

A114778	
AD	Aroc
MIC FILE COPY	February,

INSTITUTE FOR AEROSPACE STUDIES

UNIVERSITY OF TORONTO

AFOSR-TR- 32-0372

1982

· · · ·

INTERACTION OF OBLIQUE SHOCK AND DETONATION WAVES

by

Y. SHENG and J. P. SISLIAN

S DTIC ELECTE MAY 24 1982 ÷,

UTIAS TECHNICAL NOTE NO. 235 CN ISSN 0082-5263

Approved for public release; distribution unlimited.

82 UFFOSE-77= 3303

Constant and the second s	
SECURITY CLASSIF CATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	3. RECIPIENT'S CATALOG NUMBER
AFUSK-IK- 83=03 (A)- A994	1778
4. TITLE (and Sublitle)	5. TYPE OF REPORT & PERIOD COVERED
INTERACTION OF OBLIQUE SHOCK AND DETONATION	INTERIM
WAVES	5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NJMBER(s)
Y SHENG	AFOSR-77-3303
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
UNIVERSITY OF TORONTO, INST FOR AEROSPACE STUDIE	61102F
4925 DUFFERIN ST	2307/A1
DUWNSVIEW, UNTAKIU, CANADA MJH DID	12. REPORT DATE
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA	FEB 1982
BOLLING AFB, DC 20332	13. NUMBER OF PAGES
14 MONITORING AGENCY NAME & ADDRESSIL different for Contrality Office	48
W WORLDWING AGENCE NAME & ADDRESS[1] ATTERNITION CONTINUING OTTER	
	UNCLASSIFIED
	15a DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimi	L
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi	L
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 77. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different fro	ted.
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fr	ted.
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 77. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the statement of the abstract entered in Block 20, if different from the statement of the abstract entered in Block 20, if different from the statement of the abstract entered in Block 20, if different from the statement of the abstract entered in Block 20, if different from the statement of the abstract entered in Block 20, if different from the statement of the sta	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from the statement of the statemen	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES 	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 	ted.
 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number allock the state of the source of the sourc	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number SHOCK WAVES 	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr. 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 14. ABSTRACT (Continue on reverse side if necessary and identify by block number) 	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. ABSTRACT (Continue on reverse side if necessary and identify by block number) 10. The interaction of an oblique shock wave and an obligue shock wave and shock wave sh	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different fr 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 19. ABSTRACT (Continue on reverse side if necessary and identify by block number) The interaction of an oblique shock wave and an oldeflect the flow in the same direction is analyzed. 	ted.
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different fr 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 19. ABSTRACT (Continue on reverse side if necessary and identify by block number) The interaction of an oblique shock wave and an of deflect the flow in the same direction is analyzed. assumed to be an exothermic gasdynamic discontinuit; 	ted. The detonation wave which The detonation wave is y. A criterion is developed
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different fr. 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 14. ABSTRACT (Continue on reverse aide if necessary and identify by block number) 15. The interaction of an oblique shock wave and an oblige the flow in the same direction is analyzed. 16. assumed to be an exothermic gasdynamic discontinuity 	blique detonation wave which The detonation wave is y. A criterion is developed solution of the problem
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fr 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aids if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 14. ABSTRACT (Continue on reverse aids if necessary and identify by block number) The interaction of an oblique shock wave and an od deflect the flow in the same direction is analyzed. assumed to be an exothermic gasdynamic discontinuit; and used to determine whether or not a theoretical identifies a physically realizable interaction configues the reflected wave is in general a rarefaction wave 	blique detonation wave which The detonation wave is y. A criterion is developed solution of the problem guration. It is found that ye. Only for very low
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aids if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 14. ABSTRACT (Continue on reverse aids if necessary and identify by block number) The interaction of an oblique shock wave and an oblige to be an exothermic gasdynamic discontinuit and used to determine whether or not a theoretical iscribes a physically realizable interaction confit the reflected wave is, in general, a rarefaction wavalues of the heat release parameter of the detonat 	blique detonation wave which The detonation wave is y. A criterion is developed solution of the problem guration. It is found that ve. Only for very low ion wave the reflected
 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different fr 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number SHOCK WAVES DETONATION WAVES WAVE INTERACTIONS 14. ABSTRACT (Continue on reverse side if necessary and identify by block number) 15. The interaction of an oblique shock wave and an oblige to be an exothermic gasdynamic discontinuit and used to determine whether or not a theoretical iescribes a physically realizable interaction confit the reflected wave is, in general, a rarefaction wavalues of the heat release parameter of the detonat 	blique detonation wave which The detonation wave is y. A criterion is developed solution of the problem guration. It is found that we. Only for very low ion wave the reflected
 Approved for public release; distribution unlimi Approved for public release; distribution unlimi DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr IS. SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES ABSTRACT (Continue on reverse side if necessary and identify by block number SHOCK WAVES WAVE INTERACTIONS ABSTRACT (Continue on reverse side if necessary and identify by block number) The interaction of an oblique shock wave and an oblique shock wave and an oblique shock wave and an oblighed to be an exothermic gasdynamic discontinuitiand used to determine whether or not a theoretical describes a physically realizable interaction configures of the heat release parameter of the detonat D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE 	ted. The Report) blique detonation wave which The detonation wave is y. A criterion is developed solution of the problem guration. It is found that ve. Only for very low ion wave the reflected UNCLASSIFIED

10

Ì

ŧ

212

ſ

'n. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) wave has been found to be a shock wave. Domains of existence of such resulting wave interaction configurations are established for different values of the oncoming Mach number, 6 < M < 8, the heat release parameter, 3 < Q < 8, and the specific heat ratios for the combustion products behind the detonation wave, $1.30 < \gamma < 1.33$. It is also found that double discontinuity configurations, representing the refraction of a detonation wave at a combustible/noncombustible interface (a limiting case of the considered interaction problem) can exist for certain values of the flow parameters involved and for different specific heat ratios of the gases in front of and behind the detonation wave. The magnitudes of the heat release parameter and specific heat ratio of the combustion products affect significantly the interaction pattern of shock and detonation waves. It is, therefore, concluded that the interaction problem considered be based on a detailed thermo-chemical analysis for given combustible mixtures of gases. UNCLASSIFIED SECURITY CLASSIFICATION OF THE

and a strength strength of the

Qualified requestors may obtain additional copies from the Defense Documentation Center, all others should apply to the National Technical Information Service.

Conditions of Reproduction:

ź

Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.

Approved for public release; distribution unlimited.

~ ·	Acces	sion F	r	
DTIC	NTIS	GRA&I		1
N N N	DTIC	TAB		6
PEGTED	Unann	ounced		
2	Justification			
	By			
	Distribution/			
	Avai	labilit	y Co	les
		Avail	and/o	r
	Dist	Spec	ial	
	A		-	

INTERACTION OF OBLIQUE SHOCK AND DETONATION WAVES

bу

Y. SHENG and J. P. SISLIAN

Submitted December, 1981

AIR FORGE OFFICE OF SCIENTIFIC FERMION (1757 NOFICE OF TOTAL ATTIN TO DITC This to the science of the term for the science of approved lessen (1990 Lesse IAN AFR 190-12. Distribution (1990) Lesse IAN AFR 190-12. MATTHEW J. KENPER Chief, Technical Information Division

February, 1982

.....

UTIAS TECHNICAL NOTE NO. 235 CN ISSN 0082-5263

-

· -- -

۰.

Acknowledgements

We wish to thank Prof. I. I. Glass for his discussions and interest in this work. One of us (Y. Sheng) is grateful for the assistance received from the Institute of Aeronautics and Astronautics, Nanjing, People's Republic of China, which made the sabbatical leave possible. The financial support from AFOSR, ARO and NSERC is acknowledged with thanks.

and the state of the state of the state

•

Abstract

The interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the same direction is analyzed. The detonation wave is assumed to be an exothermic gasdynamic discontinuity. A criterion is developed and used to determine whether or not a theoretical solution of the problem describes a physically realizable interaction configuration. It is found that the reflected wave is, in general, a rarefaction wave. Only for very low values of the heat release parameter of the detonation wave the reflected wave has been found to be a shock wave. Domains of existence of such resulting wave interaction configurations are established for different values of the oncoming Mach number, $6 \leq M \leq 8$, the heat release parameter, $3 \leq Q \leq 8$, and the specific heat ratios for the combustion products behind the detonation wave, 1.30 (< $\gamma \leq 1.33$. It is also found that double discontinuity configurations. representing the refraction of a detonation wave at a combustible/noncombustible interface (a limiting case of the considered interaction problem) can exist for certain values of the flow parameters involved and for different specific heat ratios of the gases in front of and behind the detonation wave. The magnitudes of the heat release parameter and specific heat ratio of the combustion products affect significantly the interaction pattern of shock and detonation waves. It is, therefore, concluded that the interaction problem considered be based on a detailed thermo-chemical analysis for given combustible mixtures of gases.

あいころいろい

Contents

		Page
	Acknowledgements	ii
	Abstract	iii
	Notation	v
1.	INTRODUCTION	1
2.	OBLIQUE DETONATION WAVE RELATIONS	2
3.	BASIC EQUATIONS AND SOLUTION OF THE INTERACTION PROBLEM	4
4.	STABILITY CRITERION FOR REFLECTED MACH WAVE CONFIGURATIONS	5
5.	ANALYSIS OF WAVE CONFIGURATIONS	6
6.	DISCUSSION AND CONCLUSIONS	9
	REFERENCES	11
	FIGURES	

APPENDIX: DERIVATION OF THE DERIVATIVES OF THE FLOW DEFLECTION ANGLE THROUGH THE WAVE WITH RESPECT TO THE PRESSURE BEHIND THE WAVE

Notation

ſ

*

Symbols	
a	sound speed
с _р	specific heat at constant pressure
C V	specific heat at constant volume
М	Mach number
M n	normal Mach number
$P_{ij} = p_i/p_j$	pressure ratio
9 _{ij}	heat release in the wave separating flow regions i and j
$Q_{ij} = q_{ij}^{\prime} c_{p_j} T_{j}$	heat release parameter
R	gas constant
Т	absolute temperature
u	component of flow velocity normal to discontinuity surface
v	component of flow velocity tangential to discontinuity surface
v	flow velocity
ρ	density
γ	specific heat ratio
δ	flow deflection angle through a wave
Subscripts	
i	downstream of a wave
j	upstream of a wave
CJ	Chapman-Jouguet condition
r	lower limit
u	upper limit
Superscripts	
0	stagnation values of the corresponding flow variables

v

and the constant water a strategy and the

1. INTRODUCTION

たちないがあるというではないの

The use of oblique detonation waves in ramjets that operate at hypersonic speeds have recently received considerable attention (Refs. 1, 2). A flow device utilizing this mode of combustion, as opposed to the supersonic diffusive burning mode, offers several advantages (see, for example, Ref. 3). Proposed diffuser-combustor model flow configurations involving plane oblique detonation waves (Refs. 1, 2, 4) entail, by necessity, the interaction of such combustion waves with the oblique shock waves formed on the forebody at high supersonic flight speeds. In view of such possible applications, the shock wave and detonation wave interaction problem depicted in Fig. 1 is investigated in the present Note. Fuel is injected along the wall AB of the inlet into the supersonic stream and is assumed fully mixed with the air at station B. A detonation wave across BO stabilized by means of a second wedge interacts with the oblique shock wave AO formed by the forebody. Of primary interest are the nature and magnitude of the resulting possible wave configurations, as well as their domains of existence as functions of the oncoming flow Mach number, the strengths of the shock and detonation waves, the amount of heat released by the burning reaction per unit mass of gas, and the specific heat ratios of the combustion product behind the detonation wave.

It is easy to visualize that in order to equilibrate the pressures in the airstreams on both sides of the intersection point 0, the transmitted discontinuity must be a shock wave, OE; a contact discontinuity, OC, must then separate the airstreams of different entropies passing through the two different sets of discontinuities. However, such a "triple discontinuity" configuration where only a reflected Mach wave exists represents a special limiting case of the more general resulting flow pattern when a reflected shock or rarefaction wave is present between the detonation wave OB and the contact surface OC. Figures 1(b) and 1(c) represent the resulting discontinuity patterns when the reflected wave is a rarefaction wave and a shock wave, respectively. It can be easily shown that there can be no other discontinuities in the interaction flow pattern, i.e., no discontinuity other than the reflected rarefaction or shock wave can exist between the detonation wave and the contact surface; also, no other discontinuity can exist between the transmitted shock wave, OE, and the contact surface, OC (see Ref. 5, Ch. 11).

A Chapman-Jouguet detonation wave is adopted in the present Note. According to this model the detonation wave consists of a shock wave in which chemical reactions occur instantaneously, i.e., the detonation wave is considered as an exothermic gasdynamic discontinuity. Although for most fuels utilized in ramjets the temperature behind the detonation wave would be too high to consider the flowing medium as a perfect gas, in the present Note real-gas effects are neglected for the sake of simplicity. The effects of chemical reactions, as well as of the various fuel/air mixture ratios are accounted for by different constant specific heat ratios before and after the detonation wave, and by different values of the heat release parameter.

The shock and detonation wave interaction was also investigated by Rues (Ref. 6) for the particular case when the resulting wave configuration contains only a reflected Mach wave; no allowance was made for the change of specific heat ratios across the detonation wav A qv cative analysis of a limiting case of the interaction problem, i.e. the fraction of a detonation wave at a combustible/non-combustible gas interface, is given in Ref. 7.

2. OBLIQUE DETONATION WAVE RELATIONS

Figure 2 is a sketch of the two-dimensional flow through a plane oblique detonation wave. The laws of conservation of mass, momentum and energy applied to the plane oblique exothermic discontinuity considered yiels the following relationships:

Continuity:

$$\rho_{i} u_{i} = \rho_{i} u_{i} \tag{1}$$

Momentum:

$$p_{j} + \rho_{j}u_{j}^{2} = p_{i} + \rho_{i}u_{i}^{2}$$
 (2)

and

Energy:

$$\frac{u_{j}^{2} + v_{j}^{2}}{2} + \frac{a_{j}^{2}}{\gamma_{j}^{-1}} + q_{ij} = \frac{u_{i}^{2} + v_{i}^{2}}{2} + \frac{a_{i}^{2}}{\gamma_{i}^{-1}}$$
(4)

The premixed gaseous mixture of reactants, and the gaseous reaction products are assumed to be perfect gases with equations of state of the form

$$\mathbf{p}_{\mathbf{k}} = \rho_{\mathbf{k}} \mathbf{R}_{\mathbf{k}} \mathbf{T}_{\mathbf{k}} \tag{5}$$

Manipulation of the above equations yields the following relationships for the determination of the flow variables behind the detonation wave in functions of the pressure ratio $P_{ij} = p_i/p_j$:

Normal velocity ratio (or density ratio):

$$\frac{\rho_{j}}{\rho_{i}} = \frac{u_{i}}{u_{j}} = \frac{P_{ij} + b_{j} + Q}{b_{i}P_{ij} + 1}; \qquad \bar{Q}_{ij} = \frac{2^{\gamma}}{(\gamma_{j} - 1)} Q_{ij}; \qquad Q_{ij} = \frac{q_{ij}}{c_{p_{j}}T_{j}}; \qquad b_{k} = \frac{\gamma_{k} + 1}{\gamma_{k} - 1}$$
(6)

Temperature ratio:

$$\frac{T_{i}}{T_{j}} = \frac{R_{j}}{R_{i}} P_{ij} \frac{P_{ij} + b_{j} + Q_{ij}}{b_{i} P_{ij} + 1}$$
(7)

Mach number ratio:

$$\frac{M_{i}}{M_{j}} = \sqrt{\frac{\gamma_{j}}{\gamma_{i}} \frac{1}{P_{ij}} \frac{1}{P_{ij}} \frac{1 - \frac{P_{ij}^{-1}}{\gamma_{j}M_{j}^{2}} \left(2 - \frac{P_{ij}^{-1}}{\gamma_{j}M_{jn}^{2}}\right)}{1 - \frac{P_{ij}^{-1}}{\gamma_{j}M_{jn}^{2}}}$$
(8)

where the normal component of the Mach number of the flow before the detonation wave, $\rm M_{in},$ is given by

$$M_{jn}^{2} = \frac{\binom{P_{ij}^{-1}(b_{i}P_{ij}^{+1})}{\gamma_{j} \left(\frac{2}{\gamma_{i}^{-1}}P_{ij} - \frac{2}{\gamma_{j}^{-1}} - \bar{Q}_{ij}\right)}$$
(9)

Normal Mach number ratio:

$$\frac{M_{in}}{M_{jn}} = \sqrt{\frac{\gamma_j}{\gamma_i} \frac{1}{P_{ij}} \frac{P_{ij} + b_j + \bar{Q}_{ij}}{b_i P_{ij} + 1}}$$
(10)

Total pressure ratio:

$$\frac{p_{i}^{o}}{p_{j}^{o}} = P_{ij} \frac{\left[1 + \frac{\gamma_{i}^{-1}}{2} M_{j}^{2} \left(\frac{M_{i}}{M_{j}}\right)^{2}\right]^{\gamma_{i}^{\prime}/\gamma_{i}^{-1}}}{\left(1 + \frac{\gamma_{j}^{-1}}{2} M_{j}^{2}\right)^{\gamma_{j}^{\prime}/\gamma_{j}^{-1}}}$$
(11)

Total temperature ratio:

$$\frac{T_{i}^{O}}{T_{j}^{O}} = \frac{\gamma_{j}(\gamma_{i}^{-1})}{\gamma_{i}(\gamma_{j}^{-1})} \frac{R_{j}}{R_{i}} \left[1 + \frac{Q_{ij}}{\left(1 + \frac{\gamma_{j}^{-1}}{2} M_{j}^{2}\right)} \right]$$
(12)

For strong detonations considered here, the ratio $P_{j\,i}$ = p_j/p_i will vary in the interval

$$0 < P_{ji} < P_{jiCJ}$$
(13)

where $P_{jiCJ} = 1/P_{ijCJ}$ can be determined from Eqs. (9) and (10) with $M_{in} = 1$. We get

$$P_{ijCJ} = \frac{\frac{\gamma_{i}^{+1}}{\gamma_{j}^{-1}} \left(1 + \frac{\gamma_{j}^{-1}}{2} \bar{Q}_{ij}\right) + \sqrt{\left[\frac{\gamma_{i}^{+1}}{\gamma_{j}^{-1}} \left(1 + \frac{\gamma_{j}^{-1}}{2} \bar{Q}_{ij}\right)\right]^{2} - b_{i}(b_{j}^{+}\bar{Q}_{ij})}{b_{i}}$$
(14)

The flow deflection angle is given by

. .

$$\delta_{ij} = \pm \tan^{-1} \left\{ \frac{P_{ij}^{-1}}{[\gamma_j M_j^2 - (P_{ij}^{-1})]} \sqrt{\frac{\gamma_j M_j^2 [(b_i^{-1})P_{ij} - (b_j^{-1}) - \bar{Q}_{ij}]}{(P_{ij}^{-1})(b_i^{-1}P_{ij}^{+1})}} - 1 \right\}$$
(15)

where the upper sign corresponds to a clockwise deflection. When $\gamma_i = \gamma_j$ and $q_{ij} = 0$, the above equations reduce to the usual oblique shock wave relations. Equation (15) is plotted on Figs. 3-5 for various values of Q_{ij} , γ_i and M_j .

BASIC EQUATIONS AND SOLUTION OF THE INTERACTION PROBLEM

The three possible interaction configurations are depicted in Fig. 1. regions (1)-(5) divided by the waves the flow is uniform. In terms of pressure ratio P_{ij} and the flow deflection angle δ_{ij} across the wave varating region i after the wave from region j before it, we can write to following conditions:

$$P_{51} = P_{43}P_{32}P_{21}$$

log $P_{51} = \log P_{43} + \log P_{32} + \log P_{21}$ (16)

ł

$$\delta_{51} = \delta_{21} + \delta_{32} + \delta_{43} \tag{17}$$

lid across the contact discontinuity OC. The deflection angles in . (17) are given by Eq. (15) with the appropriate values of γ_j , Q_{ij} , and P_{ij} on the corresponding discontinuity (in the case of a shock scontinuity, the relevant value of γ is assumed conserved across the ock wave and $Q_{ij} = 0$). In the case of a reflected rarefaction wave, e corresponding deflection angle is given by

$$\delta_{43} = b_3 \tan^{-1} \sqrt{\frac{M_4^2 - 1}{b_3}} - \tan^{-1} \sqrt{M_4^2 - 1} - b_3 \tan^{-1} \sqrt{\frac{M_3^2 - 1}{b_3}} + \tan^{-1} \sqrt{M_3^2 - 1}$$
(18)

ere

$$M_{4} = \sqrt{\frac{2}{\gamma_{3}^{-1}} \left[\frac{1 + \frac{\gamma_{3}^{-1}}{2} M_{3}^{2}}{\gamma_{3}^{-1/\gamma_{3}} - 1} \right]}$$
(19)

Elimination of P43 from Eqs. (16) and (17) yields the following uations for the single unknown P_{51} :

$$\delta_{21}(P_{21}, \gamma_{1}, M_{1}) + \delta_{32}[P_{32}, \gamma_{2}, \gamma_{3}, M_{2}(P_{21}, \gamma_{1}, M_{1}), Q_{32}] \pm \delta_{43} \left[\frac{P_{51}}{P_{32}P_{21}}, \gamma_{3}, M_{3}(P_{32}, \gamma_{2}, \gamma_{3}, M_{2}(P_{21}, \gamma_{1}, M_{1}), \bar{Q}_{32}) \right] - \delta_{51}(P_{51}, \gamma_{1}, M_{1}) = 0$$

$$(20)$$

r given M_1 , P_{21} , P_{32} , γ_1 , γ_3 and Q_{32} (given fuel/air mixture), we can termine P_{51} from Eq. (20). Equations (6)-(15) and Eqs. (18) and (19) 11 then yield the values of all the flow variables of interest in the nsidered interaction problem. In the case of vanishingly small reflected ve (triple discontinuity configuration) $P_{51} = P_{32}P_{21}$; Eq. (20) is then lved for P₃₂ for given values of P₂₁.

4

A graphical illustration of the solution is presented on Fig. 6 for the case when $M_1 = 7$, $P_{21} = 2.6$ ($M_2 = 5.92$), $\gamma_3 = 1.3$ and $Q_{32} = 8$. Only the right-hand halves of the incident shock polar I and detonation polar II are considered in the present investigation, as it is assumed that the shock and detonation waves deflect the flow in the same direction. The intersection point A of the detonation polar II and the shock polar I would then represent the resulting interaction pattern with a reflected Mach wave [triple discontinuity configuration, case (a) in Fig. 1]. Hence, for values of $P_{32} > P_{32A}$, the value of P_{32} at point A, we would have reflected rarefaction wave configurations [case (b) in Fig. 1] determined by points B and B' of intersection of the corresponding epicycloid IV with the shock polar I, and for $P_{32} < P_{32A}$, either the reflected shock configuration [case (c) in Fig. 1] determined by point C of intersection of the shock polar III drawn from Point P32 and the shock polar I, or the reflected rarefaction wave configuration determined by point C' of intersection of the epicycloid IV drawn from point P_{32} and the shock polar I. For $P_{32} = P_{32A}$ a reflected rarefaction wave interaction configuration given by point A' of intersection of the epicycloid drawn from point P_{32A} and the shock polar I, is also possible. Thus for a given combination of P_{21} and P_{32} , it is possible to have two sets of solutions corresponding respectively to points A, B, C and A', B', C' in Fig. 6. It is obvious that not all the solutions are physically realizable. Whether a mathematical solution of Eq. (20) is physically realizable or not depends on the stability of the resulting triple discontinuity configuration to small perturbations.

4. STABILITY CRITERION FOR REFLECTED MACH WAVE CONFIGURATIONS

Let us superimpose a small pressure disturbance Δp on the flow regions (3), (4) and (5) [Fig. 1(a)] downstream of the discontinuities OB and OE. This small pressure disturbance will cause variations in the flow deflection angles across the reflected Mach wave and the transmitted shock wave OE, $\Delta\delta p$ and $\Delta\delta T$, respectively, and will not affect the flow in regions (1) and (2). If the rate of change of the flow deflection angle across the reflected Mach wave is less than the rate of change of the flow deflection angle across the transmitted shock wave, i.e., if

$$\frac{d\delta}{dp}\Big|_{R} \leq \frac{d\delta}{dp}\Big|_{T}$$
(21)

then the reflected Mach wave configuration is stable and, hence, physically realizable. Indeed, if $\Delta p > 0$, then from Eq. (21), $\Delta \delta_R < \Delta \delta_T$ and the streamlines crossing these waves will diverge and result in a pressure decrease which will restore the equilibrium state. If $\Delta p < 0$, then $\Delta \delta_R > \Delta \delta_T$, and the streamlines will converge and result in a pressure increase which will restore the equilibrium state. It is easy to see that if condition (21) is violated, the reflected Mach wave configuration becomes unstable and hence physically not realizable. Equation (21) can be written in a more convenient form

$$\frac{d\delta}{dlnp}\Big|_{R} \leq \frac{d\delta}{dlnp}\Big|_{T}$$
(22)

Substitution of the expressions for the derivatives in the above equation, derived in the Appendix, yields

$$\frac{\frac{P_{51}}{(\gamma_{1}M_{1}^{2} - (P_{51}^{-1})^{2}(P_{51}^{-P_{51}}m_{ax}))}{[\gamma_{1}M_{1}^{2} - (P_{51}^{-1})]^{2}(P_{51}^{-1})^{2}(AP_{51}^{+1})} - 1} \left\{ \frac{\frac{\gamma_{1}M_{1}^{2}}{(\gamma_{1}M_{1}^{2} - (P_{51}^{-1}))^{2}} \left[-\frac{A(P_{51}^{-P_{51}}m_{ax})}{(AP_{51}^{+1})} \right]^{1/2}}{\frac{A[(AP_{51}^{+1})(2P_{51}^{-1}-P_{51}m_{ax}) - (P_{51}^{-P_{51}}m_{ax})(2AP_{51}^{-A+1})]}{2(AP_{51}^{+1})^{2}[\gamma_{1}M_{1}^{2} - (P_{51}^{-1})] \left[-\frac{A(P_{51}^{-P_{51}}m_{ax})(2AP_{51}^{-A+1})}{(AP_{51}^{+1})} \right]^{1/2}} \right\} \leq \frac{(M_{3}^{2}-1)^{1/2}}{\gamma_{3}M_{3}^{2}}$$
(23)

where

$$P_{51_{max}} = \frac{\gamma_1^{-1}}{2(\gamma_1^{+1})} \left\{ \frac{2\gamma_1 M_1^2}{\gamma_1^{-1}} + \frac{2}{\gamma_1^{-1}} + \left[\left(\frac{2\gamma_1 M_1^2}{\gamma_1^{-1}} + \frac{2}{\gamma_1^{-1}} \right)^2 - 4A \left(\frac{2\gamma_1 M_1^2}{\gamma_1^{-1}} - 1 \right) \right]^{1/2} \right\}$$

and

$$A = \frac{\gamma_{5}^{+1}}{\gamma_{5}^{-1}} = \frac{\gamma_{1}^{+1}}{\gamma_{1}^{-1}}$$

Equation (23) is the necessary and sufficient condition for the stability of the resulting limiting triple discontinuity configuration of the interaction problem considered.

Because the slope of the isentrope in the δ , p plane, $(d\delta/d\ln p)_R$, is always negative [see Eq. (A5)], condition (23) is always satisfied for mathematical solutions with a reflected Mach wave which are on the weak branch of the transmitted shock polar, where $(d\delta/d\ln p)_T \ge 0$ always. However, condition (23) can also be satisfied on a certain portion of the strong branch of the transmitted shock polar, where $(d\delta/d\ln p)_T < 0$, resulting in physically realizable reflected Mach wave configurations. These triple discontinuity configurations represent the limiting cases for physically possible interaction patterns with reflected shock or rarefaction waves.

Condition (23) is not satisfied at point A in Fig. 6. Hence, the reflected Mach wave interaction configuration represented by this point for the flow conditions considered, as well as points C and B corresponding to reflected shock wave and reflected rarefaction wave configurations, respectively, are not physically realizable. The only stable and physically possible solutions are given in this case by points B', A' and C'.

5. ANALYSIS OF WAVE CONFIGURATIONS

From Section 3, it is clear that the solution of the considered interaction problem reduces to finding the roots of Eq. (20), i.e. the values of P51 for a given set of flow parameters M1, P21, P32, Y2, Y3 and Q32. Whether the solution obtained is physically realizable or not is determined by using the criterion developed in Section 4. Moreover, the intervals within which P21 and P32 can vary depend on the oncoming flow Mach number M1 and the fuel/ air m.xture considered, i.e. on Y2, Y3 and Q32. The procedure for determining these intervals, as well as the domains of existence of the resulting physically possible interaction configurations and the strengths of the resulting waves is *here* given for the particular case when $M_1 = 7.0$, $\gamma_1 = \gamma_2 = 1.40$, $\gamma_3 = 1.30$ and $Q_{32} = 8.0$.

It is obvious that the lower limit of the interval of variation of P21, P21 $_{\&l}$ = 1. The upper limit of this interval, P21 $_{u}$, is determined by the condition that for given M1, Y2, Y3 and Q32 there is a Mach number M2 in region 2 for which the detonation wave is operating at the single Chapman-Jouguet condition [see Fig. 9(d)]. Letting Mn3 = M3 = 1 in Eqs. (8)-(10) and eliminating Mn2 and P32 from these equations, we get the following equation to determine M2:

$$\frac{1}{(\gamma_{3}-1)^{2}} (\gamma_{2}M_{2}^{2}+1)^{2} - \frac{\gamma_{3}+1}{\gamma_{3}-1} \left[\frac{2\gamma_{2}M_{2}^{2}}{\gamma_{2}-1} (1+\gamma_{2}Q_{32})-1 \right] = 0$$
(21)

Elimination of M_{2n} from Eqs. (8) and (9) will then yield an equation from which the value P_{21u} is computed. For the numerical example considered $M_2 = 5.4$ and $P_{21u} = 4.04$.

For each value of P₂₁ in the interval $P_{21\ell} < P_{21} < P_{21u}$, and hence for each value of M₂ between M_{2u} = M₁ (when P₂₁ = P_{21ℓ} = 1) and M_{2ℓ} (when $P_{21} = P_{21_{11}}$ determined from Eq. (21), we can plot detonation polars, as shown in Fig. 7. For strong detonation waves considered in the present Note, the lower limit of the interval of variation of P_{32} , P_{32} , should be its Chapman-Jouguet value given by Eq. (14), $P_{32\ell} = P_{32CJ}$ (= 17.85 for the numerical example considered). The upper limit for the variation of P32, P32_u, is given by the condition M3 = 1. Eliminating again M2_n from Eqs. (8) and (9) and letting $M_3 = 1$, we arrive at an equation from which the value $P_{32_u} = P_{32_s}$, i.e. the value of P_{32} giving sonic flow behind the detonation wave, is obtained. It should be noted that this value of P_{32s} is a function of P_{21} . Figure 8 depicts the domain of variation of P_{21} and P_{32} for the specific numerical example treated (shaded area). The horizontal line AB represents the lower, constant, Chapman-Jouguet limit of P32. The curve BEC is the locus of values of P32s, and the curve BFG that of $P32_{max}$ (resulting in normal detonation waves). The curve DHE is the locus of pairs of values of P_{21} and P_{32} of the strength of the interacting shock and detonation waves which result in a configuration with a reflected Mach wave

Numerical calculations show that for all these solutions on line DHE the criterion (23) is not satisfied. Therefore they are not physically realizable. On the other hand, calculations show that, for every point in the domain ABEC (Fig. 8), there is a solution with a reflected rarefaction wave. Figures 9(a)-(d) show the graphical solution of the interaction problems with reflected rarefaction waves. Note that in Fig. 9(d) the detonation polar has shrunk to a point. The strengths of the transmitted shock waves and reflected rarefaction waves for different values of the strengths of the interacting waves are plotted in Figs. 10(a)-(d).* For the numerical example considered, it has been found that all physically possible interactions result in configurations with a reflected rarefaction wave.

*Tables of numerical values of strengths of all waves involved in the interaction process and the corresponding Mach numbers in different flow regions for the range of values: $M_1 = 6$, 7, 8; $Q_{32} = 3$, 4, 5, 6, 7, 8 and $Y_3 = 1.30$, 1.315, 1.33 are available upon request from UTIAS.

7

Similar calculations were performed for different values of M_1 and Q_{32} . The corresponding domains of existence of interaction configurations with a reflected rarefaction wave are presented in Figs. 11(a)-(j) (areas under the corresponding curves). It should be noted that as the values of the heat release parameter are decreased the upper limit of the interval of variation of P32 ceases to be P32₅, as the epicycloid III describing the rarefaction wave issuing from the point P32s on the detonation polar II does not intersect the shock polar I, and therefore, there is no solution of the interaction problem. This is clear from the graphical solution presented in Fig. 12. For $P_{32} = P_{32CJ} = P_{32\ell} = 15.74$ or for $P_{32} = 22.0$ there are solutions represented by the points A and B, respectively, in the polar I, whereas for $P_{32} = 29.0 < P_{32_s}$, there is no solution. In these cases the upper limit of the interval of variation of P_{32} is determined numerically as the point where the roots of Eq. (20), if they exist, coincide. The domain of existence of reflected rarefaction wave configurations is then represented by the area under the line ABCDE in Fig. 11(b).

If we further decrease the value of Q_{32} (for example, $Q_{32} = 4$ and $M_1 = 8$) the aforementioned domain of existence splits in two subdomains ABCGK and DHE [see Fig. 11(e)]. There are no solutions for P21 in the interval GH and for $P_{32} > P_{32}C_J$. The reason for this splitting is clear from the graphical solution presented in Fig. 13. This figure depicts the case when P_{32} is kept constant at $P_{32} = P_{32}C_J$ and P_{21} assigned the values: $P_{21} = 11.5$, 13:0 and 14.5. The corresponding epicycloids for the reflected rarefaction waves issuing from points $P_{32} = P_{32}C_J$ intersect the shock polar I for $P_{21} = 11.5$ and 14.5 but not for the intermediate value $P_{21} = 13.0$.

Stable, and hence physically possible, reflected Mach wave configurations have been found to exist for very low values of the heat release parameter Q32. Figure 14 presents results of numerical calculations for the case $M_1 = 7$, $Y_1 = Y_2 = 1.4$, $Y_3 = 1.33$ and $Q_{32} = 1.0$. Curve EDC is the locus of stable [according to criterion (23)], and hence physically realizable, reflected Mach wave configurations separating regions where stable interaction configurations with reflected shock (area EDCF) and rarefaction waves (area EDCGBA) occur. Points on the ED portion of this curve correspond to configurations with transmitted shock waves on the weak branch of the shock polar, whereas for points on the DC portion, the transmitted shock wave is on the strong branch of the shock polar. There are no regular interaction solutions in the region above the curve BGCF. Curve HIJ is the locus of points for which the Mach number behind the detonation wave is exactly sonic, M3 = 1.

It is of interest to consider the particular case when $P_{21} = 1.0$, always (line AEF in Fig. 14). The problem then reduces to the refraction of a detonation wave at a combustible/non-combustible gas interface. The equilibration of pressures behind the detonation wave and the shock wave (to which the detonation wave degenerates in the non-combustible gas mixture) is achieved through a shock wave if the strength of the detonation wave P_{32} lies in the interval EF, and through a rarefaction wave if P_{32} is in the interval AE. Point E corresponds to a double discontinuity situation, i.e. only the detonation and the shock waves are present, the equilibration of pressures taking place across a Mach wave. Thus for the case considered (where $Y_1 = Y_2 = Y_5 \neq Y_3$) such a double discontinuity configuration, with energy addition on one of the discontinuities, is possible. Rues (Ref. 6) has shown that for $Y_1 = Y_2 = Y_3 = Y_5$ such a configuration is impossible. Calculations performed for the particular case considered, assuming constant

シュートのない

specific ratio everywhere, have also shown that such a double-discontinuity configuration does not exist. This example again shows the importance of the value of the specific heat ratio of the combustion products γ_3 for the interaction problem considered.

6. DISCUSSION AND CONCLUSIONS

The transmitted shock wave is usually on the weak solution branch of the shock polar. However, when P_{32} approaches P_{32u} , the transmitted shock wave may be on the strong solution branch, as exemplified by Fig. 15. Both theoretical solutions are on the strong branch of the shock polar with $P_{51} = 66.44$ and 65.46; the latter solution is physically possible according to solution continuity arguments.

The upper limit of the interval of variation of P_{21} , $P_{21_{u}}$, is fixed by the Chapman-Jouguet condition of the detonation wave. The higher the oncoming flow Mach number and the lower the value of the heat release parameter of the detonation wave, the larger $P_{21_{u}}$ is. When $P_{21_{u}}$ is large, for some values of the incident shock wave strength, P_{21} , there is no solution to the regular interaction problem considered and the interval of variation of P_{21} becomes discontinuous.

In the problem of the interaction of a shock wave with a detonation wave which deflect the flow in the same direction, of primary interest is the determination of the nature of the reflected wave. It has been found that for most combustible mixtures of gases $(3 \le Q_{32} \le 8; 1.30 \le \gamma_3 \le 1.33)$ the reflected wave is always a rarefaction wave. Using criterion (23), it has been shown that triple discontinuity configurations (reflected Mach wave) and hence configurations with a reflected shock wave and rarefaction wave) are physically possible for combustible gases with low heat release and are very sensitive to the values of the specific heat ratio of the combustion products behind the detonation wave. Considering the particular case of refraction of a detonation wave at a combustible/non-combustible gas interface, it has been found that for low values of Q_{32} ($Q_{32} = 1.0$) and $\gamma_1 = \gamma_2 = \gamma_5 \neq \gamma_3$ double discontinuity configurations, where only the detonation and shock waves are present (the equilibration of pressures behind the detonation and shock waves takes place across a Mach wave), can exist.

In general, the magnitudes of the heat release parameter, Q_{32} , and specific heat ratio, γ_3 , of the combustion products behind the detonation wave affect significantly the interaction pattern of shock and detonation waves. It is, therefore, concluded that for given particular flow configuration of the interacting shock and detonation waves and combustible mixture of gases, a detailed thermochemical analysis be made in order to determine the actual values of the heat release parameter, Q_{32} , and the specific heat ratio of the combustion product, γ_3 . The nature of the resulting interaction pattern could then be established by using these actual values of Q_{32} and γ_3 .

The interaction problem considered in the present Note was also investigated by Rues (Ref. 7) for the particular case when the resulting interaction pattern involves only a reflected Mach wave; no allowance was made for the change of specific heat ratios across the detonation wave. For this particular situation, the results obtained in the present work coincide with those of Ref. 7. However, according to criterion (23), all triple discontinuity configurations studied by Rues are not stable and hence physically not realizable. When $Q_{32} = 0$ and $\gamma_2 = \gamma_3 = 1.4$, the results obtained in the present Note coincide with those of Ref. 8, where the similar interaction problem of two shock waves is considered.

REFERENCES

ドルマン教育 観白寺

1. Morrison, Richard B. Evaluation of the Oblique Detonation Wave Ramjet. NASA CR NAS1-14771, 1978. Oblique Detonation Wave Ramjet. NASA 2. Morrison, Richard B. CR NAS1-15344, 1980. A Preliminary Study of the Application 3. Dunlap, R. of Steady-State Detonative Combustion to Brehm, R. L. a Reaction Engine. Jet Propulsion, 1958, Vol. 28, No. 7, pp. 451-456. Nicholls, J. A. 4. Billig, F. S. External Burning in Supersonic Streams. 18th Int. Astronaut. Congr. 1967, Proc. Vol. 3, 1968, pp. 23-54. 5. Landau, L. Fluid Mechanics, Pergamon Press, New York, Lifchitz, E. 1959, p. 405. Drei-Front Konfigurationen mit Ener-6. Rues, D. giezufuhr. Z. Angew. Math. und Mech., 1967, 47, N6, pp. 389-398. 7. Chernyi, G. G. Self-Similar Flow of Combustible Gases. Mechanics of Fluids and Gases, 1966, No. 6, pp. 10-24. Interaction of Plane Discontinuities of 8. Rosliakov, G. S. the Same Direction. Transactions of the Computing Center of Moscow State University, Vol. 1, 1960. Gas Dynamics, Vol. 1, John Wiley & Sons, 9. Zucrow, M. J. New York, 1976. Hoffman, J. D.

APPENDIX

DERIVATION OF THE DERIVATIVES OF THE FLOW DEFLECTION ANGLE

THROUGH THE WAVE

WITH RESPECT TO THE PRESSURE BEHIND THE WAVE

For the general case of a detonation wave, the flow deflection angle through the wave, Eq. (15), can be rewritten as:

$$\delta = \pm \tan^{-1} \left\{ \frac{P-1}{\gamma_1 M_1^2 - (P-1)} \left[- \frac{A(P-P_{max})(P-P_{min})}{(P-1)(AP+1)} \right]^{1/2} \right\}$$
(A1)

where P = p/p_1 , p = pressure behind the wave, A = γ_2+1/γ_2-1 , and

$$P_{\max} = \frac{\gamma_1 M_1^2}{\gamma_2^{+1}} + \frac{1}{\gamma_2^{+1}} \pm \left\{ \left(\frac{\gamma_1 M_1^2}{\gamma_2^{+1}} + \frac{1}{\gamma_2^{+1}} \right)^2 - \frac{1}{A} \left[\frac{2\gamma_1 M_1^2}{\gamma_1^{-1}} (1 + \gamma_1 Q) - 1 \right] \right\}^{1/2}$$
(A2)

subscript 2 denoting the flow region behind the wave. From Eq. (A1) we have

$$\pm \frac{d\delta}{dp} = \frac{\cos^{2}\delta}{p_{1}} \left\{ \frac{\gamma_{1}M_{1}^{2}}{[\gamma_{1}M_{1}^{2} - (P-1)]^{2}} \left[-\frac{A(P-P_{max})(P-P_{min})}{(P-1)(AP+1)} \right]^{1/2} - \frac{A[(P-1)(AP+1)(2P-P_{max}-P_{min}) - (P-P_{max})(P-P_{min})(2AP-A+1)}{2(P-1)(AP+1)^{2}[\gamma_{1}M_{1}^{2} - (P-1)] \left[-\frac{A(P-P_{max})(P-P_{min})}{(P-1)(AP+1)} \right]^{1/2}} \right]$$
(A3)

where the + sign corresponds to the right-half of the detonation wave polar. Taking into account Eq. (A1), the above equation can be finally written in the form

$$\pm \frac{d\delta}{d\ell nP} = \frac{P}{\left\{1 - \frac{A(P-1)(P-P_{max})(P-P_{min})}{[\gamma_1 M_1^2 - (P-1)]^2(AP+1)}\right\}} \left\{\frac{\frac{\gamma_1 M_1^2}{[\gamma_1 M_1^2 - (P-1)]^2} \times \left[\frac{A(P-P_{max})(P-P_{min})}{(P-1)(AP+1)}\right]^{1/2} - \frac{A[(P-1)(AP+1)(2P-P_{max})(P-P_{min}) - (P-P_{max})(P-P_{min})(2AP-A+1)]\right\}}$$

$$-\frac{A[(P-1)(AP+1)(2P-P_{max}-P_{min}) - (P-P_{max})(P-P_{min})(2AP-A+1)}{2(P-1)(AP+1)^{2}[\gamma_{1}M_{1}^{2} - (P-1)]\left[-\frac{A(P-P_{max})(P-P_{min})}{(P-1)(AP+1)}\right]^{1/2}}$$
(A4)

A-1

Equation (A4) gives also the value of the derivative in the case of a shock wave if we let Q = 0, $\gamma_1 = \gamma_2$ and $P_{min} = 1$.

For isentropic rarefaction or compression waves, we have (see, for example, Ref. 9, p. 422)

$$\frac{d\delta}{d\ell np} = -\frac{\sqrt{M^2 - 1}}{\gamma M^2}$$
(A5)

where δ is assumed positive when it increases in the clockwise direction. Hence $d\delta/d\ln p$ for an isentropic wave is always negative. Letting $d(d\delta/d\ln p)/dM = 0$, we will have

$$\left|\frac{\mathrm{d}\delta}{\mathrm{d}\ell \mathrm{n}\mathrm{p}}\right| \leq \frac{1}{2\gamma} \tag{A6}$$

A-2

. .

POSSIBLE DISCONTINUITY CONFIGURATIONS RESULTING FROM THE INTERACTION OF A SHOCK WAVE WITH A DETONATION WAVE. S-SHOCK WAVE, D-DETONATION WAVE, R-RAREFACTION WAVE, C-CONTACT DISCONTINUITY. (a) CONFIGURATION WITH A REFLECTED MACH WAVE; (b) CONFIGURATION WITH A REFLECTED SHOCK WAVE. FIG. 1.

*

. .

•

FIG. 2. PLANE OBLIQUE DETONATION FLOW MODEL.

-

-

1

i

2

FIG. 4. OBLIQUE DETONATION WAVE POLARS FOR DIFFERENT VALUES OF THE ONCOMING FLOW MACH NUMBER.

. .

2

·· -- -

and the second second

. .

. .

. .

FIG. 7. SHOCK AND DETONATION POLARS FOR DIFFERENT VALUES OF P_{21} .

. ...

FIG. 8. DOMAIN OF EXISTENCE (SHADED AREA) OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION IN THE P_{21} , P_{32} PLANE.

. .

Ř

4

• •

. .

. .

• • • • •

• •

. .

FIG. 10(b). PRESSURE RATIO ACROSS REFLECTED RAREFACTION WAVES AS A FUNCTION OF PRESSURE RATIOS ACROSS SHOCK WAVE FOR DIFFERENT DETONATION WAVE STRENGTHS.

. •

.

÷

والمراجع والمراجع والمراجع والمراجع

-

FIG. 10(d). PRESSURE RATIO ACROSS TRANSMITTED SHOCK WAVE AS A FUNCTION OF PRESSURE RATIOS ACROSS DETONATION WAVE FOR DIFFERENT SHOCK WAVE STRENGTHS.

• • •

. .

. .

-

Ĺ

FIG. 11(a). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE FOR DIFFERENT VALUES OF THE ONCOMING FLOW MACH NUMBER M1 (AREAS UNDER THE CORRESPONDING CURVES).

• •

FIG. 11(b). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE FOR DIFFERENT VALUES OF THE ONCOMING FLOW MACH NUMBER M3 (AREAS UNDER THE CORRESPONDING CURVES).

. . . .

. .

FIG. 11(c). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE FOR DIFFERENT VALUES OF THE ONCOMING FLOW MACH NUMBER M1 (AREAS UNDER THE CORRESPONDING CURVES).

*****₹

-

FIG. 11(d). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE FOR DIFFERENT VALUES OF THE ONCOMING FLOW MACH NUMBER M1 (AREAS UNDER THE CORRESPONDING CURVES).

FIG. 11(e). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE (AREAS UNDER THE CORRESPONDING CURVES).

こうかん かいたい

FIG. 11(f). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE (AREAS UNDER THE CORRESPONDING CURVES).

1

FIG. 11(g). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE (AREAS UNDER THE CORRESPONDING CURVES).

このの日子やないないないないないない

FIG. 11(h). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE (AREAS UNDER THE CORRESPONDING CURVES).

FIG. 11(1). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE (AREAS UNDER THE CORRESPONDING CURVES).

FIG. 11(j). DOMAIN OF EXISTENCE OF INTERACTION CONFIGURATIONS WITH A REFLECTED RAREFACTION WAVE IN THE P21, P32 PLANE (AREAS UNDER THE CORRESPONDING CURVES).

-

FIG. 12. ILLUSTRATION OF THE UPPER LIMIT OF P32 BEING LOWER THAN P325.

FIG. 13. ILLUSTRATION OF THE DISCONTINUITY OF THE INTERVAL OF P21 BECAUSE OF ABSENCE OF INTERSECTION BETWEEN THE EPICYCLOID OF THE REFLECTED RAREFACTION WAVE AND THE TRANSMITTED SHOCK POLAR.

FIG. 14. DOMAINS OF EXISTENCE OF VARIOUS INTERACTION CONFIGURATIONS. S-WITH A REFLECTED SHOCK WAVE; R-WITH A REFLECTED RAREFACTION WAVE.

生まるとうにいいい

*

UTIAS Technical Mote Mo. 235 Institute for Aerospace Studies, University of Toronto · f', .) 4925 Dufferin Street, Domasziew, Ontario, Lanada, N3H 51b IMTLAUTION OF OBLIQUE SUCK AND DIFTOMATION MAVES Steege, Y., Sisilan, J. P.	UTIAS Technical Note No. 235 Institute for Aerospace Studies, University of Toronto (UTIAS) 4325 Bufferin Street, Domnsview, Ontario, Canada, NJNI 576 INTERACTION OF OBLIQUE SHOCK AND DETOWATION WAVES Sheng, Y., Sisilan, J. P. J. Shock wave 2. Detomation wave 3. Mave interaction
1. Sheng, Y., Sisilan, J. P. 11. UTAS Technical Note No. 235	1. Sheng, Y., Sislian, J. P. 11. UTIAS Technical Note No. 235
The interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the same direction is analyced. The detonation wave is assumed to be an exothermic gasdynamic discontinuity. A criterion is developed and used to determine whether or not a theoretical solution of the problem describes a physically restricted wave by for very to be an exothermic gasdynamic discontinuity. A criterion is developed and used to determine whether or not a theoretical solution of the problem describes a physically restricted wave by for very to values of the brow in the error of the defloation wave in the orthogonal chain the restricted by the restricted wave base been found to be a shock wave. Domains of existence of such resulting wave interaction configurations are established for different values of the constant maker, to $< M$, S , the heat release parameter, $3 < 0 < S_3$ and the specific heat ratios for contain mayer, is $0 < 7 < 1.33$. It is also found that non-combustible interface (a limit to considered interaction problem) can exist for certain the mon-combustible interface and of different specific heat ratios for the flow parameters involved and for different specific heat ratios of the flow parameters involved and for different specific heat ratios of the flow parameters involved and for different specific heat ratios of the combustible interface of the interface of different specific heat ratios of the combustible interface strained. The interaction problem strates parameter and specific heat ratios of the exercise strates prime and behind the decontions, the interaction problem strates parameter and specific heat ratios of the combustible interface of the interaction problem strates of the specific heat ratios of the combustible interface of the interaction problem strates of the specific heat ratios of the exercise the strates and behind the decontion wave interaction problem strates of the specific heat ratios of the exercise trates of the specific heat ratios of the exercise the stra	The interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the same direction is analyzed. The demonstion wave and to be an exothermic gasdymanic discontinuity. A criterion is developed and used to determine whether on not a theoretical solution of the problem describes a physically realizable interaction configuration. It is found that the reflected wave is assumed to be a shock wave. Domains of extra- ord the problem describes a physically realizable interaction configuration. It is found that the reflected wave is seen found to be a shock wave. Domains of extra- meter of the deconation wave the reflected wave has been found to be a shock wave. Domains of extra- meter of the deconation wave the reflection wave, $130 < \gamma < 1.33$. It is also found that these oncoming Mach number, $6 < M$, the heat release parameter, $3 < \gamma < 1.33$. It is also found that for the combustion producing trations, representing the reflaction of a deporation wave at a consult obtain the detonation wave. The considered interaction problem can exist for creation oncembers in the detonation wave. The considered interaction of a deporation wave at a consult the combustible interface (1 miniting case of the considered interaction problem) can exist for creation on the combustion products affect significantly the interaction problem can exist for creation of the combustion products affect significantly the interaction problem can exist for creation of the combustion products affect significantly the interaction problem can exist for creation and behind the detonation wave. The agginticantly the interaction problem can state for creation of the combustion products affect significantly the interaction problem can a detailed thermo- tic state and behind the detonation wave. The agginticantly the interaction parameter and specific heat ratio of the combustion products affect significantly the interaction parameter and specific here.
Available copies of this report are limited. Return this card to UTIAS, if you require a copy.	Available copies of this report are limited. Return this card to UTIAS, if you require a copy.
UTIAS Technical Note No. 235 Institute for Aerospace Studies, University of Toronto (UTIAS) 4925 Dufferin Street, Domasview, Ontario, Canada, N3H 516	UTIAS Technical Note No. 235 Institute for Aerospace Studies, University of Toronto (UTIAS) 4925 Dufferin Street, Domariew, Ontario, Lanuda, N311 516
INTERACTION OF OBLIQUE SHOCK AND DETONATION MAVES Sheme, Y., Sisilan. J. P. 1. Shock wave 2. Detomation wave 3. Mave interaction	INTERACTION OF OBLIQUE SHOCK AND DETOWATION MAVES Shong, Y., Sislian, J. P. 1. Shock maye 2. Detomation wave 3. Wave interaction
 Sheng, Y., Sislian, J. P. 11. UTIAS Technical Note No. 235 The interaction of an oblique shock wave and an oblique detomation wave which deflect the flow in the same direction is analyzed. The detomation wave is assumed to be an exothermatic dis- termatic same direction. 	I. Sheng, Y., Sislian, J. P. 11. UTIAS Technical Note No. 235 The interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the interaction of an oblique shock wave and an oblique shock wave an oblique shock wave and an oblique shock wave an oblique shock wave and an oblique shock wave an oblique shock wave an oblique shock wave an oblique shock wave and an oblique shock wave an oblique
continuity. A criterion is devriped and used to determine whether or not a theoretical solution of the problem describes a physically realizable interaction configuration. It is found that the re- flected wave is, in general, a rarefaction wave. Only for very low values of the heat reflexes para- meter of and execution wave the reflected wave has been found to be a look wave. Demains of exis- meter of and executive more interaction configurations.	the same affection is anaryou, into ecutation were is assumed to we man convirtant generations continuity. A criterion is developed and used to determine whether or not a theoretical solution of the problem describes a physically realizable interaction configuration. It is found that the reflected wave is, in general, a rarefaction wave. Boy may have be show values of the heat release parameters of the deconation wave the reflection wave here here found to be a shock wave. Downains of easistication configuration to a shock wave. Downains of easistication wave the reflection wave here reflection wave be sent found to be a shock wave. Downains of easistication wave the reflection wave here reflection wave in the reflection configuration to be a shock wave. Downains of easistication wave the reflection wave here reflection wave here reflection wave the reflection wave here reflection wave and to be a shock wave. Downains of easistication wave here reflecting wave
concerning Mach member, $0 \le M < 0$, the heat release parameter, $3 \le q$, 0 , and the specific heat ratios for the combustion products behind the detonation wave, $1.9 < Y \le 1.3$. It is a pair found that double discontinuity configurations: representing the refraction of a detonation wave at a combustible mon-combustible interface (a limiting case of the considered interaction problem) can such from for certain values of the flow margements, involved and for different versific heat ratios of the flow margements.	tence of such restitury and entruction contigurations are established for different values of the oncourne Mach number, 0 < M < 8, the heat reliance parameter, 3 < 0 < 8, and the specific heat ratios for the combustion products behind the deronation wave, 1.30 < 7 × 3.3. It is also found that double discontinuity contigurations, representing the refraction of a defonation wave at a combustible/ non-combustible interface (a finality case of the constant with interval interaction problem) can exist for certain non-combustible interface (a finality case of the constant interaction problem) can exist for certain
and behind the detonation wave. The magnitudes of the heat release parameter and specific heat ratio of the combustion produ :s affect significantly the interaction pattern of shock and detonation waves. It is, therefore, concluded that the interaction problem considered be based on a detailed thermo- chemical analysis for given combustible mixtures of gases.	values of the flow parameters involved and for ultrevial speciate wait actions of the gas mattern aver and behind the decomation wave. The magnitudes of the heat release parameter and specific heat ratio of the combustion products affect significantly the interaction pattern of shock and detonation waves. It is, therefore, concluded that the interaction problem considered be based on a detailed thermo- chemical analysis for given combustible mixtures of gases.
Available copies of this report are limited. Return this card to UTIAS, if you require a copy.	Available copies of this report are limited. Return this card to UTIAS, if you require a copy.

Ĩ

*

UTIAS Technical Note No. 235 Institute for Aerospace Studies, University of Toronto (UTIAS) 1054 Aerospace Studies, University of Toronto (UTIAS) 4925 Dufferin Street, Downsiew, Ontario, Canada, M3H 576 INTERACTION OF OBLIQUE SHOCK AND DETONATION WAVES Sheng, Y., Sislian, J. P. 1. Shock wave 2. Detonation wave 3. Kave interaction 1. Shock wave 2. Detonation wave 3. Kave interaction	The interaction of an oblique shock wave and an oblique detomation wave which deflect the flow in the same advanced in the amonthmity. A criterion is analyzed. The denomation wave is assumed to be an exothermic gradynamic discontinuity. A criterion is analyzed. The detomation wave is assumed to be an exothermic gradynamic discontinuity. A criterion is analyzed in the detomation wave in the arteriable interaction configuration. It is found that the reflected wave the reflection wave. Only for very low values of the heat release parameter $J > 0$ of S_1 and the specific heat ratios for the combustion production wave the reflected wave. Now the reflected wave the reflected wave the specific heat ratios for the combustion production wave interaction configurations are established for different values of the oncoming Mach number $J < N = 3$, the heat ratios for the combustion production wave the reflected wave, $1.30 < \gamma < 1.33$. It is also found that non-composition products and the specific heat ratios for the combustion products affect invived and for different specific heat ratios for the follow parameters involues of the constidered interaction problem) can exist for constrain values of the flow parameters involues of the heat release parameter $J < \gamma < 1.33$. It is also found that non-combustible interface a limiting case of the considered interaction problem) can exist for certain values of the flow parameters involues of the considered interaction problem) can exist for certain values of the flow parameters involues of the heat release parameter $J = \lambda < 0$ and the specific heat ratio of the schemation wave in the magnitudes of the heat release parameters $J = \lambda < 0$ and the specific heat ratio of the schemation wave at a combustion products affect singlificantly the interaction problem constant were in the magnitudes of the heat release parameter and specific heat ratio of the schemation wave in the schemation wave in the schemation wave in the schematin $J = \lambda < 0$ and the specific heat ratio of the sch	Available copies of this report are limited. Return this card to UTIAS, if you require a copy.	UTIAS Technical Note No. 235 UTIAS Technical Note No. 235 Institute for Aerospace Studies, University of Toronto (UTIAS) 4255 Dufferin Street, Downsiew, Ontrio, Ganada, Mill STG INTERACTION OF OBLIQUE SHOCK AND DEFONATION MAVIES Shong, Y., Sislian, J. P. 1. Shock wave 2. Detomation wave 3. Wave interaction 1. Shock wave 2. Detomation wave 3. Wave interaction The interaction of an oblique shock wave and an oblique detomation wave which deflect the flow in the same direction is analyted. The detomation wave is assumed to be an exothermic gadynamic dis- continuity. A criterion is analyted. The detomation wave is assumed to be an exothermic gadynamic dis- the same direction is analyted. The detomation wave is assumed to be an exothermic gadynamic dis- continuity. A criterion is developed and used to determine whether or not a theoretical solution of the problem description wave. Only for very low values of the heat release para- meter of the detomation wave interaction configurations of a detomation wave. Domains of exis- tileted wave is, in generation wave, 13, 5, 9, 8, and the specific heat ratios for the combustible anti-face (at limiting care of the considered biole detomation wave is as food water is oncoming Meth number, 6, w call interaction ordigarition of a detomation wave. Domains of exis- meter of the detomation wave. The magnitudes of the heat release parameter and specific heat ratios for the combustible anti-face (at limiting care of the considered biole detomation wave is anot walues of the flow parameters novivel and detomation wave is as food water for exis- tion analysis for given combustible mixtures of gases. Availes of the combustible mixtures of the heat release parameter and specific heat ratios of the combustion wave. The magnitudes of the heat release parameter and specific heat ratios for the combustible mixtures of gases. Availes of the interaction problem considered be based on a detonation waves. It is therefore, concluded that the interaction problem considere
UTLAS Technical Mote Mo. 235 Institute for Aerospace Studies, University of Toronto (UTLAS) 4925 Dafferin Street, Domaxiew, Ontario, Canada, M3H 316 INTERACTION OF OBLIQUE SUDCK NUM DIFTOMATION MAVIES Sheng, Y., Sislian, J. P. 1. Shock wave 2. Detomation wave 3. Mave interaction 1. Sheng, Y., Sislian, J. P. 11. UTLAS Technical Mote Mo. 235	The interaction of an oblique shock wave and an oblique detonation wave which deflect the flow in the same direction is analyzed. The detonation wave is assumed to be an exothermic gasdynamic discontinuity. A criterion is developed and used to deteraine whether or not a theoretical solution of the problem describes a physically realizable interaction configuration. It is found that the remeter of the detomation wave. Only for very low values of the heat release parameter of such resulting wave interaction configuration. On values of the detormation wave only for very low values of the values of the combation wave interaction configuration. It is found that the remeter of such resulting wave interaction configurations are established for different values of this concoming Mah mumber, $0 \le N < 8$, the heat release parameter, $3 < 0 \le 3$, and the specific heat ratios for the combustion product Schind the detonation wave, $1.30 < 7 < 1.33$. It is also found that non-combustible interface (a limiting cuse of the near ratios of the form tratice (a limiting cuse of the near ratios of the combustion products afficiently the interaction off a detonation wave in contains whether specific heat ratios of the combustible interface (a limiting cuse of the near ratios of the parameter is not detonation wave. It also the specific heat ratios of the combustible interface (a limiting cuse of the near ratios of the parameter is not values of the interaction product afform the detonation wave. It is therefore, concluded that the interaction pattern of shock and detonation wave. It is, therefore, concluded that the interaction products afform the interaction of the interaction product afformation wave.	Available copies of this report are limited. Return this card to UTIAS, if you require a copy.	UTILS Technical Note No. 235 Institute for Arrospace Studies, University of Toronto (UTIAS) 925 Dufferin Street, Downsview, Ontario, Canada, NH 576 IntEMATION OF OBLIQHE SHOCK AND DETOMATION MAYES Energy, Y., Sislian, J. P. 1. Shock wave 2. Detomation waves Seng, Y., Sislian, J. P. 1. UTIAS Technical Note No. 235 1. Shock wave 2. Detomation wave 3. Nave interaction 1. Shock wave 3. Detomation wave is assumed to be an exothermic gashmanic dis- continuity. A criterion is detonation wave is assumed to be an exothermic gashmanic dis- teres of such resulting wave interaction wave is assumed to be an exothermic gashmanic dis- flected wave 13. in generally realizable interaction on the theoret release para- teres of such resulting wave the reflection wave has a dot the specific heat ratios for the constitution wave interaction on the reflection of a detonation wave a ta combustion for the constitution products affect significantly the heat release para- for the constitution new. The agaitudes of the heat release para- fic is, therefore, concluded and the interaction problem considered heat the for a detonation wave is to the constitution new. The agaitudes of the heat release para- tic significantly the interaction problem considered heat the for the new release para- tic significant the interaction problem considered heat the for the detonation wave is a solution of the constituted mater interaction problem constituted the detonation wave is a constitution of the constituted theat release para- tic significant significa

..

アンアンスのまた

