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ABSTRACT

Two methods are presented for building interval estimates on the mean of
a stationary stochastic process. Both methods fit an autoregressive moving-
average (ARMA) model to observations on the process. The model is used to
estimate the variance of the sample mean and the applicable degrees of free-
dom of the t statistic. Fitting of the ARMA model is totally automated. The
ARMA-based confidence intervals perform well with data generated from ARMA
processes. With data generated from queuing-system simulations, the coverage
of the confidence intervals is less than satisfactory. It is shown that with
queuing-system data, the sample mean and its estimated standard deviation are
strongly positively correlated, and that the residuals of the fitted models
are not normally distributed. These factors contribute adversely to the

coverage of the confidence-interval procedures with queuing data.
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We introduce and test two confidence interval procedures (CIPs) for the
mean of a univariate output random variable from a similation model operating
at steady state. The CIPs are based on an autoregressive moving-average
(ARMA) model and are fixed-sample-size procedures. The threefold purpose of
this research has been:

1. to develop two versions of an ARMA-based

confidence-interval procedure;

2. to measure the effectiveness of both versions

by subjecting them to comprehensive testing; and

3. to develop and report guidelines for using

this procedure with output data from simulation

models.
As used in this report, a confidence-interval procedure consists of four
steps:
a. computation of the sample mean;
b. estimation of the variance of the sample mean;
c. determination of the number of degrees of freedom; and
d. computation of an interval estimate for the process mean,
using the t distribution with the aforementioned
quantities.
These four steps correspond to the first four steps given in Fistman {1978, p.
236] for forming interval estimates. After reviewing the pertinent funda-
mentals of ARMA processes in Section 1, the steps making up the ARMA-based
confidence-interval procedure are explained in detail in Section 2.
The proposed CIPs have been subjected to comprehensive empirical test’~o,
using the research framework suggested for this purpose in Schriber and

Andrews [1981). Empirical testing of a CIP involves the generation of data
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from a series of theoretical output processes (TOPs) with known means. 1In
Section 3, we discuss the eight TOPs used to evaluate the CIPs proposed
here, and indicate the reasons these TOPs were chosen for testing purposes.

After a brief discussion of the testing environment in Section 4, the
empirical results of the testing are given in Section 5. For each TOP used,
the resulting measures of effectiveness (MOEs) are presented in a corre-
sponding table of the form introduced in Schriber and Andrews [1981]. The
tables display the performance characteristics of the CIP when used to process
data generated by the associated TOPs.

Both CIPs perform well with data generated by ARMA TOPs, which in this
research are tailor-made (Schriber and Andrews [1981]). However, when used to
process observations produced by models of two queuing systems, the ARMA-based
CIPs did not perform satisfactorily for all the measures of effectiveness.
Nevertheless, they did as well as or better than the pure autoregressive (AR)
confidence-interval procedure presented by Fishman [1971] and further
investigated by Andrews and Schriber [1978].

Tn Section 5, we also investigate possible reasons for the failure of
these CIPs to perform in better fashion on data generated by the queuing-
system models. This investigation takes the form of empirically determining
the extent to which the underlying assumptions were satisfied by the queuing
system data. This discussion concludes with the recommendation that the
ARMA-based CIP be used with queuing data only after the data have been tested
appropriately. In particular, a test should be performed to see if there is a
significant correlation between the sample mean and the estimated standard
deviation of the sample mean. Furthermore, the distribution of the residuals

should be tested for normality.
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1. AUTOREGRESSIVE MOVING-AVERAGE MODEL

The autoregressive moving-average model on which the confidence-interval !

procedure is based is given by (1):

Xt = ¢1Xt_1 + ceeee + ¢pxt_p + 60 + € ~ elet—l - esres = eqet-q
2
€~ N(O,oe)
2
9. if i = j :
Efe, ,e,] = 1) i
3 0 1if 1 # j ]

Cov(et,xs) =01f t > s.
This 1s the familiar model as given in Box and Jenkins {1976]. It is referred
to as ARMA(p,q). When q = 0, the model is the pure autoregressive (AR)
process which Fishman [1971] used as the basis for a confidence-interval

methodology. Here, we allow for the presence of moving-average (MA) terms,

thereby extending the pure AR model to a mixed AR-MA form with the objective
of achieving an improved confidence~interval methodology for those cases in
which MA terms are of importance.

Further motivation for developing an ARMA-based CIP is provided by Steudel
and Wu [1977, p. 748], who state that "...any uniformly sampled wide-sense
stationary stochastic process can be adequately described by a discrete auto-
regressive moving-average (ARMA) model of order n and n-1." On the basis of
their limited empirical results, Steudel and Wu tentatively conclude, for
example, that the "current system content” output variable for an M/M/1
queuing system is adequately modeled by an ARMA(1,0) model. 1In a companion
paper, Steudel et al. [1978, p. 292] conclude that "Queue behavior is shown

to be adequately described by a first order autoregressive AR(1) model if the




job selection discipline does not depend on operation processing time. In

those cases where processing time was used in job selection, a second order
autoregressive AR(2) model is adequate to characterize the queues.” And
Schmeiser and Kang [1981] have shown analytically that when batch means for
any batch gsize are formed for an AR(l) process, the resulting process is
ARMA(1,1).

The confidence-interval procedures we propose are for output processes
which have reached steady state or, equivalently, for output processes which
are stationary. Because the random disturbances, ¢, in (1) are assumed to be
normally distributed, we can equivalently consider the output process to be
second-order stationary. 1In theory, discrete-time-parameter stationary pro-
cesses can be adequately described by an ARMA(p,q) model if the p and q values
are allowed to be appropriate nonnegative integers (Cox and Miller [1965,

p- 288]). As emphasized by the concept of parsimony in the time series liter-
ature (Box and Jenkins [1976, p. 17]), small values for p and q can adequately
fit a given data set in most situations.

The ARMA model in (1) has the following properties. The mean of the

process is given by
b =01 = 5 o7
X 0 11 i
The variance of the process is given by
2 2 .~ =
Ox = 9 R(¢,0).
The specific form of the function R depends on the order (p,q). For example,

the Yule-Walker equationa (Box and Jenkins [1976, p. 75]) can be used to show

that for an ARMA(1l,1) model,

2 _ 2 2 _ 2
og = o; (L +8] - 26,6/ ~ ¢7).
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The spectral density function for the general ARMA(p,q) model (Fuller

[1976, p. 146)) is given by (2):

£(w) = o2(2m) ta1 - 3 6, e 192y - E 6. e 1wiy-2 2)
€ =1 3 j=1 3

As will be seen in Section 2, the spectral density plays an integral role in
estimating the variance of the sample mean.

In most ARMA modeling applications, the objective is to find an adequate
representation of the data under investigation. The procedures suggested in
Box and Jenkins [1976] for finding an adequate ARMA model involve the well-
known steps of identification, estimation, and diagnostic checking. The order
of the resulting model and the estimated parameters are of central importance.
The fitted model is then used as a surrogate for the actual process, and
provides a basis for forecasting.

This contrasts with our situation, in which fitting an ARMA model is a
means to the end of forming an interval estimate on the mean of a stationary
simulation output process. Of course, the important steps of identification,
estimation, and diagnostic checking must be carried out, but the resulting
model order and parameter values are not the end result; the success of our
overall procedure will be judged principally by characteristics of the confi-

dence intervals which are ultimately produced.

2. CONFIDENCE-INTERVAL METHODOLOGY
The flowchart in Figure 1 displays the six key steps involved in applying
the ARMA-based procedures f. ™ building a confidence interval. The overall

objective of the first five steps is to estimate the variance of the sample

mean. These five steps, taken together, correspond to Step b in the
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introduction. The sixth step corresponds to Steps ¢ and d in the introduction.
Detailed commentary on these steps follows.

Step 1. Compute the Sample Autocorrelations

For a sequence of n observations (Xl, xz,...,xn), the first 50 sample
autocorrelations are calculated. The sample autocorrelation of lag s is given
by

n-—j _ _
I & -0, -5

1=l
98

. ;s =1, 2,...,50.
I« -9
i=1

Step 2. Identify the Candidate ARMA Order(s)

The methodology of Box and Jenkins [1976] for identifying the order of an
ARMA process entails a visual inspection of the autocorrelation function (ACF)
and the partial autocorrelation function (PACF) estimated from the data.
This inspection involves a subjective, time-consuming procedure which it would
be desirable to automate. Recently, several algorithms for automating the
identification step have been proposed (Gray et al. [1978]; Beguin et al.
{1980]; Tiao and Tsay [1981]). We use the algorithm proposed by Gray et al.
We apply the algorithm by using the 50 sample autocorrelations from Step 1
above to compute what Gray et al. term a D statistic. We compute this D
statistic for each of 12 ARMA orders corresponding to all combinations of p
and q for p =1, 2, and 3 and q =0, 1, 2, and 3. Two sets, each consisting
of 12 D statistics, are computed: one for what is called the high-frequency
case, and the other for what is called the low-frequency case. The (p,q)
combination resulting in the largest D statistic for the high-frequency case
is then a candidate model, as is the (p,q) combination corresponding to the

largest D statistic for the low-frequency case.
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Step 3. Estimate the Parameters of the Candidate ARMA Model(s)

In this step, the p autoregressive and the q moving-average coefficients
along with the variance of the disturbance term, oi, are estimated for the
two candidate ARMA models. If both candidate models have identical orders,
there is really only one candidate model, and the estimation process need be
performed only once. The estimation procedure uses subroutines from the
International Mathematical & Statistical Library (IMSL). The key subroutine,
FTMXL, does the estimation by using the conditional likelihood method
described in Box and Jenkins [1976, pp. 209-10). (See the IMSL Library

Reference Manual [1980) for documentation.)

Step 4. Perform Diagnostic Tests on the Candidate Model(s)

In this step, test statistics for the candidate model(s) are computed

and evaluated to determine whether to accept a model as adequately fitting the

data. Included among these statistics are the t statistic for each of the p
autoregressive and q moving-average coefficients in the model(s). A model
is judged unacceptable unless the t value for each AR and MA term is at
least 1.96. This cutoff value of 1.96 was chosen to correspond to an a =
.05 test in the case of a large number of degrees of freedom.

In addition to the coefficient t statistics, the Ljung-Box [1978] port-
r...teau statistic, Q, was calculated for the candidate model(s). The value

of Q 1s given by

10 —1-2
Q = n(n+2) | (n-k) T,
k=1

where ;k is the estimated autocorrelation of lag k of the residuals of the
egtimated model. We use 10 autocorrelations in the calculation of this sta-

tistic. Q therefore has an approximate xz distribution with 10 - p - q
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degrees of freedom. For a model to be acceptable, the achieved significance
level of the Q statistic must be greater than .05.

In the case of two candidate ARMA models, it is possible that both models
will pass the tests on the coefficient t statistics and on the Q statistic.
1f this occurs, we choose that model which has the largest minimum achieved
significance level on the coefficients. The purpose of this procedure is to
discard that model which has the least significant parameter estimate.

It is possible to come up empty in Step 4 if the model or models iden-
tified in Step 2 and estimated in Step 3 fail to pass the tests on the
coefficient- and Q-statistics. 1In this case, and as shown in Figure 1, we
proceed no further with the building of a confidence interval. We believe
that for many simulation studies, the discarding of a sequence of data is not
serious. In some data-collection environments, however, such an outcome would
not be acceptable--for example, if the cost of generating a data set is unduly

high.

Step 5. Estimate the Variance of the Sample Mean

Once a model has been accepted, it is used in this step to estimate the
varlance of the sample mean. Two alternative estimation methods are used for
this purpose, both of which make use of an estimate of the spectral density
function (2) as an intermediate step. The estimate of (2) is given by

Fw) =32 emla —jil 5, e h? a -El 3 e, 3

- a ~2
where ¢j, 6., and oe are the respective estimates of the autoregressive and

3

moving-average coefficlents, and of the variance of the disturbances. We

proceed to describe the alternative variance-estimation methods.
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Method 1

For any stationary process it can be shown that

= 2
Var(X ] cncx/n where )
n-1
c, =1+2 J (1 - 1i/n) Py -
1=}
(See Schmeiser {1982].) Hence, if we can estimate cn and ai, we can estimate

Var[i;]. Using (3), we construct the autocovariance function (5):

Y(8) = 2]; f(w) cos sw duw; § =0, 1,...,q. (5)

The value of the integral in (5) i{s calculated using Simpson's rule, with the
integrand evaluated at 40 uniformly spaced intervals ranging from O to 7.
For 1 > q + 1, ;(i) i{s then computed from the recursive relationship:
) = § o, YUA-1). (6)
3=

(See Box and Jenkins {1976, p. 75].) Using (4), we then have

vﬁrl[i;] - En ¥(0) /n, where
-~ n—l ~ "~
c, =1+2 Y @ -1/n) y(1)/Y(0).
i=1 ]
Method 2

If the spectral density function of a stationary time series Xt is con-

_ ainies

t inuous, then

lim n varli;] = 2n£(0),

n+oo

where f(0) 18 the spectral density of Xt evaluated at zero (see Fuller [1976], :

p. 232). As a second estimate of the variance of the sample mean, we there~

fore use

E SRR J




varz(ic'n) = 2n£(0) /n, €]

where from (3), f(O) is

£0) =52 emta - j§1 8% a - jﬁl 7

(See Pritsker and Pegden [1979, p. 481].)

Step 6. Determine the Degrees of Freedom and Compute the Confidence Intervals

The (1 - a)100% confidence interval for u is given by

X +

N SD, (X ),

ta/2,k

with t denoting the 1 - (a/2) percentile of the t distribution with k

a/2,k

degrees of freedom, and

SO, [)Tn] = SQRT[Vari()Tn)); i =1, 2 (the two methods).

We estimate the k degrees of freedom in a manner similar to that suggested by
Fistman [1971]). If we have a sample of m independent observations from a dis-
tribution with mean p and variance q: identical to the mean and variance of

the stationary process of interest, then
Var[X ] = ozlm (8)
ar[X </

Equating the right-hand sides from (8) and (4), we have

n = mc .
n

This can be interpreted to mean that in a degrees-of-freedom sense, each in-
dependent observation is equivalent to cn correlated observations. (See
Schmeiser [1982] for a further discussion.) We therefore specify the degrees

of freedom to be

(nfc ) -p-q-1, (9) 4

| ———ad
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where, in addition to adjusting the equivalent sample size by dividing n by
En, we also lose a degree of freedom for each estimated autoregressive and
moving-average coefficient and for the estimated mean. If (9) is less than
1, we set the degrees of freedom equal to 1. Or, if én < 1, meaning that

n/an > n, we set the degrees of freedomton -p - q - 1.

3. TESTING PROCEDURE

Eight theoretical output processes were chosen to comprehensively test
the ARMA-based confidence-interval procedures, using fixed retained sample
gsizes of n = 100, 200, 300, and 400. For each TOP/sample-size combination,
enough replications were generated to build 100 confidence intervals. Each
replication was produced under stationary conditions; in addition, the first
50 observations were deleted from each replication. Figure 2 shows the
replication design for one TOP with the retained sample size set at 100. In

Figure 2, xg denotes the i-th observed value

1 .1 1 1 1)
D STRRTE SOT SRS P
2 .2 2 2 2
X]» Xp»e--Xgq X

to build 100 confidence

512+ X150 > Enough replications
intervals

N N N N
X1» XgreeeXggs x§1""'x150;
N J \————\/—-——/
.l
discarded retained
observations observations

Figure 2: Replication Design

in the j-th replication. In general, more than 100 replications are needed

to build 100 confidence intervals, because not every replication results in a




statistically acceptable ARMA model. The number of replications needed to

obtain 100 confidence intervals, denoted by N in Figure 2, is reported in the
measure~-of-effectiveness tables in Section 4.

Six of the eight TOPs used in the testing were tailor-made; that is,
they were autoregressive moving-average processes. This set of ARMA processes
was carefully chosen to include two pure AR processes and one ARMA process,
whose use for testing purposes has previously been reported in the literature,
and to include ARMA processes providing a representative range of behavior
in terms of their autocorrelation functions and their limiting value of e
The cy value provides an important measure of correlation structure, and,
as discussed above, indicates the number of dependent observations equivalent
to one independent observation.

We proceed to discuss each of the eight TOPs individually, providing

the rationale for theilr choice and describing their relevant properties.

TOP 1

The equation for this pure autoregressive TOP is

X = -SXt_

t + .5 +¢ € ~ N(O,1). (10)

1 t
This is the first of two autoregressive TOPs used by Fishman [1971}] to eval-
uate his proposed AR-based confidence-interval procedure. We include it here
to support comparisons between the AR~ and ARMA-based CIPs.

For (10), E[X ] = 1, SD[X ] = Y473, and sn[‘fn1 =~ 2//n. Furthermore,

for any stationary AR(1) process it can be shown that

Lme = (1 - ﬁ;/u - ¢1)2, (11)

nreo
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where ¢1 18 the autoregressive coefficient. Substituting the ¢1 = 0,5 from
(10) into (11), cn'>3, which can be thought of as a global measure of the de-
gree of dependence inherent in this model when estimating Var (i;).

The ACF for an AR(l) process is given by

i

p; = 0.5 1> 1.

The ACF for the process in (10) is consequently always positive, and decays
exponentially. In our experience, such ACF behavior is representative of out-

puts from queuing system simulations.

TOP 2

This TOP, also purely autoregressive and specified as

x = 05 xt-

. - 25X _, + .5 t+e e, ~N(O,1), 12

1 2
is the second of the two AR TOPs used by Fishman [1971]. For (12), E[xt] =
2/3, SD[Xt] = 1.13, and SD[i;] ~ 1.31//n. For a stationary AR(2) process,

we have

2
Lme = (1 +¢; + 9,4, - ¢2)/(1 = 0000 = ¢ = ¢,), 13

n-+>%

where ¢1 and ¢2 are the autoregressive coefficients. Substituting the ap-
propriate values from (12) into (13), c, * 1.4 for this process.

The ACF for an AR(2) process is given hy

CI 0.4

py =0.5p, , - 0.25p, , 1=2,3, 4,....

This ACF 18 of a damped sinusoidal form. Although in our experience this
form is not typical of outputs from queuing system simulations, we include
this process to support comparison to the greatest extent possible with

Fishman's [1971] work.




TOP 3

This AR(1l) TOP is given by

X, = .8 X _, +200+c¢ e, ~ N(0,3600). (14)

This TOP was selected for test purposes because Steudel and Wu [1977] indicate
that the behavior of an M/M/1 queuing system having a high server utilization
can be modeled by an AR(1l) process for which ¢1 approaches 1. For the pro-
cess in (14), E[X ] = 1,000, SD[X ] = 100, and sn[i;1 = 300//n. Substi-
tuting 0.8 from (14) into (11) indicat-s that e, 9 for this process. And,

as for TOP 1, the ACF decays exponentially.

TOP 4

This ARMA TOP, which 18 the first of three mixed ARMA models used for
testing purposes here, is given by

X, = 7% _

¢ + 300 + Et + .4et_

€ ~ N(0,2965.1). (15)

1 1

For this process, E[X ) = 1,000, SD[X ] = 100, and so[igl ~ 254/Vn. For
any stationary ARMA(1l,1) process,

(L - ¢,6,)(¢9, - 6,)
Lime =1+ 2 ! 12 LU S (16)
n+o (1 - ¢1)(1 + 01 - 2¢191)

Using the coefficients from (15) in (16), e, 6.46 for this process.
The ACF for this ARMA(1,1) process has
Py = 0.8186, and
Py = 0.7 Pi-1® for i = 2, 3, 4,....

This ACF is always positive, and decays exponentially. As mentioned above,

our experience indicates that output from queuing system similations often

exhibits such behavior.

nindetitimeiine,
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TOP 5
This ARMA(2,1) model, given by
Xt - 1.32Xt_

~.68X__, + 360 + €~ .8¢

1 2 t -1

€ ~ N(O, 5373.1), an

was used by Gray et al. [1978] to test their algorithm for automatic identi-
fication of an ARMA process. We use it here to support comparison with their
results in terms of the ability of their algorithm to correctly identify an
ARMA process.

For the process in (17), E[Xt] = 1,000, SD[Xt] = 100, and SD[ig]
= 40//n.

For a stationary ARMA(2,1) process we have

Mm e = 0781720901 +4370, 81420, 0991 =0, 0,0420, 0, 6,0 1420 -9, -1

nre O (1-0,-0,) (26,6, +0,+0,85-63-1)

(18)

Using values from (17) in (18), c, * 0.16 for this process. This <, <1
indicates that the variance of the sample mean for this correlated process will
be smaller than the variance of the sample mean for an independent process
with the same underlying variance. This might contribute to the notable
ability of Gray et al.'s algorithm to correctly identify data generated by

(17) as coming from an ARMA(2,1) process (as reported by Gray et al., and as
substantiated here in Section 5).

The ACF for this ARMA(2,1) process has

L " 0.5299, and
Py = 1.32 Pi-1 0.68 P12 for i =2, 3, 4,....

The ACF consequently shows damped sinusoidal behavior.
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TOP 6

This ARMA(2,1) model is given by

X, = 9% _, - .18K _

¢ -1 + 280 + et + .9st_

2 1

e, ~N(O, 1271.5). (19)

This process has E(X ] = 1,000, SD[X ] = 100, and sn[fnj =~ 242/Vn. Using
values from (19) in (18), c, * 5.85 for this process.

The ACF is given by

Py = 0.8597, and

by = 0.9 Py ~ 0.18 91_2 for i =2, 3, 4,....

This ACF is always positive and decreases exponentially.
With its c, > 1 and its ACF properties, TOP 6 was designed to contrast
with TOP 5. We believe that in these measures TOP 6 corresponds more closely

to typical queuing system simulation output than does TOP 5.

TOP 7

TOPs 7 and 8 are based on output processes associated with queuing
system similations. These two TOPs were chosen to investigate the potential
applicability of the ARMA-based CIP to the queuing system class of non-

ARMA TOPs.

TOP 7 is based on a materials-handling problem described in Hillier and
Lieberman {1974, p. 465], 1in which the output random variable is cost per unit
time. Here is a paraphrased statement of the problem:

"A certain materials-handling unit is used to
transport goods between producing centers in a
job shop. Calls for the materials-handling unit

to move a load come essentially at random
(i.e., according to a Poisson input process)
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at a mean rate of two per hour. The total time
required to move a load has an exponential
distribution with an expected time of d minutes.
The total equivalent uniform hourly cost
(capital recovery cost, plus operating cost)
for the materials-handling unit is ¥C. The
estimated cost of idle goods (waiting to be
moved, or in transit) because of increased
in-process inventory is $10 per load per

hour. Furthermore, the scheduling of the

work at the producing center allows for

just one hour from the completion of a load

at one center to the arrival of that load at
the next center. Therefore, an additional $20
per load per hour of delay (including transit
tine) after the first hour is to be charged
for lost production. What is the expected
cost of this'system (defined as the sum of
delay cost and equipment cost) as a function

of @ and FC?"

We simulate the behavior of this system, setting specific values for 4 and FC
and taking periodic observations on the cost accumulated by the system over
time. 1letting TC be the cost per hour, it can be shown that for 4 < 30,

EfTC] = {24/(60 - 24)} {20 exp ((2da - 60)/d) + 10} + FC.

Hence, the performance of the ARMA-based confidence-interval procedure can be
measured in terms of the known mean of the cost variable.

One key decision in using this system as a test case involves setting
the interobservation time. We set this value at eight simulated hours (one
shift), which 18 16 times the expected job interarrival time. By way of
comparison, Fishman [1971)] chose an interobservation time 4 times the inter-
arrival time to observe current queue content in an M/M/1 system used to test
his AR-based confidence-interval procedure. In contrast, Steudel and Wu
f1977] recommend that an interobservation time 10 times greater than the
service time be used in observing current queue content in job-shop simula-

tions. In general, no comprehensive guidelines have been reported for

choosing the interobservation time in experiments of thisg type.
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Another key decisfon in this system involves selecting a method to follow
in accumulating the system cost. Tn one method, the cost could be hased only
on those jobs which have left the system during the current observation
period. In another method, the cost could bhe hased on all jobs which have
heen, and perhaps still are, in the system at any time during the course of
the current observation period. The expected total cost per unit time will be
the same for either method, but the variability of the cost will not. Ve use
the second of these two cost-accumulation methods because the variability
associated with it is smaller.

In setting parameter values for this TOP, we chose d = 24 minutes and
FC = $10. This results in a server utilization of 0.R and leads to an ex-

pected dafly system cost of $788.18.

TOP 8

For TOP 8 we worked with an M/D/3 queuing system, choosing current system
content as the output random variable of interest. Analytic solutions for
this system have been evaluated numerically by Willier and Yu [1981], making
it easy to assess performance of the ARMA-hased confidence-interval procedure
in terms of the known system properties. By way of contrastv with TOP 7, the
output random variable chosen here takes on a noncumulative value:; that is,
the value observed is a point value, not a value accumulated during the course
of the observation period.

In the M/D/3 system, interarrival time was set to S5 minutes, service
time to 13.5 minutes, and interobservation time to 20 minutes. The inter-
arrival and service~time settings result in an 0.9 server utilization, and

pive an expected system content of 6.42.




.., .

'!::::,---u-u-un--lllI-IlllllllllllllllllllllIl.lll.ll|llIIl--------.-...-:f

o et m——

~20-
4. TESTING ENVIRONMENT

The software used in this research consisted of custombuilt modules
combined with proven existing routines. The existing routines included
certain IMSL [1980] subroutines and the Michigan Interactive Data A-alysis
System (Fox and Guire [1976]). With the one exception noted below, the
custombuilt modules were written in FORTRAN, were checked out under an
interactive FORTRAN interpreter, and then were translated under an optimizing
FORTRAN compiler prior to their use in making the production runs.

The two queuing-system TOPs were built in GPSS. The GPSS models were
run under GPSS/H (Henriksen and Crain [1982]), a state-of-the-art GPSS
implementation. GPSS/H uses the Tausworthe [1965] algorithm to generate
uniform 0-1 random numbers. The exponentially distributed interarrival and
service times in the GPSS models were sampled using the standard natural
logarithm function from the FORTRAN library. This 1s superior to the more
conventional GPSS approach of using a plecewise linear approximation to the
inverse cdf of the exponential distribution (see Schriber [1974, p. 163}).

The computing work was accomplished on an Amdahl 470/V8 operating under

the Michigan Terminal System at The University of Michigan.

S. TEST RESULTS

Results of using the two versions of the ARMA-based confidence~interval
procedure with the eight theoretical output processes are presented here in a
set of eight identically formatted tables, following the suggestion of Schriber
and Andrews [1981]. The four table rows correspond to 100 replications
consisting of 100, 200, 300, and 400 observations, respectively. Each of the
five table columns corresponds to a particular measure of effectiveness of the
confidence-interval procedure. These five MOEs will he described before the

tables themselves are presented and discussed.
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For the six ARMA TOPg, table column 1 (MOE 1) reports the percentage of
accepted ARMA models whose (p,q) order matched that of the known underlying
ARMA process. Recall that a candidate ARMA model was accepted only if various
test statistics had satisfactory values. Also note that because each MOE 1
percentage is based on 100 replications, the percent can alternatively he
thought of as an actual count. This MOE measures the ability of the Gray
et al. algorithm to correctly identify the order of the ARMA process used to
generate the time series being analyzed. MOE 1 does not have an interpreta-
tion for queuing-system TOPs 7 and 8, and so is marked NA (not applicable)
in Tables VII and VIII. The orders of the ARMA models accepted for the
queuing-system TOPs are of interest, however, and will be presented sepa-

rately when test results for those TOPs are discussed.

Table column 2 (MOE 2) provides a measure of the coverage properties of
the confidence intervals built for the accepted ARMA models. In particular,
the number reported in column 2 is the achieved significance level of a xz
test for uniformity fn the distribution of the random variable

n* = 1nf{n:eeC(X1, Xz, censy xn; n)},

where 6 = the process parameter of interest,
n = a confidence level, and

C(Xl, xz...xn;n) = a confidence interval based on the sequence
xl, xz,...,xn at confidence level n.

The random variable n* is the confidence level that just succeeds in covering
the parameter of interest, which in our case is the process mean. The dis-~
tribution of n* is referred to as the coverage function. For a theoreti-
cally perfect confidence-interval procedure, n* follows a uniform (0,1)

distribution. (See Schruben [1980] for details.)
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We conducted the x2 goodness-of~-fit test by dividing the (0,1) interval
into 10 cells of equal width and then computing the corresponding test
gtatistic. Tow values of the achieved significance level of this statistic
would indicate that the observed n*'s do not conform to the theoretically
correct uniform (0,1) distribution. Tn particular, any value lower than, say,
0.05 suggests that the CIP is suspect in terms of its ability to produce
meaningful confidence intervals for the TOP at hand.

Table column 3 (MOE 3) provides a measure of the degree of variability
in the halfwidths of the confidence intervals. 1In particular, it reports the
estimated coefficient of variation (&V) of the standard error of the mean.

This estimate is computed as follows:

¢v = 8§D r§n(i£)]/§n(i;),

where
— 4 00
SM(X ) = 100 ¥ snj(xn);
i=1
A A -1 100 _ A D
SD[SN(X )] = 99 ) (sn1(xn) - Sp(X )N
i=1

and $D (ih) is the standard error on the jth replication. ¥or iid observa-

h |
tions taken from a normal distribution, Schmeiser [1982] derived CV

analytically, one form of which 1s

n+1l 1/2

CV = {[I‘(——)]?' - U'(%)]z}

n
5 /F(QQ-

Note that CV in this case depends only on the sample size, n. For iid normal
samples of size 100, 200, 300, and 400, the corresponding CV values would he

n.071, 0.050, 0.041, and 0.035. These numhers provide a henchmark for MOE 3.
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Table column 4 (MOE 4) provides the two conventional measures for
reporting the properties of a confidence-interval procedure. This column
indicates the average relative halfwidth of the confidence intervals built at
a 95% confidence level, and the percentage of these intervals which cover the
process mean.

Table column 5 (MOE 5) indicates how many replications had to be generated
to '‘obtain 100 usable replications. A usable replication is one to which an
ARMA model can be fitted acceptably in the statistical sense described in
Section 3. This measure, which involves the ability of the ARMA-based CIP to
produce a confidence interval for the TOP at hand, is reported as the ratio of
replications generated to replications used.

In examining the MOE tables, the following points should be kept in mind:

1. How do the two versions of the ARMA-based CIP compare?
(Only MOEs 2, 3, and 4 will depend on the version in question.)
2. How adequately do the two CIPs perform for the TOP used?
3. Do the properties of the CIP as measured by the MOEs improve
as sample size increases?
4. If one or more table values are not what we would expect,
can we identify the underlying cause and their implications?

Tables I and II give the results of analyzing the AR(1l) and AR(2) models
used by Fishman [1971]. In the AR(1l) case, 83, 88, 86, and 98 percent of the
accepted ARMA models were correctly identified to be of (1,0) order for
replications consisting of 100, 200, 300, and 400 observations, respectively
(column 1, Tabtle I). This indicates good performance on the part of the
identification algorithm for this AR(1) TOP. For the AR(2) case, the percen-

tages of accepted ARMA models which matched the underlying (2,0) order were
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also in the 80Z range except for sample size 100 (column 1, Table II).

To obtain 100 acceptable ARMA models, we needed at most 147 replications for
the AR(1) TOP (column 5, Table I), but as many as 202 replications from the

AR(2) TOP were needed to obtain 100 acceptable models (column 5, Table II).

The achieved significance levels of the coverage function (column 2)
are consistently excellent in Table I, and are completely satisfatory in Table
11 for samples of gize 200, 300, and 400. For samples of size 100 in Table
I1, however, the hypothesis regarding uniformity of n* would be rejected at
a 0.05 significance level. Note that this is also the sample size in Table II
for which the relatively small percent of correct identification and
relatively large replication ratio were experienced.

The entries in column 3 (MOE 3) in Tables I and II provide a measure of
the variability in the width of the confidence intervals. The column 3 values
are larger than the iid-normal benchmark values reported above, which might
reflect the dependency in the data. 1Like the benchmark values, the column 3
values decrease as sample size increases. For TOPs 1 and 2, and for the
other six TORs as well, the variability of the confidence interval width {s
larger for Method 2 than for Method 1. 1In all cases, however, the differences
are small.

Column 4(b) in Tables I and II indicates that the coverage rate of con-
fidence intervals at a 95% confidence level was close to 0.95 in most cases.
The entries in column 4(a) report the average relative halfwidth. This
measure is useful when it is of interest to estimate the sample size required
to achieve a specified relative halfwidth in a confidence interval. These

values range from .19 in Table II for a sample size of 400, to .409 in Table I

for a su..ple size of 100.
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The only measure which can be compared with the results reported by
Fistman {1971] {8 MOE 1. Por these two models, Fishman reported correct
identification in 77% to 86Z of the cases. These percentages are not directly
comparable with MOE 1 here because our percentages do not include those repli-
cations for which no statistically acceptable ARMA model could be fitted.
Furthermore, Fishman used a variable sample size scheme, extending the size
as necessary to achieve a stated relative halfwidth. His sample sizes ranged
from about 250 to 350. Fishman did not report coverage measures for the AR(1l)
and AR(2) models, so coverage comparisons cannot be made.

Table III reports results for the AR(1l) model used as TOP 3. The table
contains superh values for all measures. In terms of identification, the
procedure did better with this process than it did with the AR(l) process
reported in Table I. TOP 3 had ¢1 = 0.8, as compared with ¢= 0.5 for TOP
1. The corresponding limiting values of c, were 9 and 3. It would therefore
seem that the Gray et al. algorithm correctly identifies the underlying order
a higher percent of the time when the correlation structure as measured by
the limiting value of c, is stronger.

Table IV corresponds to TOP 4, which is a mixed ARMA(1,1) model. The
Table IV results are excellent except for the small percent of correctly
identified models and the low achieved significance level for n* at sample
size 100. It is worthwhile to attempt to explain why the coverage at a 957%
confidence level is satisfactory when n = 100, whereas the small achieved
significance level for MOE 2 at the same sample size indicates that the
coverage was not satisfactory for all confidence levels. One possible cause
is that there may be a significant correlation between the estimate of the
mean, i;, and the estimated standard deviation of i;. If this correlation

exists, then the numerator and denominator of a statistic assumed to follow




86 0€0°0 991°0 7€$°0 ¢ Poyian
€1°1 001 00Y
86 620°0 ?91°0 76%°0 1 poyian
68 £€0°0 9.L1°0 61%°0 ¢ POYIal
80°1 86 00¢
16 €£0°0 €L1°0 78€°0 1 PoyiIsan
.o;_m suojivoyrday
J €6 <%0°0 %62°0 %6%°0 ¢ poyiay paidaddy
S1°1 L6 002 001 212d
1Y) Z%0°0 9%2°0 61%°0 1 POylIal SuoT3eAI3E8qQ
JO xaquny
L8 6S0°0 18¢°0 216°0 ¢ POYISN
80°1 86 001
L8 8S0°0 £L2°0 LEY°O 1 POYIaN
aoaag uogioung
(18ao1 aouap YIPIM-3Te8H  paepuelsg 2yl jo o8eviaao) 103 uojylIed
orIwy ~13V0) 266) aATIeT Y uoyIBTABA JO 20uBdT3TUSYS -T3ITIUIP]
uofledyrdoy eFeisao) g adevaaay Juayd13300) PoAdTYOY I09330) ¥
S (@) ()y € A 1

19PoK (0°‘1) VWYV ue jo STSATBUY 10j 883UdATIVIIIF JO SinNsWIR

111 279Vl




-20-
the t distribution violate the assumption that they are independent. Thisg is
one of the potential problems which Schruben [1980] indicates can lead to poor
performance of the empirical coverage function. However, this 1s not a

problem with this ARMA(l,1) process. For the 100 usable replications at

sample size 100, the achieved correlation between_)fn and the estimated standard
deviation of i; was 0.15 for both methods of estimating the variance of the
sample mean. At a significance level of .05, the critical value of the
correlation coefficient is .20, so the hypothesis that these statistics are
uncorrelated would be accepted. The poor realization of the coverage function
i1s traceable to the fact that 21 (20 in the case of Method 2) of the 100
confidence intervals had an achieved n* between 0.60 and 0.70. This may be

attributable to unexplained randomness.
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Tables V and VI correspond to TOPs 5 and 6, both of which are ARMA(2,1)
models. ‘Three points should be kept in mind when examining these tables:
1. In Table V, the alternative methods for estimating
Var[i;] give discernibly different results for the
first time;
2. The percent of correct 1dentifications in Table VI
is low for the first time; and
3. The values of the average relative halfwidth are
extremely small, which merits comment.

In Table V, at sample sizes of 100 and 200, MOE 2 reports low values for
Method 2 but acceptable values for Method 1. It should be noted that Method 1
uses equations (5) and (6) to smooth out the autocorrelation function. This
results in better empirical autocorrelation properties for this particular
theoretical output process.

The inferior results for Method 2 at sample sizes of 100 and 200 can be

explained in terms of the values calculated for Vgrz[i;]. From (7),

A2 a2
_ ol 1~} 8
§p,(X ] = [ —] V2.
n-34e

The resulting estimated standard deviation may be very large if Z $ = 1 or
it may be very small if z 8 » 1. TFor the replications with sample sizes of

100 and 200, small values for §D,ff;] occurred quite often. The following
118t gives some of the cases for which §D2[§;] was very small compared to

8D IX 1.
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n*

§p, X ) 80, (X ] Me thod 1 Me thod 2
2.23 0.91 1.0 1.0
2.58 1.31 0.92 1.0
2.83 0.72 0.27 0.83
2.03 0.72 0.81 1.0
2.51 0.94 0.26 0.63
1.29 0.22 0.20 0. 85

As can be seen in these examples, the small values of §D2[§;] yield large
values of n* which, in turn, result in an empirical coverage function not
conforming to uniform (0,1). As further evidence of this point, the average
value of §D1[i;] for the 100 replications was 5.16 for sample size 100 (2.97
for sample size 200), whereas for §D2[i;] it was 4.56 for sample size 100 (2.73
for sample size 200). This suggests that Vﬁrz[ia] is underestimating Var[i;}.
At sample sizes of 300 and 400 the average §DZ[§;] was again smaller than the
average §Dl[i;]; however, the difference was not sufficient to degrade the
coverage function because the extreme lower tail values were not persistent.
For example, of the 100 replications at sample size 100, no éDl[i;] values
were smaller than 2.0; however, 12 of the §Dz[§;] were smaller than 2.0.
For sample size 200, no §D1[i;] values were smaller than 1.2, but 7 of the
§Dz[§;] values were. This explains the poor performance of the coverage
functions for Method 2 at sample sizes of 100 and 200.

All of the reported measures of effectiveness in Table VI are adequate
except for MOE 1, where the percent of correctly identified ARMA models was
very low at all sample sizes. An explanation for this misidentification lies

with the choice of ¢2, which for this process has a value of -0.18. This
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relatively small value results in data adequately fitted by ARMA(l,1) models.
In fact, of the 100 fitted ARMA models for each of the four sample sizes, 62,
66, 62, and 63, respectively, were of (1,1) order. This largely explains why
there were so many misidentifications. Tn spite of these misidentifications,
however, the coverage properties were still satisfactory for this theoretical
output process.

The values of the average relative halfwidth listed in column 4(a), Table
VI, demonstrate how this measure decreases with increasing sample size. The
very small values for this measure are misleading, however, in that there is
no standard against which to compare them. Simply by changing the process
mean for which the data were generated, the relative halfwidths can be changed
without either imprroving or degrading the confidence-interval procedure. :

Average relative halfwidths consequently are not comparable across TOPs having

nonidentical means. For example, the seemingly large values of this measure
in Table II were for a process mean of 0.6667, whereas the process mean for
the Table V TOP is 1000. It is {mportant to be aware that the average
relative-halfwidth measure should only be used for comparison purposes as
sample size changes for a given TOP.

Tables VII and VIII report the results for queuing-system TOPs 7 and 8,
respectively. The small values for MOE 2 in these tables indicate that the
coverage function for these TOPe does not conform to a uniform distribution.
The coverage percentages given as MOE 4(b) also fall short of the 957 level.
We will now discuss three sources of possible error which could account for
the poor performance of the coverage properties with respect to these queuing

models.
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Correlation between sample mean and its standard error

The use of the t statistic in building a confidence interval assumes that
iﬁ and §D[§;] are independent. The extent to which this assumption is satis-
fied by the data can be checked by using the 100 replications at a piven sample
size to estimate the correlation between these two statistics. We computed
the correlation between the sample means and their standard deviations as
estimated by Methods 1 and 2 for all eight TOPs. The resulting correlation
coefficients appear in Table IX.

The critical value at a = .01 for the Table IX correlations under the
assumption of hivariate normality is 0.26. TInspecting the table, we see that
the ARMA TOPs 1 through 6 had insignificant correlations for both versicns
of the estimators of Var[ik]. HWowever, there were significant correlations
in all cases involving queuing-system TOPs 7 and R. This correlation between
the sample means and their estimated standard deviations contributes adversely

to the behavior of the coverage function.

2. Distribution of the disturbance terms

The ARMA model in (1) assumes that the disturbance terms are normally
distributed. This assumption, in turn, forms part of the basis for testing
the statistical acceptahility of the fitted ARMA models, and for the subse-
quent confidence-interval methodology. The validity of this assumption can be
tested by investigating the distribution of the residuals of the fi-ted
models.

We chose four replications, each of sample size 400, on which to check
the normality assumption for the residuals. The first two replications were
for TOP 5, the ARMA(2,1) process for which these CIP procedures work well.

The first replication had a reported n* of 0.09, and the second had a
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reported n* of 1.0. This means that the confidence interval from the first
replication covered the true mean for all confidence levels at or above 9%.
The confidence interval associated with the second replication covered only at
confidence levels approaching 100%.

The other two replications were chosen from TOP 8. Their respective
n*'s were 0.37 and 1.0. Hence, these replications had specifications similar
to those of the two replications chosen from TOP 5.

Table X summarizes the results of checking the residuals from the chosen
four replications for normality with a mean of zero. The table indicates the
mean, standard deviation, skewness, kurtosis, and the achieved significance
level of the x2 goodness-of -fit test for normality.

As expected, the distribution of the residuals from the tailor-made TOP 5
is consistent with the underlying assumption of normality. Their kurtosis
(which can be compared to a kurtosis of zero for the normal distribution) and
skewness (which can be compared to a skewness of zero for the normal) sub-
stantiate normality, as does the achieved significance level of the associated
xz statistics.

However, the measures of skewness, kurtosis, and goodness—of-fit do not
support the assumption of normality for the queuing-TOP residuals. The skew-
ness and kurtosis are not close to zero, and the small values of the achieved
significance levels of the goodness-of-fit tests indicate a rejection of the
normality hypothesis. The lack of normality in the residuals is a factor
contributing to the poor coverage encountered when working with observations

produced by the queuing-system similations.
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Table X

Residual Analysis

Replication 2 Replication 3
(TOP 5, n*=1.0n) (TOP 8, n*=,37)

Replication &
(TOP 8, nk=1.00)

~.641

76.12
.061

-.220

.22

.516

72.64
.095

-.009

.68

~.007

1.98

-430

<372

.00

-.022

1.98
.312

-.261

.09
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3. Aberrant behavior of the replicated means

A third possible contributor to poor coverage involves situations in
which achieved sample means may persistently be far removed from the process
mean. If the replicated means consistently tend to bhe far removed from the
process mean, then this can result in poor performance characteristics for any
confidence-interval procedure. The halfwidths needed to cover the process
mean tend to be persistently large in such a situation, resulting in large
values of n* and strongly nonuniform behavior for the coverage function.

To investigate this possibility here, we computed the grand mean for
all 100 replications at each sample gsize for TOPs 7 and 8. Then we evaluated
MOE 2 and 4(b) for each combination to determine the extent to which the ARMA-
based confidence intervals covered these grand means. 1In essence, we were
adjusting for the bias in the generating process. The MOE 2 and 4(b) coverage
properties improved slightly but were still unsatisfactory except for sample
size 400 with TOP 7. We conclude that the generation process was not the
cause of poor coverage with the queuing TOPs.

The final aspect of the test results involves the order of the fitted
ARMA models. The counts of the achieved orders for TOPs 7 and 8 are shown
in Table XI. Table rows indicate the number of observations per replication;
and table columns show the orders of the models, arranged by increasing sum
of the autoregressive and moving-average orders. Fach table cell shows the
two applicable counts, with the TOP 7 and 8 counts in the upper and lower
parts of each cell, respectively. VPVor example, with 200 observations per
replication, there were 61 and 79 ARMA(1,0) models fitted for respective
TOPs 7 and 8. We conclude that low-order ARMA models produce statistically
acceptable fits for queuing system data, at least for the case of the two

queuing TOPs used for testing purposes in this work.
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The results in Table XI can also be compared with the statement of Steudel
and Wu [1977] that output from an M/M/1 queuing system can be fitted with an
ARMA(1,0) model and that, in general, ARMA models of order (p,p - 1) provide
acceptable fits for outputs from queuing-system similations. In the TOP 7
M/M/1 system, 251 of the 400 total replications were fitted by ARMA(1,0)
models. And in the TOP 8 M/D/3 queuing system, 302 of the 400 total replica-

tions were fitted by either ARMA(1,0) or ARMA(2,1) models.

6. CONCLUSIONS

Two ARMA-based confidence-interval procedures have been described, and
results of subjecting these procedures to extensive testing have been reported.
The differences in the performance characteristics of the alternative pro-
cedures are small. Both procedures work well when used to process ARMA-
generated data for the ranges and combinations of autoregressive and moving-
average orders and parameter values investigated. Although Method 1 produces
somewhat more stable confidence intervals than Method 2 as measured by MOE 3,
the differences in the performance characteristics of the two alternative
procedures for tailor-made data are small on balance.

Both confidence~interval procedures perform in less-than-satisfactory
fashion when used to process data produced by two queuing—-system simulations
chosen for testing purposes. The underlying cause for this poor performance
may be the demonstrated correlation between the sample means and their
standard errors in the queuing output, and/or the demonstrated nonnormality
in the distribution of the residuals associated with the ARMA models fitted
to the queuing-system output. We advise that practitioners conduct appro-
priate correlation and normality tests on simulation output prior to using

these ARMA-based confidence~interval procedures.
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