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PREFACE

The research in this report was performed from May through August 1981 by
Orlando Technology, Incorporated, Post Office Box 835, Shalimar, Florida 32579.
The research was performed under Contract F08635-81-C-0131 for the Bombs and
Warheads Branch, Munitions Division, Air Force Armament Laboratory, Armament
Division, Eglin Air Force Base, Florida 32542, The program manager for this
effort was Mr. William Cook (DLJW). The principal investigator for Orlando
Technology, Incorporated was Mr. John Osborn.

This report describes theoretical research into the effects of material
properties on the deformation of rods subject to large vclocity gradients. The
work provides insight into many phenomena secn 1n shaped charge jets.

The Public Affairs Office has reviewed this report, and it is releasable
to the National Technical Information Service, where it will be available to
the general public, including foreign nationals.

This technical report has heen reviewed and is approved for publication.
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SBCYION I
INTRODUCTION

This report presents equations which describe the deformation and necking
in a rod stretching under a lsrge velocity gradient. The equations duplicate
wave propagation computer program solutions for rods of varying densities,
yield strengths, and other properties being stretched under uniform velocity

gradients,

The equations provide insight into similar phenomena seem in stretching
jets from shaped charge munitions and provide a purely mechanistic approach to
understanding such phenomena, They suggest tsiloring of jet gradients and

material properties to achieve specific weapon objectives.

The basic equations are solved for right circular cylinders stretching
under a linear velocity gradient. Nonlinear gradients and shapes other than
constant-~diameter rods are modelled by the basic differential equations.
General solutions are not presented for these cases since the equations must

be solved numerically.
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SECTION 11
ROD SIRETCRING CALCULATIONS

The TOODY two-dimensional Lagrangian Wave Propagation computer program
(Reference 1) was used to calculate deformation im stretching rods of initial-
ly constant diameters., Seversl calculations were undertaken with varying
gradient, length, density, yield stremgth, and sound speeds. Several of these
calculations will be discussed in this sectiom to provide an istroduction to

the basic phenomenology.

Figure 1 shows the initial grid structure for a 10-cmlong, l-cm—diameter
rod. The top figure is drawn with the same scale on both axes. The z, or
radial, direction is amplified in the bottom figure. The x axis is an axis of

rotational symmetry.

In this calculation the rod is copper with a density of 8.9 gm/cc, an
initial bulk sound speed of 4x10% cm/sec, a shock velocity/particle velocity
slope of 1.5, a Gruneisen ratio of 2.0, a Poisson’s ratio of 0.35, and 2 Von
Mises yield stremgth of 5 kilobars (Kb). The yield stremgth is mot allowed to
vary with strain or internal emergy. At startup time a velocity gradient of
2x104 uc_l is imposed on the 10-cm—long rod. The velocity is set to O at the
X=0 point and varies linearly with X to 2x10f cm/sec at the X=10 cm point.

Figure 2 shows the rod in both the equal and amplified scale along with
X-velocity, in cm/sec, versus X, in cm, at 20 microseconds. The plot clearly
shows relief waves moving into the rod from both ends, stadbilizing velocity in
the relieved sections., The velocity in the relieved, or elastic, sections
increases from initial values in the tail (low velocity end) of the rod and
decresses from initial values in the tip (high veloocity end) of the rod.
Between these constant velocity segments the rod is continuing to stretch
plastically at the same velocities initially given to the rod.

3
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Figure 3 presents the same data for the rod at 60 microseconds., At this
time the stabilized end sections have grown to approximately 2 cm, with a
slight neck visible at the end of the relieved sections. The velocity and
amplified grid plot show another set of necks fr~<ming approximately 2 cm ahead
of the first necks.

By 100 microseconds (Figure 4), the second necks are well formed and two
new necks are beginning to form, The stabilized elastic ond sections are each
approximately 2.5 ¢cm in length and an'elastic region also exists within the
adjacent segment, as signified by the constant velocity region, Figure §
plots axial stress in dynes/cm? versus axial position along the rod for the

zones which exist in the radial direction across the rod.

In the central rod section stress is at the 5x210* dynes/cm2 (5 Kb) level,
It rises above this level within each neck region and decays below the level
in each elastic region, The rise is caused by an increase in pressure (mean
stress) due to the curvature at the mneck. This rise in mean stress is similar
to that measured in temsile tests and described by P. W. Bridgman in the early
1950’s (Reference 2), As discussed in Section III, it is this rise in mean
stress which caunses more than the first necks to form, Figures 6 and 7 are
plots of axial strain and internal emergy per unit mass versus axial position
at the 100-microsecond time, Straim along the completely plastic ceantral
section of the rod is predictable from the gradient and is 1.1 (110 percent),
Axial strain rises at each neck location and decays in each elastic segment,
as would be expected. The strainm level at the very ends of the rods is
virtually zero since these ends were relieved almost instantaneously. The
internal energy density plot in Figure 7 shows similar phenomenology. The
energy is a constant, predictable value along the unrelieved central rod
section and rises as strain rises in each neck, Ir this calculation, the rod

began at zero internal energy at the start of the problem.

Figure 8 plots three times the square root of the second stress invariaat
(i.e., the quantity which cannot excoed the Von Mises yield strength) in
dynes/cm? versus axial position at 100 microseconds. It demonstrates that the
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rod is indeed eolastic in the end sectioms, plastic at the necks and the still-
stretching central rod section and elastic in the second set of stabilized
segmonts from each end. Varistions at the same axial position are variations

within zones at different radii (Z position) at that axial position.

Figure 9 is a plot of kinetic energy density (kinetic energy per unit
mass) versus axial position at 100 microseconds. It shows again the
stabilized velocity sections and the curvature in the center section expected

from a constant velocity gradient.

Necks continue to multiply, moving in from each end, until all of the rod

has been subjected to the phenomenon.

Figures 10 through 1S5 show grid and axial velocity plots for the same rod
with a smaller velocity gradiemt., In this case the gradiemt is 1x10¢ sec_l.
i.0., the tail velocity is zero and the tip velocity is 1x10% cm/sec. Necks
and stabilized regions are seen to form ip the same manner as previously but
with different sizes and velocities. The last three figures——-130, 140, and
150 microseconds—show in detail the formation, stabilization, and growth of

the second set of elastic regions.

Changing the length of the rod has no effect other than to provide more
rod within which necks can form. Figure 16 is a velocity versus axial posi-
tion plot at 150 microseconds for a rod with the same 1x10¢ soc-l velocity
gradient but with length increased to 20 cm. The stabilized velocities and
positions are identical to those in Figure 15. Whereas the 10-cm rod will
form perhaps one more set of necks and a neck at the center as it continues to
stretch, the 20-cm rod will form many more. Figure 17 shows the neck system
for the 20-cm rod at 250 microseconds. Eight necks are clearly visible, and

more necks will form as the rod continues to stretch.

The effect of varying yield strength from 2 to 5 kilobars in a staballoy
rod is seen in Figures 18 and 19, These are grid plots (amplified in the
radial direction) at various times for rods initially 10-cm long, I om in
dismeter with a velocity gradient of 1x10¢ vm/sec. All are assumed to have

12




OT1 TOOOY CALC - % KB CU wWlTH DELTA Va2 €%, Det CM, Leif CHM

13WE 1 b

L 12W e Y

LL10Eei Y

K- 3T

X148

71214

-S82¢ +14

KE

.va2ce1d

-52@ 14

1911

'B'I’"&E.m s X3 5.5 T 500 58 X X
X(CM)
IMIN= U 1MAX= S 1I0EL= V JNiN= 1 JWAX= 108
CYOLE 811 T= .1000E-03 OT=  .Qe0SE-07

Figure 9. Kinetic Energy Versus Axial Position - 5-Kb

Copper with 2x10% sec™! Gradient

13

X

0



i
b
. __Li_,' [

@

(=]

R
.

- U T

ux
]

L A L . PGS B P e ]

2106 +0% i
G0 e - cae | 3.6 W . L B T S LX) T0.88 jl 8.
] !
: ¢ ) ). 16 "B 12 7.80 5.08 . 50w AN _—1;5.00
! |.~+ i
i N 1‘
R 2.0 13 % 15.00
X(em)
it M- 2 1MAXs % (OELe 1 M= Y MANe 105
i CYCLE 123 Ta . 2000£-0% OTe . twlel 08
g Tigure 10. Grid and Velocity Plot at 20 Microseconds - 5-Kb
3 Copper with 1x10% sec™! Gradient
3 14
]
| 4
— o . 7‘




4
- PODr (Al & v PR - ~
A - -
“AGE -
R ]
. R P
o
;
SOOG‘JEl !
> .4;5.;@;:
395 34 i
4 i
i
p o2 L | :
: (
2706+ 2d :
e " s T T T e " Ge TRw T T ST T TTwe T TR R T Tl e
e T 17T] T '
T rr v - et T FTY‘ '
'l T r! ™ T 1 T T T o "'.1 114 ¥ J,.J.J '
q T s
o i } 1 Ty
o4 i RN 1 ; ) R
i ? D) EBE a0 .02 XL .av 5. 30 i0 7@ 2,18 18,57 L
4
| of
‘ 3 "
F ‘:'_' K
4
fJ
N IMINe LYY L INTE SR L N TY CERET)
. : e L LT Aty e 1Y eted (M0,
. Figure 1l. Grid and Velocity Plot at 50 Microseconds - 5-Kb
: 4 -1 \
Copper with 1x10" sec Gradient
15
e e e . \ ]




E T,

070 T000Y A BorlB U WEITH O ELTA Y g F e s (e M
PRI Mg e s - e - - aee e e -

ST S B
.3 _ R & __

2
g
&

LY i

U X

-4 08E +0%

e F g.ae L83 .39 N Y ™0 11 .06 2.8l .17 1%.72 .28

X(CM)

[MINe 2 TMAX= % IDELs | JMINe | JMAXs [0%
CYCLE @27 T«  Q0DQL-Ov DT t400E -08

Figure 12. Grid and Velocity Plot at 90 Microseconds - 5-Kb

Copper with 1x10? sec™! Gradient

16




- T

220

.88 .80 513 B.08 .18 11.50 v3.ae .98 18.57

IMIN- 2 IMAXe o I0EL. LMINe LomMAYs 0%

Lnlk 931 1. T300E-CS DLI- ICenf 00

Figure 13. Grid and Velocity Plot at 130 Microseconds - 5-Kb

Copper with 1x10% sec™! Gradient

17




VIl 100CY CAL Skt e e W TA e E e M LW

Rk ey mmm - — e o o - - Do i - S

i
{
i
'
'

s1% -0
!
|
;
|

57 0

55704

HORE 1Y

weat -08

U X

L42ue 09

aJL__...._ R
L

30 553 V.28 .08
T
1 1 r:t EEL‘-HP:,-FI,;TW—-"- T 111111} :]1;]3
8 19 [ 5.7 [] 1D 2 12.00 13.78 15,52 29 [ 8t

.7 - N .m

2.00
x(CM)
IMiNe 2 1MAXs S IDELs 1 JMINe 1 SMAXe 103
CYCLE 1016 T~ .14DIE-03 DT~ 119K 08

Figure 14. Grid and Velocity Plot at 140 Microseconds - 5-Kb
Copper with 1x10% sec™! Gradient
18



I3

8]

N0y CALC

S00E +0%

“63E 09

N2 011
|

)
‘

391E 04
[

S ORE T e ERL Te) MO Ty

P iE e e mee e e e

Figure 15. Grid and Velocity Plot at 150 Microseconds -
-1

¥ OM)

i A (MAXs -’ X
CYCLE 11086 T« 180t 0% DY

Copper with 1x104 sec
19

LIS IR N R ]

10708 <06

Gradient

5-Kb




(VR ¢

. 1 O8F «

. l”’]
|

enod

L Hleg£+08

- 99%E +0Y

—

. R0 +

-WS3E + 0%

QT1 TOQDY CALC - 5 KB CU WITr DELTA ve=2 £%, O=1 CM, L=20 CM

‘le’ﬁ
i

' .91 ER .01 .31 R.6 .0 we.21 ..
X(CHM)

M 2 IMAX® S (DEL= t JMiNe { JMAX= 200

CYCLE 1088 Te .1S01E-0S OT=  .1088E-08

Velocity Plot at 150 Microseconds - 5-Kb Copper

with 1x10% sec™! Gradient - 20-cm-Long Rod

Figure 16.

20




OT! TOOOY CALC - %5 KB CU W!TH DELTA Ve2.£5, Del CHM, =20 Cit

.‘GEEWT
|

. 192€ 04

}
!
‘ 1398 08 1
L 128E+
{108
\ ‘ - 100E+0§
X g7
: >
h"
L0
.81 3 +0%
'0.0(‘01
25 . ¥54E~0d
, BUILHUTH
. 411
1 R R
) Qi
ry
i ] l
{ N X T X ¥ . . 10
it X(CM)
) MIN 2 1MAX= % (0fL~ 1 JMIN- i JeAXe 00
3 CYCLE 27T Te  .2800C-03 OT= . YPONE-07
Figure 17. Grid and Velocity Plot at 250 Microseconds - 5-Kb
. Copper with 1x10% sec™! Gradient - 20-cm-Long Rod
4 21
| -
M!_ -
. Y




1
: Te .20006-02
011 TO0OY CALC - D=t CN. [ =i0 CM. veIES-2ES(LIN: - Ye 2 | NTS
1.0¢
|
f
~
:3‘ oty
M
¢ .2 N .38 3.91 12,48 15.00 17. % .08 [1] 17
X{CM)]
N
| OTL TOODY CALC - Del CM. {10 CM Vei€5-2ESILINY - Y= 5 .NTS
\ . o?
}
“ tuasi PG paan sty
11 1411 ] 288
Ht ::EH . 117 E
° K4 .8 e 19,3 2.7 1%.00 17.20 19.97 t.98 18
X(CHM)
)
- . STLOTOOCY CALT Dy O 1210 OF yelES-2E5 : IN) - Ye 3.6 N"w
.o}
. m M
. j _E - ,; T
' *' p T - r"’ﬂ d:
1T
13 %0 [ 10.2% 12.83 1%. 00 17,38 N 3 (]
X(CM)

Figure 18. Grid Plots for 10-cm-Long Uranium Rods at
200 Microseconds

22

i}

.3




-

—— e & -

CT! TOODY CALC - O=! CM. .=10 CM

T wO0%E-03

Figure 19.

I I T TIT T 111
U M AHE A IBEY -+ »
I D O L D 4 11 4
1 b 2 A0 0.5 R 0 A 6 0D e L
83 AT 19.27 lﬁ.l.’t -0 Ly
X{CM)
CT! TOODY CALC - D=1 CM. L=10 CM V=iES-2ESI [N - Y= 5 <
Y= .307E-03
M
N T
LN ] 1 - rTTIN N /v-~
-4 -1 - '
X » HN [N ﬂq-n
dd
23 9.0% 17.% . B
X{CM)
CALC - D=l CM. Lel0 CM. VeiES-2EG:L N
Te . 3016-03
"
N -
Ha ]M' N t N gyf
HH iy 1 ] ] AHO
N i
*H = : : g -
3
30 .80 9.9t 1.30 o2
X(CM)

Grid Plots for 10-cm-Long Uranium Rods at 300
to 400 Microseconds




ad

w ovenfite 6f 15.8 gm/ec, s Selk soars speed of 2.42x30% cm/fsec. a sho:xd
“

velcc:ty/particle velocity sloeoe of .6, o Qruneiser ratte ¢! 1.4, and a

Puisson’s ratio of 0.3,

Figure 18 presents the rods at 200 microseconds for three cases. The top
plot is for an elastic/perfectly plastic yield strength of 2 Kb, the middle
rod rsises this to 5 Kb, and the bottom plot is for a linearly work hardening
material, The work hardening material initial yield stremgth is 2 Kb, and it
rises to a saturation level of S Kb at a strain of 50 percent. The work
hardening rod and the 5-Kb rod appear very much alike at this time. This
similarity is expected since the work hardening material is limited to 5 Kb in
strength, The 2-Kb rod is significantly different. The elastic segments are
not as large as those in the other rods, and the number of necks is reduced at
this time. Figure 19 presents later time plots for these same ocases. Again,
the 5 Kb and the work hardening rods are very similar at times close to 300
microseconds. The time in seconds is indicated on each plot. The 2-Kb rod is
pictured at 400 microseconds, It still has s long central section stretching
plastically, whereas the other rods have virtually completed necking,

Figure 20 is the same staballoy rod at 400 microseconds but with no limit
on the work hardening yield streamgth. A tangent modulus of 6 Kb is used, but
there is assumed to be no saturation stress level in the material. Neck
formation is considerably retarded over the 2 Kb case., Necks have begun to

form at 400 microseconds but are of very limited radial extent.

A 20r0 yield stremgth copper rod stretching uander a 1x104 000_1 gradient
is shown in Figures 21 and 22, There is only slight velocity retardation at
the onds, and there is no necking whatsoever. The grid plots im Figure 21
show the rod at 0, 150 and 230 microseconds, The velocity versus axial

position plot in Figure 22 is at 230 microseconds.
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The calculations presented in Figures 23 and 24 illustrate the slmost
ponexistent effect of material sound speed on rod deformation, Figure 23
shows one—-half of a copper xod with a yield strength of 5§ Kb and the normal
sound speed of 4x10f cm/sec at 200 microseconds. The velocity gradient is
1x104 cm/sec, and the rod was initially 10 cm in length. At 200 microseconds
just one—half of the rod is almost 10 cm in length, Two necks exist, and the
stabilized elastic segments are travelling at 3.4x104 cm/sec, 4.1x10% cm/sec,
and 5.0x10¢ cm/sec. Elastic velocity for the three segments seen in the half-
rod picture are 3.4x104 cm/sec, 4x10% cm/sec, and 4.85x10¢ cm/sec. These
velocities are within 3 percent of those seen in Figure 21. Clearly then,

sound speed has little effect on the rod’'s deformation,

Varying density does have an effect as one can see by comparing the
staballoy rod in Figure 18 with the 5-Kb copper rod in either Figure 23 or 24,
It is more dramatically illustrated in Figuores 25 through 28, These figures
are one—Ralf rod grid and velocity plots for an slominum rod stretching under
s 1x104 soc-l gradient. The plots show the lower velocity end of the rod at
40, 80, 140, and 200 microseconds. The aluminum has a density of 2.7 gm/cc, a
bulk sound speed of 5.4x10% cm/sec, a shock velocity/particle velocity slope
of 1.34, a Gruneisen ratio of 2.1, a Poisson’s ratio of 0.33, and a yield
strength of 3 Kb, At 200 microseconds a 5-Kb copper rod with identical
initial conditions has formed 6 elastic segments with the first segment from
each end being approximstely 5 cm in length, The 3-Kb aluminum, at 200
microseconds, has formed only 2 elastic segments, and each segment is almost 8
cs in length. The grid and velocity plot at 140 microseconds (Figure 27)
shows that a second set of elastic segments briefly formed but were not

sustained.

In the mext section a simplified model will be presented which explains
all of the phenomena seen in these rod calculations with density and yield
strength as the only material properties affecting deformation and necking.

The calculations and the model both predict that necking advances from the

28
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ends of the rod slowly toward the center, Observation of jets from hemis-
pherical liners' indicates that this model does duplicate phenomenon seen in
initially constant diameter rods with linear velocity gradients, The calcula-
tions and model indicate that necking and fracture which initiates at any
other locations first is caused by sharp changes in shape (mass) or in the

velocity gradieat itself,
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SECTION 111
A SINPLIFIED MODEL

In this section, a model will be developed which explains the phenomena
seen in the rod-stretching calculations., Comparisons with the calculations
indicates that the model is extremely accurate in predicting many of the
details of deformation and necking. It is currently limited to initially
constant dismeter rods with linear velocity gradients, The fundamental
differential equations include all cases of interest, and it is a relatively
simple task to expand the model beyond these limitations. The model explains
necking and breskup phenomena observed in shaped—-charge jots with recourse to

none but the most basic physics equations.

Figure 29 defines nomenclature to be used in model development. The
figure shows a velocity versus axial position plot at a time when many necks

have been formed. Elastic segments exist botween axial positions X and

i,0
where i is the number of the segment beginning with unity at the lower

X

v:itcity end, These values are functions of time, Initial values will be
indicated as Xi'j(O). Velocity will always be assumed to be initially zero at
the lower velocity end of the rod, and initisl rod position will be assumed to
be zero at this location., These assumptions cause no loss of generality but
merely require that constants be added to velocities and positions computed

using the model,

The velocity gradient, g—;. is designated as K. Initial velocity gradieat

is K(0). Y is the flow stress of the rod and can be a function of strain
and/or internal emnergy, The density of the rod is p and is assumed to remain

constant, The cross—sectional area is designated as A and is A(0) initiaily,

Consider the formation of the first elastic segments at each end. The
veloocity of the first segment on the low velocity end of the rod will de
Vl(t). The veloocity of the first segment on tue high velocity end of the rod
will be Vn(t). Conservation of momentum in an initislly constaant diameter rod
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NOMENCLATURE/DEFINITIONS

Xi k ARE FUNCTIONS OF TIME
’

INITIAL POSITIONS VARY FROM X1 0(0) TO Xn 1(0)
’ ’

<

K(0) = (t=0)

]

o
Y = FLOW STRESS OF THE ROD

p = DENSITY OF THE ROD

A(t) = ROD CROSS SECTIONAL AREA AT TIME ¢t

A(t=0) = INITIAL CROSS SECTIONAL AREA

Figure 29. Model Nomenclature and Definitions
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stretching under a linear gradient requires that:
Vn(t) = K(O)xn'l(O) - Vl(t) (1)

In other words, the velocity gain at the lower velocity end of the rod must be

equal to the velocity loss at the high velocity end.

There are two methods available for solving for Vl(t) and, through Equa-
tion (1), for Vn(t). The simplest is to consider a balance of forces across

the interface between the elastic end segments and the plastic, still-

stretching central section. Considering the lower velocity, Vi. and setting
elastic segment deceleration equal to the force at the interface provides the

equation:
av. (¢)
N —— = A1) (2)

where Y is the yield strength of the material at the interface and M is the

mass of the constant-velocity, elastic sogment.

The mass, M, can be most easily writtenm in terms of the mass ia initial,

or Lagrangian, coordinstes.
M= pA(O)x1'1(0) (3)

Equation (3) assumes that xl 0(0) is 0 and that the rod has a constant diame-
ter at t=0., The constant-volume, plastic stretching in the central rod sec-

tion requires that:
A(t) = A(0)/(14K(0)¢t) (4)
substituting Equations (3) and (4) into Equation (2) provides:

dV]_(t)
pA(O)XLl(O) at = YA(0)/(14K(0)t) (s)
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The quantity x1 1(0) can be written as:
11.1(0) = Vl(t) /K(0)

which reduces Equatiom (5) to:

dVl(t) v
V() g = ) K(0)/(1+R(0) ) (6)

Equation (6) can be integrated from t=0 to t and V1=0 to V, and yields the
following relationship for V1 for the case in which Y is constant.

1/2
v, () -[(3;?) Ln(1+x(0)t)] 1

The velocity, Vn(t). of the upper end segment will be the tip velocity of the
rod minus Vl(t). The strain in the center rod section will be exactly equal
to the strair at the elastic interface until necking becomes predominsant. The

accumulated strain in the center section can be written as:

¢ = -La (A(t)/A(0)) (8)
With substitution of Equation (4), the strain can be written as:

e = -Ln (1/(1+K(0)t)) = Lo (1+K(0)t) (9.

For a work-hardening material, then, the value of Y at the interface can be

written:
Y=Y + Ty Ln (1+K(0)¢t) (10)

where Y  is the initial yield strength and Ty is the tangent modulus. Substi-
tution of Equation (10) into Equation (6) and integration yields:

!o T. 1/2
Vl(t) = (2La (1+K(0)t) ;— + 2_5; La (1+4K(0)t) (11)
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If Y is also a function of internal energy density, BEquation (6) can be
solved by including the appropriate functional relationship. The internal
energy is simply the strain energy developed as the rod stretches. It can be

written as:

JQY(:.I)cdt/l (12)

where t is the volume under consideration, M is the mass of material in the
volume, and I is the internal energy density. The difficulty of imcorporating
energy dependence into Equation (6) is determined by the complexity of the
functional relationship between Y and I.

Consider the case of a very simple relationship:
Y = !o (1- I/Il) (13)

where II is melt energy density. The internal enmergy density, I, is that
existing at the interface which is equal to that existing over the uniformly-
stretching center section of the rod. For this relatively simple case

Equation (12) can be written as:

I=1Y3s/p (14)
=3, (I_I/Il) Lo (1+K(0)t)/p

Equation (14) can be solved for I to provide:

Y&Ln(1+[(0)t)/p

I= (15)
1+I-Y La(1+K(0)t)/p

0
Equation (13) then becomes:
!oLn(1+l(0)t)/p
r=-1 a- 1+I“Y°Ln(1+l(0)t)/p) (16
40
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Substituting Equation (16) into Equation (6) and integrating yields:

Y, 1/2
2Y, = La(14K(0)t)
Vi (t) = e La(1+E(0)t) |1 - £ - (17)
I,(1 + 2 La(1+K(0)t))
Plu

Equations (7), (11,) and (17) were compared with values of V1 from rod
calculations, several of which were discussed in the previons section., The
comperisons are contained in Table 1, All comparisons are within 6 percent,

and most are within 1 percent.
The position, X; 1(t), of the interface can be predicted from:
xl.l(t) = xl'l(o)(ux(on) (18)

where:

xl,l(O) = Vl(t)/K(O)

The accuracy of this position prediction is again within a few percemt until
very laste times when it diverges slightly from the calculations. The diver-
gence is caused by the necking process. Equation (18) assumes that stretching
continues at a constant rate, When a second elastic segment is formed, the
comparison begins to diverge because the local gradiemt is no longer exactly
equal to the gradient in the central, plastic region of the rod. Table 2
provides a compsrison between some calculated xl.l(t) values and those pre-
dicted by Equation (18).
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TABLE 1. NODEL/CALCULATION COMPARISONS FOR A/

I ) = 10 ¢cm
-1 Simple Model Calculation
Y(Kb) K(0) (sec ) T(usec) Vl(kl/soc) Vl(kl/soc)
3 1x104 40 0.27 0.27
80 0.36 0.36
140 0.44 0.44
200 0.49 0.49
2 1x104 160 0.20 0.21
200 0.22 0.22
5 with 1x10¢ 50 0.19 0.20
linear thermal stretching
and Il=1x10’ ergs/gm
100 0.24 0.25
200 0.28 0.28
S with 1x10¢ 50 0.20 0.21
linear thermal stretching
and I,=2x10° ergs/gm
100 0.26 0.27
150 0.29 0.30
200 0.31 0.31
5 2x104 100 0.35 0.35
5 1x104 200 0.24 0.24
322 0.25 0.25
20-2 1x104 150 0.21 0.21
T“-s 63S 0.41 0.40
ods wi " = cn
5 1x104 240 0.37 0.35
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TARLE 2. MODEL/CALCULATION CONPARISONS FOR ‘.l 1('I)

ods w tex = 1 cm an ength = 10 cm
-1 Simple Model Calculation
Material Y(Kb) K(0) (sec ™) T(usec) Xy 4(t) X, 1(t)
Alminum 3 1x104 40 3.8 3.8
80 6.5 6.5
140 10.6 10.1
200 14.7 14.3
Copper 2 1x104 160 5.0 5.1
200 6.7 7.8
Copper 5 1x104 20 1.7 1.7
140 7.4 7.9
200 10.5 10.1
Copper 5 with 1x104 50 2.9 3.2
linear thermal softening
and Iu=1310’ ergs/gm
100 4.7 5.0
200 8.3 8.9
5 with 50 .0 3.2
linear thermal softening
and Ir2x10’ ergs/gm
100 5.1 5.2
150 7.2 7.8
200 9.2 9.6
Copper 5 2x104 100 5.3 5.0
Staballoy § 1x104 200 7.2 8.1
322 10.6 10.9
Staballoy Y°=2 1x104 150 5.3 5.3
Tl-ﬁ 635 30.1 26.6
Rods with Dismeter = 1 cm and Length = 20 cm
Copper 5 1x104 240 12.6 10.2
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It is interesting to investigate the effect of material properties on the
length of the first stabilized segment at each end of the rod. If L(t) is the
length of this segment and 11 0(0) is 0, then:

L(t) = x1.1“) - x1.o(t’
= X; (0) (1+4K(0)¢) - J;tvl(t)dt

vy

- &5, (1HKO)8) - L‘vl(:m

Substituting V1 from Equation (7).,

1/2 1/2
2Y Lo(1+K())¢t) ] ™" “(1+K(0)t) _ ft 1/2
L(t) =(—p) X(0) f; an(1+K(0)t)l dt} (19)

Inspection of Equation (19) indicates that L decreases as Y decreases and that
it decreases as p increases., Longer initial segments can them be expected for
high strength, low density materials. As a specific example, compare copper
with staballoy. If each has a 5-Kb-yield strength, then Equation (19) pro-
vides an L of 4.5 cm for copper and 3.07 cm for staballoy at a strain of 90
percoent, assuming an initial gradient of 1x10¢ uc_l. If both have a 1-Kb
yield strength, then the L for copper is 2 cm and that for staballoy is 1.4 cm
at a time when the strain in the plastic section of the rod is 90 percent.
The time for & strain of 90 percent camn be calculated from Equation (9), given
the gradient. For K(0)=1x104 sec_1 this time is 146 microseconds. Comparing
copper and sluminum shows that the aluminuom length is always greatest. For
example, at 200 microseconds, a 5-Kb copper has an L of 4.9 cm whereas a 3-Kb
aluminum would have an L of 7.14 cm, given an initial gradieant of 1x10+ sec-l.
If the aluminum also had a 5-Kb-yield strength, its stabilized segment length

wounld be (5/3)1/2 times the length at 3 Kb, or 9.2 cm,

This result is reasonable physically. It says simply that more rod will
become elastic if the yield strongth is greater or if the mass of the rod is
lower, VWhether this is advantagoous from a jet peretration standpoint is
another issue. In the real world it appears that tradeoffs occur between

density and yield strength, For example, staballoy is more dense than copper,
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but it also has a higher yield strength. Copper is more dense than aluminum,
but copper has a higher yield strength. Effects within a target favor the

higher density material even though necking and fracture may be more inhibited
in a lighter density material,

These equations can also be used to investigate the effects of velocity
gradient on the length of the first elastic segments. The length decreases as
velocity gradient increasses, This again is physically reasonable since the
relief wave velocity is opposed by the stretching velocity of the rod. For
example, the length of the first elastic segment is 4.5 cm for copper at a
yield strength of 5 Kb and a strain of 90 percent and a velocity gradient of
1x104 sec-l. The length becomes 2.3 cm if the gradient increases to 2x104
sec-l. and it drops to 1.1 cm if the gradient is 4x10¢ soc_l. For staballoy

under the same conditions, the lengths are 3.1, 1.6 and 0.8 cm.

It was mentioned earlier in this section that there are two methods for
deriving Equation (7). The first method was balancing force across the
elastic/plastic interfacoe. The second method involves balancing energy for
the entire rod. The method will be presented here for the insight it provides

into energy transfer mechanisms,
The initial energy in the rod is given by:
E(o) = %fvadm - %ﬁ‘PA(O)dx(O)
Substitution of:
V = K(6)x(0)
provides the equation:

E(0) = & /Xn'l(O) 3 )
=3 A pA(0) K(0)2 X(0)2 4ax(0) (20)

Integration yields:

E0) =4 5a(0) x3(0) 13 4(0) (21)
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where it has been assumed that Xl 0(0)==0,i.e” that the initial Lagrangian

coordinate of the rod is O.

The energy in Equation (21) must be balanced, at any time, by the kinetic
and internal energy in the rod. The kinetic energy in the still-stretching

plastic center of the rod can be written as:
KE, = pA(0) K(0)* (X3 (0) - X} ,(0))/6. (22)
The internal enmergy of the section is:

d/”xn'o(o)
I, = X, (O Y Lo (1+K(0)t) A(0) dX(0)

12 = YA(O) (xn,o(O) - 11'1(0) Lo (1+K(0)t) (23)

The kinetic energy of the stabilized elastic segment st the lower velocity end
of the rod is:

1
lBl = o pA(0) 11'1(0) vi (24)

assuming 11’0(0) = 0. The internal energy of this segment can be approzimated
by assuming that the axial stress and strain vary linearly from zero values st
X(0)=0 to the plastic values at X(0)=11(0)-VIIK(OL The stress at the
elastic/plastic interface is the yield strength, Y. The strain is
La(1+K(0)t). Therefore:

x1 1(0)
I1 =k ’ o(X) s(X) A(0) dX(0) (25)
X, ,(0)
- / 1LY 10 La(1+K(0)£)X(0) , o us 0
(- x1,1(°) 11’1(0)

= YA(0) La(1+K(0)t) ‘1,1(°”3-
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For the elastic segment at the npper velocity oend of the rod, the kinetic
energy is:

i -
3 = 2PA(0) (xn,l(O) xn,o(O)) va (26)

and the internal energy, I, is:
13 = YA(O) Ln (1+K(0)t) (Xn,l(O) - xn‘o(O))/3. (27)

setting:

KE, + I, + KE, + I, + KE; + I3 = E(0)
and making the substitutions:

Vp = X, 1(0) k() -V,

and

xn.o(o) = xn,l(O) - X, ,(0)

1,1

The equation can be solved for V1 as given by Equation (7). Energy is
balanced completely in Equation (28) by the appearance of the two end elascic
segments, It is transferred from the vpper velocity end of the rod to the
lower velocity end. Table 3 provides internal and kinetic energies for the
three sections of the rod at different times for a 5-Kb copper rod, 10 cm in
length, 1 cm in diameter with a velocity gradient of 1x104 soc-l. The table
shows that energy is transferred from the central plastically—-stretching
section to both ends of the rod, providing the additional kinetic and internal
energies required to stabilize these end sections. The rate of total emergy
transfer is changing with time. The rate of energy transfer virtually
stabilizes qguickly in terms of energy density (emergy per unit =mass).
Initislly, the transfer rate is 5.56x1032% eorgs/gm/sec. By 50 microseconds it
has been reduced, somewhsat, to 4.8x102?, by 100 microseconds it is reduoed to
4.66x10%2, and it changes very little thereafter.
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TABLE 3.

ENERGY TRANSFER

Copper Rod with Y = S Kb, L = 10 cm, D = 1 om, K(0) = 1x10¢ sec }
Total initial energy is 1.165x1011 orgs

Time I I
(usec) (er%s) (ergs) (e%gs) (ff%s)

0 1] 0 0 11.65x102¢
50 0.113x102° 0.340x102°¢ 0.913x103° 5.56x102¢
100 0.253x102¢ 0.760x102° 1.20x101° 4.11x1020
150 0.385x102° 1,16.10%° 1.29x103¢ 3,.26x101°
200 0.505x1030 1.52x1020 1.28x102¢ 2.67x102¢
250 0.615x103° 1_85x1031¢ 1.23x10120¢ 2.23x10190
Time Il+x21 12+IE2 13+!E3
(usec) (ergs) (ergs) (ergs)

0 0 11.65x1030 0

50 0.453x102¢ 6.473x102¢ 4.733x102¢
100 1.013x102¢ 5.310x102¢ §.323x1020
150 1.545x10*¢ 4.550x10%° 5.555x102°
200 2.025x103° 3.950x1030 5.675x101¢
%50 2,465x1020 3.460x103¢ 5.735x102¢
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0.615x102°
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—_— = ——

0
4.62x10%°
5.07x102*
5.17x102°
5.17x10%¢
5.12x103°
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It is a fairly simple matter to demonstrate that energy remains balanced
whether elastic segments exist beyond the end segments. The first elastic
segments on each end totally satisfy al]l momentum and energy roquirements.
Were it not for the effects of neck curvature on the axial stress in the rod,
no more necks or elastic segments would be formed. However, Beck curvature
just beyond the elastic/plastic interface gives rise to a tensile bydrostatic
pressure which increases the tensile axial stress in the neck. Since a stress
gradient such as this precipitates material acceleration or deceleratiom, a
new wave is formed at the neck. At the low velocity end of the rod this
stress gradient is positive toward the center of the rod, giving rise to an
acceleration in that direction. Conversely, a small deceleration wave travels
into the first elastic segment. This deceleration has l1ittle effect on the
relatively large first elastic segment. As it advances from the neck toward
the center of the rod, mass is accelerated until all of the momentum in the
wave is converted. At this point another elastic/plastic interface is formed
and the process is repeatod, Wave activity at the upper velocity end of the
rod is identical except that accelerations become decelerations and vice

versa.

The necks at the first elastic/plastic interface degin to become impor—
tant and influence flow when the acceleration of the interface drops below
that induced by the stretching process. The rate of change of velocity due to
stretching is approximated by:

dy _ 9y . X 3y _ VK(O) (29)
dt X ot X~ 1+K(0)t

The neck region should begin to develop curvature when:

v,  V.K(0)
1.1 _
at - T+E(0)t (30)
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Differentiating Equation (7), substituting the derivative into Equation (30)
and simplifying yields the equation:

[Ln(l+[(0)t) 1., (31)
which indicates that, for elastic, perfectly plastic materials, the time at
which significant curvature occurs is a function of gradiemt omly., The solu—
tion to Equation (31) is:

o.s

t = (e - 1)/K(0) = 0.648/K(0) (32)

For K(0) = 1x10¢ sec !

at t=64.8 microseconds., Examination of rod calculations indicates that this

» Equation (32) predicts that neck curvature will begin

equation provides a reasonably accurate estimate of the time at which necking
becomes important, i.e., the time at which the axial stress begins to exceed
the flow stress of the material. The equation is not valid for work hardening
or thermally softening materials. Equations for these types of materials can
be derived by combining equation Eguation (30) with the appropriate equation
for V1.

As curvature in the first neck becomes important, the second neck in from

each end begins to form. The neck forms on the central rod section side of a

second elastic/plastic front, The velocity of this second elastic/plastic

front can be found from equating the acceleration in the first neck region to

, the difference in forces between the first and second elastic/plastic inter~

faces.
The equation to solve is:

' av dv dv
d P ey ) = YA(t) -~ M ac (33)

LYY
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Substituting:

M= p AO) (X, ((0) - Xy 1(0))

v vy
= ¢ A0 (FT57 ~ K0y

into Equation (33) and regrouping terms yields:

dav av
W, 92 _ 2vA()K(0) _ 2Y _K(0)
Vy -V GF-+3) pA(0) p 1+K(0)t (34)

Equation (29) can be used to approximate the time derivatives in Equation
(34), reducing the equation to an arithmetic relatiomship.

(Vé - Vl) (SV1 + Vz) = 2Y/p (35)

The solution of Equation (35) is:

1/2

3
V2 ==y, + (4V1 + 2Y/p) (36)

To maintain momentum balance, the corresponding velocity at the upper end
(high velocity end) of the rod must be:

After the second neck begins to form, a third elastic/plastic interface will
begin formation, The equation for the velocity for this third interface will
be:

3 1/2
Vg = -V, + (47, + 2Y/p) (38)

In general, them, interface velocities will be given by the relationship:

s 1/2
V= -Vig + 4V +2Y/p) (39)

for interfaces propagated from the rod’'s lower velocity end. These values canm
be subtracted from the initial peak velocity, I(O)Xn 1(0), to obtain the
velocity for the corresponding upper—end interface.

51




Table 4 provides some comparisons between calculations and the simple
model for these velocities at the lower end of the rod. The maximom differ-

ence is 7 percent, and most comparisons are much closer. As indicated in the
table, in some cases segments have blended into other segments as time in-

creases,

Given a rod velocity gradient and velocities for all elastic/plastic
interfaces, one can determine the position of these interfsces at a given time
and the mass between interfaces. The hydrocode calculations indicate that
these interface positions for second and subsequent rod segments remain in the

center of the segment as each elastic region grows.

Given a set of velocity-position elastic/plastic interfaces, one can
estimate a yield strength and subsequent segment growth as well as details of

the necking between segments.
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SECTION IV
CONICAL RODS

The equations developed in the previous section apply to the situation of
an initially constant dismeter rod stretching under a linear velocity
gradient, In this section, the solution for rods with a variable diameter
will be explored. The specific case to be addressed is that of a rod which
initially is the frustum of a cone,

Figure 30 shows the TOODY hydrocode initial shape and zoming for a 10-cm
long rod with an aft diameter of 2 cm and a forward diameter of 1 cm, The
gradient is a linear 1x104 sec-l. i.e., the forward tip of the rod is travel-
ling at 1x10% cm/sec and the rear of the rod is initially at rest. Because of
the shape of the rod, a velocity versus mass curve would not be a linear
curve, Instead, more mass would travel at the lower velocities. The :rod is

copper with a 2-Kb yield strength,

Figures 31 through 38 present grid plots and axial velocity versus length
plots for the rod at 40, 80, 120, 160, 200, 240, 280, and 300 microseconds,
As in all previous cases, necking begins at the emnds of the rods and proceeds
toward the center. In this particular case there is not s great deal of
difference between the segment velocities in the calculation and those com-
puted from the simple equations of the last section. For example, constant
diameter equations would predict that V1 = 0,25x10% cm/sec at 300 micro-
seconds, The hydrocode calculation predicts 0,224x105 cm/sec. The simple
equations predict V2 = 0,29210% om/sec given the erroneocus V1 of 0.25x10%, and
they predict V2 = 0.27x105 cm/sec given the correct Vl. The hydrocode calcu-
lation predicts that V2 should be 0.26x10* om/sec.

It is apparent in the calcoumlations that the rod assumes a more conmstant
dismeter shape as time proceeds so that it would be expected that elastic
segment velooities would be more nsarly predictable irom the constant diameter
squations as ome proceeds away from the ends of the rod,
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Figure 39 is the initial grid plot for s more conically shaped rod. In
this case the base, or aft, diameter is 4 ce and the tip diameter is 1 onm,
Other rod features are identical to the previous case. Figures 40 through 47
show grid and axial velocity plots at 40, 80, 120, 160, 200, 240, 280, and 300
microseconds, There is far more difference in this case between the hydrocode
calculation and the simplified constant diameter equations. For example, it
is seen that the first neck has barely formed on the low velocity end of the
rod where two necks have been formed on the upper velocity emd. The predic-
tion of V1 from the constant diameter equations at 300 microseconds is the
same as in the previous case, i.e., Vl = 0,25x10°% cm/sec. The calculation
predicts 0,219x10f cm/sec on the low velocity end sad 0.646x10f cm/sec on the
upper velocity end (instead of 1x10% - 0.25x10% = 0,75x10% cm/sec), Clearly,
2 4-to-1 diameter difference over the rod’s length is sufficient to cause
large errors in the predictions for the coastant diameter equatioas,

The simplified equations of the last section can be writtem for variable
diameter rods, but they do not remain so simple. In fact, there is no obvious
analytic solution to the equations, and they must be solved numerically. In
this era of programmable hand calculators, this does not present s serious

problem,

The volume of a frustum is givenm by:
c=3y 4 +\/_)
3 (G4 WAL

where A1 and A2 are the base and top areas and h is the length of the frustum
along its axis. The constant volume plastic relation then is:

1(0) (A (0) + A,(0) +{A1(0)A1(o)) (40)
= A(t) (Aj(T) + Ay(T) +{Al(rnz('r))




Now,
h(0) = xl,l(O) assuming 11’0(0) =0
and h(T) = ‘1,1‘“ - xl’o('r)
Also, the areas are fumctions of the initial and final values of 11 1 and 11 0
A (0) = nrl(O)’
where r1(0) is the initial base radius.
(rE(O) - rl(O))

2
A,(0) = 1z, (0)3 = n |£,(0) + . ‘1.1‘°’] (41)

where tE(O) is the initial radius of the upper velocity end of the rod and Lo
is the initial rod length.

Simce the ends of the rod are relieved almost instantaneously,
£(T) = r1(0)
a2d A (T) = A (0) = nz, (0)2

However, rz('l‘) must be calculated from Equations (40) and (41) given A1(0).
Az(O). and Al(’l'). The equation is a quadratic with the only positive value of
rz('l') given bdy:

-z, (0)
N L _B__ 1/2
£,(T) I — s [‘1“” + 4 (b - £3(0) ]

where the term B is given by:

B =X, 1(0) (A(0) + Ay(0) +‘,Al(0)A2(0))
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Thus, the area at the first elastic/plastic interface is a complex functiom of
initial geometry and the position of the interface in laboratory and Lagran—
gian frames. This is the primary complication in solving for an analytic
function providing the position xl.l' The equations analogous to Equations
(7), (11), and (17) then become very complex., There may be substitutions
asvailable to provide analytic solutions, but they were not found during this
study. It remains then to solve the equations numerically. Numerically
solving the equations is a straightforward exercise but one which will not be

pursued in this report,
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Figure 30. Grid Plot for 2-Kb Copper Cornical Rod, D1/D2=2
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Figure 31. Grid and Velocity Plot for 2-Kb Copper Conical Rod,
D1/D2=2 at 40 Microseconds
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Figure 34. Grid and Velocity Plot for 2-Kb Copper Conical Rod,
D1/D2 at 160 Microseconds
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SECTION V
OONCLUSIONS AND RECONMENDATIONS

It is concluded from this study that 211 phenomena seen in the stretching
and deformation of jets under large velocity gradients can be explaimned by
assuming that the jet has some strength, i.e., it is not completely melted,
It is further concluded that carefunl examination of the positions and veloci-
ties of jets will allow predictions of strength to be made for very high

strain, high temperature states of metals.

Further work is indicated in the application of the equations developed
in this report to actual jets of various metals, Some predictions have been
made for a classified munition and are included in a separate letter report.
Further theoretical work om the equations themselves should provide an under-
standing of the growth of the elastic portion of jet segments beyond the end
sogments. It is believed that a great deal of material property information
is contained within the equations which predict this growth, There was insuf-
ficient time under this project to solve for those relationships. It would
also be of interest to apply these equations to stretching self-forging frag-

ments with gradients far below those seen in jets.

This report basically initiates a technology area which appesrs quite
fruitful for pursuit in terms of understanding jet behavior amd the behavior

of materials in very high strain and temperature environments.
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