
AD-.A... .69 NATIONAL BUREAU OF STANDARDS WASHINGTON DC F/S 20/13
THERMODYNAMICS OF H IGH TEMPERATURE MATERIALS.(U)
SEP 81 5 ABRAMOWITZ, A C EZAIRLIYAN. F MIES AFOSR-ISSA-81-00012

UNCLASSIFIED AFOSR-TR-82-0380 NL



/I

III 11111 .4-- iiii

MICROCOPY RESOLUIION TEST CHART

NATiiiNAI IFlfAIl l 1ANI14A1> A A



."41,1141 I.ASSIFICATION OF THIS PAG (When Date Entered)!

REPORT DOCUMENTATION PAGE BEFORE INSTRUCTINS

fREPOPT NUMBER 2. GOVT ACCESSO 3. RECIPIENT'S CATALOG

. IT R.-T. 82bt0380 1P T,V
9. TITLE (end Subtitle) /S. TYPE OF REPORT & Ik!! EE

TLERMODYNAMICS OF HIGH TEMPERATURE MATERIALS ANNUAL
01 OCT 81 to 01 APR 82

6. PERFORMING OIG. REPORT NUMBER

7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(&)

S. AB'IAMOWITZ, A. CEZAT7RLIYAN, F. MIES,r. JULIENNE
AFOSR - ISSA-81-00012

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

National Bureau of Standard 
:;L UNI06 NA MB.R

Washington, DC 20231 2306/A2

I I. CONTROLLING OFFICE NAME AND ADDRESS - 12. REPORT DATE

Air Force Office of Scientific Research/ 3/ 2 jg 8,
Bolling AFB, Washington, DC 20332 13. NUMBEROF PAGES

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (o I report)

15e. DECL ASSI FICATIN/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for 1zbtie Ir.Bea*:
dlstrlbution unllmit od

17. DISTRIBLTION STATEMENT (of the abetract entered in Block 20, if different from Report)

MAY 2 51982.

1.1. SUPPLEMENTARY NOTES

19. KEY WORDS (rontinuo on revere side if necessary and Identify by block number)

Heat, Capacity, Electrical Resistivity, Graphite, En thalpy Thermodynamics

ABSTR 46CT (Continue on reverse side If necessary and Identify by block number)

( Heat capacity and electrical resistivity of graphite have been measured in the

raage 2500 to 3600 K. Thermal expansion of tantalum has been measured in the

Li.- range of 1500 to 3200 K. Radiance temperature (at 653 nm) of tungsten at its

.melting point has been determined. The enthalpy of graphite has been determined

from 273 o 1173 K. The thermodynamic properties of diatomicalecules at

SECU4N N CL"SSIFICATION OF THIS PAGE (When Data Enteed)

82 05 24 02



SMCRITY LASSIVICATION OF;IS PAGE(Mhm Data Entered)

elevated tempertures have been investigated and a formalism developed to inclu

contributions from both the continum states and the metastable states

associated with rotational barriers. The determination of barriers to internal

rotation for inorganic species has been reviewed.

A, For

NSpECTED/

.,v,,uytv o. le~l&to -. ,p- fl- i.- r P .,. |



Thermodynamics of High Temperature Materials

Annual Report for the Period

1 October 1980 - 30 September 1981

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

AFOSIR-ISSA - 81-00012

A"wedl fer lblI Pelease 

82ItPlbuLOn U05 tOd2,4028

92 05 24 028



Abstract

Heat capacity and electrical resistivity of graphite has been

measured in the range 2500 to 3600 K. Thermal expansion of tantalum

has been measured in the range of 1500 to 3200 K. Radiance temperature

(at 653 nm) of tungsten at its melting point has been determined. The

enthalpy of graphite has been determined from 273 to 1173 K. The thermo-

dynamic properties of diatomic molecules at elevated temperatures has been

investigated and a formalism developed to include contributions from both

the continuum states and the metastable states associated with rotational

barriers. The determination of barriers to internal rotation for inorganic

species has been reviewed. Some studies of reactions of M(g) with S02(g)

using infrared matrix isolation techniques are described.
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RESEARCH ON THERMOPHYSICAL PROPERTIES BY DYNAMIC TECHNIQUES

A. Cezairliyan, A.P. Miiller, and M.S. Morse

The progress in research on thermophysical properties by dynamic

techniques has been in the following three areas:

1. Measurements of the heat capacity and the electrical resistivity

of graphite in the temperature range 2500 to 3600 K.

2. Measurement of the thermal expansion of tantalum in the range

1500 to 3200 K by a transient (subsecond) interferometric

technique.

3. Measurement. of the radiance temperature (at 653 nm) of tungsten

at its melting point.
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1. Measurements of the Heat Capacity and the Electrical Resistivity

of Graphite in the Temperature Range 2500 to 3600 K

Disagreements exist between the limitednumber of experimental

results for the thermal properties of graphite above about 1500 K reported

in the literature. Most of the reported measurements were performed on

different grades of graphite, which complicates their evaluation and

poses the question whether the differences were due to measurement

errors or were really indicative of differences in the graphite grades.

As an attempt to elucidate this problem, a program was initiated

for the systematic and accurate measurement of selected properties of

various grades of graphite-at high temperatures. The results of the

first phase, namely the measurements of heat capacity, electrical

resistivity and hemispherical total emittance of three grades of graphite

in the temperature range 1500 to 3000 K and in vacuum were presented in

an earlier publication [1]. The results on heat capacity were within

2 percent for all three grades of graphite (Poco AXM-5Q, Poco DFP-2, and

pyrolytic) in the above temperature range. The high vapor pressure of

graphite had limited the performance of measurements to temperatures

below 3000 K.

The objective of the present investigation is to extend the measure-

ments to temperatures above 3000 K. In order to achieve this, experiments

were conducted with the specimen in a pressurized gas (argon) environment

at 4 MPa (about 40 atm.). The details of the dynamic technique used for

the measurements are given in the literature [2,3]. The major addition

in the present work is the high pressure cell which has feed-throughs

for proper electrical connections to the specimen and two optical windows

for pyrometer sighting and for optical alignment. A schematic diagram

of the pressure cell and the specimen support stand is shown in Fig.
1.1.

The measurements were performed on 5 tubular specimens (3 of

Poco DFP-2 and 2 of Poco AXF-9QI) fabricated from graphite rods which,

according to the manufacturer, were 99.99+ pure. Three experiments were

conducted on each specimen. The first experiment was performed with the
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specimen in an argon atmosphere at atmospheric pressure in the temperature

range 2500 to 3000 K. The second experiment, performed to determine the

effect of pressure on the measurements, was conducted with the specimen
in an argon environment at 4 MPa in the same temperature range. The
third experiment was performed with the specimen in argon at 4 MPa in

the temperature range 3100 to 3600 K. Typical heating rates for the

specimens were: 1000 K-s-1 at 2500 K, 3000 K-s-1 at 3200 K, and

5800 K-s at 3600 K. Duration of the current pulses was approximately

270 ms in the lower temperature range and approximately 300 ms in the

higher range.

The differences in the heat capacity results among the two types of

graphite were small and the data from all 15 experiments (on five specimens)
were combined and fit to a polynomial function in temperature. The best

fit was determined by the standard deviation was obtained with a linear

function. The function for heat capacity (standard deviation: 0.7%)
that represents the results in the temperature range 2500 K to 3600 K

is:

Cp = 22.46 + 1.371 x 10-3 T (1)

where T is in K and C in J-mol-1.K-1. The heat capacity of graphite
p

computed using Eq. (1) is given in Table 1. In the computations of heat

capacity the atomic weight of graphite was taken as 12.011.

Electrical resistivity of the graphite specimens was determined

from the same experiments that were used to calculate heat capacity.

However, unlike heat capacity, there were differences in the electrical
resistivity of the two grades of graphite. The results for each grade
were separately fit to a linear function in temperature. The functions

for electrical resistivity that represents the results for each grade of

Poco graphite in the temperature range 250C to 3600 K are:

Poco (DFP-2) graphite (standard deviation: 0.3%)
p = 618.10 + 0.17349 T (2)

Poco (AXF-9Q1) graphite (standard deviation: 0.4%)
p = 618.50 + 0.15946 T (3)

where T is in K and p is in un.cm. The electrical resistivity of each

grade of graphite computed using Eqs. (2) and (3) are given in Table 1.
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Table 1

Heat capacity and electrical resistivity of graphite

Temperature Heat Capacity Electrical Resistivity

(K) ) DFP- ' m  AXF-9QI

2500 25.89 1051.9 1017.2

2600 26..02 1069.2 1033.1
2700 26.16 1086.6 1049.0

2800 26.30 1103.9 1065.0

2900 26.44 1121.3 1080.9
3000 26.57 1138.6 1096.9
3100 26.71 1156.0 1112.8
3200 26.85 1173.3 1128.8
3300 26.98 1190.7 1144.7
3400 27.12 1208.0 1160.7
3500 27.26 1225.4 1176.6

3600 27.40 1242.7 1192.6
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Estimates of errors in measured and computed quantities lead to the

following estimates of possible maximum errors in the properties: heat

* capacity, 2% at 2500-K and increasing to 3% at 3600 K; electrical

resistivity, 1% at 2500 K and increasing to 2% at 3600 K.

Only a limited number of experimental heat capacity results for

* graphite at temperatures above 2000 K were found in the literature. In

addition to this, most of them were for different grades of graphite.

Thus, it is questionable whether there is a common base for comparison.

In order to provide continuity, results reported in the literature at

temperatures above 2000 K are presented in Fig. 1.2.

The heat capacity results of the present work are in a reasonably

good agreement (about 1% on the average) with those reported earlier [l)

for the same grade of graphite in the overlapping temperature range 2500

to 3000 K). The smoothed results of Rasor and McClelland [4) are

average values, as given by the authors, representing data on four

grades of graphite (3474 D, 7087, GBH, and GBE). Their actual data have

a scatter of approximately 5 percent about their smooth curve. In the

temperature range 2500 to 3500 K the results of Rasor and McClelland are

on the average about 3 percent higher than those of the present work.

However, at temperatures above 3500 K the values reported by Rasor and

McClelland increase rapidly. The results reported by Sheindlin et al.

[5) are in agreement, within 1% on the average, with those reported

earlier [1] in the temperature range 2000 to 2500 K. However, above

2500 K, their results indicate a sharp increase in heat capacity reaching

a value of 29.6 J-mol -]. K1CI at 3000 K which is about 11 percent higher

that the present work resajlt and a value of 42.7 J-mol-1-K1 at 3600 K

which is about 56 percent higher than the present work result. The

* sharp increase in the heat capacity reported in the above two investigations

is in contrast to the results of the present work. There is no obvious

explanation for this difference, except that graphite evaporation might

have affected the results reported in the literature.

Electrical resistivity of graphite is sensitive to the graphite

grade and also shows considerable variations for specimens from different

lots of the same grade. Thus, the only meaningful comparison of the

present work results is with those measured earlier on the same grade of

graphite (1]. It may be seen from Fig. 1.3 that the igreement is better

than 2% in the overlapping temperature ran. (2500 '3000 K).
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With the present system and operating conditions it was not possible

to extend the measurements to temperatures significantly above 3600 K.

Above 3600 K, the smooth heating curve (temperature versus time), as

obtained from the pyrometer output, showed discontinuities typical of

interference of graphite vapor with radiation from the specimen. In

order to extend the measurements to temperatures above 3600 K, work is

planned to perform the measurements with the specimen under an inert gas

environment at pressures hicher than that used so far, at least up to

20 MPa.
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2. Measurement of the Thermal Expansion of Tantalum in the Range

1500 to 3200 K by a Transient (Subsecond) Interferometric Technique

There has been an increasing need in recent years for thermal

expansion data on refractory materials at temperatures above the limit

of accurate steady-state experiments. Steady-state techniques such as

push-rod dilatometry, x-ray diffractometry or twin-telemicroscope

methods are generally limited due to problems associated with heat

losses, chemical reactions, evaporation, etc., which become especially

severe at temperatures above 2000 K. To overcome these difficulties, a

unique transient interferometric technique has been developed recently
[1,2) at the National Bureau of Standards for the purpose of measuring
thermal expansion of solids at temperatures primarily in the range

1500 K and the melting point of the specimen.

The basic method involves rapidly heating the specimen from room

temperature to the maximum temperature of interest in less than one

second by the passage of an electrical current pulse through it, and

simultaneously measuring the specimen temperature by means of a high-

speed photoelectric pyrometer and the shift in the fringe pattern

produced by a Michelson-type interferometer. The polarized beam from a

He-Ne laser in the interferometer is split into two component beams, one

which undergoes successive reflections from optical flats on opposite

sides of the specimen, and one which serves as the reference beam.

In this report, we briefly summarize the results of measurements

performed during FY81 on the thermal expansion of tantalum at temperatures

between 1500 and 3200 K. The purpose of these experiments was twofold:

(1) to assess the operational characteristics of the interferometric

system over a large temperature range, particularly at temperatures

approaching the melting point, and (2) to obtain accurate expansion

values for tantalum at temperatures where considerable disagreement

exists among data reported in the literature.

The experiments were performed on four specimens, each fabricated

in the form of a precision-machined tube (with optical flats) containing

a small sighting hole for direct pyrometric measurement of blackbody

temperature. In a typical experiment, the specimen was resistively

*1(



pulse-heated in a vacuum environment (,\,l mPa) from room temperature to

the desired temperature in about 800 ins. The analog signals from the

pyrometer and the interferometer were recorded during the experiment by

means of digital storage oscilloscopes. The recorded data was then
transferred to a minicomputer for subsequent computation of specimen

temperatures and fringe shifts.

The linear expansion of a specimen was determined at each recorded

temperature from the cumulative fringe shift which, for the range 1500

to 3200 K, varied from about 165 to 480 fringes. The expansion/temperature

data pairs for the four specimens were combined and then fitted by a

polynomial function of temperature by means of the least-squares method.

The function that represents the results for linear thermal expansion of

tAu talum (standard deviation =.0.2%) in the temperature range 1500 to

3200 K is

A/o= 5.141 X 10-4 + 1.445 X 10-6 T + 4.160 x 10-9 T2

- 1.309 x 10-1 T 3+ 1.901 x 10-16 T 4 (1

where T is in K and t0 is the specimen length at 20'C (nominally 6.1 mun

for all specimens). The smoothed results, as defined by Eq. (1), are

given (in percent) at intervals of 100 K in Table 1.

The results for each specimen were also fitted by a quartic polynomial

in temperature by means of the least-squares method. As shown in Fig. 2.1,

the deviation of the smoothed results for the individual specimens from

those represented by Eq. (1) varies from about 0.2% at 2000 K to about

0.4% at 3000 K.

The major source of error in our results arises in the determination

of specimen temperature. It is estimated that the error in temperature

is about 5 K at 2000 K and about 10 K at 3000 K which correspond to

uncertainties in LAt/%t of about 0.3% and 0.5% at the respective temperatures.

The maximum uncertainty in the fringe count is believed to vary from

about 0.5 fringe at 2000 K to about 1 fringe at 3000 K which correspond

to an uncertainty in Azz0of approximately 0.2% over the entire temperature

range. A further uncertainty of about 0.2% arises in determining the

specimen length at "room" temperature (20%). Therefore, the maximum

error in our reported values of linear expansion is estimated to be

about 1% at 2000 K and not more than 2% at 3000 K.



12

Table 1. Smoothed results for linear thermal expansion of tantalum.

Temperature, Alto, Temperature, U/1o ,
K % K %

1500 0.859 2400 1.616
1600 0.936 2500 1.710

1700 1.015 2600 1.807
1800 1.096 2700 1.908
1900 1.178 2800 2.012
2000 1.261 2900 2.121
2100 1.347 3000 2.234

2200 1.434 3100 2.353
2300 1.524 3200 2.478
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The results of the present work are compared in Fig. 2.2 with

expansion values reported in the literature. Worthing [3), Rasor and

McClelland [4] and Conway et al. [5] obtained their expansion data using

the twin-telemicroscope method. The values of expansion reported by

Edwards et al. [6) and Waseda et al. [7) were measured by x-ray diffraction

techniques. Amonenko et al. [8] obtained their data by conventional

dilatometry. The data disagree by as much as 10% throughout the entire

temperature range but do not show any significant bias towards a given

steady-state measurement technique. The data reported by Worthing and

by Edwards et al. are in rather good agreement with the results of the

present work. The expansion values determined by Conway and Losekamp

agree with those of the present work within the combined experimental

errors of the two investigations. However the expansion results reported

by the remaining investigators are considerably higher than our results.

In summary the results of the present study show that our transient

interferometric technique is capable of measuring thermal expansion of

metals at temperatures between 1500 K and their melting points with an

estimated error of less than 2%.
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3. Measurement of the Radiance Temperature (at 653 nm) of Tungsten

at its Melting Point

With the increased interest in high temperature applications,

accurate temperature measurements in high temperature systems has become

important. A major problem is the difficulty associated with reference

points in temperature calibrations. The best conventional reference

points are blackbody furnaces operating at the melting point of selected

metals. Because of the serious problems associated with systems exposed

to high temperatures for prolonged periods of time, the practical limit

for blackbody furnaces is 2000 K. During recent years, we have been

investigating the possibility of establishing secondary reference points

at high temperatures based on the surface radiance temperature of metals

during melting. Our earlier work on radiance temperature measurements

at the melting point of selected refractory metals, such as niobium [1],

molybdenum [2], tantalum [3], indicates reliability and reproducibility

of such measurements.

The present work involved the measurement of radiance temperature

(at 653 nm) of tungsten at its melting point. Since tungsten has the

highest melting point among the elements, the results are of particular

interest to the high temperature field.

- The measurements were performed on 23 tungsten specimens of 99.9+

purity. Before the experiments, the surfaces of a number of specimens

were treated with an abrasive. Two different grades of abrasive were

used yielding two surface roughnesses (approximately 0.2 and 0.4 Pm in

roughness).

All the experiments were performed with the specimen in an argon

environment at atmospheric pressure. The heating rates for different

specimens were in the range 1100 - 5400 K.s"1 . Variation of the radiance

temperature as a function of time for two typical experiments is shown

in Fig. 3.1.
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It may be seen that, regardless of the differences in the initial

surface conditions, radiance temperature at the melting plateau is

approximately the same for the two specimens. The same conclusion is

reached for all other specimens. For each specimen, the plateau temperatures

were averaged to yield a single temperature for that specimen. The

standard deviation of these averages ranged from 0.7 to 0.9 K. Fig. 3.2

shows the departure of the average radiance temperature for each specimen

from the average for all the specimens. The overall average for 23

specimens yielded a value of 3208 K for the radiance temperature (at 653

nm) of tungsten at its melting point with a standard deviation of 0.8 K.
There is no evidence of any significant bias with respect to initial

surface roughness of the specimen or the heating rate of the specimen.

The total error in the measured radiance temperature is estimated to be

not more than 10 K.

The results on tungsten have confirmed the earlier results on other

refractory metals that radiance temperature at the melting point of

metals is reproducible and constant for a metal and is virtually independent

of the initial surface conditions of the specimen and the operational

conditions (heating rate, etc.) of the overall system. In conclusion,

the results suggest the possibility of using the radiance temperature at

the melting point of selected metals for secondary calibration and

checking of optical temperature measuring equipment in high temperature

systems.
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Enthalpy of POCO Graphite AXM-5Q1 From

273 K to 1173 K

by

David A. Ditmars

1. Introduction

Graphite is an important material in high-temperature technology, finding

applications as both a standard reference material for high-temperature

thermophysical properties and as a component in carbon-carbon composites

for high-temperature structural components. For this reason, accurate

determination of the thermophysical properties of graphite has been the subject

* of several investigations in recent years [1-7]. The most important thermophysical

properties for the purpose of heat-transfer calculations are thermal diffusivity,

thermal conductivity, and heat capacity. These are related to each other in the

relation,

K=kpCp

where K is thermal diffusivity; k, thermal conductivity; p, density; and Cp,

specific heat. Since each of the three thermophysical properties contained in

this relation can be measured independently, the possibility exists for

comparing directly-measured values for any one of these properties with

corresponding values calculated, using the above relation, from direct

measurements of the other two properties.

Graphite is obtainable in both natural and synthetic forms. The synthetic

form is available in many different "grades". These grade designations are

designations assigned by the manufacturer which specify in coded form such

information on the graphite as grain size, temperature of graphitization,

chemical purity, or other proprietary data.

t1
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The specific heat data for all graphite grades has shown a rather

large variance, most data lying in a range + 10% between room temperature

and 2500 K L7]. It has not been made clear whether this large variance is

directly related to systematic measurement error or whether it indicates a

real dependence of thermophysical properties on the method of synthesis.

For this reason, it has seemed desirable to have a set of data for at least

one of the thermophysical properties cited above, extending over a wide

temperature range.

A very pure grade of graphite ("POCO" graphite) produced by the POCO

graphite company of Decatur, Texas, and designated as grade AXM-5Q1 has

been chosen by NBS as a high-temperature thermal-conductivity standard

reference material. Direct measurement of the heat capacity of this material

by a pulse-calorimetric technique in the temperature range 1500 to 3000 K

[3,4] has been carried out earlier in the NBS Thermophysics Division. Specific-

heat data on this same material obtained by other investigators have also

been reported in the recent literature [5] in the temperature range 300 to

1000 K. These data were obtained by scanning calorimetry.

We have undertaken the measurement of the specific heat of graphite,

grade AXM-5Ql in the temperature range 273 to 1500 K by relative-enthalpy

calorimetry using a precision Bunsen ice calorimeter and a precision

adiabatic-receiving calorimeter. The aim is to provide more accurate

specific-heat data below 1000 K and to bridge the present gap in the specific-

heat data for this material between 1000 and 1500 K. This report gives the

preliminary results on enthalpy data obtained in the temperatur2 range 273 to

1173 K.
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2. Samples

Two samples of graphite were chosen for enthalpy measurement. These

graphites are designated as samples "1" and "2". Sample 1 comprised two

specimens of AXM-5Q1 graphite, obtained from the lot of material reserved

for the NBS thermal-conductivity SRM. Sample 2 consisted of a single

specimen of AXM-5Q graphite (in principle, a grade of slightly lower purity)

chosen from the same lot which was the source of the graphite specimens which

were measured in the prior AGARD project of cooperative measurements on heat-

transport phenomena of solids at high temperatures [1]. It had been previously

noted [8] that there was a small (< 4 %) density variance throughout the

stock of NBS graphite (sample 1). Therefore, the two specimens of sample 1

for enthalpy measurement were chosen from rods "62-end 2" and "104-end 2",

which showed a representative density difference. These specimens are

hereafter designated "lH-62" and "IH-104". The specimen of the sample 2 for

enthalpy measurement is designated "2H". These three specimens were

machined as right circular cylinders for encapsulation and enthalpy measurement.

The measured specimen masses and calculated densities are given in Table 1.

Table I

Enthalpy-measurement specimens of POCO graphite

Calculated Specimen

Specimen Grade Apparent density Mass
-3

g cm g

(IH-62) AXM-5Q1 1.738 6.98047

(IH-104) AXM-5Q1 1.706 6.82563

(2H) AXM-5Q 1.756 7.05369
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Chemical analyses on the present POCO graphite were performed by two

indeoendent analytical laboratories on specimens chosen from sample 1; one

of these laboratories also included a specimen of sample 2 in their analyses.

Specimens of both samples were subjected to combustion analyses by the

Galbraith Laboratories of Knoxville, Tennessee. These analysis specimens

were cut from portions of the appropriate sample materials which were adjacent

to the enthalpy-measuring specimens. The results of these analyses are given

in Table 2. Here, the specimen nomenclature differs from that of Table 1

only in that "A" is substituted for "H".

Table 2

Combustion Analyses of POCO Graphite

Calculated Composition - wt %

Specimen Apparent Density C H N ash

g cm
3

(IA-62) 1.731 99.66 <-0.05 0.027 0.29

(IA-104) 1.728 97.77 < 0.05 0.017 1.94

(2A) --- 99.49 < 0.05 0.012 0.48

Specimens of Sample 1 were examined in the analytical laboratories of the

Union Oil Company of California a. These specimens were chosen from different

rods of Sample 1 designated rods "13-end 2" and "46-end 2". The corresponding

analysis specimens are designated (IA-13) and (IA-46): Table 3 and Figures 1

and 2 present the results of porosimetric, qualitative spectrometric and

absorbed gas analyses on these specimens. Mercury porosimetry analysis

a We are indebted to Dr. M.J. Block of the Union Oil Company for his generosity

and cooperation in making the facilities for these analyses available.

4



(Figures 1 and 2) of these specimens determined the total open porosity (OP')

to be 0.08114 and 0.08053 cc/g for (IA-13) and (IA-46), respectively. These

are converted to percent total volume units by the following equation

OP = (OP') (p) (100),

where OP is the percent open porosity and p is the calculated density of the

graphite. The theoretical porosity is determined by the equation

TP= [ - 2.263 (p) (100),

and is a measure of the porosity expected when the theoretical density of

graphite (2.26 g/cc) and the observed density of the graphite artifact are

taken into account. The open porosity is always less than the theoretical

porosity due to the fact that some fraction of the porosity is blind and

does not communicate with the outside of the piece. The difference between

the theoretical porosity and open porosity is the closed porosity. Pore

diameter and surface area data are also derived from porosimetry testing

,nd are also listed in Table 3.

Elemental analyses performed on the graphite specimens were limited

to hydrogen analysis and qualitative emission spectroscopy (ES) analysis of

the graphite ash. These results are also presented in Table 3. An attempt

was made to analyze the gas adsorbed on the graphite. A sample of graphite

was ground to a fine powder and then sealed in an evacuated glass bomb. The

sample was heated to about 200 °C and the off-gas was analyzed via mass

spectroscopy. The major components of the off-gas were carbon dioxide, carbon

monoxide, and water. Table 3 supplies further details concerning the off-gas

composition.

5



Table 3

Porosimetric, Qualitative Spectrometric and

Adsorbed Gas Analyses of POCO Graphite

Specimen (A-13) (IA-46)

Density, g/cc (calculated) 1.766 1.705

Porosimetry Data

Pore Volume, % volume

Theoretical 21.86 24.56

Open 14.33 13.73

Closed 7.53 10.83

Average Pore diameter, p 1.21 1.12

Surface Area, m2/g 0.52 0.64

Elemental Analyses

Hydrogen, Wt % 0.005 0.022

Ash, Qualitative E.S.

10% Si Si

1-10% ....

0.1-1% Fe, Ca, V, Al, Pb Fe, Al, Cu, Pb

0.1% Mg, Sr, Cu, Cr Mg, Cr, Cu, Ni, Mn, Sr

Adsorbed Gas Analysis

Species Mole % Species Mole %

CO2  42.5 H2  0.10

H20 39.6 C2H2  0.06

COa 13.3 I-C5  0.06

Air 2.94 H2S 0.03

CH4  0.48 I-C4  0.03

C3H8  0.43 C2H6  0.02

SO2  0.22 C4H8  0.01

C2H4  0.13 COS 0.01

C3H4  0.11

a. A maximum of 3% could be N2.
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The three graphite specimens were sealed with-no prior treatment in

Pt-1ORh capsules containing helium gas at a pressure of approximately 0.2 atm.

Relative enthalpy measurements (HT-H273.1) were made on each of the three

encapsulated specimens in the temperature range 273-1173 K with a Bunsen ice

calorimeter. The measuring apparatus and techniques have been described

earlier [9-11]. Enthalpy data were obtained at nine temperatures starting

at 373 K and continuing at nominal 100 K intervals. Specimen (IH-62) was

measured two or three times at each temperautre to enable estimation of the

precision of the data series; the other specimens, not at each temperature

and not as frequently. Empty capsule data obtained previously [10] for

identical Pt-lORh capsules were used in calculating the net contributions

of the graphite to the gross observed heats.

In addition to the graphite enthalpy measurements, measurements were

made on ca-A1 203 (NBS Standard Reference Material 720) at selected temperatures

to verify the overall accuracy of the measuring technique.

4. Results

The enthalpy data on the three graphite specimens is given in Table 4 and

Figure 3. The relative enthalpy data of Table 4 were calculated by subtracting

from the gross measured heat the capsule enthalpy, taken from [10], at the

corresponding temperature and dividing by the appropriate sample mass to

express the results on a unit mass basis. For the purpose of these calcu-

lations, the specimens were assumed to be 100 percent graphite. The contribution

of the specimen capsule to the gross measured heats did not exceed 25 percent.

Enthalpy measurements on a-A1203 made at 373 K, 273 K, and 1173 K agreed with

earlier enthalpy data on this Standard Reference Material to better than

0.15 percent.
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The smoothed form for these enthalpy data will be influenced also by

existing heat-capacity data on graphite from low-temperature adiabatic calori-

metry and on future measurements in this laboratory on these specimens in

the 1173 K to 1500 K region. In Figure 3, however, we have compared the

present data with enthalpies derived from the smooth heat-capacity data

presented in [7] for AXM-5Ql graphite. Above 373 K, there is no significant

difference in the enthalpy data for the three specimens. The deviations of

the data for specimens (IH-104) and (2H) at 373 K, while coming in a temperature

range in which the calorimeter imprecision has been historically high, are

somewhat larger than anticipated. It is not yet clear whether the difference

arises from random error or is due to water or other substances adsorbed on

the specimens.
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The Thermodynamic Properties of Diatomic Molecules at Elevated

Temperatures: Role of Continuum and Metastable States
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ABSTRACT.

A complete quantum formulation of diatomic partition functions

uses the energy-variation of the elastic scattering phase-shift to

represent the phase space associated with the molecular continuum

states. The resonance structure in the phase-shift, due to tunnelling

*through rotational barriers, gives a rigorous interpretation of the

metastable states which lie behind the barrier, and we can justify the

need to include such states in the evaluation of thermodynamic

properties. However, we also find that it is inconsistent to merely

include the metastable phase-space without considering the remaining

contributions from the continuum. If either component is ignored in

treating the dimer, then, of necessity, their presence will appear as

the virial coefficients which cause non-ideal behavior for the atomiic

fragments of the molecule. Both approaches are consistent and yield a

proper equation of state for the vapor. We will show quantitative

agreement between *the exact quantal results and the approximate

classical expressions for the partition function at high temperatures.

Since the classical theory automatically includes all the effects of the

molecular continuum, we suggest that this is both the simplest and most

unanibiguious procedure for extending thermodynamic tables to elevated

temperatures. Explicit calculations are presented for Li 2 and Na 2.



I. INTRODUCTION

At elevated temperatures the equation of state and other observable

equilibrium properties associated with the diatomic molecule A2 must

account for the dissociation processes,

A z A) (0 A(oc) + A(o'). (I

The ensemble is divided into sub-sets of molecules A2 (i) in specific

Wi-degenerate electronic states li>. Each state is characterized by an

interatomic potential Vi(R) which adiabatically correlates with a unique

pair of atomic states,

V R - EOC U cot, (,Z )

The internal partition function Qi associated with each attractive state

contains both bound Qi(B) and continuum or dissociative Q.(C) state
,

contributions.
2 , 5

QL = Q (e) . Q (c ). (3)

At low temperatures Qi is dominated by the finite set of stable, bound

rotational (j) - vibrational (v) eigenstates with discrete energies

i, ,v< 0 which define Qi(B),

It is this contribution which normally defines the molar thermodynamic

parameters we associate with the stable molecule A2. However, at high

temperatures, or for predominately repulsive potentials, we must expect

- -- . *



significant, if not dominant, contributions from the continuum of states

with e>O which lie above the dissociative limit.

We shall examine the exact quantum mechanical expression for
QiC 5,6,7

A. 0

The density of molecular continuum states is related to the phase-shift8

ni,,(e) for the scattering of atoms A(a) + A(a') by the electronic-

rotational potential,9

trV. (R) + C',)

where the relative kinetic energy c is measured with respect to the R =

asymptote for vi(R),

P .c-) -V 0R ( c) E ,U}-- , ,7)

In particular we are concerned with the role of metastable

rotational-vibrational levels, i,,m>0, which are predicted to exist

behind the rotational barriers3'4'5 in Eq. (6), and we shall segregate

Qi(C) into two components,

c(C) Q (M(+Q ))

where,

This finite set of predissociating levels is often combined with

10,11
Qi(B) to define the thermodynamic properties of the dimer A2, and

-4-



there has been some confusion as to whether this procedure is

legitimate. We shall show that this approach can be justified on

rigorous quantum mechanical grounds in terms of the resultant resonance

structure5'8'12'13 contained in the phase-shift nliq(e). However, we

also contend that the residual contributions contained in what has been

termed the free-continuum 3'5 component Qi(F) cannot be neglected.

Although Qi(B) and Qi(M) are always positive, Qi(F) can be of

either sign depending on vi and T, and it is inconsistent to neglect the1I

free continuum when defining the properties of A2. We will propose that

the most accurate, and by far the simplest course is to use the complete

classical theory for Qi at high temperatures. The partition function is

directly related to the second virial coefficient Bi for potential vi,

bnA= - )c1A/2 B , (,o)

where qtr(m) is an abbreviated notation for the translational partition

function per unit volume for particles of mass m,

- 2- Tt rn T 3/ Z

The simple classical expression for Bi.,2'3'5'6 7

13* e f~ -. a / T L Oz)

0

contains all three contributions to Qi, i.e.,

SA : '5.( ) * 73 .(M) 4-,.F) (iS)

and therefore there is no bias introduced into the evaluation of the

thermodynamic variables. We have already shown5 that the classical

-5-



theory yields quantitative agreement with the juantal theory once kT

exceeds the vibrational spacings.

Equation (1) implies that a total number of atoms N confined in

some volume V at temperature T will partition into two portions NA and

NAA which much satisfy the conservation of mass

NN A + zN\JA-.

These entities which we refer to as 'monomers' and 'dimers' are defined

by the particular regions of phase space, or partition functions (P'f')A

and (p.f.)AA, that we choose to assign to the particles. Implicit in

all thermodynamic tabulations 10 ,11, 14 is the assumption that the

center-of-mass motion of the atoms A and the molecules A2 behave as

ideal gases, such that the equation of state is

- N/v - NA%/V

Given the equilibrium constant Keq,

NAZ A~.f)
we can express (15) as an infinite power series in (N/V),

which is comparable to the usual virial expansion 2 ,
3 '5 '6'7

T 
V V

-6-



with the result that

> - - k'? " (19)

Note however that the molecular dimer contributes to all virial

coefficients and <C> is negligible only if (K N/V)<< . In fact Eq.eq
(17) is not convergent unless (K N/V).l/8, and for strongly boundeq

molecules it is preferable to employ Eq. (15) which describes both low

and high temperature limits exactly.

The decomposition of the internal partition function Qi into bound

(B), metastable (M), and free-continuum (F) components in Eqs. (3). and

(8) leads to a similar separation of the equilibrium constant

1~_, <e-W(3 +1K,< (Ivi +(zo)

and the dimer concentration

in Eq. (16). Thus we can cast the equation-of-state into several

equivalent forms

1' - NNA 4-_ __ _ _ __ _ _'k T V V

NA 4- N. 4

V V V

NA(I 4. N-4 k,((-NA *)ZZ C

V-I. V

all subject to the constraint imposed by Eq. (14). Obviously by
L5

modifying the activity of the monorer concentration, from ideal in Eq.

-7-
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(22a) to an imperfect gas with a second virial equal to -K q(F) in Eq.

(22b) and -K (C) in Eq. (22c), we can obtain different interpretationseq
of the residual molecular dimer concentrations. This points to the

basic problem inherent in the use of tabulated thermodynamic data to

calculate equilibrium properties at high temperatures. Unless K (F)
eq

and K (M) are negligible we must be cognizant of the specific regionseq

of phase space that have been included in the definition of the species

A2 . This supports the virtue of using the unambiguous expression in

Eq. (12) to calculate Keq.

The quantum theory of diatomic thermochemistry is discussed in

section II with specific application to the alkali dimers15 shown in

Fig. 1. Scattering theory is used to analyze the metastable and

continuum contributions to the partition functions in section III.

Explicit calculations of equilibrium constants for Li2 and Na2 are

presented and discussed in section IV. A brief summary and

recommendations for calculating high temperature thermodynamic variables

are contained in Section V.

- -



I. QUANTUM THEORY OF DIATOMIC THERMOCHEISTRY

The 'free' atoms A and the diatomic molecule A2 in Eq. (1) are

uniquely defined by their partition functions. However we must fulfill

two constraints if we hope to convert the resultant functions into

observable physical properties of the equilibrated gas, such as the

equation of state6

First we must insure that the portions of phase space assigned to NA and

NAA in Eq. (16) do not overlap. This condition is automatically

satisfied by the definition of the phase-shift8 we will employ in Eq.

(5).

Second, we should be convinced that together the two partition

functions encompass the entire phase space accessible to the N particles

in Eq. (14). The interactions between A+A2 and A2+A2 must ultimately

modify the activities of NA and NAA at high pressures. However our

concern is with strongly bonded dimers with deeply attractive ground

states as represented by the alkali XIE+ 9 potentials in Fig. 1, and it

is reasonable to assume there is a wide regime where Eq. (23) is an

accurate representation of the system. In any case, our goal in this

paper is not to perform a complete analysis of the alkali vapors, but

rather to obtain a complete understanding of the entity we commonly

refer to as the diatomic molecule A2. Our intent is to develop a proper

interpretation of the intrinsic therrodynamic variables that are

conventionally associate with a given diatomic species 5 ,14 and to

-9-



delineate the role of continuum states at high temperatures.

We begin by assigiing the following partition function6 '7'16'17 to

the population of free atoms NA,

A (7-V
V C& t~-r I(vjYL

where wA is the electronic partition function for the atom

The ground state is denoted by a=O, such that Eo-O. The subtleties

involved in the convergence of Eq. (25), together with the treatment of

the ionization continua17 ,18 at high temperatures will be ignored. This

would merely distract us from our primary goal of interpreting the

nature of A2. For the alkali atoms, with a doubly degenerate 2S1/2

ground state, we shall assume oA = 00 = 2.

Note that the entire volume V is assumed to be accessible to the

center of mass motion of the atom in Eq. (24) which we treat as a point

particle, i.e., as an ideal gar. The total Hamiltonian HA for the

interaction of two atoms A + A is equivalent to the Hamiltonian for the

diatomic molecule A2 for all interatomic distances R. Therefore all

two-body imperfections in the vapor are contained in the dimer partition

function,

V V t , (Z YlA) Qt- 2-7

when the total internal partition function

Q1 Q+3Q3

-10-



is summed over the complete set of molecular electronic states i implied

by Eqs. (l)-(3). The subset of molecular states i(a,a') which

dissociate into a particular pair of atoms A(a)+A(a') satisfy the

constraint,

CJ: (c, c') (30)

A pair of ground state alkali atoms, with w 0'04 , correlates with the

singly degenerate X1E + and the triply degenerate b3E+ states in Fig. 1.
g u

These states will be indexed as i=1 and i=3 respectively throughout this

paper, and we shall approximate QTOT by Eq. (29), consistent with our

assumption in Eq. (26). Obviously for an accurate calculation of high

temperature properties this assumption must be relaxed and the complete

expressions (25) and (28) must be employed.

For each electronic state Ji> we generate a set of

electronic-rotational states Ji,L,m > with nuclear angular momentum

quantum number Z, and the (2t+l)-degenerate space-fixed projections m.
A

These form a complete set which spans the polar coordinates R for the

orientation of the interatomic displacement between the interacting

atoms, and we obtain an electronic-rotational potential v i,.(R) for each

individual (i,Z) state. For sufficiently large R the potentials will

approach the non-interacting limit,
1 ,9

-1(R) +
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where the centrifugal potential depends on Z and the reduced mass mA12 .

Often we can approximate ji,z, m .> as a simple product of an electronic

li> and rotational Y ,m (R) wavefunction

2. ,ni

with the result that the electronic-rotational potentials are additive,

as in Eq. (6). In the most general case, depending on the particular

Hund's coupling1'9'18 '19 of electronic-rotational angular momentum

employed in v i,(R), the 'electronic' potential vi(R) in Eq. (6) may

differ slightly from Eq. (7) and exhibit a generally negligible residual

dependence on 2. However, the Hund's case (b) form in Eq. (6) is

perfectly valid for the and potentials that we shall ultimately

treat, and this form will be employed throughout this study. Some
typical vi,,(R) potentials for Li('E+) are shown in Fig. 2.

(R)poental fo L 2(X 9~

The radial or vibrational motion of the dimer is described by the
1 ,9,12

well-behaved solutions of the Schroedinger Equation,

4 = (6, R) o3

such that the total electronic-rotational-vibrational wavefunction

defines what we might call the 'internal' energy for the collision of

two atoms.

ECCC U) . La) +e (35-)

Below threshold for dissociation in the potential v J  when <0, we

- 12-
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I
obtain a finite set of true vibrational levels which we index by

v=O,l....,vmax (i,.t).These occur at discrete values of E, such that

I < (3,

and
2., ., ° , (E, C o st,6)

and the total internal energy of the dimer is quantized

,E- U + E(X: 1' + . (3-7)

Obviously vibrational levels which lie above the ground state limit,

i.e., E > 0, and asymptotically correlate with excited state atoms

in Eq. (37) are subject to predissociation11'12'18'20 and the

definitions in Eq. (36) are somewhat ambiguous. However, the fact that

such levels might not be truly stationary solutions, with discrete

eigenvalues, has a negligible effect on the subsequent evaluation of

thermodynamic properties. This phenomenon is thoroughly analyzed in the

next section and should not distract us from our course at this point.

Above the dissociation limit the relative kinetic energy e

defines a continuum of wavefunctions which exhibit the asymptotic

boundary condition,1'6'7'8'9'12

where

-AG(
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The energy-dependent elastic scattering phase-shift ni, t() defines the

elastic-scattering cross-section8 '21 for the collison of atoms A(c) +

A(c') with relative kinetic energy e, and relative orbital angular

momentum, or partial wave quantum number 1,
r 2e)2+1

Well-defined numerical procedures22'23 are available for evaluating the

phase-shift from Eqs. (33) and (38) as a continuous function of c, and,

in particular we can subsequently evaluate the necessary derivative

3ni, /9c to arbitrary accuracy.

It should be emphasized that we have made a severe approximation in

Eqs. (33) and (38) which restricts the formal theory. We have neglected

any inelastic scattering processes between the colliding atoms A(M) +

A(a') associated with the electronic state i(aa') and have assumed only

pure elastic scattering is important. However, it is our contention, based

on a scattering theory analysis of diatomic continuum states using

adiabatic electronic-rotational (AER) states,1 that a rigorous treatment

of the inelastic scattering will not modify the thermodynamic

observables to any significant degree. In any case, Eq. (38) is

perfectly valid for the alkali ground state atoms A(2S1/2 ) + A(
2S1/2) we

intend to study. There is negligible coupling between the X 
+ and b Z+

continuum states, and we need only consider the two elastic scattering

phase shifts,

- 14 -



The complete Hamiltonian for the interaction of two atoms Includes

the kinetic energy operator6'8 '16 associated with the coordinate Rc'm

which locates the center-of-mass position of the collison complex with

total mass 2mA within the volume V. Note that the translational

partition function qtr(2mA)V contributed by the center-of-mass

wavefunction in Eq. (27) is approximated as a perfect gas. This is

valid if we may assume that higher-order A2+A and A2+A interactions are

negligible compared to A+A and do not influence the activity of the

dimer. Using Eq. (27) and (24) in (23) we obtain the equation of state

given by Eq. (15).

The internal partition function Qi for each ith electronic state in

Eq. (28) is deconvoluted into a rotational sum

Q -= "z. (z ,+ OVA..)'I.

over the radial partition functions qJ associated with each specific

5,6,7
electronic-rotational potential vL(R) i.e.,

-+ (4

-15-
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Equation (43) contains both bound qi, (B) and continuum qi,P(C)

components and measures the departure from an ideal gas. If vi=O, then

qi,.=O for all R, and Qi=O. This behavior is embodied in the definition

of the phase shift ni,g(E) in Eq. (38). For non-interacting atoms the

vi,. potential reduces to the simple centrifugal potential shown in Fig.

3 and the phase-shift, which measures departure from this ideal

behavior, will vanish identically.1 '8 '9 Thus, Eq. (43) should be viewed

as the difference in canonical phase space introduced by the interaction

potential vi(R). If all interactions vanish, then (p.f.)AA=O, and we

retrieve the proper ideal gas law P/kT = N/V for point particles in Eq.

(15).

Each Qi defined by Eqs. (42) and (43) is constructed from distinct

bound (B) and continuum (C) state components as expressed in Eqs.

(3)-(5), and a comparable separation transfers to the total internal

partition function Q in Eqs. (28) and (29),
tot

Since the equilibrium constant Keq in Eqs. (16) is proportional to Q

we obtain the unique separation of K eq and the dimer population N AA

expressed in Eqs. (20) and (21). The same behavior applies to the

virial coefficients Bi in Eq. (10), and to the mean second-virial

coefficient <B> in Eq. (19) which is seen to be a canonical average over

the individual virial coefficients associated with each vi(R) potential,

161
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Equation (47) applies to our specific assumptions for the alkali di7ers.

The subsequent breakdown of K eq(C), Qi(C), Bi(C) and qi (C) into

metastable and free-continuum contributions requires an analysis of the

quantum mechanical phase-shift derivative an i , t ( c ) / a .

- 17-



III. CONTINUUM PHASE SHIFTS AND METASTABLE STATES

The electronic potentials calculated by Konowalow et al15 for Li2

and Na2 are shown in Fig. 1. We shall use the X E state of Li2 to2 ~92

demonstrate the contribution of the continuum phase-shifts and

metastable states to the vibrational partition function in Eq. (43).

Specific electronic-rotational potentials vi, (R) are plotted in Fig. 2

for 1=0, 100, 130, and 180 as the centrifugal contribution to Eq. (6)

progressively 'fills' the attractive vi(R) potential until only a pure

monatonically repulsive potential exists. Explicit calculations will be

presented for these representative angular momentum states.

Using the Gordon algorithm 22 '23 to solve Eq. (33) we calculate that

a total of vtot = (vmax+l) = 42 bound vibrational levels exist in the

vio(R) = vi(R) potential which has a dissociation energy of 8450 cm- .

For 2=lO0 the V1i100 potential is only 2560 cm
-l attraction and supports

the vtot=ll true bound states plotted in Fig. 4. However, behind the

rotational barrier at R=Rbar for any Z>O we may expect a number of

quasi-bound states, or metastable states3 ,5 ,I0 1 12 to exist at certain

'eigenvalues' of the incident kinetic energy (See Fig. 3)

These energies can be estimated by the same procedure used to obtain the

true bound states in Eq. (35) by using an approximate potential vi, (R)

in place of vi,t(R) in Eq. (33), such that

- 1< R q)
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For 1=100 we obtain the mtot 7 metastable levels portrayed in Fig. 4.

We know of course, that these states are ultimately 'unstable' because
of tunnelling through the rotational barrier,3 and we might choose to

associate an energy width with each level

which reflects the expected lifetime i,t,m of a molecule 'prepared' in

such a non-stationary state.13 As long as

we can expect that the metastable nature of the levels are of

insignificant consequence and the i,Xm> 0 eigenvalues can be treated

on an equal footing with the true bound states ei,.,v < 0. This can be

demonstrated by the exact quantum mechanical results.

The rigorous solutions of Eq. (33) for vi,t (R) yield a continuum of

wavefunctions with the boundary conditions imposed by Eq. (38) whenever

c>0. If we were to examine the amplitude of the wavefunctions Ri,,(e,R)

behind the barrier we would find a negligible probability of observing a

pair of atoms with an interatomic displacement R<Rbar' except in the

vicinity of z i,t,m. This is reflected at R - by a rapid variation

of the phase-shift ni,t(c ) which takes the following form, near a

metastable, or resonant energy,8 '12'13 '21
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Such behavior is observed in the quantum mechanical phase shift for

1=130 in the vicinity of the m=8 metastable level which was calculated

by the procedure in Eq. (49) to exist at 1308 1947.50 cm1. The

calculated data24 is plotted in Fig. 5. The width r = .00255 cm" .

obtained from the fit to Eq. (52) corresponds to a lifetime of lO sec,

and the position, citm = 1947.775 cm-1 , is only slightly shifted from

the approximate result. Note that the phase increases by modular-r in

passing from c<ci, ,m to £>i, Figure 6 shows similar behavior for

the top-most resonance, m=9, which lies about 15 cm-1 below the

rotational barrier at cbar - 2056 cm" . In this case the width obtained

from Eq. (52) is r z3.2 cm-I with a resultant lifetime of l-12 sec.

The derivative rni.E/T1re simply yields the normalized Lorentzian

line shape 8 ,13 ,21 associated with a width rim , i.e.,

7r-be &-+

and the contribution to the continuum partition function (31) in the

vicinity of any resonance is bounded by unity, i.e.,

d -a e .

Note that similar considerations will apply to any metastable or

predissociating state contributing to the dimer partition functions, and

not merely to rotational predissociation through centrifugal barriers;

the only restriction to consider is the criterion in Eq. (51). It

should also be emphasized that the role of metastable molecules in

- 20 -
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equilibrium properties is independent of the lifetime of the state, and

3,4is not contingent on any dynamic assumptions, ' such as requiring the

collision frequency between free atoms to exceed the predissociation

rate. This can be appreciated by examining the nature of the

phase-shift more closely.

21
Scattering theory predicts that two colliding atoms A(Wr)+A(a)

progressing on the molecular potential vi(R) with orbital angular

momentum Z, and relative kinetic energy c, will experience a 'delay

time' or collision lifetime (At)i,Z, relative to two non-interacting

atoms with the same dynamic variables, such that

Thus the continuum partition function qi,t(C) in Eq. (43) may be

expressed as follows,
25

A positive delay time means a positive contribution to the partition

function and a higher density of states compared to the free atom

interactions. This is particularly evident in the vicinity of a

resonance where Eq. (53) predicts a peaked, positive delay time

(,7)

which increases with the lifetime of the metastable state. In

contrast, a negative delay time, as occurs for a repulsive hard-core

potential, imposes a negative contribution on qi,Z(C), which is, in

fact, equivalent to the net loss of pase space associated with the
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excluded volume defined by the interaction potential.

For real potentials, such as in Fig. 2, there will be both negative

and positive contributions due to the repulsive and attractive regions

of interaction. However, we may use the analysis in Eqs. (53) and (54)

to isolate the dominant positive contribution of the resonance states to

the continuum partition function, i.e.,

(C) 0 1 e t Ce

4- cF)M +1 ( 8)

The 'free-continuum' component qi,Z(F) embodies all the remaining

non-resonant energy dependent contributions of ni,t(c) between the

resonances for c5 Ebar in Fig. 4, as well as the entire ni,Z(C)

dependence above the rotational barrier.3 Unless one is devising

experiments in which the dimer metastable states are directly

'observable' the only pertinent quantity in the analysis of the

thermodynamic properties is the total continuum partition function Qi(C)

and this deconvolution into components is only for our convenience.

If the interaction vi(R) between two atims vanishes only continuum

solutions to Eq. (33) exist and the asymptotic form of the radial

function in Eq. (38) is equivalent to the spherical Bessel function

1,8,9,12,21 j (kr) for the partial wave Z, where the phase shift is

identically zero. Thus the phase-shift for an arbitrary potential is a

measure of the deviation from the ideal gas, or point particle,

interaction which leads to the definition of the delay time in Eq. (55).

The boundary condition in Fq. (.6) is indeterminate by modular IT,

- 22 -
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and we must convert the principal value of ni,,(e) obtained from the

numerical solution of Eq. (33) into a continuous, analytic function of

c>O which can be differentiated and used in Eq. (56). Levinson's

theorem5'8 '12'26'27 demonstrates that the change in the phase shift

between c=O and E=- is simply related to the total number of bound

states vtot(i,o ) that exist in the vi,t(R) potential,

'AL~c - qio~ -=(

and, since li, ,(-)=O for molecular potentials vi which are typically

finite at R=O, we require a threshold value of ni,9,(O) = TIvtot(i,9 ).

The actual threshold behavior for a potential which approachs 
v - CR 6

at large R is known to be
8 '26'27

7r o , U,) + 0) (7- k- oO 2

and we could analytically continue the numerically derived phase shifts

to obtain a unique value of ri,,(c) for all c.

Fortunately we have found an excellent approximation, based on the

WKB approximation,5'28 which supplies a simple, analytic, single-valued

estimate of ni,, (c) at any energy.
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The symbol is meant it indicate the exclusion of all non-classical

regions of phase space from the integrals, which occurs whenever f

becomes imaginary. When used in Eq. (56) and surmied over Z in Eq.

(42), this approximation is equivalent to the classical contribution of

Bi(C) to Eqs. (12) and (13). In the following plots we will compare

WKBboth ni,T andnilk and find extraordinary agreement except right at

threshold, and in the vicinity of resonances. As already seen in Figs.

5 and 6, Eq. (61) transforms the step-like increases in niL(s) at

C eitm into a smoothly varying function. This is equivalent to

reversing the procedure in Eq. (54) and substituting a continuous

function to represent the resonant contribution to the partition

functions. The final results will be equivalent whenever kT>( i,£,m+l

- "t ), and thus we can quantitively justify the use of the classical

theory.

The phase-shift for X=O is plotted in Fig. 7. It falls fairly

rapidly from its threshold value of 42ir, introducing a large negative

contribution to Eq. (56). At extremely large energies the phase

actually becomes negative as the repulse core of the vi0 potential in

Fig. 2 becomes dominant, and then slowly progresses to zero as c- . A

simple physical interpretation of the negative contribution near

threshold is that the rapid acceleration of the atoms as they pass over
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the deeply attractive well causes the atoms to spend less time in this

region of phase space, i.e., (At)i,k, <0, compared to free atoms. It is

interesting to note that, at infinite temperature, there is an exact

cancellation of the positive bound state contribution

Ltot

and the negative continuum state contribution predicted by Levinson's

theorem,

such that q., in Eq. (43) is identically zero. In any case it should

be apparent that neglect of the continuum phase space in estimating qi,o

at high temperature will overestimate the magnitude of the partition

function. This is demonstrated in Fig. 8 where the various

contributions of qi'(B), qi,(H) and qi,.(F) for Lare plotted

as a function of Z for T = 60000K. A similar plot for Li3+u) is shown

in Fig. 9. These quantities were actually calculated using the WKB

theory but the results are in quantitative agreement with the quantum

values.

It should be pointed out that, for homonuclear molecules with
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nuclear spin I=O, only even values of I satisfy the antisymmetrization

of the total dimer wavefunction, and alternate values of I are missing

from the summation in Eq. (42). This effect is equivalent to the

ubiquitous 'symmetry factor' a=2 which is used to reduce the magnitude

of the classical partition functions for homonuclear species.
6'7 ,16 ,

The fact that Li has a nuclear spin I=l gives rise to the same

complications that occur in the D2(XIz) state16 '19 with an alternating

weighting of 2/3:1/3 assigned to X=even and z=odd eigenvalues

respectively. However, the evaluation of statistical properties at high

temperatures is quite insensitive to this subtlety and we shall simply

sum over even values of z with a weighting of unity.

The phase shift for Z=100 is shown in Fig. 10 and should be

examined in comparison to Fig. 4. The threshold value ll7 reflects the

presence of vtot=ll bound states in the vi, 100 (R) potential. There is a

rapid increase in the phase to a value ni,l0 18 at the top of the

rotational barrier at c l000 cm-1 , concomitant with the 7 metastable

states which are predicted to exist behind the barrier. The WKB phase

shift predicts a smooth monotomic increase from threshold to c = 1000

cm- . The actual quantum mechanical phase shift behaves as in Fig. 5

and remains relatively flat, with an abrupt series of step-like

increases by modular-t at each metastable resonance position. Above c =

1000 cm-l  both phases coincide and contribute first positive, ac <

0, and their negative,.an > 0, components to the integral in Eq. (56).

The resultant qi,lOO(M) and qi,loo(F) contributions at T=60000 can be

seen in Fig. 8.

The phase for Z=130 in Fig. 11 rust obviously start at ni,X(O)=O
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since the potential in Fig. 3 is seen to support no bound states below

threshold. There is a negligible increase in phase until the minimum in

the vi,30 potential becomes accessible at c=706 cm and then there is

a rapid rise to 97r as the nine metastable states contribute to the

scattering. Again we have plotted the smoothly varying WKB phase which

smooths the step-like quantum phase. We shall argue that, for kT large

compared to the metastable spacings, the monotonic function, which leads

to exact agreement with the classical partition function, is an adequate

approximation.

Finally, we present the L=180 phase in Fig. 12. As seen in Fig. 2

this potential supports neither bound, nor metastable states, and we

obtain a smoothly varying phase-shift which predominately makes positive

contributions to the partition function due to the deeply attractive

well in the vi(R) electronic potential.

The calculated electronic partition functions for the singlet, QV

and triplet, Q3 2 states of Li2 and Na2 are presented in Tables I and II.

The tabulated ratios Qi(1.1)/Qi(B) and Qi(F)/Qi(B) give a measure of the

importance of the various components of the continuum states as the

temperature is increased. Obviously these dissociative states are most

significant in the shallow b3E+ potential, but the neglect of Qi(M), or

Qi(F) can not be justified even for the strong, chemically bonded 
X +

state.
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IV. DISCUSSION OF RESULTS

Given the partition functions for Li2 and Na2 we can derive the

usual thermodynamic variables for these molecules. We have compared our

calculations to the JANAF tables5 and find substantial deviations at

temperature above 20000 K. We concluded that any tabulations of

thermodynamic properties, such as the JANAF tables, which rely on a

Dunham expansion of the molecular term values must ultimately fail at

high temperatures. In particular the anharmonicity substitutes a

spuriously high density of discrete states in place of the true

continuum states. These meaningless states tend to over estimate the

molar entropy and enthalpy. This fault is especially e;ident in the

tabulated molar heat capacity Cp which often increases monotonically to

unrealisticly high values. More sophisticated calculations10 which

attempt to evaluate the finite sums over bound, Eq. (4), and metastable,

Eq. (9), states yield substantially more reliable results, but this

*approach still suffers from the neglect of the free-continuum

contribution Qi(F) in Eq. (8). This can be seen in Tables I and II.

In this discussion we shall consider the one observable parameter

that is derivable from the thermodynamic analysis; the equilibrium

constant Keq, or equivalently the second virial coefficient <B> = -Keq-

We can not measure the molar Gibb's free energy, or enthalpy, or entropy

of an isolated alkali dimer. However we can confine a prescribed number

of atoms N in a volume V at temperature T and measure the total pressure

P of the resultant vapor. Thus we can obtain the total population of

diriers from the equation of state (15) and the constraint in Eq. (14)
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NAA NA l~T =V/ N '=( - h'v )

Given our definition of the dimer embodied in our construction of the

partition functions (24) and (27) we may equate Keq in Eq. (16) to

directly measurable quantities.

I~e9PT k? (P- NOS>

The various components of K in Eq. (20) manifest themselves directlyeq

in the predicted dimer population (21) and make explicit contributions

to the observable equation of state (22).

The solid curves in Fig. 13 present Keq for Li2 and Na2 when the

entire contribution of singlet and triplet ground states are included in

Eq. (47). These are calculated using the classical expression in Eq.

(12). This is the equilibrium constant we would expect to extract from

Eq. (65) assuming that no excited electronic states of the atoms and

molecules influence our observations of T1AA in Eq. (64). Actually

electronic excitations seem to influence the thermodynamics above about

4000OK29 30 and our results at higher temperatures must be viewed as

only a partial analysis of the real alkali vapor. The calculations in

the range lO00-30000K should be quite reliable and are summarized in

Table III.

The dashed curve in Fig. 13 is the resultant K (1+ ) obtained if
eq 9

we exclude the 3E contribution B3 in Eq. (47). In this case Eq. (16)

only yields NAA = NAA (lZ+) and, analogcus to Eq. (22), imperfections

due to the missing triplet contribution AA (3 ) -3B3N 2 /(4V) must

yield non-ideal behavior in the monomer component of the equation of
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state. The effect is particularly pronounced in the Na2 vapor, where

the large negative contribution due to the free-continuum component

Q3(F) in Table II causes a 48% reduction in Keq at 10,0000K.

Fortuitously this just about cancels the positive QI(F) contribution due

to the attractive singlet state and it might seem reasonable to use the

usual approximation5 ,10 Qtot = Q1(B) + Q,(M) and neglect all

free-continuum contributions entirely. However in Table I we see that

Q3(F) is much reduced in Li2 and there is never any assurance that a

truncated summation over bound, or bound and metastable states, will

lead to an accurate Q The only rigorous procedure is to completely

evaluate both Q, and Q3"

Direct comparisons between this calculation and the K tabulated in
14

the JANAF Tables, which employ Dunham type expansions for the

molecular eigenvalues, are complicated by many factors, and especially

by the substantial discrepancy between the H0298 predicted by the

Konowalow et a115 potentials, and the old values of H0298 employed in

the Tables. Since this quantity is systematically subtracted from the

tabulated molar thermodynamic variables for the dimer, comparisons with

the JANAF Tables are best considered in reference 5.

Obviously the thermodynamics of Li2 is dominated by the deeply

attractive 1_+ state in Fig. 1, with De = 8450 cm 1. If we ignore this

state, and only consider tihe equilibrium properties associated with the

weakly attractive 3 potential (D = 292 cm- ), we can simulate theu e
behavior of a loosely bound dimer. This is done in Fig., 14, where the
solid curve gives the equilibrium constant obtained by using <B> = 3 in
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Eq. (47). The dashed curve results from excluding the continuum, and

using <B> B B(B). The qualitative features of these calculations can

be expected to mimic the equilibrium properties of, say, the group hIA

dimers, Be 2, Mg2 ' Ca 2, and the group IIB dimers, Zn 2, Cd 2 ) Hg2 ' of the

periodic table all of which have shallow X lr + van-der-Waal ground
9

states.

Because of the dominant contribution of the free-continuum

component B 3(F), the excluded volume introduced by the repulsive portion

of the 3 _+potential causes B3 to become positive at 5400 0K. This
U3

result could be anticipated from Fig. 8, where the individual rotational

contributions to Q3are negative for all k. For such a system the molar

thermodynamic properties, such as G 0 .lnQ 3, are ill defined. We could

content ourselves by defining the dimer in terms of the bound-state

portion of the partition function Q3 (B) in Tables I and I1, or possibly

by the combination, Q3 (B) + Q3 (1), and tabulate the resultant

thermodynamic variables accordingly. However, without an understanding

that the 'monomer' imperfections attributable to B (F) make a dominant

contribution to Eq. (22b) we could not hope to use the thermodynamic

tables to predict the observable properties of the vapor.

After this elaborate analysis of diatomic thermodynamics, let us

ask what constraints we should place on the use of current thermodynamic

tabulations, and what aspects of this polemic can be ignored?

Obviously at low to intermediate temperatures, when Q tot(B)>>

Qt (C), we can ignore the entire continuum and metastable problem. At

all pressures the conventional spectroscopic analysis, using the Dunham

expansion, should be adequate.
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At higher temperatures the importance of the continuum states

depends on the ratio NM/NA. At elevated pressures, with large

departures from the ideal gas law PV = NkT, the deviations from the

JAIIAF predictions can be substantial. Particularly if our goal is to

obtain a quantitative description of the equation of state our only

course is to follow the prescriptions in this paper and evaluate

accurate Qi partition functions using Eq. (12). Of course in this case

the analyses must be extended to include assessments of higher order

interactions in the vapor. For instance, it is known31 that the alkali

trimers are significantly bound. However, this only emphasizes the.need

for accurate evaluation of the dimer equilibrium, especially if we hope

to use apparent departures from the expansion in Eq. (15) to estimate

these higher-order effects.

At high temperatures and modest pressures, when 2KAA/NA is

appreciably less than one, we would still require accurate partition

functions to obtain a reliable equation of state. However, if the

thermodynamics is to be used merely to predict concentrations of

specific interiial quantum states A2(i,,v) with electronic-rotational-

vibrational energy Ei , , v , i.e.,

N AA U,1 N Aw

small deviations of NA = N [1-2NA/N] from 11Az N may often be ignored,

or adequately corrected using existing thermodynamic data. However, we

now require accurate evaluation of the molecular eigenvalues Ei.,v, and

at high temperatures we can expect an appreciable percentage of dimer

molecules to exist in the continuum sc: tes associated with the partition

32-I~ --32



functions qi,g(C) and Qi(C) in Eqs. (43) and (5). In the case of

van-der-Waals type molecules, such as the 3E state of Li2, this

temperature is not remarkably high, and, as seen in Table I, even

I1+for the deeply attractive E ground state of Li2 approximately 15% of

the molecules are metastable, and 12% exist in the free-continuum at

60000 K.
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V. SUMMARY AID RECO.IIENDAT IONS

At high temperatures the metastable state partition function,

Qtot(M), and the free-continuum partition function, Qt (F), are

important components in the total internal partition function, Q =

Qtot(B) + Qtot(M) + Qtot(F), for a diatomic molecule. We could choose

to represent the dimer simply in terms of the finite set of true

molecular bound states which define Qtot(B), but then we must be

cognizant of the fact that all continuum contributions to the molecular

phase space, Qtot(C) = Qtot(M) + Qtot(F), have merely been transferred

to a new definition of the monomer which can cause marked imperfections

in the activity of what we now choose to call the atom population.

Although the metastable component Qtot(rM) is always positive, the

remaining contributions of the continuum, Qtot(F), can be either

positive or negative with a magnitude that can match or exceed Qtot(M).

Thus there is no assurance that a dimer defined by the combination of

bound and metastable states, Qtot(B) + Qt(M), will yield any superior

results.

The safest course is to use the total partition function Qtot to

define the thcrmodynamic properties of the dimer since there is never

any doubt that the monomer is properly described as a perfect gas. In

any case it is imperative to use a mutually consistent scheme when

defining the dimer partition function for diverse species. Otherwise

substantial errors can be introduced into the calculation of equilibrium

distributions in mixed vapors.
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We offer two recomnendations for the calculation of thermodynamic

properties at high temperatures:
33

1) All high temperature calculations should begin with the interatomic

potentials vi(R) for each electronic state included in the partition

function. The spectroscopic parameters obtained from an expansion of

observed term values can be used as input to, say, an RKR potential32

for the state. However, it is imperative to use potentials, such as in

Fig. 2, which properly represent the dissociation process and therefore

introduce the correct density of states for the molecular continua.

2) We have shown5 that the classical approximation to the partition

function is extremely accurate at high temperatures. The simplest

course is to use the electronic potentials vi(R) in the classical

expressions and numerically evaluate the complete partition function Qi

in Eq. (12). This result contains all contributions to the molecular

phase space, including the metastable and free-continuum components.

The monomer is then rigorously represented as an ideal gas, and all

imperfections are embodied in our definition of the dimer. For shallow

van-der-Waal potentials, where Q may become negative, there will be

some subtleties in this procedure. However, the analysis we have

presented 5 in terms of virial coefficients for the monomer can

rigorously handle this occasional difficulty.
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Figure Captions

Fig. 1. Potentials for various Li2 and Na2 electronic states

calculated by Konowalow et al. 15

Fig. 2. Representative electronic-rotational potentials, vi,,(R), for

the X1E + state of Li2.
g

Fig. 3. Schematic comparison of a typical electronic-rotational

potential v i,,(R) and a pure centrifugal potential Yt(R) =

h2Z(Z+l)/mAR2 associated with noninteracting, i.e., ideal,

atoms. The phase-shift ni,.(E) for a pair of incident atoms

with relative kinetic energy e measures the departure from

ideal gas scattering. A positive ni, is associated with an

increase in the number of nodes in the scattering

wavefunction w'pnever vi,, is more attractive than y.. At

energies above the crossing of these two curves we expect a

negative phase-shift due to the exclusion of the interacting

atoms from the phase space available to the ideal atoms.

Fig. 4. The calculated bound, ,lO0,2 < 0, and metastable,

CllO0,r > 0, states are located in a plot of vlloo(R) for

the Z=100 state of Li 1(xl+). The vibrational levels v=0,lO
define the true bound state portion q1 ,100(B) of the radial

partition function q1,100 = qll 0 (B) + q1,10 0 (C). The total

continuum contribution q1 ,00(C) =ql'lO0( ) + ql,O0 (F) is
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divided into two components. The finite set of virtual levels

m=l,7 predicted to exist behind the rotational barrier

R < RBar , and with approximate eigenvalues 0< l,lO0 ,m

Cbar , define the metastable contribution q1 ,100 (M). The

remainder of the phase-space associated with regions to the

right, and above the rotational barrier is assigned to the

free-continuum component q1, 100 (F).

Fig. 5. Elastic scattering phase-shift n1 ,130(e) in the vicinity of

the predicted resonance at c1,130,m = 1949.50 cm 1 for the

=130 rotational state of Li2(xl
1 +). This is the 8th

resonance, m=8, which lies about 53 cm-l below the rotational

barrier for v1 ,130 (R) in Fig. 2. The figure presents the

exact quantum mechanical predictions for n1 ,130- An analytic

fit to n = (background) - tan-' [ Jr /(S-Em)I perfectly

reproduces the numerical results. The extracted width

r,0 = 0.0051 cm-1 predicts a predissociation lifetime
1,130,8

'1 ,130,8 10-9 sec. for this particular metastable state.

Fig. 6. Elastic scattering phase shift n1 ,130 (e) in the vicinity of

the the top-most resonance, m=9, for t=130 rotational state of

Li2(x1E+). Such resonances which lie close to the rotational

barrier (2057 cm- ) are often broad, e.g., r 3 cm-I and

C ;t012 sec., and are not well fitted to the simple

expression used in Fig. 5. However the width is still small

compared to kT and the integrated contribution to the

- 43 -



partition function is well represented by the WKB phase shift.

Fig. 7. Plot of =0 phase shift for Li2(X I ). Levinson's theorom

requires a threshold value 71 ,O/ = 42. The rapid fall-off,

i.e., pn/e << 0, will yield a large negative contribution to

the molecular partition function. This curve was calculated

using the WKB theory and is indistinguishable from the exact

quantal results (Shown at several points) except at energies

within a few cm- 1 of threshold. Such discrepancies will have

a negiigible effect on high temperatures equilibrium

properties.

Fig. 8. Using the classical theory, we show the contributions to q,

ql,Z(B) + q1,t(M) + q,.(F) for Li2
1(x+;) at 60000K. These

components must be weighted by the rotational degeneracy (2 +1

to obtain the total internal partition function Q= (2 .+l)
L

qi, "

total, -(B), (M), - (F).

Both the metastable (M) and bound (B) components are always

positive. However, the free-continuum (F) phase space often

produces a negative contribution, especially for high

temperatures and for shallow potentials. Only alternate

values contribute to Q, when the dimer is homonuclear.

Fig. 9. Contributions to q for Li2(b 
3 u) at 60000 K. See Fig. 8

for explanation.
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Fig. 10. Phase shift n 1 , 100 /Tr for L=100 state of Li2(X
1E). Quantum

theory requires a threshold value n1l 100 / = 11 due to the 11

true bound states shown in Fig. 4. The rapid rise to hi,100i

18 at c=lO00 cm- is a result of the 7 metastable states

predicted in Fig. 4. The exact quantum results (dotted) show

almost step-like increases in ni,100 by modular-t at each

resonance energy. The WKB phase shift (solid curve) passes

smoothly through this region and joins exactly with the

quantum phase shift above the rotational barrier.

Fig. 11. Phase-shift n 1 30/1rfor Z=130 state for Li2(XIZg). Fig. 2

shows that V1 ,130 (R) does not support any true bound states,

and the threshold value must be ni,1 30 = 0. A rapid positive

increase occurs between 600 cm-I and 2000 cm-1 where the

potential supports the 9 metastable states located by the

step-like structure in the exact quantum phase shift (dotted).

Fig. 12. Phase shift n1,180/n for 9=180 state of Li2(XI +).

The potential v1 ,180 (R) in Fig. 2 indicates that neither

bound, nor metastable states exist, and 1i,180 (0) = 0.

Between threshold and c=7000 cm-l there is a positive

gradient, an/9c > 0, and the resultant partition function

q1,180 F q1 ,180 (F) will be positive for temperatures up to

10,0000K and higher. Eventually the negative gradient

portions of ni,180 will tend to diminish qi,180 until, for

-45 -
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definite temperature, there is a perfect cancellation, since

fO'dean/3n = 0 as required by Levinson's theorom.

Fig. 13. Calculated equilibrium constant K = -<B> for Li2 and Na2.eg 2 2
The solid curve is the result using the complete partition

functions for both the singlet and triplet states. The dashed

curve shows the effect of neglecting the b 3 + state. This
u

deviation will be manifest as a residual second virial

correction which must be applied to the alkali monomer if one

hopes to reproduce the exact equation of state for the vapor.

Fig. 14. Calculated equilibrium constant K (3E+) for the triplet state
p u

of Li2. The solid curve is obtained by assuming QTOT = Q3 and

is meant to mimic the qualitative behavior we would expect for

a shallow van-der-waals type dimer. The bound state

contribution K (B), shown by the dashed curve, remains
p

position for all T, but the combined quantity Kp = K p(B) +

K (C) predicts a negative concentration of dimers for T
p

55000 K. This effect can be properly described in terms of

modified activity for the monomer.
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Barriers to Internal Rotation in Inorganic Species

Stanley Abramowitz

ABSTRACT

Barriers to interal rotation have been determined using infrared and

Raman spectroscopy for some inorganic species. The determination of these

barriers will be described for a high barrier (BCP 2SH) a medium barrier

(PF5, AsF 5 and VF5 ) and a low or zero energy barrier (B(CH3 )3 ).



INTRODUCTION

The determination of the energy barriers to internal rotation and the

vibrational energy levels associated with these barriers are very important

for the computation of thermodynamic functions. This paper will illustrate

the experimental determination of barriers to internal rotation for the

species BC2SH (D), XF5 where X = P, As or V, and B(CH3)3. These represent

a high, medium and low (zero) barrier respectively. The techniques of

vibrational spectroscopy were utilized to determine the relevant vibrational

energy levels. In the case of B(CH3)3 a comparison of the third law

entropy with an experimentally determined entropy was made.

BC 2SH

The BCk2SH molecule and its deuterium analog have a planar Cs symmetry.

This symmetry has 7a' and 2a" modes (1). (It should be noted that another

Cs structure is possible with a av plane bisecting the CkBCk angle.

This structure has 6a' and 3a" vibrations.)' The vibrational assignment for

the BCk 2SH and BCZ2SD species is given in Table 1. (Where B and/or Ck

isotope effects have been observed the frequency given is for the lB 35 Ck2SH

CD) species.) This assignment was arrived at through interpretation of the

infrared and Raman spectra and the boron, chlorine and hydrogen vibrational

isotopic shifts. The vibrational assignment for BCZ 2SH and BCk 2SD was used

to calculate the force field for these species. The computed force field

successfully predicts the isotopic splittings for these species (1). The

off diagonal force constants were taken from BCX3 (2). Other off-diagonal

force constants were used only if they improved the overall frequency shift.

The syimetry coordinates and force field and the assumed geometric structure

for the BCk2SH () species can be found in reference 1.
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The SH (D) torsional mode shows a hot band structure in the infrared

spectrum with 0-1, 1-2, 2-3, and 3-4 modes observed for both species. Spectra

observed at temperatures higher than ambient verified the assignments.

These modes could be fit with either of two potentials

V = A( 4 - BZ2), where Z = 24 or,

V = (V2/2) (l-cos2f)

This is because the barrier is quite high and the first potential

is simply (l-cosnf) with a truncated power series substituted for cosn4.

The A(Z)4 _ BZ2 which is most useful for ring puckering modes does not

require a knowledge of the molecular dimensions. This is an advantage

for BCR2SH (D) since experimentally determined bond lengths and angles

are not available. The V2/2 (l-cos2o) which requires a knowledge of

the molecular dimensions is a better model for the molecular motion involved

in the SH(D) torsional mode, v7.

For this potential the moments of inertia are computed from the assumed

moleculer dimensions. Table 2 presents a summary of the calculated and

observed vibrational frequencies for the torsional vibrational modes about

the B-S bond. As one can see the barrier is quite high. The more physically

meaningful potential, V=(V 2/2) (l-cos2f) yields a barrier of about 4200 cm
-1

for these species.

XF5 where X=P, As and V

All of these species have been shown to be trigonal bipyramids having

D3h structure. The F atom interchange in these species can be accomplished

through the motions along the E' v7 coordinate which can lead to axial equatorial

interchange through a C4v intermediate (3,4). It was therefore very interesting

to have obtained the Raman gas phase spectra of these species in order to

directly observe the hot band structure. This vibrational hot band structure

must be interpreted using a doubly degenerate harmonic oscillator function (3,4).

-2-
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The Hamiltonian for axial-equatorial interchange is given by

H = (ah2 /m) I / 2 HD

where HD = [1/2 (Px
2 + Py2 )2 + 1/2(x2+y2)B(x3_3xy 2 )+C(x2+y2)2

where B and C contain a term which is a scale factor involving the reduced

mass involved in the v7 vibration and the harmonic force constant describing

the v7 vibration. One can produce a table of dimensionless eigenvalues for

this potential (4), where the barrier for F atom interchange is -(1/32)B 2 . The

important feature of this potential is that it requires (n + 1) vibrational

levels where n is the vibrational quantum number.

The advantages of working with the above reduced Hamiltonian are (1) one

need not calculate an explicit reduced mass and (2) there is one less

potential constant to vary than in the explicit form. Thus a fit of the

reduced Hamiltonian H to observed energy levels will yield B, C and the

scale factor and the barrier to axial - equatorial interchange.

The observed and calculated v7 transitions for PF5, AsF 5, and VF5 are

given in Tables 3, 4, and 5 respectively. The barriers decrease monotonically

from about 1050 to 475 cm- . More features are observed in VF5 then AsF 5 and

more in AsF 5 then PF5 because of the Boltzmann factor. The vibrational

frequency decreases from 175 to 133 to 108 cm in going from PF5 to AsF 5 and

VF5. Therefore, the largest number of vibrational levels are populated in

VF5; with less in AsF 5 and even less in PF5 . Further features of the dynamics

of axial - equatorial fluorine atom interchange can be found in the references

cited (4).
B(CH 3 )3

The third law entropy of B(CH3)3 computed from the available vibrational

assignment and inertial parameters assuming free rotation of the CH3 groups

is not in agreement with the experimentally measured entropy (6,7). (The

-3-



difference is such that any barrier to rotation would increase the discrepancy).

Since the Raman gas phase spectrum for this species had not been previously

observed a reinvestigation of the vibrational spectrum was initiated in

order to better characterize the vibrational assignment. Boron trimethyl

has a planar BC3 skeleton. Conventional point group theory would indicate

an average D3h symmetry for freely rotating CH3 groups with 20 normal modes.

However, the observed infrared and Raman gas phase spectra showed fewer

features. The observed spectra indicated that the G324 symmetry group based

upon the molecular symmetry (MS) group theory first proposed by Lonquet

- Higgins (8,9) was necessary. Since the discussion of the vibrational

structure in terms of the G324 group and its relationship to D3h has not

been previously given a brief discussion of the vibrational dnalysis follows.

Finally a program developed to compute the thermodynamic functions for

anharmonic oscillators was utilized. Somewhat better agreement between

the computed third law entropy and that expqrimentally determined is

obtained.

The vibrational modes of B(C[13)3 are shown in Table 6. For a D3h

symmetry with freely rotating methyl groups one expects 20 normal modes.

The A, E' and species are Raman active while the A2 and E' species are

infrared active. If one considers the G324 molecular symmetry group

there are 15 normal modes of which the A1 , I, G and E are Raman active while

the A3, I, G and E2 are infrared active. Table 5 shows a correlation diagram

between D3h and G324 symmetries. It should be noted that G324 requires

8 Raman active modes and nine infrared active modes while D3h symmetry

requires 13 Raman active modes and 11 infrared active modes. The

significant feature of the MS group is the relative simplicity of the

-4-
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expected vibrational spectrum. The observed infrared and Raman vibrational

spectra confirm the MS symmetry group as the better representation of this

molecule's symmetry. The BC3 asymmetric stretching frequency v,5 for D 3h or

"Mfor G324, symmnetries respectively shows a l0 Bli1B isotope

shift of about 30 cm- . This shift is to be expected for a planar BC3 skeleton.

(The corresponding mode in the boron trihalides also show a similarly large

isotope shift.) Three out of the four A 3 modes have the same P-R separation

which is to be expected for these parallel transitions. As is to be expected

these modes are not in the Raman spectrum. The three A, modes at 2916, 1291,

and 678 cmnf 1 are all polarized and are absent in the infrared spectrum as

required by the selection rules. The two 6 fold degenerate vibrations v and

'2have rather broad unstructured contours in both the infrared and Raman

spectra. In summary the infrared and Raman spectra are consistent with a

G34molecular symmetry assignment. There are not enough vibrational bands

observed to justify a D 3h assignment for the B(CH 3)3 molecule. A summary of

the vibrational assignment is given in Table 7.

A calculation of the third law entropy of B(CH3)3 can be made

using the rigid rotor harmonic oscillator approximation and by assuming

free rotation of the three methyl groups about the B-C bonds. The

vibrational assignment given in Table 7 is used together with the bond

distances and angles determined using electron diffraction techniques by

Bartell and Carroll (10). An entropy of 67.83 cal/K at 199.92 K is computed

assuming free rotation of the CH 3 groups. This compares with the measured

value of 68.29 + 0.10 cal/K (1). The fact that the measured entropy is

greater than that computed using spectroscopic data indicates essentially

free rotation of the methyl groups. Any significant barrier to the rotation



of the methyl groups results in a lowering of the calculated entropy and

therefore an increase in the discrepancy between the measured and computed

entropy.

A computer program has been written to compute the effect of

anharmonicity on the vibrational contribution to the entropy. In this

computation all vibrational states were assumed to have a 1% anharmonicity

(other values of the anharmonicity can be chosen for each vibration). This

computer code obtains a state sum by counting those levels whose partition

coefficient exceeds a chosen value, in this case 108. (A choice of ll does not

effect the computed entropy.) An increase of 0.03 e.u. at 199.92K is obtained in

this manner. The projected difference increases for higher temperatures.

This program will be especially useful in computing estimated

errors in entropy caused by vibrational anhamonicity. It will therefore

be useful for comparing third law (statistically calculated) entropies

with those derived from thermodynamic measurements. By identifying

expected differences the evaluation of thermodynamic data particularly

for high temperature species should be expedited.

-6-



REFERENCES

1. Kirklin, D. R., Ritter, J. J., and Abramowitz, S., J. Mol. Spectroscopy,

67, 322 (1977).

2. Levin, 1. W., and Abramowitz, S., J. Chem. 43, 4213 (1965).

3. Bernstein, L. S., Kim, J. J., Pitzer, K. S., Abramowitz, S., and Levin, 1. W.,

J. Chem. Phys., 62, 3671 (1975).

4. Bernstein, L. S., Abramowitz, S., and Levin, I. W., Chem., Phys. 64,

3228 (1976).

5. Holmes, R. R. Sr., Deiters, R. M., and Hora, C. J., J. Chem. Soc.

Commun. 175, 1974.

6. Furukawa, G. T. and Park, R. P. National Bureau of Standard Report

3644 (1954).

7. Woodward, L. A., Hall, T. R., Dixon, R. N., Shepard, N., Spectrochim.,

Acta 15, 249 (1959).

8. Longuet-Higgins, H. C., Molecular Phys. 6, 445 (1963).

9. Bunker, P. R., Molecular Symmetry and Molecular Structure, Academic

Press, New York (1979).

10. Bartell, L. S., and Carroll, B. L., J. Chem. Phys. 42, 3076 (1965).

-7-

-.- . --



Table 1. Vibrational Assignment BC 2 SH and BC 2 SD

Vibrational Approximate
Assignment Description BCt2SH BCR2SD

Vi SH (D) str. 2602 1863

v2  BC12 asymm. str. 994 999

v3  BS str. 900 900

A' v4 SH(D) bend 779 599

V5  BCt 2sym str. 461.8 459

v6  CBC bend 255 255

v7  CBS bend 230 227

A' v8  CI o.o.p. 474 475

V9  SH(D)torsion 386 283

The 0-1 frequency is given.

Hot band transitions are given in Table 2.
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Table 3. Observed and Calculated Transitions for PF5

Calculated Calculated Observeda

(cm "I ) (cm I ) (cm" )
Transitions Symmetry B = 0.07 B = 0.075 Raman

0 +1 Ai E' 175.0 175.0 175

1 2 E, Ai 161.8 159.8 159

1 "* 2 E' "E 177.9 178.0 178

24"+3 A E' 164.8 163.5 164

2 3 Ai  Ai  192.7 194.0 194

2 3 Ai -*Ai  198.9 199.4 b

2 3 E' + E' 148.8 145.3 b

2 +3 Ai -*Ai  177.5 175.7 c

2 3 E' -*A 182.9 184.3 180

Barrier

height

(cm) --- 1139 995

a The additional peaks at 168 cm l and 187 cm-l probably correspond to OP and
RS maximum, respectively.

b Not observed.

c This feature is probably obscured by 0 1 1 transition.

'I
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Table 4. Observed and Calculated v7 Transitions for AsF5.

Calculated Calculated Observed

(cm1 ) (c-I1 ) (cm1)
Transition Symmetry B = 0.07 B = 0.075 Raman

0 1 Ai - E' 132.8 132.8 133

1 .2 E' Ai 122.8 121.2 121

1 * 2 E * E' 135.0 135.1 136

2 3 A- E' 125.1 124.1 125

2 3 Ai A 146.2 147.2 148

2 3 A- Ai 151.0 153.7 157

2 3 E' E' 112.9 110.2 113
2.3 E'.A{ 134.7 133.3 a

2 - 3 E' - Ai 138.8 139.9 141

3 .4 Ai  A 117.6 116.2 118

3 * 4 E' - E' 126.7 125.3 129

3. 4 E' E' 161.7 165.6 166?

3 4 A +Ai 96.5 93.1 b

3 4 Aij E' 105.4 102.2 b

3 4 Ai E' 140.5 142.5 143

3 4 Ai Ai 91.7 86.6 b

3 .4 A- E' 100.7 95.7 b

3 4 A -E' 135.8 135.9 c

Barrier

height

(cM1) --- 864 755 ---

a Obscured by 0 1.

b Not observed.

C Obscured by 1 - 2(E' - E').

A



Table 5. Observed and Calculated v7 Transitions for VF5 .

Calculated Calculated
(cm-1) (cm-1) Observed (cm- )

Transition Symmetry B = 0.08 B = 0.09 Infrareda  Ramanb

0 1 A' E' 107.4 197.3 108

1 2 E'4 A 96.8 94.0 91.9 93

1 2 E I E' 109.4 109.4 109.4 108

2 3 Ai E' 99.3 97.0 98.1 100

2 3 R Ai - Ai  119.5 119.5 c 120

2 4 3 R Ai - Ai 126.6 131.6 c 126,120

2 3 E' El 86.7 81.6 85.8 5,83

2 3 Ai  Ai  107.0 104.2 103.6

2 3 E' Ai 114.0 116.2 --- 114

Barrier

height

(cm'l) --- 539 428 ---

a Reference 5.

b There are additional Raman features which can be attributed to 3 - 4

transitions. Limitations in our calculations did not enable us to
determine these transitions.

C Only Raman active.



Table 6. Correlation Table for D3h- G324 and for B(CH3 )3

Point Group Molecular Symmetry Group

D3h 24

Species Vibration Activity Mode Vibration Species Activity

A1  I R(p) CH3 stretch 1 A1  R(p)

2 CH3 deformation 2
3 BC3 stretch 3

A2  4 IA CH3 stretch 4 A4  IA
5 CH3 deformation 5

6 CH3 rock 6

A2  7 IR CH3 stretch 7 A3  IR
8 CH3 deformation 8
9 CH3 rock 9

10 BC3 deformation 10

El 11 IR,R CH3 stretch 1 1 IR,R

12 CH3 stretch..

13 CH 3 deformation---- 2

14 CH3 deformation- - /

15 BC3  stretch.,""16 CH3 rock 3G IR,R

17 BC3 deformatio

E" 18 IR,R CH3 stretch ", 14

19 CH3 deformatio ,15 E2  IR,R

20 CH3 rock



Table 7. Vibrational Assignment of B(CH3 )3 .According to G324 MS Group

Species Vibration IR Raman Inactive (Estimate)

Ai 1 2916
2 1291

3 678

A2  4 2915
5 1400

6 900
A3  7 2914

8 1303
9 975

10 326
1 11 2984 2985

12 1450 1445
G 13 867 868

E2  14 1184 a 1162

1154.
15 310 314

a 10B, 11B isotopic splitting



Studies of the Reactions of M(g) + S02

S. Abraniowitz and L.W. Sieck

The matrix isolated infrared spectra of the products of reactions of

M(g) where M= 7Li, 6Li, Na and K with SO02(g) have been observed. Most of

the effort has been directed towards the Li + SO system. Absorption bands

in these spectra have been assigned to a symmetric and asymmnetric stretching

mode of SO 2* There are other absorption bands in the spectra which are due

to M-Omotions. Isotopic studies utilizing S 0 and S 0 08 as well as Li

and 7 iare expected to elucidate the structure of the MSO02 species. In particular

we are hopeful that our results can indicate whether the M is bonded to the

S or 02.

The results of this study will enable the calculation of the thermodynamic

properties of the MSO 2 species. Species such as these may be important in

the corrosion of turbine blades by high temperature gases containing sulfur

oxide species and trace metals.




