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Abstract

The interaction of an oblique shock wave and an oblique detonation
wave which deflect the flow in the same direction is analyzed. The
detonation wave is assumed to be an exothermic gasdynamic discontinuity.
A criterion is developed and used to determine whether or not a theore-
tical solution of the problem describes a physically realizable inter-
action configuration. It is found that the reflected wave is, in general,
a rarefaction wave. Only for very low values of the heat release para-
meter of the detonation wave the reflected wave has been found to be a
Ahock wave. Domains of existence of such resulting wave interaction
configurations are established for different values of the oncoming Mach
number, 6 < M < 8, the heat release parameter, 3 < Q < 8, and the specific
heat ratios for the combustion products behind the detonation wave, 1.30(<
y <-1.33. It is also found that double discontinuity configurations,
re~resenting the refraction of a detonation wave at a combustible/non-
combustible interface (a limiting case of the considered interaction
problem) can exist for certain values of the flow parameters involved
and for different specific heat ratios of the gases in front of and
behind the detonation wave. The magnitudes of the heat release parameter
and specific heat ratio of the combustion products affect significantly
the interaction pattern of shock and detonation waves. It is, therefore,
concluded that the interaction problem considered be based on a detailed
thermo.-chemical analysis for given combustible mixtures of gases.
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Notation

Symbols

a sound speed

c specific heat at constant pressurep

c specific heat at constant volume
v

M Mach number

M normal Mach number
n

PI.j = pi/Pj pressure ratio

qij heat release in the wave separating flow regions i and j

Qi. = q.j/cpjT. heat release parameter
13 13 3i 3

R gas constant

T absolute temperature

u component of flow velocity normal to discontinuity surface

v component of flow velocity tangential to discontinuity surface

V flow velocity

P density

y specific heat ratio

6 flow deflection angle through a wave

Subscripts

i downstream of a wave

j upstream of a wave

CJ Chapman-Jouguet condition

£ lower limit

u upper limit

Superscripts

o stagnation values of the corresponding flow variables

V
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1. INTRODUCTION

The use of oblique detonation waves in ramjets that operate at hyper-
sonic speeds have recently received considerable attention (Refs. 1, 2).
A flow device utilizing this mode of combustion, as opposed to the super-
sonic diffusive burning mode, offers several advantages (see, for example,
Ref. 3). Proposed diffuser-combustor model flow configurations involving
plane oblique detonation waves (Refs. 1, 2, 4) entail, by necessity, the

interaction of such combustion waves with the oblique shock waves formed
on the forebody at high supersonic flight speeds. In view of such possible
applications, the shock wave and detonation wave interaction problem depicted
in Fig. 1 is investigated in the present Note. Fuel is injected along the

wall AB of the inlet into the supersonic stream and is assumed fully mixed
with the air at station B. A detonation wave across BO stabilized by means
of a second wedge interacts with the oblique shock wave AO formed by the
forebody. Of primary interest are the nature and magnitude of the resulting
possible wave configurations, as well as their domains of existence as func-
tions of the oncoming flow Mach number, the strengths of the shock and
detonation waves, the amount of heat released by the burning reaction per
unit mass of gas, and the specific heat ratios of the combustion product
behind the detonation wave.

It is easy to visualize that in order to equilibrate the pressures
in the airstreams on both sides of the intersection point 0, the trans-
mitted discontinuity must be a shock wave, OE; a contact discontinuity, OC,
must then separate the airstreams of different entropies passing through
the two different sets of discontinuities. However, such a "triple discon-

tinuity" configuration where only a reflected Mach wave exists represents
a special limiting case of the more general resulting flow pattern when a
reflected shock or rarefaction wave is present between the detonation wave

OB and the contact surface OC. Figures l(b) and l(c) represent the result-
ing discontinuity patterns when the reflected wave is a rarefaction wave
and a shock wave, respectively. It can be easily shown that there can be
no other discontinuities in the interaction flow pattern, i.e., no discon-
tinuity other than the reflected rarefaction or shock wave can exist between
the detonation wave and the contact surface; also, no other discontinuity
can exist between the transmitted shock wave, OE, and the contact surface,
OC (see Ref. 5, Ch. 11).

A Chapman-Jouguet detonation wave is adopted in the present Note.
According to this model the detonation wave consists of a shock wave in
which chemical reactions occur instantaneously, i.e., the detonation wave
is considered as an exothermic gasdynamic discontinuity. Although for
most fuels utilized in ramjets the temperature behind the detonation wave
would be too high to consider the flowing medium as a perfect gas, in the
present Note real-gas effects are neglected for the sake of simplicity.
The effects of chemical reactions, as well as of the various fuel/air
mixture ratios are accounted for by different constant specific heat ratios
before and after the detonation wave, and by different values of the heat

release parameter.

The shock and detonation wave interaction was also investigated by
Rues (Ref. 6) for the particular case when the resulting wave configuration
contains only a reflected Mach wave; no allowance was made fir the change
of specific heat ratios across the detonation wa' A qu cative analysis
of a limiting case of the interaction problem, i.e. te -fraction of a

detonation wave at a combustible/non-combustible gas interface, is given in

Ref. 7.



2. OBLIQUE DETONATION WAVE RELATIONS

Figure 2 is a sketch of the two-dimensional flow through a plane

oblique detonation wave. The laws of conservation of mass, momentum
and energy applied to the plane oblique exothermic discontinuity con-
sidered yielu the following relationships:

Continuity:
puj = Piu.i I

Momentum: 2 2 (2)
p. + pju. = p. +ii 2

and
v. = v. )
J v . (3)

2 2 2 2 2 2
Energy: u. +v. a. u. 2v. a.

W.L + +__ 1_

2 + Y-+ qij 2 + y 1 (4)

The premixed gaseous mixture of reactants, and the gaseous reaction
products are assumed to be perfect gases with equations of state of the
form

Pk = PkRkTk (5)

Manipulation of the above equations yields the following relationships
for the determination of the flow variables behind the detonation wave
in functions of the pressure ratio Pij = pi/p.:

Normal velocity ratio (or density ratio):

P. u. P..+b.+Q 2 Q Yk+ 1
1 1" ) " i = ___d___ * Q.. - qi bk

-- = 13 + QPi u j b i Pi 1i YJ ) ij cpjTj k Yk-1I

(6)

Temperature ratio:
T. R. P..+b.+Q..
_1 p = 1P U.J (7)
T. R. Pij b.P. .+13 1 1 13

Mach number ratio: P.._-1_ P..-1

_a jjn (8)
M. Yi P1 _P-.
I 1 1 1 3

YjMjn

where the normal component of the Mach number of the flow before the
detonation wave, Mjn, is given by

2



M2 (P i-) (bP.ij +l)

M n yj . 2 1 1__p . 2 -1 j (9)

C-

Normal Mach number ratio:

M - / I~' P.j+b.+Qi.

n i 1
+  (10)

W.- P~jb.P. .+l

Total pressure ratio:

Yi-I 2(M, ]2 Yi/Yi
- I

Pi 2 p. ,_-( I

0 13 (jYJ~ . 3lP ~ + -- - Mj2  1J

Total temperature ratio:

To y.(y.-l) R.
T Yi(Yj - 1 ) Ri 1 + {l+Q I2lMj2II (12)
3 1 2 ii

For strong detonations considered here, the ratio Pji = Pj/Pi will
vary in the interval

0 < Pji < PjiCJ (13)

where PjiCJ = l/Pijcj can be determined from Eqs. (9) and (10) with
Min = 1. We get

Yi + yj-1 +vJ,/ [__ yj-1 -2

ijCJ b.
1 (14)

The flow deflection angle is given by

S-l P. -l _ YMj2[(bi-l)P.i. - (b.-l) - Q.i.]

6J . tan 2 /P1 1 )[¥jMj 2 - (Pij-l)]\ (j - l (  p j I

(15)

where the upper sign corresponds to a clockwise deflection. When Yi = Yj and
qij = 0, the above equations reduce to the usual oblique shock wave relations.
Equation (15) is plotted on Figs. 3-5 for various values of Qij, Yi and Mj.

3



BASIC EQUATIONS AND SOLUTION OF THE INTERACTION PROBLEM

The three possible interaction configurations are depicted in Fig. 1.
regions (I)-(S) divided by the waves the flow is uniform. In terms of
pressure ratio P- and the flow deflection angle 6ij across the wave

iarating region i aiter the wave from region j before it, we can write
following conditions:

P51 = 
43P32P21

log P51 = log P4 3 + log P32 
+ log P21 (16)

651 = 21 + 632 + 643 (17)

lid across the contact discontinuity OC. The deflection angles in
(17) are given by Eq. (15) with the appropriate values of yj Qij 

and Pij on the corresponding discontinuity (in the case of a shock
scontinuity, the relevant value of y is assumed conserved across the
ock wave and Qij = 0). In the case of.a reflected rarefaction wave,
e corresponding deflection angle is given by

2-
btan- 1  M -tan I 2

43 3 IV b3 4

/b tan __ -1 /M31 a- M2_ 1 (18)
- b3  b a 3n + tan

ere

/Y 3 - 1 + - 2M

H 4  2 y 3 - 2 3 (19)
4 Y3- 43

Elimination of P43 from Eqs. (16) and (17) yields the following

uations for the single unknown P5 1 :

621(P 21' '1 M ) + 63 2 [P3 2 ' y2 ' y3' M2 (P21 ' Yl' M1 )' Q3 2
] ±

4364 P3 2 1 , Y3 M3 (P32 ' y2 Y3 ' M2(P2 1 1' Yl l) Q3 2)] -

- 651(P 51, Y1 9 M1) = 0 (20)

r given M1, P21, P3 2 , Y1, Y3 and Q32 (given fuel/air mixture), we can
termine P5 1 from Eq. (20). Equations (6)-(15) and Eqs. (18) and (19)
11 then yield the values of all the flow variables of interest in the
nsidered interaction problem. In the case of vanishingly small reflected
ve (triple discontinuity configuration) PSI = P3 2P2 1; Eq. (20) is then
Ived for P32 for given values of P21.

4



A graphical illustration of the solution is presented on Fig. 6 for

the case when M1 = 7, P2 1 = 2.6 (M2 = 5.92), Y3 = 1.3 and Q32 = 8. Only
the right-hand halves of the incident shock polar I and detonation polar
II are considered in the present investigation, as it is assumed that the
shock and detonation waves deflect the flow in the same direction. The
intersection point A of the detonation polar II and the shock polar I
would then represent the resulting interaction pattern with a reflected
Mach wave [triple discontinuity configuration, case (a) in Fig. 1].
Hence, for values of P3 2 > P32A, the value of P3 2 at point A, we would
have reflected rarefaction wave configurations [case (b) in Fig. 1] deter-
mined by points B and B' of intersection of the corresponding epicycloid
IV with the shock polar I, and for P3 2 < P32A, either the reflected shock
configuration [case (c) in Fig. 1] determined by point C of intersection
of the shock polar III drawn from Point P32 and the shock polar I, or
the reflected rarefaction wave configuration determined by point C' of
intersection of the epicycloid IV drawn from point P3 2 and the shock
polar I. For P3 2 = P32A a reflected rarefaction wave interaction config-
uration given by point A' of intersection of the epicycloid drawn from
point P32A and the shock polar I, is also possible. Thus for a given
combination of P21 and P3 2, it is possible to have two sets of solutions
corresponding respectively to points A, B, C and A', B', C' in Fig. 6.
It is obvious that not all the solutions are physically realizable.
Whether a mathematical solution of Eq. (20) is physically realizable or
not depends on the stability of the resulting triple discontinuity con-
figuration to small perturbations.

4. STABILITY CRITERION FOR REFLECTED MACH WAVE CONFIGURATIONS

Let us superimpose a small pressure disturbance Ap on the flow regions
(3), (4) and (5) [Fig. l(a)] downstream of the discontinuities OB and OE.
This small pressure disturbance will cause variations in th flow deflection
angles across the reflected Mach wave and the transmitted shock wave OE, 56R
and A6T,respectively and will not affect the flow in regions (1) and (2).
If the rate of change of the flow deflection angle across the reflected
Mach wave is less than the rate of change of the flow deflection angle
across the transmitted shock wave, i.e., if

d6 < d6I (21)

then the reflected Mach wave configuration is stable and, hence, physically
realizable. Indeed, if Ap > 0, then from Eq. (21), A6R < AfT and the stream-
lines crossing these waves will diverge and result in a pressure decrease
which will restore the equilibrium state. If Ap < 0, then A6R > A6T, and
the streamlines will converge and result in a pressure increase which will
restore the equilibrium state. it is easy to see that if condition (21) is
violated, the reflected Mach wave configuration becomes unstable and hence
physically not realizable. Equation (21) can be written in a more conven-
ient form

d6 d6 (22)

Substitution of the expressions for the derivatives in the above equation,
derived in the Appendix, yields

5



PS YM2 - .

P51  YM1 2A(P 5 1-Pslmax 1/2

A(P- 1)2(Ps-PSla) [Y1M 2 (P51-1)]
2  (AP51+1)

51 51 max________ -1 11

[YiM1
2 _ (P5 1-)]

2 (AP5 1 +I)

A[(APs 1+1)(2Ps 1-1-PS1 m ) (Ps1-Smax)(2AP 1-A+l) (M 2_ 1)1/
2

2(~1I2[ M2_(1_) - A{Psl-_P51max) 1/2 - M

2(AP 5 1 +l) [YlM 1(P )11()P 5 1 +I[_maA ) 1/ y+M3
2  (23)

where

Y -1 2 y I M 1  2 1Y 2  2 1 2 2 1 12 1 1

Pmax 2(y1+1) Y1-1 + Y1 -+ Y1 -1 yl 4A 2Y 1M1
2

and
Y5 +1 Y +1

Equation (23) is the necessary and sufficient condition for the stability
of the resulting limiting triple discontinuity configuration of the inter-
action problem considered.

Because the slope of the isentrope in the 6, p plane, (d6/dknp)R, is
always negative [see Eq. (AS)], condition (23) is always satisfied for
mathematical solutions with a reflected Mach wave which are on the weak
branch of the transmitted shock polar, where (d6/dknp)T > 0 always. However,
condition (23) can also be satisfied on a certain portion of the strong
branch of the transmitted shock polar, where (d6/dfnp)T < 0, resulting in
physically realizable reflected Mach wave configurations. These triple
discontinuity configurations represent the limiting cases for physically
possible interaction patterns with reflected shock or rarefaction waves.

Condition (23) is not satisfied at point A in Fig. 6. Hence, the
reflected Mach wave interaction configuration represented by this point for
the flow conditions considered, as well as points C and B corresponding to
reflected shock wave and reflected rarefaction wave configurations, respec-
tively, are not physically realizable. The only stable and physically pos-
sible solutions are given in this case by points B', A' and C'.

5. ANALYSIS OF WAVE CONFIGURATIONS

From Section 3, it is clear that the solution of the considered inter-
action problem reduces to finding the roots of Eq. (20), i.e. the values of
P51 for a given set of flow parameters M1 , P21 , P32 , Y2, Y3 and Q32. Whether
the solution obtained is physically realizable or not is determined by using
the criterion developed in Section 4. Moreover, the intervals within which

P21 and P32 can vary depend on the oncoming flow Mach number M1 and the fuel/air - .xture considered, i.e. on Y2, Y3 and Q32. The procedure for determining
these intervals, as well as the domains of existence of the resulting physic-
ally possible interaction configurations and the strengths of the resulting

6



waves is here given for the particular case when M1 = 7.0, Y1 = Y2 = 1.40,
Y3 = 1.30 and Q32 = 8.0.

It is obvious that the lower limit of the interval of variation of
P21, P21k = 1. The upper limit of this interval, P21u, is determined by
the condition that for given Ml, Y2, Y3 and Q32 there is a Mach number M2
in region 2 for which the detonation wave is operating at the single
Chapman-Jouguet condition [see Fig. 9(d)]. Letting Mn3 = M3 = 1 in Eqs.
(8)-(10) and eliminating Mn2 and P3 2 from these equations, we get the
following equation to determine M2:

1 2+ 2 3+1 Q2M 2

(y3 _1)
2 (y2M2 +1) 3- 1 L Y2-

1  (l+y2Q3 2)-1_ = 0 (21)

Elimination of M2n from Eqs. (8) and (9) will then yield an equation from
which the value P21u is computed. For the numerical example considered
M2 = 5.4 and P21u = 4.04.

For each value of P2 1 in the interval P21Z < P21 < P21 u , and hence
for each value of M2 between M2u = Ml (when P21 = P21 = 1) and M2z (when
P21 = P21u) determined from Eq. (21), we can plot detonation polars, as
shown in Fig. 7. For strong detonation waves considered in the present
Note, the lower limit of the interval of variation of P32, P32k, should
be its Chapman-Jouguet value given by Eq. (14), P32R = P32Cj (= 17.85 for
the numerical example considered). The upper limit for the variation of
P32, P32u, is given by the condition M3 = 1. Eliminating again M2n from
Eqs. (8) and (9) and letting M3 = 1, we arrive at an equation from which
the value P32u = P32., i.e. the value of P32 giving sonic flow behind the
detonation wave, is obtained. It should be noted that this value of P32s
is a function of P2 1. Figure 8 depicts the domain of var-iation of P21
and P32 for the specific numerical example treated (shaded area). The
horizontal line AB represents the lower, constant, Chapman-Jouguet limit
of P3 2 . The curve BEC is the locus of values of P32s, and the curve BFG
that of P32max (resulting in normal detonation waves). The curve DHE is
the locus of pairs of values of P21 and P32 of the strength of the inter-
acting shock and detonation waves which result in a configuration with a
reflected Mach wave

Numerical calculations show that for all these solutions on line DHE
the criterion (23) is not satisfied. Therefore they are not physically
realizable. On the other hand, calculations show that, for every point in
the domain ABEC (Fig. 8), there is a solution with a reflected rarefaction
wave. Figures 9(a)-(d) show the graphical solution of the interaction
problems with reflected rarefaction waves. Note that in Fig. 9(d) the
detonation polar has shrunk to a point. The strengths of the transmitted
shock waves and reflected rarefaction waves for different values of the
strengths of the interacting waves are plotted in Figs. 10(a)-(d).* For the
numerical example considered, it has been found that all physically possible
interactions result in configurations with a reflected rarefaction wave.

*Tables of numerical values of strengths of all waves involved in the inter-
action process and the corresponding Mach numbers in different flow regions for
the range of values: M1 = 6, 7, 8; Q3 2 = 3, 4, 5, 6, 7, 8 and Y3= 1.30,
1.315, 1.33 are available upon request from UTIAS.
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Similar calculations were performed for different values of M1 and
Q32. The corresponding domains of existence of interaction configurations
with a reflected rarefaction wave are presented in Figs. ll(a)-(j) (areas
under the corresponding curves). It should be noted that as the values of
the heat release parameter are decreased the upper limit of the interval
of variation of P32 ceases to be P32s, as the epicycloid III describing
the rarefaction wave issuing from the point P3 2s on the detonation polar
II does not intersect the shock polar I, and therefore, there is no solu-
tion of the interaction problem. This is clear from the graphical solution
presented in Fig. 12. For P3 2 = P32CJ = P32k = 15.74 or for P32 = 22.0
there are solutions represented by the points A and B, respectively, in
the polar I, whereas for P32 = 29.0 < P32s, there is no solution. In
these cases the upper limit of the interval of variation of P32 is deter-
mined numerically as the point where the roots of Eq. (20), if they exist,
coincide. The domain of existence of reflected rarefaction wave configura-
tion is ther represented by the area unrer t,'.e line ABCDE in Fig. 11(b).

If we further decrease the value of Q32 (for example, Q32 = 4 and
MI = 8) the aforementioned domain of existence splits in two subdomains
ABCGK and DHE [see Fig. 11(e)]. There are no solutions for P21 in the
interval GH and for P32 > P32Cj. The reason for this splitting is clear
from the graphical solution presented in Fig. 13. This figure depicts the
case when P3 2 is kept constant at P32 = P3 2 Cj and P2 1 assigned the values:
P21 = 11.5, 13.0 and 14.5. The corresponding epicycloids for the reflected
rarefaction waves issuing from points P32 = P3 2Cj intersect the shock polar
I for P21 = 11.5 and 14.5 but not for the intermediate value P21 = 13.0.

Stable, and hence physically possible, reflected Mach wave configur-
ations have been found to exist for very low values of the heat release
parameter Q32. Figure 14 presents results of numerical calculations for
the case Ml = 7, Y1 = Y2 = 1.4, Y3 = 1.33 and Q32 = 1.0. Curve EDC is the
locus of stable [according to criterion (23)], and hence physically realiz-
able, reflected Mach wave configurations separating regions where stable
interaction configurations with reflected shock (area EDCF) and rarefaction
waves (area EDCGBA) occur. Points on the ED portion of this curve corre-
spond to configurations with transmitted shock waves on the weak branch of
the shock polar, whereas for points on the DC portion, the transmitted
shock wave is on the strong branch of the shock polar. There are no
regular interaction solutions in the region above the curve BGCF. Curve
HIJ is the locus of points for which the Mach number behind the detonation
wave is exactly sonic, M3 = 1.

It is of interest to consider the particular case when P2 1 = 1.0,
always (line AEF in Fig. 14). The problem then reduces to the refraction
of a detonation wave at a combustible/non-combustible gas interface. The
equilibration of pressures behind the detonation wave and the shock wave
(to which the detonation wave degenerates in the non-combustible gas mixture)
is achieved through a shock wave if the strength of the detonation wave P32
lies in the interval EF, and through a rarefaction wave if P32 is in the
interval AE. Point E corresponds to a double discontinuity situation, i.e.
only the detonation and the shock waves are present, the equilibration of
pressures taking place across a Mach wave. Thus for the case considered
(where Y1 = Y2 = YS Y3) such a double discontinuity configuration, with
energy addition on one of the discontinuities, is possible. Rues (Ref. 6)
has shown that for 1  Y2 = Y3 = YS such a configuration is impossible.
Calculations performed for the particular case considered, assuming constant
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specific ratio everywhere, have also shown that such a double-discontinuity
configuration does not exist. This example again shows the importance of
the value of the specific heat ratio of the combustion products Y3 for the
interaction problem considered.

6. DISCUSSION AND CONCLUSIONS

The transmitted shock wave is usually on the weak solution branch of
the shock polar. However, when P3 2 approaches P32u, the ¢,ansmitted shock
wave may be on the strong solution branch, as exemplified by Fig. 15. Both
theoretical solutions are on the strong branch of the shock polar with
P51 

= 66.44 and 65.46; the latter solution is physically possible according
to solution continuity arguments.

The upper limit of the interval of variation of P2 1, P21-, is fixed
by the Chapman-Jouguet condition of the detonation wave. The higher the
oncoming flow Mach number and the lower the value of the heat release para-
meter of the detonation wave, the larger P21u is. When P21u is large, for
some values of the incident shock wave strength, P2 1, there is no solution
to the regular interaction problem considered and the interval of variation
of P21 becomes discontinuous.

In the problem of the interaction of a shock wave with a detonation
wave which deflect the flow in the same direction, of primary interest is
the determination of the nature of the reflected wave. It has been found
that for most combustible mixtures of gases (3 < Q32 < 8; 1.30 < y < 1.33)
the reflected wave is always a rarefaction wave. Using criterion 23), it
has been shown that triple discontinuity configurations (reflected Mach
wave)and hence configurations with a reflected shock wave and rarefaction
wave) are physically possible for combustible gases with low heat release
and are very sensitive to the values of the specific heat ratio of the
combustion products behind the detonation wave. Considering the particular
case of refraction of a detonation wave at a combustible/non-combustible gas
interface, it has been found that for low values of Q32 (Q32 = 1.0) and
"1 = Y2 = S # Y3 double discontinuity configurations, where only the
detonation and shock waves are present (the equilibration of pressures
behind the detonation and shock waves takes place across a Mach wave), can
exist.

In general, the magnitudes of the heat release parameter, Q32, and
specific heAf ratio, 3, of the combustion products behind the detonation
wave affect significantly the interaction pattern of shock and detonation
waves. It is, therefore, concluded that for given particular flow config-
uration of the interacting shock and detonation waves and combustible
mixture of gases, a detailed thermochemical analysis be made in order to
determine the actual values of the heat release parameter, Q32, and the
specific heat ratio of the combustion product, Y3. The nature of the
resulting interaction pattern could then be established by using these
actual values of Q32 and Y3.

The interaction problem considered in the present Note was also
investigated by Rues (Ref. 7) for the particular case when the resulting
interaction pattern involves only a reflected Mach wave; no allowance was
made for the change of specific heat ratios across the detonation wave.
For this particular situation, the results obtained in the present work

9



coincide with those of Ref. 7. However, according to criterion (23), all
triple discontinuity configurations studied by Rues are not stable and
hence physically not realizable. When Q32 = 0 and Y2 = Y3 = 1.4, the
results obtained in the present Note coincide with those of Ref. 8, where
the similar interaction problem of two shock waves is considered.
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APPENDIX

DERIVATION OF THE DERIVATIVES OF THE FLOW DEFLECTION ANGLE

THROUGH THE WAVE

WITH RESPECT TO THE PRESSURE BEHIND THE WAVE

For the general case of a detonation wave, the flow deflection angle

through the wave, Eq. (15), can be rewritten as:

= tan-1  P-1 A(P-Pmax)(P-Pmin) -11/2 (Al)

YiM 1  - (P-1) 
A(P-)(AP+l)

where P = P/Pl, P = pressure behind the wave, A = Y2+1/Y2-1, and

YlM12 12 2 /
y1M A1M 1__ 1F (l+y Q)-

max -y 2+l 2+ - y+l y2-l - A L (+1) 1 (A)

min

subscript 2 denoting the flow region behind the wave. From Eq. (Al) we have

d6 cs2 6 lM 12 iA(P-P ma)(P-P min) 11/2

dp p1  [YIM12 _ {p-012 (P-1)(AP+l)

A[(P-l)(AP+I)(2P-P max-Pm.n ) - (P-P max)(P-P min )(2AP-A+l)

2(P-1)(AP+I) 2[Y 1M1 2 - (P- ) . (P- )(AP+ )

where the + sign corresponds to the right-half of the detonation wave polar.

Taking into account Eq. (Al), the above equation can be finally written in

the form

dS P "{ 1 M12

dnP = A(P-1)(P-P max)(P-P min) [ylMl2 _ (P-2)]2

{ [Y1M12 _ (pl)]2(AP+l)YM

[ A(P-Pmax)(P-P min) 1/2

L (P-i) (AP+l)

A[(P-l)(AP+l)(2P-P max-P .n ) - (P-P max)(P-P min )(2AP-A+l) (

2 2 A(P-P max)(P-P min) l1/2 (A4)
2(P-I)(AP+I)2[y1M 1 (P-l] I- (P-I) (AP+l) .

A-i



Equation (A4) gives also the value of the derivative in the case of a
shock wave if we let Q = 0, y1 

= Y2 and Pmin = 1.

For isentropic rarefaction or compression waves, we have (see, for
example, Ref. 9, p. 422)

d6 (AS)
d2knp yM2

where 6 is assumed positive when it increases in the clockwise direction.
Hence d6/d~np for an isentropic wave is always negative. Letting
d(d6/dknp)/dM = 0, we will have

d6 1 (M)

A-2
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