right)\left|\sum_{\sim k}\right|^{-k / 2}}{\pi^{n k / 2} \Gamma\left(\frac{n(p-k)}{2}\right)} \int_{\sqrt{t r \sum_{\sim k}^{-1} X_{\sim}^{\prime} X_{\sim}}}^{\infty} r^{-(n p-2)}\left(r^{2}-\operatorname{tr} \sum_{\sim k}^{-1} X_{\sim k \sim k}^{\prime} X_{i}\right)^{n(p-k) / 2-1} d F(r)$,
where \sum_{\sim} is the first principal minor of order k of \sum_{\sim}. By Lemma
13.3.1 of Anderson (1958) again, the density of $\underset{\sim}{W_{k}}$ is
(5.8)

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{n p}{2}\right)\left|\sum_{\sim k}\right|^{-n / 2}}{\pi^{k(k-1) / 4} \Gamma\left(\frac{n(p-k)}{2}\right) \prod_{\alpha=1}^{k} \Gamma\left(\frac{n-\alpha+1}{2}\right)}\left|{\underset{\sim}{W}}_{W_{k}}\right|^{(n-k-1) / 2} \int_{\sqrt{t r \sum_{\sim}^{-1} W_{\sim}^{W}}}^{\infty} r^{-(n p-2)} \\
& \\
& \left(r^{2}-t r \sum_{\sim k}^{-1}{\underset{\sim}{W}}_{W_{k}}\right)^{n(p-k) / 2-1} d F(r)
\end{aligned}
$$

(B) Let

$$
\underset{\sim}{X}(m)=\left(\begin{array}{ccc}
x_{11} & \ldots & x_{1 p} \\
\vdots & & \vdots \\
x_{m 1} & \ldots & x_{m p}
\end{array}\right), p \leq m<n, \underset{\sim}{\underset{(m)}{W}} \underset{\sim}{X_{(m)}^{\prime}} \underset{\sim}{x}(m)
$$

In a similar way the densities of $\underset{\sim}{X}(m)$ and $\underset{\sim}{\mathcal{X}}(m)$ are found as
(5.9) $\frac{\Gamma\left(\frac{n p}{2}\right)|\underset{\sim}{\Sigma}|^{-m / 2}}{\pi^{m p / 2} \Gamma\left(\frac{(n-m) p}{2}\right)} \int_{\sqrt{t r \sum_{\sim}^{-1} X_{\sim}^{\prime}(m) \underset{\sim}{X}(m)}}^{\infty} r^{-(n p-2)}\left(r^{2}-\operatorname{tr}{\underset{\sim}{x}}^{-1} \underset{\sim}{X}(m) \underset{\sim}{x}(m)\right)^{(n-m) p / 2-1} d F(r)$
and
(5.10) $\frac{\left.\Gamma\left(\frac{n p}{2}\right) \right\rvert\, \sum_{\sim}^{\mid m / 2}}{\pi^{p(p-1) / 4} \Gamma\left(\frac{(n-m) p}{2}\right) \underset{\alpha=1}{p} \Gamma\left(\frac{m-\alpha+1}{2}\right)}\left|\underset{\sim}{\mathrm{W}}{ }_{\alpha(m)}\right|^{(m-p-1) / 2}$

$$
\int_{\sqrt{\operatorname{tr} \sum_{\sim}^{-1} \underset{\sim}{W}(m)}}^{\infty} r^{-(n p-2)}\left(r^{2}-\operatorname{tr} \Sigma_{\sim}^{-1} \underset{\sim}{W}(m)\right)^{(n-m) p / 2-1} \mathrm{dF}(r),
$$

respectively.
Further, partition $\underset{\sim}{X}$ into $k+1$ parts, i.e.

$$
\underset{\sim}{x}=\left(\begin{array}{c}
\underset{\sim}{x} \\
{\underset{x}{x}}_{2} \\
\underset{\sim}{2} \\
\vdots \\
\underset{\sim}{x}+1
\end{array}\right) \text {, }
$$

where ${\underset{\sim}{1}}^{X_{1}}, X_{2}, \ldots, X_{k+1}$ are $n_{1} \times p, n_{2} \times p, \ldots, n_{k+1} \times p$ matrices, respertively and $p \leq n_{1}<n, i=1, \ldots, k, n_{k+1} \geq 1, \Sigma_{1}^{k+1} n_{i}=n$. Let $\underset{\sim}{W}(i)=\underset{\sim}{X}{\underset{\sim}{\sim}}^{X} X_{i}, i=1, \ldots, k$, then the joint density of $\underset{\sim}{\underset{\sim}{W}}(1), \ldots, \underset{\sim}{W}(k)$ is

$$
\begin{align*}
& \left.\left.\frac{\left.\Gamma\left(\frac{n p}{2}\right) \right\rvert\, \sum_{n}^{-\left(n-\left.\right|_{k+1}\right) / 2}}{\pi^{k p(p-1) / 4} \Gamma\left(\frac{n_{k+1}^{p}}{2}\right)} \prod_{j=1}^{k} \prod_{\alpha=1}^{p} \prod_{j=1}^{n}\right|_{\sim(j)} ^{W_{j}}\right|^{\left(n_{j}-p-1\right) / 2} \tag{5.11}\\
& \int_{\left(\sum_{j=1}^{k} \operatorname{tr} \sum_{\sim}^{-1} \underset{\sim}{W}(j)^{\frac{1}{2}}\right.}^{r^{-(n p-2)}\left(r^{2}-\sum_{j=1}^{k} \operatorname{tr} \sum_{\sim}^{-1} \underset{\sim}{W}(j)\right)^{p n} k+1^{12-1}} d F(r) .
\end{align*}
$$

The method to obtain (5.11) is the same as to obtain (5.10), but here we need to use Lemma 13.3 .1 of Anderson (1958) k times. When $p=1$, the density (5.11) reduces to $G_{k+1}\left(n_{1} / 2, \ldots, n_{k} / 2 ; n_{k+1} / 2 ; \phi\right)$. We denote the density (5.11) by $M_{p, k+1}\left(\sum_{\sim} ; n_{1} / 2, \ldots, n_{k} / 2 ; n_{k+1} / 2 ; \phi\right)$.

Further, if $\underset{\sim}{X}$ has a density (3.13), we rewrite it as

$$
\left|\sum_{\sim}\right|^{-n / 2} g\left(\sum_{j=1}^{k+1} \operatorname{tr} \sum_{\sim}^{-1} \underset{\sim}{W}(j)\right) \text {. }
$$

We use Lemma 13.3.1 of Anderson (1958) $k+1$ times to obtain the density of $\underset{\sim}{W}(1), \cdots, W_{\sim}^{W}(k+1)$ as

$$
\begin{equation*}
\left.\frac{\pi^{n p / 2}|\underset{\sim}{\mid}|^{-n / 2}}{\pi^{(k+1) p(p-1) / 4}} g \sum_{j=1}^{k+1} \operatorname{tr} \sum_{\sim}^{-1} \underset{\sim}{W}(j)\right) \prod_{j=1}^{k+1} \frac{\left.\underset{\sim}{p}(j)\right|^{\left(n_{j}-p-1\right) / 2}}{\underset{\alpha=1}{p} \underbrace{}_{j}-\alpha+1} \tag{5.12}
\end{equation*}
$$

When $p=1$, (5.12) reduces to (3.7) with $m=k+1$. Denote (5.12) by MG $_{p, k+1}\left(\sum_{\sim} ; n_{1} / 2, \ldots, n_{k} / 2, n_{k+1} / 2 ; \phi\right)$. In this case as $F(r)$ has a density, we can change (5.11) to the simpler form

$$
\begin{aligned}
& \frac{2 \pi^{n p / 2-k p(p-1) / 4}|\Sigma|_{\sim}^{-\left(n-n_{k+1}\right) / 2}}{\left.\Gamma\left(\frac{n_{k+1} p}{2}\right) \underset{j=1}{k} \underset{\sim}{\prod_{j=1}^{p}} \Gamma \frac{\prod_{j}-\alpha+1}{2}\right)} \prod_{j=1}^{k}|\underset{\sim}{\mid}(j)|^{\left(n_{j}-p-1\right) / 2} \\
& \int_{0}^{\infty} r^{n^{n+1}}{ }^{p-1} g\left(r^{2}+\sum_{j=1}^{k} \operatorname{tr}{\underset{\sim}{2}}^{-1} \underset{\sim}{W}(j)\right) d r .
\end{aligned}
$$

(C) Consider the marginal density of $w_{11}, \ldots, w_{p-1, p-1}, w_{1 p}, \ldots, w_{1, p-1}$, $w_{2 p}, \ldots, w_{2, p-1}, \cdots, w_{p-2, p-1}, w_{1 p}, \ldots, w_{p-1, p}$ (i.e. the marginal density of $\underset{\sim}{\mathbb{W}}$ except ${\underset{p p}{ }}$; for simplicity we will say the density of $\underset{\sim}{\mathbb{W}}$ *.
(1) Let $\underset{\sim}{E}=\underset{\sim}{U}{\underset{\sim}{U}}_{U}^{U}$ where $\underset{\sim}{U}: \mathbf{n} \times p$ and rec $\underset{\sim}{U}={\underset{\sim}{u}}^{(n p)}$, Let $\underset{\sim}{Y}$ be defined by (4.3), then

We want to find the density of ${\underset{\sim}{E}}^{*}$ (i.e., the density of $\underset{\sim}{E}$ except $e_{p p}$;. However, the correlation coefficient $r_{i j}$ is

$$
r_{i j}=\frac{e_{i j}}{\sqrt{e_{i i} e_{j j}}}=\frac{f_{i j}}{\sqrt{f_{i i} f_{j j}}},
$$

where $\left({\underset{\sim}{f}}_{i j}\right)=\underset{\sim}{F}=\underset{\sim}{Y} \underset{\sim}{Y}$. As we know, $\left\{r_{i j}, i=1, \ldots, j-1, j=2, \ldots, p\right\}$ are independent of $\left.\|\mid{\underset{\sim}{i}}\|_{1} i=1, \ldots, p\right\}$ and $\left(\|\underset{\sim}{\mid}\|^{2}, \ldots,\left\|\underset{\sim}{y}{ }_{p-1}\right\|^{2}\right) / \operatorname{tr} \underset{\sim}{r}{\underset{\sim}{r}}_{\sim}^{\sim}$ $D_{p}\left(\frac{n}{2}, \ldots, \frac{n}{2} ; \frac{n}{2}\right)$, hence $\left(e_{11}, \ldots, e_{p-1, p-1}\right) \sim D_{p}\left(\frac{n}{2}, \ldots, \frac{n}{2} ; \frac{n}{2}\right)$ and the density of $e_{1}=\sqrt{e_{11}}, \ldots, e_{p-1}=\sqrt{e_{p-1, p-1}}$ is

$$
\begin{equation*}
\frac{2^{p-1} \Gamma\left(\frac{n p}{2}\right)}{\Gamma^{p}\left(\frac{n}{2}\right)} \prod_{i=1}^{p-1} e_{i}^{n-1}\left(1-\sum_{i=1}^{p-1} e_{i}^{2}\right)^{\frac{n}{2}-1} \quad \text { if } \sum_{1}^{p-1} e_{i}^{2}<1 \tag{5.14}
\end{equation*}
$$

From Corollary 1 of Theorem 4 , the joint density of $e_{1}, \ldots, e_{p-1}, r_{12}, \ldots$, $r_{1 p}, r_{23}, \ldots r_{p-1, p} \quad$ is

$$
\begin{gather*}
\frac{2^{p} \Gamma\left(\frac{n p}{2}\right)}{\pi^{p}(p-1) / 4 \prod_{i=1}^{p} \Gamma\left(\frac{n-i+1}{2}\right)}\left|R_{i}\right|^{\frac{1}{2}(n-p-1)} \prod_{i=1}^{p-1} e_{i}^{n-1}\left(1-\sum_{1}^{p-1} e_{i}^{2}\right)^{\frac{n}{2}-1}, \tag{5.15}\\
\text { if } \sum_{i=1}^{p-1} e_{i}^{2}<1 .
\end{gather*}
$$

Consider the following transformation

$$
\begin{cases}e_{i 1}=e_{i}^{2} & 1=1, \ldots, p-1 \\ e_{i j}=e_{i} e_{j} r_{i j} & 1=1, \ldots, j-1 ; j=1, \ldots, p\end{cases}
$$

with $e_{p}=\left(1-\sum_{1}^{p-1} e_{j}^{2}\right)^{\frac{1}{2}}$. It is easy to see that the matrix of
$\frac{\partial\left(e_{11}, \ldots, e_{p-1, p-1}, e_{12}, \ldots, e_{1, p-1}, e_{23}, \ldots, e_{2, p-1}, \ldots, e_{p-2, p-1}, e_{1 p}, \ldots, e_{p-1, p}\right)}{\partial\left(e_{1}, \ldots, e_{p-1}, r_{12}, \ldots, r_{1, p-1}, r_{23}, \ldots, r_{2, p-1}, \ldots, r_{p-2, p-1}, r_{1 p}, \ldots, r_{p-1, p}\right)}$
is lower triangular with diagonal elements $2 e_{1}, \ldots,<e_{p-1}, e_{1} e_{2}, \ldots, e_{1} e_{p-1}, e_{2} e_{3}$, $\ldots, e_{2} e_{p-1}, \ldots, e_{p-2} e_{p-1}, e_{1} e_{p}, \ldots, e_{p-1} e_{p}$, thus the Jacobian of the transformation is

$$
\begin{equation*}
2^{p-1} e_{p}^{(p-1)} \prod_{i=1}^{p-1} e_{i}^{p}=2^{(p-1)}\left(1-\sum_{1}^{p-1} e_{i}^{2}\right)^{(p-1) / 2} \prod_{i=1}^{p-1} e_{1}^{p} \tag{5.16}
\end{equation*}
$$

Combining (5.15) and (5.16), the density of $\underset{\sim}{E}$ is

with $e_{p p}=1-\Sigma_{1}^{p-1} e_{i i}$.
(2) Let $\underset{\sim}{\Sigma}$ be $p \times p$ a positive definite matrix and $\underset{\sim}{A}$ be an upper triangular matrix such that $\underset{\sim}{A^{\prime}} \underset{\sim}{A}=\underset{\sim}{\sum}$. Let $\underset{\sim}{V}=\underset{\sim}{A} \underset{\sim}{E A}=\left(v_{i j}\right)$. We want to obtain the density of ${\underset{\sim}{v}}^{*}$ (i.e. the density of $\underset{\sim}{v}$ except ${\underset{p p}{ }}_{\mathbf{v}}$). Partitioning $\underset{\sim}{V}, \underset{\sim}{A}$ and $\underset{\sim}{E}$ as follows

$$
\left(\begin{array}{ll}
{\underset{\sim}{v}}_{11} & \underset{\sim}{v}(1) \\
{\underset{\sim}{v}}^{\prime}(1) & \underset{p p}{ }
\end{array}\right)=\left(\begin{array}{ll}
{\underset{\sim}{1}}_{\prime}^{\prime} & \underset{\sim}{\sim} \\
{\underset{\sim}{\sim}}^{\prime}(1) & a_{p p}
\end{array}\right)\left(\begin{array}{ll}
{\underset{\sim}{1}}_{11} & \underset{\sim}{e}(1) \\
{\underset{\sim}{e}}^{\prime}(1) & e_{p p}
\end{array}\right)\left(\begin{array}{ll}
{\underset{\sim}{11}} & \underset{\sim}{a}(1) \\
\underset{\sim}{\sim} & a_{p p}
\end{array}\right),
$$

we have

As $e_{p p}$ and $v_{p p}$ are not independent variables, the Jacobian of transformation is
where $\sum_{\sim} 11$ is the first principal minor of order $(p-1)$ of $\underset{\sim}{\sum}$, and

Thus

Noting $|\underset{\sim}{V}|=\left|{\underset{\sim}{A}}^{\prime}\right||\underset{\sim}{E}||\underset{\sim}{A}|=|\underset{\sim}{\mid}||\underset{\sim}{E}|$, the density of ${\underset{\sim}{V}}^{*}$ is
(5.19)

$$
\frac{\Gamma\left(\frac{n p}{2}\right)}{\pi^{p(p-1) / 4} \prod_{i=1}^{p} \Gamma\left(\frac{n-i+1}{2}\right)}\left|\sum_{\sim}\right|^{-\frac{1}{2} n+1}\left|\sum_{\sim 11}\right|^{-1}|\underset{\sim}{V}|^{\frac{1}{2}(n-p-1)}
$$

As $v_{p p}$ is not an independent variable, we need to find the relationship between it and the other variables. Since

$$
{\underset{\sim}{U}}^{\prime} \underset{\sim}{U}=\underset{\sim}{E}={\underset{\sim}{A}}^{-1} \underset{\sim}{V A^{-1}}
$$

we have

$$
1=\operatorname{tr}{\underset{\sim}{U}}^{\prime} \underset{\sim}{U}=\operatorname{tr}\left(\underset{\sim}{A^{\prime}}{\underset{\sim}{x}}^{-1}{\underset{\sim}{x}}^{-1}\right)=\operatorname{tr} \underset{\sim}{V} \Sigma^{-1}
$$

Denote ${\underset{\sim}{~}}^{-1}=\left(\sigma^{1 j}\right)$ and $V=\left(v_{i j}\right)$; then
(5.20) $v_{p p}=\left(\sigma^{p p}\right)^{-1}\left(1-\sum_{i=1}^{p} \sum_{j=1}^{p-1} \sigma^{i j} v_{i j}-\sum_{i=1}^{p-1} \sigma^{i p} v_{i p}\right) \hat{=}\left(\sigma^{p p}\right)^{-1}\left(1-v^{*}\right),(s a y)$.
(3) Assume $\left.\underset{\sim}{X} \sim L E C_{n \times p} \underset{\sim}{\left(0, \sum\right.} \underset{\sim}{\sum}, \phi\right)$ with $\underset{\sim}{\sum}>0$ and $\underset{\sim}{P(\underset{\sim}{X}=\underset{\sim}{0})}=0$. From (3.10)

$$
\underset{\sim}{x} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\operatorname{RUA}},
$$

where $\underset{\sim}{U}: n \times p$, vec $\underset{\sim}{U}=u^{(n p)}, \underset{\sim}{A}$ is a $p \times p$ upper triangular matrix and $\underset{\sim}{A^{\prime}} \underset{\sim}{A}=\underset{\sim}{E} . \quad$ Then

$$
\begin{equation*}
\underset{\sim}{W}=\underset{\sim}{X} \underbrace{X}_{\sim}{ }^{\mathbf{X}} \mathbb{R}^{2}{\underset{\sim}{A}}^{\prime} \underset{\sim}{U} \underset{\sim}{U A}=\mathbb{R}^{2}{\underset{\sim}{A}}^{\prime} \underset{\sim}{E A}=R^{2} \underset{\sim}{V} . \tag{5.21}
\end{equation*}
$$

We have obtained the density (5.19) of ${\underset{\sim}{*}}_{*}$ and it has the form of

$$
\mathrm{c}|\underset{\sim}{v}|^{\frac{1}{2}(n-p-1)}
$$

where c is a constant. Thus the cdf of $\underset{\sim}{W}$ * for $\underset{\sim}{W}$ positive definite is

$$
\begin{aligned}
& P\left\{R^{2} v_{j j} \leq w_{j j}, j=1, \ldots, P-1 ; R^{2} v_{i j} \leq w_{i j}, i<j\right\} \\
& =\int_{0}^{\infty} P\left\{v_{j j} \leq \frac{w_{j j}}{r^{2}}, j=1, \ldots, P-1 ; v_{i j} \leq \frac{w_{i j}}{r^{2}}, i<j, \underset{\sim}{V} \text { positive definite }\right\} d F(r) .
\end{aligned}
$$

When the probability is written as the definite integral of the density of $\underset{\sim}{V_{*}}$ differentiation yields as the density of $\underset{\sim}{W}{ }_{*}$

$$
\begin{equation*}
c \int_{0}^{\infty} r^{-p(p+1)+2}|\underset{\sim}{q}|^{\frac{1}{2}(n-p-1)} \mathrm{dF}(r), \tag{5.22}
\end{equation*}
$$

where $\underset{\sim}{H}=\left(h_{i j}\right), h_{i i}=w_{i 1} / r^{2}, i=1, \ldots, p-1 ; h_{i j}=w_{i j} / r^{2}, i<j$ and

$$
h_{p p}=\left(\sigma^{p p}\right)^{-1}\left(1-w^{*} / r^{2}\right)=\left(\sigma_{r}^{p p_{r}^{2}}\right)^{-1}\left(r^{2}-w^{*}\right)
$$

where $w^{*}=\sum_{i=1}^{p} \sum_{j=1}^{p-1} \sigma^{i j} w_{i j}+\sum_{i=1}^{p-1} \sigma^{i p_{w_{i p}}}$. As $h_{p p}$ must be positive, the density of $\underset{\sim}{W}$ is

$$
\begin{align*}
& c \int_{\sqrt{W^{\star}}}^{\infty} r^{-p(p+1)+2} r^{-p(n-p-1)}|\underset{\sim}{\mid}|^{\frac{1}{2}(n-p-1)} d F(r) \tag{5.23}\\
& =c \int_{\sqrt{W^{*}}}^{\infty} r^{-(p n-2)}|\underset{\sim}{W}|^{\frac{1}{2}(n-p-1)} d F(r) \\
& =\left.\frac{\Gamma\left(\frac{n p}{2}\right)}{\pi^{p(p-1) / 4} \prod_{i=1}^{p} \Gamma\left(\frac{n-i+1}{2}\right)}\left|\sum_{\sim}\right|^{\frac{1}{2} n+1}\left|\sum_{\sim 11} i^{-1} \int_{\sqrt{W^{*}}}^{\infty} r^{-(p n-2)}\right| \underset{\sim}{W}\right|^{\frac{1}{2}(n-p-1)} d F(r),
\end{align*}
$$

where $\underset{\sim}{w}=\left(w_{i j}\right)$ with

$$
\begin{equation*}
w_{p p}=\left(\sigma^{p p}\right)^{-1}\left(r^{2}-w^{*}\right)=\left(\sigma^{P p}\right)^{-1}\left(r^{2}-\sum_{i=1}^{p} \sum_{j=1}^{p-1} \sigma^{i j} w_{i j}-\sum_{i=1}^{p-1} \sigma^{i p_{w_{1 p}}}\right) \tag{5.24}
\end{equation*}
$$

Now we can summarize the above results as follows:

Theorem 7. Assume that $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p} \underset{\sim}{\left(0, \sum, \phi\right)}$ with $\underset{\sim}{\Sigma}>0$ and $n>p ;$ $\underset{\sim}{X}$ is partitioned into $k+1$ parts $\underset{\sim}{X_{1}}, \ldots, X_{k+1}$ which are $n_{1} \times p, \ldots, n_{k+1} \times p$ matrices, respectively, $p \leq n_{i}, 1=1, \ldots, k+1$ and $\Sigma_{i}^{k+1} n_{i}=n ; \underset{\sim}{W}=\underset{\sim}{X} X_{\sim}^{\prime}$, $\underset{\sim}{W}(j)=X_{j} X_{\sim j}$ and $\underset{\sim}{W_{k}} \quad$ is defined by (5.4).
(1) If $\underset{\sim}{X}$ has a density (5.2), then the density of $\underset{\sim}{\mathbb{W}}$ is (5.3) and the joint density of $\underset{\sim}{W}(1), \cdots, \underset{\sim}{W}(k+1)$ is (5.12).
(2) If $P(\underset{\sim}{X}=\underset{\sim}{0})=0$, then there exists the marginal density of any (proper) subset of elements of $\underset{\sim}{W}$. In particular, the density of $\underset{\sim}{W} \underset{k}{ }$ is (5.8), the density of $\underset{\sim}{\underset{\sim}{W}}$ (i.e. the density of $\underset{\sim}{W}$ except ${\underset{P P}{ }}_{\underset{\sim}{W}}$) is (5.23) and the joint density of $\underset{\sim}{W}(1), \ldots, \underset{\sim}{W}(k)$ is (5.11).

Corollary 1. Assume $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p} \underset{\sim}{\left(0, \sum, \phi\right)}$ with $\sum_{\sim}>0$ and $n>p$, and $\underset{\sim}{X}$ has a density (5.2). Let $\underset{\sim}{\Psi}={\underset{\sim}{\mid}}^{-1}$ and $\underset{\sim}{V}={\underset{\sim}{W}}^{-1}$, then the density of $\underset{\sim}{V}$ is

$$
\begin{equation*}
\frac{\pi^{n p / 2-p(p-1) / 4}}{\prod_{\alpha=1}^{p} \Gamma\left(\frac{n-\alpha+1}{2}\right)}|\underset{\sim}{\Psi}|^{n / 2}|\underset{\sim}{V}|^{-(n+p+1) / 2} g\left(\operatorname{tr} \underset{\sim}{\underset{\sim}{v}}{ }^{-1}\right) \tag{5.25}
\end{equation*}
$$

Proof. From (5.3) and the fact of the Jacobian of the transformation $\underset{\sim}{W}={\underset{\sim}{V}}^{-1}$ is $|\underset{\sim}{V}|^{-(p+1)}$ the corollary follows. Q.E.D.

When $\phi=\exp (-t / 2)$, i.e. X is from a normal population, (5.25) reduces to the inverted Wishart distribution.

Corollary 2. Assume the condition of Corollary 1 holds and $\underset{\sim}{E}=\underset{\sim}{I}$, then the density of the characteristic roots $\lambda_{1}>\cdots>\lambda_{p}$ of $\underset{\sim}{W}$ is

$$
\begin{equation*}
\pi^{(n+1) p / 2}\left[\prod_{\alpha=1}^{p} \frac{\lambda_{\alpha}^{(n-p-1) / 2}}{\Gamma\left(\frac{n-\alpha+1}{2}\right) \Gamma\left(\frac{p-\alpha+1}{2}\right)}\right] \prod_{i<j}\left(\lambda_{i}-\lambda_{f}\right) g\left(\sum_{1}^{p} \lambda_{i}\right) \tag{5.26}
\end{equation*}
$$

Proof. From (5.3) and Theorem 13.3.1 of Anderson (1958), the density of $\lambda_{1}, \ldots, \lambda_{p}$ is

$$
\frac{\pi^{n p / 2-p(p-1) / 4}}{\prod_{\alpha=1}^{p} \Gamma\left(\frac{n-\alpha+1}{2}\right)} \prod_{i=1}^{p} \lambda_{i}^{(n-p-1) / 2} g\left[\sum_{1}^{p} \lambda_{i}\right] \cdot \frac{\pi^{p(p+1) / 4}}{\underset{\prod}{p} \Gamma\left(\frac{p-\alpha+1}{2}\right)} \underset{i<j}{\Pi}\left(\lambda_{i}-\lambda_{j}\right)
$$

and the corollary follows. Q.E.D.

5.2. The distribution of the generalized variance.

Theorem 8. Assume that $\underset{\sim}{x} \sim L E C_{n \times p}\left(0, \sum, \phi\right)$ with $\phi \in \Phi_{n p} \leftrightarrow R$, $\underset{\sim}{\sum}>0, p(\underset{\sim}{x} \underset{\sim}{x})=0$ and $n>p$. Let y_{1}, \ldots, y_{p+1} be independently distributed as $X_{n}^{2}, X_{n-1}^{2}, \cdots, X_{n-p+1}^{2}, X_{p(p-1) / 2}^{2}$, respectively. Then

$$
\begin{equation*}
|\underset{\sim}{W}|{ }^{p} R^{2 p}|\underset{\sim}{\Sigma}| \prod_{i=1}^{p} y_{i} /\left(\sum_{i=1}^{p+1} y_{i}\right)^{p} . \tag{5.27}
\end{equation*}
$$

 defined by (4.3), then

Let $\underset{\sim}{T}=\left(t_{i j}\right)$ be the lower triangular matrix such that $\underset{\sim}{T} T^{\prime}=\underset{\sim}{Y} \underset{\sim}{Y}$. It can be shown that
(a) $t_{\text {if }} \sim N(0,1)$ for any $1>1$;
(b) $t_{i 1} \sim x_{n-i+1}$ (i.e. $\left.t_{i 1}^{2} \sim x_{n-1+1}^{2}\right), i=1, \ldots, p$;
(c) $\left\{t_{i j}, J \leq 1\right\}$ are independent.
(cf. Johnson and Kotz (1972)). Thus

As $\underset{\sim}{T}$ is a lower triangular we have

$$
\left|\operatorname{TT}_{\sim}^{\prime}\right|=\prod_{i=1}^{p} t_{i 1}^{2} \underset{i=1}{\mathrm{~d}} \prod_{i}^{p} y_{i}
$$

and

$$
\operatorname{tr} \underset{\sim}{T} T^{\prime}=\sum_{i=1}^{p} t_{i 1}^{2}+\sum_{i>j} t_{i j}^{2}{ }_{=}^{d} \sum_{i=1}^{p} y_{i}+y_{p+1}=\sum_{i=1}^{p+1} y_{i} \text {. Q.E.D. }
$$

6. A Multivariate Analogue to Cochran's Theorems.

In Section 5 we obtained the distributions of $\underset{\sim}{\underset{\sim}{W}} \underset{(m)}{ }$ and denoted it by $M_{p, 2}\left(\underset{\sim}{\sim} ; \frac{m}{2} ; \frac{n-m}{2} ; \phi\right)$. Let $\underset{\sim}{D}$ be an $n \times n$ symmetric matrix. We want to know a necessary and sufficient condition for ${\underset{\sim}{X}}^{\prime} \underset{\sim}{D X} \sim$ $M_{p, 2}\left(\underset{\sim}{(\Sigma} ; \frac{m}{2} ; \frac{n-m}{2} ; \phi\right)$.

Theorem 9. Assume that $\underset{\sim}{X} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{0}, \underset{\sim}{\sum}, \phi\right)$ with $\underset{\sim}{\sum}>0$ and $P(\underset{\sim}{X}=\underset{\sim}{0})=0$, and $\underset{\sim}{D}$ is an $n \times n$ symmetric matrix, then $X_{\sim}^{\prime} \underset{\sim}{D X} \sim M_{p, 2}\left(\sum_{\sim} ; \frac{m}{2} ; \frac{n-m}{2} ; \phi\right)$ if and only if ${\underset{\sim}{D}}^{2}=\underset{\sim}{D}$ and $r k(\underset{\sim}{D})=m$.
 (cf. Theorem 7)
 implies $P\left(R^{2}>0\right)=1$, i.e., R^{2} satisfies the condition (2.6). As R^{2} is independent of $\underset{\sim}{U}$, by Lemma 1 of Anderson and Fang (1982) we have

We can remove $\underset{\sim}{A}$ and $\underset{\sim}{A}$ from both sides because $\underset{\sim}{\sum}>0$ and $\underset{\sim}{A}$ is nonsingular matrix; hence

$$
{\underset{\sim}{U}}^{\prime} \mathrm{DU} \underset{\sim}{U} \mathrm{U}_{1}^{\prime}{\underset{\sim}{1}}
$$

Let $\underset{\sim}{Y}$ be defined by (4.3), then the above formula becomes
where $\underset{\sim}{Y}$ is partitioned into ${\underset{\sim}{Y}}_{1}$ and ${\underset{\sim}{Y}}_{2}$ in the same fashion as ${\underset{\sim}{1}}^{U_{1}}$ and ${\underset{\sim}{2}}^{U_{2}}$. As $\operatorname{tr} \underset{\sim}{Y}{ }_{\sim}^{\mid} \underset{\sim}{Y}$ is independent of $\underset{\sim}{Y} / \operatorname{tr} \underset{\sim}{Y} \underset{\sim}{Y}$, we can multiply by tr $\underset{\sim}{\text { Y }} \underset{\sim}{Y}$ on both sides (cf. Leman 1 of Anderson and Fang (1982)) and obtain

From Cochran's Theorem for the multivariate normal distribution (cf. Anderson (1958)), we have ${\underset{\sim}{D}}^{2}=\underset{\sim}{D}$ and $r k(\underset{\sim}{D})=m$.

Assume $\underset{\sim}{D^{2}}=\underset{\sim}{D}$ and $r k \underset{\sim}{D}=m ;$ there exists an orthogonal matrix $\underset{\sim}{\Gamma}$ such that $\Gamma_{\sim}^{\prime} \underset{\sim}{D}=\left(\begin{array}{cc}\underset{\sim}{I} & \underset{\sim}{0} \\ 0 & 0\end{array}\right)$. Let $\underset{\sim}{Z}=\underset{\sim}{\Gamma X}$, then $\underset{\sim}{z} \sim \operatorname{LEC}_{n \times p}\left(\underset{\sim}{0}, \underset{\sim}{\sum}, \phi\right)$ (cf. Corollary 2 of Lemma 2), and
Q.E.D.

There is a close relationship between Cochran's Theorem in the univariate case and one in the multivariate case. When the population is normal this relationship has been established (cf. Anderson (1958), Rao (1973)). We will point out similar results for elliptically contoured distributions.

Corollary 1. Assume $\underset{\sim}{X}$ and $\underset{\sim}{D}$ satisfy the condition of Theorem 9. Then $\underset{\sim}{X} \underset{\sim}{D X} \sim \mathcal{N G}_{p, 2}\left(\underset{\sim}{\sim} ; \frac{m}{2} ; \frac{n-m}{2} ; \phi\right)$ if and only if $\underset{\sim}{\ell_{\sim}^{\prime}} \underset{\sim}{\prime} \underset{\sim}{D X \ell} \sim G_{2}\left(\frac{m}{2} ; \frac{n-m}{2} ; \phi\right)$ for every $\underset{\sim}{0} \in \mathbb{R}^{p}$ with ${\underset{\sim}{e}}^{\prime} \underset{\sim}{\sum} \underset{\sim}{l}=1$, where $\phi \in \Phi_{n} \leftrightarrow R^{*} \underset{=}{d} R b_{n / 2, n(p-1) / 2^{\circ}}$

Proof. If $X_{\sim}^{\prime} \underset{\sim}{D X} \sim M G_{p, 2}\left(\sum_{\sim} ; \frac{m}{2} ; \frac{(n-m)}{2} ; \phi\right)$, then ${\underset{\sim}{D}}^{2}=\underset{\sim}{D}$ and $r k(\underset{\sim}{D})=m$
 for all $\underset{\sim}{\ell} \in \mathbb{R}^{P}$ and $\underset{\sim}{\ell} \sum_{\sim}^{\ell}=1$, where $\phi \in \Phi_{n} \leftrightarrow R^{*}=R \cdot b_{n / 2, n(p-1) / 2^{*}}$ Thus $\ell_{\sim}^{\prime} X^{\prime} \underset{\sim}{D X \ell} \sim G_{2}\left(\frac{m}{2} ; \frac{n-m}{2} ; \phi\right)$ by Theorem 1 of Anderson and Fang (1982).

If $\underset{\sim}{\ell}{ }_{\sim}^{\prime} X^{\prime} \underset{\sim}{\operatorname{DX} \ell} \sim G_{2}\left(\frac{m}{2} ; \frac{n-m}{2} ; \phi\right)$ for some $\quad \underset{\sim}{\ell} \in \mathbb{R}^{p}$ and $\underset{\sim}{\ell} \underset{\sim}{\sum \ell}=1$ with $\phi \leftrightarrow R^{*}=R b_{n / 2, n}(p-1) / 2$, then $\underset{\sim}{D^{2}}=\underset{\sim}{D}$ and $r k \underset{\sim}{D}=m$ by Theorem 1 of Anderson and Fang (1982). The assertion follows by Theorem 9. Q.E.D.

By using a technique similar to the one for proving Theorem 9, we can obtain the following theorem.

Theorem 10. Assume that $\underset{\sim}{X} \sim \operatorname{LEC}_{\mathrm{n} \times \mathrm{p}}\left(\underset{\sim}{0}, \underset{\sim}{\sum}, \phi\right)$ with $\underset{\sim}{\sum}>0$ and $P(\underset{\sim}{X}=0)=0$, and ${\underset{\sim}{D}}_{D_{1}}, \ldots,{\underset{\sim}{l}}^{D_{k}}$ are symmetric matrices; then
 $1=1, \ldots, k, n_{k+1} \geq 1, \Sigma_{1}^{k+1} n_{i}=n$, if and only if $\underset{\sim}{D_{1}^{2}}=\underset{\sim}{D_{1}}, r k({\underset{\sim}{1}})=n_{i}$, $1=1, \ldots, k$ and $\underset{\sim}{D_{i}}{\underset{\sim}{j}}=0$ for $1 \neq j$.

7. Applications.

In this section we apply the theory of multivariate elliptically contoured distributions to the multiple regression model.

We consider the following model

Minimizing $|\underset{\sim}{E} \underset{\sim}{E}|$ or $\operatorname{tr} \underset{\sim}{E} \underset{\sim}{E}$ with respect to $\underset{\sim}{B}$ gives the least squares

$$
\begin{equation*}
\underset{\sim}{\hat{B}}=\left(\underset{\sim}{X}{ }_{\sim}^{X}\right)^{-1}{\underset{\sim}{X}}^{\prime} \underset{\sim}{Y}, \tag{7.2}
\end{equation*}
$$

since
(7.3) $\left.\quad \underset{\sim}{E}{ }_{\sim}^{E}=(\underset{\sim}{Y}-\underset{\sim}{X B})^{\prime}(\underset{\sim}{Y}-\underset{\sim}{X B})=(\underset{\sim}{X}-\underset{\sim}{\hat{X B}})^{\prime}(\underset{\sim}{Y}-\underset{\sim}{X} \underset{\sim}{\hat{B}})+(\underset{\sim}{\hat{B}}-\underset{\sim}{B})^{\prime} \underset{\sim}{X} \underset{\sim}{X} \underset{\sim}{\hat{B}}-\underset{\sim}{B}\right)$.

By assumption we have

$$
\begin{equation*}
\underset{\sim}{E} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\operatorname{RUA}}, \tag{7.4}
\end{equation*}
$$

where $\underset{\sim}{A^{\prime}} \underset{\sim}{A}=\underset{\sim}{\Sigma}$. Thus
(7.5)

$$
\underset{\sim}{\mathbf{Y}} \mathbf{d} \underset{\sim}{X B}+\underset{\sim}{R U A}
$$

and
(7.6)

$$
\underset{\sim}{\hat{B}} \underset{\sim}{B}+\mathbb{R}\left(\underset{\sim}{X}{ }^{\prime} X\right)^{-1} \underset{\sim}{X} \underbrace{U A}_{\sim} .
$$

Theorem 11. Under the assumption in the model (7.1) we have

$$
\begin{equation*}
\operatorname{vec}(\underset{\sim}{B}-\underset{\sim}{B}) \sim E C_{p q}\left(\underset{\sim}{0}, \underset{\sim}{\sum} \otimes\left(\underset{\sim}{X}{ }_{\sim}^{X}\right)^{-1}, \phi\right), \tag{7.7}
\end{equation*}
$$

where

$$
\phi \in \Phi_{n q} \leftrightarrow R^{*}=R b_{p q / 2,(n-q) p / 2^{\circ}}
$$

Proof. From (7.4) and (7.6) we have $\underset{\sim}{\hat{B}-\underset{\sim}{B}} \underset{\sim}{X}\left(X^{\prime} \underset{\sim}{X}\right)^{-I} \underset{\sim}{X} \underset{\sim}{E}$. Then Theorem 11 follows by Corollary 2 of Lemma 2. Q.E.D.

In general the distribution of \hat{B} does not belong to the class of \left. the multivariate elliptically contoured distributions unless ${\underset{\sim}{x}}_{\underset{\sim}{X}}^{\sim}\right)^{-1}=c^{2} I_{q}$ where c is a constant in which case

$$
\begin{equation*}
\underset{\sim}{\hat{B}-\underset{\sim}{B}} \sim \operatorname{LEC}_{q \times p}\left(\underset{\sim}{0}, c^{2} \underset{\sim}{\sum}, \phi\right), \tag{7.8}
\end{equation*}
$$

where $\phi \in \Phi_{\mathrm{pq}} \leftrightarrow \mathrm{R}^{*}$ being defined by Theorem 11.

Corollary. Denote $\underset{\sim}{\hat{B}}=\left(\underset{\sim}{\hat{\beta}}, \ldots, \hat{\sim}_{p}\right)$. Under the assumption of Theorem 11 we have:
(1) $\underset{\sim}{\hat{B}} \sim E C_{q}\left(\beta_{j}, \sigma_{j j}\left(X_{\sim}^{\prime} X\right)^{-1}, \phi\right)$, where $\phi \in \Phi_{q} \rightarrow R^{* *}=R b_{q / 2, n p-q / 2}$.
(2) $\operatorname{cov}\left(\underset{\sim}{\hat{\beta}}, \hat{\beta}_{\sim}\right)=$ const. $\sigma_{i j}\left(\underset{\sim}{X}{\underset{\sim}{X}}^{X}\right)^{-1}$.

Proof. The assertion (1) is a consequence of Lemma 2 and Theorem 11. The assertion (2) follows by Theorem 4 of Cambanis, Huang and Simons (1981). Q.E.D.

Now we consider the distribution of $\underset{\sim}{E} \underbrace{\hat{E}} \equiv(\underset{\sim}{\mathrm{E}}-\underset{\sim}{\mathrm{XB}})^{\prime}(\underset{\sim}{\mathrm{Y}}-\underset{\sim}{\mathrm{XB}})$. As
and $(I_{n}-\underset{\sim}{X}(\underset{\sim}{x} \underbrace{x}_{\sim})^{-1}{\underset{\sim}{X}}^{\prime})$ is a projection matrix with rank $n-q$, if $\underset{\sim}{P}(\underset{\sim}{E}=\underset{\sim}{0})=0$, then from Theorem 9 ,

$$
\begin{equation*}
\underset{\sim}{S} \equiv \hat{\mathbf{E}_{\sim}^{\prime}} \cdot \underset{\sim}{\hat{E}} \sim \mathrm{MG}_{\mathrm{p}, 2}({\underset{\sim}{c}} ;(\mathrm{n}-\mathrm{q}) / 2 ; q / 2 ; \phi) . \tag{7.9}
\end{equation*}
$$

Under the model (7.1) we want to test the following linear hypothesis:

$$
\begin{equation*}
\mathrm{H}: \underset{\sim}{\mathrm{HB}}=\underset{\sim}{\mathrm{C}}, \underset{\sim}{\mathrm{H}}: \mathrm{t} \times \mathrm{q}, \underset{\sim}{\mathrm{C}}: \mathrm{t} \times \mathrm{p} \text { and } \mathrm{rkH}=\mathrm{t}<\mathrm{p} \text {. } \tag{7.10}
\end{equation*}
$$

Under the condition of $\underset{\sim}{\text { HB }}=\underset{\sim}{C}$ minimizing $\left|\underset{\sim}{E}{ }_{\sim}^{E}\right|$ or $\operatorname{tr} \underset{\sim}{E} \underset{\sim}{E}$ with respect to $\underset{\sim}{B}$ gives the least squares estimator
where $\underset{\sim}{\hat{B}}$ is given by (7.2). Since

Thus

$$
\begin{aligned}
& \equiv|\underset{\sim}{s}+\underset{\sim}{T}| \quad \text { (say). }
\end{aligned}
$$

A statiatic for testing the hypothesis H is
 have
and

$$
\begin{aligned}
& \underset{\sim}{T}=(\underset{\sim}{H} \hat{B}-\underset{\sim}{C})^{\prime}\left(\underset{\sim}{H}\left(X_{\sim}^{\prime} \underset{\sim}{X}\right)^{-1}{\underset{\sim}{H}}^{\prime}\right)^{-1}(\underset{\sim}{H} \hat{B}-C) \\
& =(\underset{\sim}{B}-\underset{\sim}{B})^{\prime}{\underset{\sim}{r}}^{\prime}\left(\underset{\sim}{H}\left(X_{\sim}^{\prime}{ }_{\sim}^{X}\right)^{-1}{\underset{\sim}{H}}^{\prime}\right)^{-1} \underset{\sim}{H}(\underset{\sim}{\hat{B}}-\underset{\sim}{B})
\end{aligned}
$$

where $\underset{\sim}{A^{\prime}} \underset{\sim}{A}=\underset{\sim}{\sum} \quad(c f .(7.6))$.
Substituting them into (7.12) we see that λ is independent of R^{2}. By the method applied in Section 4, the distribution of λ is the same as in the normal case; i.e. $U_{p, t, n-q}$ (Wilks' distribution).

Theorem 12. Under the model (7.1) and $P(\underset{\sim}{E}=\underset{\sim}{0})=0$, the statistic λ given by (7.12) for testing the linear hypothesis (7.10) is distributed according to $U_{p, t, n-q}$.

References

Anderson, T. W. (1958), An Introduction to Multivariate Statistical Analysis, John Wiley and Sons, New York. Anderson, T. W., and Fang, K. T. (1982), Distributions of quadratic forms and Cochran's Theorem for elliptically contoured distributions and their applications, Technical Report No. 53, ONR Contract N00014-75-C-0442, Department of Statistics, Stanford University, Stanford, CA. Cambanis, S., Huang, S., and Simons, G. (1981), On the theory of elliptically contoured distributions, J. Multivariate Analysis, 11, 368-385.

Devlin, S. J., Gnanadesikan, R., and Kettenring, J. R. (1976), Some multivariate applications of elliptical distributions. In Essays in Probability and Statistics (S. Ideka et al., Eds.), 365-395, Shink Tsusho Co., Ltd. Tokyo.

Johnson, N. J., and Kotz, S. (1972), Distributions in Statistics: Continuous Multivariate Distributions, John Wiley and Sons, New York. Kariya, T., and Eaton, M. L. (1977), Robust tests for spherical symmetry, Ann. of Statistics, 5, 206-215. Kelker, D. (1970), Distribution theory of spherical distributions and a location scale parameter generalization, SankhyāA, 32, 419-430. Muirhead, R. J. (1980), The effects of elliptical distributions on some standard procedures involving correlation coefficients: A review, Multivariate Statistical Analysis (R. P. Gupta ed.), 143-159.

Rao, C. R. (1973), Linear Statistical Inference and Its Applications, John Wiley and Sons, New York.

Schoenberg, I. J. (1938), Metric spaces and completely monotone functions, Ann. Math., 39, 811-841.

OPFICE OF NAVAL RESEARCH CONIRACT NOOO14-67-A-0112-0030 (NR-042-034)

1. "Confidence Limits for the Expected Value of an Arbitrary Bounded Random Variable with a Continuous Distribution Function," T. W. Anderson, October 1, 1969.
2. "Efficient Estimation of Regression Coefficients in Time Series," T. W. Anderson, October 1, 1970.
3. "Determining the Appropriate Sample Size for Confidence Limits for a Proportion," T. W. Anderson and H. Burstein, October 15, 1970.
4. "Some General Results on Time-Ordered Classification," D. V. Hinkley, July 30, 1971.
5. "Tests for Randomness of Directions against Equatorial and Bimodal Alternatives," T. W. Anderson and M. A. Stephens, August 30, 1971.
6. "Estimation of Covariance Matrices with Linear Structure and Moving Average Processes of Finite Order," T. W. Anderson, October 29, 1971.
7. "The Stationarity of an Estimated Autoregressive Process," T. W. Anderson, November 15, 1971.
8. "On the Inverse of Some Covariance Matrices of Toeplitz Type," Raul Pedro Mentz, July 12, 1972.
9. "An Asymptotic Expansion of the Distribution of "Studentized" Classification Statistics," T. W. Anderson, September 10, 1972.
10. "Asymptotic Evaluation of the Probabilities of Misclassification by Linear Discriminant Functions," T. W. Anderson, September 28, 1972.
11. "Population Mixing Models and Clustering Algorithms," Stanley L. Sclove, February 1, 1973.
12. "Asymptotic Properties and Computation of Maximum Likelihood Estimates in the Mixed Model of the Analysis of Variance," John James Miller, November 21, 1973.
13. "Maximum Likelihood Estimation in the Birth-and-Death Process," Niels Keiding, November 28, 1973.
14. "Random Orthogonal Set Functions and Stochastic Models for the Gravity Potential of the Earth," Steffen L. Lauritzen, December 27, 1973.
15. Maximum Likelihood Estimation of Parameter: of an Autoregressive Process with Moving Average Residuals and Other Covariance Matrices with Linear Structure," T. W. Anderson, Decewber, 1973.
16. "Hote on a Case-Study in Box-Jenkins Seasonal Forecesting of Mae seriea," steffen L. Lauritzen, April, 1974.
17. "General Exponential Models for Discrete Observations," Steffen L. Lauritzen, May, 1974.
18. "On the Interrelationships among Sufficiency, Total Sufficiency and Some Related Concepts," Steffen L. Lauritzen, June, 1974.
19. "Statistical Inference for Multiply Truncated Power Series Distributions," T. Cacoullos, September 30, 1974.

Office of Naval Research Contract N00014-75-C-0442 (NR-042-034)
20. "Estimation by Maximum Likelihood in Autoregressive Moving Average : iodels in the Time and Frequency Domains," T. W. Anderson, June 1975.
21. "Asymptotic Properties of Some Estimators in Moving Average Models," Raul Pedro Mentz, September 8, 1975.
22. "On a Spectral Estimate Obtained by an Autoregressive Model Fitting," Mituaki Huzii, February 1976.
23. "Estimating Means when Some Observations are Classified by Linear Discriminant Function," Chien-Pai Han, April 1976.
24. "Panels and Time Series Analysis: Markov Chains and Autoregressive Processes," T. W. Anderson, July 1976.
25. "Repeated Measurements on Autoregressive Processes," T. W. Anderson, September 1976.
26. "The Recurrence Classification of Risk and Storage Processes," J. Michael Harrison and Sidney I. Resnick, September 1976.
27. "The Generalized Variance of a Stationary Autoregressive Process," T. W. Anderson and Raul P.Mentz, October 1976.
28. "Estimation of the Parameters of Finite Location and Scale Mixtures," Javad Behboodian, October 1976.
29. "Identification of Parameters by the Distribution of a Maximum Random Variable," T. W. Anderson and S.G. Ghurye, November 1976.
30. "Discrimination Between Stationary Guassian Processes, Large Sample Results," Will Gersch, January 1977.
31. "Principal Components in the Nonnormal Case: The Test for Sphericity,"
Chriatine M. Waternaux, October 1977.
32. "Nonnegative Definiteness of the Estimated Dispersion Matrix in a
Holtivariate Linear Model," F. Pukelsheim and George P.H. Styan, May 1978.

TECHNICAL REPORTS (continued)

33. "Canonical Correlations with Respect to a Complex Structure," Steen A. Andersson, July 1978.
34. "An Extremal Problew for Positive Definite Matrices," T.W. Anderson and I. Olkin, July 1978.
35. "Maximul Iikelihood Estimation Eor Vector Autoregressive Moving Average Models," T. W. Anderson, July 1978.
36. "Maximum likelihood Estimation of the Covariances of the Vector Moving Average Models in the Time and Frequency Domains," F. Ahrabi, August 1978.
37. "Efficient Estimation of a Model with an Autoregressive Signal with White Noise," Y. Hosoya, March 1979.
38. "Maximum Likelihood Estimation of the Parameters of a Multivariate Normal Distribution,"T.W. Anderson and I. Olkin, July 1979.
39. "Maximum Likelihood Estimation of the Autoregressive Coefficients and Moving Average Covariances of Vector Autoregressive Moving Average Models," Fereydoon Ahrabi, August 1979.
40. "Smoothness Priors and the Distributed Lag Estimator," Hirotugu Akaike, August, 1979.
41. "Approximating Conditional Moments of the Multivariate Normal Distribution," Joseph G. Deken, December 1979. .
42. "Methods and Applications of Time Series Analysis - Part I: Regression, Trends, Smoothing, and Differencing," T.W. Anderson and N.D. Singpurwalla, July 1980.
43. "Cochran's Theorem, Rank Additivity, and Tripotent Matrices." T.W. Anderson and George P.H. Styan, August, 1980.
44. "On Generalizations of Cochran's Theorem and Projection Matrices," Akimichi Takemura, August, 1980.
45. "Bxistence of Maximum Likelihood Estimators in Autoregressive and Moving Average Models," T.W. Anderson and Raú P. Mentz, Oct. 1980.
46. "Generalized Correlations in the Singular Case," Ashis Sen Gupta, November 1980.
47. "Updating a Discriminant Function on the Basis of Unclassified Data," G.J. McLachlan and S. Ganesalingam, November 1980.
48. "A New Proof of Admissibility of Tests in the Multivariate Analysis of Variance." T.W. Anderson and Akimichi Takemura, January, 1981.
49 "A-Optimality for Regression Designs," N. N. Chan, January 1981.
49. "Tests for Standardized Generalized Variances of Multivariate líormal Populations of Possibly Different Dimensions," Ashis Sei Gupia, February 1981.
50. "A Linear Theory for Noncausality," J.P. Florens and M. Nouchart, November 1981.
51. "On the Problems of Construction and Statistical Inference Associated With a Generalization of Canonical Variables," Ashis Sen Gupta, February 1982.
52. "Distributions of Quadratic Forms and Cochran's Theorem for Elliptically Contoured Distributions and Their Applications," T. W. Anderson and Kai-Tai Fang, May 1982.
53. "On the Theory of Multivariate Elliptically Contoured Distributions and Their Applications," T. W. Anderson and Kai-Tai Fang, May 1982.
54. "On Tests for Equicorrelation Coefficient and the Generalized Variance of a Standard Symmetric Multivariate Normal Distribution," Ashis Sen Gupta, May 1982.

UNCLASSIFIED
SECUNITY CLASSIFICATION OF THIS PACE (When Deto Enteredo

REPORT DOCUMENTATION PAGE	READ IKSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG MUMIER
4. TITLE (And Subetile) On the Theory of Multivariate Elliptically Contoured Distributions and their Applications	5. TYAE OF REPORT \& PEMOD COVERED Technical Report
	6. PERFORMING ORG. REPORT NUMEER
7. AUTMON(D) T. W. Anderson and Kai-Tai Fang	8. CONTRACY Of GRANT NUMEER(A) N00014-75-C-0442
9. PERFORMING ORGANIZATION NAME AMD ADOLEES Department of Statistics Stanford University Stanford, California	10. RROGAM ELEMEMT: PROJECT, TASK (NR-042-034)
11. CONTROLLING OFFICE NAME ANO AODNESS Office of Naval Research Statistics and Probability Program Code 436 Arlington, Virginia 22217	12. REPORT OATE May 1982
	13. NUMEER OFF PAGES 42
T4. MONITORING AGENCY NAME A ADORESSIIf Afformit trom Controtita Offica)	18. SECUAITY CLASS. (ol inie ropori) UNCLASSIFIED
	TE. OECLASSITICATION/OOWNGRADING

Approved for public release; distribution unlimited.
17. DISTMIOUTION STATEMENT (Of the abotreet anfoced in Block 20, it afformit frem Rowert)
10. SUPPLEMENTARY NOTES

Cochran's theoren, correlation coefficients, generalized variance, Hotelling's T^{2}, multiple correlation coefficients, multiple regression model, multivariate ellipyically contoured distributions, sample covariance matrix.

In this paper, the multivariate elliptically contoured distributions which generalize the elliptically contouz ad distribution to the case of a matrix are defined and a apecial class of multivariate elliptically contoured distributions is studied in detail. For this class we obtain the distributions of the following statistics: correlation coefficients, multiple correiation coefficients, Hotelling's T^{2}, smple covariance matrix, generalized variance, characteristic roots of the covariance matrix, quadratic forms, etc. somemicivariste ntatinticnl applicatione are diacurned.

