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INFLUENCE OF MAGNETIC SHEAR ON THE LOWER-HYBRID-DRIFT INSTABILITY

IN FINITE 0 PLASMAS

I. INTRODUCTION

The lower-hybrid-drift instability is believed to be an important

microinstability, in both space and laboratory plasmas, because of the

anomalous transport properties associated with it.1 This instability is

driven by the diamagnetic current in an inhomogeneous plasma and is

attractive because (1) it can be excited by modest density gradient (i.e.,
I/ 4

L n (m./m e rLl where Ln is the scale length of the density gradient

and rLi is the mean ion Larmor radius) and (2) it is relatively insensitive

to the temperature ratio Te/Ti (unlike, say, the ion acoustic

instability). 2  The mode originally gained interest as a means to provide

anomalous diffusion of particles in 0 pinch experiments during late-time

sheath broadening. 1,3 ,4  Subsequently, it has been applied to other

laboratory devices, such as toroidal reversed field pinches 5,6 and compact

torii, 7 and to magnetospheric plasmas.9 Experimentally, the lower-hybrid-

drift instability has been directly observed in a laboratory plasma and

has been suggested a mechanism to explain satellite observations of

fluctuating electric fields In the earth's magnetopause 10  and

magnetotal I.

At present, there is considerable interest in the lower-hybrid-drift

instability in regard to its influence on the dynamics of reversed field

plasmas. It is being applied to the field reversed experiments at Los

Alamos 4'12 and to reconnection processes In the earth's

magnetosphere.8'1 3  One of the important features of a field reversed

plasma (specifically, one containing a field null) is that 8 varies over an

enormous range in the reversal region. To accurately describe lower-

hybrid-drift waves in such a plasma, the analysis must include

finite 0 effects. 2  The two Important finite 8 effects that enter the
Manuscript submitted April 2, 1982. 1



problem are (1) the coupling of electrostatic and electromagnetic

oscillations and (2) the orbit modification of the electrons due to VB.

Aside from finite 8, another potentially important feature in reversed

field plasmas is magnetic shear; the reversing field could be sheared by a

component of B which is parallel to the plasma current that generates the

iield reversal.

The initial study of the influence of magnetic shear on the lower-

hybrid-drift instability considered electrostatic waves in a low a plasma

using analytical analysis. 14  It was found that magnetic shear stabilized

the instability for Ls < Ln (r Li/L n + L n/r Li) where L. is the scale length

associated with the magnetic shear. A numerical analysis of this problem

was presented in Gladd et al. (1977). 5  Davidson et al. (1978)6 extended

previous analyses to finite 8 plasma. However, they considered the

limit T + 0 so that electron-wave resonances could be ignored. Thee

important finite 8 eftect retained was the coupling of electrostatic and

electromagnetic oscillations. Recently, ituba et al. (1982)15 have

developed a theory ot the instability in finite 8 and Te plasmas containing

magnetic shear. However, the results are restricted to the parameter

regime T << T. and 8 << 1. Thus, to date, a general self-consistente 1 e

theory of the lower-hybrid-drift instability in a finite 0 and Te plasma

containing a sheared magnetic field has not been developed. The purpose of

this paper is to present such a theory.

The major results of this work are the following. The finite 8 effect

arising from the coupling of electrostatic and electromagnetic

perturbations can have a destabilizing influence on the instability in a

sheared magnetic field. That is, as 8 is increased in certian parameter

regimes, the growth rate of the instability increases. Physically, this

2



occurs because the fluctuating electric field associated with 6AI inhibits

electron flow along the magnetic field which reduces the rate at which

er.-rgy can be convected away from the localization region. The finite B

effect of electron orbit modification has a stabilizing influence on the

instability in a sheared field. This is due to a VB electron drift-wave

resonance which is a dissipitative effect. The key parameter which

dictates which finite $ effect is more important is Te/Ti . In the limit Te

<< Ti the electromagnetic coupling is dominant, while for T e T. the VB

electron-wave resonance is more important.

The structure of the paper is as follows. In Section II we present

the assumptions, equilibrium, and derivation of the equations which

describe the lower-hybrid-drift instability in a finite B plasma containing

magnetic shear. In Section I[, the results are presented, both analytical

and numerical. And finally, the last section summarizes the results and

discusses the application of this work to reversed field plasmas. Details

of the calculation are presented in Appendices A and B.

3



II. THEORY

A. Assumptions and Equilibrium

We consider a slab geometry plasma which contains inhomogeneties in

the density and the magnetic field in the x-direction. The temperature is

assumed constant for simplicity. Equilibrium force balance on an ion fluid

element in the x-direction requires that Viy = V where

d (v2/2 i ) a Xn n/dx is the ion diamagnetic drift velocity,Vdi I

v, = (2T i/m1 ) 1/2 Is the ion thermal velocity and Sli = e B0/m c is the ion

Larmor frequency. The ion-diamagnetic velocity can be related to the mean

ion Larmor radius and the scale length of the density gradient by

Vdi/V i = r Li/2Ln  where rLi ' vi/P i  and Ln = (3Ln n/3x) -  is the density

gradient scale length. We consider magnetized electrons while the ions are

kept unmagnetized. This is reasonable in treating the lower-hybrid-drift

instability since we are considering waves such that ( < < W << 1e  and

k 2rL2 >> 1. We assume that the plasma is weakly inhomogeneous, i.e,
Li

r (agn n/ 2 < 1 and re (3£n B/ax) << 1. The plasma 8 is

arbitrary. ,l.e inhomogeneous ambient magnetic field is given by

B(x) = B {[I + (X-X )/LBle z + (x-x )/Ls e (l)

in the vicinity of x0 (i.e. (x-xo)/Ls << I and (x-xo)/LB << I where

Ls = (lVax) - , 0 = tan (B y/B z) and LB = ( tn B z/x 1 )). Thus, Ls is

the scale length characterizing the magnetic shear and LB characterizes the

magnetic field gradient scale length.

In the absence of any field inhomogeneities, the field configuration

is B = B e • The plasma described above is unstable to the kinetic lower-
1/4 16

hybrid-drift instability when 1 > V d/V i > (m e/m) • The instability

di4 e

• . . . . . . .. . . . . . .. .. . .. . . . - . . .. . . . . . . . . . . . . . . . .. . ..4



is driven by by cross-field current and is excited via an ion-wave

resonance (i.e., invers Landau damping). The waves are characterized at

maximum growth by w r - kyVdi < W h, < r 9 kyPes" /2, and k • B = 0 where

Pes For modes such that k * B * 0

(i.e., k u * 0) electron Landau damping reduces the growth rates or

stabilizes them, depending on the magnitude of k

The above description of the plasma is significantly modified by

introducing a shear in the magnetic field as given in Eq. 1. The magnetic

field rotates in the y-z plane (see Fig. I) as a function of x. At xo we

see that k= 0 while at x = x i , k1 * 0 . Thus the dispersive properties

of the plasma are also a function of x. We introduce the effect of the

magnetic shear (i) locally through k z* kz (x) = k zo+ ky (x-x )/L s and (ii)

globally by replacing ik x by 3/3x. We note that the magnetic shear

distorts the particle orbits in a uniform magnetic field and introduces a

kinematic drift term.'7  The orbital effects of shear will be considered

elsewhere.
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Figure 1

Schematic ot a sheared magnetic field.
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B. Dispersion Equation

An outline of the derivation of the dispersion equatLon which

describes the lower-hybrid-drift instability in a finite 0 plasma

containing a sheared magnetic field is presented. Details of the analysis

are presented in Appendices A and B. The Maxwell equations for the

perturbed fields are

V • 6E - 4w 6p (2)

4w a6E

Vx =x-6 6J +--I 6E (3)
c c t

where 6p and 6J are the perturbed charge density and current,

respectively. Equations (2) and (3) can be rewritten as

V2 6$ = 41 e 6 n (4)
o f

32 6A
V x V x 6A + - ~ + - =- - (5)

c 2  at 2  c at c -o

where

6B = V x 6A (6)

a SA
SE = - - I (7)

c at

relate the perturbed fields to the perturbed potentials, and

6n, f d 3v 6f (8)



6J = e a fd 3v v 6f (9)

where 6f is the perturbed distribution function of the a species. We

assume that perturbed quantities vary as exp [i (w - ut)] where

k = k e + k e + k e and k - i a/ax is an operator. Equations (4) and~ xx yy z z x

(5) becomes

k2 6 = 41Te (6n -6n) (10)e

k2 6A =- USJ (11)
C -e

In writing Eqs. (10) and (11) we have also used the Coulomb gauge

(V • 6A = 0) and have assumed w2 << c2k2. Only the electrons contribute to

perturbed current in Eq. (11) since w2 << c2k2.
pi

We now calculate 6n and J as functions of the perturbed potentials

using linear Vlasov theory. Details of this calculation are given in the

Appendix A. Making use of 6n and J , we write Eqs. (10) and (11) as

DS + -- D 6A + D 6Az = 0 (12)
k x x z z

k k
--X D 60 + D 6A + a D 6A 0 (13)
k xO xx X k xz z

D +- k D 6A + D 6A =0 (14)
z k 1 Zx x %Z z

y

8



In order to solve Eqs. (12) - (14) we assume that k2 << k2 and expand
x y

each D about this parameter. That is, we write

D ( 0 )  + k l y ( I )  + 2 k ) V( 2 )

D =D~ + (k /k ) + (k2/k2) D Analysis of the relative
x y x y

magnitude of each term in D indicates that the first order term can be

neglected when w/kyve << 1. Since we are interested in modes which

have w 4 kyv,, this criteria is satisfied when Te/T i >> (me/m) /2 In the

opposite limit T e/Ti << (m e/m) 1/2, the first order terms cancel exactly.

Thus, we can write D = D( 0 ) + (k2/k2)D(2 ) Making use of this relationship

and eliminating SA and 6A from Eq. (12), we arrive at the followingx Z

second-order differential equation

p y~ xa 2  >' y" =(5

where p and q are derived and defined in Appendix B (Eqs. (B32) and

(B34)). In writing Eq. (15) we have made the indentificatlon k 2 , a2 /ax 2

x

and retained terms only to order k2/k2 . Thus, the sixth-order set of
x y

differential equations in Eq. (12) - (14) is reduced to a second-order

differential equation. The crucial assumption in this analysis

is k2 << k2 .
x y

Although Eq. (15) is very complex, in general, its form is simple and

amenable to numerical analysis. Moreover, in certain parameter regimes,

analytical solutions are possible. We now turn our attention to solution

of Eq. (15). We first present an analytical analysis which highlights the

various influences of finite $ on the lower-hybrid-drift instability in a

sheared magnetic field. We then present numerical results for a broader

parameter regime.

9



IL[. Results

A. Analytical Results

Earlier analytical studies of the influence of magnetic shear on

the lower-hybrid-drift instability in a finite 8 plasma wave were

restricted to the cold electron limit (Te + U ). Recently Kuba et al.

(1982)15 extended previous analytical results to include 7B electron drift-

wave resonances. We present the major result of this analysis to shed

light on the nature of the two important finite S effects: electromagnetic

coupling and VB drift-wave resonances.

Huba et al. (1932) derive the following dispersion equation which

describes the lower-hybrid-drift instability in a finite 8 plasma

containing a sheared magnetic field for thc lowest order mode

2 V -k Vd

D(w,k) = I + k2p2 /2 kdl + i{/ y + (1)
es - kv-

kvi pe Pes T i
_i_ .. + Ts exp(-s e )Ao 2 }w. w L T- e eo
Pi s e

where

/2. T
A J i e 1/2 1/2A0 JOo(Cdr)  p (2fi ) s e r)(C

o o r k0 ese

and ^2 2  2 2T 2 2
Pes P es/0 8/2), pes = Vdi = (v./2Q I m L

(A)p 4ne2/m, ky r 14 s / 2  and s e (Wr/kyVdi)( 2 /0e). This equation

2 22
is derived based upon the following assumptions: 2wap/k v >> 1,

2 2 2 s >> 1 /k >> 1 k 2 r 2  << 1 Vd << v, Te << T
pe e e 1 e y Le di I e I

and 0i < < 1. The first imaginary term in Eq. (16) is the destabilizing

term due to inverse ion Landau damping. The second imaginary term is the

10



stabilizing effect ot magnetic shear. it's origin in the analysis is a

term - (k l/) 2 in the magnetized electron response. Physically, magnetic

shear leads to stabilization since it allows wave energy to propagate away

from the excitation region (i.e. where k 0). 1he final term is a

damping term due to the electron VB drift-wave resonance

The real frequency is given by

W = kyV./(I + k2p2 /2) (17)
r y di es

where shear corrections to w have been neglected. The mode is stabilizedr

when Im D(w,k) = 0 or

11 n) di I k2.P
Sedis

s -L 1+k2p2 /2 i2 l+k 2 pis/2
es es

T.
,iT T1 exp(-s )A2).TS e  ( - e  0

e

where the subscript refers to the critical value of Ln/Ls .  The maximum

value of the RHS of eq. (18) occurs for k2p2  - k 2p 2  - 2 so that all

es es

wavenumbers are stable when

L V T
nIT I di i

(-)cr = (1 + 4-) [ - + 2/IT R exp(-s (19)Lsr 4 v T e C

and s = 1/0e e

Two Interesting points concerning Eqs. (1s) and (19) are the

following First, the finite i dependence In the first term of Eqs. (18)

and (19) arise from the electromagnetic correction due to 6A (i.e, the

transverse magnetic field fluctuatiLons) The Intluence of this correction

11



is to increase the amount ot shear necessary to stabilize the mode. That

is as Bi increases, the shear length Ls  necessary for stabilization
1S

decreases so that the mode is harder to stabilize Physically, this occurs

because of the fluctuating electric field associated with 6A inhibits free

streaming electron flow along the magnetic field which reduces the rate at

which energy can be convected away from the localization region. Secondly

the final term is Eq. (19) represents the resonant VB correction which is a

damping effect. Ibis term tends to decrease the amount of shear necessary

to stabilize the node Thus, the finite a corrections have different

influences on the shear stabilization criterion. Lossely speaking,

electromagnetic uffects are destabilizing (i e. a stronger shear is needed

to stabilize the mode from the a = 0 situation) while the resonant 7b

effects are stabilizing (i.e., a weaker shear is ne-eded to stabilize thLt

mode from the = 0 situation)

12



B. Numerical Results

We now present numerical solutions of Eq. (15) for a variety of

parameter regimes. We solve Eq (15) by first re-writing It as

3_- Q(,ky, x) 6 = 0 (2u)

where q/p and use a finite difterence scheme (i.e Numerov method) I 6

to obtain eigenvalues and eigenfunctionb. The boundary conditions used are

Cxp [- i j dy ti1/2(y) ] for Ixl 4 (21)

Q )/4W

and d6o = 0 for x = 0.ax

The sign of the WKb solution in Eq. (21) is chosen such that a damped

solution is obtained in the limit lxj - -- The integrals contained in Q

are performed numerically using a Chuebychev quadrature method.

Figure 2 is a plot of y/w vs kp for Vd/V i = 1.0 T /T. = 1.0
Z11 es di Ie 1

W /,Q = 10.0 and L /L = .I. We consider two value:; ol
pe e n s

3 13 0.0 and B = 0.2 The R =  0. curve (dashed curve) is the

electrostatic result and is presented as a reference to aid in

understanding the influence of finite 1 ettects. Three 8 0.2 curves are

presented: (1) 6 * 0, 6 = 0; (2) 6 = 0, * U; andpeetd( era 6VB er, .V

(3) 6 em* 0, 6 b * 0. These conditions have the following meaning. In

calculating Q we have arbitrarily included two coetlicients 6 and 6

The parameter 6 modifies the electroma-,netic coupling term (6 o /ck)
emen e 1

and the parameter 6VB modf!its the electron VB dritt velocity (6Vb Ve)"

By chosing 6 em and 6V1 equal to 0 or 1, we can understand how these

13



0.20 em * 0 , 6VB  0 (03=0.2)

0.16/

bem* 0, bVB 0
^Y 0.12

0.08

0.04
0em = 0 , VB 0 (0 0.2)

I I I I I

0 0.5 1.0 1.5 2.0 2.5 3.0
kQes

Figure 2
Plot of Y/Wth vs. kpes for Vdi/vi - 1.0, T e/T i = 1.0, w pe/fle 10.0

and L /L - 0.1. Two values of a are considered: B = 0.0 and B = 0.2.
n s

The parameters 6en and 6., refer to coefficients that modity the

electromagnetic coupling term and the electron VB drift velocity (see

text for detailed explanation).

14



finite 5 effects independently influence the instability in the presence of

magnetic shear. That is, by setting 6 = I and 6 = 0, we retain

electromagnetic coupling effects, but neglect electron VB orbit

modification effects. Conversely, by setting 6 em = 0 and 6 1, we

retain electron VB orbit modification eftects, but neglect electromagnetic

coupling effects. Neither of these limits are self-consistent but are

taken for pedagogical purposes. The self-consistent limit

is 6e = I and 6 = 1. The top curve considers 5 e= I and 6 0. Note

that the influen'e of electro,,agnetic effects is to increase the growth

rate relative to the = 0.0 curve. This is most pronounced in the long

wavelength regime (kp < I) since w /ck is largest in this regime. The
es pe

bottom curve considers 6em = 0 and 5VB = 1. Note that the influence of the

electron VB drift is to decrease the growth rate relative to

the a = 0.0 curve. The enhanced damping, due to the dissipative

electron VB drift-wave resonance, is strongest In the short wavleugth

regime (kp es> I). This is because the perpendicular resonant

velocity (vr) is proportional to k -2 in this regime and, theretore, more

electrons can participate ia the resonance. Finally, the self-consistent

result (5 er = I and 6VB = 1) lies in between the two extreme limits.

Electron VB damping dominates in the short wavelength regime while there is

a balance of the electromagnetic and VB effects is the long wavelength

regime. These results are consistent with those presented in Davidson et

al. (1977).2

In Fig. 3 we plot y/w 1 vs. kp for Vd /vi = l.0, (i /] = 1O.0,
Xh es di Ipe e

Ln/L = 0.1, 3 = 0.2 and two values of Te/Ti: Te/Ti = 0.1 and Te/Ti =

1.0. The growth rates for these two curves are comparable; the only

significant difference occurs in the short wavelength regime where the

15



0.20

0.16-T

0.12-

0.08-

0.04-

00. .1.2.2.
kQes

Figure 3

Plot of Y/W vs. kp for V /v = 1.0, w /Q2 10.0, L ILs 0.1,
ihes d! pe e n s

=0.2 and T /T =0.1 and 1.0.
ei
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elictron VB drift-wave resonance causes weaker growth for Te/T i = 1.U than

Te/Ti = 0.1. This is due to the tact that VBe 0 Te

In Figs. (4) and (5) wt plot the wave potential Q (curve a) and
eigeufunctions 6 (curve b) for Vd/V i = 1.0, o) /Q 10.0, L /Ls= 0.1,

di 1p(, e n s

= t.2 and kp = 1.5 In Fig. (4) we consider T./T i = 0.1 and in Fig.

(5) we take Te/T i  1 0. The ,:igenvalues for these cases are

W/ w t = 0.83 + 1 0.16 for T e/T i = 0.1 (Fig. 4) and u/u kh = 0.5b + i 0.I5

for Te/T i = 1.0 (Fig. 5). Although the growth rates for these two cases

are comparable (as in Fig 3), exanination of the wave potentials ((<)

indicates an important difterence between the "small" and "large" Te/T i

limits. First, in Fig. 4a we note that Qr possesses an "anti-well"

character for x/p CS < 4.C while Qi is roughly constant. For x/Pes > 4.0

Qr begins to incre;,se, but is still negative when 6 asymptotes to 0

at X/pe s - 7.5 (Fig. 4b). The eventual increase in Qr is due to electron

Landau damping which would not occur if Te  0. On the other hand, Qi

increases sharply for x/ pes > 2 0 which is due to the finite growth

rate. Thus Fig. 4 indicates that mode localization is primarily due to

the outward convection ot energy from the rLgion x = 0 in the limit

TC/Ti + 0.6 Stabilization ot the mode can occur when the outward

propagation of energy is faster then the growth of the mode. On the other

hand, for hotter electrons (Fig. 5a), the "anti-well" character of Qr is

only weakly evident for x/ CIS < 1.0; for x/pes > '.O Qr increases and

becomes positive for x/ps > 2.2. The mode Is localized within the

region x/p < 5.5 (Fig. 5b). In this case electron Landau damping is
es

playing the dominant role in the localization of the mode. As the mode

propagates outward trom x = 0, It is rapidly dissipated locally by electron

Landau damping Thus Figs. (4) and (5) indicate that different processes

17
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are involved in mode localization, depending on the value of Te/Ti, either

outward energy propagation (Te << Ti ) or electron Landau

damping (Teo T i ) localize the mode.

In Fig. 6 we plot y/ h vs. Ln/Ls for V di/V i = 1.0, Wpe/S1e = 10.0,

kpes --1 5, 3 = (.0 and 1 0 and T e/T = 0.1 and 1.0. The value of kpes,

chosen correponds roughly to maximum growth. In general, the curves

indicate that y - a(L n/L s)+b, where the slope a and intercept b depend

upon 0 and T e/T. Two important features of this curve are the

following. First, for Te/T i = 1.0, the growth rate for = 1.0 is always

less then that for 8 = 0.0. The value of shear necessary to stabilize the

mode for a = 0.0 is L n/L s = 0.25 while for = 1.0 is L n/L s = 0.17.

Second, for Te/Ti = 0. 1, the growth rate for 6 = 1.0 is less than that

fur a = 0.0 when Ln/L s < 0.18, but is greater than that for 8 = 0.C when

L n/Ls > 0.18. Thus as 8 increases in the low electron temperature limit,

the amount of shear necessary to stabilize the mode increases (i.e. Ln/Ls

becomes larger); this confirms the result predicted from the analytic

theory (Eq. (19)).

In Fig. 7 we plot y/h vs.6 for Vdi/V = 1.0, Te/TI = 1.0,

W pe/e = 10.0, kpes = 1.5 and various values of L n/L . The main result is

that as Ln/L s increases the growtih rate y decreases, as expected. Also,

as L n/L s increases, the slopes of the curves change, with a plateau-like

structure developing around 8 = 0.5.

Finally, we comment on the numerical accuracy of the results

presented. Solving Eq. (15) requires a substantial amount of computer

time. Typically, 100 - 200 grid points were used in the finite

differencing of the differential equation. At each grid point 12 numerical

integrations are required to obtain Q. And, in general 5- 10 interations
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Figure 6

Plot of Y/ h vs. L n/L s  for V di/V i  = 1.0, pe /e =11).0, kp ls =1.5,

0.0 and 1.0, aia T /T1 0. and 1.0.
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Plot of Y/ hvs. a for Vdi/v 1.0, T/eT/T = 1.0, w =e/. 1U.0,

kp es= 1.5 and several values of LnILs

22



were required to obtain an eigenvaluL tor a given set of parameters. Thus,

approximately 10 numerical integrations were needed to obtain a single

eigenvalue. In order to minimize the computer time used, sonie accuracy was

sacriticed by using fewer grid points, in both the finite difference scheme

and the numerical integratious, than possible. However, higher-resolution

trid spacings were used to estimate accuracy for different parameters. Wt2

find that the qualitative results presented are reliable, but that the

quiantitative results are accurate to within 5 - 10% of the actual values.
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IV. Discussion

A self-consistent theory of the lower-hybrid-drift instability in a

finite 0 plasma containing magnetic shear has been presented. The theory

incorporates the important finite 0 effects of (1) electrostatic and

electromagnetic coupling and (2) electron VB drift-wave resonances. The

main conclusions of this study are as follows. First, magnetic shear is a

strong stabilizing influence on the lower-hybrid-drift instability, which

is a well-know result. 14  Second, finite 0 effects can play an important

role in determining the amount of shear necessary for stabilization, as

shown by Eq. (19). Interestingly, the two finite 0 effects mentioned above

act in opposing ways. The effect of electromagnetic coupling can be viewed

as destabilizing, that is, it tends to increase the amount of shear

necessary to stabilize the mode (see Te/T i = 0.1 curves in Fig. 6).

Physically, this occurs because electromagnetic oscillations generate a

fluctuating electric field along the magnetic field (due to 6All). This

inhibits free streaming of electrons along the magnetic field waich,

therefore, reduces the rate at which energy can be convected away from the

localization region. The effect of the electron VB drift-wave resonance

can be viewed as stabilizing, that is it tends to decrease the amount of

shear necessary for stabilization of the mode. This is illustrated in the

Te/Ti = 1.0 curves of Fig. 7 and in Fig. 8. Physically, this occurs

because the electron VB drift-wave resonance is dissipative and reduces

growth in the localization region. The key parameter which dictates which

finite 0 effect is dominant is To/Ti .  Electromagnetic effects dominate

when T. << Ti, while VB resonance effects dominate when T T..C 1

The magnitude of Te/Ii also plays a role in the nature of the shear

stabilization of the lower-hybrid-drift instability. For Te s< Ti, the
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I

wave potential Qr has an "anti-well" character. 6  Stabilization occurs

because the rate outward energy propagation (away from the localization

region) exceeds tie growth rate. On the other hand, for T ) T., the wave
e

potr, ntial Qr has a "wtIl" structure and the wave is dissipated locally by

strong Landau damping. Ihis is shown in Figs. (4) and (5).

These r.sults are applicable to re:versed tield plasmas which contain

nagnt.tic shcier. 15  Perhaps the simplest example of this is illustrated by

the equi librium

B = B I e + tanh (x/X)e 1 (22)

o y z

and

n = n secI 2 (x/X) (23)

where c << I Here, the z compone;t of the magnetic component reverses

direction at x = 0, but the total rield remains finite. Studies ot the

lower-hybrid-drift instability in reversed tield plasnas with e = 6

indicate the following. Based upon a nonlocal linear theory,19 te

fundamental mode is localized away from the neutral line (i e., x = 0) at

roughly 1x > X with a half-width Ax << X. higher order i;odes also

localize about IxI A X but have a much broader halt-width, Lx 4 X.

however, these modes do not penetrate chosen than lpx P (Te/It)1/2 of the

neutral line because of electron VB drift-wave resonance damping.

Subsequent work on the evolution of a reversed field plasma, using an

anomalous resistivity nodel based upon the nonlocal mode structure of the

lower-hybrid-drift instability, found that magnetic flux is transported
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towards the neutral line and that the current increase at the neutral

line. 20  Thus, the instability can eventually penetrate closer to the

neutral line than predicted by linear theory.

It we take e # 0, then based on the d0.finitions of Ln and L it can be

shown that

L
__n =. _ 1 (32)
L s  sinh(2x/X) C2 + tanh 2 (x/X)

Based on Eq. (31), it is clear that L /L + 0 in the limit x/X +n s

while L n/Ls + - when x/A + 0. Moreover, for this equilibrium

n S

= - - - 1 (33)

cosh 2(x/X) C2 + tanh
2(x/X)

so that * 1/ 2 >> I as x/X + 0. Thus, for x/A < 1, both magnetic shear

and finite 8 are important to the stability properties of the lower-hybrid-

drift instability in a sheared reversed field plasma. For sufficiently

strong magnetic shear (i.e., e) the linear mode penetration

distance, lxp , to the neutral line can be substantially larger than when

there is no shear.15 Thus, magnetic shear can inhibit (or perhaps even

prevent) the penetration of the mode to the neutral line even in the

nonlinear evolution of the plasma. This can be significant to both

laboratory and space plasmas where anomalous diffusion in the field

reversal region can be crucial to the dynamics of the plasma.
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Appendix A

We outline the derivation of the perturbed electron density (6n ) and
e

the perturbed currents (6Jxe and 6J ze) necessary to obtain Eqs. (12) -

(14). We first calculate the perturbed distribution function 6f which is~e

given by

6f = £m f dT exp [i * k • x'(T) - iWTJ [- i k 60 + 6A
e II -C

e aF (Al)

+_ x (ik x 6A)) • eo
c x iy"

where x'(T) and v'(T) are the unperturbed orbits. That is,

v'() = vI coS(eT-O)e x - Iv I sin( eT-O) + (vI 2 /2le )3 Ln B/axje y-ve z

(A2)

x(T) - (Vl/ e) sin(9e T-)e z (vl/ ) ecos( erT-)-T(v21
2 /2ie) £n B/3x]ey

(A3)

+ Vl' ez+vI TCz

where v2  v2 + v2 and Q e e B/me c. The unperturbed electron distributionI x y ee

function is chosen to be

V
Feo " n (wve2)-32 [1- l nn. exp [-v 2 /v2l (A4)

wherc v 2Te/m and v2  v2 + v 2 + v2 .
e e x y z

Substituting Eqs. (A2) - (A4) into (Al) and pertorming the temporal
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integration we arrive at

f 2e [ (4 + 'k A + k

e e y y y

_ exp [i(-T- 2)(n-m)] Re {Jn J 6  (A5)
nm

w)-kzv z k v i k2
zx + .

x jvd +---k (i Cos J J _ - J d sin 4)} 6A
ck k n m C k2 n m a n m x

y y y

k v k2  vk k
+ x z

y y k2  y k
y y

where R = (w-kV )/(w - n S1-k V(V/Ve) - kxVz), ' = tan- (k /k),
C y de e y He I e x z x y

the argument of the Bessel functions Is

o = k v /le, Vde - (v2 /202 )9 Zn n/ax, Ve - (v 2 /2pe)a in B/ax,

and v2 = 2T /m
C e e

The perturbed electron density and current are definud as

6n e fd3v df (A6)e e

6Je = fd3v v 6f e • (A7)

Making use of Eq. (A5) in Eqs. (A6) and (A7) we obtain
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k k6n-- -(27re X e  - 6( + (SA + -k6A.)

eey y x y

+A J d(u2 ) exp (-u2) {J 2 Z 6, (A8)
o0

k k v v k2

+ ( 2 ( - z + - - z )-i S- - cos , J %Z]6A
kk ci 2o j oi ex6

k k v k2  v k k
+ ) j2 z+-- (1+--E ] :z -i k o o 1 JCos Z)

y yk2 2 c Tk T -gzo( Y yy

J xe= -(2we X2 )-Iv A f d(u2 ) u exp(-u 2 ) [-I J J Cos it Z 6¢ (A9)
xede e olI

0

k k v v k2

+ _, + i 2 kZ e )J Cos, I cos2 -VZ1 SAky ck yk yc 0 c k2 x

y

k k v k 2  v k k

1Y k k )JoJI cos y y z

y y

6J =(2ne L2 )-I A f d(u 2) exp (-u2 ) [J 2 Z 6
ze de Ve 0

0

k k v v k2

+{(I-k 2S j2 Z (I - Ye )-i J c - cos j e Z )6A (AlI)
ky ky w W k -

y

k k v k2vk k
+ {w ( ye ( + .)j2 Z- cos

ck k ol ,, z
y y k2y

where A - (w-k yV de)/k zv e u - ./ pthe argument of the Bessel functions

is a (k Iv e /1 )u, the argument of the Z functions is

-(w-k VB 2)/k v and A2. WV2/2w2e. In writing Lqs. (A8) -(AlG) we

have retained only the n 0 term in the summation over cyclotroni harmonics

since w << Q~e
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The perturbed ion density in an unmagnetized plasma is simply

n
6n1 = [ L i (i

where C. (w- kV)/kv, V = v?/2Q )3 gn n/3x and v2 =2T /M
1di J di i i i i
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Appendix B

We outline the derivation of Eq. (15) and present the detailed form of

p and q used in the analysis. Substituting 6n and 6Je, derived in the

Appendix A, into the Maxwell equations (Eqs. (10) and (11)) we obtain the

following set of equations

k
Dk6O+ -i- SA +D 6A =0 (81)

*4 y Ox x Dz z

k k

-- D 60 + D 6A + -X 6A =0 (B2)
k xO xx x k xz z

k
D o6 + k- Dzx 6Ax + D 6Az = 0 (B3)

y

whe re

Te
D + e ( + c Z()) +  1 ( + K ) (84)

A2 i k2 2

y de y de

Dx Dx4 i _P!"(85)+f =0 k A ck Ox

y de

D pe K (86)
Oz ZO k d ck *zD~~~z fi-Dq= yde Ky (6

2w
2

D I - K (B7)
xx c2k2  xx

y

2w
2

SD~z =  Dz = i e K Kxz (B8)
i zx c2k2

2w2

D +19)(B)
zz c2k2  zz

y
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and

K = A d(u 2 ) exp(-u 2 ) J2 (k r u) Z ( ) (810)
0 1 Ile e

K =x A f d(u 2 ) exp(-u 2 ) u j 0 (k ir Leu) J I (k Ir Leu) Z (8;1
0

K = A f d(u2) exp(-u2 )  J2 (k (rrU) . Zu) ( (B12)
0OD

K = A f d(u2 ) exp(-u 2 ) u2 j2 (kr U) (813)
xx 1 1L

Xo001L -I L L e ) Z(I2)
0

CO0

1

A f d(u2 ) exp(-u 2) J2 (k reu)"2e Z (e) . (B15)
zz 0 1 Le 2 e e

0

In the above,

w-k Vde

k v
z e

w-k V u2  w-k V v? en n
y Be y di 1

e kv ' i kv Vdi 2.,2 ;x
z e

v2  v2

= e a In n _e a Xn B
V de -2Qe- ---x; V Be 2SI a}x -2Vde

2
u= v /ve , A2 = v 2 /a 2 

, v2 = 2T /m, 2  = 4w ne /m, re v /4 n Is
Ic' de e p e e e' pe e e i

the Bessel function of order n, Z = dZ/dC, k2 = k2 + k2 , and k ky (x/L ).
I x y z y S

We expand D in the small parameter k2 /k2 and find that
x y

k2

y
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I

where D are given by Eqs. (B4) - (BI5) with k1 replaced by k and

D (2) 1 -'re 1 C ( ,. I K(2) B7
10 = k2 X2e T, 2 i(i(i) +k 2 X 2 1B7

y y de

(2) - (2) 1 e K(2)
y Xde y

D(2) _ (2) 1 r e K(2)
- D ck k K'~p OX (819)

S D -2-e K (B1)

xz x c2k2 x

y
2w2

D = 1 + - p K(2) (B22)

XZ c 2 k 2  Xz

y
D()=1+__e (2 (B22)

zz c2k2  zz

y

and

K - AkyrLe f 0d(u2) exp(-u 2) u JoJiZ(. ) (B23)

€€ =
K(2) 1

A kyrLe f d(u2) exp(-u 2 )u2 [JoJ -JI) ] Z(Ce) (B24)

oK A k r 1 - 6 (B24)

K(2) - A kyrLe f d(u 2) exp(-u 2 )uJ j- Z'(6 (B25)

o

K (2) A kyrLe f  d(u 2 )exp(-u 2 )u 3 J 1JIZ() (B26)

Z( 2 ) 1

-A kyrLe f d(u2)exp(-u2)u2[JoJ -J2 ]2 Z (r.) (B27
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-- "r

K(2)- AkyrLe f d(u2)exp(-u2)uJoJ1  z e (828)

and tie argument of the Bessel functions is ky rLeU.

We now solve Eqs. (B2) and (83) for 6A and 6A in terms of 60. We
x z

find that

k D D +D D
6A x Y X zz xz Oz 60 (B29)

x k D D + D2

XX ZZ XZ

D xx xz DOz (B30)

D D + D2

xx zz xx

Substituting (b1o) into (B29) and (B30), and then substituting (B29) and

(B30) into (BI) we obtain, to lowest order in k2 /k2,
x y

p(,,k ,X) 2 q (w,k ,X) k2 6& = 0 (831)
ax2  Y

where

p D (2)_ D (r()/r(0  ) + D(2)(r(°)/r(°)) (B32)
00 Ox nx dx 0 z nx dx

- D(O) (r(2) r(u) - r) rO (2) )/r() 2
Ox nx rdx dx

+ D( 0 ) (r(2 ) r ( o) - r(O)r ( o ) /r (0)2
Oz nz dz nz dz dz

q (0 - D(O) (r(O ) /r(°)) + D( O) (r((°)/r(°)) (B33)
Of Ox nx dx Oz nz dz(B3

and
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r (0)  D (o) 0 (0) + D(°) D (0)(B4
nx Ox zz xz Ox

r ( 2 ) -- I ( 2 ) D( 0 ) + D ( 2 ) D ( 0 ) + D( O) D)( 2 )  D D( 2 ) D ( 0 ) D (O)/D(O) (B35)
lix x zz xz OZ xz Oz xx xz Oz zz

r(0 ) = r(0 ) = D) ) D(0 ) + D(0 )2  (B36)dx dz xx zz xz

r ( 2 ) = D ( 2 ) D( 0 ) + 2 D( 0 ) S ( 2) - D( 0 ) 2 D(2)/D ( 0 )  (B37)
dx xx zz xz xz xz zz zz

1( ° ) = D( ° ) D( ° ) - D( ° ) ( °) (3O)
nz z xx xz ox

f (2) = D(2) 1)(0) - D(2) D(0 )- D() D (2) + D(0 ) D(0 /D( 0 )

nz oz xx xz Ox xz Ox xz Ox x x (B39)

r(2) = (2) D(0) +2 (0) D(2) - (0 )2 D(2)ID (0) (40
r D~ 2  D~ + 2D~ 0  D - D~~ D 2 /D~0  (B40)dz zz xx xz xz xz xx xx

and we have mode the identification k2 = - a2/ax 2 .
x
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