AD=A114¢ 756 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/6 6/%
REASONING UTILITY PACKAGE USER'S MANUAL. VERSION ONE, (U}
APR 82 D A MCALLESTER NOOO18=75~C-0643
UNCLASSIFIED AI-M=667) NL

2 22

e £
=0k
[
"

| EED
lL2s e pie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964 A

e PRSI L S Y

UNCLASSIFIED . . -

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
. READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

! 1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIFPIENT’S CATALOG NUMBER

| AIM 667 HO-Ay0 75 .

' 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

i Reasoning Utility Package User's . Memorandum

1 Manual ’ Version One 6. PERFORMING ORG. REPORT NUMBER

! 7. AUTHOR(ss . - . - : |8 CONTRACT OR GRANT NUMBER(e)- — —-

‘ : oo A 1ecean " N00014-75-C-0643 .
» . David A.;McAllester : _ MCS77-04828 _

" . 9. PERFORMING ORGANIZATION NAME AND ADDRESS . 10. PROGRAM ELEMENT, PROJECT, TASK

! : Artificial Intelligence Laboratory L AREA & walik LNIT NuMBERS

,' 545 -Technology Square
; Cambridge, Massachusetts 02139

“|11. CONTROLLING OFFICE NAME AND ADDRESS T 12. REPORT DATE

Advanced Research Projects Agency . April 1982
l»’fOO Wilsom 8Ivd . - - = 13. NUMBER OF PAGES
Arlington, Viraginia 22209 :

14. MONITORING AGENCY NAME & ADDRESS(If dilferent from Controlling Olfice) 18. SECURITY CLASS. (of this roperty

Office of Naval Research - . e UNCLASSIFIED ' 1
Information Systems ° . ST ST
Arlington, Virginia 22217 T e e i AN ICATIONTOOWNGRAGING

! 16. DISTRIBUTION STATEMENT (of this Report)
t
i
I

Distribution of this do;ument is unlimited.’

117 CISTRIBUTION STATEMENT (of the abstract entersd in Block 20, if different from Repert) ' - wat O
- Distribution is unlimited . o D l o

15. SUPPLEMENTARY NCTES

13. KEY wORDS (Continue on reverss alde Il necossary and ldentity by blosk mamber)

Lo ' ' . Reasoning Utilities . . Theorem Proving . o SRR B
O Auntomated Deduction. ~ Truth Maintenance T
fa») Backtracking o Dependencies . S e

.

Congruence Closures ~ Demonic Invocation

* iag.?al{g;g&'fn'g"ﬁ.tﬂi‘iff; "ﬁ&%i‘&!;‘é" "f's"’a" Sotlection ‘of procedures for

performing. various computations relevant to automated reasoning.
RUP contains a truth maintenance systems(TMS) which can be'used to
perform simple propositional deduction{unit clagse _resolutz_ton) '
to record justifications, to track down \mderly_/lng assumptions, anc}
to perform ',increri\eétal modifications when premises are changed. th11

| B ° 05 24 1o 3
"L L er e B v ML N

PEIWOREY TS~ S ; - A s - —‘

| AR AR

TMS can be used with an automatic premise controller which automat-
ically retracts "assumptions" before "solid facts" when contradictio
arise and searches for the most solid proof of an assertion. RUP al
contains a procedure for efficently computing all the relevant
consequences of any set of equalities between ground terms.

A related utility computes "substitution simplifications" of terms
under an arbitary set of unquantified equalities and a user defined
simplicity order. RUP also contains demon writing macros which allow
one to write PLANNER like demons that trigger on various types of
events in the data base. Finally there is a utility for reasoning

}
|
about partial orders and arbitrary transitive relations. In writing
‘ all of these utilities an attempt has been made to provide a maximalll
‘ . flexible environment for automated reasoning. J
i
|
i
i
-
S
— el naiemas e e, 4
I_ ACCNSI lu-1 '.ﬂ
W1 GPel ,
DTS T1B m
Unanreunted]
Junstification . ______
—— ——
By
‘ | Do Lr“s tlon/
. -1
Availability Codes
- I Aveil andfor
. Gpr

: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
. . ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo 667 April 1982
Reasoning Utility Package
User’s Manual
Version One

David Allen McAllester

. e .+ e

Abstract: (RUP (Reasoning Ultility Packagce) is a collection of procedures for performing various
. computations rclevant to automated reasoning. RUP contains a truth maintenance system (1'MS) which can
‘ be used to perform simple propositional deduction (unit clause resolution), to record justifications, to' track
down undecrlying assumptions, and to perform incremental modifications when premises are changed. This
‘I'MS can be used with an automatic premise controller which automatically retracts "assumptions™ before
*solid facts” when contradictions arise and searches for the most solid proof of an asscrtion. RUP also
contains a procedure for efficiently computing all the relevant consequences of any set of cqualitics between
. ground terms. A related utility computes "substitution simplifications” of terms under an arbitrary sct of
h unquantificd cqualities and a user defined simplicity order. RUP also contains demon writing macros which
! allow onc to write PLLANNER like demons that trigger on various types of cvents in the data basc. Finally
there is a utility for reasoning about partial orders and arbitrary transitive relations. In writing all of these
utilitics an attempt has been made to provide a maximally flexible environment for automated rcasoning.

-

N

Keywords: Reasoning Utility Package, Theorem Proving, Automated Deduction, Truth Maintenance,
Backtracking, Dependencies, Assumptions, Congruence Closures, Demonic Invocation, Transiti-. - Relations,
Term Simplification.

This report describes work done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence rescarch is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office of Naval Rescarch contract
N00014-75-C-0643 and in part by National Science Foundation Grant MCS77-04828.

' Acknowledgments: There arc many people who have contributed to the current RUP environment by
' making helpful suggestions and criticisms. 1 would cspecially like to thank Dan Brotsky, Ed Barton, Charles

Rich, Ken Forbus, William Long, Lowcll Hawkinson, and David Chapman for their criticisms and
experimentation in using RUP.

i e

2. Some Simple Scenarios

3. The Truth Maintenance System

4. The Equality System

S. The Top Level RUP Environment

7. Function and Variable Index

CONTENTS

-

1. Introduction

n N

3.1 Qucucs and Invariants .

3.2 Nodecs and Clauses
3.3 The TMS Invariants

3.4 Major TMS Functionscovemesennnnneenes

3.5 TMS Noticers

4.1 Terms and INCMING ...c.cviiesenessensontsenssnessesessens

4.2 Equalitics, Equivalence Classes, and the Equality Invariants’

4.3 Simplification

5.1 Top Level Functions

5.2 Initialization

6. The Notice Macro

6.1 Crcating Intern Noticers
6.2 Naming Conventions for Noticer Functions

6.3 Events

o 39

6.4 List Variables

- 6.5 Some Uscful Macros

6.6 Currying

6.7 Redundancy and Completeness

6.8 Transitive Relations

10
13
18
19
19

24
27

37

42

o 42

45

8. Bibliography

e

2

- e —— e o

1. INTRODUCTION -1- ‘ April 1982

. INTRODUCTION

RUP (Reasoning Utility Package) is a collection of utilities relevant to automated rcasoning. RUP
contains a truth maintenance system (I'MS) which can be usced to perform simple propositional deduction
(unit clausc resolution), to record justifications, to track down underlying assumptions, and to perform
incremental modifications when premises are changed. RUP also provides a fast system for performing
deductions concerning cqualitics. The equality system contains routines which “intern™ expressions, ‘This
system also performs all deductions which can be madc purcly via substitution of cquals for equals and can
simplify terms under a large class of simplicity orderings. RUP also contains mechanisms for writing
PLLANNER-like demons. ‘Ihe demons created via this package can be compiled as ordinary lisp functions in
which the pattern matching mechanism is open coded into the definition of cach such demonic function.

In designing the RUP environment an attempt has been made to maximize the flexibility of the utilities
and allow them to interact cffectively with user defined systems. Thus there are many "hooks” which allow
the user to modify RUP in different ways. For example hooks are provided for installing user defined
backtracking functions and user defined pattern directed invocation mechanism. There is also a general
control mcthudolngy adopted in RUP which associates qucues with invariants. The demonic triggering
mechanisms provided by RUP allow the user to define his own qucucs and invariants and to maintain those
invariants by having forms qucucd demonically when an invariant is violated. RUP provides a simple data
basc in the form of interned cxpressions but users typically define their own data structures and define
invariants which associate their data structures with those provided by RUP.

This document describes the major functions in RUP and cxamples of their use. The description or each
function is prefaced by the name of the function in bold letters followed by the list of arguments taken by that
function. RUP is implemented in both LISP Machine LISP and in MACLISP. There are two versions of the
TMS one which implements a semi-automatic certainty based premise controller and one which lcaves
premise control entirely to the user. One can load RUP into 1LISP by loading whichever of the following files
is appropriate (the files reside on MIT-AJ):

ALRUP;RUP > LISP machine RUP without premise controller
AL:RUP;RUPP > LISP machine RUP with scmi-automatic premise control
AL:RUP;MRUP > MACLISP RUP without premise controller
ALRUP;MRUPP > MACLISP RUP with semi-automatic premise control

The LISP machine versions loads into the package RUP and all symbols in this manual which do not
have an explicit package prefix reside in the RUP package. In the MACLISP version package prefixes are
simply interpreted as part of the character name.

e —— o —————— s - o0 =2 oo,

2. SIMPLE SCENARIOS -2- April 1982 AN

2. SOME SIMPLE SCENARIOS

This section is intended for first time users who want to use RUP in the most straightforward manner
possible. A serics of scenarios is presented each of which is intended to demonstrate some feature of the top
Jevel RUP environment. The reader should be cautioned against just reading these scenarios and not reading
the remainder of the manual. There arc many utilitics which arc not demonstrated in these scenarios.
Farthermore the scenarios emphasize the use of RUP as a programming language and Icave out the important
view of RUP as a utility package.

The first scenario demonstrated the simple propositional reasoning facilitics and the explanation
generation mechanisms.

The sccond scenario demonstrates how the simple propositional deduction mechanisms can be extended
with a refutation mechanism invoked by the top level function try-to-show while the third scenario shows the

Scenario 1.

(assert *(:-> p q))
(;;;ert (:=> q 1))
(assort 'p)

(why *r)

"R IS :TRUE FROM:"

"1.Q IS :TRUE"
"2 (:-> Q R) IS :TRUE"

(why 1)

"Q 1S :TRUE FROM:"

"1 P IS :TRUE"

"2 (:-> P Q) IS :TRUE"

(why 1)
"P IS :TRUE AS A PREMISE"

(why 0)

"Q IS :TRUE FROM:"

"1 P IS :TRUE"

"2 (:-> P Q) IS :TRUE"

(why 0)

"R IS :TRUE FROM:"

"1 Q IS :TRUE"

"2 (:=> Q R) 1S :TRUE"

(why 2)
“(:=» Q R} IS :TRUE AS A PREMISE"

st

| bty

PO N e TR

Py

2. SIMPLE SCENARIOS .3- April 1982

substitution capabilitics of the system.

‘The final scenario demonstrates the usc of simple demons. Of course demons are not normally defined
by typing them into the top level RUP environment. Each pattern directed demon has a trigger pattern, a
triggering condition keyword (such as :intern) and a queue on which the invocation of the body is placed
when the triggering occurs. The symbol *hasic-queuces® is bound to a list of qucucs which are cmptied by
certain top level functions such as assert and why. The body of a demon may be any list of LISP expressions.
The macro lconst constructs clauscs in the TMS corresponding to the asscrtions it is given. Constructing a
clausce in the 'TMS is different from asserting an implication: specifically clauscs never appear in cxplanations
while asserted implications do.

Scenario 2.

(assert '(:-> p r))
(;;;ort ‘(:-> q r)) \

(assert '(:or p q))
(why 'r)
"] DON'T KNOW WHETHER OR NOT R IS :TRUE"

(try-to-show 'r)

(why 'r)

"R IS :TRUE FROM:"

"1 (:-> P R) 1S :TRUE"
"2 (:-> Q R) IS :TRUE"
"3 (:OR P Q) IS :TRUE"

Scenario 3.

(assert ‘(= (f a b) a))

(why '(= (f (f a b) b) a))
"(= (F (F A B) B) A) IS :TRUE FROM:"
"1 (= (F A B) A) IS :TRUE"

\ i b et s e s o

2. THETMS 4. ’ April 1982 ‘

Scenario 4.

(setq *user-queue*® (make-fifo))
(;;;q *basic-queues® (append ®*basic-queues® (1ist ®user-queue*)))

(;;;16! (intern (dog ?x)) *user-queus®
(1const (:-> (dog ?x) (mammal ?x))))

(;;;ico (intern (hawk ?x)) *user-queue*®
(1const (:-> (hawk ?x) (bird ?x))))

(;;;ico (intern (mammal ?x)) *user-queue®*
(Yconst (:not (:and (mammal ?x) (bird 7x)))))

(assert '(dog fido))

(why ‘'(hawk fido))
"(HAWK FIDO) IS :FALSE FROM:"
“1 (BIRD FIDO) IS :FALSE"

(why 1)
"(BIRD FIDO) IS :FALSE FROM:"
"1 (MAMMAL FIDO) IS :TRUE"

(why 1)
*(MAMMAL FIDO) IS :TRUE FROM:"
"1 (DOG FIDO) I$:TRUE"

(why 1)
*(00G FIDO) IS :TRUE AS A PREMISE"

——

t
{ — N

© e st + |t i % o = e

3. THE'TMS April 1982

3. THE TRUTH MAINTENANCE SYSTEM

A truth maintenance system is a utility which operates on an assertional data base (a collection of TMS
nodes) and has at lcast the following four properties:

1) It can perform some form of propositional deduction from propositional premiscs
(propositional deduction docs not involve quantification).

2) It records justifications for deduced assertions and can generate cxplanations for those
assertions.

3) It can incrementally retract deduciions when premises are retracted so that all "true”
asscrtions in the data basc arc cither premises or follow logically from the premises.

4) ltcan perform "dependency dirceted backtracking™. That it to say that when a contradiction
ariscs it can use the rccorded justifications to track down the premises underlying that
contradiction. Furthermore when one of these premiscs is retracted it can use the contradiction
to deduce the negation of the retracted premise.

This scction describes the functionality of RUP's TMS in detail. The first part of this scction describes
the association between queucs and invariants which is used in much of RUP. The second part describes the
two basic data structures used in the TMS. The third describes the basic TMS invariants which form the major
specifications for the functionality of the TMS. The fourth part describes the maior functions defined in the
TMS. The fifth part describes TMS demons.

3.1. Qucues and Invariants

Much of RUP is specified by stating invariants which should hold in the RUP environment. Several of
1+~ -¢ invariants arc associated with queues, such that for each violation of the invariant there is some entry on
the queue that can be used to correct that violation. Thus when a queuc has been emptied the invariant
associated with that queuc must hold. For example there is a TMS invariant which says that for each
contradiction in the TMS there is an entry on the queue *backtracking-invariant®. While there are many
TMS invariants, the only user visible queue associated with thesc invariants is *backtracking-invariant®,
(There are other user visible qucues which are associated with other RUP invariants.) The basic primitives for
constructing and manipulating alt RUP queues are described here.

3. THE TMS ' -6- April 1982

make-fifo ()

‘This function returns a new first in first out qucue.

fifo-push (itcin queue)

! This function pushes an item oa a fifo queue. Each item on a queue must be a list of a
function followed by a list of arguments. Thus a particular qucue cntry item can be "run™ by

cvaluating:

(apply (car item) (cdr item))

fifo-empty? (queuc)

"Thus predicate is non-nil just in case the given queue is not empty.

run-queucs (qucue-list)

This function takes a list of qucucs and emptics them by "running” the items on the
qucucs. This function itérativcly takes the next item of the first non-cmpty gqueue in the given

list of qucues and runs that item. Note that in running one item more items may be queued.)
f Thus a qucuc which was cmpty at one iteration may not be empiy on the next iteration. On each
iteration this function takes the first item off the fifst non-empty qucue. The function terminates

when all qucucs are empty.

‘The order of the queucs in the given list of queues imposes a “priority™ on the queues.
i lItems on the second qucue will only be run in environments in which the first qucue is empty.
Thus if there is some invariant associated with the first queue items on the second queue will

only be run in an environment in which that invariant is in force.

*hasic-queucs® variable

This variable is bound to a list of queucs and can be passed as an argument to

multi-fifo-empty. The default valuc of this variable is:
(list *cquality-invariants® *rup-top-level®* *hacktracking-invariant®)

‘The variables *equality-invariants®, *rup-top-level®, and *backtracking-invariant* are all

set o queuss in the default RUP environment.

© 3. THE TMS -7- ' April 1982

3.2. Nodes and Clauses

There are two basic data structures used in the TMS: TMS-nodes and clauses.

3.2.1 TMS NODES

TMS-node structure

(defstruct (tms-node (:type :named-array))
assertion
(truth °:unknown)
support
true-noticers
false~noticers
change-noticers
neg-clauses
pos-clauses
default
default-cert
certainty
(node-plist (ncons nil))
(node-extension (funcall *make-node-extension®)))

The slots of uns-nodes is described below:

assertion A ums-node is intended to represent a proposition or assertion of some form. The
assertion slot is not used by the TMS directly but is intended to hold the name of the assertion.
In RUP the assertion slot holds the term whose print name is the name of the assertion. Terms
are described in the section on the equality system,

truth This slot always contains one of the atoms :unknown, :true and :false.

support This slot is cither nil or contains a clause which is the justification for the truth of this
node. Only nodes whose truth is either :true or :false have non-nil support slots. This slot is
described in more detail in the section on TMS invariants.

true-noticers, false-noticers, and change-noticers These slots contain demons which are queved
when certain events occur in the TMS. These slots are described in more detail in the section on

tms noticers,

neg-clauses For any TMS nodc n the neg-clauses of n is a list of all those clauses ¢ such that the
pair (n . :false) is a member of the clause-list of c. (See the description of clauses.)

pos-clauses For any TMS node n the pos-clauses of n is a list of all those clauses ¢ such that the
pair (n. :true) is a member of the clause-list of ¢. (See the description of clauses.)

A

3. THETMS -8 April 1982

default This slot is only used in the TMS with the scmi-automatic premise controller. This slot
is cither nil or contains a default truth value which is cither :true or :false. This slot is described
in more detail in the scction on TMS invariants.

default-cert This slot is only used in the TMS with the semi-automatic premisc controller. If the
default slot is non-nil then this slot contains an intcger between the valucs of the special
variables *min-cert® and *max-cert* inclusive. This slot is discussed further in the section on

TMS invariants,

certainty This slot is only used in the TMS with the semi-automatic premise controller. If the
truth of the node is not :unknown then this slot contains the minimum certainty of the premises
which underly the truth of the node.

node-plist This slot contains a discmbodicd property list (LISP Machine manual pp. 71-72) and
is initialized to (ncons nil). This allows the user to define propertics which are not already
structure slots. A new “slot” for TMS nodes can be defined as follows:

(defmacro new-slot (node)
‘(get (node-plist ,node) 'new-slot))

Since the node-plist slot is uscd internally in RUP it is important that the user not violate the

conventions for property lists in using this slot.

nodc-extension This slot is not used internally in RUP and is available for usc by the user. The
value of this slot is initialized to (funcall *make-node-cextension®) so that the user can control the
initial valuc. *make-node-extension® is initialized to a function which always returns nil. It is
intended that the user define his own structure which extends the node data structure’ and
initialized this slot to that structure which could be done as iollows:
(defstruct (node-extension)
2
oY)

(defun axtension-maker ()
(make-node-extension))

(setq *make-node-extension® (fsymeval ‘extension-maker))

R IR o

ke AR L . " e

3. THETMS -9- April 1982 2
/
]
} 3.2.2 CLAUSES ’g
‘ A clause is a data structure which represents a logical disjunction. A clause should be thought of as
‘, representing a constraint which says that at least onc of a particular collection of items must be true. The ‘
l details of this data structure arc described below. .
? ?
’ clause structure ;
: (defstruct (clause (:type :named-array))
clause-list
psat)
; clause-list This slot contains a list of pairs such that the car of cach pair is a tms-node and the
cdr of cach pair is cither the atom :true or the atom :false. A given pair is said to be true if the
truth of its car is the samc as its cdr. Similarly a pair is said to be false if the truth its car is the
opposite of its cdr. For example if the truth of a node # is :false then the pair (n. :false) is said)
to be truc while the pair (n. :true) is said to be false. Since the truth of a TMS nodc can be]
:unknown it can be the case that a given pair in the clause list is neither true or false. A clause
should be thought of as a disjunction which says that not all of the pairs in its clause-list can be
false. ‘
psat This slot always contains a number which is the number of pairs in the clause list which
arc not falsc. Any clause whose psat is 0 is called acontradiction. A clause whosc psat is 1 can be
uscd as a justification for assigning a truth valuc to the node waich is the car of the pair in the
clause-tist which is not false.
3.2.3 SOME CONVENIENT MACROS
The following macros are convenient for testing the truth of a node:
true? (node)
The form (true? node) macroexpands to (cq :truc (truth node)).
false? (node)
(false? node) = = (cq "false (truth node))
unknown? (node)
(unknown? node) = => (eq ':unknown (truth node)) h

iR et " A e A e e+ e e o

3. THE'TMS ~10- ' April 1982

3.3. The TMS Invariants

There are three groups of invariants concerning the TMS data structurcs which are maintained by the
‘I™MS. The first group of invariants, the justification invariants, cnsure that every deductions has a well
founded justification (i.e. that the deduction performed by the system is sound). The sccond group of
invariants, the deduction invariants, guarantce that deduction is closcd under a simple deduction rule (which
is equivalent to unit clause resolution). A final backtracking invariant can be used to ensure that the set of
premiscs in the system is "consistent” in that no contradiction can be deduced using the TMS’s deduction
muachinery. Some of the justification and deduction invariants only apply to the TMS with the semi-automatic
premisc controller. Only the backtracking invariant involves a user visible queue.

3.3.1 THE JUSTIFICATION INVARIANTS

Only nodes whose truth slot is either :true or :false can have non-null support slots and when such a
support slot is non-null it contains a clause which is the justification for the truth value of the supported node.
liach clause should be thought of as a disjunction (sce the above description of the clause data structure). The
basic idea behind justifications is that truth value of the justified node (the valuc of its truth slot) follows
logically from the justifying clause and the truth valucs of the other nodes in that clause. ARl clauses are
interpreted by the system as logical tautologics, thus while the truth values assigned to nodes can be retracted,
clauses cannot be removed. Similarly, in gencrating explanations the system will list assignments of truth
valucs 1o nodes but will not mention the cxistence of clauscs. 'The interpretation of clauses as tautologies is
described in more detail in [McAllester 80b). A 'I'™MS nodc whose truth is cither ‘true or :false (i.c. not
:unknown) but which docs not have any supporting clause (i.c. its support slot is nil) will be called a premise.

Local Support Invariant: This invariant states that the truth value which has been assigned to a
supported node n follows logically from the clause which is the support of n and the truth values
which have been assigned to the other nodes appcearing in the clause. Specifically let n be any
'TMS nodc whose truth is cither :true or :false and whosc support is not nil. The support of n
must contain a clause ¢ such that the psat of ¢ is 1 (there is exactly onc pair in the clausc list of ¢
which is not false) and such that the pair in ¢ which is not false contains n (the supported node).

Well Founded Support invariant: This invariant states that support trees are acyclic, i.e. that no
node is a support node of itself. Specifically ict n be any TMS node whosc truth is cither :true
or :false and whose support is some clause ¢. The nodes other than » which appear in the.clause
list of ¢ will be called the immediate support nodes of » (a premise has no immediate support
nodes). A node m will be called a support node of n if it is either an immediate support node of
n or it is an immediatc support node of some node which is a support node of n (thus the
support nodes of n are those nodes appearing in the support tree of 7). The premises which are

R SN

VS g s ow—

3. THE'TMS -11- April 1982

support nodcs of n will be called the support premises of n.

Certainty Justification Invariants: These are two invariants which apply only to the TMS with
the semi-automatic premise controller. To define the first certainty justification invariant let 2 be
any premise. ‘The truth of 7 must be the same as the defavlt of 1 (which must not be nil) and the
certainty of 7 must be the same as the default-certainty of »# (which must also not be nil). In
other words any premise must be a premise by virtuc of the fact that it has a default value and
the certainty of the premise is the default certainty. To define the sccond certiinty justification
invariant let 2 be any nodc whosc truth is either :true or :false and whosc support is some clause
¢. The certainty of n must be the minimum of the certainties of all of n's immediate support
nodes. This together with the well founded support invariant implics that the certainty of n is
the minimum of the certainties of all of the support premises of n.

3.3.2 THE DEDUCTION INVARIANTS

The TMS performs simple propositional deduction from clauses and the truth values which have been
assigned to nodes. ‘The deduction performed is not complete (i.c. there are valid deductions which are not
madc). However the deduction processing is incremental and is guaranteed to terminate in lincar time in the
ramber of clauscs in the system. The basic deduction invariant is that all deductions which can be made from
a single clause and assignments of truth valucs to nodcs have been made.

Main Deduction Invasiant: et ¢ be any clausc whose psat is 1 (any clause such that there is
only onc pair in its clausc list which is not falsc). Let p be the pair in ¢ which is not false and let
n be the node which is the car of p. The main deduction invariant is that the truth of n is the
samc as the cdr of p. If the truth of n was :unknown then the clause ¢ could be used to deduce
that # must be assigned the truth value which is associated with it in p. The main deduction
invariant says that all such deductions have becn made.

Delault Value Invariant: This invariant applies only to the TMS with the semi-automatic

premise controller. It ensures that any node which has a default truth value and which cannot
be proven to have the opposite of its default value does in fact take on its default value.
Spccifically let n be any node whosc default is not nil (i.e. any node with a default truth value).
The default value invariant is that the truth of n must be either :true or :false and that the
certainty of n must be at least as large as the default-cert of n (which must not be nil).
Furthermore if the truth of n equals the default of n and the certainty of n equals the default-cert
of n then the support of n must be nil (the node n must be a premise).

3. THE TMS ' -12- April1982

Deduction Certainty Invariant: This invariant applics only to the TMS with the scmi-automatic
premise controller, It says that each node is given the strongest (most certain) justification which
can be found via the propositional deduction mechanisms used by the TMS. Specifically let ¢ be

any clausc whose psat is 1, lct p be the pair in ¢ which is not false, and let 1 be the node which is
the car of p. The deduction certainty invariant is that the certainty of n is not smaller than the
minimum of the certaintics of the nodes in the false pairs of ¢. To better understand this
invariant consider the relationship between the clause ¢ and the node ». By the main deduction
invariant # must be assigned the truth valuc which is the cdr of p. Howcver the support of n
nced not be the clausc ¢. If ¢ is not the support of n then ¢ may provide an alternative method of
deducing the truth value of # (the only problem would e if using ¢ for the support of n would
introduce a circular justification violating the well founded support invariant). If the certainty of {
n were less than the certainty which would result from using ¢ as the support of n then ¢
provides a “stronger” argument for the truth valuc assigned # and the support for n could be
strengthencd by setting it to ¢ (it can be shown that such "strengthening” -.ever introduces
circularitics). ‘The deduction certainty invariant says that all such possible strengthenings have
been done.

3.3.3 THE BACKTRACKING INVARIANT

Any clause whose psat is 0 is called a contradiction. Since each clause is interpreted as a tautological
disjunction, if all pairs in a clausc ¢ are false then the truth valucs which have been assigned to the nodes in 1

thosc pairs are mutually contradictory.

The backtracking invariant: This invariant is that for each contradictory clause ¢ there is a list b

on the queuc *hacktracking-invariant® such that the car of b is the function which is the value of
the variable *backtracker®* and the cdr of bis a one element list containing ¢. Thus "running” b

is equivalent to cvaluating: (funcall *backtracker®).

*hacktracker® variable

hahhtsianiii S Al

The value of this variable is a backtracking function which is used to construct the item
placcd on the queue *hacktracking-invariant® when a contradiction arises. The defauilt value of
this variable is backtracker-default which is described below.

*bhacktracking-invariant® variable

The value of this variable is the queue associated with the backtracking invariant.

3. THE'TMS -13- April 1982

3..4. Major TMS Functions

‘This scction describes the TMS functions which might be of interest to the user. It also describes some

paramcters of the TMS which can be sct by the user.
add-clause (clausc-list)

The clause-list must be a list of pairs cach of which associates a TMS node with cither :true
or :false. This function crcates a clause with the given clause list and censurces all of the 'TMS
invariants by pcrforming whatever deductions the clause allows and by qucucing the
backtracking of any resulting contradictions.

node-add-clause (pos-nodes neg-nodes)

The pos-nodes and ncg-nodes arguments must both be lists of TMS nodcs. This function
first constructs a clause list by associating alt the nodes in pos-nodes with :true and all of the
nodes in neg-nodes with :false. It then adds a clause with this clause list by calling add-clause.

implies (nodes node)

A call to this function of the form (implies nodesnode) is cquivalent to
(node-add-clause (list node) nodes). It adds a clause which represents the assertion that if all of
the TMS nodes in the nodces argument are true then node should also be true.

contradictory (nodes)

A call to this function is cquivalent to (node-add-clause nil nodes). 1t adds a clause which
says that onc of the nodes must be false.

clause-cert (clause)

‘This function is only defined in the TMS with the premise controller. This function takes a
clause and returns the minimum certainty of the TMS nodes in the false pairs of that clause. The
justification certainty invariant says that the certainty of a supported node equals the clause-cert
of the support of that node.

make-premise (node truth-value)

This function is only defined in the TMS without the premise control mechanism. This
function forces the truth of the given node to be the given truth value which is required to be
cither :true or :false. If the given nodc was previously assigned the opposite value then

3. THE TMS -4 April 1982,

retraction is done before the new assignment is made. This function guarantees that all TMS
invariants arc maintained.

*nin-cert®, *max-cert® variables

These are variables which may be sct by the user. All certaintics must be between the
valucs of *min-cert® and *max-cert® inclusive. The default values of *min-cert® and *max-cert®
are 1 and 5 respectively.

sct-default (node value certainty)

This function is defined only in thc TMS with the premisc control mechanism. This
function scts the default of the given node to value and the default-cert of the given node to the
given certainty. This function guarantecs that all TMS invariants arc maintained by performing
whatever truth assignments, retraction, deduction, and backtrack qucucing that is necessary.,
Thus if the truth of the given node was unknown before the call then the truth of the giycn node
will be set to the given value (which must be :true or :false).

retract-premise (node)

This function is only defined in the TMS without the premise controlier. This function sets
the truth of the given node to :unknown and guarantces the maintenance of all TMS invariants,
{Maintcnance of the ‘nvariants requires a retraction phase in which all nodes which depended
on the retracted node are retracted and a deduction phase in which all nodes which were
retracted are checked to see if some alternative support is available. To avoid circular
dependencics it is important that the retraction phasc completes before the deduction phase
begins. To achicve this there is an internal queuc associated with the deduction invariants.)

remove-default (node)

This function is only defined in the TMS with the premise control mechanism. This
function scts both the default and the default-cert of the given node to nil and maintains all TMS
invariants. Thus the given node will not be a premise after this function exits.

view-node® variable

This variable is bound to a function which when applied to a TMS node returns a "name”
for that node, The default value for *view-node® is the function view-node-default which assumes
that the assertion of the node is a term (described in the section on the equality system) and
returns the expression which that term represents,

R oprs = o et o e

o

3. THETMS ' -15- April 1982

: 3 view-clause (clause)

This function returns an "image" of the clause list of the clausc in which cach node has
‘ been replaced by the “name” of the node as given by the valuc of *view-node®.

ncde-why (node)

‘This function gencrates an explination for the truth value assigned the node. If the truth of
. the given node is :unknown then a simple statement to that cffect is gencrated. If truth of the
j given node is :true or :false and its support is not nil then the gencrated cxplanation gives a
numbecred list of the immediately support nodes and their truths. The argumcent to node-why
; may be a number in which casc an cxplanation is gencrated for the support node corresponding
to that numbcr in the previous explanation. If the argument 0 is given then the explanation stack
is "popped"”. The following scenario demonstrates the usc of this function,

(setq *view-node®* °(lambda (node) (assertion node)))
(defun symbol-node (sym)
(let ((n (make-tms-node)))
(set sym n)
(setf (assertion n) sym)
sym))

I (symbol-node 'p)

i (é}ﬁbo1-nodo 'q)

(;iﬁbOI-nodo 1(:=> p Q)})
(implies (11st 1(:~> p Q)] p) @)
(ﬁiée-premiso J(:=> p q)| ':true)

) (ﬁako-promiso p ':true)

(node-why q)

"q is :true from”

"1 J(:=> p q)] is :true”
"2 p is :true”

t

(node-why 1)
"J(:=> p q)] 18 :true as a premise”

'
{
i
(node-why 0)
| "q 13 :true from"
"1 |(:-> p q)] 18 :true”
"2 p is :true”
t

(node-why 2)
"p i3 :true as a premise”

e s B e A P AN .ty L e e —

3. THETMS -16- ' April 1982 ¢

The node-why function allows the user to walk around the support tree of a node
investigating various support paths.

backtracker-default (clause)

This is the dcfault value of the variable *backtracker® which is used in constructing
backtracking forms to place on the qucuc *backtracking-invariant® (sce the scction on the
backtracking invariants). This function takes a clause and if the clause is not a contradiction it
docs nothing. Otherwise it first constructs a list of all the support premises of all the nodes in the
clausc (all of the premises underlying the contradiction). In the TMS with the semi-automatic
premise controller this list is then filtercd so that only thosc premiscs which have the lcast
certainty remain. One premise from the candidate premises is then chooses for retraction. If
there is only onc candidate premisce then this is the one choscn. If there is more than one
candidate premisc then the value of *premise-selector® is applied to the list of candidate
premises and the premisc returned is the one chosen for retraction. (The fact that the value of
premise-selector may be called even in the 'TMS with the premise controller is the reason for
calling this premise controller semi-automatic rather than automatic.) The premise chosen for
retraction is retracted and then the negation of that premise is deduced from the other premises
and the fact that the premises are mutually contradictory.

*premise-selector® variable

The value of this variable must be a function which takes a list of nodes and returns one of
them. This function is only called on lists of nodcs where the current truth valucs of the nodes in
that list are mutually contradictory. The dcfault value of *premise-selector® is
premise-sclector-default which typcs the list of nodcs at the terminal and asks the user to select
one.

premises (clause-list)

This function returns a list of all the nodes which are premises which cither appear directly
in falsc pairs in the clause-list or are support premiscs of a node in a false pair in clause-list. This
function can be applicd to the clause list of a contradiction to get the set of premiscs underlying
the contradiction or it can be applied the clause-list of the support of a node to get the set of
premiscs supporting that node.

reverse-truth (node contradiction) ‘H

This function can be used 10 write backtracking functions. The given contradiction must
be a clause whose psat is 0 (a contradiction) and the given node must be a premise underlying

R AN B

3. THE'TMS -17- April 1982

2 that contradiction. This function forccs truth of node to be sct to the opposite of the value it has
when the function is called. All TMS invariants arec maintained. Note that in the TMS with the

premise controller a call to reverse-truth normally results in the other nodes underlying the
contradiction being the premiscs supporting the reversed value of the given node and therefore
| the certainty of the node ends up being the minimum of the certainty of these premises.
I However if the given node has a default strength which is greater than the minimum strength of
! the other premises underlying this contradiction, a problem arises. Spccifically the default value
) invariant says that the certainty of a node with a default value can not be less than the default
| certainty. If such a problematic reversal is attempted it simply will not “stick” and the system
will cnd up in much the same state that it started in.

node-try-to-show (node valuc &optional refutation-queucs split-nodes (certainty *min-cert*))

This function uscs a refutation mechanism to extend the deductive power of the TMS. In
the TMS without the premise controller the given node must be a TMS node whose truth is
:unknown, In the TMS with the premise controller cither the truth of the given node must be
:unknown or the certainty of the node must be less than the given certainty. This function
attempts to prove from the premises atready in the TMS that the .g'ivcn node must be assigned
the 'givcn truth valuc. In the TMS with the premise controller this function attempts to prove
that the given node must be assigned the given value using only the premises of of certainty
greater than or cqual to the given certainty. Thus this function can be used to scarch for a
! stronger proof of a truth value assignment which is alrcady in force,

‘The function node-try-to-show works by assuming the ncgation of the thing to be proven
and scarching for a contradiction. It takes an optional list of refutation quecues which arc queues
to be empticd after the negation has been assumed. The assumption of the negation may trigger
' demons which are placed on queues. Running those demons may lead to the deduction of a

contradiction based on the assumption which would otherwise not have been found. The
function multi-fifo-empty is used to empty the queucs once the assumption has been made.

The function node-try-to-show also takes an optional list of split nodes. If split nodes are
provided then an attempt is made to prove that all assignments of truth values to the split nodes
imply the desired truth value and therefore that this value holds independent of the truth of the
split nodes. This is done by actually assigning all possible combinations of truth values to the
split nodes and for each such assignment using the refutation mechanism and the rqueues to try
to show that the negation of desired truth value leads to a contradiction.

The following scenario provides an example of the use of this function. The functions used
in this sccnario are defined elsewhere in this manual. For the following example it is important
to note that if there is a constraint in the TMS which says that either p or g must be true, and p is
made false, then ¢ will be deduced to be true. This is important when p is used as split node.

W o e e g P P R " T

3. THETMS . -18- April 1982 ’

(notice (:true (p ?x)) ‘somc-quouo‘
(1const (:=> (p 7x) (r ?x))))

(68iico (:true (g 7x)) °*some-queue®
(1const (:-> (q x) (r ?x))))

(;;;ort *(:or (p a) (q a)))

(why *(r a))
) “I DON'T KNOW WHETHER OR NOT (R A) IS :TRUE"

(node-try-to-show (virt-tms-node (term '(r a)))
‘a1t
(\i::.‘some-quouo‘)
(1ist (virt-tms-node (term ‘(p a)))))

"(RA) IS :TRUE FROM:"
*1 (:=> (P A) (R A)) IS :TRUE"
"2 (:-» (Q A) (R A)) IS :TRUE"

{

| (why *(r a))

[}

! "3 (:0R (P A) (R A)) IS :TRUE"

i 3.5. TMS Noticers

Each node has three noticer slots, true-noticers, false-noticers, and change-noticers, cach of which
contains a list of "noticers”. A noticer is a cons ccll whose car is a queue and whosc cdr contains an item to be
placcd on that qucue when the noticer "triggers”. Under certain conditions all of the noticers in a given i

} ; noticer slot will be triggered and the noticer slot will be set to nil. Thus a given noticer in a given slot will only
be triggered once. ‘I'rue noticers (the cells in the true-noticers slot) are triggered whenever the node becomes
true. False noticers are triggerca whenever the node becomes false and change noticers arc triggered
whencver any change is made cither 1o the truth or the certainty of the node. |

e

It is often desirable to have a certain demon run whencever a node becomes true rather than just the first
time that node becomes true. There is a straightforward way of doing this which is exemplificd by the
1llowing scenario. When the below function notice-problem is applied to a qucue and a node it first checks to
sce if the node is truc and if so it applics a special handler to that node. Independent of whether or not the
1 node is true howcver it places a true noticer on the node using the given queue. This noticer is such that if the
node is ever sct to truce in the future then this function will be called again with the same arguments.

(defun notice-problem (queue problem-node)
(if (eq ':true (truth probiem-node))
(problem-handler problem-node))
(push (cons queue (1ist 'notice-problem queus problem-node))
(true-noticers problem-node)))

(ﬁ&iico«problom *some-queue® n)

i R AP O

.

4. THE EQUALITY SYSTEM 19 ' April 1982

4. THE EQUALITY SYSTEM

‘The cquality system is a collection of utilitics for handling the substitution of equals, for cquals. The
description of the cquality system given herc is divided into three parts. The first describyes terms and the
interning of terms. ‘I'erms are analogous to a LISP atoms in that they are interned so that. one can guarantee
that there are no two distinct terms with the same print name. Unlike LISP atoms however terins can be
cither atomic or can contain subterms which can be substituted for in the equality system. The second part of
this scction describes the cquality and equivalence class data structures and the c.juality invariants which
specify the substitution computations. The final part of this section describes simplification utilities which
altow the uscr to define a somewhat arbitrary simplicity order on terms and then computes the simplest term
which can be equated with any given term via the substitution of equals for cquals.

4.1. Terms and Interning

Terms arc defined as follows:

(defstruct (term (:type :named-array))
(term-hash (hash-count))
subterms
parents
eqs
next-canonical
eq-next-canonical-eqs
class-data
term-tms-node
user-referenced?
(term-plist (ncons nil))
(term-extension (funcall *make-term-extension®)))

The various slots of this data structure are described below.

term-hash This is an integer which is unique to this term. This integer is used as a hash value
for the term.

subterms This stot holds two basically different kinds of information depending on the kind of
term involved. If the term is a composite term then this siot holds a list of the subterms of the
term (a list of term data structures). For example a term whose print name is (f a b) would have
subterms whose print names are f, a, and b respectively. If the term is "atomic” then it has no
subterms and the subterms slot contains the print name of the term. There are three different
kinds of atomic terms. First of all there are symbols whose subterms slot is simply a LISP
symbol. Second there are numbers whose subterm slot is a LISP number. Finally ﬂ{erc are
quotations whose subterms slot contains a LISP cxpression whose car is the symbol quote.
Numbers and quotations are self-referential terms. This means that these terms are interpreted
as denoting themselves, Specifically the term whose print name is the number 1 is taken to

4. THE KQUALITY SYSTEM April 1982

denote the number 1 and the term whose print name is the expression (quote (f a)) is taken to ‘

X denote the expression (fs: Sclf referential terms play an important role in the cquality
invariants.

| parents This slot contains a list of all those terms which contain this term as an immediate
subterm (i.c. all those terms which contain this term in their subterms slot). ‘This is used in the
equality algorithms described in the next part of this section.

egs This is a list of all the cquality data structures which cquate this term with some other term.
‘This slot is maintained by the function make-eq described clsewhere.

) next-cancnical ‘This slot is cither nil or contains a "more canonical” term. The function e
described below takes a term t and returns its "canonicalization” which is t if the next-canonical
of t is nil and otherwise it is the canonicalization of the next-canonical of . Two terms are

cquivalent just in case they have the same canonicalization.

cq-next-canonical-eqs The eg-next-canonical of a term t is not nil just in casc the next-canonical
of tis not nil in which case the eg-next-canonical-egs of t contains a list of cquality data
structures which together imply that tis cqual to the next-canonical of t.

class-data The class-data sfot of a term ¢ is not ail whenever there is some term s whose
next-canonical is t. If the class-data of a term tis not nil then it is a class-data data structure
which dcscribes the set of terms whose next-canonical is . The class-data data structure is
described in section 3.2.

term-tms-node This slot is cither nil or contains a TMS node representing this term. 1f 2, TMS
node is present then the term represents an asscrtion. The function virt-tms-node described

below takes a term and always returns a TMS node representing that term. For the equality
invariants to be maintained it is important that all TMS nodes representing terms be created via
virt-tms-node.

user-referenced? This slot is a flag which is non-nil just in case this term has been returned as a
valuc of the function term or the function term-hashcons. This is necded because the equality
system creates internal terms via the substitution of equals for equals and it is not desirable to
run demons on these terms. Specifically the value of the variable *new-term* (described
clsewhere) is only applied to terms which are returned from term or term-hashcons.

term-plist This slot is perfectly analogous to the node-plist slot

term-extension This is perfectly analogous to the node-extension slot of TMS nodes.

4. THE EQUALITY SY.S'I‘ EM -21- ;\pril 1982

The following functions and variables are relevant to terins and interning,

virt-tins-node (term)

This function rcturns a TMS node that has been associated with the term. In order to
maintain certain TMS-Equality interface invariants it is important that this be the only way in

which the term-tms-node slot of terms is set.
i atomic? (term)

! This predicate is true of a term just in case the term is a symbol, a number, or a quot..tion,

self-referential? (term)

This predicate is true of a term just in case the term is a number or a quotation.

term-tree (term)

This function rcturns the print name of the term. Curricd functions are treated specially
(the print form is uncurried) as is described in the section on curried functions.

term (cxpression)

This is the basic function for interning cxpressions as teins. The expression argument can
cither be a number, a symbol, a term, or an arbitrary expression built out of numbers symbols
and terms. If the cxpression is a term then the expression is simply returned. The expression is
! said to be atomic if it is a number or a symbol or the car of the expression is the symbol quote. If
‘ the expression is not atomic then this function first recursively computes the list of subterms
which is the value of (mapcar’term cxpression). It then returns the result of applying
term-hashcons (described below) to this list of subterms. If the expression is atomic then if there
is already a term whosc print name is the expression then that term is returned. If there is not
already such a term then one is created and returned. The value of the variable *new-term® is
appliced to all terms created in this way. This function maintains all of the equality invariants

described later.

term-hashcons (subterms)

e ———— . ot . = e

~ This function takes a list of subterms and returns a term corresponding to that list of
" - . ‘subterms. This function first applies the value of the variable *intern-canonicalize* (described
l’ befow) to the list of subterms. The value of *intern-canonicalize® must be a function which

’

N ———

¢ —————t e 2 1
i e A e e . o e

4. THE FQUALITY SYSTEM -22- April 1982

returns either a term or a list of subterms. Ifa term is returned then that term is simply returned
from term-hashcons. If a list of subterms is returned then this function looks for an akcady
cxisting term which has this list of subterms in its subterms slot (a hash table is used here for
cfficiency). 1 such a term exists it is returned. If no such tcrm exists onc is created and returned.
The valuc of the variable *new-term® is applied to all terms created in this way. This function

maintains all cquality invariants.
*ntern-canonicalize® variable

‘This variable must be bound to a function which takes a list of terms and returns cither a
term or a list of terms. ‘This is used to map different expressions for the same thing into identical
term structures directly in the interning process. For example if a function f is known a-priori to
be an a commutative function then the expression (fa b) must denote the same thing as the
expression (f b a). The default value of *intern-canonicalize® is intern-canonicalize-default which

is described below.
intern-canonicalize-default (subterms)

Terms rcprcscnting'ﬂmctions of two arguments can be marked as being cither associative,
commutative, or hath (scc the macros asseciative? and commutative? defined below). For
example the term whose print name is + is marked as both associative and commutative. The
function intern-canonicalize-default takes a list" of subterms the first of which is a term
representing an operator (function or predicate). 1f the operator term is not marked as being
cither associative or commutative then the list of subterms is simply returned by
intern-canonicalize-default. If the operator term is marked as associative then the argument
subterms are scarched for an application of that same operator and if one is found the
argumecnts in that application are promoted to top level arguments. For example if f is marked as
an associative operator then (fa (fbc)) is converted to (fabc). Since fis binary (only binary
functions should be marked as associative or commutative) the term (fa b ¢) is interpreted by
comention as (f(fab) ¢). After the promotion of "internal” arguments for associative operators
this function checks to sce if the operator is marked as commutative. If so then the arguments
are sorted by their term-hash slots. Finally the resulting list of subterms (including the operator
term) is returned from intern-canonicalize-default.

oy

4. THE EQUALITY SYSTEM -23- ‘ April 1982

associative? (op-term)

This is a macro which expands as follows:

{associative? op-term) = =D (get (term-plist op-term) "associative?)
To mark an operator term as associative one simply cvaluates:
(sctf (associative? op-term) t)

commutative? (op-tcrm)

‘This macro is just like associative?.
*new-term® variable

The valuc of this variable must be a function which is applied cxactly once to cvery term
which is ever returned from term or term-hashcons. The default value of this variable is
new-term-default. IFor the symbols =, +>, and, or, ctc. to be given the proper interpretations in
the top level RUP cnvironment the function new-term-default should be called on all terms
returned from term-hashcons. Thus any function which the user assigns to *new-term should
call new-term-default on its argument if the standard interpretation of the above symbols is
desired.

new-term-default (new-term)

This is the default value of the variable *new-term®. The function new-term-default queues
applications of hashcons noticers. Hashcons noticers are functions which are associated with an
operator term and a qucue. When new-term-default is applicd to a term u it checks the first
subterm of u (u's operator) to sce if there are any hashcons noticers associated with that operator
(if the given ncw-term is atomic then new-term-default does nothing). For each such noticer an
application of that noticer to u is placed on the quecue associated with the noticer. Noticers are
stored on the hashcons-noticer property of operator terms. Whenever new-term-default is
applicd to a non-atomic term u the term u is added to the applications property of the operator
of u.

4. THE EQUALITY SYSTEM “A- April 1982

add-hashcons-noticer (op-term noticer queue)

‘This function associates the given noticer (which must be a function of one argument) with
the given op-term and the given queue. This function queucs applications of the given noticer to
all currently cxisting applications of the given op-term.

h: shcons-noticers (op-term)
This is a macro which cxpands as follows:
(hashcons-noticers op-term) = => (get (icrm-plist op-term) "hashcons-noticers)
applications
This is a macro which expands as follows:

(applications op-term) = =) (get (tcrm-plist op-tcrm) "applications)

4.2. Fqualities. Equivalence Classes, and the Equality Invariants

The cquality system maintains a congruence relation on terms. The following function can be used to
determine whether or not two terms arce congrucent under this relation.

¢ (tcrm)

This function is defincd as follows;

(defun e (term)
(if (next-canonical term)
(e (next-canonical term))
term))

Two terms are congruent just in case they have the same image under e.

The following defincs one of the basic data types in the equality system.

(defstruct (equality (:type :named-srray))
terml
term2
dependents
eq-node)

"The slats of the cquality data structure are described below.,

terml, terma2 These slots contain the terms equated by the equality.

.

4. THE EQUALITY SYSTEM -25- April 1982 !

dependents This slot contains the list of all terms which contain the cquality in their
ey-next-canonical-egs slot.

i eq-node This slot holds the tms nodc which represents the equality.

; ‘The cquality system is driven by changes in the truth values of the TMS nodes associated with cqualitics.
? ‘Therefore the only interesting top level functions for the equality system are for querying the data structures
{ involved.
i

'i ‘ make-eq (terml term2 tms-node)

This function should be uscd uniformly instcad of the make-equality macro constructed by
defstruct, This function creates an cquality data structure and sets the terml, term2, and cq-node
slots of that structure to the arguments provided. It also updates the egs slot of both terms,
Finally it places a change noticer on the given tms-node which will are necded to cnsure the
cquality invariants.

true-¢q? (cquality)

This macro expands as follows:

(true-cq? equality) = => (cq ":true (truth (cqg-node cquality)))

cquated-support (tcrm] term?2)

i If term] and term2 are not in the same equivalence class then this function returns nil, If
' terml and term2 arc in the same cquivalence class then this function returns a list of TMS nodes
i _ which represent equalitics implying the cquivalence of term1 and term2.

same-image? (terml term?2)

. This predicate is non-nil just in case terml and term2 have the same number of subterms
and those subterms are equivalent in pairs. .

class-members (term)

This function returns a list of all terms which are congruent to the given term (all interned
terms that is).

4. THE EQUALITY SYSTEM

equivalents (term)

This function returns a list of terms in the equivalence class of term such that no two terms
in that class have the same image (i.c. their subterms are equivalent in pairs). Thus the list of
terms rcturned is the set of "independent” terms cquivalent to term,

A term u is said to point fo a term t just in case either t is the next-canonical of u or in casc the
next-canonical of u points to t. A class-data data structure ¢ is always containcd in the class-data slot of
cxactly one term t called the owner of c. If ¢ is the class-data of t then ¢ describes the st of terms which point
to t. This data structurc is defincd as follows:

(defstruct (class-data)
members
member-referents

(stze 1)
(class-plist (ncons nil)))

The slots of these structures have the following functions:

members The members slot of ¢ is a list of terms whose next-canonical is the owning term t of c.
Notc that this is a subsct of all the terms which point to ¢,

member-referents The member-referents slot of ¢ contains a list of all scl” referential terms
which point to the owner of c.

size 'The size of ¢ is onc plus the number of terms which point to the owner of ¢.

class-plist This slot is analogous to the node-plist slot of TMS nodes and the term-plist slot of
tcrms.

The following are the Equality Invariants. These invariants are associated with the queue
*cquality-invariants® and are only guaranteed in environments in which this qucue has been emptied.

Fquality Justification Invariant: For any term t with a non-null next-canonical slot the set of
equalitics in the eq-next-canonical-egs slot of t are all truc equalitics (the truth of their cq-nodes
is :true) and this set of equalitics implies that the u is equal to the next-canonical of u.

Congruence Deduction Invariant: For any term t Ict subterm-image(t) be the term which results
from replacing each subterm u of t by e(u) (if t is atomic then subterm-image(t) is just t). The
congruence invariant is that for every term t, subterm-image(t) is an interned term which is in
the equivalence class of t. This invariant implies that any two terms whose subterms are
cquivalent in pairs are themsclves equivalent. It also implies that any two terms which can be

shown equivalent via the substitution of equals for equals are in fact equivalent. For efficiency #

[P]

4. THE EQUALITY SYSTEM -27- April 1982

. rcasons this invariant is not maintained on terms which are applications of =, or, ->, and, not,
and iff. Instcad the TMS can be used in conjunction with refutation to show any derivable
logical cquivalences between these terms.

True Fquality Deduction Invariant: The terms of any true cquality are both in the same
cquivalence class.

Derived Equality Deduction Invariant: Let ¢ be any equality such that the terms of e are both in
the same cquivalence class. There is a clause in the 'TMS which statcs that some sct of true f
cqualitics imply c. Thus if ¢ is :false there is a contradiction in the 'TMS, and if ¢ is not :false it

| must be :true (as opposcd to unknown). :

Asscrtional Term Invariant: Lt t be any assertional term (a term with a term-tms-node). If t has
[a next-canonical then the next-canonical of t is also an asscrtional term and there are clauses in
| thc TMS which state that the cq-mext-canomical-egs of t imply the equivalence of the
term-tms-node of t and the term-tms-node of the next-canonical of t. This invariant cnsurcs that
any two assertional terms which are in the same cquivatence class arc constrained to be logically
cquivalent. 3

*oquate-state® variable

This variable is sct to a new value each time the congruence relation on terms is changed.

This is uscful for memoizing computations which depend on the congruence relations. A
memoized value is valid as long as *cquate-state® has the same value that it had when the
memoization was done.

4.3. Simplification

The functions described here allow the uscr to define a simplicity order on terms and then efficiently
simplify terms. Specifically let u be some term. The functions described compute a term which is at least as
| simple under the user defined order as any term which can be equated with u via the substitution of equals for
cquals based on the premise equalities. For example suppose one has the function symbol + which is to be
interpreted as standard addition over the integers and consider a term of the form (+ (+ x y) 2). If this term
could with a term composed cntirely of numerals and the function symbol + then that term could be i
"evaluated” to yield a numeral equivalent to the original term. The problem of finding an expression for a '
i given term in terms of some subset of “allowed” terms can be solved by defining a simplicity order in which
terms containing only allowed symbols are simpler than terms containing symbols which are not allowed.

A simplicity order is defined by setting the following three variables to appropriate functions,

. oo S . - b A—— - AARPAYS A

4. THE EQUALITY SYSTEM -28- April 1982

*atomic-level® variable bound to function with argument list: (atomic-term)

This variable must be bound to a function which takes an atomic term and rcturns a

“level”. Levels can be any data structures so long as they are consistent with the values of the
] next two variables. ‘The default value of this function is atomic-level-default described below.
‘The default levels are integers.

*subterm-level® variable bound to function with argument list: (subterm-levels)

This variable must be bound to a function which takes a list of levels and returns a level
which is the level of any term whosc subterms have the corresponding levels. The default value

! of this variable is subterm-level-default which simply computes the maximum of the subterm
levels.

*smaller? (levell level2)

‘This variable must be bound to a predicate which takes two levels and returns a non-nil
valuc just in casc the first level is "smaller” (i.c. simplcr) than & second. The default value of
this function is the lisp less than function €.

The termination and correctness of the simplification procedures depend on some assumptions about !

the simplicity order. These assumptions are as follows:

Well Foundedness Assumption: There can be no infinitely decreasing chains of levels.

Monotonicity Assumption: 1l.ct s and t be any two terms with the same number of subterms
such that & is simpler than t (has a smaller level). There must be some pair of corresponding
subterms s’ and t' of s and t respectively such that s* is simpier that t. In other words the
function bound to *subterm-level must be non-decreasing in cach sublevel argument.

Subterm Simplicity Assumption: No term can be simpler than a term it contains as a subterm.

Pscudo Total Order Assumption Let I} and 1, be any two levels such that 1, is less than ly. No
third level I3 can be unrelated to both 1) and 1, (i.e. 13 must be cither smaller or greater than |
cither 'l or 12).

new-simplification-state ()

This function of no arguments inust be called each time the user changes the simplification
} order.

4. THE EQUALITY SYSTEM -29- ' April 1982

atomic-level-default (atomic-term)

This function is the default value of *atomic-level®*. It takes an atomic term and returns a
non-negative integer. If the term has an atomic-level property then the value of this property is
returned. Otherwise the number returned is 0 for sclf referential terms.and 1000 for all other
atomic terms.

atomic-level-prop (term)
This is a macro with the following expansion property:
(atomic-level-prop term) = =) (get (term-plist term) “atomic-level)
Thus to sct the atomic level of a term one simply evaluates:
(setf (atomic-level-prop term) n)
However whencever this is done the function new-simplification-state should be calied.
shound (term)

This function takes a term and returns an expression which is the print name of a term (not
necessarily an interned term) which is at least as simple as any term which can be equated with
the argument via the substitution of cquals for equals using the premise cqualities.

>

S. RUP ENVIRONMENT -30- April 1982

5. THE TOP LEVEL RUP ENVIRONMENT

The top level RUP environment provides several convenient user level functions such as assert, retract,
and why cach of which takes expressions and converts them to assertional terms. Demons which trigger on the
creation of terms are uscd to provide automatic interpretations for the logical operators, =, :-), :aad, or, ‘net,
and :iff. ‘There is also a macro which converts logical constraints represented as a sentence of propositional
logic and converts it to an cquivalent set of applications of add-clause. There are alsc mechanisms for saving
partial RUP environments so that one can return to a known state during debugging.

5.1. Top Level Functions
assert (cxp &optional (certainty *max-cert®))

This function first computes the term whose print name is cxp and then calls virt-tms-node
to get a TMS node associated with this term. If the TMS without the premise controller is being
uscd then the function make-premise is called on the TMS node and the truth value :true. If the
TMS with the premise controller is being used then the function set-default is called on the
node, the truth value :true and thc the certainty argument to assert (notc that the default
certainty is *max-cert®). Finally this function applies multi-fifo-empty to the value of

*hasic-qucues®. i
retract (exp)

This function first finds the TMS node associated with the term whose print name is exp. It

then cither calls retract-premise or remove-default on that node depending on which TMS is
being used. This function applies multi-fifo-empty to the value of *basic-queues®. .

=-poticer (cg-term) noticer for = on qucue *equality-invariants®

This function is an intern noticer for applications of =. Since eq-term is an application of
= the sccond and third subterms of eq-term are the equated terms. The function virt-tms-node
is called to get a ‘TMS node representing eq-term and the function make-cquality is applied to
the cquated terms and the TMS node.

->neoticer (implication-term) noticer for :-> on qucue *rup-top-level®

This function is an intern noticer for applications of :->. This function adds clauses to the
TMS which ensure that the symbol > is interpreted as logical implication. For each
implication of the form (:-> p q) the following clauses are added: (each of the below clauses is
written as a list of disjuncts.

AT_ WL TN

5. RUP I'ZN\'IRONMENT -3t- April 1982
{(((:-> p q) . :false) (p . :false) (q . :true))
i ((p . :true) ((:-> p q) . :true))
{ ((a . :false) ((:-> p Q) . :true))

b These clausces relate three TMS nodes: the node representing an implication (> p q), the

:' node representing the antecedent p, and the node representing the conscquent q. The best way

to tiink about these clauses is that they force the 'I'MS to make all possible deductions
concerning these three nodes. For example if the implication and the antecedent arc true then
the conscquent will be deduced via the first of the above clauses. If the antecedent is true and -
the conscquent is false then that same clause is used to deduce that the implication must be

; falsc. If the antecedent is false then the second clause can be used to deduce that the

: implication, and so on.

not-noticer (ncgation-term) noticer for not on qucuc *rup-top-level®

This function is an intern noticer for applications of not. For each ncgation of the form
(:not p) the following clauscs arc added:

p) . :true) (p . :false))
p) . :false) (p . :true))

or-noticer (disjunction-term) noticer for or on queue *rup-top-level®

| This function is an intern noticer for applice_ltions of or. A disjunction term can have an
arbitrary number of disjuncts. For each disjunction of the form (:or p q ...) the following clauses

are added:
(((:or pg ...) . :false) (p . :true) (q . :true) ...)
(((:or pq ...) . :true) (p . :false))
! (((:or p g ...) . :true) (q . :false))

and-noticer (conjunction-term) noticer for and on qucue *rup-top-level®

’ For each conjunction of the form (:and p q ...) the following clauses are added:

oe) . ottrue) (p : :false) (q . :false) ...)
.o.) . :false) (p . :true))
...) . :false) (q . :true))

aaa
h-Jh -2 -]
D00

S. RUP ENVIRONMENT -32- ' April 1982

iff-noticer (log-eq-term) noticer for iff on queue *rup-top-level®

This function is an intcrn noticer for applications of iff. This function adds clauscs to the
TMS which constrain the truth of the TMS node associated with the logical equivalence term to
be the appropriate function of the truth values of the TMS nodes associated with the
equivalenced terms. For cach logical equivalence of the form (iff p @) the following clauses are
added:

(((:1ff p q) . :false) (p . :false) (q . :true))
(((:3fFf p q) . :false) (p . :true) (q . :false))
(((:1ff p q) . :true) (p . :true) (q . :true))

({(:iff p q) . :true) (p . :false) (q . :false))

why (exp) 4

If exp is a number then this function simply calls node-why on that number. Otherwise this
function gets the TMS node associated with the term whose print name is exp, then applies
multi-fifo-cmpty to *basic-queues, then calls node-why on that node. The following is a typical
top level RUP scenario.

(assert '(:-> p q))

(assart "(:-> g r))
(;;;ort 'p)

; (why °r)

‘ "R IS :TRUE FROM:"

"1 Q IS :TRUE®
"2 (:-> Q R) IS :TRUE"

(why 1)

"Q IS :TRUE FROM:"

“1 P IS :TRUE"

"2 (:=> P Q) 1S :TRUE"

(why 1)
"P IS :TRUE AS A PREMISE"

(why 0)

*Q IS :TRUE FROM:"

"1 P IS :TRUE"

"2 (:-> P Q) IS :TRUE"

(why 0)

"R 1S :TRUE FROM:"

"1 Q IS :TRUE"

"2 (:-> Q R) IS :TRUE"

(why 2)
“(:~> Q R) IS :TRUE AS A PREMISE"

S. RUP ENVIRONMENT -33- April 1982

try-to-show (cxp &optional rqueucs snodcs (certainty *min-cert®))
A call to this function is equivalent to:
(node-try-to-show (virt-tms-node (term cxp)) ':true rqueues snodes certainty)

‘The following scenario uscs this function.

(assert '(:-> p r))

(éééert ‘(:=> q r))

(;;;ert (:or p q))

(why *r)

"1 DON'T KNOW WHETHER OR NOT R IS TRUE"
(try-to-show 'r)

(why ‘r)

"R IS :TRUE FROM:"

"1 (:-> P R) IS :TRUE"

"2 (:-> Q R) IS :TRUE"
"3 (:OR P Q) IS :TRUE"

what-is (cxp)

This function is defined as follows:

(defun what-is (cxp)
{sbound (term exp)))

why-is (exp)

This function is defined as follows:

(defun why-1is (exp)
(why '(= .exp ,(sbound (term exp)))))

termq (exp)

This macro is very much like backquote in LISP. If cxp contains no "special" symbols
then this macro takes an expression and macroexpand to a form which will evaluate to the term
whose print name is that expression. Special symbols are those which start with either "?" or "I".
It is assumed that symbols starting with "?" will be bound to terms at eval time and that symbols
starting with "!" will be bound to lists of terms. The following are examples of macroexpansions
of this form:

5. RUP I-INVIRONMENT -4 April 1982
(termq (f 8)) =e> (term '(f a))
(termq (f 7a)) =w> (term-hashcons (1ist (term °'f) 7a))

(termq (g . largs)) ==> (term-hashcons (cons (term 'g) largs))
Iconst (exp)

This is a very uscful macro for adding clauses in the TMS. This macro takes a logical
expression and macrocxpands to a set of add-clauscs representing that expression. This macro

trcats symbols starting with *?" or "1" in much the same as docs termq. The following is a list of

sample macrocxpansions:

(1coast (:-> (:and pl p2 p3) r))

s=>(add-clause (1ist (cons (virt-tms-node (term ‘'pl)) ':false)
(cons (virt-tms-node (term °‘p2)) ':false)
(cons (virt-tms-node (term °'p3)) ':false)
(cons (virt-tms-node (term ‘r)) ':true)))

(Yconst (:-> (:and (forall (x) (:-> (p x) (q x)))
(p 73))
{qa 7a)))

==>(add-clause (11st (cons (virt-tms-node

(term '(fors11 (x) (:-> (p x) (g x))))
‘:false) :

(cons (virt-tms-node J
(term-hashcons (1ist (term ‘p) ?s)))
‘:false)

{cons (virt-tms-node . .
(term-hashcons (11st (term 'q) ?a))) 4
‘:true)))

(Vconst (:iff p q))

es>(progn
(add-clause (1ist (cons (virt-tms-node (term 'p)) ':false)
(cons (virt-tms-node (term 'q)) ':true)))
(add-clause (1ist (cons (virt-tms-node (term ‘p)) ‘:true)
(cons (virt-tms-node (term °‘g)) ‘:false))))

Note that (Iconst (:-> p q)) is different from (assert (:-> p q)) in that the former does not
create a term or a tms node representing (:-> p q) but instead simply installs a clause in the TMS,
while the latter creates a term and a TMS node representing (:-> p q) and then asserts that that
TMS node is true.

assertq, retractq. whyq, try-to-showq, what-isq, why-isq

Thesc macros are just like assert, retract, etc. except that they use termq to quote there +
arguments. Thus (assertq p) is just like (assert (termq p)).

5. RUP ENVIRONMENT -35- o April 1982

5.2. Initialization

When trying to debug code which interacts with the utilities in RUP it is casy to become confused about
i the current state of the RUP environment. It would be nice to be able to save the state of the RUP
cnvironment at some point and be able to rcturn to that state at some latter point. ‘This section describes some
features of RUP which approximate this behavior.

termeinit)

i This function of no arguments flushes all existing terms so that any tcrm which is
' subscquently returnced from either the function term or the function term-hashcons is a
completely new data structure. This has scrious ramifications for the RUP cavironment, It
means that there arc no longer any noticers attached to any accessible operator terms (since
those terms arc new structures and have no noticers attached). It means that the simplification
propertics attached to terms have been cffectively flushed, It means that the commutative and

associative properties of operator terms have been flushed.
nenm-init-forms variable

This variable is bound to a list of LISP cxpressions which get cvaluated when RUP is
initialized and thus the forms on this list determine the state of RUP which results from an
initialization. This is the mechanism provided by RUP for "saving” or "dcfining” RUP
cnvironments. The default value of *perm-init-forms* is a list of forms which restore the default
RUP environment. The forms in *perm-init-forms get evaluated in the reverse of the order in
which they appear. Thus the last thing pushed onto the list is the last thing cvaluated during
initialization. It is important that any forms which change the intern canonicalization process
are cvaluated before the interning of any term affected by that change. For example it is
important that the term for = be marked as commutative before any applications of that term

are interned.

*temp-init-forms® variable

e . e o At Ao o | it s~ = o+ o a

This variable is just like *perm-init-forms* except that its default value is nil. The intended
use of this variable is described in the below documentation of the functions fix-temps and
rup-init.

L ————

?

e

5. RUP ENVIRONMENT -36- April 1982

fix-temps ()

This function of no arguments is defined as follows:

(defun fix-temps (®
(setq *perm-init-forms* (append *temp-init-forms® *perm-init-forms®))
(setq *temp-init-forms* nil))

‘The basic philosophy behind this function is that as one devclops a RUP environment one
can push forms onto *temp-init-forms®* which will to some cxtent recreate the environment
being dcveloped. Then when one wishes to store that environment so that it will be
reconstructed after an initialization one calls the function fix-temps.

rup-init (&optional save-flag)

This function calls term-init, and evaluates the forms in *perm-init-forms® in the reverse of
the order in which they appcear on the list (i.c. the forms arc evaluated in the order in which they
were placed on the list). Finally if the save-flag arguinent is not nil it evaluates the forms on
*temp-init-forms® in reverse order. If the save flag is nil then it scts *temp-init-forms? to nil.

e g

{
'
i
!
)

6. THE NOTICK M/\Ci!O -37- ;\pril 1982

6. THE NOTICE MACRO

‘This scction describes a macro which is used to define demons which trigger on certain cvents in the

RUP cnvironment.
notice ((cveat pattern) queue &rest body-forms)

The notice macro defines demons which are queucd when certain events take place in the
RUP environment. The event argurnent must be one of several meaningful keywords and the
pattern argument is an expression which may contain “variables” which are symbols starting
with cither "?" or "1”. The queuc argument must be a form which evaluates to a qucuce and the
body-forms can be any lisp expressions to be cvaluated when the demon runs (i.c. they are the
body of the demon). The details of the notice macro are best described through examples.
Initially only the keyword :intern will be considered.

6.1. Creating Intern Noticers

When an application of notice is macroexpanded two function definitions are created by side cffect and
the notice form macrocxpands ‘to an application of add-hashcons-noticer. The function definitions must be

explicitly evaluated using the macro include-end-forms. Consider the following example:

(notice (:1intern (p ?7a)) ®user-queue®
(1const (-> (p ?a) (q ?a))))

(include-end-forms)
This macroexpands to:

(progn (add-hashcons-noticer (term ‘'p) '|(P TA)-UNIFIER| °®user-queue®)
(push '(add-hashcons-noticer (term 'p) '|(P ?A)-UNIFIER| *user-queue®)
*temp-init-forms®))

(progn ‘compile

(defun | (P ?A)-UNIFIER| (term)
(et ((args (cdr (subterms term))))
(1f args
(1et ((?a (car args)))
(if (null (cor args))
(1(P ?A)-80DY| 7a)}))))

(defun |(P ?A)-BODY| (7a)

(add-clause (1ist (cons (virt-tms-node
(term-hashcons (11st (term 'p) Ta)))
*:false)

(cons (virt-tms-node
(term-haghcons (11st (term 'q) Ta)))

":truo)))))

6. THENOTICEMACRO -38- April 1982

In the above cxpansion the notice form mz'zcroexpands into a progn which both installs a symbol as a
noticer and pushes a form onto *temp-init-forms* (*temp-init-forms® can be uscd to re-creatc a RUP
cnvironment during initialization as is described clsewhcere). Because the demons created by notice are
} implemented as intern noticers associated with operator terms it is important that the car of the pattern not
coatain variables to be bound during the triggering process. The form (include-cud-forms) macrocxpands into
‘ a list of function definitions. The first function defined in the above example takes the term and performs the

unification of the term and the pattern. The second function takes the bindings derived from this unification
'g and exccutes the body of the noticer. The need for two functions (as opposed to a single function which does
both unification and cxccutes the body) involves keywords other than :intern. The need for include-cnd-forms
| S should be clear from the following morc complex example involving embeddcd demons.

j (notice (:intern (function-from 7f ?domain 7range)) ®user-queue®
(notice (:1intern (?7f 7x)) *user-queue®
(1const (-> (and (function-from ?f 7domain ?range)
(7domain 7x))
(?range (71 ?x))))))

{(include-end~forms)

The above macrocxpands to:

(progn (add-hashcons-noticer (term °function-from)
*| (FUNCTION-FROM ?F TDOMAIN ?RANGE)-UNIFIER| i
user-queue®)
{push '{add-hashcons-noticer (term 'function-from)
*|(FUNCTION-FROM ?F 7DOMAIN TRANGE)-UNIFIER|
*yser-queues®)
temp-init-forms))

(progn ‘compile
(defun |(FUNCTION-FROM 7F 7DOMAIN ?RANGE)-UNIFIER| (term)
(let ((args (cdr (subterms term))))
(if args
(1et ((?f (car args)))
| (if (cdr args)
(1et ((?7domain (cadr args)))
(if (cddr args)
(let ((?range (caddr args)))
(if (nul1 (cdddr args))
(1 (FUNCTION-FROM 7F ?DOMAIN ?RANGE)-BODY|
7t 7domain 7range))))))))))

(defun |(FUNCTION-FROM ?f TOOMAIN ?RANGE)-BOOY| (?f ?domain Trange)
(add-hashcons-noticer 7f
‘(lambda (term) *
(I{?F 7X)-UNIFIER| term ',?f ', 7domain °,?range)) {
Suser-queuve®))

(defun |(?F ?X)-UNIFIER| (term ?f ?domain ?range)
(et ((args (cdr (subterms term))))
(if args
(1et ((?x (car args)))
(11 (nul1 (cdr args))
(1(7F 7X)-800Y| 7x ?f ?domain ?range))))))

e

. r— 1

6. THE NOTICE MACRO -39- ' April 1982

(defun |(7F ?X)-BODY} (?x ?f 7domain ?7range)
(add-clause (1ist (cons (virt-tms-node
(term-hashcons
(list (term ‘function-from)
tf ?domain 7range)))
‘:false)
(cons (virt-tms--node
(term-hashcons (1ist ?domain 7x)))
*:false)
(cons (virt-tms-node
(term-hashcons
(1ist ?range
(term-hashcons (1ist ?7f 7x)))))
‘itrue))))) _

The cmbedding of the notice macro in the above examplc is very similar to embedding of PLANNER or
AMORD deuions. The variables in the inner demon inherit their bindings from the outer demon. In any use
of notice the car of the pattern must not contain variables to be bound during triggering. However the car of
the pattern may contain variables which arc bound outside the notice construct. Note that the internal notice
form macrocxpands to an application of add-hashcons-noticer involving the function |(?F 7X)| (the variable
*temp-init-forms® is not cffected by the inner noticer). Without the macro include-end-forms it would be very

hard for the intcrnal notice form to define functions in such a way that they could be compiled.
6.2. Naming Conventions for Noticer Functions

‘Two functions are defined by side effect cach time an application of notice is macrocxpanded. Each
function is given a namc which is a symbol interned in the RUP package (or simply an interned symbol in
MACLISP). The names of the functions are derived from the pattern in the notice form (as shown in the
above examples). However special care has been taken to allow for more than one demon with the same
pattern. For example the following

(notice (:intern (p ?x)) ...)
(notice (:intern (p 7x)) ...)
(notice (:intern (p ?x)) ...)

(include-end-forms)

macroexpand to:

(progn (add-hashcons-noticer (term 'p) *|(P 7X)-UNIFIER| ...)
{push ' (add-hashcons-noticer ...)
*temp-init-forms®))

(progn (add-hashcons-noticer (term °'p) '|(P 7X)=-2-UNIFIER| ...)
(push *'(add-hashcons-noticer ...)
*temp-init-forms®)) .

(progn (sdd-hashcons-noticer (term 'p) '|(P ?X)-3-UNIFIER| ...)
(push °(add-hashcons-noticer ...)
*temp-init-forms®))

S — . s eteume. b o ettt . “

e s o e+ e+ o

—

(progn ‘compile
(defun |(P 7X)-UNIFIER| (term)

(a&iéz I(P 7X)-BODY| (?x)

(defun |(P 7X)~2-UNIFIER| (term)
(defun |(P ?X)-2-BODY| (1x)
(defun [(P 7X)-3-UNIFIER| (term)
(d&é&;)|(n 7X)~3-800Y| (7x)

In spite of the function naming convention excmplificd above naming conflicts can occur when two
demon defining files share a trigger pattern and at Ieast onc of the files is compiled. Specifically when a
compiled file is loaded the names of the functions defined by that filc are the namces given at compile time
rather the names which would have been generated had the demon definitions been macroexpanded at load
time. Consider a compiled file containing a definition for the function (P 7X)-BODY]|. If such a file is loaded
into a RUP cnvironment which alrcady has a definition for |(P 7X)-BODY] a naming conflict will occur. Itis
also important to note that since loading a compiled file docs not induce macro cxpansions it also docs not
cffect the names generated by Jater macro expansions. The best policy is to make sure that no two files share

noticcr patterns.

6.3. Events

There are scveral meaningful cvent keywords other than :intern. These event keywords are described
below.

‘true

Demons defined using this keyword are triggered whenever the TMS node associated-with
a term matching the given pattern becomes true. The following example demonstrates the use
of this function,

(notice (:true (p 7x)) *user-gueue*®
(1const (-> (p ?x) (q 2x))))

(include-end-forms)

This macroexpands to:

6. THE NOTICE MACRO <40 April 1982

6. THE NOTICE MACi!O -41- April 1982

(progn (add-hashcons-noticer (tcrm"p) '|(P TX)-UNIFIER| ®user-quesue®)

(push '(add-hashcons-noticer (term 'p) ‘{(P 7X)-UNIFIER| *user-queue®)
temp-init-forms))

{progn ‘compile
(defun |(P ?7X)-UNIFIER| (term)
(1et ((args (cdr subterms)))
(if args
(let ((?x (car args)))
(if (null (cdr args))
(1(P 7X)-BODY{ term ?x))))))

(defun |(P ?X)-BODY| (term 7x)
(if (not (eq ':true (truth (virt-tms-node term))))
(push (cons ®user-queue®
*(J(P 7X)-BODY| ,term ,?x))
(true-noticers (virt-tms-node term)))
) (add-clause (list (cons (virt-tms-node
! (term-hashcons (1ist (term 'p) ?x)))
' ‘:false)
(cuns (virt-tms-node
(term-hashcons (1ist (term 'q) ?x)))
‘:true))))))

Note that the code for [(P 7X)-BODY]| first checks to sce if the tms node associated with
triggering term is true. 1f it is not then a call to [(P 72X)-BODY] is placed on the true-noticers of
the node associated with the triggering term. Note that since a node can become truc and then
unknown before its truc-noticers are run |(P 7X)-BODY| might be run scveral times before it is
run in an environment in which the node associated with the triggering term is true.

:false

This keyword is just like :true except that the demon is gueued when the node associated
with the triggering term becomes false rather than true.

:change

This keyword causes the demon to be queued the first time the truth of the node associated
with the triggering term changes.

:whenever-true

This keyword causes the body of the demon to be run whenever the node associated with
the triggering term becomes true. For example the following

(notice (:whenever-true (trouble ?x)) *user-queue®
(trouble-fixer 7x))

(include-end-forms)

— -

Gives rise to the following definition:

|
%

6. THE. NOTICE MACRO -42- ' April 1982

(defun |(TROUBLE 7X)-BODY| (term Tx)
(push (cons ®user-queue®
*()(TROUBLE ?7X)-BODY| ,term ,7x))
(true-noticers (virt-tms-node term)))
(1f (eq ':true (truth (virt-tms-node term)))
(trouble-fixer 7x)))

:whenever-false

This is the dual of :whenever-true.,

:whencver-change

‘This causcs the body of the demon to be run every time the tms node associated with the
triggering term changes its truth state.

6.4. List Variables

It is often desirable to be able to write demons which trigger on terms with an arbitrary number of top

level arguments. A mechanism for doing this exists and is exemplified by the following definition of a noticer
for list.

(notice (:intern (1ist . largs)) *user-queue®
(let ((?first (car largs))) :
(Yconst (-> list-definition /
(= (first (Vist . targs)) ?first))))
(if (cdr largs)
(let ((1rest (cdr targs)))
(lconst (-> list-definition

(= (tail (list . targs)) (1ist . lrest)))))))

A Symbol starting with "!I" is interpreted as a variable in a noticer trigger pattern and differs from a
symbol starting with "?" only in that it is bound to a list of terms rather than a single term. An error is
triggered if either 7" or "'!1" variables are used in a syntactically incorrect manner.

6.5. Some Useful Macros

This scction describes some macros which can be used in conjunction with notice.

nlet

The macro nlet is just like the macro let except that it expands notice forms which appear
in its body and allows those notice forms to inherit variables bound by the nlet. notice forms can

only inherit variables bound by surrounding notice and nlet contexts. The following is an
example of the use of nlet:

S AT

" iddta. P r—o—— " e B Dbt - Eenn, div i, s dinnbe, !) oo

o

6. THE NOTICE MACRO -43- April 1982

(notice (:intern (f . largs)) *user-queue®
(nlet ((?first (car largs)))
(notice (:true (r ?7first Tother-thing)) ®user-queue*
(et ((lother-args (cons ?other-thing (cdr largs))))
{(lconst (-> (r 7first Pother-thing)

(= (f . targs) (f . lother-args))))))))

sclf

‘This macro of no arguments is used inside the body of a notice form. An application of self
macrocxpands to a form which evaluates to a form which can be placed on a queue and is in fact
the current invocation of the body of the innermost demon. Consider the following example:

(notice (:true (p ?x)) *user-queue*
(nlet ((n1 (virt-tms-node (termq (p ?x)))))
(notice (:true (q ?x)) *user-queue*
(if (not (true? nl1))
(push (cons *user-queue* (self))
(true-noticers nl1))
(1et ((n2 virt-tms-node (termg (p ?x))))
(if (not (true? n2))
{push (cons *user-queue® (self))
{true-noticers n2))
{print ‘((p .(term-tree 7x))

and '(q .(term-tree ?x))
are both true})))))))

Note that the print statement will only be rcached in an RUP cnvironment where both the
nodes associated with the triggering terms are true. If the body of the inner noticer is run in an
environment where the node associated with the first triggering term is falsc (which can happen)
then an exccution of the body is requeucd. The macro self creates a new invocation of the
inncrmost notice body with the current binding environment. During subsequent invocations of
this body cither node may be false and the body continues to requcue itsclf until it is invoked
when both nodes are true. :

this-noticer

The macro this-noticer of no arguments macroexpands to a form which evaluates to the
intern noticer placed on an operator term by the innermost notice form containing this macro.
This allows one to get access to the noticer and remove it once it has fired. Consider the
following example:

(notice (:true (p Tx)) *user-queue*
(notice (:true (r 7x 7y)) ®user-queue®
(setf (intern-noticers (term 'r))

ggoloto (this-noticer) (intern-noticers (term 'r))))

The above code might be used when it is known that for any ?x there is at most one ?y such
that (r ?x ?y). Thus when a term triggers the inner demon the intern noticer placed on r can be
removed thus saving a unification attempts each time some new application of r is interned.

6. THE NOTICE MACRO -4- April 1982

There are cleaner ways to gain efficiency than removing noticers. The section on currying
is important for anyone worried about efficicncy in demonic triggering.

mapfetch ((var pattern) &rest body-forms)

This macro allows one to access exactly those currently interned terms which match a given
pattern. For each such term the body forms are evaluated sequentially in ar environment in
which the variable var is bound to the matching term and all of the variables in the pattern are
bound to the terms resulting from the match. mapfetch returns a list of the valucs given by the
last body form. The fact that the pattern is known at macroexpansion time allows the unification

process to be open coded as it is in the functions created by notice. Consider the following
example:

(mapfetch (uterm (p ?x (f ?y)))
{(cons uterm
(1ist (cons "?x ?x) (cons 7y 17y))))

This cvaluates to a list of pairs cach of which is a pair of a term and a binding list where
cach binding list is a list of pairs of a variable and its associated valuc. mapfetch can inherit
variable bindings from surrounding netice and nlet forms as is shown in the following example.

{notice (:true (p 7x)) ®user-cueue®
(putprop (term-plist ?x)
(mapfetch (uterm (r 7x ?y))
?

y
‘r-relations))

The body function defincd by this noticer would be as follows:

i (defun |(P ?X)-BODY| (7x)
(putprop (term-plist 7x)
(de1-1f "nul)
(mapcar ‘'(lambda (uterm)
(let ((args (cdr (subterms uterm))))
({7 args
(17 (eq ?x (car args))
(if (cdr args)
(1ot ((?y (cadr args)))
(4f (nu)1 (cddr args))
¥))))))
(epplications (term 'r))))
‘r-relations))

6. THF NOTICE MACRO -45- ' April 1982

An alternative to the above is:

(defmacro r-relations (term)
: (get (term-plist term) 'r-relations)) |

t (notice (:true (p 7x)) °r-queue®
] (notice (:whenever-change (r 7x ?y)) *r-queue®
' - (if (true? (virt-tms-node (termq (r ?x 7y¥))))
{ (if (not (memq ?y (r-relations 7x)))
! (push 7y (r-relations 7x)))
’ (setf (r-relations 7?x)
(delete 7y (r-relations 7x)}))}})))
!
|

The above code ensures that if ®*r-queuc® is empty the for each ?x such that (p 7x) is true
(r-rclations 7x) is a list of cxactly thosc terms 7y such that (r 7x 7y) is true.

6.6. Currying

This scction describes a technique for writing more cfficient demons. The basic idea is that when one
has a trigger pattern of the form (p tl1 ?x 2) where x is a variable and t1 and 2 are known terms one can
replace that trigger pattern by a pattern of the form (op ?x) where op is a known term incorporating p. t1, and
2. In this way the unification function is not applicd to all applications of p but is instcad only applied to a
sclect set of terms which contain the known subterms tl and t2.

‘There are some conventions adopted in RUP for making this type of transformation morc convenient.
Spccifically there is a special higher order operator called curry which takes any number of arguments the first
of which is always an operator and the remainder of which are cither the number 1 or the number 2. Each of
the numeric arguments to curry corresponds to an argument of the operator argument to curry. The best way
to describe curry is with some examples. For any binary operator 7r, three place opcrator 7f, and terms 2x 7y
and 7z we have the following cquivalences:

. ' (7r 7x 7y) = (((curry r 1 2) Tx) 7y)
1 = (((curry 7r 2 1) ?y) 7x)

(77 7x 7y ?72) = (((curry 7€ 1 1 2) ?x ?y) ?2)
» (((curry 7f 1 2 1) 7x T2) 1y)
o (((curry 7f 2 1 1) 7y ?z) Tx)
» (((curry 77 1 2 2) x) 7y 12)
= (((curry 27 2 1 2) ?y) 7x 72)
= (((curry 71 2 2 1) 72) ?x ?y)
The above equivalences are enforced by a collection of demons which could have been defined using

notice as follows:

(notice (:intern (curry 77 2 1 2)) ®rup-top-level®
(notice (:intern (7f 7x Ty ?z)) *rup-top-level®
(iconst (= (7f ™x ?y 12)
(((curey 77 2 1 2) ?y) ™x 72)))))

These demons arc only triggered when curry is used so there is no overhead for users who do not use
surrying. However if currying is ever used in writing efficient noticers the above demons ensure that the
correctly curried versions of the appropriate assertions are always created. The curry demons are hand coded

—

it i st SISt o eiscnindiiiniiiintiil csscindiint ittt . - :-n--a----i;j

48

. ———— e ——— =

6. THE NOTICE MACRO -46- April 1982

for maximal cfficiency.
The following example illustrates the usc of currying for cfficiency.

(notice (:true (transitive 7r)) *rup-top-level®
(notice (:intera (?r ?x ?y)) ®rup-top-level*
(notice (:intern (((curcy ?7r 1 2) 7y) ?z)) °rup-top-level®
(lconst (~> (and (transitive ?r)
(?r ?x 2y)
(((curry 2¢ 1 2) ?y) 72))

(((curry Tr 1 2) 7x) 72)))))) -

Note that while all uncurried forms ate cquated with their curried cquivalents the curried forms are not
necessarily cquated with their uncurried equivalents. Thus interning the term (r a b) will trigger an intern
demon whosc pattern is (((curry r 1 2) ?2x) ?) but inteining the term (((curry r 1 2) 7x) ?y) will not trigger an
intern demon whose trigger pattern is {r ?x ?y). This fact can be important to writing cfficient demons (and is
in fact important in the above cxample).

The function term-tree recognizes curried forms and uncurrics them which makes them much more
rcadable.

6.7. Redundancy and Completeness

There are some problems with the pattern dirccted demonic invocation mechanisms described in this
section. These problems relate both to the redundant triggering of demons (triggering a demon more often
than need be) and to the completeness of triggering (not triggering demons when they should be triggered).
Consider the following demon for pair.

(notice (:intern (pair ?a (118t . lrest))) *user-queue*
(1const (~> list-definition

(= (pair ?a (1ist . Irest))
(Vist ?a . trest))))

Supposc the term (pair a (list b ¢)) has been interned and that the above demon has been d‘iggcrcd on
this term. Further suppose that the cquality (= a'nil) is true. Somec process may create the term
(pair “nil (list b ¢)) as the result of substituting "nil for a in (pair a (list b¢)). If the above demon has been
triggered on (pair a (list b c)) then there is no reason to trigger it on (pair ‘nil {list b c)) since these two terms
can be cquated by substitution. However when the latter term is interned the above intern demon would be
triggered.

The result of matching a demon pattern against a particular term is a binding environment e which maps
the variables in the pattern to terms. In gencral two binding cnvironments ¢y and) will be called variants of
cach other if they are defined on the same domain of variables and for each variable ?x in that domain el(?x)
«nd e5(?x) arc in the same RUP equivalence class. In general a specific invocation of a demon under a binding
environment e will be called redundant if that demon has already been run under a binding environment
which is a variant of e. RUP attempts to avoid executing redundant demon invocations by not triggering
demons with terins which are generated internally via the substitution of equals for equals. Unfortunately
there are cases in which it is useful to run redundant invocations of a demon. For example consider the

BRIV A B

6. THE NOTICE MACI'!O -47- April 1982

following:

(notice (:intern (cons ?a ?b)) *user-queue®
(if (and (eq 'quote (car (subterms ?7a)))
(eq 'quote (car (subterms ?b))))
(let ((?7qterm (term ‘'(quote ,(cons (cadr (subterms ?a))
(cadr (subterms 7b)))))))
(1const (-> cons-definition
(= (cons 7a 7b) ?qterm))))))

Clearly the dcmon has an important cffect when run under a binding environment ¢ which binds the
variables to quotations cven if the demon has previously been run on a variant of e which did not bind the
variables to quotations. The reason the redundant invocation is uscful in this case is that the body of the
demon tests for syntactic propertics of the terms to which the variables arc bound. If the body of a demon
only uscs variables in "scmantic” ways then this problem would not arise. A variable is used in a semantic
way when it does not matter what term the variable is bound to as long as that term refers to the proper thing.

One possible cxtension to the existing demonic mechanisms which might solve the problems related to
redundant triggering is to introduce a new kind of variable into the patterns of demons which would only
bind to sclf-referential terms. This would allow the syntactic tests made in the above demon to be
incorporated into the pattern match and thus one might be able to automatically control demonic invocation
in a way that avoids redundant invocations yet still invokes syntactic decmons with the proper binding
cnvironments, ‘ .

In addition to having problems with redundant invocations RUP has a problem in that the demonic
invocation mechanism is not complete. Consider the following demon:

(notice (:intern (f (g ?x))) ®*user-queus®
{(1const (-> f-g-definitions
(= (T (g 7x)) ?x))))

Suppose that the term (fb) has been interned and that b and (g c) are in the same equivalence class. By
substitution it would be possible to generate the term (f (g ¢)) and the above demon could trigger on this term.
However since such substitutions are not performed automatically the above demon would not be triggered in
this case.

For any expression p containing variables (i.e. any trigger pattern) and any substitution ¢ for the
variables in p let ¢(p) denote the result of replacing each variable in p by its image under e. Let T be any
colicction of terms and p be any trigger pattern. A substitution e will be said to map p into T just in case e(p)
is cquivalent (can be cquated via substitution of equals for equals) to some term in T, Let {pi} be a collection
of trigger patterns each of which is associated with a body b;. A particular demonic invocation mechanism will
be said to be complete with respect to {p;} and T just in case for every p; and every binding context ¢ which
maps p; into T the body bi gets called under some binding context whidl is a variant of e.

It should be possible to extend the demonic invocation mechanism in RUP so that it is complete with
respect to the intern demons and the interned terms, the true demons and the true terms, etc. If the demonic
invocation mechanism were also careful not to perform redundant invocaticns such an extension to

completeness would probably not generate an unreasonable number of demon invocations.

6. THE NOTICE MACRO -48- ' April 1982

The problem of gcncratiné a complete unification mechanism has been studied in detail by people
working on resolution thcorem proving. The problem is defined precisely by Huet and Oppen in a survey of
results on cquations and rewrite rules [Huct & Oppen 79},

6.8. Transitive Relations

There arc true noticers defined in the default RUP environment which recognize applications of the
sccond order predicates transitive, reflexive, antisymmetric and strictly-antisymmetric. Assuming that the
queucs *equality-invariants®, *rup-top-level®, and *backtracking-invariant* have all been cmpticd the
following conditions hold with regard to these predicates:

(1) If an assertional term of the form (transitive r) is truc then all applications of r which can be deduced
from transitivity and known applications of r have been deduced.

(2) 1f an asscrtion of the form (reflexive 1) is true then for each interned term of the form (r x y) if x and y are
in the same cquivalence class then (r x y) is true.

(3) Ifan assertion of the form (nntisymmctr_ic 1) is true then for cach pair of true assertions {r x y) and (r y x)
the assertion (= X y)is true.

(4) If an asscrtion of the form (strictly-antisymmetric r) is true then for cach true assertion (rxy) the

asscrtion (r y x) is false.

N T3

7. FUNCTION AND \'ARIABLF, INDEX

-50- April 1982
7. FUNCTION AND VARIABLE INDEX

atomic-level 28 change-noticers 18
backtracker 12 class-data 20,26
*backtracking-invariant®.............cccoeeeverene 12,12 class-mcmbers 25
*basic-qucucs® 6 class-plist 26
*cquality-invariants® 26 clause.... 9
intern-canonicalize .22 clausc-cert 13
*inax-cert® 14 clause-list 9
min-cert.... 14 commutative? 23
new-term 23 contradictory 13
perm-init-forms 35 curry 45
*premisc-sclector® 16 default 8
smalier?...... 28 default-cert 8
subterm-level 28 dependents 25
tcmp-init-forms 35 e 24
view-node 14 eg-next-canonical-egs 20
->noticer 30 eq-term 25
:change 41 cqs 20
:false 41 cquality 24
:true 40 cquated-support 25
:whenever-change 42 equivalents 26
:whenever-false 42 false-noticers.. 18
:whenever-true 41 false? 9
=-noticer 30 fifo-empty? 6
add-clause ..., 13 fifo-push 6
add-hashcons-noticer 24 fix-temps 36
and-noticer k)| hashcons-noticers 24
antisymetric 48 iff-noticer 32
applications 24 implies 13
assert 30 intern-canonicalize-default 2
assertion e T lconst 34
assertq k. make-eq 25
associative? 23 make-fifo 6
atomic-level-default 29 make-premise 13
atomic-level-prop » mapfetch 4
atomic? 21 member-referents 2
backtracker-default 16 members. 26
certainty 8 neg-clauses 7

P -
7. FUNCTION AND VARIABLE INDEX -51- April 1982
ncw-simplification-state 28 symtric 48
nc¢ w-term-default 23 term 1921
next-canonical 20 term-extension 20
nlet 42 tcrm-hash 19
node-add-Clause.......oceenicsnssscssssseansneens 13 term-hashcons 21
node-cxtension 8 term-init 35
node-plist 8 term-plist 20
NOAC Y -10-ShOWcorercarenriersesnessneesssessossases 17 tOrM-tMS-NOME.......ccccccernrcsennerecnnsssannansensennesessssessssasaens 20
node-why 15 term-tree 21
not-noticcr..... k)| terml 24
notice 37 term2 24
or-noticer 31 termq 33
parents. 20 this-noticer 43
pos-clauses 7 tms-node 7
premises 16 transitive. 48
psat 9 true-cq? 25
remove-default 14 true-noticers 18
retract 30 true? 9
retract-premise 14 truth 1,7
retractq k) try-to-show KX]
reverse-truth 16 UrY-L0-SHOWQ ...covrenirinrerenrisnsnsmsemsiassasssssassssssssassssssesies 34
run-queues 6 unknown? 9
rup-init 36 user-referenced? .20
<. i1e-image? 25 view-clause 15
sbound..... 29 virt-tms-node 21
self. 43 what-is kX)
self-referential? 21 what-isq 34
set-default 14 why 32
SI7€ creeireeeresaremssonsnssnasanssrsasnossarmssnssarsssassonsaess ssvs 26 why-is 13
strictly-antisymetric .48 why-isq K}
subterms 19 whyq U

c oo

8. BIBLIOGRAPHY -82-

8. BIBLIOGRAPHY

[de Klcer & Susstman 78] de Kleer, J., and Sussman, G. J.
Propagation of Constraints Applied to Circuit Synthesis
MI'T Al Lab Mcmo 485 (September 1978).

[Downey ct. al. 80] Downey, P. 1, Scthi, R, Tarjan, R. E.
Variations on the Common Subcexpression Problem.
J. ACM 27, 4 (Oct. 1980) 758-771.

[Doyle 78] Doyle, J.
‘I'ruth Maintenance Systems for Problem Solving
MI'T Al Lab Y'echnical Report 419 (September 1978)

[McAllesier 80a) McAllester, D. A.
"The Usc of Equality in Deduction and Knowledge Representation
MIT Al Lab Technical Report 520 (February 1980)

[McAllester 80b] McAllester D. A.
An Outlook on Truth Maintenance
MIT Al Lab Mcemo 551 (August 1980)

[McAlester 81) McAllester, D. A.
Solving Uninterpreted Equations
MIT Al Lab Working Paper ?? (Scptember 1981)

[McCarthy 80} McCarthy, J.
Circumscription - a form of Non-Monotonic Reasoning
Ariificial Intelligence, 13 (1, 2) (April 1980) 27-40

[McDermott & Doyle 80] McDermott, D. and Doyle, J.
Non-monotonic Logic I
Artificial Intelligence, 13 (1, 2) (April 1980) 81-132

[Nelson & Oppen 80] Nelson. G., Oppen, D.C.
Fast Decision Procedures bascd on Congruence Closures.
J. ACM 27, 2 (April 1980), 356-364.

[Reiter 80] Reiter, R.

A Logic for Default Reasoning

Ariificial Intelligence, 13 (1, 2) (April 1980) 81-132
[Stallman & Sussman 77] Staliman, R. M. and Sussman, G. J.

Analysis
Artificial Intelligence, 9 (1977), 135-196.

April 1982

Forward Reasoning and Dependency Directed Backtracking in a system for Computer-Aided Circuit

e et i

