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This report presents equations which describe the deformation and necking

in a rod stretohing under a large velocity gradient. The equations duplicate

wave propagation computer program solutions for rods of varying densities,

yield strengths, and other properties being stretched under uniform velocity

gradients.

The equations provide insight into similar phenomena seen in stretching

jets from shaped charge munitions and provide a purely mechanistic approach to

understanding such phenomena. They suggest tailoring of jet gradients and

material properties to achieve specific weapon objectives.

The basic equations are solved for right circular cylinders stretching

under a linear velocity gradient. Nonlinear gradients and shapes other than

constant-diameter rods are modelled by the basic differential equations.

General solutions are not presented for these cases since the equations must

be solved numerically.
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The TOODY two-dimensional Lagrangian Wave Propagation computer program

(Reference 1) was used to calculate deformation in stretching rods of initial-

ly constant diameters. Several calculations were undertaken with varying

gradient, length, density, yield strength, and sound speeds. Several of these

calculations will be discussed in this section to provide an introduction to

the basic phenomenology.

Figure 1 shows the initial grid structure for a 10-cr-long, 1-cr-diameter

rod. The top figure is drawn with the same scale on both axes. The z, or

radial, direction is amplified in the bottom figure. The x axis is an axis of

rotational symmetry.

In this calculation the rod is copper with a density of 8.9 gm/cc, an

initial bulk sound speed of 4xlO s on/see. a shook velocity/particle velocity

slope of 1.5, a Gruneisen ratio of 2.0. a Poisson's ratio of 0.35, and a Von

Mines yield strength of 5 kilobars (Mb). The yield strength is not allowed to

vary with strain or internal energy. At startup time a velocity gradient of

2x104 8e0
-
1 is imposed on the 10-cn-long rod. The velocity is set to 0 at the

I-0 point and varies linearly with I to 2lO' cm/see at the X-10 cm point.

Figure 2 shows the rod in both the equal and amplified scale along with

1-velocity, in ca/sec, versus X. in cm, at 20 microseconds. The plot clearly

shows relief waves moving into the rod from both ends. stabilizing velocity in

the relieved sections. The velocity in the relieved, or elastic, sections

increases from initial values in the tail (low velocity end) of the rod and

decreases from initial values in the tip (high velocity end) of the rod.

Between these constant velocity segments the rod is continuing to stretch

plastically at the same velocities initially given to the rod.
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Figure 3 presents the same data for the rod at 60 microseconds. At this

time the stabilized end sections have grown to approximately 2 cm, with a

slight neck visible at the end of the relieved sections. The velocity and

amplified grid plot show another set of necks f".-ming approximately 2 ca ahead

of the first necks.

By 100 microseconds (Figure 4), the second necks are well formed and two

new necks are beginning to form. The stabilized elastic end sections are each

approximately 2.5 cm in length and an elastic region also exists within the

adjacent segment, as signified by the constant velocity region. Figure 5

plots axial stress in dynes/cm3 versus axial position along the rod for the

zones which exist in the radial direction across the rod.

In the central rod section stress is at the 5zl0* dynes/eom (S Kb) level.

It rises above this level within each neck region and decays below the level

in each elastic region. The rise is caused by an increase in pressure (mean

stress) due to the curvature at the neck. This rise in mean stress is similar

to that measured in tensile tests and described by P. W. Bridgman in the early

1950's (Reference 2). As discussed in Section III. it is this rise in mean

stress which causes more than the first necks to form. Figures 6 and 7 are

plots of axial strain and internal energy per unit mass versus axial position

at the 100-microsecond time. Strain along the completely plastic central

section of the rod is predictable from the gradient and is 1.1 (110 percent).

Axial strain rises at each neck location and decays in each elastic segment,

as would be expected. The strain level at the very ends of the rods is

virtually zero since these ends were relieved almost instantaneously. The

internal energy density plot in Figure 7 shows similar phenomemology. The

energy is a constant, predictable value along the unrelieved central rod

section and rises as strain rises in each neck. In this calculation, the rod

began at zero internal energy at the start of the problem.

Figure 8 plots three times the square toot of the second stress invariant

(i.e., the quantity which cannot exceed the Von Mises yield strength) in

dynes/om versus axial position at 100 microseconds. It demonstrates that the

S!
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rod is indeed elastic in the end sections, plastic at the necks and the still-

stretching central rod section and elastic in the second set of stabilized

segments from each end. Variations at the same axial position are variations

within zones at different radii (Z position) at that axial position.

Figure 9 is a plot of kinetic energy density (kinetic energy per unit

mass) versus axial position at 100 microseconds. It shows again the

stabilized velocity sections and the curvature in the center section expected

from a constant velocity gradient.

Necks continue to multiply, moving in from each end, until all of the rod

has been subjected to the phenomenon.

Figures 10 through 15 show grid and axial velocity plots for the same rod

with a smaller velocity gradient. In this case the gradient is lxlO' sec 1 ,

L.e., the tail velocity is zero and the tip velocity is ixiOs cm/sec. Necks

and stabilized regions are seen to form in the same manner as previously but

with different sizes and velocities. The last three figures--130, 140, and

150 sicroseconds-show in detail the formation, stabilization, and growth of

the second set of elastic regions.

Changing the length of the rod has no effect other than to provide more

rod within which necks can form. Figure 16 is a velocity versus axial posi-

tion plot at 150 microseconds for a rod with the same lx104 soc - 1 velocity

gradient but with length increased to 20 on. The stabilized velocities and

positions are identical to those in Figure 15. Whereas the 10-cm rod will

form perhaps one more set of necks and a neck at the center as it continues to

stretch, the 20-cm rod will form many more. Figure 17 shows the neck system

for the 20-om rod at 250 microseconds. Right necks are clearly visible, and

more necks will form as the rod continues to stretch.

The effect of varying yield strength from 2 to 5 kilobars in a staballoy

rod is seen in Figures 18 and 19. These are grid plots (amplified in the

radial direction) at various times for rods initially 10-cm long, I on in

diameter with a velocity gradient of lxlO4 vm/sec. All are assumed to have

12
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Figure 18 presents the rods at 200 microseconds for three cases. The top

plot is for an elastic/perfectly plastic yield strength of 2 Kb, the middle

rod raises this to 5 Kb. and the bottom plot is for a linearly work hardening

material. The work hardening material initial yield strength is 2 Kb, and it

rises to a saturation level of 5 Kb at a strain of 50 percent. The work

hardening rod and the 5-Kb rod appear very much alike at this time. This

similarity is expected since the work hardening material is limited to 5 Kb in

strength. The 2-Kb rod is significantly different. The elastic segments are

not as large as those in the other rods, and the number of necks is reduced at

this time. Figure 19 presents later time plots for these same cases. Again,

the 5 Kb and the work hardening rods are very similar at times close to 300

microseconds. The time in seconds is indicated on each plot. The 2-Kb rod is

pictured at 400 microseconds. It still has a long central section stretching

plastically, whereas the other rods have virtually completed necking.

Figure 20 is the same staballoy rod at 400 microseconds but with no limit

on the work hardening yield strength. A tangent modulus of 6 Kb is used, but

there is assumed to be no saturation stress level in the material. Neck

formation Is considerably retarded over the 2 Kb case. Necks have begun to

form at 400 microseconds but are of very limited radial extent.

A zero yield strength copper rod stretching under a lxl04 sc 1 gradient

is shown in Figures 21 and 22. There is only slight velocity retardation at

the ends, and there Is so necking whatsoever. The grid plots in Figure 21

show the rod at 0. 150 and 230 microseconds. The velocity versus axial

position plot in Figure 22 is at 230 microseconds.
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The calculations presented in Figures 23 and 24 illustrate the almost

nonexistent effect of material sound speed on rod deformation. Figure 23

shows one-half of a copper rod with a yield strength of S Kb and the normal

sound speed of 4x10' cm/sec at 200 microseconds. The velocity gradient is

lx04 on/see. and the rod was initially 10 c in length. At 200 microseconds

just one-half of the rod is almost 10 cm in length. Two necks exist, and the

stabilized elastic segments are travelling at 3.4x104 cm/see, 4.1x104 cm/sea,

and 5.Ox104 cm/so. Elastic velocity for the three segments seen in the half-

rod picture are 3.4x104 cm/sea, 4xlO' cm/sea, and 4.85x104 o/sec. These

velocities are within 3 percent of those seen in Figure 21. Clearly then,

sound speed has little effect on the rod's deformation.

Varying density does have an effect as one can see by comparing the

staballoy rod in Figure 18 with the 5-Kb copper rod in either Figure 23 or 24.

It is more dramatically illustrated in Figures 25 through 28. These figures

are one-half rod grid and velocity plots for an aluminum rod stretching under

a 1104 se 1- gradient. The plots show the lower velocity end of the rod at

40, 80, 140, and 200 microseconds. The aluminum has a density of 2.7 gm/cc, a

bulk sound speed of 5.410' on/see, a shock velocity/particle velocity slope

of 1.34, a Gruneisen ratio of 2.1, a Poisson's ratio of 0.33. and a yield

strength of 3 Kb. At 200 microseconds a 5-Kb copper rod with identical

initial conditions has formed 6 elastic segments with the first segment from

each end being approximately 5 cm in length. The 3-Kb aluminum, at 200

microseconds, has formed only 2 elastic segments, and each segment is almost 8

cm in length. The grid and velocity plot at 140 microseconds (Figure 27)

shows that a second set of elastic segments briefly formed but were not

sustained.

In the next section a simplified model will be presented which explains

all of the phenomena seen in these rod calculations with density and yield

strength as the only material properties affecting deformation and necking.

The calculations and the model both predict that necking advances from the

28
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( ends of the rod slowly toward the center. Observation of jets from henis-

pherical liners' indicates that this model does duplicate phenomenon seen in

initially constant diameter rods with linear velocity gradients. The calcula-

tions and model indicate that necking and fracture which initiates at any

other locations first is caused by sharp changes in shape (mass) or in the

velocity gradient itself.

. .
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SacrIu III
A SINFUM EMDE

In this section, a model will be developed which explains the phenomena

seen in the rod-stretching calculations. Comparisons with the calculations

indicates that the model is extremely accurate in predicting many of the

details of deformation and necking. It is currently limited to initially

constant diameter rods with linear velocity gradients. The fundamental

differential equations include all cases of interest, and it is a relatively

simple task to expand the model beyond these limitations. The model explains

necking and breakup phenomena observed in shaped-charge jets with recourse to

none but the most basic physics equations.

Figure 29 defines nomenclature to be used in model development. The

figure shows a velocity versus axial position plot at a time when many necks

have been formed. Elastic segments exist between axial positions i,0 and

1 i, where i is the number of the segment beginning with unity at the lower

velocity end. These values are functions of time. Initial values will be

indicated as Iij(O). Velocity will always be assumed to be initially zero at

the lower velocity end of the rod, and initial rod position will be assumed to

be zero at this location. These assumptions cause no loss of generality but

merely require that constants be added to velocities and positions computed

using the model.

The velocity gradient, x, is designated as K. Initial velocity gradient

is K(O). Y is the flow stress of the rod and can be a function of strain

and/or internal energy. The density of the rod is p and is assumed to remain

constant. The cross-sectional area is designated as A and is A() initially.

Consider the formation of the first elastic segments at each end. The

velocity of the first segment on the low velocity end of the rod will be

V1 (t). The velocity of the first segment on tde high velocity end of the rod

will be V n(t). Conservation of momentum in an initially constant diameter rod

36
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NOMENCLATURE/DEFINITIONS

n

7 n -2  / n -1 ,0 .. .. .1

v x Xn-2, 1"

V 3  x- Xn-2, 0

v 2

v 0 2 ,0I '2 ,

x

xi,k ARE FUNCTIONS OF TIME

INITIAL POSITIONS VARY FROM Xl, 0 (0) TO X n,1 (0)

K(O =-Xv (t=0)

Y - FLOW STRESS OF THE ROD

p = DENSITY OF THE ROD

A(t) = ROD CROSS SECTIONAL AREA AT TIME t

A(t-0) = INITIAL CROSS SECTIONAL AREA

Figure 29. Model Nomenclature and Definitions
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stretching under a linear gradient requires that:

Vn(t) = K(O)Xn,1 (O) - V1 (t) (1)

In other words, the velocity gain at the lower velocity end of the rod must be

equal to the velocity loss at the high velocity end.

There are two methods available for solving for V1 (t) and, through Equa-

tion (1), for V n(t). The simplest is to consider a balance of forces across

the interface between the elastic end segments and the plastic, still-

stretching central section. Considering the lower velocity, V1, and setting

elastic segment deceleration equal to the force at the interface provides the

equation:

K -d t
- - YA(t) (2)dt

where Y is the yield strength of the material at the interface and K is the

mass of the constant-velocity, elastic segment.

The mass, K, can be most easily written in terms of the mass in initial,

or Lagrangian, coordinates.

N - pA(O)lI(O) (3)

Equation (3) assumes that Xi0( 0 ) is 0 and that the rod has a constant diame-

ter at t-0. The constant-volume, plastic stretching in the central rod sec-

tion requires that:

A(t) - A(O)/(I+K(O)t) (4)

substituting Equations (3) and (4) into Equation (2) provides:

dy (t)
PA (0) YA(O)/(l+K(O)t) (5)
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The quantity 1Ii(0) can be written as:

111(0) - Vilt)/K(0)

which reduces Equation (5) to:

V(t) () K(O)/(I+K()t) (6)
dt p

Equation (6) can be integrated from t=O to t and V 1 0 to V 1 and yields the

following relationship for V1 for the case in which Y is constant.

[I\ 11/2

The velocity, Vn(t), of the upper end segment will be the tip velocity of the

rod minus VI(t). The strain in the center rod section will be exactly equal

to the strain at the elastic interface until necking becomes predominant. The

accumulated strain in the center section can be written as:

a = -Ln (A(t)/A(O)) (8)

With substitution of Equation (4), the strain can be written as:

e = -Ln (l/(1+K(O)t)) = Ln (1+K(O)t) (9).

For a work-hardening material, then, the value of Y at the interface can be

written:

Y - Y + Ti Ln (1+K(O)t) (10)

where Y is the initial yield strength and TM is the tangent modulus. Substi-
0MItution of Equation (10) into Equation (6) and integration yields:

.1 (r 1'1/2
Vl(t) =2L (l+K(O)t) L- +1 Ln (1+K(O)t) (11)

1 ZL p 2p
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If Y is also a function of internal energy density, Equation (6) can be

solved by including the appropriate functional relationship. The internal

energy is simply the strain energy developed as the rod stretches. It can be

written as:

fY(s,I)ed-r/N (12)

where v is the volume under consideration. X is the mass of material in the

volume, and I is the internal energy density. The difficulty of incorporating

energy dependence into Equation (6) is determined by the complexity of the

functional relationship between Y and I.

Consider the case of a very simple relationship:

Y = Yo (1 - VI N) (13)

where I is melt energy density. The internal energy density, I, is that

existing at the interface which is equal to that existing over the uniformly-

stretching center section of the rod. For this relatively simple case

Equation (12) can be written as:

I - Y B/p (14)

W Y 0 (1-I1/1) Ln (l+K(O)t)lp

Equation (14) can be solved for I to provide:

Y0La(l+K(O)t)/pI a (15)
1+1I9Yo0Lnll+llOlt)lp

Equation (13) then becomes:

Y Ln(1+K(O)t)/

Y Yo (1 -+i 0 Ln(l+K(O)t)/p) (16)
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Substituting Equation (16) into Equation (6) and integrating yields:

!a -- Ln(l+/)t)2

Vt) M !-- Ln(I+K()t) 1 - P t (17)

I1(1 + - Ln(l+K(O)t))
Pl M

Equations (7). (11,) and (17) were compared with values of V1 from rod

calculations, several of which were discussed in the previous sectio. The

comparisons are contained in Table 1. All comparisons are within 6 percent,

and most are within 1 percent.

The position, 1,,l(t), of the interface can be predicted from:

X11 l(t) = X1 .1 (O)(l+K(O)t) (18)

where:

X1.1(0) = Vl(t)/K(O)

The accuracy of this position prediction is again within a few percent until

very late times when it diverges slightly from the calculations. The diver-

gence is caused by the necking process. Equation (18) assumes that stretching

continues at a constant rate. When a second elastic segment is formed, the

comparison begins to diverge because the local gradient is no longer exactly

equal to the gradient in the central, plastic region of the rod. Table 2

provides a comparison between some calculated Ill (t) values and those pro-

dicted by Equation (18).
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TAME 1. M/cAhLa AnOI WWARIMS M V1

Rods With Diameter 1 c and Lenath = 10 cm

-1 Simple Model Calculation

Material Y(Kb) [(0)(sec - ) T(Psec) V (km/sec) VI (ka/sec)

Aluminum 3 lzlO 4  40 0.27 0.27
80 0.36 0.36

140 0.44 0.44
200 0.49 0.49

Copper 2 lZlO'  160 0.20 0.21
200 0.22 0.22

Copper 5 with llO4  50 0.19 0.20

linear thermal stretching
and IMlzlO ergs/m1

100 0.24 0.25
200 0.28 0.28

Copper 5 with lzlO4  50 0.20 0.21
linear thermal stretching
and IM*2XlO* 100 0.26 0.27

150 0.29 0.30

200 0.31 0.31

Copper 5 2xlO4  100 0.35 0.35

Staballoy 5 llO4  200 0.24 0.24
322 0.25 0.25

Staballoy y 02 llO4  150 0.21 0.21

T j"6 635 0.41 0.40

Rods with Diameter = 1 ca and Lenath - 20 cm

Copper 5 llO4  240 0.37 0.35
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TARLA . U .CALQUA oIN WPoRnMtws MR 11.1(T)

Rods with Diameter 1 cjm and Lenath = 10 an

Simple Model Calculation
material Y(Kb) [(0)(seo - ) T(psec) X.(t) 11 .1 (t)

Aluminum 3 1l104 40 3.8 3.8
80 6.5 6.5

140 10.6 10.1
200 14.7 14.3

Copper 2 lx10 4  160 5.0 5.1
200 6.7 7.8

Copper 5 1x10 4  20 1.7 1.7
140 7.4 7.9
200 10.5 10.2

Copper 5 with 1x10 4  50 2.9 3.2
linear thermal softening
and IiMl:lO9 ergslp

100 4.7 5.0
200 8.3 8.9

5 with 50 3.0 3.2
linear thermal softening

and I?2x109 erie/gm 100 5.1 5.2

150 7.2 7.8

200 9.2 9.6

Copper 5 2x104 100 5.3 5.0

Staballoy 5 1:104 200 7.2 8.1
322 10.6 10.9

Staballoy Y =2 IX104  1SO 5.3 5.3
T0 =6 635 30.1 26.6

Rods with Diameter - 1 ci and Lonath - 20 on

Copper 5 1X104  240 12.6 10.2
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It is interesting to investigate the effect of material properties on the

length of the first stabilized segment at each end of the rod. If L(t) is the

length of this segment and Io1,0(0) is 0, then:

L(t) X illlt) - X100tM

= illll) ll+K(O)t) - fotVllt)dt

- (l+K(0)t) - .tV(t)dt

Substituting V1 from Equation (7),

L(t) =(2Y )112  ILn(l+lO)t)Yl/2(j+j(0) t) - ft 1Ln(l+K(O)t)]1/~2 dt (19)Li) K(O)0

Inspection of Equation (19) indicates that L decreases as Y decreases and that

it decreases as p increases. Longer initial segments can then be expected for

high strength, low density materials. As a specific example, compare copper

with staballoy. If each has a 5-lb-yield strength, then Equation (19) pro-

vides an L of 4.5 cm for copper and 3.07 cm for staballoy at a strain of 90

percent, assuming an initial gradient of ixlO sec -1 . If both have a l-Kb

yield strength, then the L for copper is 2 cm and that for staballoy is 1.4 cm

at a time when the strain in the plastic section of the rod is 90 percent.

The time for a strain of 90 percent can be calculated from Equation (9), given

the gradient. For K(0)-4x104 sec1 this time is 146 microseconds. Comparing

copper and aluminum shows that the aluminum length is always greatest. For

example, at 200 microseconds, a 5-Kb copper has an L of 4.9 cm whereas a 3-Kb
-l

aluminum would have an L of 7.14 cm, given an initial gradient of 1xI04 sec .

If the aluminum also had a 5-Kb-yield strength, its stabilized segment length

would be (5/3)1/2 times the length at 3 Kb, or 9.2 cm.

This result is reasonable physically. It says simply that more rod will

become elastic if the yield stringth is greater or if the mass of the rod is

lower. Vhether this is advantageous from a jet peetration standpoint is

another issue. In the real world it appears that tradeoffs occur between

density and yield strength. For example, staballoy is more dense than copper,
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but it also has a higher yield strength. Copper is more dense than aluminum,

but copper has a higher yield strength. Effects within a target favor the

higher density material even though necking and fracture may be more inhibited

in a lighter density material.

These equations can also be used to investigate the effects of velocity

gradient on the length of the first elastic segments. The length decreases as

velocity gradient increases. This again is physically reasonable since the

relief wave velocity is opposed by the stretching velocity of the rod. For

example, the length of the first elastic segment is 4.5 cm for copper at a

yield strength of S Kb and a strain of 90 percent and a velocity gradient of

lIl04 sc - 1 . The length becomes 2.3 cm if the gradient increases to 2X104

sac , and it drops to 1.1 cm if the gradient is 4x104 sec . For staballoy

under the same conditions, the lengths are 3.1. 1.6 and 0.8 cm.

It was mentioned earlier in this section that there are two methods for

deriving Equation (7). The first method was balancing force across the

elastic/plastic interface. The second method involves balancing energy for

the entire rod. The method will be presented here for the insight it provides

into energy transfer mechanisms.

The initial energy in the rod is given by:

E(o) = VSdm= 12 pA(O)dx(0)

Substitution of:

V - K()x(0)

provides the equation:

.4j i (0)
E(0) J 1 pA(M) K(O)a X(0)' dX(0) (20)

Integration yields:

'11
'i E() -6 pA(O) K3(O) 112,10() (21)
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where it has been assumed that 11,0(0) = 0, i.e., that the initial Lagrangian

coordinate of the rod is 0.

The energy in Equation (21) must be balanced, at any time, by the kinetic

and internal energy in the rod. The kinetic energy in the still-stretching

plastic center of the rod can be written as:

KE2 = pA(O) [(0)s (1', (0) - V,(0))/6. (22)

The internal energy of the section is:JfXn, o (0)
12 ' ,(0) Y Ln (l+K(O)t) A(0) dX(0)

12 = YA(O) (Ino(0) - Xi,(0) Ln (l+K(0)t) (23)

The kinetic energy of the stabilized elastic segment at the lower velocity end

of the rod is:

1 = pA(0) 1,(o) VS (24)

assuming X110(0) - 0. The internal energy of this segment can be approximated

by assuming that the axial stress and strain vary linearly from zero values at

X(0)=0 to the plastic values at X(o)-I=(0)-V 1 /K(0). The stress at the

elastic/plastic interface is the yield strength, Y. The strain is

Ln(l+K(0)t). Therefore:

I a(l) s(I) A(0) dX(O) (25)

1 111(0) YI(0) Ln(1+K(0)t)X(0) A(0)dX(0)

11,1(0) 1 111(0)

- YA(0) Ln(l+[(0)t) X1,1(0)13.
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For the elastic segment at the upper velocity end of the rod, the kinetic

energy Is:

1E3 2PA(0) ln,1(0) - In,o(O)) Va (26)

and the internal energy, 13 is:

13 - YA(O) Ln (l+K(O)t) (1n, (0) - xu.o(0))13. (27)

setting:

ZE + I1 + %E2 + 12 + KE3 + 13 = E(O)

and making the substitutions:

Vn = Xn, (0) [()- V1

and

X n, (0) 1 n,1(0) 1 ill (0)

The equation can be solved for V1 as given by Equation (7). Energy is

balanced completely in Equation (28) by the appearance of the two end elascic

segments. It is transferred from the upper velocity end of the rod to the

lower velocity end. Table 3 provides internal and kinetic energies for the

three sections of the rod at different times for a 5-Kb copper rod. 10 om in

length, 1 cm in diameter with a velocity gradient of 1U104 so - 1 . The table

shows that energy is transferred from the central plastically-stretchin$

section to both ends of the rod, providing the additional kinetic and internal

energies required to stabilize these end sections. The rate of total energy

transfer is changing with time. The rate of energy transfer virtually

stabilizes quickly In terms of energy density (energy per unit mass).

Initially, the transfer rate is 5.56:1013 ergs/ga/sec. By $0 microseconds it

has been reduced, somewhat, to 4.8z10&J , by 100 microseconds it is reduced to

4.66:1018, and it changes very little thereafter.
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TABU 3. 31T TRMOM

Copper Rod with Y 5Kb, L 10 cm. Dl=1cm, [(0) U104O sec-

Total initial energy is 1.165x1011 ergs

Time I ~ 1  12 XE1 2  1 3 KE 3
(gsec) (ergs) (ergs) (ergs) (ergs) (ergs) (ergs)

0 0 0 0 11.6511010 0 0

50 0.1131101I0 0.34011010 0.91311010 5.56x1010 O.113xl101 4.62xl1010

100 0.253x1010 0.760xl101 1.20x1010 4.1111010 0.253U1010 5.07u101O

150 0.385x1010 1.16.1010 1.2911010O 3.26xl1010 0.385.1010 5.1711010

200 0.50511010 1.52m1019 1.2811010 2.67x1010 0.505X1010 5.17xl1010

250 0.61511016O 1.85X1010 1.23xl1010 2.2311010 0.61511010 5.12x1010

Time 1 1+E X 1  12 +[E 2  1 3 +KE 3
(~I..c) (ergs) (ergs) (ergs)

0 0 11.65il1010 0

50 0.453xl1010 6.473x10"L 4.733U1019

100 1.01311010 5.31011010 5.32311010O

150 1.545x10l* 4.55011010 5.55511010

200 2.02511016O 3.950m1010 5.675:&1010

250 2.465x1010 3.460x1010 5.73511010
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It is a fairly simple matter to demonstrate that energy remains balanced

whether elastic segments exist beyond the end segments. The first elastic

segments on each end totally satisfy all momentum and energy requirements.

Were it not for the effects of neck curvature on the axial stress in the rod,

no more necks or elastic segments would be formed. However, neck curvature

just beyond the elastic/plastic interface Sives rise to a tensile hydrostatic

pressure which increases the tensile axial stress in the neck. Since a stress

gradient such as this precipitates material acceleration or deceleration, a

new wave is formed at the neck. At the low velocity end of the rod this

stress gradient is positive toward the center of the rod, giving rise to an

acceleration in that direction. Conversely, a small deceleration wave travels

into the first elastic segment. This deceleration has little effect on the

relatively large first elastic segment. As it advances from the neck toward

the center of the rod, mass is accelerated until all of the momentum in the

wave is converted. At this point another elastic/plastic interface is formed

and the process is repeated. Wave activity at the upper velocity and of the

rod is identical except that accelerations become decelerations and vice

versa.

The necks at the first elastic/plastic interface begin to become impor-

tant and influence flow when the acceleration of the interface drops below

that induced by the stretching process. The rate of change of velocity due to

stretching is approximated by:

4 _Y . V (29)
dt 91 Ot 8X l+K(O)t

The neck region should begin to develop curvature when:
4-

dV1  VlK(0)

dt 1+1(0)t (30)
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Differentiating Equation (7), substituting the derivative into Equation (30)

and simplifying yields the equation:

jLn(l+K(O)t)1-l= 2 (31)

which indicates that, for elastic, perfectly plastic materials, the time at

which significant curvature occurs is a function of gradient only. The solu-

tion to Equation (31) is:

t - (e0 "5 - 1)IK(0) - 0.6481K(0) (32)

For K(0) - lU04 sec 1 , Equation (32) predicts that neck curvature will begin

at t-64.8 microseconds. Examination of rod calculations indioates that this

equation provides a reasonably accurate estimate of the time at which necking

becomes important, i.e., the time at which the axial stress begins to exceed

the flow stress of the material. The equation is not valid for work hardening

or thermally softening materials. Equations for these types of materials can

be derived by combining equation Equation (30) with the appropriate equation

for V1.

As curvature in the first neck becomes important, the second neck in from

each end begins to form. The neck forms on the central rod section side of a

second elastic/plastic front. The velocity of this second elastic/plastic

front can be found from equating the acceleration in the first neck region to

the difference in forces between the first and second elastic/plastic inter-

faces.

The equation to solve is:

dV1  dV2  dV 1

j( + 2 YA(t) -I'2 (dt dt )  dt

Ts

Kp
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Substituting:

M - p A(O) (1 o2,o0O -) 11110))

V2  V1
= P A(o) (o- e)

into Equation (33) and regrouping terms yields:

(V2d- 1 _ dV2  2YA(t).(O) 2Y [(0)2 - V1 ) +dt dt pA() p I+K(O)t

Equation (29) can be used to approximate the time derivatives in Equation

(34), reducing the equation to an arithmetxe relationship.

(V2 - V1 ) (3V1 + V2 ) = 2Y/p (35)

The solution of Equation (35) is:

V = -V + (4V + 2Yip) 1 2  (36)2 V1  1

To maintain momentum balance, the corresponding velocity at the upper end

(high velocity end) of the rod must be:

W-1 , [(O)n, l(O) - V2  (37)

After the second neck begins to form, a third elastic/plastic interface will

besin formation. The equation for the velocity for this third interface will

be:

V3  -V2 + (4V2 + 2Yip) 1 1  (38)

In general, then, interface velocities will be given by the relationship:

- -V + (4V +2Y/p) 1 /2  (39)

for interfaces propagated from the rod's lower velocity end. These values can

be subtracted from the initial peak velocity, (O)n .(0), to obtain the

velocity for the corresponding upper-end interface.
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Table 4 provides some comparisons between calculations and the simple

model for these velocities at the lower end of the rod. The maximum differ-

ence is 7 percent, and most comparisons are much closer. As indicated in the

table, in some cases segments have blended into other segments as time in-

creases.

Given a rod velocity gradient and velocities for all elastic/plastic

interfaces, one can determine the position of these interfaces at a given time

and the mass between interfaces. The hydrocode calculations indicate that

these interface positions for second and subsequent rod segments remain in the

center of the segment as each elastic region grows.

Given a set of velocity-position elastic/plastic interfaces, one can

estimate a yield strength and subsequent segment growth as well as details of

the necking between segments.
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COMICAL m

The equations developed in the previous section apply to the situation of

an initially constant diameter rod stretching under a linear velocity

gradient. In this section, the solution for rods with a variable diameter

will be explored. The specific case to be addressed is that of a rod which

initially is the frustum of a cone.

Figure 30 shows the TOODY hydrocode initial shape and zoning for a 10-cm

long rod with an aft diameter of 2 cm and a forward diameter of I ca. The

gradient is a linear il0 sec - I , i.e., the forward tip of the rod is travel-

ling at I1OO cm/sec and the rear of the rod is initially at rest. Because of

the shape of the rod, a velocity versus mass curve would not be a linear

curve. Instead, note mass would travel at the lower velocities. The :od is

copper with a 2-Kb yield strength.

Figures 31 through 38 present grid plots and axial velocity versus length

plots for the rod at 40, 80, 120, 160, 200, 240, 280, and 300 microseconds.

As in all previous cases, necking begins at the ends of the rods and proceeds

toward the center. In this particular case there is not a great deal of

difference between the segment velocities in the calculation and those com-

puted from the simple equations of the last section. For example, constant

diameter equations would predict that V 1 W 0.25xlO' cm/sec at 300 micro-

seconds. The hydrocode calculation predicts 0.224110s ca/sec. The simple

equations predict V2 - 0.2910s o/see given the erroneous V1 of 0.2xl0s, and

they predict V2 - 0.27L105 ca/see given the correct V1 . The hydrocode calcu-

lation predicts that V2 should be 0.26x109 cm/see.

It is apparent in the calculations that the rod assumes a more constant

diameter shape as time proceeds so that it would be expected that elastic

segment velocities would be more nearly predictable ;rem the constant diameter

equations as one proceeds away from the ends of the rod.
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Figure 39 is the initial grid plot for a more conically shaped rod. In

this case the base, or aft, diameter is 4 cm and the tip diameter is I on.

Other rod features are identical to the previous case. Figures 40 through 47

show grid and axial velocity plots at 40, 80, 120. 160, 200, 240, 280, and 300

microseconds. There is far more difference in this case between the hydrocode

calculation and the simplified constant diameter equations. For example, it

is seen that the first neck has barely formed on the low velocity end of the

rod where two necks have been formed on the upper velocity end. The predic-

tion of V1 from the constant diameter equations at 300 microseconds is the

same as in the previous case, i.e., V1 M 0.25xiOs cm/sec. The calculation

predicts 0.219x10 s cm/sec on the low velocity end and 0.646x10 s ca/sec on the

upper velocity end (instead of l10S - 0.25x10 s - 0.7SxlO s cm/sec). Clearly,

a 4-to-1 diameter difference over the rod's length is sufficient to cause

large errors in the predictions for the constant diameter equations.

The simplified equations of the last section can be written for variable

diameter rods, but they do not remain so simple. In fact, there is no obvious

analytic solution to the equations, and they must be solved numerically. In

this era of programmable hand calculators, this does not present a serious

problem.

The volume of a frustum is given by:

where A1 and A2 are the base and top areas and h is the length of the frustum

along its axis. The constant volume plastic relation then is:

h(O) (A(o + A((0) + 2(0)) (40)

= h(t) (A (T) + CT) A2(T))

M $
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Now,

h(0) - XI (0) assuming X,(0) 0

and h(T) - X1 ,(T) - 11 0 (T)

Also, the areas are functions of the initial and final values of Xill and X110

AI(0) -r,(0)z

where r1 (O) is the initial base radius.

2(0) Mr 2 (0)' M ft rl(O) + (r °E()L riCO)) X,i(0)1 2 (41)
0

where rEO) is the initial radius of the upper velocity end of the rod and L.

is the initial rod length.

Since the ends of the rod are relieved almost instantaneously,

r(T) r1 (0)

and A1(T) A A(0) = xrl(O)

However, r2 (T) must be calculated from Equations (40) and (41) given Al(0),

A2(0), and Ai(T). The equation is a quadratic with the only positive value of

r 2 (T) given by:

r2(T) - + 1/2 (0)s + 4 (B - r3(0)) 1/2

2 2 [r AM I(T

where the term B is given by:

B X 1 ,1(0) (A1 (0) + A2 (0) +4iTO 0iTO))

56



Thus. the area at the first elastic/plastic interface is a complex function of

initial geometry and the position of the interface in laboratory and Lagran-

sian frames. This is the primary complication in solving for an analytic

function providing the position X,, i  The equations analogous to Equations

(7), (11). and (17) then become very complex. There may be substitutions

available to provide analytic solutions, but they were not found during this

study. It remains then to solve the equations numerically. Numerically

solving the equations is a straightforward exercise but one which will not be

pursued in this report.
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Figure 30. Grid Plot for 2-Kb Copper Conical Rod, D1/D2=2
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Figure 31. Grid and Velocity Plot for 2-Kb Copper Conical Rod,
D1/D2=2 at 40 Microseconds
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Figure 33. Grid and 'Velocity Plot for 2-Kb Copper Conical Rod,
D1/D2=2 at 120 M.Icroseconds
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Figure 34. Grid and Velocity Plot for 2-Kb Copper Conical Rod,
D1/D2 at 160 Microseconds
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Figure 36. Grid and Velocity Plot for 2-Kb Copper Conical Rod,
Dl/D2-2 at 240 microseconds
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Figure 37. Grid and Velocity plot for 2-Kb Copper Conical
Rod, D1/D2-2 at 280 Microseconds
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Figure 41. Grid and Velocity Plot for 2-Kb Copper Conical
Rod, D1/D2-4 at 80 Microseconds
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Figure 42. Grid and velocity Plot for 2-Kb Copper Conical
Rod, Dl/D2=4 at 120 Microseconds
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CON 81NSamma vROMNIK

It is concluded from this study that all phenomena seen in the stretching

and deformation of jets under large velocity gradients can be explained by

assuming that the jet has some strength, i.e., it is not completely melted.

It is further concluded that careful examination of the positions and veloci-

ties of jets will allow predictions of strength to be made for very high

strain, high temperature states of metals.

Further work is indicated in the application of the equations developed

in this report to actual jets of various metals. Some predictions have been

made for a classified munition and are included in a separate letter report.

Further theoretical work ou the equations, themselves should provide an under-

standing of the growth of the elastic portion of jet segments beyond the end

segments. It is believed that a great deal of material property information

is contained within the equations which predict this growth. There was insuf-

ficient time under this project to solve for those relationships. It would

also be of interest to apply these equations to stretching self-forging frag-

ments with gradients far below those seen in jets.

This report basically initiates a technology area which appears quite

fruitful for pursuit in terms of understanding jet behavior and the behavior

of materials in very high strain and temperature environments.
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