
AD-AI14 857 HARVARD UNIV CAMBRIDGE MA AIKEN COMPUTATION LAS F/0 12/2
A LOGARITHMIC TIME SORT FOR LINEAR SIZE NETWORKS.(U)
MAY 82 J H REIF, L B VALIANT N0001-80-C-0674

UNCLASSIFIED TR-13-82 NL

IEIIIIIIIIIIl
IIIhEEhh..h

: nlllll=L
- L ~ 32 I 2

1.-HI.II III,
1_.25 -lf~ f16

MICROCOPY RESOLUTION TEST CHART

NA''IN" I LAk 01 Q AMIAR() - A

SC j I I 7L AS~.t& I (ATI 1' 0,or T~lw PA. GE I P%C e l * f- I

I.R OT REPORT DOCUMENTATION PAGE RA SRCiN

.RE O TNUNbiN
2. GOVT ACCESSION NO. 3. R CIPINT S CATALOG NMUM r

4 TITLE (and S.hitlo) S YEO EOT&PRC

A Jboqar it hii TIimre Suit foi 1int!L'Jr - i ze TIechn ical Re.poit
Networks

6. PERFOR~MING ORO. REPORT NUMBECR
TR- 13-82

7. AUTHOR~o) S. CONTRACT OR GRANiT NUMBER(it)

John ii. Roeif N00014-80-C-0674
Leslie k;. Valiant

S. PERFORMING ORIGANIZATION NAME AMU) ADDORESS 10. PROGRAM ELEMENiT. PROJECT. TASK
AREA A WORK U41T NUMBERS

Harvard UniverSity
Cambridge, MA 02138

11. CONTROLLIN~.. OFFICE NAME AND ADDRESS 12. REPORT DATE

office of Naval Research May, 1982
800 North Q~uincy street 13. HUMOER OF PAGES

Arlington, VA 22217 24
4. MONITORING AGENCY NAMIE & AODRESS(it dillaront from, Confrotlinl Office) IS. SECURITY CLASS. (of tbo. repeet)

same as abhove

IS&. OCCLASSIFICATIONIOWNGRAING
SCHED ULEC

6 . DISTRIBUTION STATEM.ENT (of this Report)

00 unl imi ted This documnt has been a:pprovedfo pblc elase n sale;.t
distIton is Unlimited

17. DISTRIBUtION '.T ATEMLNT (olib L .bistract entered In Block 20. II difl..at hrow Repast)

U1T11 im tad b'?Pn OPPro-ied

~nl imit--2 sale; itg

IS. SUPPLEMN !'ANY NOTLS

It. KEY WORDS (Con-tflu@ an r.eers side #I necessary and identify by' block number)

sortingq netwoiks , pila],,Ie sort , probabilistic algorithm, Cube
('oril cted (('yclos

L-0 20 ABSTRACT (Cciriin,* rin 'rver* side if necoevery arid tdentltp by~ block nughbot)

DD.' OA"? 1473 ftlItIONOF 1.11V6StSOUSOLETC

0411Y C A AT ION OF TN I?.vt

~YC&oil

_6t0'ITY CL'AssirICAIION OF THIS PAII-h.. fPew Fnf.,,d)

20. We give a probabilistic algorithm for sorting on constant valence
networks of N nodes such as the cube-connected cycles. We prove
that for any input set of 0(N) keys, the algorithm's execution
time is greater than a constant times log N with vanishingly low
likelihood. Since this constant factor is small our parallel
sorting algorithm may be practical to implement.

StcqiT Ct A~tI~.ATONOF THIS PAGE(W0~en PoI). ti'.

A LOGARITHMIC TIME SORT
FOR LINEAR SIZE NETWORKS

John H. Reif
Leslie G. Valiant

TR-13-82

May, 1982

S MAY26 982.

A

f.r p.b)ic , cx4 isakc it
c i t--l . . . i l

A Logarithmic Time Sort for Linear Size Networks

John H. Reif and Leslie G. Valiant

Aiken Computation Laboratory
Division of Applied Sciences

Harvard University, Cambridge, Massachusetts

ABSTRACT.-- We give a probabilistic algorithm for sorting on constant

valence networks of N nodes such as the cube-connected cycles. We prove

that for any input set of O(N) keys, the algorithm's execution time is

greater than a constant times log N with vanishingly low likelihood.

Since this constant factor is small our parallel sorting algorithm may be

practical to implement.1

A cesson 1jor

pTIC TX Co

Tastraiut ionl _ -

C,00% -AvalUjbi3Aty Cod-as

ms Special

This work was supported by the National Science Foundation Grant
NAS-MCS79-21024 and the Office of Naval Research Contract N00014-80-C-0674.

1. INTRODUCTION

1.1 The Sorting Problem on a Network

This paper concerns the problem of parallel sorting on a fixed

connection netWork G= (V,E) of N nodes V= {v0 VNl}. Each node

vi EV is initially input a set Xi of c0 distinct keys. Thus the set

X= X0 U ... U XNi of all keys input is of size coN. We assume a relation

< total ordering X. The network sorts X by routing each key xE X to

node v. where j= trank(x)/c and rank(x)= {x' Xlx' < x}j. Thus each

sorting problem on network G can be viewed as a distributed routing

problem. Each key xE X is considered a packet which must be routed from

its initial location v., where xE X., to the destination node v. where

the index j = krank(x)/c must also be computed distributively.

1.2 Assumptions

We assume each node v. E V contains a single sequential processor1

with local storage for O(log N) packets. These processors execute

synchronously. At a single step each processor may make an elementary

operation such as a key comparison, and cause transmission of a packet

across each departing edge. Each processor uses randomization in the sense

of Rabin [76] and Solovay and Strassen [77). It is allowed on each step to

choose random bits independently of the probabilistic choices of any other

processor.

With these assumptions, the routing required to sort on network G

requires time at least its dimeter max u'vFv{dd is the length of the

shortest path from u to v}. If G has constant valence, then G has

diameter P(log N). Thus P(log N) is a lower bound for the time to sort

on any constant valence network of N processes.

* U n_ -

-2-

1.3 FLASHSORT

Our FLASHSORT algorithm for parallel sorting uses a probabilistic

divide and conquer technique similar to the popular sequential sorting

algorithm QUICKSORT of Hoare [62]. QUICKSORT is popular because it can

be practically implemented and is very fast. Sedgewick [75] shows that

QUICKSORT takes expected time less than cN log N for a small constant c,

given N randomly permuted input keys. FLASHSORT has similar advantages

which we feel will lead to its practical utilization on distributed

networks.

FLASHSHORT is executed in 4 phases sketched below:

I. (Random Routing) Route each key xE X to a randomly chosen node.

II. (Splitter Directed Routing) Choose a random key JE X. Use it

to split X-{c} into disjoint subsets {xEXlx< G) and {xEX[o<x}.

Route these two disjoint subsets to disjoint subnetworks, and recursively

apply II. This gives a rough sort of the keys X into disjoint subsets

of small cardinality.

III. (Rank Computation) Compute rank(x) for each key xE X.

IV. (Rank Directed Routing) Route each xE X to node v

1.4 Organization and Results

Section 2 defines the CCC network and a related network CCC+ on

which we implement FLASHSORT. Section 3 describes the random routing in

phase I and a probabilistic strategy for routing in phase IV proposed by

Valiant and Brebner, [81]. Section 4 gives the details of the splitter-

directed routing in phase II. Section 5 describes the rank computation in

phase III. Sections 6-11 provide a probabilistic analysis of phases II

-3-

and III; we show that for any c, c0 above a small number, 3c';Ol such

that phases II and III take time less than c log N with probability

greater than 1- N- c '. Similar bounds on time have been proved by Aleliunas

[821 and Upfal [821 for the packet routing in phases I and IV. Thus we

conclude that on any given input, FLASHSORT achieves asymptotic optimal

time c log N, for a small constant c, on all but a vanishingly small

number of executions. Section 12 describes some modifications to FLASHSORT

which make it more practical when cO is small.

1.5 Previous Work

All previous algorithms for sorting N keys on a constant valence

2fixed connection network of N processors require time Q(log N) . The

parallel sorting algorithm of Batcher [68] achieves this time bound on

various N node constant valence networks such as the CCC of Preparata and

Vuillemin [81].

For less realistic models of computation faster algorithms are known.

Several years ago J. Wiedermann observed that QUICKSORT takes time c log N

with high likelihood on a parallel decision tree model with N processors.

Reischuk [81] has a similar result for parallel random access machines.

Our algorithm follows the randomized routing ideas introduced in

Valiant 182]. In the proofs heavy use is made of the critical path

technique developed by Aleluinas 1821 and Upfal [82].

-4-

2. NETWORK DEFINITIONS

Fix some number n >1. This section defines two constant valence

networks derived from the hypercube of dimension n. These networks have

the same node set V= (a,i) IaE{0,}n, i {0... ,n-l}} with cardinality

N=n2. For each vEV let address(v) =L and stage(v) = i where v= (ot,i).

Let cli] be the i-th bit of ct and let W'=EXT(a,i) be identical to a

except a[i] is the complement of C[i]. Let edge (u,v) E V x V be

internal if address(v) = address(u) or external if address(v) =

EXT(address(u),stage(u)+l). Also, let (u,v) be forward if stage(v) =

(stage(u) +1) mod n, static if stage(v) = stage(u), or reverse if

stage(v) = (stage(u)- 1) mod n.

The Cube Connected Cycles (CCC n) network of Preparata and Vuillemin

[81] has node set V and exactly all forward-internal edges, reverse-

internal edges, and static-external edges. For technical reasons this

paper will assume a network previously defined in Upfal [82] which we

call the CCC+ network. It has node set V and exactly all forward-internal
n

edges, reverse-internal edges, and forward-external edges. Thus the CCCn+n

and CCC+ differ only with respect to the stage portions of externaln+

edges. Clearly any algorithm requiring routing on the CCCn network can

be simulated on the CCC network with at most a factor of 2 time increase.
n

+
(Since the transmission in CCC of a packet x across a forward-externaln

edge (u,v) can be simulated in CCCn by transmission of x across

forward-internal edge (u,w) followed by static-external edge (w,v).)
+

Note the CCC and CCC are both naturally related to the hyper-
n n

cube H of dimension n. Intuitively, for each a E{0,i} n the set ofn

nodes {uE Vladdress(u)- c} can be considered to be a "supernode" of Hn

Each such "supernode" is connected by external edges to n other "super-

nodes" {vE Vladdress(v)- EXT(a,i)} for i0,...,n-l.

-5-

3. PACKET ROUTING ON THE CCC+

n

This section briefly describes the probabilistic packet routing algo-

rithm of Valiant and Brebner [81] as applied to the CCC+ by Upfal [82].

This routing is required to implement phases I and IV of FLASHSORT.

We require that each node vE V contain for each departing edge e

a queue Q of packets to be transmitted across edge e. Each node also
e

contains its address and stage posted as local variables.

Let X be the set of coN packets to be routed, where each packet

xEX is initially at a given node Ix EV and we wish x to be routed to

given destination node D E V. The algorithm has two phases:x

A. (Random Routing) route x from I to a node R E V with randomx x

address.

B. (Fixed Destination Routing) route x from Rx to Dx

The random routing of x in Phase A is accomplished by repeating

for n stages the transmission of x across a randomly chosen departing

forward edge (i.e., transmit x across the forward-internal edge or

forward-external edge with equal probability). Phase B repeats for n

stages the following: if x is currently at node v #D x with j =stage(v) +1

and address(v)[j = address(Dx)[j), then x is transmitted across the

forward-internal edge departing v and otherwise x is transmitted across

the forward-external edge departing v. This takes the packets to the

correct addresses. Finally, they are pipelined to the correct nodes in

the cycles.

We have not yet specified the management of the queues of packets at

each node. Suppose the priority of packet xE X is assigned to be the

number of stages of phases A and B so far accomplished, and we allow packet

x to be transmitted from each node v E V only after all packets of lower

'i Aa 1*

-6-

priority are transmitted from v. Aleliunas [821 and Upfal [82] show:

THEOREM 3.1. For any c above a smalZ constant number, 3c' > 1

such that the execution time of phase A and B exceeds cn with probability

at most N-c
.

4. SPLITTER DIRECTED ROUTING

This section describes the splitter directed routing in phase II of

FIASHSORT. Let X[X] = X be the set of c0N keys input to FLASHSORT,

where X is the empty string. We index certain subsets of X by

{0,i1 <n+ l >, the set of binary strings of length at most n. Phase II is

executed in stages i=0,...,n-1 where for each BE {O,}i if X[B] 0

we choose a random key c[] E X[6] which splits X[B] - {0[]1} into dis-

joint subsets X[aO] = {xEXI[Ix<G[B]} and X[al] = {xEX[B]aIc[] <x}.

(The intention is to route the elements of X[8] to the subcube specified

by a.)

* If 0[8] is never defined for some 8E{O,l}< n> then phase II has a

blockage and cannot be completed. This event is shown in Section 8 to have

vanishingly low probability. If blockage does occur, then the execution of

* phase II will exceed a time limit c4n (determined in Section 11 to hold

with high likelihood assuming no blockage) and phases I and II must be re-

executed. The probability of blockage in phase II the next time is independent

of the first event of blockage in phase II. If there is no blockage, then

phase II yields a rough sort of the keys X into a total of 2n l subsets,

where 2n disjoint subsets are of expected size less than c n with form

Xal where I and there are also 2 -i singleton sets of form

-7-

{c[B]}, where {0,i1} . Note that if a, a'E {0,i1} where string a

precedes c' in lexical order, then xEX[a], yEX('] imply that x<y

in the total order.

We also define a recursive subdivision of the node set V, where we

index subsets by binary strings in {0,l} For each BE {O,1} n, let

V[8] = {vEVIaddress(v) = and stage(v) =0). For each 6E {0,l} <n > let

V[8] = {v v1 is a prefix of address(v) and 8 = stage(v)}. Let the

root r[] of V[] be the node with addres 50n
- IB I and stage lei.

Note that for II < n-l, r[a] has a departing forward-internal edge

entering riSO] and also a departing forward-external edge entering r[Pl].

Also note that V[O] and V[I] are disjoint.

For each i= 0 ... n let V. = {vEVIstage(v) = i}.1

We assume phase I routes each key xE X to a random node vE V0

and that the set of keys queued at each vE V0 are randomly ordered.

The stage of key xE X executing phase II is the stage of the node where

x is currently visiting, except we define the stage of x to be n in the

case x has just completed stage n-l (and so just been routed from a node

of stage n-l to a node of stage 0). In the routing of phase II each of the

keys xEX[B] visits only nodes in V whose address is prefixed by 6, once

x has passed stage IBI.

Initially each vE V[B] is said to be inactive, and transmits no keys

of stage JBj. We activate r[8] by choosing G[B] to be a particular key

in X[a] reaching the root node r[8] so that a[S] is a random element of

X[8] (e.g., we may let 068] be the first key of stage 181 reaching r[8I).

By a method described below, a copy of C[] is routed to each node vEV[S].

Node v becomes activated when this copy reaches it. It is able to transmit

keys of stage 161 only after it has been activated.

• g . . .- ,,, f, , , - i , i iiA

-8-

Let xECX8]- {a[]1} be a key at stage j81 and visiting a node vEV[81.

The key x remains at node v until v has been activated. When v has been

activated, if x < Y[8] then x is transmitted across the forward-internal edge

departing v to a node in V[80], and otherwise if x> a[8] then x is trans-

mitted across the forward-external edge departing v to a node in V[61].

Thus after all keys in X have completed stage n-l, we have for

each 8 E{0,i~
n routed the keys X[8] to the node (8,0).

Now we give the details of how, for any 8 E{0,i}<n> , copies of

08] are routed to each node in V[F]. A copy s of aI] is called

a splitter. For technical reasons (e.g., so that we do not confuse the delays

due to key routing with those due to splitter routing) a splitter is

considered a different type of packet from a key. (N.B. The type

{key, splitter} of a packet can be specified by a boolean flag attached

to the packet.) The stage of a splitter s copied from c[8] is fixed to

be 181 and does not vary during routing.

The splitter routing for 8 begins at root node r[8] when 0[8]

is chosen. Splitters s, s' copied from [a8] are transmitted across

the two forward edges (i.e., the forward-internal edge and forward-external

edge) departing from r[8].

Suppose node v E V receives a splitter s from an edge e entering

v. If e is a forward edge and stage(v) > 0 then v transmits a copy

of s across each of the two forward edges departing v. If e is

a forward-external edge, then v transmits splitter s across the reverse-

internal edge departing v in addition. If e is a reverse-internal edge and

stage(v) >stage(s) then s is transmitted across the reverse-internal

edge departing v.

-9-

THEOREM 4.1. Each vEV[] is activated in 2(n-j81-R(v)) steps

after r[8] has been activated (where t(v) =max{kjo is a suffix of

address (v) }).

Proof. Recall that address(r[8]) =aon 'I and note that

address(v)= 870£ (v) where Y {0,11k and k= n-18-X(v). Splitters

copied from o[a] are routed from v0 - r[8] on forward edges

(v0,v1),...,(vVk) and then on reverse-internal edges (VkVk+ 1

(v ,vk). For i- 1,...,k let (vi ,v.) be the forward-internal
2k-1'2k i-1 i

edge departing vi_1 if address(vi_1) EI[I+i]= address(vi)[I[I+i] and

otherwise let (vi_1 1v i) be the forward-external edge departing vi_1 .

Thus address (v2k) = address (vk) = address (v) and stage (v2k) = stage (vk) - k

= (stage(v) +k)-k= stage(v). Hence V2 k=V.

5. THE RANK COMPUTATION

This section describes the rank computation done in phase III of

FLASHSORT.

We show:

THEOREM 5.1. The rank computation can be done in time

4n+3 t max (lX[s]I)]

BE{0,11n

Proof. We begin by sorting the keys of X[a] foreach 8E{0,i}n. This easily

can be done in time 21X[18] by a parallel bubble sort using the cycle of n

nodes {(8,0),...,(8,n-l) connected by internal edges.

_L7-
Next we compute at root r[B] the value IX[8]I, for each OE {0,l}<n>.

This is done in n stages i=O,...,n-1 using the identity 1XI1]I = IX[00]I

+ IX[8l] + 1 for each aE {0,1)i. Note that the two forward edges departing

r[S] enter both ri0O] and r[8l], so the roots form a binary tree of depth

n. The required sums on this tree can be done in time 2n using carry-adder

logic [Tung, 72] to stream the bits of partial sums up the tree from nodes

riBO0 and r81] to node r[] for each aE {0,1 n.

Finally, we compute rank by the following rule:

PROPOSITION 5.1. rank(G[A]) = Ix[O]I +1. For each 5E {0,)<n-
l>

rank(O [t]) =rank(o[8]) + IX[lO]I +1 and rank(O[80]) -rank(O[8]) - IX[01]I -.

For each aE {0,1}n-l, and each xEX[W1], rank(x) -rank(c[6]) +r+l where

r= I{x EX[B1] Ixl<x}l is the rank of x in X[61], andfor each x'Ex[ao, rank(x')

rank(O[6]) +r' - Ix[aoi , where r' is the rank of x' in X[Bo].

The additions required by this final computation can be done in time

2n+ max {0,i}n (IX[1]I) , again using carry-adder logic.

6. CHERNOFF BOUNDS

This section gives some probabilistic inequalities, which will be

useful in the sections following.

Let binomial variable b be the sum of N independent Bernoulli

trials each with success probability p. Then the mean of b is bwNp and

the probability that bOm is B(m,N,p) - N) pk(l-p)k

'mk(1) P The
following inequality can be derived (see Angluin and Valiant [79)) from the

bounds of Chernoff (52].

-11-

LEMMA 6.1. For any c, 0<c<1, B((l+c)b,N,p) <exp(-c 2b/2), and
B((l-c)b-l,N,p) > 1-exp(-c2b;/3).

Let g be the sum of N independent geometric random variables gl ... 1g

kwith Prob(gi=k)= p(l-p) for k>0. Then g has mean g= N(I-p)/p.

Let G(m,N,p) be the probability m<g.

LEMMA 6.2. For each c>l, ,.f m=cg then G(m,N,p) > 1 -

(i+(c-l)(l-p)) m+N/cm

Proof. For any z E [il,/(1-p)), Chernoff [52] shows G(m,N,p) is

upper bounded by z m times the generating function of g, which is

(p/(l-(l-p)z)) N . Our lemma follows from the case z=c/(l+(c-l)(l-p)). a

7. THE DISTRIBUTION OF KEYS ROUTED IN PHASES I AND II

For each i=-0,...,n and vEV., let X(v,i) cX be the set of keys1

visiting node v at stage i of phase II. Fix a constant cI satisfying

O<c 1i, and let do= (1-c)Co.1 0 1

Let 4e. be the event IX(v,0)) don for all vEV
02

THEOREM 7.1. Prob(0);l- 2nf 0 (n), where f0(n)- exp(-cc0n/3).

Proof. Fix some vE V . Each key xE X has independent probability

0 I 2- of being routed to node v by phase I. Thus the event

xC X(v,0) is an independent Bernoulli trail with success probability 2
"n .

IX(v,0)I is therefore a binomial variable with parameters XI -C0 N, 2
-n

and mean c0n. Therefore Prob(IX(v,0)I>dd0n)>l-B(d0n,c0N,2"n)>f 0 (n)

by Lemma 6.1. Hence Prob(0)01- IV0 If 0 (n) -- 2nf0 (n), since IV0 I - 2 n.0

-12-

Fix constant d1 = (l+c 1)c O. Let S0 be the event IX(v,i)l <dln

for all i=0,...,n and vEV..
22

THEOREM 7.2. Prob() l- Nf0(n), where f0 (n)= exp(-c1c0n/2).

Proof. Fix some vEV, where 0<i<n. Since each key xEX is

routed in phase I to a random node in V00 its route in phase II is also

random, so the event xEX(v,i) is upper bounded by an independent

Bernoulli variable with success probability IV.I -I . 2-n. IX(vi)l is1

upper bounded by a binomial variable with parameters 1XI =c0 N, 2 n

and mean c0n. Therefore Prob(IX(v,i)l >d 1n) <B(d nC0N,2-n) f1(n) by
A

Lemma 6.1. Hence Prob(9 0) >1- IVIf 1 (n) =l-Nf1 (n), since IVI =N. a

From Theorems 3.2 and 7.2 it follows

COROLLARY 7.2. The rank computation of phase III takes time at mo.at

(4+3d1)n with probability a' Zeast 1- 2 nf 0 (n).

B. ACTIVATION PROBABILITIES

Let 4I be the event all nodes in V are eventually activated.

Note that event 41 holds iff there is no blockage in phase II. Our

calculation of the probability of 4 is complicated by the fact that

the routing of a key x stops at root node r[B] if a[$] is chosen to

be x. For each BE{O,11<n> where 101 >0 let r-[8] be the node of

stage 181 -1 such that there is a forward edge from r-(8] to r[S] and
th

the 181 bit of r'[8] is 1. Since root node r[B] has address

80 "IBI we have:

-13-

PROPOSITION 8.1. If xEX(r-[8],l1l-1) then x visits no root

node on any stage i<lei.

TO simplify our calculation of the probability of 91 we make the

following assumption about Lhe procedure for choosing ot $]. It ensures that the

keys that are candidates for becoming splitters at a root have
never been

candidates at previous roots.

Al For each BE{0,1 <n > if 101 0 then O[0] is chosen to be a

random key in X(r[X],0) and if 181 >0 then o8] is chosen to

be the first key entering r[B] from node r[8].

THEOR-4 8.1. Prob()i-2nf (n), where fl(n) = (l-2-n-l 0ON .

< exp(-c0n/2).

Proof. For 1 ff0,....,n-1 let 1 (*i) be the event that for each

BE {0,I}1, X(r[B],i)# 0. For each BE {0,1}i with li<n-1 and each

key xEX, x visits r-J1] with probability 2
-n . Also, x reaches r[B]

by way of r [$] with probability 2 - l. Hence, for any 8, i the

probability of 6i (B,i) exceeds

1 - (1-2 - n -l) xI ;0 1- f (n)

This holds even for 8= X and ia 0, when (X,0) 01- (1-2 - n) x l ;01 - f (n) .

Hence the probability that all the events (8,i) occur is greater than

i,8 1l(n) > 1- 2nfI (n) .

By Theorem 4.1 if all these events occur then all nodes will be activated

eventually. 0

-14-

9. DELAY SEQUENCES

To simplify the calculation of the total time required in phase II

we make the assumption:

A2 At the start of phase II the keys of X(v,O) are assigned distinct

priorities T - 0,...,IX(v,O)I -1 for each vEV . Thereafter in

phase II the priority TT(x) of each key x EX is fixed. Each active

node vE V transmits keys of lowest priority first, so that no key

x of priority 7(x) is transmitted from v before a key x' of

priority IT(x')< r(x) is transmitted from v.

For each node vE V and integer i >)0, let the key task [v,7r] be

the job of transmitting key packets of priority w from node v. For

each vEV and i, Oi<n, let the splitter task (v,i) be the job of

transmitting a splitter of stage i from node v. (Recall that for a key

xE X visiting node v, stage(x)= stage(v), whereas for a splitter s

visiting node v, stage(s) is the stage of the node where the splitter

was created.)

We define a precedence relation - between these tasks, where T T'

if the completion of some job in V must be delayed until some job in T

is completed. For each u, vEV and Tr,', i)0 we may have:

(1) Ev,,T] - [v,n+l3 (since the transmission of a key x of priority

n+i may not be done before the transmission from v of keys of priority 7).

(2) [u,ir) - v,w] for each forward edge (uv) (since 1 step is

required to transmit a key across edge (u,v) and the key's priority does

not change).

-15-

(3) [u,1] - (v,i) where v is a root node r[B], u-r-[8] for

some OE {0,1}i (since a key x of priority ff may be chosen o[8]= x).

(4) (u,i) 4 (v,i) where (u,v) is an edge of the CCC networkn

(since a splitter may be routed on any of the types of edges on the CCC+).
n

(5) (u,i) - [v,iT] where (u,v) is a reverse-internal edge and

stage(v)- i. (Since a key of any priority 7r cannot be transmitted from v

until node v has been activated by reception of a splitter of stage i

from a node u).

(6) [u,7r'] [v,n] where v is a root node r[8], u=r IJ for

some E {0,l} i (since a key of any priority 7 cannot be transmitted

from v until a splitter has been created at v).

Let 6=6060 ... 6n_ 16n 1 be a deZaj sequence if for i=O0,...,n-1

6. is a (possibly empty) sequence of key tasks of stage i which are

related by -, and 6. is a (possibly empty) sequence of splitter tasks

of stage i related by ". Necessarily 6. is of the form:1

(Voli) (Vk-l'i),(vk 'i),...,(V 2k-l' i)

where i= stage(v 0), i+l =stage(v2k-1), (v.,v j+) is a forward edge for

j= 0,...,k-l, (vk_lvk) is a forward-external edge, and (VkVk+.

(V2k-2,V2k-1) are reverse-internal edges.

With each execution of phase II we can associate the set of delay

sequences that describe the temporal sequences of causality in the obvious

way. Thus two tasks are adjacent in such a sequence if the second one could

not have been begun a time unit earlier than it was because the first task

had not been completed yet. Our analysis will assume an "oracular"

-16-

version of the algorithm that only starts executing [u,7] when all the

keys of priority smaller than Tr that are to pass through u have already

done so. The reader can verify by a little reflection that our analysis

for the oracular algorithm upper bounds the performance of the actual

algorithm. Another way is by augmenting the algorithm to enforce

priorities as suggested by Upfal [82].

-17-

10. UPPER BOUNDS ON THE LENGTH AND NUMBER OF DELAY SEQUENCES

Let A be a set of all delay sequences occurring in an execution of

FLASHSORT. Fix a constant c2 satisfying 04c 2min(l,d 0-4).

Let 4f be the event 161 4(c2+4)n for all 6E .

2~

THEOREM 10.1. Asswning 2, 1 I1I2 2 , where d2 -1+r(c2 +4)log 61.

Proof. Note that each 6E A can be completely specified by the

start node in V0 , and a binary sequence of length [161log 6], (since there are

6 types of pairs of tasks related by -). By assumption d',

[C +4)log 6]n d 2 n
I AjIVO12 2 = 2 .

The Lemmas 10.1 and 10.2 proved in this section imply:

d~n

THEOREM 10.2. Prob(, 2 (g 0A) - 2 f2 (n), where

(c +1)n c n
f 2 (n) = (I+ (c 2 -1)exp(- 1) /c 2

LEMMA 10.1. With certainty, Z1 18, <2n for any detay sequence

= 060- 6 n-l 6 n-l-

Proof. Recall from Section 4 that Z(v) is the length of the longest

suffix of address(v) in 0*. If (u,v) is a forward edge and

stage(u) <n-l, then l(v))t(u). Thus k(v) never increases from successive

key tasks [u,7]([v,TI'] appearing in any 6. Let 61m(v 0 'i) ... IV2k- 'i) "

By Theorem 4.1, 9(V0);01(V2k l)+16il/2. This implies n 6i /2<n.

For any 8E{0,1ln, let be the prefix of 8 of length i. Let

be the event:
n-l

E W(oIBsi) 4 (c 2 +l)n, for all
i-O

-18-

LEMMA 10.2.

Prob (90 A,61) ; 1 - 2nf 2 (n)

Proof. Consider some fixed $E {0,i1}n . Recall by assumption Al that

for each i= 1,...,n-1 the root r[a.] chooses 0[B] to be the first key
1

entering r[$.] from node r [sI], and the i+l bit of address(r [Bi])

is 1. Thus the set Uin {(1 0Yi,0))YE {0,1il1 are those nodes of V0
for which there is a path of i-I forward edges to r (8.]. Note that

U.fnu=0 for ipj. By assumption 8., Ix(v,0)I ld 0 n for alli j

vEVO. Let X . = {xEX(v,0) IvEU, and x has priority j}.1,j

Since each key in X(v,0) has distinct priority, Ixij 1= 2i. Each

x EXi j has independent probability juiI-1 of getting routed to r-[i]

and probability 1/2 of transmission from r-[a i] to r[i]. Hence for

each xEXi,j the event x visits r1BiI is lower bounded by an independent

Bernoulli variable with success probability iUiI-1 /2.

Let i= 'T(a([.J). For each j, 0j d 0n,

Prob (ti=J Ti j) = Prob(SxEXiVj where x visits r[$I]) l- (1-1Ui 1i/2)

1 - exp(-1/2). This implies Prob('i =j) >p(1-p) where p=l-exp(-1/2).1I

Hence for each i-O,...,n-1 the priority is upper bounded by an independent

geometric variable with parameter p. We therefore can apply Lemm.a 6.2. 0

n-i

LEMMA 10.3. Assuming 0, E - 0 i&I (c+2)n for each 6 f A where

6 6i60... n6n
0 0 n-l n-l'

Proof. For i- 0,...,n-l, let n. be the priority of the first task
-- 1

in 61 Then

n-1 n-1
T, j6i1 4 n + F, rT ' n + (c+)n
i-O iOi °

-19-

11. UPPER BOUNDS ON EXECUTION TIME OF PHASE II

Let T be the execution time of Phase II; we wish to derive on

upper bounds for T, which hold with high likelihood. For each delay

sequence 6E A, let T(6) be the time to execute the tasks of 6. Then

T = max (T(6))
6EtA

For key xE X, let P be the sequence of nodes visited by x while
x

stage(x) <n. For each delay sequence 6EA, let X6 ={x£XIvEPx,

- 71(x) and [v,ir]E 51; this is the set of keys whose transmission

are tasks of 6.

Fix a constant c3, satisfying 0<c 3 < 1 , and let d3 = (c 3 +i)(c 2 +4).

Let 3 be the event IX6 1
< d

3n for all 6E A.

d~n

LEMMA 11.1. Prob(93 jg2) i-2 2 f3(n) where f 3 (n)

exp(-c 2(c2+4)n).

Proof. Consider any key task [v,1T] E6 and key xE X, with priority(x)

= IT. The event x visits v in phase 1I is upper-bounded by a

Bernoulli variable with success probability 2-n , independent of any other

nkey. But there are at most 2 keys in X of any given priority. Thus

IX6 1 is upper-bounded by a binomial random variable with parameters 2"n and

2n161. The latter is less than 2n(c 3+4) by Assumption S2. By Lemna 6.1 therefore

d n
Prob(IX 61 d 3 n 1'2)<f 3(n). Hence Prob(g318 2) ;0l-Mf 3 (n)>l- 2 f3(n)

by Theorem 10.1. 0

For each delay sequence 6EA and key xEX let T(6 ,x) -

{[VErl E 6I Tr(x) and vEP . Since exactly one step is required
x

-20-

to process key x for each task [v,r] ET(6,x), we have

T(6) - xX IT(6,x)I.

Fix a constant c 4 l.

d n
THEOREM 11.2. Prob(T c4 nI 2e, 3) 1- 2 -f 4 (n) where
-c4n

(c4+d3)n
f 4(n) = c4 4"1 (C (4-1)/2) 3

Proof. Let 4 be the event JT(6) 1c 4 n for all 6EA. Note that

4 implies T(c n.
4 4

For each xE X6 , we claim jT(6,x) I is upper bounded by an independent

geometric random variable gx with parameter 1/2, so we can apply Lemma 6.2

to bound Prob(IT(6,x) l <c 4nIe 3)> 1-f 4 (n), and by Theorem i0.1,
d2n

Now we prove our claim. Fix some xEX. Let px=vo,...,vm and

IT=7(x). For each i= 0,...,m-l, let (vi,u i) be the forward-

internal edge departing v and let (vi,w.) be the forward-external

edge departing v. Note that ui E Px iff w. Px. The event ui E Px

given Evi,r] E T(6,x), has independent probability 1/2 for each i= O,...,m-l.

Furthermore, if vi EP x and [v. 7] ET(6 ,x) but [v i+l, T(6,x), then
[v.,Tr] T(6,x) for j-i+l,...,m. Hence for k;0, Prob(IT(6,x) I=k) 2-

as claimed. a

Finally, we have:

THEOREM 11.3. For c0 above a smaZZ number, 3c' 3l such that

Prob (T < c 4n) 1 - N- c '

t4

-21-

Proof.

Prob (T < c n) > Prob C60) -Prob (9 1) • Prob (9 2 f_ 0^l) " Prob (e 3 kf2) " Prob (T(< n Je2 A3•
Pb(c 4n c4 e3

Theorems 7.1, 7.2, 10.2, 11.1, and 11.2 imply

3n d~n

Prob(T<-c 4n) > (1-2nf0(n))(1-2 n fl1 (1-Nf2 (n)) (1-2 f3 (n)) (1-2 f4(n))

dn d~n

> i-(2nf 0 (n) +2 n f (n) +Nf 2 (n) +2 f3 3 4(n))

> I- N- c ' for some c' >1.

12. BLOCKADE AVOIDANCE

We prove in Theorem 8.1 that the probability of blockage is vanishingly

low if cO , the number of keys initially input at each node, is greater than

a small constant number, say h. If l<c0 <h then we can initially

randomly route all keys to a subnetwork of the CCC with node set

V' =V[Olh] of cardinality <N/h. Then each node in V' will have

on the average at least packets and we can execute FLASHSORT on this sub-

network.

A more practical method is to modify our FLASHSORT algorithm so that

harmful blockage never occurs. Note that if 016] is not defined because

X[B] is empty then the rank computation of Section 5 is still valid. The

harmful case is when 0(a] is not defined though X[8] is nonempty. The

-22-

modified algorithm avoids this case altogether by making each member of

X[8] a viable candidate for becoming a[8]. We define a new type of

packet which we call a candidate and which, for routing purposes, is

considered to be distinct from a key or a splitter. We route candidate

packets for C18] in essentially the opposite paths as for the splitters

derived from a[6]. Suppose a node uE V[a] receives a candidate packet

t of stage 181. If u is active or has previously received any key,

splitter or candidate packet of stage 181, then the current candidate

packet is deleted. If u is not the root node r[8] then the entering

candidate packet t is transmitted across departing edge e (where if

address(u) has suffix 0n- 6 ', then e is the departing reverse-internal

edge, and if address(u) [stage(u) + 1] = 0 then e is the departing

forward-internal edge, and otherwise e is the departing forward-external

edge). Finally, if u is the root node rill, then C[61 is chosen to

be the entering candidate t, of stage 181 and the splitter-creation

process then proceeds as described in Section 4. It is easy to ver t4

using a proof similar to Theorem 4.1 that if X[8] 0, then a candidate frr

stage reaches the root r[a]. Furthermore an argument similar to Lemma 10.1

shows that this candidate routing requires additional time on any delay

path at most 2n.

-23-

13. FURTHER WORK

A further paper, to appear, describes implementation of FLASHSORT

on the shuffle-exchange network, multi-dimensional arrays, grids, and also

hybrid networks of grids with CCC subnetworks. For these hybrid networks,

FLASHSORT has the asymptotic optimal VLSI bit-complexity AT2 = O(N log N)2

for sorting N keys (represented in binary) within time T (with high

likelihood) and area A O(N 2).

"I
-24-

REFERENCES

D. Angluin and L.G. Valiant. Fast probabilistic algorithms for Hamiltonian
circuits and matchings. J. of Comp. and Syst. Sci. (1979), 155-193.

R. Aleliunas. Randomized parallel communication. Proc. of ACM Symp. on
Principles of Distributed Computing, Ottawa, Canada (1982).

K. Batcher. Sorting networks and their applications. AFIPS Spring Joint
Comp. Conf. 32 (1968), 307-314.

H. Chernoff. A measure of asymptotic efficiency for tests of hypothesis
based on the sum of observations. Ann. of Math. Stat. 23 (1952),
493-507.

C.A.R. Hoare. QUICKSORT. Computer J. 5(1), (1962), 10-15.

F.P. Preparata and J. Vuillemin. The cube-connected cycles: A versatile
network for parallel computation. CACM 24 (1981), 300-310.

M.O. Rabin. Probabilistic algorithms. In AZgoritrs and CompZexity. J.F.
Traub (ed.), Academic Press, New York, 1976.

R. Reischuk. A fast probabilistic parallel sorting algorithm. Proc. of
22nd IEEE Symp. on Foundations of Computer Science (1981), 212-219.

R. Sedgewick. Quicksort. STAN-C5-75-492, Dept. of Comp. Sci., Stanford
Univ., May 1975.

R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM
J. on Computing 6 (1977), 84-85.

C. Tung. Arithmetic. In Computer Science. A.F. Cardenas, L. Presser, and
M.A. Marin (eds.), Wiley-Interscience, New York, 1972.

E. Upfal. Efficient schemes for parallel communication. Proc. of ACM
Symp. on Principles of Distributed Computing, Ottawa, Canada (1982).

L.G. Valiant. A scheme for fast parallel communication. SIAM J. on
Computing 11:2 (1982), 350-361.

L.G. Valiant and G.J. Brebner. Universal schemes for parallel communication.
Proceeding of the Thirteenth Annual ACM Symposium on Theory of
Computing (1981), 263-277.

