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INFLUENCE OF MAGNETIC SHEAR ON THE LOWER-HYBRID-DRIFT INSTABILITY
IN FINITE g PLASMAS

I. INTRODUCTION
The lower-hybrid-drift instability is believed to be an important

microinstability, in both space and 1laboratory plasmas, because of the

1

anomalous traunsport properties associated with it. This instability is

driven by the diamagnetic curreat in an inhomogeneous plasma and is
attractive because (1) it can be excited by modest density gradient (i.e.,

Ln < (mi/mey4 L where L, is the scale length of the demsity gradient
and g is the mean ion Larmor radius) and (2) it is relatively insensitive
to the temperature ratio Te/Ti (unlike, say, the 1{on acoustic
insta\bility).2 The mode originally gained interest as a means to provide

anomalous diffusion of particles ia 6 pinch experiments during late-time

1,3,4

sheath broadening. Subsequently, it has been applied to other

laboratory devices, such as toroidal reversed field pinchess’6 and compact

torii,7 and to magnetospheric plasmas.e Experimentally, the lower-~hybrid-

9

drift instability has been directly observed in a laboratory plasma’ and

has been suggested a mechanism to explain satellite observations of

fluctuating electric fields in the earth’s magnetopauselo and

magnetotail.11

At present, there is considerable interest in the lower-hybrid-drift
instability in regard to its influence on the dynamics of reversed field

plasmas. It {s being applied to the field reversed experiments at Los

4,12

Alamos and to reconnection processes in the earth’s

8,13 One of the 1{important features of a field reversed

magnetosphere.
plasma (specifically, one containing a field null) is that B8 varies over an
enormous range 1In the reversal region. To accurately describe lower-

hybrid-drift waves {n such a plasma, the analysis must 1include

finite Seffects.2 The two Iimportant Einite B effects that enter the

Manuscript submitted April 2, 1982, 1
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problem are (1) the coupling of electrostatic and electromagnetic
oscillations and (2) the orbit modification of the electrons due to VB.
Aside from finite 8, another potentially important feature in reversed
field plasmas is magnetic shear; the reversing field could be sheared by a
component of B which is parallel to the plasma current that generates the
tfield reversal.

The initial study of the influence of magnetic shear on the lower-
hybrid-drift instability counsidered eclectrostatic waves in a low 8 plasma

14 It was found that magnetic shear stabilized

using analytical analysis.
the instability for Ls < Ln (rLi/Ln + Ln/rLi) where L; is the scale length
associated with the magnetic shear. A numerical analysis of this problem
was presented in Gladd et al. (1977).5 Davidson et al. (1978)6 extended
previous analyses to finite B plasma. However, they considered the
limit Te + 0 so that electron-wave resonances could be ignored. The
important finite B eftect retained was the coupling of electrostatic and
electrouagnetic oscillations. Recently, tluba et al. (1982)15 have
developed a theory of the instability in finite 8 and Te plasmas containing
magnetic shear. However, the results are restricted to the parameter
regime Te << Ti and Be << 1. Thus, to date, a general self-consistent
theory of the lower~-hybrid—drift instability in a finite g and Te plasma
containing a sheared magnetic field has not been developed. The purpose of
this paper is to present such a theory.

The major results of this work are the following. The finite B etfect
arising from the coupling of electrostatic and electromagnetic
perturbations can have a destabilizing influence on the instability in a
sheared magnetic field. That 1s, as B is increased in certian parameter

regimes, the growth rate of the instability increases. Physically, this

2




occurs because the fluctuating electric field associated with GAH inhibits
electron flow along the magnetic field which reduces the rate at which
er-rgy can be convected away from the localization region. The finite 8
effect of electron orbit modification has a stabilizing influence on the
instability ian a sheared field. This is due to a VB electron drift-wave
resonance which is a dissipitative eftect. The key parameter which
dictates which finite B effect is more important is Te/Ti’ In the limit T
14 ¢ Ti the clectromagnetic coupling is dominant, while for Te> Ti the VB
electron~wave resonance is more important.

The structure of the paper is as follows. In Section II we present
the assumptions, equilibrium, and derivation of the equations which
describe the lower-hybrid-drift instability in a finite B plasma containing
magnetic shear. In Section ILL, the results are presented, both analytical
and numerical. And finally, the last section summarizes the results and
discusses the application of this work to reversed field plasmas. Details

of the calculation are presented in Appendices A and B.




II. THEORY

A. Assumptions and Equilibrium
We consider a slab geometry plasma which contains inhomogeneties in
the density and the magnetic field in the x-direction. The temperature is

assumed constant for simplicity. Equilibrium force balance on an ion fluid

element in the x—direction requires that viy = Vdi where
Vdi = (v%/ZQi) 9 fn n/dx is the ion diamagnetic drift velocity,
1/2

v, = (ZTi/mi) is the ion thermal velocity and Qi = e Bolmic is the ion
Larmor frequency. The ion-diamagnetic velocity can be related to the mean
ion Larmor radius and the scale length of the density gradient by

- - _ -1 e
Vdi/vi = rLi/ZLn where g s vi/Q and L, = (3&n n/3x) is the density

i

gradient scale length. We consider magnetized electrons while the ions are
kept unmagnetized. This is reasonable in treating the lower-hybrid-drift

instability since we are considering waves such that @, << w <K ﬂe and

i

kerf >> 1. We assume that the plasma {s weakly inhomogeneous, i.e,

2
rfe (92n n/3x)2 << 1 and rﬁe (3%n B/3x) < 1. The plasma 8 is

arbitrary. XYhe inhomogeneous ambient magnetic field is given by

S

B(x) = B_{[1 + (x—'xo)/LB]e; + (xx /Ly e} (1)

in the vicinity of x, (i.e. (x—xo)/LS << 1 and (x—xo)/LB << 1 where

-1 -1 -1
L. = (3%/3x) ~, & = tan (By/Bz) and LB = (3 2n leax

S ))s Thus, L_ is

s

the scale length characterizing the magnetic shear and Ly characterizes the
magnetic field gradient scale length.

In the absence of any field inhomogeneities, the field configuration

is B = Bo e - The plasma described above is unstable to the kinetic lower-

14
hybrid-drift instability when 1 > th/v > (me/mi) / .16 The {nstability

i
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is driven by by cross-field current and is excited via an ion-wave

resonance (i.e., invers Landau damping). The waves are characterized at

maximum growth by W, ~ kde1 £ wkh’ Yy £ W, kypes~ Y2, and E»o B = 0 where
1/2

Pes = (ZTi/me) /Qe. For modes such that k « B # v

(i.e., k, # 0) electron Landau damping reduces the growth rates or

stabilizes them, depending on the magnitude of kq.

The above description of the plasma is significantly modified by
introducing a shear in the magnetic field as given in Eq. l. The magnetic

field rotates in the y~z plane (see Fig. 1) as a function of x. At X, we

see that k" = O while at x = x|, k“ # 0 . Thus the dispersive properties

of the plasma are also a function of x. We introduce the effect of the

magnetic shear (i) locally through kz+ kz(x) =k + ky(x-xo)/Ls and (ii)

20

globally by replacing ikx by 38/3x. We note that the magnetic shear

distorts the particle orbits in a uniform magnetic field and introduces a

17

kinematic drift term. The orbital effects of shear will be considered

elsewhere.

- -
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Figure 1

Schematic ot a sheared magnetic field.
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B. Dispersion Equation

An outline of the derivation of the dispersion equation which
describes the lower-hybrid—drifc instability in a finite B plasma
containing a sheared magnetic field is presented. Details of the analysis
are presented in Appendices A and B. The Maxwell equations for the

perturbed fields are

Ve SE = 4m &p

where 8p and &8J are the perturbed charge density and current,

respectively. Equations (2) and (3) can be rewritten as

V2 8¢ = 4

326A
VxVxoA+— —
c2 at?

| 364

A T

relate the perturbed fields to the perturbed potentials, and

én_ = [ d3v &f
o o

7




= 3
8J e [d3v v Sfa (9
where 6f° is the perturbed distribution function of the o species. We
assume that perturbed quantities vary as exp [i (k * x - wt)] where

k=ke +ke +ke and k., = -1 3/3x is an operator. Equations (4) and
~ X X yy z z X

(5) becones

k2 8¢ = 4me (Gne - Gni) (10)
2 - 41\'
ke 8A = - — §8J (11)
= c Re

In writing Eqs. (10) and (11) we have also used the Coulomb gauge
(V + 84 = 0) and have assumed w? << c?k?. Only the electrons contribute to
perturbed current in Eq. (11) since wgi <K c2k2,

We now calculate 6“0 and Gie as functions of the perturbed potentials

using linear Vlasov theory. Details of this calculation are given in the

Appendix A. Making use of Sna and Gge, we write Eqs. (10) and (11} as

k
D¢¢ §¢ +-E; D4>x GAx + D¢z GAZ 0 (12)
s Sy
k Dx¢ 8¢ + Dxx 6Ax + k sz GAz =0 a3
k
Do 8¢ + Ey D, SA +D 8a =0 (14)




In order to solve Eqs. (12) - (l4) we assume that ki <« k§ and expand
each D about this parameter. That is, we write
D= D(O) + (kx/ky) D(l) + (ki/ki) D(Z). Analysis of the relative
magnitude of each term in D indicates that the first order term can be
neglected when m/kyve << 1. Since we are interested in modes which

/2

have w < kyvi’ this criteria is satisfied when Te/Ti >» (me/mi)1 . In the

. . 1/2
opposite limit Te/Ti << (me/mi)

, the first order terms cancel exactly.
Thus, we can write b = D(O) + (ki/k;)D(z). Making use of this relationship
and eliminating GAx and GAZ from Eq. (12), we arrive at the following

second-order differential equation

p(w,ky,x) gigﬁ - q(w,ky,x)k§ §¢ = 0 (15)
where p and q are derived and defined in Appendix B (Eqs. (B32) and
(B34)). In writing Eq. (15) we have made the indentification ki + 92/3x2
and retained terms only to order ki/ké. Thus, the sixth-order set of
differential equations in Eq. (12) - (14) is reduced to a second-order
differential equation. The crucial assumption 1in this analysis
is ki « kﬁ.

Although Eq. (15) is very complex, in general, its form is simple and
amenable to numerical analysis. Moreover, in certain parameter regimes,
analytical solutions are possible. We now turn our attention to solution
of Eq. (15). We first present an analytical analysis which highlights the
various 1influences of finite B on the lower-hybrid-drift instability in a
sheared magnetic field. We then present numerical results for a broader

parameter regime.

P e




1II. Results

A. Analytical Results

karlier analytical studies of the influence of magnetic shear on

the lower-hybrid-drift instability in a finite B plasma wave were

restricted to the cold electron limit ('1‘e + U ). Recently tuba et al.

(1952)15 extended previous analytical results to include VB electron drift-

wave resonances. We present the major result of this analysis to shed

light on the nature of the two important finite B effects: electromagnetic

coupling and VB drift-wave resonances.

Huba et al. (1932) derive the following dispersion equation which

desc¢ribes the lower-hybrid—~drift instability in a finite R plasma

containing a sheared magnetic field for th¢ lowest order mode

w-k V

"9 Exxdi y di
= 2 - : s 42
D(w,k) 1 + k pes/2 =t i{Vn ( kvi ) + (16)
kv W p T
_1 _ pe "es i . 2
o w1 T S. exp(—se)Ao }
pi ] e
where
/28, T
i e (1/2 1/2
Ao Jo(cr) kp (ZT ) Se Jl(;r)
es i
"2 2 2 2 _ 2
and Pug = pes/(l + 81/2), Pog = ZTi/meQe’ Vdi = (vj/2ni) 3 &n n/3x,
2 .2 - 1/2 - -
wpa 4nne /mo’ g, kyrlcse , and S, (wr/kyvdi)(z/ﬁe)' This equation
is derived based upon the following assumptions: Zwﬁi/kzvf > 1,
2 2 2.2
wbe >> Qe’ s, > 1 w/k“ve > 1 kyrle <« 1, Vdi <« Vi Te <« Ti
and Bi << 1. The first imaginary term in Eq. (1€) is the destabilizing

term due to inverse ion Landau damping.

10

The second imaginary term is the




stabilizing effect ot magnetic shear. It’s origin in the analysis is a
term « (k“/m)2 in the magnetized electron response. Physically, wagnetic
shear leads to stabilization since it allows wave energy to propagate away
from the excitation region (i.e. where k“ = 0). 1The final term is 4
damping term due to the electron VB drift-wave resonance

The real trequency is given by

- 2,2
o kdei/(l + kol /2) (17)

where shear corrections to © have been neglected. The mode is stabilized

when Im D(w,k) = 0 or

2,2
l‘n /n B Vdi 1 k Pes
Cee s e U aa) U 2 e (1)
1+k peS/Z 2k Ps i 1+k pes/Z
T,
4 T} s exp(-s )Az].
e

where the subscript refers to the critical value of Ln/LS. The maximum

value of the RHS of eq. (18) occurs for kzpés = kngs > 2 so that all

wavenumbers are stable when

Vai Ty
_dai n 2
v, + 2/m T, s, exp(-s )AZ] (19)

L B.
n v i
(D, = A+
)
and Sg = l/Be.
Two interesting points concerning Eqs. (l§) and (1Y) are the
following First, the finite Bi dependence in the first term of Eqs. (18)
and (1Y) arise frow the electromagnetic correction due to 6A" (f.e, the

transverse magnetic field fluctuations) The intluence of this correction

11




is to increase the amount ot shear necessary to stabilize the mode. That
is as Bi increases, the shear length Ly necessary for stabilization
decreases so that the mode is harder to stabilize Physically, this occurs
because of the fluctuating electric field associated with SA" inhibits free
streaming electron flow along the magnetic field which reduces the rate at
which energy can be convected away from the localization region. Secondly
the final term is Eq. (19) represents the resonant VB correction which is a
damping eftect. This term tends to decreasc the amount of shear necessary
to stabilize the nmnode Thus, the finite B corrections have difterent
intluences on the shear stabilization «criterion. Lossely speaking,
eiectromagnetic cffects are destabilizing (i e. a stronger shear is necded
to stabilize the mode from the B = 0 situation) while the resounant Vi
effects are stabilizing (i.e., a weaker shear is nvcded to stabilize the

mode from the 8§ = 0 situation)

12




B. Numerical Results
We now present numerical solutions of Eq. (15) for a variety of

parameter regimes. We solve Eq (15) by first re-writing it as

25
30 | (wyk , x) 86 = U (20)
9x2 y

where ¢ = q/p and use a finite difterence scheme {(i.e Nuierov method)lb

to obtain eigenvalues and eigenfunctions. The boundary conditions usced are

X
8o(x) = —1/4 © eXp (t 4 J dy u”z(y) } for Ix| » = (21)
Q" (x)
and %29 = 0 for x = 0.

The sign of the WKL solution in Eq. (21) 1is chosen such that a damped
solution is obtained in the limit |Ix| » . The integrals contained in ¢
are performed numerically using a Chebychev quadrature method.

Figure 2 is a plot of Y/wlh vs kpes for Vdi/vi = 1.0 'I'e/Ti = 1.0

w /2 = 10.0and L /L = i).]1. We consider two values ot
pe’ Ve n' s

8 B = 0.0 and B = 0.2 The B = U.U curve (dashed curve) is the
vlectrostatic result and is prescnted as a reference to aid in
understanding the influence of finite R ettects. Three B = 0.2 curves are

prusented: (1) 69m #0, 6 = 0; (2) 60r =0, § # U, and

vB f \4}

(3) Gem + 0, SVB # 0. These conditions have the following meaning. In

calculating Q we have arbitrarily included two coeiticieuts éen

h

and GVB'

The parameter §
en

it

modifies the clectromaynetic coupling term (éenwpe/ck)

moditics the clectron VB dritt velocity (GVB V. ).

. ti arc 5
1nd e parametler v Bo

B

By chosing Gem and 6VB equal to 0 or 1, we can understand how these

13
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0em *0, oyg #0

Y (8=0.2)
wih 0.12}

0.04
i i ol L 1 .
0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 2

Plot of Y/“zh VS. kpes for vdilvi = 1,0, Te/Ti = 1.0, wpe/Qe = 10.0

and Ln/Ls = O0.le Two values of B8 are considered: B = 0.0 and B = 0.2,
The parameters Gen and 5VB refer to coeftficients that modify the

electromagnetic coupling term and the electron VB drift velocity (see

text for detailed explanation),

|
1
|
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tinite B effects independently influence the instability in the presence of

magnetic shear. That 1is, by setting Gen = 1 and 6VB = 0, we retain

electromagnetic coupling effects, but neglect electron VB orbit

modification effects. Conversely, by setting Gen = (0 and GVB = 1, we
1

retain electron VB orbit modification erfects, but neglect electromagnetic

coupling etffectse. Neither of thesc limits are self-consistent but are

taken for pedagogical purposes. The self-consistent limit

is & =1 and 8§, = l. The top curve considers § =1 and 6 = (0. Note
e Vb em vB

that the influence of electrouagnetic effects 1is to increase the growth

rate relative to the B = 0.0 curve. This is most pronounced ian the long

wavelength regime (kpes < 1) since wpe/ck is largest in this regime. The

bottom curve considers Gen

= 0 and SVB = 1. Note that the influence ot the
electron VB drift is to decrease the  growth rate relative to
the B = 0.0 curve. The enhanced damping, due to the dissipative
electron VB drift-wave resonance, is strongest in the short waveleugth
regime (kpes> 1. This is because the perpendicular resonant
velocity (Vlr) is proportional to k™2 in this regime and, therefore, more
electrons can participate ia the resonance. Finally, the self-consistent
result (Sem = 1 and 6\78 = 1) lies 1in between the two extreme limits.
Electron VB damping dominates in the short wavelength regime while there is
a balance of the electromagnetic and VB effects is the long wavelength
regine. These results are consistent with those presented in bDavidson et
al. (1977).2

In Fig. 3 we plot Y/wﬂ,h vse ke o for Vdi/v = 1.0, Upeme = lU.U,

i
Ln/Ls = U.l, 3= 0.2 and two values of T /T;: T /T; = 0.1 and Te/'l‘i =
1.0, The growth rates for these two curves are comparable; the only

significant difference occurs in the short wavelength regime where the

15
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0.20

0.16}

0.12+
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Figure 3 %

Plot of Y/th VS. kpes for Vdi/vi = 1.0, wpe/ﬂe = 10.0, Ln/Ls = 0.1,

8 = 0.2 and Te/Ti = 0.1 and 1.0.
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electron VB drift-wave resonance causes weaker growth for Te/Ti = ]l.0 than
To/T; = 0.1. This is due to the tfact that vBe o« Te'
In Figs. (4) and (5) we plot the wave potential Q (curve a) and

eiacnfunctions 86 (curve b) for \/di/vi = 1.0, wpu/Qe = 10.0, Ln/Ls= G.1,

B = 0.2 and kpcs = 1.5 In Fig. (4) we consider T./T; = Ga1 and in Fig.

(5) we take Te/Ti = 1 0. The cigenvalues for these cases are
w/wz“ = 0.83 +i 0.16 for Te/'li = 0.1 (Fig. 4) and “’/“’gh = 0.56 + i U.15
for Te/Ti = 1.0 (Fig. 5). Although the growth rates for these two cases

are comparable (as in Fig 3), exarmination of the wave potentials (()
indicates an important difterence between the "small” and "large" T, /T;
limits. First, in Fig. 4a we note that (. possesses an "anti-well"
character for x/peS < 4.0 while O_i is roughly constant. For x/pes > 4.0

Q. begins to incrcase, but is still negative when §§ asymptotes to 0

r

at x/pes = 7.5 (Fig. 4b). The eventual increase in Q. is due to electron

Landau damping which would not occur if Te = (0, Un the other hand, Q4
increases sharply for x/pes > 20 . which is due to the finite growth
rate. Thus Fig. 4 indicates that mode localization is primarily due to

the outward convection of eneryy {rom the region x = G in the limit

Tu/Ti »0.6 Stabilization of the mode can occur when the outward
propagation of energy is faster then the growth of the mode. On the other
hand, for hotter clectrons (Fig. 5%a), the "anti-well" character of G is
only weakly evident for x/pes < 1.06; for x/pes > 1.0, Qr increases and
becomes positive for x/pes > 2,2, The mode 1is localized within the
region x/pes < 5.5 (Fig. 5b). In this case electron landau damping is
playing the dominant role in the lucalization of the mode. As the mode
propagates outward from x = 0, it is rapidly dissipated locally by clectron

Landau damping Thus Figs. (4) and (5) indicate that different processes

17
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Figure 4
Plot o the wave potential and eigenfunction for V“i/vi = l.U,

wpe/ﬂe = 10.0, Ln/Ls = 0.1, 8 = 0.2, kpes = 1.5 and Te/'li = Udle
The eigenvalue is m/wzh = 0.3 + 1 0.16. The subscripts r and i

reler to real and imaginary, respectively. (a) Wave potential Q. (b)

tigenfunction §¢.
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- ] 1 !

~% 2 4 6 :
X/ geg
(b)
Figure 5
Plot of the wave potential and eigenfunction for vdivi = 1.0,
wpelﬂe = 10.0, Ln/Ls = 0.1, B8 = 0.2, kpes = 1.5 and T,/fj = 1.0. The

eigenvalue 1is m/wzh = 0,58 + 1 0.15 The subscripts r and i refer to

real and 1imaginary respectively. (a) Wave poteantial Q. (b)

Eigenfunction §¢.
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are involved in mode localization, depending on the value of Te/Ti, either

outward energy propagation (Te <« T) or electron Landau
damping (Te> Ti) localize the mode.

In Fig. 6 we plot Y/wzh Vs, Ln/Ls for vdi/vi = 1.0, mpc/Qe = 10.0,
kpes =15, 8=0.0and 1 0 and Te/'l'i = (.1 and 1.0. The wvalue of kpes
chosen correponds roughly to maximum growth. In general, the curves
indicate that y « - a(Ln/LS)+b, where the slope a and intercept b depend
upon B and Te/Ti. Two important features of this curve are the
following. First, for Te/Ti = 1.0, the growth rate for B = 1.0 is always
less then that for § = 0.0. The value of shear necessary to stabilize the
mode for 8 = 0.0 is Ln/Ls = 0.25 while for 8 = 1.0 is Ln/Ls = 0.17.
Second, for T /T; = 0.1, the growth rate for B = 1.0 is 1less than that
for g = 6.0 when Ln/LS < 0.18, but is greater than that for B = 0.C when

Ln/LS > 0.18. Thus as B increases in the low electron tenperature limit,
the amount of shear necessary to stabilize the mode increases (i.e. Ln/Ls
becomes larger); this confirms the result predicted from the analytic
theory (Eq. (19)).

In Fig. 7 we plot Y/mzh vs.f for Vdi/vi = 1.0, Te/Ti = 1.0,
wpe/Qe = 10.0, kpes = 1.5 and various values of Ln/LS. The main result is
that as Ln/Ls increases the growtii rate y decreases, as expected. Also,
as Ln/Ls increases, the slopes of the curves change, with a plateau-like
structure developing around B = 0.5.

Finally, we comment on the numerical accuracy of the results
presented. Solving Eq. (15) requires a substantial amount of computer

time. Typically, 100 - 200 grid points were used in the finite

differencing of the differential equation. At each grid point 12 numerical

integrations arc required to obtain Q. And, in general 35 - 10 interatioms
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Figure 6

Plot of Y/wkh VS Ln/Ls for vdi/vi = 1.0, wpe/Qe

8 = 0.0 and 1.0, ana Te/'l‘i = 0.1 and 1.0.
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— ]

Figure 7
Plot of Y/wﬂ.h vs. B for vdi/vi = 1.0, Te/Ti = 1.0, mpe/:?e = 1U.0,
kpes = 1.5 and several values of Ln/Ls.
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were required to obtain an eigenvaluc for a given set of parameters. Thus,
approximately l()4 numerical integrations were needed to obtain a single
eigenvalue. In order to minimize the computer time used, some accuracy was
sacriticed by using fewer grid points, in both the finite difference scheme
and the numerical integratiouns, than possible. However, higher-resolution
,rid spacings were used to estimate accuracy for different parameters. We
find that the qualitative results prescnted are reliable, but that the

guantitative results are accurate to within 5 - 10% of the actual values.
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1v. Discussion

A self-consistent theory of the lower-hybrid~drift instability in a
finite B plasma containing magnetic shear has been presented. The theory
incorporates the important finite R eftects of (1) electrostatic and
electromagnetic coupling and (2) electron VB drift-wave resonances. The
main conclusions of this study are as follows. First, magnetic shear is a
strong stabilizing influence on the lower-hybrid-drift instability, which

L4 Second, finite B effects can play an important

is a well-kunow result.
role in determining the amount of shcar necessary for stabilization, as
shown by Eq. (19). Interestingly, the two finite 8 effects mentioned above
act in opposing ways. The effect of electromagnetic coupling can be viewed
as destabilizing, that is, it tends to iacrease the amount of shear
necessary to stabilize the mode (see T,/T; = 0.1 curves in Fig. 6).
Physically, this occurs because clectromagnetic oscillations generate a
fluctuating electric field along the magnetic field (due to GA"). This
inhibits free streaming of electrons along the magnetic field wihich,
therefore, reduces the rate at which energy can be convected away from the
localization region. The effect of the electron VB drift-wave resonance
can be viewed as stabilizing, that is it tends to decrease the amount of
shear necessary for stabilization of the mode. This is illustrated in the
Te/Ti = 1.0 curves of Fig. 7 and in Fig. 8. Physically, this occurs
because the electron VB drift-wave resonance {s dissipative and reduces
growth fn the localization rvgion. The key parameter which dictates which
finite B effect is dominant is T /T;. Electromagnetic etfects dominate
when T, << T;y. while V8 resonance effects dominate when Te > Ti.

The magnitude of T,/T; also plays a role in the nature of the shear

stabilization of the lower-hybrid—drift instability. For T, << Ty, the
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wave potential Q. has an "anti-well" character.© Stabilization occurs

because the rate outward energy propagation (away from the localization

region) exceeds the growth rate. On the other hand, for Te 3 Ti’ the wave
potential Q. has a "woll" structure and the wave is dissipated locally by
strong landau damping. This is shown in Figs. (4) and (5).

These results are applicable to reversed tield plasmas which contain
15

magnetic shear. Perhaps the simplest example of this is illustrated by

the equilibrium

B =B e éy + tanh (x/x)ézl (22)

and
no=na sech2(x/)) (23)
where € << 1 Here, the 2z component of the magnetic component reverses
direction at x = (G, but the total tield remains finite. Studies of the

lower~hybrid—drift instability in reversed tield plasmas with € = G
indicate the following. Based upon a nonlocal linear theory,‘g the
fundamental mode is localized away from the neutral line (i e., x = 0) at
roughly [x| > A with a half-width Ax << A. higher order uodes also
localize about |x| = A but have a wmuch broader lhalt-width, &x < A.

1/2

However, these modes do not pencirate chosen than lx|p~ A(Telli) of the

neutral line because of electron VB drift-wave resonance damping.
Subsequent work on the evolution of a reversed field plasma, using an
anomalous resistivity model based upon the nonlocal mode structure of the

lower=hybrid-drift instability, found that magnetic flux is transported
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towards the neutral line and that the current increase at the neutral
1ine.20 Thus, the instability can eventually penetrate closer to the
neutral line than predicted by linear theory.

If we take € # U, then based on the definitions of Ln and Ls it can be

shown that

Ln € 1
— = - — s— (32)
Ls sinh(2x/}) €2 + tanh2(x/))
Based on Eq. (31), it is clear that Ln/Ls + 0 in the limit x/A + =,
while Ln/Ls + » when x/X » 0. Moreover, for this equilibrium
1 1
B=2—m—— - - ————— (33)

cosh2(x/)A) €2 + tanh2(x/\)

so that B » 1/e2 >> 1 as x/A » 0. Thus, for x/i < 1, both magnetic shear
and finite B are important to the stability properties of the lower-hybrid-
drift instability in a sheared reversed field plasma. For sufficieuntly
strong magnetic shear (i.e., €) the linear mode penetration
distance, lxlp, to the neutral line can be substantially larger than when
there is no shear.l? Thus, magnetic shear can inhibit (or perhaps even
prevent) the penetration of the mode to the neutral line even in the
nonlinear evolution of the plasma. This can be significant to both
laboratory and space plasmas where anomalous diffusion in the field

reversal region can be crucial to the dynamics of the plasma.
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Appendix A

We outline the derivation of the perturbed electron density (Gne) and
the perturbed curreuts (6Jxe and GJze) necessary to obtain Eqs. (12) -~
(14). We first calculate the perturbed distribution function Bfe which is

given by

o
S, =S [ drexp [4 ek e+ x'(1) - dwt] [~ k 8 +124p
e = - (Al)
1 p eo
+2 (y" x (1k x 84)) } T
where x°(1) and v’(1) are the unperturbed orbits. That is,
, - _ - _ . _ 2 - -
v'(1) Ve cos(QeT e)ex [vl s1n(ﬂer 9) + (VL /ZQe)B n Blax]ey-w.ez
(A2)
, - _ -~ . _ 2 . ~
x°(1) (vl/Qe) sin(Qer G)ez+l(vl/ﬂe) cos(ﬂer 8) 'r(v‘L /zue)a £n B/Dx]ey

(A3)

+v.Tte
z

where vi = vi + v§ and @, = e B/m c. The unperturbed electron distribution

function is chosen to be

v
Fo = (22 (1 - ?if 200 exp [-v2/v2] (A4)

where vZ2 = 2T /m and vZ = yv2 4+ y2 4 y2,
e e'e x y 2

Substituting Eqs. (A2) - (A4) into (Al) and performing the temporal




integration we arrive at

2e w k z
o, =g (60 + B (o on, 1 an,))
e e y y y
- Vexp [i(¢=y - S)(n-m)] R {J_J 8¢ (A5)
2 e n m
n,m
w~kzvz kx Vi ki ‘ n
+ { T E—-Jn Jm + E"—;'(l cos Jn Jm -5 Jn Jm sin ¢)} GAk
y y k
y
w %2 Yz ( kg V1 Ky kz ' _n
Pl me W Ioda * S (cos v Igd, -5 d g sinv]la, )
yy ky y 'y

e R = (u- - - 2/42y - = tan !
where Re (w kyvde)/(w n Qe ky VBc(vl/ve) kxvz), ¥ tan (kx/ky)'
the argument of the Bessel functions is

o=Kk\v /R, V,, =- (vg/ZQe)a 20 n/dx, V, =~ (vg/zne)a Ln B/3x,

de
and v¢ = 2T /m .
e e e

Be

The perturbed electron density and current are defined as
6n_ = [d3v 6f
e e
8J = [d3v v &f .
~e ~ e

Making use of Eq. (A5) in Egqs. (A6) and (A7) we obtain
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(A7)
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k k
- 2 -1 W X _z
Sn_= -(2me A2)) (60 + — (768, + s4.))
y 'y y
+h [ d(u2) exp (-u?) (32 % 8¢ (48)
o
Ky 2 [ W k, Ve 1 ¢ Ve ki
+ (k— J2 (c—k- Z+i— T 52 ) o o, co8 v JJ z;ez.)ch
y k
y
w z kyve ki 1, Ve kz kx
2 g2 (= = 7 - —= — = y
+ [ck 2 (k Z+ (1+—2 ) 5L -1 — ¢ JJ) cos ¢;4)5A21
y y k y 'y
y
o
8J_ = —(2me xge) v A [ d@u?) u exp(~u?) [~ J Jjcos y Z 8¢ (a9)
0
kx w z Vel ’ Ve ki 2 2
+ {~i ——-(E- vy © E—-ZEJJO L €05 ¥ - = J3 cos Yz} SA_
y yy k
y
w kz kyve 2 ) Ve kx kz
- A ey 2o - £ A _& 2 ’,
+ {1 (k Z+ (1 + ~) 2 Z )JOJI cos ¥ - = Ji cos yézlza, ]
y 'y k y 'y
y
-1 ° ’
= 2 2 2 2 4
GJze (2ne Ade) v A fo d(ué) exp (—u%) [Jo Z 84
| W Ky 2.’ kzve Ve ki ‘
+{ZE— T JO 2 (1 - - z)-i JOJ1 re ~;~cos v Z }GAx (Al0)
y k
' y
! o K, kyve kg vok k.
i o2 XL .z 2 - £ x =2
i + i (k m (1 + 2];).10 2-1 cos ¥ J J| < G2 1A,
y 'y ky y 'y

where A = (kay Vde)/kzve, u

{
i 2 2
! ce u )/kzve and A

- (m—ky vBe

since w << Qe.

de

have retained only the n = O term in the summation over cyclotrou harmonics

= vl/ve, the argument of the Bessel functious

is ¢ = (kl velﬂe)u, the argument of the Z functions is

= v§/2w§e. In writing kqs. (A8) - (Al(0) we




The perturbed ion density in an unmagnetized plasma is simply

n

- -2
éng = T (1 +¢, 2(zy)}

where g = (w - kvdi)/kvi’ Vdi = (v%/ZQi)a fn a/3x and v% = 2Ti/m1.
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Appendix B
We outline the derivation of Eq. (15) and present the detailed form of
p and q used in the analysis. Substituting Gna and Gge, derived in the
Appendix A, into the Maxwell equations (Eqs. (10) and (l1)) we obtain the
following set of equations
k
D¢¢ 5¢ +—k—; D",x (SAx+D°z GAZ 0 (B1)
M Dx¢ S¢ + Dxx 6Ax + sz GAZ =0 (B2)
D . 66+5-D 6A +D_6A =0 (B3)
z¢ k zZX X 22z z
y
where
1 Te
D, =1+ =— (1 +¢, 2(z,)) + (1 +K,.) (84)
oé k2 a2 T 10 2 a2 e
y “de y de
/2w
: 1 pe
1 D, =D_ =1 —F= K (B5)
$x xé kyAde cky ¢x
! V2w
1 pe
! =~D, 6 &= +e————K (B6)
# | ¢z z¢ kyxde cky (¥
; f sze
p =1-—F2k (87)
XX C2k2 XX
' y
! 202
e
i p_=-D_=~i—L&_g (B8)
i Xz zZX c2k§ Xz
! 2m2e
D, =1 +—K, (B9)
z czkz 3
y
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and
3 ®
K. =A d(u?) exp(-u?) J2 k I u) 2 810
o6 Io (u4) exp( (ke (c ) (810)
i
= 2 2 }
K¢x A fo d(u?) exp(-u?) u J (k r u) J, (klrLeu) z (t,) (B11)
a0 1 .
= 2 -2y J2 -
KQZ A jo d(u?) exp(-u?) J2 (k;rj w) 524 (g) (B12)
' - 2 2y 2 32 .
L = A jo d(u?) exp(-u?) u? 32 (k v, w) 2 (g)) (B13)
= 2 2 . !
K, =A jo d(u?) exp(-u?) u J_(k;r; u) J,(k Leu) (z,) (B14)
Y = 2 2 2 2 .~’ .
K, = A fo d(u?) exp(-u?) Jo(k r; u) 2 Zo & (g) . (B15)
In the above, ‘
| wkK Vd—e
k v 1
zZ e
| 2 _ 2
. ELFY VBeu ' } w kY_Xﬂ}. v N Zl_ 3 &n a
Ce T T kv 0 % W, Vdi T 7@, " ax
z e i i
2 2
V =—1e_..a_._g_'n_n_- =—~\,_e__§2'n.§=—.§v
de ZQe 3x ’ Be ZQe x 2 ‘de

2
= 2 = y2 2 2 . 2 = =
u VL/V s Ad velawpe, ve 2Te/me, wpe 41 ne /me, e ve/ﬂe, Jo s

5 s = 2 o k2 4+ k2 .
the Bessel function of order n, ¢ dz/dzg, kl kx + ky, and kz-ky(x/Ls)

We expand D in the small parameter ki/k§ and find that

k2
p -9 P () (B16)

k2
y
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where 2<0) are given by Eqs. (B4) - (Bl5) with kl replaced by ky and

P T ——
2 2 R k2 )2
2 2 y de
p{P o pl2 oy 1 fpre K
oz 24 ky X e cky ox
/3
D oo pfD o1 e (2)
o2 26 ky A e cky éx
2
o2 .y - e (@
XX 22 XX
¢k
Yy
202
D(z) - - D(2) = i _2129 K(Z)
Xz zZX c2k?2 Xz
y
202
D(z) -1+ _fpe K(Z)
zz c2k? 2z
y

and

4 o . Akere jo d(u?) exp(-u?) u JOJIZ(C_)

12

K;i) =hry KyFLe fo d(u2) exp(-u2)u2[J J 3] 2(z,)

(2) _ _ 2 2 1.7
x¢z A kere fo d(u?) exp(-u ul J, 5 2 (8)

k(2 . Nkor, fo d(uz)exp(-uz)u3JlJlZ(;e)

r
XX y

k(2 o, L

2 2y,21y g -g2)d 2
.z 5 kere fod(u Jexp(—ué)u [JOJl Jllz Z (ce)
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(B18)

(B19)

{(B20)

(B21)

(B22)

(b23)

(B24)

(B25)

(B26)

(B27)




A2)_ 2 2 1. ! ,
K, '= Akere jo d(u)exp(-u?)uJ J, 5 ¢ 2 (z) (B28)

and the argument of the Bessel functions is kereu.

We now solve Eqs. (B2) and (B3) for 6Ax and GAZ in terms of 6¢. We

find that

k D¢x Dzz+sz D¢z
6A = - El X zz Xz 9% s (B29)
X D D + D2
2
lJcpz Dxx~ sz D 2
sA_ = LA (830)
D + D2
22

Substituting (Blo) into (B29) and (B3U), and then substituting (B29) and

(B30) into (Bl) we obtain, to lowest order in ki/kg,

28¢  _ 2 g =
p(w,ky,x) o2 q (w,ky,x) ky 8¢ 0 (B31)
where
(2)_ (U) (0 (2) (0) (0)
P = Doy’ Dy (ro. /T4 } *+ D, (r. /Ty ) (B32)

p(O (1D () _ (0) (D)) (V) 2

¢x nx dx nx

+ 0(0 (1D ({0 _ (OO (02

[ ¥4 nz dz nz dz

(©) _ (0 (1(0) /0y 4 1 (0) (1(0),(0)) (833

1= Dyy = Pox bz

and
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=)

(0 _ p(0) [(0) 1 (0) [ (0)

nx ox zz xz ¢x

K2 2 D) o0 4 20 0 4 0 (D) (D) (0 p (0) ()

nx ¢x zz Xz ¢z Xz ¢z xx xz

r0) L ) L 0 (0, (002
dz XX

r$ LD (O 4 plO) f(D) (02 (2) /(0)
dx XX 2z Xz Xz xz 2z

10 - (0 (0 _ (0 ()
nz

¢z  xx xz

(D <o) 0 L (D) (O )0 (D) 5O (0 (0)

nz 0z XX Xz ¢x ¢x XX
r$2 L 3 0 (0 p(D) (002 (2) ) (0)
dz 2z XX Xz X2 xz XX

and we have mode the identification ki = - 32/9x2.
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