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ABSTRACT

Tw methods are presented for building interval estimates on the mean of

a stationary stochastic process. Both methods fit an autoregressive moving-

average (ARMA) model to observations on the process. The model is used to

estimate the variance of the sample mean and the applicable degrees of free-

dom of the t statistic. Fitting of the ARMA model is totally automated. The

ARMA-based confidence intervals perform well with data generated from ARMA

processes. With data generated from queuing-system simulations, the coverage

of the confidence intervals is less than satisfactory. It is shown that with

queuing-system data, the sample mean and its estimated standard deviation are

strongly positively correlated, and that the residuals of the fitted models

are not normally distributed. These factors contribute adversely to the

coverage of the confidence-interval procedures with queuing data.
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We introduce and test two confidence interval procedures (CIPS) for the

mean of a univariate output random variable from a simulation model operating

at steady state. The CIPs are based on an autoregressive moving-average

(ARMA) model and are fixed-sample-size procedures. The threefold purpose of

this research has been:

1. to develop two versions of an ARMA-based

confidence-interval procedure;

2. to measure the effectiveness of both versions

by subjecting them to comprehensive testing; and

3. to develop and report guidelines for using

this procedure with output data from simulation

models.

As used in this report, a confidence-interval procedure consists of four

steps:

a. computation of the sample mean;

b. estimation of the variance of the sample mean;

c. determination of the numiber of degrees of freedom; and

d. computation of an interval estimate for the process mean,

using the t distribution with the aforementioned

quantities.

These four steps correspond to the first four steps given in Fishman (1978, p.

236] for forming interval estimates. After reviewing the pertinent funda-

mentals of ARMA processes in Section 1, the steps making up the ARMA-based

confidence-interval procedure are explained in detail in Section 2.

The proposed CIP9 have been subjected to comprehensive empirical test' a

using the research framework suggested for this purpose in Schriber and

Andrews (1981]. Hmpirical testing of a CIP involves the generation of data

I.m
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from a series of theoretical output processes (TOPs) with known means. In

Section 3, we discuss the eight TOPs used to evaluate the CIPs proposed

here, and indicate the reasons these TOPs were chosen for testing purposes.

After a brief discussion of the testing environment in Section 4, the

empirical results of the testing are given in Section 5. For each TOP used,

the resulting measures of effectiveness (MOEs) are presented in a corre-

sponding table of the form introduced in Schriber and Andrews [19811. The

tables display the performance characteristics of the CIP when used to process

data generated by the associated TOPs.

Both CIPs perform well with data generated by ARMA TOPs, which in this

research are tailor-made (Schriber and Andrews [1981]). However, when used to

process observations produced by models of two queuing systems, the ARMA-based

CIPs did not perform satisfactorily for all the measures of effectiveness.

Nevertheless, they did as well as or better than the pure autoregressive (AR)

confidence-interval procedure presented by Fishman (1971] and further

investigated by Andrews and Schriber [1978].

in Section 5, we also investigate possible reasons for the failure of

these CIPs to perform in better fashion on data generated by the queuing-

system models. This investigation takes the form of empirically determining

the extent to which the underlying assumptions were satisfied by the queuing

system data. This discussion concludes with the recommendation that the

ARMA-based CIP be used with queuing data only after the data have been tested

appropriately. In particular, a test should be performed to see if there is a

significant correlation between the sample mean and the estimated standard

deviation of the sample mean. Furthermore, the distribution of the residuals

should be tested for normality.
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I. AUTOREGRESSIVE MOVING-AVERAGE MODEL

The autoregressive moving-average model on which the confidence-interval

procedure is based is given by (1):

Xt - lXt-l + pt-+ pXtp + a0 + t et- 1  . .... q t-q

e - N(Oo )

E[Ei' ]] if i #j()
C

Eif If-

if i j

Cov(Ct,X) = 0 if t > s.

This is the familiar model as given in Box and Jenkins [1976]. It is referred

to as ARMA(p,q). When q - 0, the model is the pure autoregressive (AR)

process which Fishman (1971] used as the basis for a confidence-interval

methodology. Here, we allow for the presence of moving-average (MA) terms,

thereby extending the pure AR model to a mixed AR-MA form with the objective

of achieving an improved confidence-interval methodolog for those cases in

which MA terms are of importance.

Further motivation for developing an ARMA-based CIP is provided by Steudel

and Wu [1977, p. 748], who state that "...any uniformly sampled wide-sense

stationary stochastic process can be adequately described by a discrete auto-

regressive moving-average (ARMA) model of order n and n-1." On the basis of

their limited empirical results, Steudel and Wu tentatively conclude, for

example, that the "current system content" output variable for an M/M/l

queuing system is adequately modeled by an ARMA(I,0) model. In a companion

paper, Steudel et al. [1978, p. 292] conclude that "Queue behavior is shown

to be adequately described by a first order autoregressive AR(1) model if the
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job selection discipline does not depend on operation processing time. In

those cases where processing time was used in job selection, a second order

autoregressive AR(2) model is adequate to characterize the queues." And

Schmeiser and Kang [1981] have shown analytically that when batch means for

any batch size are formed for an AR(1) process, the resulting process is

ARMA(l,l).

The confidence-interval procedures we propose are for output processes

which have reached steady state or, equivalently, for output processes which

are stationary. Because the random disturbances, e, in (1) are assumed to be

normally distributed, we can equivalently consider the output process to be

second-order stationary. In theory, discrete-time-parameter stationary pro-

cesses can be adequately described by an ARMA(p,q) model if the p and q values

are allowed to be appropriate nonnegative integers (Cox and Miller (1965,

p. 288]). As emphasized by the concept of parsimony in the time series liter-

ature (Box and Jenkins [1976, p. 17]), small values for p and q can adequately

fit a given data set in most situations.

The ARMA model in (1) has the following properties. The mean of the

process is given by

O = 0(l - i I

The variance of the process is given by

2 -2
X a

The specific form of the function R depends on the order (p,q). For example,

the Yule-Walker equations (Box and Jenkins [1976, p. 75]) can be used to show

that for an ARMA(l,l) model,

a2 a 2 (1 + 0 2 2 l _ 0).
X c 1 1 1)(-
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The spectral density function for the general ARMA(p,q) model (Fuller

[1976, p. 1461) is given by (2):

f(W)- o(2w) 1(1 - 6 e-i )2 (I - *. e-0 ) 2  (2)
j

-r < W < Wr.

As will be seen in Section 2, the spectral density plays an integral role in

estimating the variance of the sample mean.

In most ARMA modeling applications, the objective is to find an adequate

representation of the data under investigation. The procedures suggested in

Box and Jenkins [19761 for finding an adequate ARMA model involve the well-

known steps of identification, estimation, and diagnostic checking. The order

of the resulting model and the estimated parameters are of central importance.

The fitted model is then used as a surrogate for the actual process, and

provides a basis for forecasting.

This contrasts with our situation, in which fitting an ARMA model is a

means to the end of forming an interval estimate on the mean of a stationary

simulation output process. Of course, the important steps of identification,

estimation, and diagnostic checking must be carried out, but the resulting

model order and parameter values are not the end result; the success of our

overall procedure will be judged principally by characteristics of the confi-

dence intervals which are ultimately produced.

2. CONFIDENCE-INTERVAL METHODOLOGY

The flowchart in Figure 1 displays the six key steps involved in applying

the ARMA-based procedures f.:," building a confidence interval. The overall

objective of the first five steps is to estimate the variance of the sample

mean. These five steps, taken together, correspond to Step b in the



Observations (Xl, X2... Xn )

Step I

Estimate the Autocorrelations

(61, 2,"..P50)

Step 2 4
Identify the Candidate ARMA Order(s)

f H: high frequency

(PH,q) (PL,qL) case
L: low frequency

Step 3 1 case

Estimate the Parameters of the
Candidate ARM Model(s)

Estimated ARMA Model(s)

Step 4f

No Model Perform Diagnostic Tests on the Candidate Model(s) I
Accepted

Accepted Model

Step 5

Estimate the Variance of the Sample Mean

VirlfX5] Vir 2Itn1
(Method 1) (Method 2)

Step 6 +'

Determine the Degrees of Freedom
and

Compute the Confidence Intervals

Confidence Interval Confidence Interval
(Method 1) (Method 2)

Figure 1: Overview of the Steps
Involved in the ARMA-Based CIs
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introduction. The sixth step corresponds to Steps c and d in the introduction.

Detailed commentary on these steps follows.

Step 1. Compute the Sample Autocorrelations

For a sequence of n observations (XI, X2,... ,Xn), the first 50 sample

autocorrelations are calculated. The sample autocorrelation of lag s is given

by

n-j

i (Xi - X)(Xi+ -)i-I

Ps= n )2  s = 1, 2,...,50.

i-l

Step 2. Identify the Candidate ARMA Order(s)

The methodology of Box and Jenkins [1976] for identifying the order of an

ARMA process entails a visual inspection of the autocorrelation function (ACF)

and the partial autocorrelation function (PACF) estimated from the data.

This inspection involves a subjective, time-consuming procedure which it would

be desirable to automate. Recently, several algorithms for automating the

identification step have been proposed (Gray et al. [1978]; Beguin et al.

[1980]; Tiao and Tsay [1981]). We use the algorithm proposed by Gray et al.

We apply the algorithm by using the 50 sample autocorrelations from Step I

above to compute what Gray et al. term a D statistic. We compute this D

statistic for each of 12 ARMA orders corresponding to all combinations of p

and q for p - 1, 2, and 3 and q - 0, 1, 2, and 3. Two sets, each consisting

of 12 D statistics, are computed: one for what is called the high-frequency

case, and the other for what is called the low-frequency case. The (p,q)

combination resulting in the largest D statistic for the high-frequency case

is then a candidate model, as is the (p,q) combination corresponding to the

largest D statistic for the low-frequency case.



Step 3. Estimate the Parameters of the Candidate ARMA Model(s)

In this step, the p autoregressive and the q moving-average coefficients

2
along with the variance of the disturbance term, a C, are estimated for the

two candidate ARMA models. If both candidate models have identical orders,

there is really only one candidate model, and the estimation process need be

performed only once. The estimation procedure uses subroutines from the

International Mathematical & Statistical Library (IMSL). The key subroutine,

FTMXL, does the estimation by using the conditional likelihood method

described in Box and Jenkins [1976, pp. 209-101. (See the IMSL Library

Reference Manual [1980] for documentation.)

Step 4. Perform Diagnostic Tests on the Candidate Model(s)

In this step, test statistics for the candidate model(s) are computed

and evaluated to determine whether to accept a model as adequately fitting the

data. Included among these statistics are the t statistic for each of the p

autoregressive and q moving-average coefficients in the model(s). A model

is Judged unacceptable unless the t value for each AR and MA term is at

least 1.96. This cutoff value of 1.96 was chosen to correspond to an a =

.05 test in the case of a large number of degrees of freedom.

In addition to the coefficient t statistics, the Ljung-Box (197R] port-

t .. teau statistic, Q, was calculated for the candidate model(s). The value

of Q is given by
10 1-2

Q n(n+2) I (n-k)- k

k=l

where rk is the estimated autocorrelation of lag k of the residuals of the

estimated model. We use 10 autocorrelations in the calculation of this sta-

tistic. Q therefore has an approximate X2 distribution with 10 - p - q
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degrees of freedom. For a model to be acceptable, the achieved significance

level of the Q statistic must be greater than .05.

In the case of two candidate ARMA models, it is possible that both models

will pass the tests on the coefficient t statistics and on the Q statistic.

If this occurs, we choose that model which has the largest minimum achieved

significance level on the coefficients. The purpose of this procedure is to

discard that model which has the least significant parameter estimate.

It is possible to come up empty in Step 4 if the model or models iden-

tified in Step 2 and estimated in Step 3 fail to pass the tests on the

coefficient- and Q-statistics. In this case, and as shown in Figure 1, we

proceed no further with the building of a confidence interval. We believe

that for many simulation studies, the discarding of a sequence of data is not

serious. In some data-collection environments, however, such an outcome would

not be acceptable--for example, if the cost of generating a data set is unduly

high.

Step 5. Estimate the Variance of the Sample Mean

Once a model has been accepted, it is used in this step to estimate the

variance of the sample mean. Two alternative estimation methods are used for

this purpose, both of which make use of an estimate of the spectral density

function (2) as an intermediate step. The estimate of (2) is given by

i^) 2 1( e-iwj) 2  (l - _W -iJ-2

( = a( 2 w)-(l - e O- e (3)
j-l j-l

where *, ej, and C are the respective estimates of the autoregressive and

moving-average coefficients, and of the variance of the disturbances. We

proceed to describe the alternative variance-estimation methods.

. . . . . . .. .... . i i i I I I d
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Method 1

For any stationary process it can be shown that

2
Var[X - cna /n where (4)

n-I
cn - I + 2 ( l - i/n) pi.

i-i

2
(See Scheiser [1982].) Hence, if we can estimate c and a, we can estimate

n

Var[Xn]. Using (3), we construct the autocovariance function (5):

(s) - 2jf W(w) cos sw dw; s = 0, l,...,q. (5)

The value of the integral in (5) is calculated using Simpson's rule, with the

integrand evaluated at 40 uniformly spaced intervals ranging from 0 to it.

For i > q + I, y(i) is then computed from the recursive relationship:

y(i) - [ (i-j). (6)

J-l

(See Box and Jenkins [1976, p. 75].) Using (4), we then have

Var 1 (XnI c y(O)/n, where

n-I
n = 1 + 2 (I - i/n) j(i)/j(0).

Method 2

If the spectral density function of a stationary time series Xt is con-

tinuous, then

lir n Var[X n 2nf(O),
n+*n

where f(O) is the spectral density of X evaluated at zero (see Fuller [1976],

p. 232). As a second estimate of the variance of the sample mean, we there-

fore use



Var 2 (X) - 2wf(O)/n, (7)

where from (3), f(O) is

i(O) _- 2 (27)-l1_ - 8)b (I - I )_- .

C J-1 J j

(See Pritsker and Pegden [1979, p. 481].)

Step 6. Determine the Degrees of Freedom and Compute the Confidence Intervals

The (I - a)100% confidence interval for ji is given by

n +t a/2,k SDi(X),

with ta/2, k denoting the I - (a/2) percentile of the t distribution with k

degrees of freedom, and

SDi [Xn] - SQRT[Vari(Xn)]; i = 1, 2 (the two methods).

We estimate the k degrees of freedom in a manner similar to that suggested by

Fishman 119711. If we have a sample of m independent observations from a dis-
2

tribution with mean v and variance a identical to the mean and variance of
x

the stationary process of interest, then

2Var[I o o/m. (8)

Equating the right-hand sides from (8) and (4), we have

n - mc
n

This can be interpreted to mean that in a degrees-of-freedom sense, each in-

dependent observation is equivalent to c correlated observations. (See

Schmeiser [1982] for a further discussion.) We therefore specify the degrees

of freedom to be

(n/c) - p - q - (9)n9
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where, in addition to adjusting the equivalent sample size by dividing n by

Cn' we also lose a degree of freedom for each estimated autoregressive and

moving-average coefficient and for the estimated mean. If (9) is less than

1, we set the degrees of freedom equal to I. Or, if c < I, meaning that• n

n/c > n, we set the degrees of freedom to n - p - q - I.n

3. TESTING PROCEDURE

Eight theoretical output processes were chosen to comprehensively test

the ARMA-based confidence-interval procedures, using fixed retained sample

sizes of n - 100, 200, 300, and 400. For each TOP/sample-size combination,

enough replications were generated to build 100 confidence intervals. Each

replication was produced under stationary conditions; in addition, the first

50 observations were deleted from each replication. Figure 2 shows the

replication design for one TOP with the retained sample size set at 100. In

Figure 2, Xj denotes the i-th observed value
i

11 1 1 1
1l x2 . x5  x5 1*.x 150

2 2 2 2 2X] 1 X 2 . X50, X51 '.X15 Enough replications

to build 100 confidence
intervals

N, N N X-N ....XN

XI X2 .... X5,X1...I0

x, 2 5 0 51 150

discarded retained
observations observations

Figure 2: Replication Design

in the J-th replication. In general, more than 100 replications are needed

to build 100 confidence intervals, because not every replication results in a
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statistically acceptable ARMA model. The number of replications needed to

obtain 100 confidence intervals, denoted by N in Figure 2, is reported in the

measure-of-effectiveness tables in Section 4.

Six of the eight TOPs used in the testing were tailor-made; that is,

they were autoregressive moving-average processes. This set of ARMA processes

was carefully chosen to include two pure AR processes and one ARMA process,

whose use for testing purposes has previously been reported in the literature,

and to include ARMA processes providing a representative range of behavior

in terms of their autocorrelation functions and their limiting value of cn.

The c value provides an important measure of correlation structure, and,n

as discussed above, indicates the number of dependent observations equivalent

to one independent observation.

We proceed to discuss each of the eight TOPs individually, providing

the rationale for their choice and describing their relevant properties.

TOP I

The equation for this pure autoregressive TOP is

Xt K .5Xt_ 1 + .5 + ct  e t - N(O,l). (10)

This is the first of two autoregressive TON used by Fishman [1971] to eval-

uate his proposed AR-based confidence-interval procedure. We include it here

to support comparisons between the AR- and ARMA-based CIPs.

For (10), E(X t 1, SD(X - /V-, and SDfX n 2//K. Furthermore,

for any stationary AR(1) process it can be shown that

Lir = /2 )2 (11)
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where is the autoregressive coefficient. Substituting the I 0.5 from

(10) into (11), c n3, which can be thought of as a global measure of the de-

gree of dependence inherent in this model when estimating Var (n ).
n

The ACF for an AR(1) process is given by

P M0.5 i > 1.Pi

The ACF for the process in (10) is consequently always positive, and decays

exponentially. In our experience, such ACF behavior is representative of out-

puts from queuing system simulations.

TOP 2

This TOP, also purely autoregressive and specified as

Xt - .5 Xt_ - .25 Xt_ 2 + .5 + ct  Ct - N(O,1), (12)

is the second of the two AR TONs used by Fishman [1971]. For (12), E[X ] 

2/3, SD[Xt] - 1.13, and SD[Xn] - 1.31//n. For a stationary AR(2) process,

we have

Li n (1 + +  2 -2)/(1 -2)(1 - -M2) (13)

where 01 and 02 are the autoregressive coefficients. Substituting the ap-

propriate values from (12) into (13), c + 1.4 for this process.n

The ACF for an AR(2) process is given by

P1 -0.4

Pi - 0.5 pi-I - 0.25 pi-2 i - 2, 3, 4,....

This ACF is of a damped sinusoidal form. Although in our experience this

form is not typical of outputs from queuing system simulations, we include

this process to support comparison to the greatest extent possible with

Fishman's (19711 work.
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TOP 3

This AR(1) TOP is given by

Xt - .8 Xt-1 + 200 + -t t N(0,3600). (14)

This TOP was selected for test purposes because Steudel and Wu [1977] indicate

that the behavior of an M/M/l queuing system having a high server utilization

can be modeled by an AR(1) process for which *I approaches I. For the pro-

cess in (14), E[XtJ - 1,000, SD[Xt] = 100, and SDX nI - 300//n. Substi-

tuting 0.8 from (14) into (11) indicat !$ that cn + 9 for this process. AMd,

as for TOP 1, the ACF decays exponentially.

TOP 4

This ARMA TOP, which is the first of three mixed ARMA models used for

testing purposes here, is given by

Xt - .7Xt_1 + 300 + et + .4Et_ 1  et - N(0,2965.1). (15)

For this process, E[X - 1,000, SDIXt] - 100, and SD(X I 254//n. For
t t n

any stationary ARMA(l,l) process,

Limc -1+2 (1 - *1ei)($i - ei)
Lirm c - + 2 1) (16)n+00 n GI - i)(I + 86 2- 2 181

Using the coefficients from (15) in (16), c * 6.46 for this process.n

The ACV for this ARMA(1,l) process has

pI - 0.8186, and

Pi - 0.7 pi-1, for i - 2, 3, 4,....

This ACV is always positive, and decays exponentially. As mentioned above,

our experience indicates that output from queuing system simulations often

exhibits such behavior.
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TOP 5

This ARHA(2,i) model, given by

Xt W 1.32Xt_1 -. 68Xt_2 + 360 + c t - 8Ct_ 1

E - N(0, 5373. 1), (17)t

was used by Gray et al. 11978] to test their algorithm for automatic identi-

fication of an ARMA process. We use it here to support comparison with their

results in terms of the ability of their algorithm to correctly identify an

ARMA process.

For the process in (17), E[Xt] = 1,000, SD[X t 100, and SD[X n

40Vn.

For a stationary ARMA(2,1) process we have

2 1 2 1+2-1+1 2 21-012 1 1-0102- 1 1-1

Lim c 2 (18)n -o n(_1_02 )(2 1el +02+02e6 1e 1_1

Using values from (17) in (18), c + 0.16 for this process. This cn <

indicates that the variance of the sample mean for this correlated process will

be smaller than the variance of the sample mean for an independent process

with the same underlying variance. This might contribute to the notable

ability of Gray et al. 's algorithm to correctly identify data generated by

(17) as coming from an ARMA(2,1) process (as reported by Gray et al., and as

substantiated here in Section 5).

The ACF for this ARMA(2,l) process has

p1 M 0.5299, and

Pi a 1.32 pi- 1 - 0.68 p1- 2 for i - 2, 3, 4,....

The ACF consequently shows damped sinusoidal behavior.
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TOP 6

This ARMA(2,1) model is given by

X t - .9Xt_ - .18Xt- 2 + 280 + c t + .9et_ 1

Ct ~ N(0, 1271.5). (19)

This process has E[Xt] = 1,000, SD[Xt] 100, and SD[X n] 242//n. Using

values from (19) in (18), c n + 5.85 for this process.

The ACF is given by

P- M 0.8597, and

P- - 0.9 P - 0.18 Pi-2 for i - 2, 3, 4,....

This ACF is always positive and decreases exponentially.

With its cn > 1 and its ACF properties, TOP 6 was designed to contrast

with TOP 5. We believe that in these measures TOP 6 corresponds more closely

to typical queuing system simulation output than does TOP 5.

TOP 7

TOPs 7 and 8 are based on output processes associated with queuing

system simulations. These two TONs were chosen to investigate the potential

applicability of the ARMA-based CIP to the queuing system class of non-

ARMA TONs.

TOP 7 is based on a materials-handling problem described in Hillier and

Lieberman [1974, p. 465], in which the output random variable is cost per unit

time. Here is a paraphrased statement of the problem:

"A certain materials-handling unit is used to
transport goods between producing centers in a
job shop. Calls for the materials-handling unit
to move a load come essentially at random
(i.e., according to a Poisson input process)



at a mean rate of two per hour. The total time
required to move a load has an exponential
distribution with an expected time of d minutes.
The total equivalent uniform hourly cost
(capital recovery cost, plus operating cost)
for the materials-handling unit is PC. The

estimated cost of Idle goods (waiting to be
moved, or in transit) because of increased
in-process inventory is $10 per load per
hour. Furthermore, the scheduling of the
work at the producing center allows for
just one hour from the completion of a load
at one center to the arrival of that load at
the next center. Therefore, an additional 920
per load per hour of delay (including transit
time) after the first hour is to be charged
for lost production. What is the expected

cost of this-system (defined as the sum of
delay cost and equipment cost) as a function

of d and FC?"

We simulate the behavior of this system, setting specific values for d and FC

and taking periodic observations on the cost accumulated by the system over

time. letting TC be the cost per hour, it can be shown that for d < 30,

EfTC] - {?d/(60 - 2d)}(20 exp ((2d - 60)/d) + 10} + FC.

Hence, the performance of the ARMA-based confidence-interval procedure can he

measured in terms of the known mean of the cost variable.

One key decision in using this system as a test case involves setting

the interobservation time. We set this value at eight simulated hours (one

shift), which is 16 times the expected job interarrival time. By way of

conparison, Fishman [19711 chose an interobservation time 4 times the inter-

arrival time to observe current queue content in an M/M/l system used to test

his AR-based confidence-interval procedure. In contrast, Steudel and Wu

f19771 recommend that an interobservation time 10 times greater than the

service time be used in observing current queue content in job-shop simula-

tions. In general, no conprehensive guidelines have been reported for

choosing the interobservation time in experiments of this type.
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Another key decision in this system involves selecting a method to follow

in accumulating the system cost. In one method, the cost could be based only

on those jobs which have left the system during the current observation

period. In another method, the cost could he based on all Jobs which have

been, and perhaps still are, in the system at any time during the course of

the current observation period. The expected total cost per unit time will be

the same for either method, but the variability of the cost will not. We use

the second of these two cost-accumulation methods because the variability

associated with it is smaller.

In setting parameter values for this TOP, we chose d - 24 minutes and

FC - $10. This results in a server utilization of 0.8 and leads to an ex-

pected daily system cost of $788.18.

TOP 8

For TOP 8 we worked with an M/D/3 queuing system, choosing current system

content as the output random variable of interest. Analytic solutions for

this system have been evaluated numerically by Rillier and Yu rlQkll, making

it easy to assess performance of the ARMA-hased confidence-interval procedure

in terms of the known system properties. By way of contrasr with TOP 7, the

output random variable chosen here takes on a noncumulative value- that is,

the value observed is a point value, not a value accumulated during the course

of the observation period.

In the ?/D/3 system, interarrival time was set to 5 minutes, service

time to 13.5 minutes, and interobservation time to 20 minutes. The inter-

arrival and service-time settings result in an O.Q server utilization, and

give an expected system content of 6.42.
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4. TESTING ENVIROIMENT

The software used in this research consisted of custom-built modules

combined with proven existing routines. The existing routines included

certain IMSL (1980] subroutines and the Michigan Interactive Data A-alysis

System (Fox and Guire [1976]). With the one exception noted below, the

custom-built modules were written in FORTRAN, were checked out under an

interactive FORTRAN interpreter, and then were translated under an optimizing

FORTRAN compiler prior to their use in making the production runs.

The two queuing-system TOPs were built in GPSS. The GPSS models were

run under GPSS/H (Henriksen and Crain [19821), a state-of-the-art GPSS

implementation. GPSS/H uses the Tausworthe [1965] algorithm to generate

uniform 0-I random numbers. The exponentially distributed interarrival and

service times in the GPSS models were sampled using the standard natural

logarithm function from the FORTRAN library. This is superior to the more

conventional GPSS approach of using a piecewise linear approximation to the

inverse cdf of the exponential distribution (see Schriber [1974, p. 163]).

The coputing work was accomplished on an Amdahl 470/V8 operating under

the Michigan Terminal System at The University of Michigan.

5. TEST RESULTS

Results of using the two versions of the ARMA-based confidence-interval

procedure with the eight theoretical output processes are presented here in a

set of eight identically formatted tables, following the suggestion of Schriber

and Andrews 119811. The four table rows correspond to 100 replications

consisting of 100, 200, 300, and 400 observations, respectively. Each of the

five table columns corresponds to a particular measure of effectiveness of the

confidence-interval procedure. These five MOEs will be described before the

tables themselves are presented and discussed.
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For the six ARMA TOPs, table column I (MOE 1) reports the percentage of

accepted ARKA models whose (p,q) order matched that of the known underlying

ARMA process. %ecall that a candidate ARMA model was accepted only if various

test statistics had satisfactory values. Also note that because each MOE 1

percentage is based on 100 replications, the percent can alternatively be

thought of as an actual count. This MOE measures the ability of the Gray

et al. algorithm to correctly identify the order of the ARMA process used to

generate the time series being analyzed. MOE I does not have an interpreta-

tion for queuing-system TOPs 7 and 8, and so is marked NA (not applicable)

in Tables VII and VIII. The orders of the ARMA models accepted for the

queuing-system TOPs are of interest, however, and will be presented sepa-

rately when test results for those TOPs are discussed.

Table column 2 (MOE 2) provides a measure of the coverage properties of

the confidence intervals built for the accepted ARMA models. In particular,

2
the number reported in column 2 is the achieved significance level of a X

test for uniformity in the distribution of the random variable

ri* - inf{ri:OcC(X1 , X 2 , '..., X n; 0)},

where 6 - the process parameter of interest,

n - a confidence level, and

C(X , X2 ... Xn;n) - a confidence interval based on the sequence
X1 9 X2 "...X n at confidence level n.

The random variable n* is the confidence level that just succeeds in covering

the parameter of interest, which in our case is the process mean. The dis-

tribution of n* is referred to as the coverage function. For a theoreti-

cally perfect confidence-interval procedure, n* follows a uniform (0,I)

distribution. (See Schruben [19801 for details.)



-22-

2
We conducted the X goodness-of-fit test by dividing the (0,1) interval

into 10 cells of equal width and then computing the corresponding test

statistic. Tow values of the achieved significance level of this statistic

would indicate that the observed n*'s do not conform to the theoretically

correct uniform (0,I) distribution. Tn particular, any value lower than, say,

0.05 suggests that the CIP is suspect in terms of its ability to produce

meaningful confidence intervals for the TOP at hand.

Table column 3 (MOE 3) provides a measure of the degree of variability

in the halfwidths of the confidence intervals. In particular, it reports the

estimated coefficient of variation (eV) of the standard error of the mean.

This estimate is computed as follows:

eV - §D r§D(x)]/sn(x),

where

- I 
"

100SD(X)=1001  x
J=1

S Df ST)(X )1 99 (SP 1i(X) - sDX))

and SD (X ) is the standard error on the jth replication. For iid observa-

tions taken from a normal distribution, Schmeiser (19821 derived CV

analytically, one form of which is

CV- {[r(--)I 2 _ n 21 /2 n

Note that CV in this case depends only on the sample size, n. For ild normal

samples of size ton, 200, 300, and 400, the corresponding CV values would he

0.071, 0.050, 0.041, and 0.035. these numbers provide a henchmark for MOE 3.
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Table column 4 (MOE 4) provides the two conventional measures for

reporting the properties of a confidence-interval procedure. This column

indicates the average relative halfwidth of the confidence intervals built at

a 95% confidence level, and the percentage of these intervals which cover the

process mean.

Table column 5 (MOE 5) indicates how many replications had to be generated

to"obtain 100 usable replications. A usable replication is one to which an

ARMA model can be fitted acceptably in the statistical sense described in

Section 3. This measure, which involves the ability of the ARMA-based CIP to

produce a confidence interval for the TOP at hand, is reported as the ratio of

replications generated to replications used.

In examining the MOE tables, the following points should be kept in mind:

1. How do the two versions of the ARMA-based CIP compare?

(Only MOEs 2, 3, and 4 will depend on the version in question.)

2. How adequately do the two CIPs perform for the TOP used?

3. Do the properties of the CIP as measured by the MOEs improve

as sample size increases?

4. If one or more table values are not what we would expect,

can we identify the underlying cause and their implications?

Tables I and II give the results of analyzing the AR(1) and AR(2) models

used by Fishman [1971]. In the AR(l) case, 83, 88, 86, and 98 percent of the

accepted ARMA models were correctly identified to be of (1,0) order for

replications consisting of 100, 200, 300, and 400 observations, respectively

(column 1, Table I). This indicates good performance on the part of the

identification algorithm for this AR(l) TOP. For the AR(2) case, the percen-

tages of accepted ARMA models which matched the underlying (2,0) order were
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also in the 80% range except for sample size 100 (column 1, Table II).

To obtain 100 acceptable ARMA models, we needed at most 147 replications for

the AR(l) TOP (column 5, Table I), but as many as 202 replications from the

AR(2) TOP were needed to obtain 100 acceptable models (column 5, Table II).

The achieved significance levels of the coverage function (column 2)

are consistently excellent in Table I, and are completely satisfatory in Table

II for samples of size 200, 300, and 400. For samples of size 100 in Table

I, however, the hypothesis regarding uniformity of n* would be rejected at

a 0.05 significance level. Note that this is also the sample size in Table II

for which the relatively small percent of correct identification and

relatively large replication ratio were experienced.

The entries in column 3 (MOE 3) in Tables I and II provide a measure of

the variability in the width of the confidence intervals. The column 3 values

are larger than the iid-normal benchmark values reported above, which might

reflect the dependency in the data. Like the benchmark values, the column 3

values decrease as sample size increases. For TOPs 1 and 2, and for the

other six TOPs as well, the variability of the confidence interval width is

larger for Method 2 than for Method I. In all cases, however, the differences

are small.

Column 4(b) in Tables I and II indicates that the coverage rate of con-

fidence intervals at a 95% confidence level was close to 0.95 in most cases.

The entries in column 4(a) report the average relative halfwidth. This

measure is useful when it is of interest to estimate the sample size required

to achieve a specified relative halfwidth in a confidence interval. These

values range from .19 in Table II for a sample size of 400, to .409 in Table I

for a s&.0le size of 100.



-25-

100

' 4 )

00 .4 D 0 - -. e-

Oq. 41 ('4 C4 N4

-1 4.4

- 0 c

H Go (N 0 -' 0 co r r ( uA l
44U 4410 04 -C 0 -4 0% r- (7 0

F4 04
-4u

0

'C.

0

-t $4 00~4~ 0 H LM 0 n 0 (7S ('n 0
04~ "4- W0I C3 .4 ( N (N ( -

64 N,4-

r4

0 u V

14 "4enOD0
Go4 00O

W Cc4l 4.cn. N (4 (N C4 .-4 .-4 0 -

4v4 V1.i 0
00 0 0 0 0 0 0

00
4P4-"

Ai 4

~~~ ('"444 6

'to 04 0u 0 0 0



-26-

4

C1 .- 4 .4-

0000(1 %4n e

4) 00 cc O (1 Go 0

0% 4)

o4 coo rjO
en C

4  
CN 04 C1 N -4 -4

6-44-4.

u 4 L 0 0Q 0- 0 ~ 0 ~ 0 0

00

0 to 41. 0 L - MC
>. 0 4~0 -,4 C 0 '0C4 N 04
w V4 >bW .i 41 ,-q 4 -4 -4 4 -

40 V.
CC ~ ~ ~ - 0-

044 4-4
44.

44

"41

00 ODcc

0~C~ eq1~ N U 4 N N
4141,4~4i 0 0 11 10 V- .-4 v-

00 0 0 0 0 0 0

411

'4 "

1.4P 804.1 ad



-27-

The only measure which can be compared with the results reported by

Fishman (1971] is MOE 1. For these two models, Fishman reported correct

identification in 77% to 86% of the cases. These percentages are not directly

comparable with MOE 1 here because our percentages do not include those repli-

cations for which no statistically acceptable ARMA model could be fitted.

Furthermore, Fishman used a variable sample size scheme, extending the size

as necessary to achieve a stated relative halfwidth. His sample sizes ranged

from about 250 to 350. Fishman did not report coverage measures for the AR(l)

and AR(2) models, so coverage comparisons cannot be made.

Table III reports results for the AR(l) model used as TOP 3. The table

contains superb values for all measures. In terms of identification, the

procedure did better with this process than it did with the AR(l) process

reported in Table I. TOP 3 had I = 0.8, as compared with 0I. 0.5 for TOP

1. The corresponding limiting values of cn were 9 and 3. It would therefore

seem that the Gray et al. algorithm correctly identifies the underlying order

a higher percent of the time when the correlation structure as measured by

the limiting value of c is stronger.n

Table IV corresponds to TOP 4, which is a mixed ARMA(l,l) model. The

Table IV results are excellent except for the small percent of correctly

identified models and the low achieved significance level for n* at sample

size 100. It is worthwhile to attempt to explain why the coverage at a q5%

confidence level is satisfactory when n - 100, whereas the small achieved

significance level for MOE 2 at the same sample size indicates that the

coverage was not satisfactory for all confidence levels. One possible cause

is that there may be a significant correlation between the estimate of the

mean, Xn, and the estimated standard deviation of X • If this correlationn

exists, then the numerator and denominator of a statistic assumed to follow
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the t distribution violate the assumption that they are independent. Ibis is

one of the potential problems which Schruben (19R0] indicates can lead to ponr

performance of the empirical coverage function. Rowever, this is not a

problem with this ARMA(l,l) process. For the 100 usable replications at

sample size 100, the achieved correlation between X and the estimated standard
n

deviation of X was 0.15 for both methods of estimating the variance of the
n

sample mean. At a significance level of .05, the critical value of the

correlation coefficient is .20, so the hypothesis that these statistics are

uncorrelated would be accepted. The poor realization of the coverage function

is traceable to the fact that 21 (20 in the case of Method 2) of the 100

confidence intervals had an achieved n* between 0.60 and 0.70. This may be

attributable to unexplained randomness.
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Tables V and VI correspond to TOPs 5 and 6, both of which are ARMA(2, 1)

models. Three points should be kept in mind when examining these tables:

1. In Table V, the alternative methods for estimating

Var[X n I give discernibly different results for the

first time;

2. The percent of correct identifications in Table VI

is low for the first time; and

3. The values of the average relative halfwidth are

extremely small, which merits comment.

In Table V, at sample sizes of 100 and 200, MOE 2 reports low values for

Method 2 but acceptable values for Method 1. It should be noted that Method 1

uses equations (5) and (6) to smooth out the autocorrelation function. This

results in better empirical autocorrelation properties for this particular

theoretical output process.

The inferior results for Method 2 at sample sizes of 100 and 200 can be

explained in terms of the values calculated for Var2 rXn1. From (7),

;2 [l 
2

21/2SDLn [1 2

The resulting estimated standard deviation may be very large if I 1 or

it may be very small if 1 8 m I. For the replications with sample sizes of

100 and 200, small values for SD,fXn I occurred quite often. The following

list gives some of the cases for which §D fXn was very small conpared to

2n

SD I X .
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SDl xI SD 2[X I Method I Method 2

2.23 0.91 1.0 1.0
2.58 1.31 0.92 1.0
2.83 0.72 0.27 0.83
2.03 0.72 0.81 1.0
2.51 0.94 0.26 0.63
1.29 0.22 0.20 0.85

As can be seen in these examples, the small values of §D2 [Xn yield large

values of n* which, in turn, result in an empirical coverage function not

conforming to uniform (0,1). As further evidence of this point, the average

value of SDI[Xn] for the 100 replications was 5.16 for sample size 100 (2.97

for sample size 200), whereas for SD2 Xn] it was 4.56 for sample size 100 (2.73

for sample size 200). This suggests that Var2[Xn] is underestimating Var[Xn].

At sample sizes of 300 and 400 the average SD2 [Xn] was again smaller than the

average SD1 [Xn ; however, the difference was not sufficient to degrade the

coverage function because the extreme lower tail values were not persistent.

For example, of the 100 replications at sample size 100, no SD 1 [X-- values

were smaller than 2.0; however, 12 of the SD2 [Xn] were smaller than 2.0.

For sample size 200, no SD[XnI values were smaller than 1.2, but 7 of the

SD2 [XnI values were. This explains the poor performance of the coverage

functions for Method 2 at sample sizes of 100 and 200.

All of the reported measures of effectiveness in Table VI are adequate

except for MOE 1, where the percent of correctly identified ARMA models was

very low at all sample sizes. An explanation for this misidentification lies

with the choice of *2' which for this process has a value of -0.18. This



relatively small value results in data adequately fitted by ARMA(I,l) models.

In fact, of the 100 fitted ARMA models for each of the four sample sizes, 62,

66, 62, and 63, respectively, were of (1,1) order. This largely explains why

there were so many misidentifications. In spite of these misidentifications,

however, the coverage properties were still satisfactory for this theoretical

output process.

The values of the average relative halfwidth listed in column 4(a), Table

VI, demonstrate how this measure decreases with increasing sample size. The

very small values for this measure are misleading, however, in that there is

no standard against which to compare them. Simply by changing the process

mean for which the data were generated, the relative halfwidths can be changed

without either improving or degrading the confidence-interval procedure.

Average relative halfwidths consequently are not comparable across TOPS having

nonidentical means. For example, the seemingly large values of this measure

in Table II were for a process mean of 0.6667, whereas the process mean for

the Table V TOP is 1000. It is important to be aware that the average

relative-halfwidth measure should only be used for comparison purposes as

sample size changes for a given TOP.

Tables VII and VIII report the results for queuing-system TOPS 7 and 8,

respectively. The small values for MOE 2 in these tables indicate that the

coverage function for these TOPS does not conform to a uniform distribution.

The coverage percentages given as MOE 4(b) also fall short of the 95% level.

We will now discuss three sources of possible error which could account for

the poor performance of the coverage properties with respect to these queuing

models.
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I. Correlation between sample mean and its standard error

The use of the t statistic in building a confidence interval assumes that

Xn and SD[X ] are independent. The extent to which this assumption is satis-

fied by the data can be checked by using the 100 replications at a given sample

size to estimate the correlation between these two statistics. We computed

the correlation between the sample means and their standard deviations as

estimated by Methods I and 2 for all eight TOPs. The resulting correlation

coefficients appear in Table IX.

The critical value at a = .01 for the Table IX correlations under the

assumption of hivariate normality is 0.26. Inspecting the table, we see that

the ARMA TOPs I through 6 had insignificant correlations for both versions

of the estimators of Var[X n1. However, there were significant correlations

in all cases involving queuing-systm TOPs 7 and A. This correlation between

the sample means and their estimated standard deviations contributes adversely

to the behavior of the coverage function.

2. Distribution of the disturbance terms

The ARMA model in (1) assumes that the disturbance terms are normally

distributed. This assumption, in turn, forms part of the basis for testing

the statistical acceptability of the fitted ARMA models, and for the subse-

quent confidence-interval methodology. The validity of this assumption can be

tested by investigating the distribution of the residuals of the fitted

models.

We chose four replications, each of sample size 400, on which to check

the normality assumption for the residuals. The first two replications were

for TOP 5, the ARMA(2,1) process for which these CIP procedures work well.

The first replication had a reported n* of o.Oq, and the second had a
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reported n* of 1.0. This means that the confidence interval from the first

replication covered the true mean for all confidence levels at or above 9%.

The confidence interval associated with the second replication covered only at

confidence levels approaching 100%.

The other two replications were chosen from TOP 8. Their respective

n*'s were 0.37 and 1.0. Hence, these replications had specifications similar

to those of the two replications chosen from TOP 5.

Table X summarizes the results of checking the residuals from the chosen

four replications for normality with a mean of zero. The table indicates the

mean, standard deviation, skewness, kurtosis, and the achieved significance

2
level of the X goodness-of-fit test for normality.

As expected, the distribution of the residuals from the tailor-made TOP 5

is consistent with the underlying assumption of normality. Their kurtosis

(which can be covpared to a kurtosis of zero for the normal distribution) and

skewness (which can be compared to a skewness of zero for the normal) sub-

stantiate normality, as does the achieved significance level of the associated

2
X statistics.

However, the measures of skewness, kurtosis, and goodness-of-fit do not

support the assumption of normality for the queuing-TOP residuals. The skew-

ness and kurtosis are not close to zero, and the small values of the achieved

significance levels of the goodness-of-fit tests indicate a rejection of the

normality hypothesis. The lack of normality in the residuals is a factor

contributing to the poor coverage encountered when working with observations

produced by the queuing-system sinulations.
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Table X

Residual Analysis

Replication I Peplication 2 Replication 3 Replication 4
(TOP 5, n*=.Oq) (TOP 5, n*-l.00) (TOP 8, n*-. 3 7 ) (TOP 9, n*=I.O)

Mean -. 641 .516 -. 007 -. 022

Standard

Deviation 76.12 72.64 1.98 1.98

Skewness .061 .095 .430 .312

urtosis -.220 -.009 .372 -.261

Ac hieved
Signifi-
cance
Level of

x2-Test .22 .68 .00 .09

i
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3. Aberrant behavior of the replicated means

A third possible contributor to poor coverage involves situations in

which achieved sample means may persistently be far removed from the process

mean. If the replicated means consistently tend to be far removed from the

process mean, then this can result in poor performance characteristics for any

confidence-interval procedure. The halfwidths needed to cover the process

mean tend to be persistently large in such a situation, resulting in large

values of n* and strongly nonuniform behavior for the coverage function.

To investigate this possibility here, we computed the grand mean for

all 100 replications at each sample size for TOPs 7 and 8. Then we evaluated

MOE 2 and 4(b) for each combination to determine the extent to which the ARMA-

based confidence intervals covered these grand means. In essence, we were

adjusting for the bias in the generating process. The MOE 2 and 4(b) coverage

properties improved slightly but were still unsatisfactory except for sample

size 400 with TOP 7. We conclude that the generation process was not the

cause of poor coverage with the queuing TOPS.

The final aspect of the test results involves the order of the fitted

ARMA models. The counts of the achieved orders for TOPS 7 and 8 are shown

in Table XI. Table rows indicate the number of observations per replication;

and table columns show the orders of the models, arranged by increasing sum

of the autoregressive and moving-average orders. Fach table cell shows the

two applicable counts, with the TOP 7 and R counts in the upper and lower

parts of each cell, respectively. For example, with 700 observations per

replication, there were 61 and 79 ARMA(1,O) models fitted for respective

TOPS 7 and R. We conclude that: low-order ARMA models produce statistically

acceptable fits for queuing system data, at least for the case of the two

queuing TOP& used for testing purposes in this work.
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The results in Table XI can also be compared with the statement of Steudel

and Wu [19771 that output from an M/M/I queuing system can be fitted with an

ARMA(l,0) model and that, in general, ARMA models of order (p,p - I) provide

acceptable fits for outputs from queuing-system simulations. In the TOP 7

M/M/I system, 251 of the 400 total replications were fitted by ARMA(1,0)

models. And in the TOP 8 M/D/3 queuing system, 302 of the 400 total replica-

tions were fitted by either ARMA(I,O) or ARMA(2,1) models.

6. CONCLUSIONS

Two ARMA-based confidence-interval procedures have been described, and

results of subjecting these procedures to extensive testing have been reported.

The differences in the performance characteristics of the alternative pro-

cedures are small. Both procedures work well when used to process ARMA-

generated data for the ranges and combinations of autoregressive and moving-

average orders and parameter values investigated. Although Method I produces

somewhat more stable confidence intervals than Method 2 as measured by MOE 3,

the differences in the performance characteristics of the two alternative

procedures for tailor-made data are small on balance.

Both confidence-interval procedures perform in less-than-satisfactory

fashion when used to process data produced by two queuing-system sinulations

chosen for testing purposes. The underlying cause for this poor performance

may be the demonstrated correlation between the sample means and their

standard errors in the queuing output, and/or the demonstrated nonnormality

in the distribution of the residuals associated with the ARMA models fitted

to the queuing-system output. We advise that practitioners conduct appro-

priate correlation and normality tests on simulation output prior to using

these ARMA-based confidence-interval procedures.
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