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ABSTRACT

'

i is Ceigice o

In this paper we considé;{g resource allocation problemxwhich is local
in the sense that the number of users competing for a particular resource at
any time instant is bounded and also at any time instant the number of
resources that a user is willing to get is bounded. The problem may be
viewed as distributedly achieving matchings in dynamically changiﬁg hyper-
graphs. We show that this problem is related to the fundamental problem of
handshake communication (this problem can be viewed as achieving matchings in
dynamically changing graphs, via distributed algorithms) in that an efficient
solution to each of them implies an efficient solution to the other. We
provide real-time solutions to the resource allocation problem (i.e.,
distributed algorithms with real time response) via probabilistic techniques.
No probability assumptions about the system behavior are made, but processes
are allowed the ability to make independent probabilistic choices. One of
our solutions éssumes the existence of an underlying efficient handshake
communication system. Another is based on basic synchronization primitives
{flag variables): The special case of equi-speed processes is examined.
Applications are drawn to dining philoscphers, scheduling and two-phase

“

locking in databases.




1. INTRODUCTION

1.1 The Resource Granting System

In this paper we consider a resource allocation problem which is
local in the sense described in [Lynch, 1980]. The set of resources p
and the set of user processes U may be infinite sets. However, there
is a iimit %o the number of user processes‘ requesting a particular resource.
Resources are controlled by a set of granting processes R. Each granting
process JjER controls a resource p(j) €EP. We assume user processes
communicate only with those granting processes for which they request
resources. (It is easy to superimpose each granting process into a
requesting user process so that U=R).

A system described as above, is called a KResource Granting System
(ReSY . The anal of A RGS is +n caticefy Avnamirallv changina nser reaguests
for resource allocation. This is done in a distributed way, by only a

local communication between granting and requesting processes. An imple-

mentation of the RGS determines the programs' that the processes run.

It is called symmetric if the programs do not depend on the location

of the processes in the network. At each time t20 the actions of the
requesting user processes U are specified by an adverse oracle o,
{(which may be an "enemy" of the resource allocation algorithm, by setting
actions in the worst way to increase the response time.) «Z also has the
capability to select at time t=0 the schedule of the speeds of all
processes at all times t20. The oracle . is restricted, to allow
users to keep asking for their resources for at least some nonzero length
time interval. We assume that there is a global time t totally ordering
events, but processes do not have access to it. An RGS with priorities

is defined to be a resourcc granting system in which the'requesting processes
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communicate to each resource granting process a rational number on the interval
[0,1), indicating the priority of the request. Tﬁese priorities can change
dynamically, however they are assumed to preserve their value for at least a
fixed constant number of process steps. The processes of R use these
assigned priorities to grant their controlled resource with preference to
users of higher priorityﬁ This must be done in a way avoiding user starvation.

1.2 Complexity of an RGS

In the sequel we consider a process to be tame during a time interval
if it is speed bounded by fixed constants during that interval. We do not.
assume processes always tame, however they are supposed to be tame in the
complexity analysis of response time. We require that, at no time, any
granting process i€ R simultaneously grant the resource R(i) to more than
one requesting process. We also require that, as soon as a process j€u
has got all its required resources, then it can keep them only for a bounded
length time interval (resulting in a bounded number of its steps, if the
process is tame). Let resources(i) be the set of all possible resources
that a process 1i€U is going to ever request, and let resourcest(i) be
the set of resources i 1is requesting at time instant t. Let ki, & be

resourcest(i) | For each time t, the willingness digraph Gt is defined
such that if 1€U and j€ER .and if i requests (or has been granted)
resource pP(j) at t, then the edge i -{ j belongs to Gt' Let also 3j -€ i
if the granting process j is willing to allocate (or has granted) its

resource to user i. Let v_ be the maximum valence of the nodes j of Gt

t
such that j€ER, at time t. In the following we will assume that Ve and

ki c are above bounded by constants v,k at any time t and that v<k.
, .

This does not imply anything about the sets resources(i) Vi €U, which




could be unbounded. We also assume, as in [Lynch, 1980}, that each resource
allocator jER has a set Sj available to it of size €v, containing the
names of those processes willing to get the resource. We assume this to be
a primitive of our system (which could be implemented by a queued message
system or by other means). Finally, we restrict any oracle «/ so that as
soon as it proquces a request for a resource (i.e., it orders the appearance
of the edge i 2+ j in Gt for i€U, jER) it has to insist on that request

t

for at least a bounded time interval. Note that the relation T can be
viewed as a time varying hypergraph with node set I[=UUR and edge set
E={{i}u resource (i), i€ U}. An RGS implementation dynamically achieves
matchings in this hypergraph. We allow probabilistic RGS implementations
where processes can use independent random number generators.

Fix an RGS implementation which may be probabilistic. In the following
we assume processes to be tame over the stated time intervals. For each k
(0Sk<v) and oracle 4 let the k-grant response be the random variable
Yk,d giving the length of the interval A required for any process 1€U
to have k resource requests simultaneously granted, given that i requested
these resources during the entire interval A, with priority 1. Let the mean
k-grant response be §k=max{mean{Yk' .,4} over all oracles f}. For each €
in {0,1] 1let the e-error k-grant response be the minimum Yk(e) such that

for every oracle

Prob{ka<Yk(e)} 21-¢ .

The RGS implementation is real time if for every k€{1,...,v} and for every
€€ (0,1}, 'yk(e) >0 and independent of any giobal measure of the network
(except v). The network here has as nodes the elements of Il and its edges

{u,r} mean that p(r) € resources(u). Note that if the RGS implementation is




real time, then Vk is constant, independent of any global measure of the

graph H of the network (except v).

1.3 Previous Work

[Lynch, 1980] considered the problem of fast allocation of resources in
a distributed §ystem. Her RGS implementation was a deterministic, non-
symmetric one (processes were allowed to know the color of each resource in a
coloration of the resource graph) and the communication system adopted was a
message system requiring buffered communication. The k-grant response was of

the order x(H)'vx(H)

T where x(H) is the chromatic number of the resource
graph and T is the time required for process communication. Note that since

resources{i) for i€U may be unbounded, in the worst case x(H) can be as

large as the number of processes |II|.

1.4 Results of this Paper

We shall present in Section 3 a probabilistic implementation of an RGS

which has mean k-grant response ? ==O(kvk-%-log v) and €-error k-grant response
k

Y () = 0(kvklog(-é-)‘t(%))

where T and f(E) are the mean time and €-error time required for handshake
eommunication between processeé (see Appendix I for definitions). 1In [Reif,
Spirakis 1981], [Reif, Spirakis 1982] handshake communication implementations
were given with ?==o(v2) and T(€)==0(vzlog (1/€e)). Note that these imple-
mentations achieve real time, thus the resulting RGS implementation is also

real time with

*7k = okv* Zlog v)  ana Yk(€5 = o(kvk+?log(-‘é) 109(%_-)) .

R S
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However, any other handshake communication implementation would alsc do.

In Section 4 we present a basic way to implemént a real time RGS in both
cases of synchronous and asynchronous processes. The implementation is
probabilistic. No underlying handshake communication system is assumed.
Instead, the means of synchronization between processes in U and R are
flag variables (which are written by just one process and allowed to be read

) - - +
by at most one other process). The response time has mean Yk = O(kvk 1)

ana v, (e) = okv®*Y 10g(1/€)) .

1.5 Organization of Paper

This paper is organized as follows: Section 2 contains applications of
RGS to dining philosophers, scheduling, two-phase locking in databases, and
real-time handshake communications. Section 3 discusses a real time RGS
assuming an underlying real time handshake communication system. Section 4
discusses a real time RGS implementation by use of low level synchronization
primitives (i.e. boolean and rational flags). Section 4 first discusses an
implementation in which processes have the same speeds but their actions are
relatively shifted in time. At the end of Section 4 we generalize our algo-
rithms to the case where processes are tame. The Appendix defines handshake

communication systems and their performance measures.

2, APPLICATIONS

2,1 Hasty Dining Philisophers

As a simple example, we consider an interesting RGS system which we call
"hasty dining philosophers". Let the requesting processes U be distinct

integers, r , and the granting processes R be O0,...,n-1 so that

0, “oe ,rn-l

UNR=¢g. The resources are crte {p(0),...,p(n=1)}. Each philosopher
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rjEIJ has resources(rj)' consisting of the forks {D(rj),'p(r(j_u)mod n
Thus, the resource graph H 1is a cycle of length n. The "hasty dining
philosophers"™ has a high level real time RGS implementation with mean 2-grant
response ?2==0(1) and €-error 2-grant response Y2(€)==O(1og(l/e)2).

The low level RGS implementation gives ?2=O(1) and Yz(E) =0{(log(l/€)).
Intuitively, the RGS implementation requires each philosopher rj to be at
any time granted both forks of resource(rj) in expected constant time, but

rj must be "hasty" and relinquish these resources within constant time inter-

val. Note that for each i€ {0,...,n-1} the granting process i can be

placed within process roo thus resulting in essentially only n processes.

2.2 Scheduling

Suppose an acyclic digraph D is given with node out-degree <k and
in-degree <v. This graph can be separated into levels. We assume processes
residing in the nodes of D can operate only after getting all their resources
(which reside at the nodes which have no successors). Each process operates
just once and then becomes a resource granting process, to serve the next
higher level. All its successors are deleted. So, each node is initially a
requesting process and after it gets all its resources once, it becomes a
resource granting process. By assuming a real time RGS implementation the

above system can be processed in time of the order of the depth of the digraph.

2.3 Two Phase Locking in Databases

Two-phase locking is a concurrency control method in databases (see for
example [Bernstein, Goodman 1980)) with the feature that as soon as a trans-

action releases a lock, it never obtains additional ones. The technique of




two-phase locking produces serializable transaction executi&ns. We propose
here a way to implement two-phase locking in a distributed database, which

is different from any known algorithms. The underlying assumption is that
transactions are allowed to act on the data only if they got all the locks.
Let the processes of the user set U be called trancaction modules and the
processes of the set R be called data modules. 1f each transaction

requests to lock at most k data modules at a time and if at most v trans-
actions can compete for a lock at a time instant t, then a real time RGS
will result in real time lock allocation per transaction. The transaction_
modules go through a "round" (of constant number of gteps in duration) during
which they communicate with all data modules they want to lock. They keep

the locks they get only for constant number of steps hoping in the meanwhile
to get all of them. 1If the round finishes and they did not succeed in

getting all the locks, then they release whatever they got and try again in
the next round. Given the previously stated response time Yk(E) for a real-
time RGS, one can now decompose the distributed system into a system of
parallel servers with geometrically distributed service time, (one ver trans-
action module). It is straightforward then to analyze the transaction waiting
time, throughput etc., bv assuming a probability distribution in the trans-

action arrival rate.

2.4 Handshake Commrunication in Real Time Via a Real Time RGS

We can implement here handshake communication in the sense of the
Appendix, assuming the existence of a real-time RGS. Assume that each of the
processes j€ER control just one rcsource called the channel and when they

allocate this resource, we say they open the channel. Each of the processes

LR e KV IOV . eI S S v
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i €U have resourcet(i) | €1, so as soon as any process i€u is granted

one resource, process i does not compete for any other, until i releases
that resource. The processes i€U are assumed to open their channel when
they are granted their resource and to close their channel when the resource
is removed. Given bounds v on the processes i€U competing for the same
p(j), JER and a bound k<v on the number of resources a user is willing

to be granted at any time t, a real-time RGS will imply a real-time hand-
shake communication scheduler, with the same time performance (see Appendix I).
It is interesting to note (as we show in Section 3) that one can implement also

a real time RGS by a real time distributed communication subsystem.

3. HIGH LEVEL RGS IMPLEMENTATION ASSUMING A REAL-TIME HANDSHAKE
COMMUNICATION SYSTEM

3.1 The Algorithm

We shall assume here the existence of a DCS [as in Appendix I]. Then,
the implementation of a probabilistic real time RGS is as follows:

The granting processes i are always willing to communicate only to the
requesting processes of the set Si (as defined in the introduction). The
requesting processes are willing to communicate only to those granting
processes whose resources they want (or have been allocated). By communication
here we mean a handshake communication.

The granting processes do forever the following grant algorithm which is

a loop, a single execution of which is called a grant-phase:

h




Do forever

[1].

f2].

[3].

[4].

[5].

(6].

end

each round

Grant Algorithm

for process i€R

Do a handshake communication with anyone of the requesting
processes in S; and get their priorities.

Propabilistically select j€8S;. (The values of the priorities
determine the probability of each requesting process to be
selected as determined in Section 3.2.)

On first handshake with the selected process j, say "yes" to 3j
allocating your resource to j.

For 2.s steps, the granting process says "no" to any requesting
process but j in any handshake and says "yes" to j on any
communication.

(Here s contains at least time T(€) and it must be exactly
equal to T(€) in duration, if i goes as fast as it can. Assume
that, for tame processes, the duration of a step is between two
nonzero values, 6 . , § . Then s = 1()/§ . .)

min’ max min

On handshake with any other process than 3j, the granting process
i says "no". On first handshake communication with j, the
granting process i says "no" to 3j, indicating that resource

p(i) has been withdrawn from Jj and ending the grant phase.

Wait for w steps randomly chosen from [0,65].

The requesting processes continuously attempt to communicate with the
resources they want to be granted.

We may view the actions of the requesting processes time-sliced in rounds

being the minimal time interval in which i communicates at least

once with all k of the resource controlling processes of the resources

which i wishes to ohtain.
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3.2 Probabilistic Selection

We give here a very simple implementation of probabilistic selection
of one out of €v processes (using their priorities) in O(v) steps as
required in phase 2 of the algorithm in Section 3.1. This implementation
can easily be improved to O(log v) steps (see [Reif, Spirakis 1982]}).

Suppose ‘that each resource allocator i has just a random number
generator drawing uniform numbers between 0 and 1. Let pil'piz""'Piv
be the priorities of the processes requesting the resource of i at the
current time.

‘v

To implement the selection proceés we do the following:

(2.1]. draw a random number r in [0,1].

[2.2]. find the process name x for which

xil §
p. P.
*=1 ik << k=1 ik '
v v
;Z& Pix kZé Pix

Note that stage [2.1] takes one step and stage [2.2] takes O(v) steps since
we have to evaluate 2 partial sums each time and test. The current partial

sums can be evaluated from previous partial sums by a single addition.

3.3 Analysis.

We now probabilistically analyze the algorithm of Section 3.1. By the
stated properties of DCS,

Prob{a round length is <€1(e)} > (1-€)" .

It is easy to see that




g = e -

-
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LEMMA 3.1. The average length in steps of a grant phase is € 12 s.

Proof. The stages 1, 3 and 5 of the algorithm will take s steps each
by properties of DCS. Stage 2 takes steps & s=0(v) for known implementations
of DCS. Stage 3 is guaranteed to have 2s steps. Stage 6 takes <6s steps.
From now on we will assume (for simplicity) that all priorities are equal to 1.
Let X be the.event "a requesting processes gets a "yes" answer (in a hand-

shake in stage 3)". We have:

Prob{x}

Prob{it actually competes for the resource}

Prob{it gets a "yes" given it actually competes}

\Y)
|~
< |-

Note that the length of the granting phase of each resource allocator is chosen
in such a way to allow a requesting process to have all the resources for at
least one of its steps, given that it gets all of them in a round._

If we consider a subclass of oracles ¥ which put maximum contention
on the system, then these oracles will give the worst case of the response

time. However, in this case
Prob{x} < % . for oracles €€ .

Let u be the random variable giving the number of rounds required for

process i to succeed in being granted all k resources in one round. Then

1 m-1 1 k
prob{u=m} € |1 - — (;)
(12v)

implying mean(u) € (12 v)k.
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Let u(€) be the minimum value such that

prob{u>u(e)} € € , ve in (0,1]

By properties of tails of geometrics
(12v) (v)
log {1l - 1 X
(12v)

k (12v)k log (E)

u(e)

€

(o] (kvk log(%)) ' for large v.

For €€ (0,1}

Prob %Yk'd < T(%) “(%)1

2 Prob {each round € T(%) and u € u(%)}

So
Prob {Yk,d = o(vkk log -é— T(-z%))} 21-¢c

implying

= k 1) (E
Yk(e) = O(kv log(e) T(Zv))

Yx

which gives

"

0(kvk T log v)

O(v2 log(l/€)) and 7T = 0'(v2) we get

Note: Using T(£)
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' _ k+2 1 v
g Yk(s) = O(v k log(e) log(e))

and

?k = O(kvk+2 log v) '

4. REAL TIME RGS IMPLEMENTATION BY USE OF FLAG VARIABLES

4.1 The Algorithm for the Case of Synchronous Processes

For simplicity, we shall temporarily assume here that all processes go 1
by the same speed. (Section 4.3 drops the assumption of synchronous processes).
However, we also allow for this case that for some time in the past this did
not happen (the processes were asynchronous) and so, at t>0 the execution
| of thelr programs 1n time may De Shirted (in an aaverse way) relative to each
other.
The communication between granting and requesting processes is done here
by flag variables. To read one flag requires one of the process steps. 1In

| case of priorities, some of the flags are allowed to have rational values

between 0 and 1. The flags Pij indicate the priority of user j with

respect to resource i. In the simple case of equal priorities all flags

\ are boolean. Each granting process i ‘has for each requesting process j a

special flag Fij whose value indicates if the resource p(i) is allocated

to j. If j reads F, and finds it 0, then it understands that it lost :

ij

the resource. The granting processes execute forever the following loop,

called a grant phase:

i R T R A L
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Grant Algorithm

of Granting Process i€R

.

Do forever
begin

[1]. Read the priority flags of the requesting processes in the set Si'

e e v o o < e o

(2]. Probabilistically select each of the .requesting processes jEsi
according to their priorities (see Section 3.2).

j [3). Set the flag Fij' to 1 indicating that resource p(i) has been
! allocated to process j.

: [4). Sleep for cv steps (i.e., do cv no-ops).

[5]. Set the warning flag Ljj to indicate to j that he will loose
resource after at most 2cv steps. Wait 2cv steps.

[6]. set Fjj to O (remove resource). Erase the warning by setting
Lij' to O.

(7). wWait for w steps where w 1is a random integer selected uniformly
i . from [0,5cv]. :

| . end

Note: Stages 1,2 each take O(v) steps. The algorithm requires them to each

take cv steps. This constant ¢ is here a fixed constant, used in stages 4,

5,6.

Each user process 3 €U executes continously the following loop, a

single execution of which is called a round.

Do forever

begin

[1]. set pij for each resource p(i) reguested by user j.

[2). Poll for cv steps to see which resources have been awarded to
user j. User j considers the resource p(i) awarded only if

p(i) has been both allocated (Fij =1) and not yet warned (Lij==0).

o l<




J—

|
!

[3). If all resources requested by Jj are awarded use them for
H<<v steps (4 is a constant, controlled by the implementation).

end

A phase of a grant process:

Sleep
Read : for random
| pPriorities ; Select’ jinterval w
r cv " ev + cv 4 2cv + i
award start remove
resource warning resource
Figure 1
A round of a requesting process:
ask LUL resvuLcCes
by Poll for If all awarded,
Y flags ¥ resources awarded ¥ use them +
cv cv H
Figure 2

4.2 2analysis

Note that in the synchronous case assumed here, the time is essentially
the processes steps. The power of the adversary is thus restricted to only a
possibly malicious initial relative shift of the program counters of the

various processes.

LEMMA 4.1. It is impossible for the user j to conclude that it has

got all resources and actually some of the regources to have been removed.

GBLLT ot @B Wre W = g o AR el e o Sl SRS USRI ot . .5
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Proof. Since the poiling time of j lasts only cv s.teps, by the time
he concludes that the last resource is allocated to him, the first allocated
resource can at most be in the middle of the warning périod {and hence not
removed yet).

Note: The above lemma puts a limit on H. It must be

H<ecv-1 .

In the sequel we consider priorities=1

LEMMA 4.2. The probability that user j will get a particular resource

in its current round i 2 1/10v.
Proof. This probability is equal to

Prob{flag of user j will be seen by the resource allocator
in the current round}

- Prob{j will be selected given its flag was seen}

1
>E-

<=

Note: The first probability is 2 1/10 due to the random waits
incurred by the resource allocators. These waits counteract the adverse

relative shifts.

LEMMA 4.3. The probability that user j will get a particular resource

in its current round is € l/v for the worst case oracles.

Proof. Consider oracles which put maximum contention in the system.

LEMMA 4.4. The probability that user 3 -will get all his resources in

the same round i8° 2 1/(10v)k and 18 <€ 1/vk.
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Proof. By the fact that granting processes sleep for random intervals

and hence their relative positions in the algorithm are statistically

independent (and Lemmas 4.1, 4.3).

Let u=# rounds required for user i to succeed in being granted all

its k resources in one round. Then

m-1
Prob{u=m} € (1 ~ —-—:L—-E) lk
(10v) (v)

implying

mean(u) € (IOV)k .
If u(e) is the least number such that prob{u>u(e)} € € then

loa (~—§—-—\ - loa -1—
\ (ton)™/ v

u(e) = T
log |1l - ————k-)
(10v)

k(lOv)k 109'(;1:-) for large v

of reelt) -

Since each round of i takes < 3cv steps, we have

li'rob{Yk W € 3cv ule)} 21 -¢

implying
Y (€)= o(kvk+1 log(%))

and
)

< k+
Yk = O(kv
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Note that the RGS implementation by flags is more efficient than the RGS

implementation by an underlying DCS system.

4.3 Asynchronous Case with Tame Processes

The algorithms and the analysis in this case are exactly the same with
the synchronous:case, with one change: The constant ¢ must be replaced by
c' = c/ymin in order to guarantee that c'v steps of a process imply at

least cv steps of any other process and at most C'Ymaxv steps. We again

will get :
Yk(e) = O(kvlw1 1og(é)) j
Y, = o™ .
% ; Note that these results are slightly better than those based on a handshake

' co>mmunication system, since there is no'uncertainty about flag communication
in each round. However, when processes are not tame, the correcitness of the
implementation by flags may be violated, while the correctness of the

‘ implementation by an underlying DCS will be preserved (because of the hand-
4 shake communication which accompanies allocation or deallocation of a
resource) given that the correctness of the underlying DCS is not violated

} when processes are not tame.
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APPENDIX I

Distributed (Handshake) Communication Systems (DCS)

Suppose that each process has a special resource called channel which
can be in one of two states open, closed. A handshake of two processes
i, 3j in time t is a combination of processes states at time t so that
both channels of i and 3j are open at the same time.

We require that successful direet communication requires a handshake of
at least 1 step overlap of both processes and that the handshake relation
should be a matching. At any instant t no process is allowed to be hand-
shaking with more than one other process. During the one step overlap, a
message can be transmitted from one process to the other. The problem is
usuvallv to svnchronize processes (via a distributed scheduler) sc that t'ev
can handshake at their will, given that the means of synchronization i1: some
low level construct (a message system, buffered communication, shared
variables or flags) which does not guarantee the handshake property if used
in an unsophisticated way. A distributed scheduler is called real time if it
has the property that if two processes 1i,j are willing to handshake
mutually for at least a constant time interval, then they will actually
achieve successful direct communication during that time interval with
arbitrarily small probability of error. |

Formally, let T(€) be the smallest real number such that if two
processes 1i,j are mutually willing to handshake for at least T(e) time,
then they will actually succeed in 1 step overlap of open channels during that
time, with probability 21-€., T(€) is called the €-ecrror response of the

handshake algorithm. The mean response, T of a handshake algorithm is the
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maximum (over all adverse speed schedules of tame processes and overall adverse
communication requests subject to restrictions stated in the introduction) of the
mean time needed for two processes to handshake, from the time instant they

start to be mutually willing. A real time probabilistic scheduler has T(g)
depending only on v and not on any other global measure of the communications
graph. (v is a fixed upper bound on the out-valence of the dynamic communication
willingness digraph at any time instant t). We also require T(€) to increase
at most linearly with 1/e. Note that such a scheduler has T also depending
only on v.

The handshake problem has been given some attention in literature
[Schwartz, 79], [Francez, Rodeh 80}, [Francez, 8l1], [Reif, Spirakis 81],

[Reif, Spirakis 82].

For Section 3 we require a Digtributed Communication System (DCS) as
defined above with a distributed real time probabilistic scheduler. We also
require the DCS to have the following property:

If a process i is willing to communicate with k<Sv processes for at
least time 27T(€) -and if they are also willing to (handshake) communicate
with i during that interval, then the probability that i will be able to
communicate with all of them (in some order) within T(€), is 2=(1—€)v.

Such a real time DCS was implemented in [Reif, Spirakis 81) with

o(v10g(1/¢€))

T(€)

o (vz) .

-
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