
7AD-AIA 856 HARVARD UNIV CAMBRIDGE MA AIKEN COMPUTATION LAO F/6 5/1
REAL TINME RESOURCE ALLOCATION IN A DISTRIBUTED SYSTEM.CU)
FES 82 J REIF, P SPIRAKIS NOOOIA-90-C-OAA7

UNCLASSIFIED TR06-2 NL

ONE~m hEE

1111151 1-61.

4IIi I 1.

MICROCOPY RESOLUTION TEST CHART

NATIINAL KARt)A (I .SIANDARU I). A

SE~r T L ~REAPO TH OUMA TIO PALEn Re~"-' OEAD 1rESTRtUCT10-

I. REPORT NUMUE
CNjLTxt.N-%

4. ToTLE (andSubeli.s) S' TYPE OF REPORT & loEk G ov4e:0

Technical Report
Real Time Resource Allocation in a
Distributed System 6. PERFORMING ORG. REPORT "MNICH

___ TR-06-82
1. AUTHOR(*) 11. CONTRACT ORt GRANT NUMBER(@)

John Reif N00014-80-C-0647
Paul Spirakis

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROjECT. TASK
AREA A WORK UNIT NUMBERS

Harvard University
Cambridge, MA 02138

II. CONTROLLING OFFICE NAME AND ADDRESS II. REPORT DATE

Of fice of Naval Research February, 1982
800 North Quincy Street 13. NUMBER Or PAGES

S Arlington VA 22217 22
14. MONITORING AECY NAME & ADORESS(il duifeent from Contrl.ling Office) IS, SECURITY CLAS. (of rho& Popoeit)

same as above

IS. OELSIIAI~DW(R~N

16. DISTRIBUTION STATEMENT (of this R~pori)

unlimited This documnent'hcis been aipproved
f.,r puiblic release anid sale-, its
diztribution is unlimited.

17. DISTRIBUTION STATEMENT (of the ebetract entered In Black 20. It diff.eent btoa Report)

* ~~~unlimited e9s zdSa;jj

I0. SUPPLE14ENTARY NOTES

IS. KEY WORDS (Contnu at$u re eve,.. old* It ne essary and ld*,' ily byr block number)

resource allocation, handshake communication, real-time algorithms,
probabilistic algorithms, synchronization, dining philosophers, scheduling,

o... two-phase locking.
20. ABSTRACT (Continue .m reverse aide. It n..c.see'y and tdontify bp block number)

see reverse side

LLJ OTIC
tELECTE
WNMAY 25 1982.

DD Ij 1473 EDI TION OF INOV 65 IS OUSOL~ t r

SECURi I Y Ck.Assiric~rIoN or imis Pe Gh~. ets, NnI..'

L----. 7

_.-..j41TV CLAssirocAiijN OF TwIs PA .'"h-, t).,. rnit-1,)

20.

In this paper we consider a resource allocation problem which is local

in the sense that the number of users competing for a particular resource at

any time instant is bounded and also at any time instant the number of

resources that a user is willing to get is bounded. The problem may be

viewed as distributedly achieving matchings in dynamically changing hyper-

graphs. We show that this problem is related to the fundamental problem of

handshake communication (this problem can be viewed as achievingmatchings in

dynamically changing graphs, via distributed algorithms) in that an efficient

solution to each of them implies an efficient solution to the other. We

provide real-time solutions to the resource allocation problem (i.e.,

distributed algorithms with real time response) via probabilistic techniques.

No probability assumptions about the system behavior are made, but processes

are allowed the ability to make independent probabilistic choices. One of

our solutions dssumes the existence of an underlying efficient handshake

communication system. Anothe is based on basic synchronization primitives

(flag variables). The special case of equi-speed processes is examined.

Applications are drawn to dining philosophers, scheduling and two-phase

locking in databases.

SECURIlY CLASSIFk ATION Or 1NIM PAGE(Whon D E.oted)

F7

REAL TIME RESOURCE ALLOCATION

IN A DISTRIBUTED SYSTEM

John Reif

Paul Spirakis

TR-06-82

To appear in ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, Ottawa, Canada, August 1982.

February 1982

#'~C
EECTE f

MAY 2 5 1982

A

This document has been PPTOVed.
for public ielease and sale; its
distibution is unlimited.

REAL TIME RESOURCE ALLOCATION

IN A

DISTRIBUTED SYSTEM*

by

John Reif and Paul Spirakis

Aihcn Ccmput",ticr Lzab.
ccissio Fo

Harvard University 1,T S d

I Ju't i iation__

February 1982 DyDistribution/

Availab'.ity Codes
Avail hnd/or

"Spec.'p
c n

*This work was supported in part by the National Science Foundation Grant
NSF-MCS79-21024, and the Office of Naval Research Contract N00014-80-C-0647.

ABSTRACT

In this paper we consider ' resource allocation problem which is local

in the sense that the number of users competing for a particular resource at

any time instant is bounded and also at any time instant the number of

resources that a user is willing to get is bounded. The problem may be

viewed as distributedly achieving matchinge in dy namicaty changing hyper-

graphs. We show that this problem is related to the fundamental problem of

handshake comnunication (this problem can be viewed as achieving matchings in

dynamicaZly changing graphs, via distributed algorithms), in that an efficient

solution to each of them implies an efficient solution to the other. We

provide real-time solutions to the resource allocation problem (i.e.,

distributed alqorithms with real time response) via probabilistic techniques.

No probability assumptions about the system behavior are made, but processes

are allowed the ability to make independent probabilistic choices. One of

our solutions assumes the existence of an underlying efficient handshake

communication system. Another is based on basic synchronization primitives

(flag variables). The special case of equi-speed processes is examined.

Applications are drawn to dining philosophers, scheduling and two-phase

locking in databases.

iI

1. INTRODUCTION

1.1 The Resource Granting System

In this paper we consider a resource allocation problem which is

local in the sense described in (Lynch, 1980]. The set of resources p

and the set of user processes U may be infinite sets. However, there

is a limit to the number of user processes requesting a particular resource.

Resources are controlled by a set of granting processes R. Each granting

process j ER controls a resource p(j) EP. We assume user processes

communicate only with those granting processes for which they request

resources. (It is easy to superimpose each granting process into a

requesting user process so that U= R).

A system described as above, is called a Resource Granting System

(Paq) . 'rhp anAl of A Rr. ji -t qa-zfv Avnynil rl11 hanai nn iimpr roP(Y1Ptq

for resource allocation. This is done in a distributed way, by only a

local communication between granting and requesting processes. An inple-

mentation of the RGS determines the programs that the processes run.

It is called synmetric if the programs do not depend on the location

of the processes in the network. At each time t) 0 the actions of the

requesting user processes U are specified by an adverse oracle a,

(which may be an "enemy" of the resource allocation algorithm, by setting

actions in the worst way to increase the response time.) .4 also has the

capability to select at time t= 0 the schedule of the speeds of all

processes at all times t)O. The oracle a is restricted, to allow

users to keep asking for their resources for at least some nonzero length

time interval. We assume that there is a global time t totally ordering

events, but processes do not have access to it. An RGS with priorities

is defined to be a resource granting system in which the requesting processes

-2-

communicate to each resource granting process a rational number on the interval

[0,1], indicating the priority of the request. These priorities can change

dynamically, however they are assumed to preserve their value for at least a

fixed constant number of process steps. The processes of R use these

assigned priorities to grant their controlled resource with preference to

users of higher priority. This must be done in a way avoiding user starvation.

1.2 Complexity of an RGS

In the sequel we consider a process to be tme during a time interval

if it is speed bounded by fixed constants during that interval. We do not

assume processes always tame, however they are supposed to be tame in the

complexity analysis of response time. We require that, at no time, any

granting process iE R simultaneously grant the resource R(i) to more than

one requesting process. We also require that, as soon as a process j E u

has got all its required resources, then it can keep them only for a bounded

length time interval (resulting in a bounded number of its steps, if the

process is tame). Let resources(i) be the set of all possible resources

that a process iE U is going to ever request, and let resources t(i) be

the set of resources i is requesting at time instant t. Let ki't be

Iresources t(i) . For each time t, the wii ingnees digraph Gt is defined

such that if i C U and j E R and if i requests (or has been granted)

resource p(j) at t, then the edge i - j belongs to Gt . Let also j - i
tt* t

if the granting process j is willing to allocate (or has granted) its

resource to user i. Let vt be the maximum valence of the nodes j of Gt

such that j ER, at time t. In the following we will assume that vt and

k are above bounded by constants v,k at any time t and that v~k.
i,t

This does not imply anything about the sets resources(i) Vi E U, which

-3-

could be unbounded. We also assume, as in [Lynch, 1980], that each resource

allocator jE R has a set S. available to it of size <v, containing theJ

names of those processes willing to get the resource. We assume this to be

a primitive of our system (which could be implemented by a queued message

system or by other means). Finally, we restrict any oracle .4 so that as

soon as it produces a request for a resource (i.e., it orders the appearance

of the edge i j in Gt for iEU, jE R) it has to insist on that request

for at least a bounded time interval. Note that the relation - can be
t

viewed as a time varying hypergraph with node set l1 =U UR and edge set

E = {{iI U resourcet(i), iE U). An RGS implementation dynamically achieves

matchings in this hypergraph. We allow probabilistic RGS implementations

where processes can use independent random number generators.

Fix an RGS implementation which may be probabilistic. In the following

we assume processes to be tame over the stated time intervals. For each k

(0-<k<v) and oracle 4 let the k-grant response be the random variable

yk,4 giving the length of the interval A required for any process iE U

to have k resource requests simultaneously granted, given that i requested

these resources during the entire interval A, with priority 1. Let the mean

k-grant response be yk =max{mean{yk,4 4 over all oracles 4}. For each C

in [0,1] let the E-error k-grant response be the minimum Yk() such that

for every oracle

Prob{yk, < Yk (E)} > I-C

The RGS implementation is real time if for every kE {1,...,v} and for every

CE (0,1], Yk (C) >0 and independent of any giobal measure of the network

(except v). The network here has as nodes the elements of H and its edges

{u,r) mean that p(r) Eresources(u). Note that if the RGS implementation is

L

-4-

real time, then ik is constant, independent of any global measure of the

graph H of the network (except v).

1.3 Previous Work

[Lynch, 1980] considered the problem of fast allocation of resources in

a distributed system. Her RGS implementation was a deterministic, non-

symmetric one (processes were allowed to know the color of each resource in a

coloration of the resource graph) and the communication system adopted was a

message system requiring buffered communication. The k-grant response was of

the order x(H)-v (H)-T where x(H) is the chromatic number of the resource

graph and T is the time required for process communication. Note that since

resources(i) for i E U may be unbounded, in the worst case x(H) can be as

large as the number of processes I I.

1.4 Results of this Paper

We shall present in Section 3 a probabilistic implementation of an RGS

which has mean k-grant response Yk= O(kv Tlog v) and E-error k-grant response

Y (e) = o(kvklog(1) T(_L))

where i and T(E) are the mean time and e-error time required for handshake

conmnication between processes (see Appendix I for definitions). In [Reif,

Spirakis 1981], [Reif, Spirakis 1982] handshake communication implementations

were given with r=O(v 2) and T(E) = O(v2 log (l/e)). Note that these imple-

mentations achieve real time, thus the resulting RGS implementation is also

real time with

k 2 k log v) and Yk(E) O= v log()

-5-

However, any other handshake communication implementation would also do.

In Section 4 we present a basic way to implement a real time RGS in both

cases of synchronous and asynchronous processes. The implementation is

probabilistic. No underlying handshake communication system is assumed.

Instead, the means of synchronization between processes in U and R are

flag variables (which are written by just one process and allowed to be read

by at most one other process). The response time has mean yk = O(kvk+l)

and yk(C) = O(kvk +1 log(l/6)).

1.5 Organization of Paper

This paper is organized as follows: Section 2 contains applications of

RGS to dining philosophers, scheduling, two-phase locking in databases, and

real-time handshake communications. Section 3 discusses a real time RGS

assuming an underlying real time handshake communication system. Section 4

discusses a real time RGS implementation by use of low level synchronization

primitives (i.e. boolean and rational flags). Section 4 first discusses an

implementation in which processes have the same speeds but their actions are

relatively shifted in time. At the end of Section 4 we generalize our algo-

rithms to the case where processes are tame. The Appendix defines handshake

communication systems and their performance measures.

2. APPLICATIONS

2.1 Hasty Dining Philisophers

As a simple example, we consider an interesting RGS system which we call

"hasty dining phiZosophers". Let the requesting processes U be distinct

integers, r0, ...,rn, and the granting processes R be 0,...,n-i so that

UAR=O. The resources are , '4 {(0).... (n-l)}. Each philosopher

-6-

r. EU has resources(r.) consisting of the forks {P(rj), P(r(j+l)mod n)}.J J

Thus, the resource graph H is a cycle of length n. The "hasty dining

philosophers" has a high level real time RGS implementation with mean 2-grant

- 2
response y2 =O(l) and E-error 2-grant response y2 (E) =O(log(i/E)2).

The low level RGS implementation gives y2 =O(l) and YE) =O(log(l/)).

Intuitively, the RGS implementation requires each philosopher r. to be at)

any time granted both forks of resource(r.) in expected constant time, butJ

r. must be "hasty" and relinquish these resources within constant time inter-

val. Note that for each iE {0,...,n-l} the granting process i can be

placed within process rip thus resulting in essentially only n processes.

2.2 Scheduling

Suppose an acyclic digraph D is given with node out-degree <k and

in-degree <v. This graph can be separated into levels. We assume processes

residing in the nodes of D can operate only after getting all their resources

(which reside at the nodes which have no successors). Each process operates

just once and then becomes a resource granting process, to serve the next

higher level. All its successors are deleted. So, each node is initially a

requesting process and after it gets all its resources once, it becomes a

resource granting process. By assuming a real time RGS implementation the

above system can be processed in time of the order of the depth of the digraph.

2.3 Two Phase Locking in Databases

Two-phase locking is a concurrency control method in databases (see for

example (Bernstein, Goodman 1980]) with the feature that as soon as a trans-

action releases a lock, it never obtains additional ones. The technique of

-7-

two-phase locking produces serializable transaction executions. We propose

here a way to implement two-phase locking in a distributed database, which

is different from any known algorithms. The underlying assumption is that

transactions are allowed to act on the data only if they got all the locks.

Let the processes of the user set U be called trancaction modules and the

processes of the set R be called data modules. If each transaction

requests to lock at most k data modules at a time and if at most v trans-

actions can compete for a lock at a time instant t, then a real time RGS

will result in real time lock allocation per transaction. The transaction

modules go through a "round" (of constant number of steps in duration) during

which they communicate with all data modules they want to lock. They keep

the locks they get only for constant number of steps hoping in the meanwhile

to get all of them. If the round finishes and they did not succeed in

getting all the locks, then they release whatever they got and try again in

the next round. Given the previously stated response time Yk(E) for a real-

time RGS, one can now decompose the distributed system into a system of

parallel servers with qeometricallv distributed service time, (one per trans-

action module). It is straiQhtforward then to analyze the transaction waitinq

time, throuqhvut etc., by assuminq a probability distribution in the trans-

action arrival rate.

2.4 Handshake Communication in Real Time Via a Real Time RGS

We can implement here handshake communication in the sense of the

Appendix, assuming the existence of a real-time RGS. Assume that each of the

processes jE R control just one resource called the channeZ and when they

allocate this resource, we say they open the channel. Each of the processes

% _N

-8-

iEU have Iresourcet(i)1 1l, so as soon as any process i EU is granted

one resource, process i does not compete for any other, until i releases

that resource. The processes iE U are assumed to open their channel when

they are granted their resource and to close their channel when the resource

is removed. Given bounds v on the processes iE U competing for the same

p(j), jER and a bound k<v on the number of resources a user is Willing

to be granted at any time t , a real-time RGS will imply a real-time hand-

shake coniunication scheduler, with the same time performance (see Appendix I).

It is interesting to note (as we show in Section 3) that one can implement also

a real time RGS by a real time distributed communication subsystem.

3. HIGH LEVEL RGS IMPLEMENTATION ASSUMING A REAL-TIME HANDSHAKE

COMMUNICATION SYSTEM

3.1 The Algorithm

We shall assume here the existence of a DCS [as in Appendix I]. Then,

the implementation of a probabilistic real time RGS is as follows:

The granting processes i are always willing to communicate only to the

requesting processes of the set S. (as defined in the introduction). The

requesting processes are willing to communicate only to those granting

processes whose resources they want (or have been allocated). By communication

here we mean a handshake communication.

The granting processes do forever the following grant algorithm which is

a loop, a single execution of which is called a grant-phase:

I- - -9

Grant Algorithm

for process E R

Do forever

begin

11]. Do a handshake communication with anyone of the requesting
processes in Si and get their priorities.

(2]. Probabilistically select jE Si. (The values of thle priorities
determine the probability of each requesting process to be
selected as determined in Section 3.2.)

[3]. On first handshake with the selected process j, say "1yes" to j
allocating your resource to j.

[4]. For 2.s steps, the granting process says "no" to any requesting
process but j in any handshake and says "yes" to j on any
communication.

(Here s contains at least time 1(C) and it must be exactly
equal to T(E) in duration, if i goes as fast as it can. Assume
that, for tame processes, the duration of a step is between two
nonzero values, 6. min 6 mx. Then s = -(E)/6 mi'.

[5]. On handshake with any other process than j, the granting process
i says "no". on first handshake communication with j, thle
granting process i says "no" to j, indicating that resource
pUi) has been withdrawn from j and ending the grant phase.

[6]. Wait for w steps randomly chosen from [0,6s].

end

The requesting processes continuously attempt to communicate with the

resources they want to be granted.

We may view the actions of the requesting processes time-sliced in rounds

each round being the minimal time interval in which i communicates at least

once with all k of the resource controlling processes of the resources

which i wishes to obtain.

-10-

3.2 Probabilistic Selection

We give here a very simple implementation of probabilistic selection

of one out of <v processes (using their priorities) in O(v) steps as

required in phase 2 of the algorithm in Section 3.1. This implementation

can easily be improved to O(log v) steps (see [Reif, Spirakis 1982]).

Suppose that each resource allocator i has just a random number

generator drawing uniform numbers between 0 and 1. Let pilPi2,...,Piv

be the priorities of the processes requesting the resource of i at the

current time.

To implement the selection process we do the following:

(2.1]. draw a random number r in [0,1].

(2.2]. find the process name x for which

x-1 x

k=l ik k=
k= ~ < r ik r<v v

I Pik IPikk=l k=l

Note that stage [2.1] takes one step and stage [2.2] takes O(v) steps since

we have to evaluate 2 partial sums each time and test. The current partial

sums can be evaluated from previous partial sums by a single addition.

3.3 Analysis

We now probabilistically analyze the algorithm of Section 3.1. By the

stated properties of DCS,

Prob{a round length is <T(c)} > (l- E)v

It is easy to see that

-11-

LMMA 3.1. The average length in steps of a grant phase is 4 12

Proof. The stages 1, 3 and 5 of the algorithm will take s steps each

by properties of DCS. Stage 2 takes steps 4 s =O(v) for known implementations

of DCS. Stage 3 is guaranteed to have 2s steps. Stage 6 takes <6s steps.

From now on we will assume (for simplicity) that all priorities are equal to 1.

Let X be the.event "a requesting processes gets a "yes" answer (in a hand-

shake in stage 3)". We have:

Prob{X}

- Prob{it actually competes for the resource}

Prob{it gets a "yes" given it actually competes)

> 1I
12 v

Note that the length of the granting phase of each resource allocator is chosen

in such a way to allow a requesting process to have all the resources for at

least one of its steps, given that it gets all of them in a round.

If we consider a subclass of oracles W which put maximum contention

on the system, then these oracles will give the worst case of the response

time. However, in this case

Prob{X} , for oracles -dE .v

Let u be the random variable giving the number of rounds required for

process i to succeed in being granted all k resources in one round. Then

prob(u=m} 4 (1
i (

m i (

kimplying mean(u) ((12 v)

C4

-12-

Let u(C) be the minimum value such that

prob{u>u()1 4 , VC in (0,1]

By properties of tails of geometrics

log 1 .kEu(s) = log(l (ll k-

= k(l2v)k log ()

= 0 (kvk log(l)) for large v.

For EE (0,11

Prob ('Ys <~\v U\/

SProb reach round -4T and u u 0

So

Prob k (k log 0 k T 1 - C

implying

()= o(kV k log(~ , 2v
which gives

-k = O(kvk T log v)

Note: Using T(E) = O(v 2 log(l/)) and = 2(v2) we get

-13-

Yk (C) = (k2 o(0)1~~)

and
akd= O(kv k 2 log v)

4. REAL TIME RGS IMPLEMENTATION BY USE OF FLAG VARIABLES

4.1 The Algorithm for the Case of Synchronous Processes

For simplicity, we shall temporarily assume here that all processes go

by the same speed. (Section 4.3 drops the assumption of synchronous processes).

However, we also allow for this case that for some time in the past this did

not happen (the processes were asynchronous) and so, at t> 0 the execution

ot tneir programs in time may ne snirtea tin an aeverse way) relative to each

other.

The communication between granting and requesting processes is done here

by flag variables. To read one flag requires one of the process steps. In

case of priorities, some of the flags are allowed to have rational values

between 0 and 1. The flags P.. indicate the priority of user j withi)

respect to resource i. In the simple case of equal priorities all flags

are boolean. Each granting process i has for each requesting process j a

special flag Fij whose value indicates if the resource p(i) is allocated

to J. If j reads Fij and finds it 0, then it understands that it lost

the resource. The granting processes execute forever the following loop,

called a grant phase:

-14-

Grant Algorithm

of Granting Process iE R

Do forever

[1]. Read the priority flags of the requesting processes in the set S..

[2]. Probabilistically select each of the requesting processes j ES.
according to their priorities (see Section 3.2).

[3]. Set the flag Fij. to 1 indicating that resource pi) has been

allocated to process j.

[4]. Sleep for cv steps (i.e., do cv no-ops).

[5]. Set the Warning flag Lij to indicate to j that he will loose
resource after at most 2cv steps. Wait 2cv steps.

[6]. Set F., to 0 (remove resource). Erase the warning by setting
L.. to 0.

(7]. Wait for w steps where w is a random integer selected uniformly
from [0,5cv].

end

Note: Stages 1,2 each take O(v) steps. The algorithm requires them to each

take cv steps. This constant c is here a fixed constant, used in stages 4,

5,6.

Each user process j E U executes continously the following loop, a

single execution of which is called a round.

Do forever

begin

[11. Set pij for each resource p(i) requested by user j.

[2]. Poll for cv steps to see which resources have been awarded to
user J. User j considers the resource p(i) aWarded only if
pi) has been both allocated (Fij= 1) and not yet warned (Lij- 0). '4

-15-

[3). If all resources requested by j are awarded use them for
U<<v steps (Ij is a constant, controlled by the implementation).

end

A phase of a grant process:

Sleep
Read for random

l priorities I Select interval w
cv cv a cv t 2cv iaward start remove

resource warning resource

Figure 1

A round of a requesting process:

by Poll for If all awarded,
+ flags + resources awarded + use them

cv cv

Figure 2

4.2 Analysis

Note that in the synchronous case assumed here, the time is essentially

the processes steps. The power of the adversary is thus restricted to only a

possibly malicious initial relative shift of the program counters of the

various processes.

LEMMA 4.1. It is impossibZe for the user j to concZude that it has

got all resources and actually some of the resources to have been removed.

4 r ~ -- *-.* ~ ___

-16-

Proof. Since the polling time of j lasts only cv steps, by the time

he concludes that the last resource is allocated to him, the first allocated

resource can at most be in the middle of the warning period (and hence not

removed yet).

Note: The above lemma puts a limit on 11. It must be

V <cv-1 .

In the sequel we consider priorities= 1

LEMMA 4.2. The probability that user j will get a particular resource

in its current round is > I/lOv.

Proof. This probability is equal to

Prob{flag of user j will be seen by the resource allocator
in the current round)

Prob{j will be selected given its flag was seen}

1!. 1 o

10 v

Note: The first probability is > 1/10 due to the random waits

incurred by the resource allocators. These waits counteract the adverse

relative shifts.

LEMMA 4.3. The probability that user j will get a particular resource

in its current round is < 1/v for the worst case oracles.

Proof. Consider oracles which put maximum contention in the system.

LEMMA 4.4. The probability that user j -will get all his resources in

k kthe scone round is' > 1/(lov) and is < 1/v

-17-

Proof. By the fact that granting processes sleep for random intervals

and hence their relative positions in the algorithm are statistically

independent (and Lemmas 4.1, 4.3). 0

Let u = # rounds required for user i to succeed in being granted all

its k resources in one round. Then

(lkv)k) k

Prob(lum} M v

implying

mean(u) ((lOv)k

If u(E) is the least number such that prob{u>u(E)} < C then

uo (C) (loa -

(101v /u(S) - lo - 1)

log (-(lOv)k)

= k(lOv)k log(1) for large v

=O0(kvk log(C

Since each round of i takes < 3cv steps, we have

Prob[Yk,j 3cv u(e)} > I -C

implying

and

k+l
ik °(kvk+log

.ww

-18-

Note that the RGS implementation by flags is more efficient than the RGS

implementation by an underlying DCS system.

4.3 Asynchronous Case with Tame Processes

The algorithms and the analysis in this case are exactly the same with

the synchronous.case, with one change: The constant c must be replaced by

C' = C/Ymin in order to guarantee that c'v steps of a process imply at

least cv steps of any other process and at most c'y maxv steps. We again

will get

Tic = O(kv)

Note that these results are slightly better than those based on a handshake

cL-mmunication system, since there is no uncertainty about flag communication

in each round. However, when processes are not tame, the correctness of the

implementation by flags may be violated, while the correctness of the

implementation by an underlying DCS will be preserved (because of the hand-

shake communication which accompanies allocation or deallocation of a

resource) given that the correctness of the underlying DCS is not violated

when processes are not tame.

-19-

References

Andrews, G., "Synchronizing Resources," ACM Transactions on Programing Languages
and Systems, Vol. 3, No. 4, Oct. 81, pp. 405-430.

Angluin, D., "Local and Global Properties in Networks of Processors," 12th
Annual Symposium on Theory of Computing, Los Angeles, California, April
1980, pp. 82-93.

Arjomandi, E., M. Fischer, and N. Lynch, "A Difference in Efficiency between
Synchronou and Asynchronous Systems," 13th Annual Symposium on Theory
of Computing, April 1981.

Bernstein, A.J., "Output Guards and Nondeterminism in Communicating Sequential
Processes," ACM Trans. on Prog. Lang. and Systems, Vol. 2, No. 2,
April 1980, pp. 234-238.

Bernstein, P. and N. Goodman, "Fundamental Algorithms for Concurrency Control
in Distributed Database Systems," CCA TR. Contract No. F30603-79-0191,
Cambridge, MA, 1980.

Dennis, J.B. and D.P. Misunas, "A Preliminary Architecture for a Basic Data-
flow Processor," Proc. of the 2nd Annual Symposium on Computer Architecture,
ACM, IEEE, 1974, pp. 126-132.

Fischer, M.J., N.A. Lynch, J.E. Burns, and A. Borodin, "Resource Allocation with
Immunity to Limited Process Failure," 19th FOCS, 1979, pp. 234-254.

Francez, N. and Rodeh, "A Distributed Data Type Implemented by a Probabilistic
Communication Scheme," 21st Annual Symposium on Foundations of Computer
Science, Syracuse, New York, Oct. 1980, pp. 373-379.

Hoare, C.A.R., "Communicating Sequential Processes," Com. of ACM, Vol. 21,
No. 8, Aug. 1978, pp. 666-677.

Lehmann, D. and M. Rabin, "On the Advantages of Free Choice: A Symmetric and

Fully Distributed Solution to the Dining Philosophers' Problem," to
appear in 8th ACM Symposiwn on Principles of Program Languages, Jan. 1981.

Lipton, R. and F.G. Sayward, "Response Time of Parallel Programs," Research
Report #108, Dept. Computer Science, Yale Univ., June 1977.

Lynch, N.A., "Fast Allocation of Nearby Resources in a Distributed System,"
12th Annual Symposium in Theory of Computing, Los Angeles, California,
April 1980, pp. 70-81.

Mahjoub, A., "Some Comments on Ada as a Real-time Programming Language," to
appear.

Rabin, M., "N-Process Synchronization by a 4 log2N-valued Shared Variable,"
21st AnnuaZ Symposium on Foundations of Computer Science, Syracuse,
New York, Oct. 1980, pp. 407-410.

Rabin, M., "The Choice Coordination Problem," Mem. No. UCB/FRL M80/38,
Electronics Research Lab., Univ. of California, Berkeley, Aug. 1980.

-20-

Reif, J.H., and Spirakis, P., "Distributed Algorithms for Synchronizing Inter-
process Communication Within Real Time," 13th Annual ACM Symposium on
Theory of Computation, Wisconsin, 1981, pp. 133-145.

Reif, J.H., and Spirakis, P., "Unbounded Speed Variability in Distributed
Communications Systems," Ninth ACM Symposium on Principles of Programming
Languages, January 25-27, 1982, Albuquerque, New Mexico.

Schwarz, J., "Distributed Synchronization of Communicating Sequential
Processes," DAI Research Report No. 56, Univ. of Edinburgh, 1980.

Silberschatz, A., "Extending CSP to Allow Dynamic Resource Allocation,"
Technical Report, Dept. of Computer Science, Univ. Texas, Austin, Texas,
1981.

Tonag, S., "Deadlock and Livelock-Free Packet Switching Networks," 12th
Annual Sympsoim on Theory of Computing, Los Angeles, California, April
1980, pp. 82-93.

Valiant, L.G., "A Scheme for Fast Parallel Communication," Technical Report
Computer Science Dept., Edinburgh, Scotland, July 1980.

-21-

APPENDIX I

Distributed (Handshake) Communication Systems (DCS)

Suppose that each process has a special resource called channel which

can be in one of two states open, cZosed. A handshake of two processes

i, j in time t is a combination of processes states at time t so that

both channels of i and j are open at the same time.

We require that successful direct commnication requires a handshake of

at least 1 step overlap of both processes and that the handshake relation

should be a matching. At any instant t no process is allowed to be hand-

shaking with more than one other process. During the one step overlap, a

message can be transmitted from one process to the other. The problem is

usual]v to synchronize nrocesses (via a distributed scheduler) so that tl'ev

can handshake at their will, given that the means of synchronization i some

low level construct (a message system, buffered communication, shared

variables or flags) which does not guarantee the handshake property if used

in an unsophisticated way. A distributed scheduler is called real time if it

has the property that if two processes i,j are willing to handshake

mutually for at least a constant time interval, then they will actually

achieve successful direct communication during that time interval with

arbitrarily small probability of error.

Formally, let T(E) be the smallest real number such that if two

processes i,j are mutually willing to handshake for at least T(C) time,

then they will actually succeed in 1 step overlap of open channels during that

time, with probability) l-C. T(C) is called the C-error response of the

handshake algorithm. The mean reeponse, T of a handshake algorithm is the

-22-

maximum (over all adverse speed schedules of tame processes and overall adverse

communication requests subject to restrictions stated in the introduction) of the

mean time needed for two processes to handshake, from the time instant they

start to be mutually willing. A real time probabilistic scheduler has T(e)

depending only on v and not on any other global measure of the communications

graph. (v is a fixed upper bound on the out-valence of the dynamic communication

willingness digraph at any time instant t). We also require T(E) to increase

at most linearly with l/C. Note that such a scheduler has T also depending

only on v.

The handshake problem has been given some attention in literature

[Schwartz, 79], [Francez, Rodeh 80], [Francez, 811, [Reif, Spirakis 81],

(Reif, Spirakis 82].

For Section 3 we require a Distributed Comunication System (DCS) as

defined above with a distributed real time probabilistic scheduler. We also

require the DCS to have the following property:

If a process i is willing to communicate with k~v processes for at

least time >T(C) and if they are also willing to (handshake) communicate

with i during that interval, then the probability that i will be able to

communicate with all of them (in some order) within T(E), is ; (l-)v

Such a real time DCS was implemented in [Reif, Spirakis 811 with

2
T() = O(v log(l/E))

and

S = Ov2
0(v)

