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1. Introduction.

If the characteristic function of an n-dimensional random vector X
has the form exp(iE'E)Ms'gE), vhere u: nx1, I:nxXn, and I >0,
we say that x 1is distributed according to an elliptically contoured
distribution with parameters U, §, and ¢, and we write XV ECn(E,§,¢).

The class of elliptically contoured distributions has been studied
by several authors: Schoenberg (1938), Kelker (1970), Devlin, Gnanadesikan
and Keltenring (1976), Kariya and Eaton (1977), Muirhead (1980), Cambanis,
Huang and Simons (1981), and Anderson and Fang (1982).

Statisticians have been trying to extend the sample theory in multi-
variate analysis to the case of samples being dependent or the case of
samples being from nonnormal populations. In this paper we consider
sampling theory in which the distribution of the population belongs to the
class of elliptically contoured distributions and the samples are dependent.
According to this requirement multivariate elliptically contoured distri-
butions are defined and some basic properties are discussed in Section 1

and Section 2. The distributions of some important statistics in the




sampling theory (such as the correlation coefficients, the multiple g
correlation coefficients, Hotelling-Tz, the sample covariance matrix,

the generalized variance, the quadratic forms, etc.) are obtained in

Sections 3 to Section 6. As applications of the theory on multivariate

elliptically contoured distributions we consider the model of multiple

regression with the error matrix being distributed according to a

multivariate elliptically contoured distribution.

Kariya and Eaton (1977), and Muirhead (1980) discussed the effects

of elliptical distributions on some standard procedures involving correla-

e 4

tion coefficients, but the model that we consider in this paper is different

from theirs.
Throughout the paper, Nh(u,z) denotes the n-dimensional normal
distribution with mean u and covariance matrix I; xi denotes the chi- 3

squared variable with k degrees of freedom; B(al,az) denotes the Beta ;

distribution with parameters oy and o Dm(al"°"am—l;ah) denotes the

2;

Dirichlet distribution with parameters a,,...,0 ; F(k,R) denotes F~distri-
1 m

bution with k and R degrees of freedom, t, denotes the t-distribution h

with n degrees of freedom; Wp(Z,n) denotes the Wishart distribution with

covariance matrix I: pXp and n degrees of freedom; Up m.n denotes
~ [ 1ot ]

Wilks' statistic which is the ratio lG[/|G+§|, where G Wp(Z,n),
H~ wp(Z,m), and H and G are independent; In denotes the nxn
identity matrix; €, denotes the nx1 vector with elements 1; rk(A)

denotes the rank of the matrix A and A denotes a generalized inverse

of A.

2. Definitions and Basic Properties.

Let X, M and T be nxp matrices. We express them in terms

of elements, columns, and rows as

| . . B L TV NGRS SO e S




S
X1 i

X = (xgg) = (XaXppe-enx) = | ’

N

= vec X' ,

Lfin)i

uin)) | g

‘{[ = (uij) - (BI'EZ"..’BP) = N ’

=

= vec M' ,

:

E
14
4
5
:

el g o

LB (n)]

t
3‘ = (tij) - (519529""Sp) bd : »

ter

= vec T' .

Ezn) J

Here x = vec §' = (le)’sz)""’xzn))' and with the same meaning for i

M and t.

Definition 2.1. If the characteristic function of a random matrix

X has the form

n
@D e ]t mhiar o twiie’

with 21.....Zn > 0, we say that X 1is distributed according to a
sultivariate (rows) elliptically contoured distribution and write
X~ "lcnxp (§:§1.---.§n;¢).

Obviously, wvhen n = 1 the multivariate elliptically contoured
distribution reduces to the common elliptically contoured distributionm.

(q)

Let u denote a random vector which is uniformly distributed on

the unit sphere in RY and Qq(IEIF) denote its characteristic fumction.

3




let ¢ be the class of all functions ¢:[0,®) x [0,%) X <+ x [0,®)
mysesesly A

= [0,2)® R such that ¢(ll£1]|2,...,llsn||2) is a characteristic function,
where El’ ces ’En are m, x1l,... m X 1 vectors, respectively.

By a method similar to Schoenberg (1938), it can be shown that

¢ € ¢ml""’mn if and only if i

it b st e

2 2
(2.2) ¢(u1,...,un) - J:--- J: le(rlul),...,an(rnun)dF(rl,...,rn) ]

for some distribution function F(xl,...,xn) on [0,°°)n. When n =1 (2.2)

reduces to

(2.3) o(u) = r Qm(urz)dF(t) i
0

Schoenberg (1938) pointed out that <bm > <I>n if m < n. If the
distribution function F of R 1s related to ¢ € ¢ n 28 in (2.3)
with n substituted for m, then also ¢ € Om, m < n, and there
exists a distribution function F*(x) of R* being related to ¢ as
in (2.3) with I"* substituted for F. Cambanis, Huang and Simons pointed
out that R* g R'b, where b > 0, b2 ~ B(m/2,(n-m)/2) and b is indepen-
dent of R. For convenience we denote these relationships by R « ¢ € On
snd R* g R4"’11:/2,(!\-1::)/2 “ b€ <l>m

Lemma 1. 5'\« MECnxp(g;El,...,gnm) with rk(Ej) = kj’ j=1,...,n,

if and only 1if

"0

. (k) (kn)} !

(2.4) XS a0 (RAe R,




3 b - (kj) (kl) (kn)

{4 where Rl""’% are independent of Ej (3=1,...,n), o TR
are independent, Ej - éjéj is a factorization of Zj > §J=1,...,n, and I
the joint distribution function F(xl, oo ,xn) of (Rl, ces ,Rn) is

related to ¢ as :

(2.5) d(u ey ) = I I (rzu ) PN ¢) (rzu JAF(r ,...,r ),
1 n [0,%) [0,) le 11 kn nn 1 n

. e i AR

and "§ d g" denotes that the distribution of X 1is the same as that of Y. ]
The proof is similar to one of Theorem 1 (Cambanis, Huang and Simons

(1981)). The properties of the operation o are discussed by Anderson

and Fang (1982). The following two properties are important in this

paper:

(1) Assume that 1( ¢ ! and fj(~), j=1,...,m, are Borel functions, g

then
fl(p fl(!)
| A J I ER2
k (11) Assume that X and Y are nXp random matrices, z is a
random variable and is independent of X and Y, respectively. If

(2.6) p(z > 0) =1

then X &Y 1f and only 1f 2x 9 2v.

By using the first property and (2.4) we have

2 2 [} - "w
R/ TR [(’.5(1)'2(1)) I &y &y ¥y §n(§(n)'!.‘(n))}'




where A~ 1s a generalized inverse of A. In particular, if I

%1

'Is

j=1,2,...,m, then (2.7) becomes

(2.8) (Ri’...’szl) g ("5(1) ”2""’“15(n) ”2) ]

2 ' -
where ”5(1)” = X4)%¢1)° i=1,...,n, or

(2.8)" (ResR) Sz lheesllxglld -

In this case, if p(X=0) =0, we have

X1 Xm)! 4 (p) (p)

When X~ )mcnxp(y;gl,...,§n;¢) with ¢Quz,...,u ) = exp[-(u,+-+-+u ) /2],

the corresponding population is normal, i.e. X(3) n Np(E(j)'Ej)’ j=1,...,n,

2

and x are independent. Now Ri""'Rn are independently dis-

2y %(n)
tributed according to xlzc ,...,xi‘, respectively. If the joint distribution
1

of Ri,...,Ri 1s a multivariate chi-square distribution (or generalized
Rayleigh distribution)(cf. Johnson and Kotz (1972), p. 220), then

.’f(j) N Np(E(j)’Ej)’ j=1,...,n, but 5(1)""’1‘(11) are dependent. By
this method, we could generalize the theory of the distribution and esti-
mation in the multiple normal population to the dependent case.

(k,)
Suppose X pmcnxp(g;gl,....gnw). From Lemma 1 §(j) g B(j)+Rj;A.;;Bj J ’
i.e. X4 ~ Ecp(g(j)’Ej’ ¢*), where ¢* € qskj «Rj. It is easy to see
that ¢*(u) = ¢(0,...,0,u,0,...,0) where u 1s in the j-th position.

What is the marginal distribution of x,? From (2.4) we have




[

e

( (k)
m, ‘\
Ra, 'y
d .

(2.10) ,fj Ej + . )

R a(n)'u n

\ n~j ~n J
where S;") is the j-th column of ég,’ j=1,...,p; 2 =1,...,n. Let
Lo = ©Of) ad y, = Qproeesdpu)’ ™~ B (O, ), then

(k)
8 ey " 2 oD yylyl 4 ol vyl

. k,~1
as 5§z)"3§2) = gﬁ'), and yij/"&[[zwn(%, -—R’-Z—}, (cf. Anderson and

Fang (1982)). Hence

[ (D)
MG A

(2.11) §j = L.Ij + . .
(n)
LRn Ujj zn

k.~1
2
where Zysee0y2, are independent, z >0, z:l 4" B(—z-, 3 Y, Rl""’Rn

are independent of ZyseeerZ and (Rl,...,Rn) N F(xl,...,xn).

We believe some further results similar to the elliptically contoured
distribution could be obtained by the method uséd by Cambanis, Huang and
Simons (1981). In this paper we mainly pay attention to a specific sub-
class of multivariate elliptically contoured distributions which will be

defined in the next section.




3. The Case in Which the Characteristic Function is Composged of

Addition of Arguments.

From now on we assume
(3.1) ¢(u1,...,un) - ¢(u1-+----+un),

and we still denote the multivariate elliptically contoured distribution

by mcnxp(§;§1: LXK ’En;(b) .

Theorem 1. § ~ mcnxp(ti;gl,...,gn;cp) if and only if x ECnp
(u,V,¢) with

N
5, 0.0
0 I,... 0
(3-2) V = . . .
0 0 . z
\~ ~ ~n)

Proof. If X~ HECnXP(M;Zl, . .,Zn;¢) ,» the characteristic function

of z_{ is (cf. (2.1) and (3.1).)

a n
m{i leséi)gm}¢(j.z.1553)§35(3)] = exp(1t'W¢(L'VL) ,

i.e. x'uzcnp(u,v,cp). The "1f" part 1s obvious and the theorem follows.

Theorem 1 shows us that for any ¢ € ¢, Wwe can construct a

¢(u1,coo,un) by (3.1) such that ¢ e ¢k1,ooo,kn with k1+ "'+kn = k,




Corollary. X % )mcnxp(y;g.---.gw) if and only if x zcnp(u,v,¢)
with V = 1n®z.

Definition 3.1. If the random vector (z,,...,2 )' satisfies
1 m
d 2
(3.3) (zl,...,zm) = R (dl""’dm) .

. - m-1
where (dl,...,dm_l) u Dm(al,...,am_l,am), cl,n 1- ’:1-1 di’ R > 0, RVF(x)
and R 1is independent of dl""’dm-l’ then we write (zl,...,zm) ~
Gm(al,...,um_l,amw) and (zl,...,zm_l) ~ Gm(al,...,am_l;am;¢), where
¢ € @n + the distribution function F(x) of R and n = 2 Z‘: .

Anderson and Fang (1982) point out that if P(R=0) = 0 the density

of ZyseeesZn g is
r'® ml a,-1
2 i m-1 a -1
(3.4) = Jo r DT ) ™ R
T I(a,) T 1
1 f A
15

for ZyseeesZ gy >0.

Further if x Ecn(u,z,cb) has a density, which must have the form
-1
(3.5 |21 (i) T )

for a suitable function g(-), then the density of R related to ¢

is




In this case the density of Gm(al,...,am_l,amw) has the simpler form

n/2 m a,~1 m

(3.7) ——T— 1 z' ez .
I T'(ay) 1=1 1
1

From Theorem 1, if }~('\: )!Ecnxp(y;gl,...,gn;d)) and rsz =kj, j=1,...,n,

3
then x’\aECnp(u,V,zb) where V 1is defined by (3.2). Hence, x has the

stochastic representation (cf. Cambanis, Huang and Simons (1981))

n
(3.8) xdu+mu® | = Yk,
X TR+ R 441

vhere B'B =V and B' is an npXk matrix. On the other hand, there
is the stochastic representation (2.4) for X; what is the relationship
between R and Rl""’Rn’ and between B and éi (i=1l,...,n)?

2 2 k) k-1
Theorem 2. (1) (Rl,...,Rn) ~ Gn(—z—,..., 7 ~2—;¢], (i1)

{ﬁ 0 e 0
(3.9) =19 A0

0 ...al

{Osee

Proof. Comparing (2.4) and (3.8), the formula (3.9) follows and we
have

(k)
Rlulkl

10




L L
Let yiug ™ N (0,I) and y = (!(1) "“’Z(n) )', where Z(l),...,z(n)

have kl....,kn elements of y, respectively. Therefore

[ ] ( ( )
z(1) Z(l) ”2(1) Iﬂ R ”!(1) I (kl)
—— u
yll Iy 0 iyl Tl =1
z(n) Z(n) ”Z(n) I . ”Z(n) I (k) |
. _
gl ™) | e
\ 4 L *
!
(k) ]

because 4 37 d z(j)luz(j)u, j=1,...,n, and !(J)/Hz(j)ﬂ is independent

of Hz(j)”, and therefore Z(j)/”}f(j)” is independent of Ilz(j)llllz[[. Now

@iy § 52 ng“:nz Iy 1P |
n Iyl Iy

the theorem follows. Q.E.D.

Corollary 1. If Zl = 22 = m Zn = 7 = A'A, rk(Z) = %, then

(&,..0 B v G (R/2,...,2/2,2/2;¢) and

A 0. 0]
0 A. 0
B = T '“ N
0 O0... A
\~ ~ “J

Definition 302. If § N mcnxp(y;gl’...’,gn;¢)’ §1 | eos = 2 E 3 z

and M=c @' we write X1 LECnxp(E,§,¢)-




A
Corollary 2. Assume X "V LBCnxp(ﬁ,2,¢) and tk(I) = £, then
d '
(3.10) X2, ®u' + 1A,
' (nR,)
where A'A = I, A: &xp, U:nxz.vecy-u , R+ ¢€¢n2. and R
is independent of U. |
9
Proof. From Theorem 1 and Theorem 2 we have x ljgnp(gn®1:1,}n®§,¢) . .

Let U= (u y)'s then

(1) " 2(n

A' ... 0
x d En®fj + Rl . u(nl)
~9 L2 N ) é'
1 ]
(A %)
d ¢ ®7 + R .
~n < :
L}
A %(n)
because u(nﬂ.) = vec U d vec U'. Thus
1 ]
4
x$ en®ﬁ' + R{ . = sn®ﬁ' +RUA . Q.E.D.
1]
E(n)é

In order to obtain the marginal distribution of X, we need the

following Lemma which is from Cambanis, Huang and Simons ( 1981), and

Anderson and Fang (1982).

12




Lemma 2. Assume y Vv Ecn(g,zn,‘b). ¢ € °n corresponds to R and C
is an n X p matrix with rk(g) = p<n, then x = C'Z N ECp(c'u,C'C,¢),

* d
where ¢ € ¢p +«+R Rbp/Z,(n—p)/Z'

Assume X " LEC_ p(1:1,§,¢), rk(Z) = 2 and ¢ € & , < R, from Theorem
1 and Lemma 2 we immediately obtain the marginal distributions of rows

and columns of X:

~ %« d
(1) x4y ™ EC,(H,2,0), where ¢ €& © BT = Rbysy oy 1y/p°

. *
(2) 6yov ECn(qun’oijn’q))’ vhere ¢ € ¢ = R = Rby/2,n(2-1)/2’
uj is the j-th component of {i and g = (Gﬁ).

The following corollaries concern the distributions of limear

functions of X.

Corollary 1. Assume XV LECnxp(El,E,cb), rk(Z) = &, ¢ €0, R,

and B is a p x q matrix with rk(B) = min(p,q), then
(1) X~ LEC, (B'H,B'IB,9) with ¢ € ¢ « R if q2 145

9 ot * o
(2) B v LECanaj E’E El}."b) with ¢ € d)nq “ R Rbnq/Z,n(R.-q)/Z

if q < L.
Proof. As X v LECnxp(ﬁ.§-¢) with k() = &, then
d o
X=e ®@p +RUA,

where é'é-g. Thus

13




&
.

2 (e, ®i"B + RUAB

e, @ (i'B) + RU(AB) ,

or

Y

B'A'

[[-X

veem' de @@ +r| L | P

.B'A'

The corollary follows from Lemma 2 and Corollary 2 of Theorem 2. Q.E.D.

Corollary 2. Assume X~ LBCnxp(E.E,Q), rk(Z) = £, 9 € °n£H R,

and B is a q X n matrix with rkB = q < n. Then

(3.11) vec(BX) » EC_ (i@(Be ), I® (88"3,9) ,

wh o, »R = Rb
ere ¢ € )

qt/2,(n-q)2/2°

Proof. From the assumption

vhere U: n x £, A:f x p and A'A = I. It can be shown that

™ A
), al
T al ~(1)
vec X d g@ e, +R ~(1) 3(“2) with A= | {
2. o 2(p)
L 2p))
14

A i el aie et BT :




ra' A
B...O "(1)-.‘ .
. T (D)
veeD § i®(re) + R | | oo
0...B 2
‘.av
L ~(p)}
=i® e ) + RC'w ™ (eay) .
~ ~*n

Using Lemma 2 vec(BX) " Ecqp(g®(ngn),c'c,¢) with ¢ € @qz -+

* e o ,
R qu2/2,(n-q)£/2' The coroolary follows from C'C EQb(ég ). Q.E.D.

Remark. The above two corollaries show us that the distribution of

XB still belongs to the class of the multivariate elliptically contoured

~n

distributions, but the distribution of BX in general does not belong to

this class unless BB' = czlq where ¢ is a constant.

Theorem 3. Suppose that X LECnxp(ﬁ,§,¢) with I > 0, then

2d

(1) R =¢r 2-1

9 where R+« ¢ € an and
n -~ -~
(3.12) 6= L GuDm®' = @e®@IN'X-5,@1) ;

(2) The density of X has the form of

(3.13) 121 ™2 ger 1700

if it exists.

15
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i Proof. 4As X LECnxp(E.f,,@, then x = vec X' % Ecnp(§n®§,£n®§,¢).

f From Corollary 1 of Cambanis, Huang and Simons (1981)

L
(]

$ xe ®D'C,OD xe, ®D

(f-sn ® El) ' (.I.n ® 2-1) (}.f-sn ® E)

v ~y el ~ 2 -1 - .
121 Gy BTGy = er )T gy Gy D

= tr Z-IG .

If X has a density, so does x and the density of x has the form of

(cf. (3.5))
1, ®2|™ g((x-e, @D (1, @D Hx-e ®M)
- Igl""2 g(tr g'lg). Q.E.D.

Corollary 1. Under the supposition of Theorem 3, if X has the

density (3.13), then R has the density

27 3P np-1

1 s(rz) .
I'(E ap)

(3.14)
The proof uses (3.6).

Corollary 2. Assume that f(j) n Np(]zl,g) with E >0, j=1,...,n and

2

)""’f(n) are independent, then tr §-1§ o np*

Xa

16




Proof. Take ¢ = exp(-t/2) in Theorem 3. As we know qu,xznp,

the corollary follows.

4. The Distributions of Correlation Coefficients, the Multiple

Correlation Coefficients, and Tz.

Throughout the rest of this paper we assume X " LECnxp(ﬁ,Z.¢) with
>0 and ¢ € ¢np « the distribution function F of R.

According to the common definition of the correlation coefficient rij’

N 1 AT I 1Y

[ 1‘1”-‘1&; ll.“ fj -;:j *n “

rij -

< -l U - l ‘.
where X, =g €%y i=1,...,p. Let D= En'-n €nn’ then
x,Dx
(4.1) — = .

4 /’fi?’.fi * ’.5_-;9’.53

At first we consider x(j) "N Np(ﬁ,E), j=1,...,n, and suppose

X1ys %) °F° independent. There exist I ~ Np(g,zp). j=1,...,n,

2(1)""’Z(n) independent such that
(4.2) 50)9 T N L Y

where § = é'é. Let

I ¥y
(4.3) Y= » A= (31""’5p) and E =)
L
I(n) Yp
17
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it is easy to see that

; (4.4) x, due +Ya,, 121,00

Hence we have

a:Y'DYa, ;

84% 2234
1 (aiY'IJYai);5 an'DYaj)% ;

(4.5) r

Secondly, we come back to the case of X LECnxp(ﬁ,§,¢). From (3.10) j

b4 2 uje + RUa

~3 ~n 3
where U: n X p and vec U d u(np). Hence
x1Dx, ¢ %a’u'ous, & R%alY'Dya, /tr Y'Y, ¥ 4,3,

because U d Y/(tr Y'Y)%, now (4.1) becomes

ty?
d aY 9323

i (a!Y'DYa %(a'Y'DY;—;%

84 2284 \847 0%

r

which is equivalent to the normal case by the properties (i) and (ii)

"nan
of the operation =

Theorem 4. Suppose that X~ LEcnxp(§.§.¢) with £ > 0, then the

t joint distribution of Ty i=1,...,5=1; § = 2,...,p 1is the same as the

normal case where x,, NP(E.E). 3= L..eom, and Xegy,e000Xe, are

independent.




Corollary 1. Suppose that X % Lxcnxp(g.zp,¢) and R = (rij)’ :{
then the joint density of rij’ 1<3 1is ‘J
i
1 ) |
[I‘(—m)] S i
r Go)
p2
- P -
where Pp(gb = “kp(p L 1n1 P@E-%ilﬁ and m = n-1l. In particular, the
density of rij is i
1
r'(m)
(4.7) 2 (12 )5(m=3)

/r T (%(m—l) ) 4

(cf. Anderson (1958), Sectiom 7.6j.

-~ 3
. A " i =
Corollgrz 2. Suppose that X LEcnxp(E’§'¢) and pij oijlyoiicjj

# 0, then the density cf L is

2102 Y2 2 @2 gy oy
.8 = iaae L — r G

(cf. Anderson (1958), Section 4.2).

Now we consider the distribution of the multiple correlation coefficient,
for instance, the multiple correlation coefficient between the first

variable and the rest of the variables. Denote (cf. (3.12)).

c X

812 S12 11 %12
G= and L = ,
S G2 Ly Iy

where 811 and c,, are the first diagonal elements of G and E,

19

e — . - . B e




respectively. According to the definition of the sample multiple correla~

tion coefficient

-1
o2 o 128220
L] g *
11

- ! pu— e 0! = 3!
It is easy to see that g § 95’ 811 51931, 912 921 5195(2), and
-' Lo o gdn Joo
922 X (2)95(2) where 3(2) (52,.. ’fp) By the same method as in

the case of the correlation coefficients we have

-1
[L7R ] 1 ] L] ] L
2 YDA (AT THAG) T ") Y TYsy

* giY'PYal ’

R

where A(Z) - (az,...,ap) for the normal case and the same expression for

2 ~
R, 1in the case of X "V LECnxp(E’§’¢)’
Theorem 5. Suppose X n LECnxp(ﬁ.§»¢) with I > 0.
(1) 1f
-1
<2 _ L12%22%2
R s =2A L,
11

then [R3/(1-R2)](a-p)/(p-1) " F(p-1,n-p).

(2 1 ® > 0, then the density of Ri is

-2 @D o (@)% Dl 2l ) 4q)

I (n-p))I (G(n-1)) om0 al T(G(p-1)4a)

(cf. Anderson (1958) Section 4.4)).
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Suppose X LECnxp(ﬁ.Z.¢) with I > 0 we want to test

HO:E-BO and le Eiuo.

~

Without loss of generality we can assume uo = (0. It is well-known that

we can use Hotelling's Tz-test for testing the null hypothesis under the

2

normal distribution. What is the distribution of T in the case of the

multiple elliptically contoured distributions?
2

According to the definition of T~ we have
(4.9) 7 = a(a-DE'¢ %,
where
n
el I R
(4.10) *X*a j.z_lf(j) n Y&

and G 1is defined by (3.12). Using G = §'DX and (4.10) we have
2 - - !: ' 1] -1 _1-_ ]
CREY = 0D G EPEID TG Xy

In the normal case we have X d €, ®U' + YA with A'A= I (cf.

(4.2)-(4.4)). 1f the null hypothesis is true we have

2_2_‘_]_-_ ' "y o ST
(4.12) T En!A(AY DYA) é!sn .

~ A e e

By (3.10) and U d Y/(tx Y’Y);"', when the null hypothesis is true we obtain

2

the same expression as (4.12) for T~ in the case of X wcnxp(ﬁ.z.w.
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Theorem 6. Suppose that XVLEC  (i,I,4) with I>0 and 12

1s defined by (4.9), if i = 0 the distribution of [T2/(n-1)){(a-p)/p)

is F(p,n-p).

5. The Distributions of the Sample Covariance Matrix and Generalized

Variance.

5.1. The distribution of the sample covariance matrix. It is a well-

known fact that the distribution of the sample covariance matrix of multi-
variate normal population is the Wishart distribution. If the sample

5(1)""’§(N) is from the population of Np(E,g) and

N
A= azl (X)X X(gy=%)" >

" ' - N-
then A Za-l 2,2, where n = N-1 and Z(1yrerZ(n) are i.i.d.
distributed according to Np(O,g). Now we want to find the corresponding
distribution for multivariate elliptically distributions. Assume
X~ LEC,(0,I,4) with I >0 we want to obtain the distribution of
n
s, = ' s X' = .
- We b B " XE S ryy)
(1) Assume X has a density. Theorem 3 shows us that the density of

X 1is

~

-nf/2

(5.2) lgl-nlz g(cr §-1§'§) - |z| g(tr g—ly)

a8 {i= 0 and W =G, By Lemma 13.3.1 (p. 319, Anderson (1958)), the

dengity of W (1.e. the density of "11"'"wlp'"22""’w29""’“pp) is

22




(5.3) “np/2-p(p-l)/4

Igl(n'P'l)/Z lgl—n/Z a(tr E-lg) i

n-a+l
azl T'( 2 )

In the normal case (5.3) reduces to the Wishart density.

(2) Assume p(X=0) = 0. In this case it is possible that X does

¥ not have a density, but all the marginal distributions of X will have

densities (cf. Kelker (1970)). We consider the following interesting and

important situations:

(A) Let
xll ces xlk
= N ° = '
(5.4) l{k . . and Yk %,lik(p.
xnl e xnkj

In order to obtain the density of §k we need the following Lemma.

Lemma 3. Assume x Vv Ecn(9,§,¢) with I > 0 and p(X=0) = 0.
- ] ' 1
Let x (5(1),§(2)) where 5(1) is an m X 1 vector, m < n, then

the density of 5(1) is

r r(%) Iglll-!i ’(n—z)( 2_x' Z-lx )(n_m) /2°1 dF(r)
m 2 Ty~
where 211 is the first principal minor of order m of E.

- i
Proof. If I I the density of Xy 1s

23
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re
(5.6) -(n-2)(r -x!

‘ / n—m T XX
5 PG V2 y%

y(-m)/2-1 40y .

(cf. (21), Cambanis, Huang and Simons (1981); the lower limit of the
integral in that paper should be vu, not u). When I ¢ L the Lemma

Z-kx. Q.E.D.

~ ~

follows by using the transformation y =

Using Lemma 3 and noting the structure of Kk’ the density of

gk is
r @z, |2
-~ (np 2) n(p-k)/2-1
(3. PR e 8 dF (r)

ter xkx

where Ek is the first principal minor of order k of I. By Lemma

13.3.1 of Anderson (1958) again, the density of W, is

rERy |z, |2
(5.8) ( 2 ok i, | (a=k=1)/2 { ~(ap=2)
k(k-1)/4, n(p-k n-a+l,
™ PG—g%rlﬂ I PG‘j{‘ﬁ )J{;;—i;
o=1 ~k ~k
(r? ~trr, ~k)“(*"“)’ 2-1 4p(r) .
(B) Let
*11 ... *1p
Xm) = | : sl ospsm<n, Woy = Xy X -
X X

ml L ) mp
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In a similar way the densities of X and W are found as
(m) ~(m)

-(np-2) 2 -1, (n-m)p/2-1
(5.9) 972y e, r i r -l K ) Xy aF(x)
trl i‘imi‘(m)
and
BB ,-m/2
(5.10) Arld W )l(m’p'l)/z
P ~\m
nP (P~ /dp lo-mlp) y r(—-———“‘";”)
a=1
r F(rp-2) (rz-tr§-ly(m))(n—m)p/2-l dr(r) ,
'trg-l‘j(m)
respectively.

Further, partition X into k+l1 parts, i.e.

1

§1;+i }

X =

-~

where 51’2-(2""’3.(1&1 are n, X p, n, X Precermy g X p matrices, respaC-~

k+1
tively and Pin, <nm, i=1,...,k, nk+13 1, 21 n, = n. Let

531’ i=1,...,k, then the joint deusity of E(l)""’g(k) is

Wegy =




-(n=n, .)/2
ré&jzl M k I (njp-1)/2
(5.11) n |w
AP (P=1¥4 f detl “1 ) T nreie— 372
I=1 a=1
pn, .. /2-1
Jm . (mp- 2’(: - 2 trl lw(j)) k1 4R (r)
ij=1
G gy

The method to obtain (5.11) is the same as to obtain (5.10), but here we
need to use Lemma 13.3.1 of Anderson (1958) k times. When p =1,
the density (5.11) reduces to Gk+1(n1/2,...,nk/Z;nk+1/2;¢). We denote
the density (5.11) by MGp k+1(Z n /2 ,nk/2;nk+1/2;¢).
Further, if X has a density (3.13), we rewrite it as
rk+l
™2 8 ] ety

j=1

We use Lemma 13.3.1 of Anderson (1958) k+1 times to obtain the demnsity

of W(l),..., (k+1) as

(n,-p-1)/2
P2p 2 g kel lw J
(5-12) (D p(p-1) 74 8( L el 1“(1)] =
- rlp j=1 4=1 § re=d —)
o=1

When p = 1, (5.12) reduces to (3.7) with m = k+l. Denote (5.12) by
MGp'k+1(§;n1/2,...,nklz,nk+1/2;¢). In this case as F(r) has a density,

we can change (5.11) to the simpler form

26
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-(n-n, ..)/2
2wnp/Z—kp(P-l) /4 | > | k+l (n,-p-1)/2

(j)I

n |w
P n,-a+l
r(-Xtl k“ y 1 ob rts—) 31

j=1 a=1
Riee 1Pl {
J: T T +jzltt§ lw(j)]

(C) Consider the marginal density of Wigreee ’wp-l,p—l’wlp’ eeaWy 1o

(i.e. the marginal density

wzp, ‘e ,wz’p_l, .o "wp—Z,p-l’wlp’ e ,w -1,p

*
of W except wpp); for simplicity we will say the density of W .

(1) Let E = U'U where U: nxp and vch-u(np). Let Y be

defined by (4.3), then

Y'y/erY'y d

(=%

(5.13)

e

(eij) .

*
We want to find the density of E (i.e., the density of E except epp}.

However, the correlation coefficient «r 13 is

e f

ij ij
Ty <
»/enej_1 v/fﬂfj.1
where (fij) = F=Y'Y. As we know, {rij’ i=1,...,j-1,j=2,...,p} are

2 2
independent of {”Zi“’ i=1,...,p} and (llylll ""’”Zp-l” )/trY'y

n n n. n.n.

Dp(z""’i’z)' hence (en,...,ep 1,p- 1) D (2,.. ,2,2) and the density
of el-v’u,...,e_ '}p—l,pl is

p-1p(np) __ L |

27T et n-1/, 2 p;l
(5.14) oo I ey z e { e <1.

r 7 i=1 i=1
27




From Corollary 1 of Theorem 4, the joint density of e

LREETL SR TL PPRTRY

rlp, r23,... rp-—l,p is
Py 0D n
2°T (=5 -1 p-1 ., =-1
(5.15) 5 e B gl LT
Trp(p—l)/a 1 r(n-;+1) i=1 1
i=]
p-l 2
if z ei <1.

Consider the following transformation

2
e ™ e i=1,...,p-1

e 1=1,...,5-1;3=1,...,p,

13 - ©1%5T4y

p-1
with ep = (1 - Z ei)%. It is easy to see that the matrix of
1

(e )

117" 28511812771 p-17%23 " "2 p_12"* 2859 5 10€1p0 08 o
B(el,. .o ,ep_l,ru, ces ’tl,p-l’r23' . ’rZ,p-l’ ces ’rp-2,p-l’rlp’ ‘e ’rp—l,p)

is lower triangular with diagonal elements Zel,. .,Zep_l,elez,...,elep_l,e2e3,

. ,ezep_l, ces ,ep_zep_l,elep, . ,ep_lep, thus the Jacobian of the transfor-

mation is

1
(5.16) 21 (-1 Pt e | o(e-D)
P gm1 1

1 e .

Pzl 5 (p-1)/2 p-1
T L

1 i=1

Combining (5.15) and (5.16), the density of E' is
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_?1

ré&d p-1  \M4(n-p-1) p-1
(5.17) 2 'le(n-p-l)[l__ ) eii] . n e?in-?-l)
P16 [ pn-i#l " 1 1=l
1=1 2
n
- F(Tf) lElk(“’P'l)
p(p-1)/4 I‘; r(n—i+1) ~
=1
p~-1

with epp = ] - Zl eii'

(2) Let I be pxp a positive definite matrix and A be an upper
triangular matrix such that A'A = I, Let V= A'EA = (vij)' We want
*
to obtain the density of V (i.e. the density of V except vpp).

Partitioning V, A and E as follows

v '
u Yol P 2R f@||%un 2w

] ] ]
0
Y Vpp 2 %ppjld3) Spp L~ %pp 4

we have

Vi1 T AEaAn

- A! '
1Yy " Aoy YAc %

2
- + ' +a' E .
L Vep ~ %pp %p T 2ppt02() TR(A1E(D)

As epp and vpp are not independent variables, the Jacobian of trans-

formation is

29




J(V > E) = IV, > Epp) I

a ”

between it and the other variables. Since

we have
1= trU'U = tr(A'-IVA-l) - trVZ_l
Denote 2-1 - (Gij) and V = (vij); then
30

e(l))

- kp p/2
Iy, > By = lapAy, | 12y, 1777
where 211 is the first principal minor of order (p-1) of L, and
p -1 _ ¥ p-1
gy > ey = IAnle, =izl e *
Thus
-1)
4(p+l) _p-1 ey |JE] JaCp b5 (p-1) !
5.18 J(V >+ E) = = E =
(5.18) J(V+E) = || an =1l TETJ Iz, 1zl .
Noting |g| = |é'|[§||é| = |§|]§|, the density of Y* is
réP San#l . (-1 o Y(n-p-1)
(5.19) > |z| |11| v .
p(p -1)/4 M r@citl ;+1)
i=1
As vpp is not an independent variable, we need to find the relationship




- P 1 N -
(5.20) vpp-(o”) 1[1- -V o vip] = @) (1-v¥), (say) .

(3) Assume §mLEcnxp(o,§.¢) with T >0 and P(X=0) = 0. From

(3.10)

i where y: nxp, vec U = u(np)’ A is a pxp upper triangular matrix and 4

A'A = 3%. Then

(5.21) W=X"X d RzA'U'UA = RZA'EA = R2V . ]

We have obtained the density (5.19) of V, and it has the form of

clyl¥e D)

where ¢ 1is a constant. Thus the cdf of W, for W positive definite

is

p{nzv » 3=1,...,p-1; R%y i<j}

33 < %33

13 < Yiy°

w w
-!: Plv,, 5—3-'21, 3= Leeenp-ls vy, _<_—i-}, 1<], V positive definite}dF(r).
r r

When the probability is written as the definite integral of the density

of Ve differentiation ylelds as the density of W,

(5.22) c r P PP+ g hi(0p=) yp(ry |
. H
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2 2
), hii- wii/t , i=1,...,p-1; hi = wﬁ/r , 1<3 and

where H = (h j

ij

e " WP La-w*/rd) = (PPrd) 2N

*
- 7P p-1 _ij p-1 _ip
where w 21_1 Zj-l o wi:l + 21-1 c wip' As hpp must be positive,

the density of W, 1is

(5.23) ¢ fm P42 p(n-p-1) | a(np=1) 4p
. W

w

- cr r‘(p“'z)lgl;‘(“""l) dF(x)
Vu*

ré®) _ _
- pZ Iy-‘n&llglli 1 r r (pn-2) IY“i(n-p-l) dr(z),
1r1=(p-1)/4 I I.(n-;.ﬂ.) orrs
i=1
where Y - (wﬁ) with

-1 p-1
- PPy Le2u* = (PP ‘1[ 2_ R PF o ou. e ]
(5.24) Vo WPy (x°w™) = PPy T |x 151 321 0wy 121 o) -

Now we can summarize the above results as follows:

Theorem 7. Assume that X LEcnxp(o,Z,cb) with £ >0 and n > p;

5 is partitioned into k+1 parts 51,...,1(1‘_‘_1 which are nlxp,...,nk+1>tp

matrices, respectively, p < n, i=1,...,k+tl1 and ).'.:ﬂ n,=n; W g'x

14
~

g(j) = 5;;},1 and W is defined by (5.4).

o 8 et e odh




(1) 1f X bhas a density (5.2), then the density of W is (5.3)

and the joint density of “(1)""'“(k+1) is (5.12).

(2) If P(X=0) = 0, then there exists the marginal density of any
(proper) subset of elements of W. In particular, the demsity of W, 1is
(5.8), the density of W, (i.e. the density of W except wbP) is (5.23)

and the joint density of w(l)""’!(k) is (5.11).

Corollary 1. Assume X " LECnxp(O,Z,¢) with T >0 and n > p,

and X has a density (5.2). Let Y = Z—l and V = w'l. then the

~

dengity of V is

(5.25 n:"/ 2-p(p-1)/4 oM 2 [y D2 gy
n-o+1 - - T
n @

o=l

Proof. From (5.3) and the fact of the Jacoblan of the transformation

W= V—l is IV]-(p+1) the corollary follows. Q.E.D.
When ¢ = exp(-t/2), i.e. X is from a normal population, (5.25)

reduces to the inverted Wishart distribution.

Corollary 2. Assume the condition of Corollary 1 holds and § = Ip,

then the density of the characteristic roots A1> --'>Ap of W is

P A(“'P"l)/z
(5.26) ﬂ(n+1)p/2 [: I (+] :]

T ua>gﬁx].
1<y + ¥ gt

a=1 r(n-g+1)r(p-g+1)
33
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Proof. From (5.3) and

of Al""’xp is

,,npl 2-p(p-1)/4

P
I r(E:%ilo
a=1

and the corollary follows.

5.2. The distribution

Theorem 13.3.1 of Anderson (1958), the density

p <
I rcEZ%tl) 1<3
oa=1

Q.E.D.

of the generalized variance.

Theorem 8. Assume that g"«LECnxp(9,§,¢) with ¢ € an**-R,

£>0, p(X-Q) =0 and n >

distributed a8 x2,Xo 1s++esX

p
(5.27) lw| ¢ &%P|z| &
W !

p. Let yl,...,yp_‘_1 be independently

2 2
n-p+1’xp(p—1)/2’ respectively. Then
P'ZPl P
y/[ y] .
1 i i~1 i

d

Proof. From the assumption X = RUé d RYA/VtrY'Y, where Y is

defined by (4.3), then

(5.28) || =~ [X'X] d RZPIA'Y'Yéll(tr Y'nP - ZPlgllg'gll(:r 'nf .

let T= (tij) be the lower triangular matrix such that TT' = Y'Y.

It can be shown that

(a) t1J A N(0,1) for any 1> j;

34

p —— p(p+l)/4
I A(“ p-1)/2 8[5 Xi] .7 T -\
1t i

[P, P
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2 . .2
M) €y v Xpogpy (B8 By Y Xpgaa)s B Leceems !

(¢) {t,,» 3 <1} are independent.

i3
(cf. Johnson and Kotz (1972)). Thus

Wl € &%Piz||Tr|/Cex TEOP .

As T 1is a lower triangular we have

P P
|TT'| = @ tiig Iy,
~~ 1=1 =1
and 4
p+l
2 2 d
n-'r'r'-gt + )t -§y+y = J y,. Q.E.D.

bubl i g

g g5y 8 e

6. A Multivariate Analogue to Cochran's Theorems.

In Section 5 we obtained the distributions of W and denoted

~(m)

o, am, $). Let D bean n X n symmetric matrix. We

it by MGP’Z(E; 25 T3

want to know a necessary and sufficient condition for X'DX ~
m, n-m,
mp’z(g’ 2’ 2 ’ ¢)0

Theorem 9. Assume that X" LECnxp(O,Z,d)) with L >0 and P(Xx=0) = O,

and D is an n X n symmetric matrix, then X'DX ucp 2(Z; %; nT-n; ¢) 1f
~ bl ,2'=
2

and only if D° = D and rk(D) = m.

Proof. Assume X'DX n MGP 2(2; 2 3 ¢). Since x‘-’ RUA, we have
2 ~ ~ -~

~ A

(cf. Theorem 7)

R2a'v'pua € x'px € R%A'viUA

A~~~ ~ e
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where U1 is an m x p matrix and U = (U',Ui)'. The condition P(X=0) = O
implies P(R2 >0) =1, i.e., R2 satisfies the condition (2.6). As Rz is

independent of U, by Lemma 1 of Anderson and Fang (1982) we have

A'U'DUA = A'U'UlA .

~ o~ e ~ ~1l~

We can remove A' and A from both sides because I > 0 and A is non-

singular matrix; hence

-~ aa

N
u'ne 4 yjy, -

Let Y be defined by (4.3), then the above formula becomes

Y'DY/tr X'X 4 X'letr Yy ,

~ o~

where Y is partitioned into Yl and Y2 in the same fashion as U1

and U,. As tr Y'Y 1is independent of Y/tr Y'Y, we can multiply by

~

tr Y'Y on both sides (cf. Lemma 1 of Anderson and Fang (1982)) and obtain

d
ot & gy e @

From Cochran's Theorem for the multivariate normal distritution (cf.
Anderson (1958)), we have 92 =D and rk(g) =,

Assume D2 = D and rkD = m; there exists an orthogonal matrix T

I O
such that T'Dl = [P "] . Let Z=TX, then Z~ LEC _ (0,I,9) (cf.
~ e 0 0 ~ ~n -~ nxp ~ -

~ ~

Corollary 2 of Lemma 2), and

I
‘Y « 7'0¢ - pt|{~B ~ ' ., B, D-m,
rox- vz - (2 Yo gz v, 0 3 5 0.

-~ ~

e it o ! s S M anktia Ml lhn . i B K o aah

i a A



There is a close relationship between Cochran's Theorem in the uni-

variate case and one in the multivariate case. When the population is

normal this relationship has been established (c¢f. Anderson (1958), Rao

(1973)). We will point out similar results for elliptically contoured

distributions.

Corollary 1. Assume X and D satisfy the condition of Theorem 9.

Then X'DX * MG (z; m; i ¢) 1if and only if 2'X'DXR~ Gz(;. n_;_g’ $)

~ ~~ P,2 Bubpasbuiind

-~

0 P [ ] g
for every 2 €RY  with % g& 1, where ¢€¢n<—>R Rbn/2,n(p-1)/2'

e 3 (“"‘") ;¢), then D’ =D and rk(D)=m ;
9

by Theorem 9. From Corollary 1 of Lemma 2 X v LECnx1(9,§'§£z¢) = ECn(g,En,di)

Proof. 1If Z{"pg'\'MG

for all £ €R®® and 2'IL =1, wvhere ¢ €& < R'=R-b a(p-1)/2°

Thus 4£'X'DXR ~ Gz(;, n-z-m ¢) by Theorem 1 of Anderson and Fang (1982).

If 2'X'DX "6, ‘; “;" ¢) for some 1 €RP and &'Ig =1 ]

then l)2 =D and kD = m by Theorem

*
with ¢ <R = Rbn/Z,n(p-l)/Z’

1 of Anderson and Fang (1982). The assertion follows by Theorem 9. Q.E.D.

By using a technique similar to the one for proving Theorem 9, we

can obtain the following theorem.

Theorem 10. Assume that X A LECnxp(O,Z,¢) with >0 and
P(E-g) = 0, and D;s...,D, are symmetric matrices; then
(5'9 5,...,1!'21&() N MG k+1(2, /2,...,n /2; N /2;¢) where n, >p,
= n, 1if and only if D2

i=1,...,k, n - 91, rk(gi) =n

», w2l 5y 21 1
: 1i=1,...,k and P:I.Pj-g for 1L ¢ 1.




7. Applications.

In this section we apply the theory of multivariate elliptically
contoured distributions to the multiple regression model.

We consider the following model

{znxp = z(anEqXp + Enxp » PR, TX=gq

(7.1)

E(VecE) = 0 , D(vecE') = 1n®2, En LEcnxp(o,§,¢) with £ > 0.

Minimizing |E'E| or tr E'E with respect to B gives the least

squares
(7.2) § = (X'X)

since
(7.3) E'E = (Y-XB)'(Y-XB) = (X-XB)'(Y-XB) + (§-§) '}~('}~{(l}_-§) .

By assumption we have

(7.4) Ed rua,
vhere A'A = I, Thus

(7.5) Y d XB + RUA
and

7. B4 prrex XA

38




B

Theorem 1ll. Under the assumption in the model (7.1) we have

7.7 vec(-B) ~ EC__(0,Z® (X'D 1,0 ,

*
vhere ¢ €8 <R =Rb > (n-q)p/2"

Theorem 11 follows by Corollary 2 of Lemma 2. Q.E.D.

In general the distribution of B does not belong to the class of ;
-1
the multivariate elliptically contoured distributions unless (X'X) = cZI

~

where ¢ 1is a constant in which case

~

2
(7.8) B-B chqxp(g.c Z,4) »

where ¢ € ¢pq+—>n* being defined by Theorem 11.

Corollary. Denote B = (él,...,gp). Under the assumption of Theorem

1l we have:

A ' -1 *% -
(1) éj v ECq(Bj,ojj(§ X) ~,¢), where ¢ € ¢q+*-R qu/Z,np—q/Z'

(2) cov(B,,B,) = conet. o, (X'DT .

~

Proof. The assertion (1) is a consequence of Lemma 2 and Theorem 1l.

The assertion (2) follows by Theorem 4 of Cambanis, Huang and Simons

(1981). Q.E.D.



Now we consider the distribution of E'

E

1>

= (Y-XB)'(Y-XB). As

L <

=y (In-x(x'x)'lx')y - E'(In-X(x'X)'lx')E

and (In-x(x'x)'lx') is a projection matrix with rank n-q, 1if

P(E=0) = 0, then from Theorem 9,

(7.9) s =

1>

'E v MG, o(Z;i(n-9)/23q/2;9) .
Under the model (7.1) we want to test the following linear hypothesis:
(7.10) H: HB= C, H: txq , C: txp and rkH = t<p .

Under the condition of HB = C minimizing [E'E| or tr E'E with

respect to B gives the least squares estimator
(7.11) B
where B is given by (7.2). Since

(Y-XB) ' (Y-XB) = (¥-XB)'(¥-XB) + (B,-B)'X'X(B-B) .

Thus

&m | (1-XB) ' (¥-XB) | = |(Y-XB,)'(Y-XBp)|
-C hadard ~ ~ ~ Ny ~ ~

L ]

| (x-xB) " (¥-xB) + (B-C) ' (u(x'®) " w") (-0

s+l (say).
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A statistic for testing the hypothesis H is

min| (Y-XB) ' (Y-XB) |
B ) |s]

(7.12) A= — - .
e | 3 cxm) 12T

~a o~

Noting E d RUA and § d B+ (5'5)-1X'UA, if the hypothesis is true we

have

s 4 R%A'0' (1-x(x'®) "Yx'JuA

~

and

(EB-0) " (E(x'® &) " (B-0)

~n

i
[}

35 ' (1ex'0 1) TR E-D)

RZA'U'X(X'X)’ln'(u(x'x)'lu')'lu(x'x)‘lx'UA,

.

where A'A =73 (cf. (7.6)).
Subsgtituting them into (7.12) we see that A is independent of Rz.
By the method applied in Section 4, the distribution of ) 1is the same

as in the normal case; i.e. (Wilks' distribution).

U
p,t,n-q

Theorem 12. Under the model (7.1) and P(g-g) = (0, the statistic

A given by (7.12) for testing the linear hypothesis (7.10) is distributed

according to Up,t,n-q .
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