

REPORT DOCUMENTATION PAGE		
REPORT NUMAES AFOSR－TR－ $82-0453$	$\begin{aligned} & \text { 2. Covt AcCESSION No. } \\ & A D-A 11528 \end{aligned}$	3．AECIPIENT＇S CATALOG NOMEER 80

4．TITLE（nid Subtilla）	
THE RELIABILITY OF k OUT OF n SYSTEMS	TECHNICAL

3．PERFORMING ORGANIIATION NAME AND ADDRESS
＊Department of Statistics，Florida State Univ， Tallahassee FL 32306；and Department of Mathema－ tics，University College Dublin，Belfield， Dublin 4，Ireland
11．CONTROLLING OFFICE NAME ANO AODRESS
Directorate of Mathematical \＆Information Sciences
10．PROGRAM ELEMENTPROJECT．TASK
AREAA WORK UNTT NUMEESS

Air Force Office of Scientific Research
Bolling AFB DC 20332
TA．MONITORING AGENCY NAME A ADORESS（II different from Controlline Ollice）

Approved for public release；distribution unlimited．

A system with n independent components which function if and only if at least k of the components function is a k out of n system．Parallel systems are 1 out of n－systems and series systems are n out of n systems．If $p=\left(p_{1}, \ldots, p_{n}\right)$ is the vector of component reliabilities for the n components，then $f(\mathrm{D})$ is the reliabi－ lity function of the system．／It is shown that $h_{k}(p)$ is Schur－convex in

SECURITY CLASSIFICATION OF THIS PAGE(MTien Dete Entored)

ITEM- \#20, 'CONTINUED:
$\left[\frac{k-1}{n-1}, 1\right]^{n}$. More particularly if Π is an $n \times n$ doubly stochastic matrix, then $h_{k}(p) \geq(s) h_{k}(p I)$ whenever $p \in\left[\frac{k-1}{n-1}, 1\right]^{n}\left(\left[0, \frac{k-1}{n-1}\right]^{n}\right)$. This theorem is compared with a result on Schur-convexity and -concavity by Gleser [2] which
in turn extends work of Hoeffding [4].

AFGOR-TR- 82-0453

The Reliability of \mathbf{k} out of \mathbf{n} Systems
by
Philip J. Boland and Frank Proschan ${ }^{1}$

University College Dublin Department of Mathematics Belfield, Dublin 4, Ireland
and
The Florida State University Department of Statistics Tallahassee, Florida 32306

AFOSR Technical Report 82-136
${ }^{1}$ Rescarch supported by Air Force office of Scientific Research, U.S.A.F., under Contract No. F49620-82-K-0007.

ANS Subject Classification Numbers: Prinary 60C05, 62N05;
Secondary 62E15, 26 B25.
Koy Words and Phrases: k out of n systems, majorization, Schur-convexity and Schur-concavity, independent Bernoulii trials.

Approved for publie roleases:
distribution ualifitod.

The Reliability of k out of n Systems

> by

Philip J. Boland and Frank Proschan

A system with n independent components which functions if and only if at least k of the components function is a k out of n system. Parallel systems are 1 out of n systems and series systems are n out of n systems. If $p=\left(p_{1}, \ldots, p_{n}\right)$ is the vector of component reliabilities for the n components, then $h_{k}(p)$ is the reliability function of the system. It is show that $h_{k}(p)$ is Schur-convex in $\left[\frac{k-1}{n-1}, 1\right]^{n}$ and Schur-concave in $\left[0, \frac{k-1}{n-1}\right]^{n}$. More particularly if n is an $n \times n$ doubly stochastic matrix, then $h_{k}(p) \geq(s) h_{k}(\underline{R})$ whenever $p \in\left[\frac{k-1}{n-1}, 1\right]^{n}$ $\left(\left[0, \frac{k-1}{n-1}\right]^{n}\right)$. This Theorem is compared with a result on Schurconvexity and -concavity by Gleser [2] which in turn extends work of Hoeffding [4].

1. Introduction and Summary. Ak out of n system is a system with n components which functions if and only if k or more of the components function. Herein we assume that the n components of the system function independently. If $p=\left(p_{1}, \ldots, p_{\mathbf{n}}\right)$ is the vector of component reliabilities (functioning probabilities) and $\varepsilon=\left(\varepsilon_{1}, \ldots, \dot{E}_{n}\right)$ represents any vector with components equal to zeroes or ones, then

$$
\text { (1.1) } h_{k}(p)=h_{k}\left(p_{1}, \ldots, p_{n}\right)=\sum_{\varepsilon, \varepsilon_{1},+\ldots+\varepsilon_{n} 2 k} p_{1}^{\varepsilon_{1}} \ldots p_{n}^{\varepsilon_{n}}\left(1-p_{1}\right)^{1-\varepsilon_{1}} \ldots\left(1-p_{n}\right)^{1-\varepsilon_{n}}
$$

is the probabliity that k or more of the components function. This function $h_{k}:[0,1]^{n} \rightarrow[0,1]$ is called the reliability function for a k out of n system with independent components. A one out of n system is a parallel system, an n - 1 out of n system is a 'fail-safe' system (see Barlow-Proschan [1]), and an n out of n system is a series system. For these systems it is easy to see that

$$
\begin{gathered}
h_{1}(p)=1-\prod_{i=1}^{n}\left(1-p_{i}\right), \\
h_{n-1}(p)=\prod_{i=1}^{n} p_{i}+\prod_{i=1}^{n}\left(\left(1-p_{i}\right) \prod_{j \neq i}^{n} p_{j}\right)
\end{gathered}
$$

and

$$
h_{n}(p)=\prod_{i=1}^{n} p_{i}
$$

Note that if S is the number of successes in n independent Bernoulli
trials, where for $i=1, \ldots, n, p_{i}$ is the probability of success on the i th trial, then $P(S=k-1)=h_{k}(p)=h_{k}\left(P_{1}, \ldots, p_{n}\right)$. Hence the results in this paper on k out of n systems have interpretations in terms of the number of successes in Bernoulli trials. If $\mathcal{R}=\left(p_{1}, \ldots, p_{n}\right)$, then let $\bar{R}=\left(\sum_{1}^{n} p_{i} / n, \ldots, \sum_{i} p_{i} / n\right)$. Hoeffding ([4], 1956) showed that

$$
h_{k}\left(p_{1}, \ldots, p_{n}\right) \geq h_{k}(\bar{p}, \ldots, \bar{p}) \text { if } \sum_{i}^{n} p_{i} \geq k
$$

and

$$
h_{k}\left(p_{1}, \ldots, p_{n}\right) \leq h_{k}(\bar{p}, \ldots, \bar{p}) \text { if } \sum_{i}^{n} p_{i} \leq k-1
$$

Gleser [2], using the theory of majorization and Schur functions (see Marshall and 01kin [5], Theorem 12. K.1), extended Hoeffding's result and showed that $h_{k}(D)$ is Schur-convex in the region where $\sum_{1}^{n} p_{i} \geq k+1$ and Schur-concave in the region where $\sum_{1}^{n} p_{i} \leq k-2$. More particularly Gleser showed that if $p=\left(p_{1}, \ldots, p_{n}\right) \in[0,1]^{n}$ and II is a doubly stochastic matrix, then

$$
h_{k}(p) \geq h_{k}(p \|) \text { whenever } \sum_{i}^{n} p_{i} \geq k+1
$$

and

$$
h_{k}(p) \leq h_{k}(p I) \quad \text { whenever } \sum_{i}^{n} p_{i} \leq k-2 .
$$

This result allows one to make nore general comparisons than one could with Hoeffding's result. The major result of the present paper enables one to extend the regions of Schur-convexity and -concavity
of the function $h_{k}(p)$. The result is as follows:
Theorem 1.1. $h_{k}(p)$ is Schur-concave in the region $\left[0, \frac{k-1}{n-1}\right]^{n}$ and Schur-convex in the region $\left[\frac{k-1}{n-1}, 1\right]^{n}$.
2. Majorization, Schur-convexity, and Schur-concavity. A vector $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ is said to majorize vector $y_{n-1}=\left(y_{1}, \ldots, y_{n}\right)\left(x^{i} \hat{i} y\right)$ if $x_{[1]} \geq y_{[1]}, x_{[1]}+x_{[2]} \geq y_{[1]}+y_{[2]}, \ldots \sum_{i=1}^{n-1} x_{[i]} \geq \sum_{1}^{n-1} y_{[i]}$, and $\sum_{1}^{n} x_{[i]}=\sum_{1}^{n} y_{[i]}$, where the $x_{[i]}{ }^{\prime s}$ and $y_{[i]}{ }^{\text {'s are copponents of }}$ \underline{x} and y respectively arranged in descending order. The following lema characterizes majorization and is due to Hardy, Littlewood and Polya ([3], 1934) (see also Marshall and 01kin [5], Theoren 2.8.2).

Lempa 2.1. The vector x majorizes the vector y if and only if there exists $n n \times n$ doubly stochastic matrix n such that $y=\underline{x}$.

A real valued function h defined on a set $A \subset R^{n}$ is Schurconvez (Schur-concave) if $h(x) \geq(s) h(y)$ whenever $x^{m} y$ and $x, Y \in A$. Now assume that $A \subset R^{n}$ is a permutation symmetric convex set with nonempty interior. If h is continuously differentiable on the interior A^{\bullet} of A and continuous on A then h is Schur-convex (-concave) on A if and only if for all $1: j$ and $x \in A^{\circ}$,

$$
\begin{equation*}
\left(x_{i}-x_{j}\right)\left(\frac{\partial h}{\partial x_{i}}(x)-\frac{\partial h}{\partial x_{j}}(\underline{x})\right) \geq(s) 0 \tag{2.1}
\end{equation*}
$$

This characterization of Schur-convexity (-concavity) is known as the Schur-Ostrowski condition (see Marshall and Olin [5]).

In investigating regions of Schur-convexity of the reliability function $h_{k}:[0,1]^{n} \rightarrow[0,1]$, we use the following notation. If $\underline{r} \in[0,1]^{m}$ and ℓ is any integer then $h_{\ell}(\underline{r})\left(h_{\ell}^{*}(\underline{r})\right)$ will denote the probability that ℓ or more (exactly ℓ) independent components with respective probabilities r_{1}, \ldots, r_{m} function. Note for example that with this notation $h_{-1}(\underline{r})=1$ and $h_{-1}^{*}(\underline{x})=0$. We assume here that $R=\left(p_{1}, \ldots, p_{n}\right) \in[0,1]^{n}$ and let $q^{i}\left(P^{i j}\right)$ be the vector in $[0,1]^{\mathrm{n}-1}\left([0,1]^{\mathrm{n}-2}\right)$ obtained from \underline{p} by deleting its lith coordinate (lith and j th coordinates).

Leman 2.2. For $1 \leq k<n, p \in(0,1)^{n}$ and $n>2$,

$$
\left.\left[\frac{\partial h_{k}}{\partial p_{i}}(p)-\frac{\partial h_{k}}{\partial p_{j}}(p)\right)\left(p_{i}-p_{j}\right)=-\left(p_{i}-p_{j}\right)^{2}\left[h_{k-2}^{*}\left(p^{i j}\right)-h_{k-1}^{*}(p)^{i j}\right)\right]
$$

for all $\mathbf{i}, \mathbf{j}, \mathbf{i}=\mathbf{j}$.
Proof. For any index i, $1 \leq i \leq n$, we have that

$$
h_{k}(p)=p_{i} h_{k-1}\left(\underline{p}^{i}\right)+\left(1-p_{i}\right) h_{k}\left(p^{i}\right)
$$

Hence for $j \neq i, \frac{\partial h_{k}}{\partial p_{i}}(p)=h_{k-1}\left(\mathbb{P}^{i}\right)-h_{k}\left(p^{i}\right)$

$$
\begin{aligned}
& =p_{j} h_{k-2}\left(R^{i j}\right)+\left(1-p_{j}\right) h_{k-1}\left(R^{i j}\right) \\
& -\left(p_{j} h_{k-1}\left(R^{i j}\right)+\left(1-p_{j}\right) h_{k}\left(R^{i j}\right)\right) .
\end{aligned}
$$

Therefore $\left[\frac{\partial h_{k}}{\partial p_{i}}(p)-\frac{\partial h_{k}}{\partial p_{j}}(p)\right]\left(p_{i}-p_{j}\right)$

$$
\begin{aligned}
& =-\left(p_{i}-p_{j}\right)^{2}\left[\left(h_{k-2}\left(p^{i j}\right)-h_{k-1}\left(p^{i j}\right)\right)-\left(h_{k-1}\left(p^{i j}\right)-h_{k}\left(p^{i j}\right)\right)\right] \\
& =-\left(p_{i}-p_{j}\right)^{2}\left[h_{k-2}^{*}\left(p^{i j}\right)-h_{k-1}^{*}\left(p^{i j}\right)\right]
\end{aligned}
$$

We see then by the Schur-Ostrowski condition (2.1) that $h_{h}(p)$ is Schur-convex (-concave) in regions where for all $i, j, i \neq j$, $h_{k-2}^{*}\left(\mathbf{R}^{i j}\right) \leq(z) h_{k-1}^{*}\left(\mathbb{R}^{i j}\right)$. In particular note that if $k=1$ (respectively n), i.e. for a parallel (series) system, $h_{k-2}^{*}\left(p^{i j}\right)=0$ $\left(h_{k-1}^{*}\left(p^{i j}\right)=0\right)$, and hence $h_{1}(p)\left(h_{n}(p)\right)$ is Schur-convex (-concave) in $[0,1]^{n}$.

Lemma 2.3. Let $n>2$ and k be such that $2 \leq k \leq n$. Then for any $i \neq j$,

$$
\begin{aligned}
h_{k-2}^{*}\left(p^{i j}\right) \leq & (2) h_{k-1}^{*}\left(p^{i j}\right) \\
& \text { whenever } p_{\ell} \geq(s) \frac{k-1}{n-1} \text { for all } \ell \neq i, j .
\end{aligned}
$$

Proof. Due to the symmetry of the situation, we need only show that $h_{k-2}^{*}\left(p^{12}\right) \leq h_{k-1}^{*}\left(p^{12}\right)$ whenever $p_{l} \geq \frac{k-1}{n-1} \quad$ for $\&=3, \ldots, n$. In this proof, $\underline{\varepsilon}=\left(\varepsilon_{3}, \ldots, \varepsilon_{n}\right)$ and $\varepsilon^{\prime}=\left(\varepsilon_{3}^{\prime}, \ldots, \varepsilon_{n}^{\prime}\right)$ will denote n-2 dimensional vectors whose components are zeroes or ones such that $\varepsilon_{3}+\ldots+\varepsilon_{n}=k-2$ and $\varepsilon_{3}^{0}+\ldots+\varepsilon_{n}^{0}=k-1$. Now

$$
\begin{equation*}
h_{k-2}^{*}\left(p^{12}\right)=\sum_{\varepsilon} p_{3}^{\varepsilon_{3}} \ldots p_{n}^{c_{n}}\left(1-p_{3}\right)^{1-\varepsilon_{3}} \ldots\left(1-p_{n}\right)^{1-\varepsilon_{n}} \tag{2.2a}
\end{equation*}
$$

and
(2.2b)

$$
h_{k-1}^{*}\left(p^{12}\right)=\sum_{\underline{\varepsilon}} p_{3}^{\varepsilon_{3}^{\prime}} \ldots p_{n}^{\varepsilon_{n}^{\prime}}\left(1-p_{3}\right)^{\varepsilon_{3}^{\prime}} \ldots\left(1-p_{n}\right)^{\varepsilon_{n}^{\prime}}
$$

Consider a term in the expansion of (2.2a), say for simplicity of notation, the term $p_{3} \cdots p_{k}\left(1-p_{k+1}\right) \cdots\left(1-p_{n}\right)$. Then

$$
\begin{aligned}
& p_{3} \cdots p_{k}\left(1-p_{k+1}\right) \cdots\left(1-p_{n}\right)= \\
& \frac{1}{n-k}\left[p_{3} \ldots p_{k}\left(1-p_{k+1}\right) \ldots\left(1-p_{n}\right)+\ldots+p_{3} \ldots p_{k}\left(1-p_{k+1}\right) \ldots\left(1-p_{n}\right)\right] \\
& \text { n-k times } \\
& \leq \frac{1}{n-k}\left[p_{3} \ldots p_{k}\left(\frac{n-k}{n-1}\right)\left(1-p_{k+2}\right) \ldots\left(1-p_{n}\right)+\ldots+p_{3} \ldots p_{k}\left(1-p_{k+1}\right)\right. \\
& \left.\ldots\left(1-p_{n-1}\right)\left(\frac{n-k}{n-1}\right)\right] \\
& \text { (since } 1-p_{\ell} \leq 1-\frac{k-1}{n-1}=\frac{n-k}{n-1} \text { for all } \ell=3, \ldots, n \text {) } \\
& =\frac{1}{k-1}\left[p_{3} \ldots p_{k}\left(\frac{k-1}{n-1}\right)\left(1-p_{k+2}\right) \ldots\left(1-p_{n}\right)+\ldots+p_{3} \ldots p_{k}\left(1-p_{n+1}\right) \ldots\left(1-p_{n-1}\right) \frac{k-1}{n-1}\right] \\
& \leq \frac{1}{k-1}\left[p_{3} \ldots p_{k} p_{k+1}\left(1-p_{k+2}\right) \ldots\left(1-p_{n}\right)+\ldots+p_{3} \ldots p_{k}\left(1-p_{k+1}\right) \ldots\left(1-p_{n-1}\right) p_{n}\right] .
\end{aligned}
$$

Hence sinilarly for a general term in the expansion of (2.2a), we have

$$
\begin{aligned}
& p_{3}^{\varepsilon_{3}} \ldots p_{n}^{c_{n}}\left(1-p_{3}\right)^{1-\varepsilon_{3}} \ldots\left(1-p_{n}\right)^{1-\varepsilon_{n}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& h_{k-2}^{*}\left(p^{12}\right)=\sum_{\underline{\varepsilon}} p_{3}^{\varepsilon} 3 \ldots p_{n}^{\varepsilon_{n}}\left(1-p_{3}\right)^{1-\varepsilon_{3}} \ldots\left(1-p_{n}\right)^{1-\varepsilon_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{\underline{\varepsilon}} \frac{1}{k-1}(k-1) p_{3}^{\varepsilon \dot{3}} \ldots p_{n}^{\varepsilon_{n}^{\prime}}\left(1-p_{3}\right)^{1-\varepsilon \tilde{3}} \ldots\left(1-p_{n}\right)^{1-\varepsilon_{n}^{\prime}} \\
& \text { (since for each } \underline{\varepsilon} \text { there exist } k-1 \text { distinct } \\
& \underline{\varepsilon}^{-} \text {where } \varepsilon_{\ell}^{\prime} \geq \varepsilon_{\ell} \text { for } l=3, \ldots, n \text {). } \\
& =h_{k-1}^{*}\left(\mathrm{p}^{12}\right) \text {. }
\end{aligned}
$$

3. Proof of Theorem 1.1. Using the Schur-Ostrowski condition (2.1)
it is easy to verify Theorem 1.1 when $n=2$. For $n>2$, we have already noted that when $k=1$ (parallel system), h_{k} is Schur-convex in $[0,1]^{n}$. For $n>2$ and $k \geq 2$, it follows from Lemmas 2.2 and 2.3 that h_{k} satisfies the Schur-Ostrowski condition for Schur-convexity (-concavity) on $\left[\frac{k-1}{n-1}, 1\right]^{n} \quad\left[\left[0, \frac{k-1}{n-1}\right]^{n}\right.$.
Remark 3.1. Gleser's result [2] shows that $h_{k}(p)$ is Schur-convex (-concave) on the set $\left\{\mathbf{p}: p_{1}+\ldots+p_{n} \geq k+1\right\}$ ($\left.\mathbf{p}: p_{1}+\ldots+p_{n} \leq k-2\right\}$). This result and Theorem 1.1 enable one to make various compariscas of system reliability, and neither result encompasses the other.

For example let us consider a 3 out of 4 system. Then Theorem 1.1 implies that a system with component reliabilities ($1.0, .9, .8, .7$) is superior (has higher reliability) than a system with component reliabilities (.95, .95, .75, .75) which in turn is superior to one with component reliabilities (.85, .85, .85, .85). On the other hand Theorem 1.1 also implies that a system with component reliabilities (.6, .5, .3, .2) is inferior to one with component reliabilities (.6, .4, .4, .2) which in turn is inferior to one with component reliabilities (.4, .4, .4, .4). These comparisons are not implied by Gleser's result.

Remark 3.2. Let S be the number of successes in n independent Bernoulli trials where p_{i} is the probability of success on the ith trial. Then by Theorem 1.1, $P(S \geq k)$ is Schur convex (concave) in $\left[\frac{k-1}{n-1}, 1\right]^{n}\left(\left[0, \frac{k-1}{n-1}\right]^{n}\right]$. Suppose now that $1 \leq k<k^{-} \leq n$. Then it follows by the above that $\mathrm{P}\left(\mathrm{k}^{-}>\mathrm{S} \geq \mathrm{k}\right)$ is Schur-convex in $\left[\frac{k-1}{n-1}, \frac{k^{-}-1}{n-1}\right]^{n}$.

Refetences.

[1] Barlow, R.E. and Proschen, F.,(1965). Mathematical Theory of Reliability, John Wiley and Sons, New York.
[2] Gleser, L. (1975). On the distribution of the number of successes in independent trials. Ann. Probab. 3, 182-188.
[3] Hardy, G.H., Littlewood, J.E., and Pólya, G. (1959). Inequalities, 2nd ed. Cambridge Univ. Press.
[4] Hoeffding, W. (1956). On the distribution of the number of successes in independent trials. Ann. Math. Statist. 27 713-721.
[5] Marshall, A.W. and O1kin, I., (1979). Inequalities: Theory of Majorization and its Applications. Academic Press.

