AD=A114 857 HARVARD UNIV CAMBRIDGE MA AIKEN COMPUTATION LAB F/8 12/2
A LOGARITHMIC TIME SORT FOR LINEAR SIZE NETWORKS.(U)
MAY 82 J H REIFs L 6 VALIANT NOQO14=80-C-06T7h
UNCLASSIFIED TR~13-82 NL

TS ST

"m 10 & iz
— e 132

ol ¥
m" NA =22
— L&
[L23 s g
= = li=

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUEEAQ OF STANDARDN 1364 4

ADA114857

OTIC FILE COPY

SECUNMITY CLASGELCATLLY, OF T, $AGE (When Nate Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
HEFORE COMPLETING ¥ OF,

1. REPORT NUMBI R

2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG Nu7 , ,
4 TITLE (and Subtitie) 5. TYPE OF REPORT & o:moWa
A Logarithmic Time sort for Linear Size Technical Report
Networks
6. PERFORMING ORG. REPORT NUMBER
TR-13-82
7. AUTHOR(s) 6. CONTRACT OR GRANY NUMBER(s)
John H. keif N00014-80-C-0674
leslice u. Valiant
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PHOGRAM ELEMENT, PROJECT, TASK
. AREA & WORK UNIT NUMBERS
Harvard University
Cambridge, MA 02138
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research May, 1982
800 North Quincy Street 13. NUMBER OF PAGES
Arlington, VA 22217 24
4. MONITORING AGENCY NAME & ADDRESS(I! dilfersnt trom Conteolling Oltice) 18. SECURITY CLASS. (of this report)

same as above

1Sa. ODECLASSIFICATION/DOWNGRADING
SCHEOULE

®. OISTRIBUTION STATECMENT (of this Report)
unlimited

This document h
for public releqs
distribution is u

as been approved
e and sale; itg
nlimited,

17. DISTRIBUTION “TATEMENT (of the adetract entered in Black 20, 1 dilferent from Report)

This dox
imi bscument haz bs
unlimited { e as baen g

SLALEA

*se and sale; jtg
S e,

T —————

Pproved

DTIC

19. SUPPLEMENTARY NOTLS

MAY 26 1982

A

19. KEY WORDS (Continue on reverse side Il necessary and tdentily by diock numbder)

Contected Cycles

sorting networks, parallel sort, probabilistic algorithm, Cube

20 ABSTRACT (Continue nn reverae alde If necesesry and Identify by slock number)

see reverse side

EDITION OF I NV 6515 OUSOLETE
S/N 01N 0)4 A0 L

DD , 3% 1473

?yan Y CLASIACATION OF vnflv(“u Dete Rntereu
Lt Rl . »

e

LW CUMITY CUASSIFICATION OF THIS PAGH Bhen Date Fatersad)

20. We give a probabilistic algorithm for sorting on constant valence
networks of N nodes such as the cube-connected cycles. We prove
that for any input set of O(N) keys, the algorithm's execution
time is greater than a constant times log N with vanishingly low
likelihood. Since this constant factor is small our parallel
sorting algorithm may be practical to implement.

SECURITY CLASHFILATION OF THIS PAGE(#hen Dare Eniere

A LOGARITHMIC TIME SORT
FOR LINEAR SIZE NETWORKS

John H. Reif
leslie G. Valiant

: TR-13-82

May, 1982

D LB
e A Y
MAY 26 1382 ;-

[This do=1r.ond har beoen aprieved
{1 public 1 lanse and sale; ite
distpboion 10 unlincited.

A Logarithmic Time Sort for Linear Size Networks

*
John H. Reif and Leslie G. Valiant
Aiken Computation Laboratory

Division of Applied Sciences
Harvard University, Cambridge, Massachusetts

ABSTRACT. - We give a probabilistic algorithm for sorting on constant
valence networks of N nodes such as the cube-connected cycles. We prove
that for any input set of O(N) keys, the algorithm's execution time is
greater than a constant times log N with vanishingly low likelihood.
Since this constant factor is small our parallel sorting algorithm may be

practical to implement.}

*
This work was supported by the National Science Foundation Grant
NAS-MCS79-21024 and the Office of Naval Research Contract N00014-80-C-0674.

P IV

— ; — e——
- " ,

1. INTRODUCTION

1.1 The Sorting Problem on a Network

This paper concerns the problem of parallel sorting on a fixed

connection network G= (V,E) of N nodes Vv={v }. Each node

0’ V-1
viE\l is initially input a set xi of <, distinct keys. Thus the set

X=X U...UX

o N-1 of all keys input is of size ¢ N. We assume a relation

0

< total ordering X. The network sorts X by routing each key x€X to
node vy where j= u:ank(x)/co; and rank(x) = |{x' € X|x' <x}|. Thus each
sorting problem on network G can be viewed as a distributed routing
problem. Each key x€X is considered a packet which must be routed from

its initial location vy where xGZXi. to the destination node vj where

the index 3Jj= xrank(x)/coj must also be computed distributively.

1.2 Assumptions

We assume each node viéiv contains a single sequential processor
with local storage for O(log N) packets. These processors execute
synchronously. At a single step each processor may make an elementary
operation such as a key comparison, and cause transmission of a packet
across each departing edge. Each processor uses randomization in the sense
of Rabin [76) and Solovay and Strassen [77]. It is allowed on each step to
choose random bits independently of the probabilistic choices of any other
processor.

With these assumptions, the routing reguired to sort on network G

requires time at least its diameter max vev{dld is the length of the

[}
shortest path from u to v}. If G has constant valence, then G has
diameter f(log N). Thus f(log N) is a lower bound for the time to sort

on any constant valence network of N processes.

- : T s - - - -

1.3 FLASHSORT

Our FLASHSORT algorithm for parallel sorting uses a probabilistic
divide and conquer technigque similar to the popular sequential sorting
algorithm QUICKSORT of Hoare [62]. QUICKSORT is popular because it can
be practically implemented and is very fast. Sedgewick [75] shows that
QUICKSORT takes expected time less than cN log N for a small constant c,
given N randomly permuted input keys. FLASHSORT has similar advantages
which we feel will lead to its practical utilization on distributed
networks.

FLASHSHORT is executed in 4 phases sketched below:

I. (Random Routing) Route each key x€X to a randomly chosen node.

IT. (Splitter Directed Routing) Choose a random key JE€X. Use it

to split X- {0} into disjoint subsets {x€X|x<o} and {x€x|o<x}.
Route these two disjoint subsets to disjoint subnetworks, and recursively
apply I1. This gives a rough sort of the keys X into disjoint subsets
of small cardinality.

I1I. (Rank Computation) Compute rank(x) for each key x€X.

IV. (Rank Directed Routing) Route each x€X to node v

lrank(x)/coj.

1.4 Organization and Results

Section 2 defines the CCC network and a related network CCC+ on
which we implement FLASHSORT. Section 3 describes the random routing in
phase I and a probabilistic strategy for routing in phase IV proposed by
Valiant and Brebner, (81). Section 4 gives the details of the splitter-
directed routing in phase II. Section 5 describes the rank computation in

phase III. Sections 6-11 provide a probabilistic analysis of phases II

and III; we show that for any c, <, above a small number, 3c'21 such

that phases II and III take time less than c¢ log N with probability

-t .
greater than 1-N €. similar bounds on time have been proved by Aleliunas

(B82] and Upfal [82] for the packet routing in phases I and IV. Thus we
conclude that on any given input, FLASHSORT achieves asymptotic optimal
time ¢ log N, for a small constant c, on all but a vanishingly small
number of executions. Section 12 describes some modifications to FLASHSORT

which make it more practical when A is small.

1.5 Previous Work

All previous algorithms for sorting N keys on a constant valence
fixed connection network of N processors reguire time (log N)z. The
parallel sorting algorithm of Batcher [68] achieves this time bound on
various N node constant valence networks such as the CCC of Preparata and
Vuillemin [81].

For less realistic models of computation faster algorithms are known.
Several years ago J. Wiedermann observed that QUICKSORT takes time c log N
with high likelihood on a parallel decision tree model with N processors.
Reischuk [81]) has a similar result for parallel random access machines.

Our algorithm follows the randomized routing ideas introduced in
Valiant [82). 1In the proofs heavy use is made of the critical path

technique developed by Aleluinas [82] and Upfal [82].

¢ e AR A o e

2. NETWORK DEFINITIONS

Fix some number n=21. This section defines two constant valence

networks derived from the hypercube of dimension n. These networks have

the same node set V={(a,i)|c€{0,1}", i€{0,...,n-1}} with cardinality
N=n2". For each vEV 1let address (v) =a and stage(v) =i where v= (0,i).
let «afi) be the i-th bit of a and let q'=EXT(a,i) be identical to «
except o'[i) is the complement of afi]. Let edge (u,v) €VXV be

internal if address(v) = address(u) or extermal if address(v) =

EXT (address (u) ,stage(u)+1). Also, let (u,v) be ferward if stage(v) =
(stage(u) +1) mod n, static if stage(v) =stage(u), or reverse if

stage(v) = (stage(u) - 1) mod n.

The Cube Connected Cycles (CCCn) network of Preparata and Vuillemin

[81] has node set V and exactly all forward-internal edges, reverse-
internal edges, and static-external edges. For technical reasons this

paper will assume a network previously defined in Upfal [82] which we

call the CCCZ network. It has node set V and exactly all forward-internal
edges, reverse-internal edges, and forward-external edges. Thus the CCCn
and ccc; differ only with respect to the stage portions of external

edges. Clearly any algorithm requiring routing on the ccc; network can

be simulated on the CCCn network with at most a factor of 2 time increase.
(Since the transmission in CCCZ of a packet x across a forward-external .

edge (u,v) can be simulated in CCCn by transmission of x across

forward~internal edge (u,w) followed by static-external edge (w,v).)
Note the CCCn and CCCz are both naturally related to the hyper-
cube H ~of dimension n. Intuitively, for each a€{0,1}" the set of
nodes {u€Vv|address(u) =a} can be considered to be a "supernode" of H .
Each such "supernode" is connected by external edges to n other "super-

nodes" {v€v]|address(v) =EXT(a,i)} for i=0,...,n-1.

RS

3. PACKET ROUTING ON THE CCC:

This section briefly describes the probabilistic packet routing algo-
rithm of Valiant and Brebner [81] as applied to the CCCZ by Upfal [82].
This routing is required to implement phases I and IV of FLASHSORT.

We require that each node vE€V contain for each departing edge e

! a queue Qe of packets to be transmitted across edge e. Each node also
contains its address and stage posted as local variables.

! Let X be the set of coN packets to be routed, where each packet

; x€X is initially at a given node I €V and we wish x to be routed to

given destination node Dx€v. The algorithm has two phases:

A. (Random Routing) route x from Ix to a node Rx€V with random

address.

B. (Fixed Destination Routing) route x from Rx to Dx'

The random routing of x in Phase A is accomplished by repeating

for n stages the transmission of x across a randomly chosen departing
forward edge (i.e., transmit x across the forward-internal edge or
forward-external edge with equal probability). Phase B repeats for n

stages the following: if x is currently at node v;‘Dx with j=stage(v) +1
and address(v) [j] = address (Dx) (3}, then x is transmitted across the
forward-internal edge departing v and otherwise x is transmitted across
the forward-external edge departing v. This takes the packets to the

correct addresses. Finally, they are pipelined to the correct nodes in

the cycles.

We have not yet specified the management of the queues of packets at

each node. Suppose the priority of packet x€X is assigned to be the

— s

number of stages of phases A and B so far accomplighed, and we allow packet

x to be transmitted from each node v€V only after all packets of lower

- 3.5 PR N Va2 RO N e SO R S TN S e ol A L R e e

Pt -

i p— N L

priority are transmitted from v. Aleliunas ([82] and Upfal [82] show:

‘ THEOREM 3.1. For any c¢ above a small constant number, 3c'>1
such that the execution time of phase A and B exceeds cn with probability

i .t
5 at most N © .
H

4. SPLITTER DIRECTED ROUTING

This section describes the splitter directed routing in phase II of
FLASHSORT. Let X[A)=X be the set of coN keys input to FLASHSORT,
where A is the empty string. We index certain subsets of X by
{0'1}<n+l>' the set of binary strings of length at most n. Phase II is

executed in stages i=0,...,n-1 where for each BE€ {O,I}i if X([B1#¢
! we choose a random key O[B) € X[B] which splits X[B]- {0[B]} into dis-
: joint subsets X[BO]={x€X[R)|x<olR}} and XIR1] = {x€ XI[B]|olB] <x}.
(The intention is to route the elements of X{R] to the subcube specified

by B.)

<n>
If O[B] is never defined for some B€ {0,1} ™ then phase II has a

vanishingly low probability. 1If blockage does occur, then the execution of

phase II will exceed a time limit c,n (determined in Section 11 to hold

with high likelihood assuming no blockage) and phases I and II must be re-

|

[}

!

l blockage and cannot be completed. This event is shown in Section 8 to have

|

t

{

I

!

l executed. The probability of blockage in phase II the next time is independent ¥

of the first event of blockage in phase I1I. If there is no blockage, then

phase II yields a rough sort of the keys X into a total of 2“"'1 subsets,

where 2" disjoint subgets are of expected size less than con with form
[]

X[a) where a€ {0,1}n and there are also 2'-1 singleton sets of form

{0[B1}, where BE {0,l}<n>. Note that if a, a'é€ {0,1}* where string «
precedes ' in lexical order, then x€X[al, y€X[a'] imply that x<y
in the total order.

We also define a recursive subdivision of the node set V, where we

index subsets by binary strings in {0'1}<n+1>. For each R€ {0,1}", 1let
VIB] = {vE€V|address(v) =B and stage(v) =0}. For each BE€ {O,l}<n> let
ViB) = {vEV|R is a prefix of address(v) and |B| = stage(v)}. Let the
root r[B] of V[B] be the node with addres Bon-lsl and stage IB‘.
Note that for |B|< n-1, r{B] has a departing forward-internal edge
entering r[B0] and also a departing forward-external edge entering r[fl1].
Also note that V[B0] and VI[Bl] are disjoint.

For each i=0,...,n let Vi={v€vlstage(v)=i}.

We assume phase I routes each key x€ X to a random node vE€EV

0

and that the set of keys queued at each v€V0 are randomly ordered.

The stage of key x€X executing phase II is the stage of the node where
X 1is currently visiting, except we define the stage of x to be n in the
case x has just completed stage n-1 (and so just been routed from a node
of stage n-1 to a node of stage 0). In the routing of phase II each of the
keys x€ X{B] visits only nodes in V whose address is prefixed by £, once
x has passed stage |B].

Initially each vE€V([B] is said to be inactive, and transmits no keys
of stage IBI. We activate r[B)] by choosing 0o[8] to be a particular key
in X[B] reaching the root node r[B] so that O[B] is a random element of
X[B] (e.g., we may let o[B] be the first key of stage IB[reaching r{8]).
By a method described below, a copy of O{R] is routed to each node vEV([8].

Node v becomes activated when this copy reaches it. It is able to transmit

keys of stage |B| only after it has been activated.

-8-

Let x€Xx(Bl~{0(B]} be a key at stage IBI and visiting a node vE€V{B8].
The key x remains at node v until v has been activated. When v has been
activated, if x<0{B] then x is transmitted across the forward-internal edge
departing v to a node in V{[B0O), and otherwise if x> 0O[R] then x is trans-

mitted across the forward-external edge departing v to a node in VI[B1].

Thus after all keys in X have completed stage n-1, we have for
each B€{0,1}1® routed the keys X[B] to the node (B,0).

Now we give the details of how, for any BEZ{0,1}<n>, copies of
O[B} are routed to each node in VIR]. A copy s of O[B] is called
a splitter. For technical reasons (e.g., so that we do not confuse the delays
due to key routing with those due to splitter routing) a splitter is
considered a different type of packet from a key. (N.B. The type
{Egz, sglitter} of a packet can be specified by a boolean flag attached
to the packet.) The stage of a splitter s copied from O[B] is fixed to
be IBI and does not vary during routing.

The splitter routing for R begins at root node r[B] when o8]
is chosen. Splitters s, s' copied from O[(B)] are transmitted across
the two forward edges (i.e., the forward-internal edge and forward-external
edge) departing from «r([B].

Suppose node VvVEV receives a splitter s from an edge e entering
v. If e is a forward edge and stage(v) > O then v transmits a copy
of s across each of the two forward edges departing v. If e is
a forward-external edge, then v transmits splitter s across the reverse-
internal edge departing v in addition. If e is a reverse-internal edge and
stage(v) > stage(s) then s is transmitted across the reverse-internal

edge departing v,

THEOREM 4.1, Each vE€V[B)] is activated in 2(n-|B|-R(v)) steps
after r(B] has been activated (where L(v) =max{2|02' i8 a suffix of

address (v) }).

-8l

Proof. Recall that address(r([B]) = BOn and note that

L(v)

address (v) = BY0 where Y€ {0,1}k and k=n-|B|-(v). sSplitters

copied from O[B] are routed from v0=r[B] on forward edges
(vo,vl) rever (vk-l'vk) and then on reverse-internal edges (vk,vk+1) poees

(). For i=1,...,k let (v, ,vi) be the forward-internal

i-1

if address(v,) (|B|+i) = address v,) {|8]+i] and

Vak-1*Va2k

edge departing vi_ 1

otherwise let (v,

1-1'vi) be the forward-external edge departing vi-l’

Thus address (vzk) = address(vk) = address(v) and stage (vzk) = stage (vk) -k

= (stage(v) +k) - k=stage(v). Hence Vo =V D

5. THE RANK COMPUTATION

This section describes the rank computation done in phase III of
FLASHSORT.

We show:

THEOREM 5.1. The rank computation can be done in time

an+3 [max ([X[(B1])] .
ge{o,1}"
Proof. We begin by sorting the keys of X[B] foreach BE€ {0,1}". This easily

can be done in time 2|xl6]l by a parallel bubble sort using the cycle of n

nodes {(8,0),...,(B,n-1)} connected by internal edges.

~-10~ o

<n> .
Next we compute at root r[B] the value |X[B]|, for each B€{0,1}" ",

This is done in n stages i=0,...,n-1 using the identity |x181] = [x(Bo}]

+ |X[(B1]| +1 for each BE {0,1}1. Note that the two forward edges departing
r[B) enter both r{B0) and rI[Bl1)}, so the roots form a binary tree of depth
n. The required sums on this tree can be done in time 2n using carry-adder
logic [Tung, 72) to stream the bits of partial sums up the tree from nodes
r{B0] and r([Bl] to node r[B) for each BE {0,1}<n>.
Finally, we compute rank by the following rule:

<n-1>
PROPOSITION 5.1. rank(0[A])=|x[0]| +1. For each B€ {0,1} " >

rank (O[B1]) = rank (G[B]) + |x[B10)| +1 and rank(c[BO]) = rank(c[B]) - |XIRO01]| - 1.
For each BE€ {0,1}n-1, and each x€ X[Bl], rank(x) = rank(0[B]) +xr+1 uwhere

r= |{x1€x[81] |x1<x}] 18 the rank of x in X[Bll, and for each x'€X[R0], rank(x') =

rank (0[B]) +r' - |X[B0]| , Where r' <ig the rank of x' in X[BO].

The additions required by this final computation can be done in time

2n+max8€{0'1}n (IX[BII) + again using carry-adder logic. o

6. CHERNOFF BOUNDS

This section gives some probabilistic inequalities, which will be

useful in the sections following.

Let binomial variable b be the sum of N independent Bernoulli
trials each with svccess probability p. Then the mean of b is S-Np and

the probability that p»m is B(m,N,p)=Z:‘m (:) pk(l-p)n.k. The

Sl . .. 4 ...

following inequality can be derived (see Angluin and Valiant [79]) from the

bounds of Chernoff [(52].

N

=-11-

LEMMA 6.1. For any c, 0<c<1, B((l1+c)b,N,p) < exp(-c2B/2), and

B((1-c)b-1,N,p) 2 1- exp(—czfa/s))

Let g be the sum of N independent geometric random variables gl, ...,gN .

with Px:ob(r_:;:i~=k)=p(1-p)k for k20. Then g has mean g=N(1-p)/p.

lLet G(m,N,p) be the probability m<gqg.

LEMMA 6.2. For each ¢21, +f m=cg then G(m,N,p)>1 -

(14 (e-1) (1-p)) ™ N/c™,

Proof. For any 2 € [1,1/(1-p)), Chernoff [52) shows G(m,N,p) is

upper bounded by z ™ times the generating function of g, which is

(p/(l—(l-p)z))N. Our lemma follows from the case z=c/(1+(c-1)(1-p)). o

7. THE DISTRIBUTION OF KEYS ROUTED IN PHASES I AND I1I

For each i=0,...,n and vEVi, let X(v,i)€X be the set of keys

visiting node v at stage i of phase II. Fix a constant 2 satisfying

0<c1<1, and let do= (l-cl)co.

Let é”o be the event |X(v,0)|> don for all vevo.

THEOREM 7.1. Prob(8,) >1-2"f(n), where £ (n) = exp(-cicn/3).

Proof. Fix some v€vo. Each key x€X has independent probability

|v°|"1- 2" of being routed to node v by phase I. Thus the event

is an independent Bernoulli trail with success probability 20,

N, 270

x€X(v,0)
|X(v,0)| is therefore a binomial variable with parameters |X|=c,

and mean c,n. Therefore Prob (|x(v,0) |>don) 21- B(don,con,z-n) >f° (n)

by Lemma 6.1. Hence Prob(f,)>1- [volfo(n)-l-znfo(n), since lvol.z",n

- S SMPRRKE RN A v 7 e AT R IO g 2 g . N 3 A A e A o Hmbn-‘i
i At

-

-12-

Fix constant d1= (1+c1)c0. Let é’o be the event |X(v,i)| <dln

for all i=0,...,n and v€Vi.
THEOREM 7.2. Prob(&,) >1- N?o(n), where Eo(n) -exp(-cicon/2).

Proof. Fix some vEV, where 0%i<n. Since each key x€X is
routed in phase I to a random node in Vo, its route in phase I1I is also
random, so the event x€X(v,i) is upper bounded by an independent
Bernoulli variable with sSuccess probability Ivil'1= 27", x(v,i)l is
upper bounded by a binomial variable with parameters IXI| =coN, 2"
and mean Coh- Therefore Prob(!X(v,i)l >dln) <B(dln,c0N,2-n) (fl(n) by
Lemma 6.1. Hence Prob(éo) 21-1If,(n) =1-Nf (n), since |V]=N.

From Theorems 3.2 and 7.2 it follows

COROLLARY 7.2. The rank computation of phase III takees time at moct

(4+3d,)n with probability at ‘east 1- 2"%0(n).

8. ACTIVATION PROBABILITIES

Let 81 be the event all nodes in V are eventually activated.
Note that event é’l holds iff there is no blockage in phase 1I. Our
calculation of the probability of é'l is complicated by the fact that
the routing of a key x stops at root node r[B] if o[B] is chosen to
be x. For each BE{0,1}™ where |B|>0 1let r [B) be the node of
stage |B| -1 such that there is a forward edge from r [B] to r(B] and
the |B| th bit of r [B] 4is 1. Since root node r[B] has address

Bon-IBI . we have:

-13-

PROPOSITION 8.1. If x€X(r [B),|B|-1) then x visits no root

node on any stage i< |8B|.

To simplify our calculation of the probability of di we make the

following assumption about the procedure for choosing ¢lBl. It ensures that the
keys that are candidates for becoming splitters at a root have never been

r \ candidates at previous roots.

Rt v v — P o

For each B€{O,1]<n> if |B| =0 then O[B] is chosen to be a

[

random key in X(r[A],0) and if |B|>0 then o[B] is chosen to

pe the first key entering x[B] from node r [f].

1 CON

-n—
THEOREM 8.1. prob(gl)>1-2“fl(n), where £ ()= (-2) .

< exp (-cqon/2).

5
i
§
|
!
%_

Proof. For i=0,...,n-1 let 63(8,1) be the event that for each
BE {0,1}1, X(ri8],i) #@. For each BE€ {0,1}* with 1€i<n-1 and each
key x€X, x visits r [B] with probability 2", Aiso, x reaches rl§)
by way of r [8] with probability Z-n-l. Hence, for any B8, i the
probability of di(B,i) exceeds

-n-1)|x

1 - (1-2 l #1- fl(n) .

This holds even for B=A and i=0, when (A,0)21~ (1-2"7) l"|>1-fl(m.

Hence the probability that all the events da(B,i) occur is greater than

1- X £, (n) 3 1-2"f1<n).
i,B

—

By Theorem 4.1 if all these events occur then all nodes will be activated

eventually. o

S - - .)

—

-14-

9. DELAY SEQUENCES

To simplify the calculation of the total time required in phase II

we make the assumption:

A2 At the start of phase II the keys of X{(v,0) are assigned distinct
priorities m=0,...,|X(v,0)| -1 for each vEV,. Thereafter in
phase II the priority T(x) of each key x€X is fixed. Each active
node vEV transmits keys of lowest priority first, so that no key
x of priority T(x) is transmitted from v before a key x' of

priority T(x') <T(x) is transmitted from wv.

For each node V€V and integer 720, let the key task [v,T] be
the job of transmitting key packets of priority 7T from node wv. For
each v€EV and i, 0€i<n, let the splitter task (v,i) be the job of
transmitting a splitter of stage i from node v. (Recall that for a key
x€X wvisiting node v, stage(x)=stage(v), whereas for a splitter s
visiting node v, stage(s) is the stage of the node where the splitter
was created.)

We define a precedence relation + between these tasks, where T-+T'
if the completion of some job in T' must be delayed until some job in T
is completed. For each u, vEV and 7,7, i20 we may have:

(1) [v,m) = [v,m+l) (since the transmission of a key x of priority
T+l may not be done before the transmission from v of keys of priority T).

(2) [u,m} -+ [v,7] for each forward edge (u,v) (since 1 step is

required to transmit a key across edge (u,v) and the key's priority does

not change).

i

=]15-

(3) [u,m) + (v,i) where v is a root node r(B], u=r [B] for
some BE{O,l}i (since a key x of priority 7T may be chosen O[f] =x).

(4) (u,i)* (v,i) where (u,v) is an edge of the ccc; network

(since a splitter may be routed on any of the types of edges on the CCC,':).
(5) (u,i) + [v,7] where (u,v) is a reverse-internal edge and
stage(v) =i. (Since a key of any priority T cannot be transmitted from v
until node v has been activated by reception of a splitter of stage i

from a node u).
(6) [u,7m')=*>[v,m] where v is a root node r[R], u=r [B] for
some RE€ ﬂ),l}i (since a key of any priority T cannot be transmitted

from v until a splitter has been created at v).

O

let 6= 6060... n—lén-l be a delay sequence if for i=0,...,n-1
Gi is a (possibly empty) sequence of key tasks of stage i which are
related by -+, and Si is a (possibly empty) sequence of splitter tasks

of stage i related by = . Necessarily Si is of the form:

U7 S PP USE I 0% S DO AN §

where 1i=stage (vo), i+l = stage (v2k-1) ' (vj,vj+l) is a forward edge for

3=0,...,k-1, (v,) is a forward-external edge, and (vk,vk+1),...,

Yi-1"Vk

(v) are reverse-internal edges.

2k-2'V2k-1
With each execution of phase II we can associate the set of delay

sequences that describe the temporal sequences of causality in the obvious

way. Thus two tasks are adjacent in such a sequence if the second one could

not have been begun a time unit earlier than it was because the first task

had not been completed yet. Our analysis will assume an "oracular"

TS st ———————— - - T T i e eyl i

— -

|

PR

-16-

version of the algorithm that only starts executing [u,T] when all the
keys of priority smaller than T that are to pass through u have already
done so. The reader can verify by a little reflection that our analysis
for the oracular algorithm upper bounds the performance of the actual
algorithm. Another way is by augmenting the algorithm to enforce

priorities as suggested by Upfal [82].

— -

-

-17-

10. UPPER BOUNDS ON THE LENGTH AND NUMBER OF DELAY SEQUENCES

let A be a set of all delay sequences occurring in an execution of
FLASHSORT. Fix a constant c, satisfying 0<c2<min(l.do-4).

Let Jé be the event |6|<(c2+4)n for all SE€A.

d.n

THEOREM 10.1. Assuming &, 6| €2 2, where a =1+[<c2+4)1og 6].

2

Proof. Note that each S€A can be completely specified by the

start node in Vo, and a binary sequence of length H(‘Sllog 6], (since there are

6 types of pairs of tasks related by -+). By assumption &,

d,n
|l [v, |2 [(c,+4)109 6]n_ i .

The Lemmas 10.1 and 10.2 proved in this section imply:

d2n

THEOREM 10.2. Prob(€2[£0A61)>1-2 £,(n), where

(c2+1)n c n
f2 (n) = (1+ (cz-l)exp(- 5)) /c2 .

LEMMA 10.1. With certainty, I’i’;g |§ il €2n for any delay sequence

~

§=8,8,--8_ 16 .

Proof. Recall from Section 4 that f(v) is the length of the longest
suffix of address(v) in O*. If (u,v) is a forward edge and
stage(u) <n-1, then £(v)#2(u). Thus £(v) never increases from successive

key tasks [u,m] =+ [v,7'] appearing in any Gi. Let 61- (vo,i) oo).

Vok-1

By Theorem 4.1, R(vg) ?L(v,,)+|8,|/2. This implies I}_g |s,1/2%n. o

2k-1

For any 86‘[0,1}", let Bi be the prefix of B of length i. Llet

@ be the event:

n-1
> T(018,1) € (e, +1)n, for a1l B€{0,1}" .
i=0

-18-

LEMMA 10.2.

Prob (P|g A &) >1- 2"f,(n) .

Proof. Consider some fixed B€ {0,1}". Recall by assumption Al that
for each i=1,...,n-1 the root r[Bi] chooses O[B] to be the first key
entering r[Bi] from node r [Bi]' and the i+l bit of address (r-[Bi])
is 1. Thus the set U, = {(‘Ylon—i,o)]YE {0,1}1-1} are those nodes of V,
for which there is a path of i-1 forward edges to r-[Bi]. Note that
Uint=¢ for i#3j. By assumption &, IX(v,0)|>dOn for all
VGVO. " Let xi,j ={x€x(v,0)]v€Ui and x has priority 3j}.

i

Since each key in X(v,0) has distinct priority, lx | =2", Each

i,3

xEXi . has independent probability IUj_I-:L of getting routed to r-lﬁi]

and probability 1/2 of transmission from r-[Bi] to r[Bi]. Hence for

each x€X; 3 theevent x visits r{Bi] is lower bounded by an independent

Bernoulli variable with success probability IUi|-l/2.
Let ‘n'i=‘n(0[Bi]). For each j, 0<J<d0n, o]

Prob(m =j|m, 23j) = Prob(Ix€X, . where x visits r[B.])21- (1-|u, |-1/2) .
i i i, 3 i i

> 1-exp(-1/2). This implies Prob(m =j) >p(l-p)? where p=1-exp(-1/2).

Hence for each i=0,...,n-1 the priority is upper bounded by an independent

geometric variable with parameter p. We therefore can apply lemma 6. 2.]

LEMMA 10.3. Assuming @, Ig:é IGiI< (c,+2)n for each 8€A where
s=88...8 8 ..

Proof. For i=0,...,n-1, let m be the priority of the first task

in §,. Then

n-1 n-1
12-% IGiI <n+ j% T, €n+ (c+l)n

i

=19~

11. UPPER BOUNDS ON EXECUTION TIME OF PHASE 11

let T be the execution time of Phase II; we wish to derive on
upper bounds for T, which held with high likelihood. For each delay
sequence S6€A, let T(§) be the time to execute the tasks of 6. Then

T = max (T(8)) .
37

' For key x€X, let Px be the sequence of nodes visited by x while
stage(x) <n. For each delay sequence GE€A4, let X5 = {x€x|v€Px,
M= T(x) and [v,7] €3}; this is the set of keys whose transmission
are tasks of 6.
Fix a constant c,, satisfying 0<c3<1, and let dj= (cj+1)(c,+4).
’ Let &, be the event |x6| <d,n for all S €A.

d.n
LEWMA 11.1. Prob(&,]&)>1-2 ° £.(n) where fy(n) =

exp (-c\?3 (c2+4)n) .

Proof. Consider any key task [v,m] €8 and key x€X, with priority(x)

= T. The event x visits v in phase II is upper-bounded by a

Bernoulli variable with success probability Z-n, independent of any other

key. But there are at most 2" keys in X of any given priority. Thus

|x 6' is upper-bounded by a binomial random variable with parameters 2" ana

2"|8|. The latter is less than 2n(c3+4) by Assumption &,. By Lemma 6.1 therefore

d.n
2
Prob(lxsl >d3nfd’2) <f3(n). Hence Prob(&3|62)>1-|df3(n)>1-2 fa(n)

by Theorem 10.1. o :

For each delay sequence S€A and key x€X let T(§,x) =

{lv,mM€8|nsm(x) and vE€ Px}' Since exactly one step is required

e~ P . - o i = o it Mot AR

-20-

to process key x for each task [v,m) € 1(8,x), we have

T(§) = zx€x5 [T, %) |.
Fix a constant c4>1.
d3n
THEOREM 11.2. prob(r<c4nlé°2Aé°3)>1-z “£,(n) where
-c4n (c4+63)n

f4(n)=c4 '(1+(c4-1)/2)

Proof. let 64 be the event IT(6)|<c4n for all S€A. Note that
6; implies T<c4n.

For each x€X 5 we claim IT (G,x)l is upper bounded by an independent
geometric random variable 9, with parameter 1/2, so we can apply lemma 6.2

to bound Prob(|T(8,x) | <c4n|¢8’3) Z1- £,(n), and by Theorem 10.1,

dzn
Prob(é°4lé’2/\é"3) 21- |A|f4(n) 21-22¢,(n).

Now we prove our claim. Fix some Xx€X. Let px=vo,...,vm and
M=7(x). For each i=0,...,m-1, let (vi,ui) be the forward-
internal edge departing v and let (vi,wi) be the forward-external
edge departing v. Note that uiGPx iff wiEPx. The event ui€ Px
given [vi,‘n] € 7(§,x), has independent probability 1/2 for each i=0,...,m-1.
Furthermore, if ViGPx and [vi,'fr] € 7(6,x) but [vi+1,1T] € 1(6,x), then
[Vj,'"] €1(8,x) for j=i+l,...,m. Hence for k=20, Prob(IT(G,x)l =k)<2-k-:l

as claimed. o
Finally, we have:

THEOREM 11.3. For <, above a emall number, 3c' 21 such that

Prob(T<c4n) 21-n°.

sideendinioetei dafheltnes,

=21~

Proof.

< >
Prob(T<c,n) 2 Prob(é,) - Prob (&,) Prob(gzi{?o/\éi) Prob (&, [é"z) Prob(T<c4n (€2Aé’3).

' Theorems 7.1, 7.2, 10.2, 11.1, and 11.2 imply

< n n d3n d3n
< P - - - - -
| Prob(T c4n) (1-2 fo(n))(l 2 fl(n))(l Nfz(n))(l 2 f3(n))(1 2 f4(n))
n n d3n d3n
> q- N
1-(2 fo(n) +2 fl(n) +Nf2(n) +2 f3(n) +2 f4(n))
2 1-N—c' for some c' >1. o

12. BLOCKADE AVOIDANCE

We prove in Theorem 8.1 that the probability of blockage is vanishingly

low if Cor the number of keys initially input at each node, is greater than

a small constant number, say h. If 1€<%3<h then we can initially
randomly route all keys to a subnetwork of the CCCn with node set

f A
V' = V[0 iogh

] of cardinality € N/h. Then each node in V' will have
on the average at least packets and we can execute FLASHSORT on this sub-
network.

A more practical method is to modify our FLASHSORT algorithm so that
harmful blockage never occurs. Note that if O[B)] is not defined because

X[B] is empty then the rank computation of Section 5 is still valid. The

harmful case is when O[(B) is not defined though X[B] is nonempty. The

modified algorithm avoids this case altogether by making each member of
X[B] a viable candidate for becoming O[B]. We define a new type of
packet which we call a candidate and which, for routing purposes, is
considered to be distinct from a key or a splitter. We route candidate
packets for O[R] in essentially the opposite paths as for the splitters
derived from o{B]. Suppose a node u€V[B] receives a candidate packet
t of stage |8|. If u is active or has previously received any key,
splitter or candidate packet of stage |B|, then the current candidate
packet is deleted. If u 1is not the root node r[Bf] then the entering
candidate packet t is transmitted across departing edge e (where if

n-|8|

address(u) has suffix O then e 1is the departing reverse-internal
edge, and if address(u)[stage(u) +1]1=0 then e is the departing
forward-internal edge, and otherwise e is the departing forward-external
edge). Finally, if u 1is the root node r{B], then ¢[B] is chosen to

be the entering candidate t, of stage |B| and the splitter-creation
process then proceeds as described in Section 4. It is easy to verit:

using a proof similar to Theorem 4.1 that if X[B) #¢, then a candidate fcr
stage reaches the root r[B]. Furthermore an argument similar to Lemma 10.1

shows that this candidate routing reguires additional time on any delay

path at most 2n.

-23-

13. FURTHER WORK

A further paper, to appear, describes implementation of FLASHSORT
on the shuffle~exchange network, multi-dimensional arrays, grids, and also
hybrid networks of grids with CCC subnetworks. For these hybrid networks,
FLASHSORT has the asymptotic optimal VLSI bit-complexity A'r2= O(N log N)2
for sorting N Kkeys (represented in binary) within time T (with high

likelihood) and area A<O(N2).

e % ey e e . e

-24-

REFERENCES

' D. Angluin and L.G. Valiant. Fast probabilistic algorithms for Hamiltonian
circuits and matchings. J. of Comp. and Syst. Sei. (1979), 155~193.

R. Aleliunas. Randomized parallel communication. Proc. of ACM Symp. on
Principles of Distributed Computing, Ottawa, Canada (1982).

K. Batcher. Sorting networks and their applications. AFIPS Spring Joint
Comp. Conf. 32 (1968), 307-314.

' H. Chernoff. A measure of asymptotic efficiency for tests of hypothesis
based on the sum of observations. Ann. of Math. Stat. 23 (1952),
493-507.

C.A.R. Hoare. QUICKSCRT. Computer J. 5(1), (1962), 10-15.

F.P. Preparata and J. Vuillemin. The cube-connected cycles: A versatile
network for parallel computation. CACM 24 (1981), 300-310.

M.O. Rabin. Probabilistic algorithms. 1In Algorithms and Complexity. J.F.
Traub (ed.), Academic Press, New York, 1976.

R. Reischuk. A fast probabilistic parallel sorting algorithm. Proc. of
22nd IEEE Symp. on Foundations of Computer Science (1981), 212-219.

; R. Sedgewick. Quicksort. STAN-C5-75-492, Dept. of Comp. Sci., Stanford
' Univ., May 1975.

R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM
J. on Computing 6 (1977), 84-85.

C. Tung. Arithmetic. 1In Computer Science. A.F. Cardenas, L. Presser, and
M.A. Marin (eds.), Wiley-Interscience, New York, 1972.

E. Upfal. Efficient schemes for parallel communication. Proc. of ACM
Symp. on Principles of Distributed Computing, Ottawa, Canada (1982).

L.G. Valiant., A scheme for fast parallel communication. SIAM J. on
Computing 11:2 (1982), 350-361.

L.G. Valiant and G.J. Brebner. Universal schemes for parallel communication.
Proceeding of the Thirteenth Annual ACM Symposium on Theory of
Computing (1981), 263-277.

o ————————— ... i 8t . . .

