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LINEAR AND NONLINEAR PULSE PROPAGATION IN OPTICAL WAVEGUIDES
1. INTRODUCTION

The possibility of transmitting undistorted pulses with high peak
powers quided by fibers could prove useful and find application in
various fields. Intense, ultrashort light pulses guided by fibers could
be used to achieve ultrahigh data rates in communications, to perform
surgery in medicine, for cutting and welding in industrial processes,
etc. The nonlinearity which governs the propagation characteristics
arises from the real part of the guide refractive index, although
dissipative nonlinear processes could in principle affect the pulse as
well.

The theoretical problem of transmission of nonlinear pulses in
optical waveguides is both interesting and challenging, since it involves
the simultaneous interplay of transverse confinement, dispersion and
nonlinearity. Solutions in many areas of physics have already been
obtained (SCOTT, A.C. et al., 1973, for example) and considerable
knowledge has been gained for the one-dimensional pulse propagation case,
while two- or three-dimensional nonlinear propagation is still in its
infancy stage (GERSTEN,J.I., et al., 1975; KAW, P.K., et al., 1975;
WILOOX, J.Z2., et al., 1975; ZAKHROV,, V.E., et al., 1979).

A critical limitation in the realization of the full-bandwidth
capability of optical transmission systems is pulse broadening resulting

from dispersion effects (GLOGE, <., 1971; KECK, D., 1976, for example).

Although dispersion can be minimized by an appropriate choice of guide
materials, geometry and operating frequency, it is apparent that

dispersion effects will be detrimental for sufficiently narrow




pulsewidths. To overcome this problem the nonlinear dependence of the
refractive index on pulse intensity may be used. Here the dispersion
effects result in the broadening of the pulses, while nonlinearity tends
to sharpen it. It is the appropriate interplay of these opposite effects
which can lead to a stable soliton solution for the optical pulse. But
nonlinearity can also introduce a host of other effects (CHIAO, R.Y., et
al., 1964; HASEGAWA, A., et al., 1973; TZOAR, N., et al., 1976; SHIMIzU,
F., 1967 such as self-focusing and self-phase modulation. However, each
of these effects is dominant only in certain regimes characterized by the
dispersion, peak intensity and nonlinear parameters.

Self-focusing, which occurs for finite-sized beams, requires a very
high critical intensity. This phenomenon is an instability which causes
a finite-sized beam to collapse to a point, due to an effective focusing
lens induced by its own intensity. The condition for self-focus is
independent of the dispersion parameter and represents a competition
between nonlinearity and diffraction effects. Indeed, for Gaussian beams
the condition for self-focusing to occur is given by

2

kL™ > €, /én E:- (1)
Here k= 2'"/3, whereA is the free space wavelength: éo(em,) is the
linear (nonlinear) dielectric function; andfdand anre, respectively,
the radius and on-axis field intensity of the beam. This condition is
not affected by the guide's parameters. The guide, by balancing
diffraction, provides stable trapping of the beam at a finite size even
for fields below the critical field (the critical field is defined by Eq.
(1) when the equal sign is taken). For glasses one finds the critical
power for self focusing to be of the order of 107- 108 W/cmz, much

greater than the power needed for soliton propagation.




The soliton problem in optical waveguides appears to have been

considered first by HASEGAWA and TAPPERT (HT) (1973) but these authors

[ did not take detailed account of the transverse inhomogeneity in their
analysis. Subsequently, JAIN and TZOAR (JT) (1978) introduced an

approach that accounted for the transverse inhomogeneity of the waveguide

in an average fashion, and were thereby able to demonstrate that in fact J
typical fiberguides could indeed support "bright" solitons. This

contrasts with the results of HT who found that anomalous material
dispersion or very large core-clad differences (A n~0.%) are required 4
for "bright" solitons to exist. The approach of JT has been generalized
by BENDOW, GIANINO, TZOAR and JAIN (BGTJ) (1980) to include variational

analysis and to treat longitudinal inhomogeneities, and by CROSIGNANI, H
PAPAS AND DI PORTO (1980) to consider the role of intensity fluctuations

on nonlinear soliton propagation in optical waveguides.

! 2. THEORY OF PULSE PROPAGATION

Consider an optical waveguide having a dispersive and nonlinear

refractive index of the form -2
M (2,w E) = My (7,w) + N, [El )

g
where W is the frequency, E is the electric field and n, the nonlinear

coefficient, taken to be independent of frequency. Moreover, ny is
represented by its local approximation, i.e.

n,(k,w) =% (w){(7) (3)
In what follows we consider propagation of pulses which are narrowly
centered about a given frequency &% and assume that nl(aJ) is a slowly
varying function of (W in the vicinity of W,. The electric field is

taken to be

- A - (32~ ot)
E (R-:,f) = € A(n—/t) e& (1 ® (4)




A - -
Where e is a unit vector in the transverse direction, r= (f.,z), and z is
the direction of propagation. We then obtain for A the wave equation:
2 ’
2 3 2 ., 023 ol w2kl £r5)2
- —— ‘, —
[+ 2= 92+200.3 + frirke + 2ike b, £(7) 55

2z (5)

% 2 ) 2 A _
- (ke k:+ k:z)f(ﬁ')%; + (21, k, /M) [A(z,e)] ]A(n,{,) =0

In Eq. (5) k(W) =nl(w)“0b and the primes indicate derivatives with
respect to W at & =W, . The appearance of the time and frequency
derivative only to second order is a consequence of using the slowly
varying envelope approximation in deriving Eg. (5).

For the waveguide problem f is always inhomogeneous in the transverse
direction, i.e., £(T) = f(}3. Under these conditions it is extremely
difficult to obtain time-dependent solutions to Egqg. (5), either
analytically or numerically. We therefore seek an approximate solution
to Eq. (5), based on the observation that the material dispersion in
optical waveqguides is generally very small. Our previous discussion
regarding the balance between dispersion and nonlinearity suggests that
the nonlinear effects will also be small in the guide case. We thus
expect a negligible effect from the nonlinearity on the mode structure of
the guide. Physically, the spatial trapping of the beam and its
localization within the quide is dominated by the transverse
inhomogeneity. If nonlinearity were absent, the pulse in the guide would
experience broadening due to dispersion. The correspondingly small
effect induced by the nonlinearity is capable of balancing this
longitudinal dispersion. Moreover, it seems reasonable on general
grounds to assume that transverse inhomogeneity has only a weak effect on
the longitudinal propagation of a pulse along a narrow guide. Rather,

-4-




the main effect of the transverse inhomogeneity is to determine the mode
structure of the linear guide, with the longitudinal propagation
characteristics of the modes subsequently being modified by the
nonlinearity. This approach, which was first introduced by JT, leads to

an approximate solution
AR, t) = = P(f) 0@, t) (6)

where the longitudinal characteristics of the pulse are found by taking
the transverse average of Eg. (5). Taking any of the linear mode
solutions for A(?,t), multiplying Eq. (5) by#(?), using Eq. (6) for
A(?,t) and integrating over the cross section of the guide, results in

the following wave equatlon fore(z,t)

{d ‘t, +-§(z)\<o (k,k+|( )J((z) >
+d, 1617+ zi(%’z* kokoi(-z)a% [66t)=0

(7

In eq. (7) we define the fuction f(z) as

f(=)=g°‘?4>(f") f(f:Z)é(f'} (8)

= (aF (R 7 D)
d, = (2%, ke /1) _(d?/ b#)"

The electric field can now be written as )
- - 1(92 ~wot
E=¢ ¢(F)Ote (32 - e

The effect of the waveguide is now included solely by means of the

(10)

(11)

parameters dl’ d2 and f(z).




We now consider the longitudinally homogeneous guide. Here f(z) =f

-

and BEq. (7) supports a particular solitary solution for 9(2,(:) =

9 (t-z/v), where

V.—:C',/I(o ’(:J? (12)
6 =0, coch Y- 2/v)]

with the conditions:

Polefedi+d: 6, /2 (42)
[Ckoke 50421 (kokot k) £18 =i Oo/2

The significant difference of our result (give in Fgs. (14) from the

and

(L3)

homogeneous medium case, is the factor dl above, which is a direct
consequence of the transverse inhomogeneity, i.e., the wavegquiding
mechanism. for example, we consider the condition for the "bright"
soliton solution, given in Eq. (13) when the nonlinear factor d2 is

larger than zero. The requirement x> 0 implies that
2 -1l " |
[l+(d1*"idzeo)/l(of] [l+(|(ol(o/l(':)1 > 1 (15)

For the present case, in which d1 will be negative, Eq. (15) may be
satisfied even when ko" >0. This contrasts with previous predictions
and with the one dimensional soliton solutions which predict that
"bright” solitons will exist only if k_"{ 0.
We point out that Eq. (7) admits a "dark" soliton solution, first
> A
realized by HT. Here a solution of the forme=Q -6’ sech [b’(t-z/v) ]5

exists for 6‘ \< 1. FPor the particular case of dark solitons, where

9‘ is take to be unity, one obtains

©= 6, tank ]:-K (t - 2/")1

(16)




and the corresponding conditions given in ref. 10.
For plane waves ko" = 0 indicates the zero dispersion condition which
determines the frequency at which a pulse of ".ero" amplitude will

propagate without distortion. 1In our case the zero-dispersion condition

(e 2 INIE (kbol¥s)) = 1

for either type of soliton. Since dl< 0 require k " > 0 for the

becomes

(17)

zero -dispersion condition to be realized. To illustrate these results
we consider the truncated quadratic profile
8 2 <
..)’ “"f/L / f\g’o (18)

§(f - 2 T . f
1 - 5, /L 7 £ 7 e
We approximate 4)(}’) by the transverse wave solution for the linear
problem when 'Po-yoo r in order to avoid numerical computations. This
approximation is very good for the lowest modes. Following our

procedures described above, we obtain for the bright soliton,

0= Go Soch [Y(t- 2/v)]

CL :ko (f- '(oL)+E o ° oz t 2
o [4 -
fopzia o

Y= {[( ke l(,o)?)z/?/z 1- [kokv+k°])( A
[ =)' (e 0hh 1) « 1

” ':
The zero-dispersion condition become$ (ko l(o/l(o

) = (((DL;)-'

For 1 pm light in fused silica we then have koL ~2 x 102.

If f‘f /L2 = 2%, for example, fo” 4.5/.1m, while |if
2,2 _ ~ . . .
fo /L7 = 1%, fo 3.2/.]“\. These estimates become increasingly

inaccurate as fo/L decreases. JT have obtained similar results in a

-7-




previous paper, where regimes of bright and dark solitons as a function

of L and(Jo are indicated graphically as well. JT also present
calculations for step-index fibers, utilizing the transverse function of
the linear problem (i. e. the Bessel function). We may use their
graphical results to estimate the soliton pulse power density for typical
cases. We find, e.g., for the lowest-order mode in a silica fiber with
core radius S}mland carrier wavelength l}mn that the power density !
P A 10° W/cm® for a pulsewidth of T ~ 1 ns. For longitudinally }
inhomogeneous waveguides the nonlinear pulse propagation becomes further i
complicated when the guide refractive index varies as a function of =z. 1
Logitudinal inhomogeneity is, in fact, quite common and stems from l
compositional and diametral variations, as well as microbending. Such
variations can be modelled, at least approximately, by retaining a
longitudinal dependence in the effective guide refractive index, f=f(z),

in Eq. (7). Unfortunately, there are no known methods of solving Eq.

(7) in this instance. On the other hand, methods for treating slowly

varying variations have been developed, within the adiabatic
approximation, for one-dimensional nonlinear propagation in the absence
of frequency dispersion (CHEN, H.H., et al., 1976 and 1978). We are thus
led to consider an approximation in which dispersion and longitudinal

inhomogeneity are assumed decoupled; specifically, we assume

eI (20)
PYERP Y

{(z)=‘)((°)
i.e., the dispersive terms are replaced by their values in the

homogeneous limit. Thus, we retain interactions between transverse

inhomogeneity, dispersion and nonlinearity, on the one hand, and between




longitudinal inhomogeneity and nonlinearity on the other.

The solution of Eq. (7) in this instance is straighforward but
tedious. The reader intersted in details is directed to BENDOW et al.
(1979 and 1980); we will here just state the results. As in the
longitudinally homogeneous case, E is given formally by Eq. (11), but

now takes the form
6(7/‘5) = 90 Sec,L ["Z(z- Ve {.\ c

"~
Where ‘ =\’koko'f/q, and qe,(de and Ve are time dependent

((%9)2 e—é (we~wo)t

(21)

effective wave vector, frequency and soliton group velocity, of the
longitudinaly inhomogeneous waveguide, respectively. These are given by
(GIANINO, P.D., et al., 1980)

The principal result of the above development is that, remarkably,
the soliton retains its shape in the presence of weak longitudinal
inhomogeneity, although its velocity change with time. The
time-dependent velocity in this case contrasts markedly with that of the
longitudinally homogeneous case where v=q/kok°'? is a constant. For

example, when the inhomogeneity is nearly linear, i.e., when An = 2z,

9 Kok § Y2
Ve = — - o t (22)
A ( 2 )

so that the soliton acquires a constant acceleration proportional to o.

then

When the inhomogeneity varies quadratically, An= akzzz, then

_ 9 Sim 2o t (23)
VeT LKF (2- =50%




© . ——— e e -

i.e., the velocity varies sinusiodally as a function of t. Not
surprisingly, the soliton executes oscillatory motion as a function of
time, characteristic of a particle trapped in a harmonic well. Formal
solutions may be written down for a variety of other cases as well, such
asAn~sin2 o z, in which case Ve involves elliptic integrals

(GIANINO, P.D., et al., 1980). 1In this instanced, one again finds that
the soliton executes a complicated oscillatory motion as a function of

time.
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SELF-PHASE MODULATION IN OPTICAL WAVEGUIDES

Self-phase modulation was first observed by Shimizu1 when a
modulated spectrum appeared after self-focusing had'taken place in a
liquid-filled cell and was explained as phase modulation due to the
intensity-dependent refractive index. It has since been observed2 in
the absence of self-focusing or self-trapping and at low powers by using
liquid-filled glass fibers. Recently, some measurements of frequency
broadening of mode-locked laser pulses due to self-phase modulation in
single-mode silicacore fibers have been reported.3 The theory used in
ref. 3 is the one developed first by Shimizu for short samples, and
shows symmetic broadening of the spectia due to self-phase modulation.

We present calculations for the frequency broadening due to
self -phase modulation which show an asymmetry in the output spectrum for
symmetric initial pulse. Comparison with results of Ref. 3 is difficult
to make at present, firstiy due to large asymmetry of the incoming pulse

! and secondly due to dispersion effects which will be discussed later in

this paper. We thus limit ourselves to the development of the theory and

determine the realistic conditions undr which comparison between theory

and observation is easy to make.

We limit ourselves to a one-~dimensional wave propagation of an
optical pulse propagating in a glass characterised by a nonlinear

el
! refractive index n. The electric field E ( z,t) is given by the wave
4,5

' equation ‘__, ‘31_-» - " 91 -
) L $70 9 )
, E L S 2 5 (IENE (n




where ny represednts the nonlinear part of the refractive index
'M.(w,E) '"(W)""”zIEI

oad
j with'l(°=n(wo), where W, is the frequency of the electric field and D_ is

the linear displacement.

We write the electric field in terms of a slowly varying envelope

E(z, £)= é A(‘zlt) '€Y~P 4 (Cl/z" “)ot) (2)

5

where g is the propagation constant and find~ that A(z,t) obeys the

eEuif—lo:- 244 {'2 - Q,z + (ki +20ko l(:, .f-t ~ (k':+ 2 '('0)3%)‘1A&'d

| 2M 2%, {w,t —Cw,t'l (3

Cz

2 [iarrae

where

; ! " 3 L B
| |<1=wtw(w)/¢’- : |<: = WA, e} ; Ko =)k/:)w£ ; k=1 k/x L/o
| , y

In Eg. (3) we retain only the first and second time derivatives of

|

I A. Here we make the usual assumption that our dielectric is weakly

i dispersive. This is an extremely good approximation for SiO2 glasses

| for our operating frequency which is much smaller than the electronic
resonance frequency and much larger than the ionic resonance frequency of
i . 3102 .
‘ To first order we take q=k0 as for the plane-wave situation, and

identify ko' to be the reciprocal of the group velocity vg.Thus we

are left with the following equation:




24 ke 2 4ack b 2 - (Kot k)2 | AGY) =
[;—2-3' ¢ obz L Ke Oat v 2t ©

Lwo )
Z"';”Oe(wofa (’A,Ae
bX Ad

C
In treating self-phase modulation one usually replaces the right-hand
Z .
side of Eq. (5) by -2(n, /ng)k, IAI A as the dominant contribution,
assuming that wor» 1. Here T represents the width of the pulse.
However, as we shall see shortly, this assumption is correct only for
short enough samples. For long samples, as for the case of self-phase
modulation in optical waveguides, we have to consider the corrections
T
arising from the time derivatives of [A] A . We will treat this effect

perturbatively and thus will retain only the first-order term, i.e., the

T
first derivative of (Al A . Equation (5) is therefore approximated by
T S M B AN R A Y 0 Al Yok, 2 Nt
[Zaraik et 2tk (K +hoke) g [A G- - 5 kIATA- 122 ko (A Al,

We now make a coordinate transformation to a moving coordinate system

defined by

‘?:2 )‘ t‘-’{:‘Z/'ﬁ

Equation (6) transforms to yield

CTCE -2k z)raik] % ~kk i jAG D
2'"&‘( lA’A" ‘IL"?- oat(lAI A)

To further simplify Eq. (7), we realized that without the dispersion

)

(ko) and the nonlinearity (n2) the solution for A is given by an

arbitrary function of C, say, F{(z - vg t) /Z ), where z is the legth
/

of the pulse. It then becomes obvious that while 3/9‘ and k0 3/9-5 are

-~ ' N -
of the order of 2z 1 » the term k0 is proportional to)° . We can now
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use the slowly changing envelope approximation which required‘? to be
much larger than )oso that (9 /98 - 2 k(') 2/p7 ) A is neglected
relative to(k0 A);i.e., the effects of back-scattered radiation are
neglected. This implies that the changes in A per wavelength are
extremely small. This condition is compatible with our suggested
experimental situation, where changes in A are only observed after the
pulse propagates hundreds of meters in the guide. We next define the

constants

Y 2":
U - <
- I" ko 2 - "3"; ko / y - < (8

and obtain our final equation

Qﬁg.,.o(”‘ +)\[A\A+LI (\AIA)= (@
?

The detailed solution for A is given in the paper by Tzoar et all (Phys

1

Rev A 32 1266, 1981). We present here only the approximate result for

the frequency spectrum of the electric field having a Gaussian envelope.
pus A ¢ (b} — (wos /v))
E(Y)W)= e Aoe 's - ( 0?/’ det (10)

where
L 2 S5
F=expi {(u—w‘,}‘c -f"f)&Ao [-l + —=7 A €

(an

L/rz N
%‘fz%(l”n"’)/\o ]—Z—E(I’LE‘)'S

In the above expansion, terms proportional to d arise from dispersion

effects and are seen to give rise to a symmetric modulation of the




phase. The term proportional to X , however, is proportional to & and
thus results in asymmetric phase modulation.

To analyze the expression in Eq. (18) we note that in our problem we
have two fundamental lengths, the nonlinear length §°= ( )&A; ).' and the
dispersive length‘§3=£;lJl, and also the dimensionaless parameter W, T.

We rewrite Eq. (11) in terms of these parameters as

et
x -2/r* S T?
F=expi {(Lo-wo)t + i;—‘OC D T LT M 12)

i(i )2(I'IL§:> 3_2‘:‘/#3 - 2 ((..;.'5:)}
3L, T? 3, 7
Here Ll =(J°T¥°/16 and L2 =(‘§,'§°)’/". The effect of the linear
dispersion can be omitted in many cases since it is easy to make&»?a
The correction terms depend on Ll and L2 . The Ll term is the
correction arising from the finite duration of the pulse and is the only
term that contributes in our theory to asymmetric spectrum. To observe
the asymmetric effects,we want the Ll term to be the dominant
correction. We thus need L2 to be larger than Ll .
We note that the ratio f=L1 /I_.2 should be, ideally, smaller than
unity for our purposes. Here "
f’ .J— ( ('z l(o l(o >,/z—
16 \2m,u, AS

is independent of T and becomes small either at high beam intensity or
"
for vanishingly small dispersion, i.e., ko'ko.
The dispersion effects can be reduced by operating at a frequency

where the dispersion is negligible6 as has been recently demonstrated.
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Thus. in Eq. (17), the integrand reduces to

sty REVT 42 S o
F = expa [(owdz +EAAce (14 5 AeC )

In order to make an estimate of the asymmetric effect, we calculate the
value of the coefficient S'SY'CAS/TZ , using values that can be

3

attained in the laboratory. Taking § =] km, T~ T=5ps, n, =1.4 101

2
esu, and A, =500 S V/cm,7 we calculate BYY‘CAS/TZN 0.25.

0
Thus the effect of the asymmetric term compared to 1 is about 25% for the
parameters chosen above and should be experimentally measurable.
We would like to point out that when information transmision depends on
the phase of the carrier, self-phase modulation must be considered as a
noise source that may bleach the signal. 1In this work we have developed
a theory which is better suited for long (71 km) optical waveguides. We

have shown that self-phase modulation will result in asymmetric power,

and similaly, in asymmetric intensity spectra.
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CONTINUOUS-WAVE PROPAGATION IN NONLINEAR OPTICAL WAVEGUIDES

1. INTRODUCTION
Transmission of intense light beams through waveguides is of interest in a
wide variety of potential applications, such as integiated optics (four-wave
mixing, optical bistable devices), medical procedures (surgery,
cauterization), industrial processing (cutting, welding), and power
transmission (for electrical hazard zones, say). The nonlinearity of the
refractive index of optical wavequides affects both the spatial and the
temporal characteristics of intense beams propagating along the guide. Here
we investigate certain spatial characteristics of cw beams in waveguides
possessing a real nonlinear dielectric constant. In other work various
temporal effects in nonlinear waveguides, including soliton propagation1
and self-phase modulation,2 have been analyzed. Various phenomena
associated with the imaginary part of the nonlinear dielectric constant have
npeen discussed previously.3

The inhomogenous, nonlinear wave equation describing beam propagation in
wavequides is not, in general, amenable to analytic solutions, nor is it
especially well suited to numerical methods of solution. For these reasons,
we have chosen to introduce several simplifying approximations commonly
employed in the literature that make the wave equation analytically
tractable. Specifically, we restrict consideration to Gaussian beams and
employ the widely used parabolic or paraxial approximation.4 This is
essentially a ray treatment, which is most accurate in the vicinity of the
beam axis. Such an approach has bheen employed extensively in previous work

to investigate nonlinear focusing in homogenous media,s-7

propagtion in inhomogeneous media.4.

as well as linear




In the present investigation we extend the paraxial approximaticn to
encompass simultaneously inhomogeneity as well as nonlinearity, but
restrict ourselves to the effects of nonlinearity on the focal
characteristics and on the mode mixing of Gaussian beams that are
incident on-axis. Use of these approximations and simplifications allows
us to examine some of the principal physical effects associated with
nonlinear beam propagation and helps to reduce mathematical complexity to

a minimum.

2. FOCAL CHARACTERISTICS OF GAUSSIAN BEAMS

Here we derive an expression for the electric field of a cw Gaussian beam
in a nonlinear waveguide by utilizing the paraxial approximation. The
results obtained here also incorporate guide attenuation and longitudinal
dielectric constant variations. Since it is not possible to solve the
governing equations analytically in the general case, we subsequently
choose to specialize in the case of lossless, longitudinally uniform
guides. 1In this instance, one is able to obtain simple analytic
solutions that clearly reveal the effects of wavequiding and
nonlinearity on cw beam propagation. We developed our theory for an
azimuthally symmetric waveguide with the z axis along the length of the
guide and.f the radial coordinate in the transverse direction. We choose

a model dielectric constant of the form
2 2 .
€(6,2,E)= €o(z)~ €(x)P + €y, |EI=c € ‘)

In Eq. (1), waveguidirg is introduced through the quadratic term inj>2.
This widely used approximation assumes that the beams under consideration

are tightly bound within the core of the guide. The nonlinearity is
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introduced through a term in E proportional to the square of the
electric field B, i.e., to the field intensity.The imaginary term i&I
accounts for guide attenuation (from absorption and scattering, say).
Finally, we have allowed for longitudinal variations in the dielectric

constant by incorporating a z dependence into &, and

0
éR' Thus, despite the simplicity of this model for the dielectric
constant, one can account, at least approximately, for any combination of
inhomogeneity (both transverse and longitudinal), nonlinearity, and
attenuation.

If we assume a time-harmonic dependence of the electric field, E

uot )
e , then the time-independent scalar wave equation, neglecting gradient

terms, takes the form? (kg = W /c)

[v"+k’;é(f’,z,s)'lE=0 (2)

We look for azimuthally symmetric solutions of the form
Eo (0) 7'y [ ] (3)
= 2)| — -t d2
E(52)= M) [ 251 "erp [ fke
where k%(z) = € (z)W?/c?. By substituting Eq. (3) into Eq. (2)
.4 . L1 L3 2.
andJnego‘lectxng the terms proportlona'l to )A/)Z) (dj/ueo/JZ)
om s (0,1/\‘ éo/o/z) » one obtains ,
Ldk . VA _ 1o oAy k 2 e IEJ5ELA
k dz +2‘"‘) 12 ¢ f(f 3—3’—)_ €,(2) 6R(z)f €ul A (4)

Equation (4) constitutes the starting point for the paraxial
approximation, in which variations in A as a function of z are assumed to
be negligible compared with a wavelength. It reduces to the same

starting equation employed by various other aut:hoxrsa.7 when GR ’ eﬁ,
L

and/or EI are set equal to zero.

a8 wn e




In order to proceed with the solution of the wave equation, one

further expresses A in terms of a real amplitude Ao and phase S as
; S
A=A (82)exp [-ik S(52)) ®

and substitutes Eq. (5) into Eq. (4) One then obtains two simultaneous

equations for AO and S:

El €Er@S
2S dk a - VAo , 1JAo __,L. f
aA., S s 1 Jds ér =

PerdrtAGarrap)tk A = (60)

These equations become soluble if we employ for the nonlinear term the

quadratic approximation introduced by Ref. 8; namely, we take

IA[2= lAloz‘f' 'DIN r (7

Where the subscript 0 indicates evaluation at f =0. One then finds, in

analogy with Refs. 4-7, that Eq. (6) admits the Gaussian beam solution
"—l‘ ér/é.),
Ac = 'f‘(z) tue"f’(l‘xz)e*l’[f/zf, f(z)] (8a)

S = [z ’((,)1- Yd{(z)/dz\f + ¢(2) (8b)

Where f and satisfy
¥ df— -l _L Jkr
45 i = (85 ) e -
’ d o() "Zk
% t 7 €u(2) dezz 4> 3((2)[ R“L‘-o’ - R"l 1 (9b)
and
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2y )
Rotz = l< ﬁ, = wzéo(z)f’oy/c
2. _
R:L = [fozéo(z) /é”LE:‘l[ € (z)/é,(o)] (10)

If the incident beam is a plane wave 4, then the boundary conditions
accomplanying Egs. (9a) and (9b) are

df[ = 0 ) {(o):i ) ¢(0):¢0 ab

dz

The complete solution for E is then

E = eﬁF(l‘ 2) exp[- f/,_f (@) (€. (0 /€, (2)—1

etk Ly 424 B0 erp itk

Where £ and are determined from Egs. (9) and (11). This set of

(12)

equations encompasses a complete formal solution, within the paraxial
approximation, for the electric field of cw Gaussian beams in a nonlinear
wavequide described by the model dielectric constant of Eq. (l).

Certain general characteristics of the propagation are evident
directly from inspection of Eqs (9)-(12). For example, the spatial
profile of the beam is observed to be a Gaussian profile whose focal
parameter varies with distance along the guide z. The z dependence of
the focal parameter is influenced by the transverse and longitudinal
variations of the dielectric constant of the guide, the nonlinearity, and
the loss. Equation (12) indicates that, oecause of the loss term in E,
the field amplitude decreases exponentially with propagation distance in
a familiar Beers law manner. Finally, note that the phase of the wave
acquires a somewhat complicated z dependence.

The specific characteristics of the propagation are obtained once the

differential equations for f and 4>have been solved. Usually, the

~23-
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primary quantity of interest is the beam intensity, in which case phase
factors are irrelevant and only the solution for f£(z) is required.
Clearly, the solution of the nonlinear inhomogeneous differential
equation for £ [Eq. (9a)] cannot, in general, be obtained by analytic
means but requires the use of tedious numerical techniques instead. For
this reason, we choose not to treat the general case here; readers
interested in the application of numerical techniques to equations of the
form of Eq. (9a) are directed to Ref. 7. Rather, in the remainder of
this report, we specialize in the simplified limit of a lossless,
longitudinally uniform waveguide. 1In this limit, is is possible to
obtain explicit analytic solutions for f(z) that clearly reveal the
effects of waveguiding and nonlinearity on cw beam propagation.

Although in the following we especialize to lossless, longitudinally
uniform guides, it should be pointed out that Egs. (9)-(12) provide a
convenient starting point for treating more general cases. The solution
of the wave equation (2) in the simultaneous presence of nonlinearity,
transverse and longitudinal inhomogeneity, and loss is prohibitively
difficult. If the paraxial approximation is employed, the problem is
reduced, essentially, to the solution of a single second-order ordinary

differential equation [Eq. (9%9a)].

Solutions for Longitudinally Uniform, Lossless Waveguides:
For a longitudinally uniform lossless guide, we set éo(z) =E° ,éR (z)= éR
, and €}=0. Then the focal parameter f (z) satisfies a simplified equation

of the form
dzf _L _ -2 -2 -2
dz? R2 §3 —_6: ) Re = Ry - Ry (13)
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Here Re represents an effective radius determined by the relaive sizes
of diffraction and nonlinearity.

Consider first the case in which Ri 7 0 (Ry< Ry,). The
2
=-2'—[(l+c) +(l—c)<’,szﬂ , ¢70
2 , 'fa
C=€°/€R?e ;) S=(er/€)’2

Thus, for sufficiently small nonlinearity, the beam remains "trapped" in
Iz
’

solution for f yields:

(14)

the waveguide and continues to oscillate with spatial period1r(fa/e§)
despite the nonlinearity of the medium. At this level of approximation,
then, the guide effect totally dominates the diffraction effect, whereas
nonlinearity influences only the amplitude of the oscillation but not its
period.

Several observations are useful: First, it is easily shown that
for the above cases (Ré? 0), f never vanishes, i.e., the beam never
collapses. Second, we note from Eq. (21) that, if C=1l, then f=1

independently of z. From Egs. (13) and (21) this occurs when

z 2 2
| _ egk + k em_ E. _ ! (15)
¥ T e, €0 P2~ WY
5 ° o f, W,
Here Wy is, in fact, just the spot size of the lowest-order eigenmode

of an approximate quasilinear wave equation[one obtained by
approximating, the nonlinear term by using Eq. (7) at z=0]. Thus,
within this approximation, if the spot cize of the incident beam matches
that of tfhe lowest-order mode of the guide at z=0, then one predicts
{not surprisingly) that the beam will propagate unchanged as a function
of z.

Now consider the case in which Ri(O (equivalently, €c<€0). 1In
this instance we obtain‘a singular, self-focusing-type solution for f,

similar to the corresponding homogeneous nonlinear medium case
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irrespective of the waveguide effect. 1In particular, in this case we

find that 2

f:z'[zl—-lcl)'\‘ (l+lC,|)Cos2'§] (16)

Here we define a self-focusing length (zF;TFin dimensionless
units) determined by the condition fz('g) = 0, whence
| i1 lel-! _( €0 \/2 (17)
Se =3 Gos [ICI-H_] ) 27 GR) S¢ .

One obtains a periodic solution for f2, which may be extended to the
region -SF<Y\< 3 .SF as
$2= L[G-t1en)+ (+lel) Gs 2(s-27))

At S =YF and ¥ = 3TF we obtain f2=0, and the derivative of £2 is

discontinuous. The solution for f2 may be summarized as follows: f2

is given by Eq. (16 ) for 0S¥ YF , and

{= 3 [G-1e1) +(+1c) Gos 2 (3-§56)|; 955 € 0T

for j=1 1,3,5... This solution indicates that f2= 1 for even multiples

of'S} and that £2=0 (beam collapse) for odd nultiples ofj; . In this
case, nonlinearity dominates both waveguiding and diffraction, resulting
in self-focusing.

Just as in the homogeneous medium case, the focusing of the beam to a
point (f-»0) is, in the waveguide case, a consequence of the insta-
bility induced by nonlinearity. The critical power for self-focusing
[see Eq. (27) below], as determined from the condition Rd=RNL and the
oscillatory nature of the solution both remain unaltered by the
waveguide. The main effect of the guide is to modify the functional form
of £ and alter the focal length Zp . But, overall, effects that are

due to nonlinearity dominate over those that are due to waveguiding.
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In order to estimate the power level P at which the influence of
nonlinearity becomes significant, we first reexpress ES in esu as
2 I/z 2.
= (-
E, =8FP/ce”f, ,
As in the nonguided case,":"-7 we can consider the critical power P for
which nonlinearity exactly balances diffraction. This occurs when C=0,

i.e., the g3

term in Eq. (13) vanishes identically, whence the beam
propagation is determined exclusively by waveguiding (depending only

on € /€)- Setting C= 0 yields (in esu) for B :

[)L’: C >\2.; 'o’/z/t?(ZU)zé,w, (21)

which is independent of the initial beam radius. By using Egs. (27) and
(28), it is possible to reexpress the condition for waveguiding as

P(Pc whereas the condition for self-focusing becomes P)Pc.

Clearly, the influence of nonlinearity on the focal parameter is greatest
for PZPC with only small changes occurring for P((Pc.

The actual value of the critical power PC varies considerably from
case to case, depending on the propagation medium and the operating
wavelength For ) ~1 um, for example, P Nel/ze -""1011 esu

gth. ) f‘l ’ ple, ¥ o ML
{10 kW] for materials with a large third-order nonlinear susceptibility
(various semiconductors and liquids, such as csz); on the other hand,

13

Pc ~ 10 esu [1 MW] for weakly nonlinenr materials (such as

silicate glasses).




3., NONLINEARITY-INDUCED MODE MIXING

Consider the case of a cw Gaussian beam propagating in a lossless,
longitudinally uniform waveguided. We found that, for beam powers below
the critical power, the oscillation period of the focal parameter remains
unchanged, but its amplitude becomes a function of the incident beam
power. In applications in which the spatial mode structure of beams is

11 by

significant, such as phase conjugation of images in fiber guides
four-wave mixing, it is useful to determine the mode mixing (i.e.,
variation in the modal content of the beam as a function of z) that
accompanies the dependence of £ on beam power. A description in terms of
mode mixing makes the most sense below the critical power, where stable

waveguided propagation occurs (although one may formally calculate the i

mode mixing accompanying self-focusing as well).

We choose for consistency to define mode mixing in terms of an
! approximate initial set of modes obtained within the spirit of the
paraxial formulation.Specifically, if we utilize Eq. (7) and (8) to
! evaluate the nonlinear term, then we obtain what will be referred to as a
§
Z quasi-nonlinear wave equation for the transverse eigenfunction un(f)

and correspondlng propagatlon constants k at the fixed point z=0:

! € iy S 2

{ {'é ;}f’s—f - -é—‘;[ék-l- "LE }f L éé:l. Eo}u“(f): .
i

!

(‘<m —'Ei>lth (fj

| where we have used f(0) =1. The eigensolutions of this equation are

10

(weiting &, for 60(0) anda € pfor Ep(0)]

; U (€) =W, "1 efp (—f’/zw,")l. (¢7/w,*) ]

(23)

- - 2 - ¢
ew, ey, Ea /éof’o 5w = gk /e
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where ghis the Laguerre polynomial and n takes on integral values,

"= 7';-a(W,7'-—' (24)

2-

ko= K (1+Ewm Eol€s) =4
For tne limit of a linear guide on simply setsqwfo, in which case Egs.
(3) and (31) reduce to the well-known expressions for azimuthally
symmetric transverse modes of a linear longitudinally homogeneous
guide.10
In analogy to Ref. (4), we expand the expression for E/E0 in Eq.

(12) in terms of the un's as

E(f,Z)': Eo 2 B. (Z)ua(f) (25)

where un(f) is given by Eq. (23) Employing the orthonormality of the
1{;s yields after much algebra the desirable result.

By defining a dimensionless mixing coefficient as:
z 2
(26)
%—(M,z) = l BM(Z)I /I{”fo

one obtains for the quasilinear expansion set "
'/zi[(o"m‘)'/’—-ﬂz-'rd'(f'f")z} (27)
3(%,'1):(6’#6';) e Tt ! etTTT)
([t HT 0 (- 57}
2 Ty
G kfoq 2. o - l(Jooé" (28)
! fl;i E}, / 2" €o

Several general observations regarding mode mixing in nonlinear

Where:

waveguides follow directly from an inspection of Eq. (37). For example,
we see that mode mixing is generally present. Mode mixing is absent only
in the special case in which C =1 (equivalently, 07-#5: =1), in which

instance f(z) = constant. Physically, this represents the case in which
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the incident beam spot size exactly matches that of the lowest-order
eigenmode of the quide at z=0 .

For fixed 0}, and (fl , the mode mixing is observed to increase with
increasing mode number n. The dependence on01 and 0; is somewhat more
complicated. Clearly, for large values of 0;_ g 07), mode mixing

increases as the nonlinearity o’increases (i.e., as P P

e ). However,

another determining factor, as discussed above, is the proximity of 0,J+01
to unity. When G:+(T;_ =1, mode mixing vanishes, but, as the parameters
depart from this condition, the mode mixing increase.

As is the case for Pc ., the parameters()',land Oican take on a wider
range of values depending on the operating wavelegth, the propagation
medium, and the geometrical parameters of the beam and waveguide. To
obtain some indication of typical values, let us again consider )\°=]j-"“
and utilize the range of values indicated previously for Pc

(104-10°% W). Then

¢ ~ (17=10%)P

where P is the number of watts.
Typical ranges of values for the waveguide and beam parameters
are eofolvlo':; 5 and (kfo)z/é-°~103

The corresponding range for o;_is then 0:~10_

-10 5, respectively.
2

-10~
-10%2, although the

lower portion of this range is more typical of standard fiber guides.
4. SUMMARY AND DISCUSSION

In this section we have examined various aspects of propagation of cw beam

in nonlinear optical wavequides and contrasted the results with those for
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linear waveguides and homogeneous nonlinear media. Analytic expressions
for the dependence of the focal parameter £ of a Gaussian beam as a
function of distance z are obtained within the paraxial approximation.

We have demonstrated the existence of two distinct regimes. For powers
below the critical power for self-focusing in a homogeneous medium, the
waveqguide effect dominates; the beam becomes trapped and merely varies
sinusoidally with z. Above the critical power, nonlinearity dominates
the propagation; the beam becomes unstable, and oscillatory self-focusing
behavior is predicted, in strict analogy to a homogeneous medium. The
detailed solutions reveal that in the wavequide-dominated case, the

functional form for f and the self-focusing distance z._, are modified

F
because of the waveguide. One must carry the approximations to higher
order in order to obtain changes in oscillation period or critical power
because of interactions between waveguiding and nonlinearity.

We have defined mode mixing in terms of the gquasilinear modes (which
have been corrected for nonlinearity in an approximate fashion). We
find that mode mixing is always present in nonlinear guides (except for
the trivial case in which the beam focal parameter is a constant).

These results contrast strongly with those for the linear guide, in which
mode mixing occurs only in longitudinally inhomogeneocus guides. We
obtain analytic expressions for the mixing coefficient g(n,z) for
longitudinally homogeneous guides., The results indicate, in general,

increased mixing with increasing mode number and with increasing beam

power.
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Certain aspects of the present work may be useful in connection with
other nonlinear problems. For example, consider the calculation of
nonlinear pulse propagation in waveguides. All treatments of the
time-dependent case to date have essentially decoupled the longitudinal
and transverse motions by averaging over the transverse coordinates of
the guide.The present work suggests that, for appropriate choices of the
guide parameters (e.g. for sufficiently low beam power), the transverse
motion is indeed strongly wavegqguide dominated, with only negligible
modifications because of nonlinearity. Moreover, the mixing of modes of
sufficiently low order may be small, in which case the concept of
individual solitons associated with the separate modes of a multimode
guide may be valid to some level of approximation. In any case, the
present formulation may help assess under what circumstarces it is
reasonable to decouple transverse and longitudinal effects in nonlinear
pulse propagation.

Another promblem for which the present results may be useful is that
of multiple-wave mixing in waveguides. Most treatments to date assume
that the pump beams are propagated in the lowest-order transverse mode of
the guide. If these beams do, in fact, undergo mode mixing, then the
spatial characteristics of the signal beams may become altered as well.
The present work provides useful input regarding the extent of mode
mixing as a function of the relevant system parameters.

We comment briefly on the possibility of experimentally observing the
phenomena discussed in this paper. In this connection, one must dis-
tinguish between the wavegquiding (P<PC) and self-focusing ( P7PC,‘
regimes. The relatively small changes induced by nonlinearity for P<;PE

are significant primarily with respect to mode mixing. They will




therefore be evident only in processes that are highly sensitive to mode
structure, such as modulation of spatial signals by multiple-wave mixing,
proximity coupling, or guided-wave microbending loss sensing. On the
other hand, the self-focusing that is predicted for P)rPc will be a

large effect, provided that it is not overshadowed by other competing
nonlinear processes. Certain related nonlinear phenomena can easily be
excluded or distinguished by their special characteristics. For
example,soliton propagation requires pulsed as opposed to cw operation
and, in any case, is a relatively low-power phenomenon that serves to
balance the usually smalll dispersion encountered in typical wavegquides.
On the other hand, various parametric processes, such as stimulated Raman
and Brillouin emission and multiple-wave mixing, can, in fact, compete or
coexist with self-focusing, depending on the operating frequency,
propagation medium, and“other system parameters. In most instances,
such processes can be distinquished for self-focusing because they
possess different dependences on propagation distance. The growth of
parametric processes is usually assumed to vary as exp(gPz/A), where g is
a gain coefficient and A is the cross-sectional area of the light beam.
Neglecting all other factors, let us define a minimum distance zp

for parametric processes be setting ngp /A~1, For self-focusing, on
the other hand, when P>> P., and 0/24<6‘, one can show that

z ~AA(PC /P). Thus we find that

2, . RI(EY
Zp 17 \ B :

Consider, for example, fused silica at )allpm and P/P .~ 4, say. For

stimulated Raman scattering, a prominent nonlinear effect in wavequides,
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one obtains zp /zpa/lo-l. This value represents an upper-bound

estimated for zF/zp because the value of zp actually depends on the
initial density of spontaneous photons; moreover, note that zF/zp
will decrease as one moves to longer wavelengths (see Ref. 13). Thus the
condition zg{ z, will be satisfied in a variety of circumstances,
implying that self-focusing should be observable before parametric
effects. Even when zFAfzp , parametric processes may be

distinguished from self-focusing because their observation requires
overcoming linear losses (i.e., g P/ADJ, where & is the waveguide loss);
self-focusing, on the other hand, is an instability, which to a first
approximation is insensitive to loss. Various other parametric processes
may be suppresssed or distinguished from self-focusing in other ways.
Stimulated Brillouin scattering, for example, can be suppressed by
controlling the dopant profile of the waveguide and in extreme cases
could be eliminated entirely by using a source with a frequency bandwidth
larger than typical acoustic phonon frequencies. Multiple-wave
parametric processes will be large only for special "phase-matched"
frequencies; moreover, tight tolerance on variations in diameter and/or

in numerical aperture along the fiber must be satisfied. These

considerations serve to distinguish self-focusing from other nonlinear

effects operative in waveguides.
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RADIATION LOSS IN TAPERED WAVEGUIDES

1. INTRODUCTION

The role of junctions between large-core multimode optical waveguides
and small-core single-mode guides in integrated optical devices has led
to interest in tapering between fiber waveqguides. This interest has

1,2 3-7

included experimental and theoretical-numerical studies of

tapered structures. An important theoretical basis for several of these
studies4-5 has been provided by the step-approximation method developed

8.9 for tapers in step waveguides. This approach is derived

by Marcuse
from usual perturbation methods by regarding arbitrary waveguide
deformations as a succession of infinitely many infinitesimal steps. It
has provided improvements in calculating tapering losses beyond the
initial development of the perturbation theory of small-wall
distortions.10
We use an alternative approach, the eikonal approximation

11,13 for the calculation of the total radiation loss of a

method,
guided mode that is due to a symmetrically narrowing linear taper. This
approach has been developed in the engineering literature for optical
dielectric waveguides as the concept of local normal modes (LNM's) or

16-18,21 Laralleling earlier work on metallic

tapered modes,
waveguides. However, the word eikonal has also been used by physicists

to describe a similar approximation scheme involving a

Wentzel-Kramers-Brillouin (WKB) approximation for the initial state in a

scattering matrix element.l3’19

We present the eikonal or LNM approach by beginning with first

principles for TE wave propagation in optical slab wavequides,

P VU




indicating both the small parameter of the method and its region of
applicability. The radiation-loss calculation is based on a
weak-coupling approximation in which a propagating undepleted symmetric
pump mode couples with radiation modes in the tapering region. This
represents no inherent limitation on the eikonal (LNM) method but does
facilitate comparison with perturbation theory and with the
step-approximation method.

The total radiation-loss result is reduced to similar results for the
step-approximation method by keeping only the more important of two
matrix elements on which the coupling theory is based. Radiation-loss
calculations for tapers have been made previously by using other

15,20 but the eikonal (LNM) method has not been directly

techniques,
employed for this purpose.
2., RADIATION LOSS OF A SYMMETRICAL LINEAR TAPER

From the time-independent wave equation for TE modes and refractive
index n(r,z), with longitudinal and transverse variables z and r,
respectively, the electric field is expanded in terms of longitudinally

11 The

dependent coefficients Am(z) and transverse functions ¢‘(r,z).
latter are parametrically dependent on z and are defined to satisfy
eigenvalue equations of the form
3
2 2 3 —
Vi ke ni(ee) | Q (k2 = B (2] ¢, (£32) (1)
Whereggm(z) is the corresponding eigenvalue that is also assumed to be

parametrically dependent on z and Ko = w/c. Use of the expansion

Elre) = S5 A_l) ¢, (rz)
™




in the wave equation and mode orthogonality result in an infinite set of

coupled equations

2
i_Aj + 52(11 A'D\ +Z-26-“M dAn\ + Z E Aw\ = 0
2 n nm (2)
4z ™ dz -

We have employed the shorthand notation

"o <®n]ﬁ{¢*~> = f! ax Q:ﬁ b (2a)

3 = dr ¢ ' 3
3?““> /, £ b Tz‘¢“ (2b)

Equations (2) provided the basis for analysis of physical processes such

D

Ll

L
n

Frm (8) = < 0,

as reflection amd mode coupling. The only limitations on the above

theory are that guide changes must be gradual enough so that the ' i

adiabatic assumption of the parametric z dependence applies. This is

equivalent to the condition

dn (r2)
o <K 1 (3)

A

n

where A is the wavelength of the radiation in the medium.
In order to apply the above general theory to our tapering problem, E

we first consider the propagation of an initially strong mode ES, = A1°1
which is undepleted on interaction with the other modes. Equation (2)

then becomes

3A )
dhe gy (,sj(a\ ‘@) A @ = 0
d2t

(4a)




which, for ~’f€‘(-1= '8:(3) + F‘u (2) )
(4b)

and has the solution12

&
‘:/ *, @) d2’
o

-
A,l (2) = Alo ‘é(. (2) e (4c)

where terms of the order (dzkl/dzz) and (dkl/dz)2 have been
neglected. Equation (4c) is valid away from turning points.

A reflection coefficient can be defined for pump mode EI =Alxol by
using the field expansion E =E; + E

» =(A,*+ A, )¢t in Eq. (2) giving

A*A,

2 {5)

— —_—

L3

2 | #®,@')d2' ,
‘K + -kl (!) A/ck = Alo e '(7 _‘(2) d * ‘3)
! d 2 2 d2

*," (0)
Here k' (z) = d#®,/d2 , and the effect of the neglected second-order

derivatives for AJ_I(Z) in Eq. (4c) on Ail(z) has been retained in the

right-hand side of Eq. (5). In Eq. (5) the fast and slow dependence of

Alg(z) can be separated out by focusing on A (z):

. e '
—t/o it(i‘,di ~‘:6¢ ‘!) ‘
Al = 41 e = A, lale

. e ——————

(6)

Z
where 64 (8) =f +*, (a') d2’,
°

By substituting Eq. (6) into Eg. (5) and neglecting the se~ond derivative
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of LN (z) in a slowly varying amplitude approximat}on, integration of

the result for a disturbance located between 0 and z gives the reflection

coefficient
2 - 2c6 @) *
R - a—tl {0) N L _I__ -d_- _‘z (2,) e (4 dal
¢ %, @) A2 4
ﬁl./*‘.h (9 0 ‘ 7

A similar analysis for coupling between two modes with dissimilar
transverse structure, a pump mode £ and a mode n with forward- and
backward-moving slowly varying components,

+1 6, (%) _

-6, @)
A (a) = a.l*(z) e + a_(a)e
n

results in forward and backward and coupling, given by

\Il * M 2
'k“_ (3) &, (3)

N W (s, ¥6,)
G (E.l e dz’

"L J

‘A r ,
(.__(: “‘(!) L ¢ [‘ﬁ (8)

“kn 2 (o) a_‘: (o) 2 (*l*‘)l;g +*

n

The mode conversion or forward scattering of a propagating, guided
mode to radiation modes that is due to a linear taper is an extension of
the above. The geometry of this problem is a longitudinally symmetric
linear narrowing of a step-index slab quide with infinite cladding. The
longitudinal direction is divided into three regions for which the guide

. half-width L(z) assumes the values (L _)L+):
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L- 2 ¢ 2 a2
L@)= L) = L_—% (2 - 2,+a2) 2-a2 ¢ 2 €2
(9)
L, g, ¢®

Within the guide, for [x| § L(z), the index of refraction is ny
whereas outside, for Ix| » L(z),it is n, where n, > n, is
14

assumed. Note that &L = L_ - L .

. . . [ 3. 'LE

For TE modes, the wave equation is simply ( $TE sy )+ (J /yet)
+ nzkgE = 0, where n = n, N, in the appropriate transverse
’ ’

regions. From the field expansion E(x,z) =;E A(z2) ¢,‘(gz))
M“

the eigenvalue equation for ¢, (x,z) becomes

4.

yx?

+ h-z '(ol ¢m = Ieml(z) (pv'\ (190)

where (3, (z) is equivalent to the longitudinal wave number. When we

define

2 2, 2
K, =m ko ~ &, (xl ¢ L (11a)
2
Yo = B =m} ko Ixt > L (11b)
the symmetric normalized (orthogonal) eigenfunctions take the form
2) ecea K _(2]X
¢ (x2) = Ny (3] ™ Ixi ¢ L (12a)
m ALY
N, (2) eex Ko (2ILR) & :
xl >L (12b)
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-'{z

where the normalization factor is N (z) = [ L(z) + Y,;“(z)]
Since the linear tapering presents a symmetric disturbance to the

i propagating guided modes, it provides coupling from symmetric modes to
! . other symmetric guided modes and between antisymmetric and other
antisymmetric guided modes. We simplify the analysis by treating only
the former cpupling. Note also that the 2z dependence of Km(z); Y,n(z)
in Egs. (12) is due to the matching of the x components of the magnetic

field, resulting in the (symmetric mode) eigenvalue equation14

dan ¥, (2) L@) = ¥, (2) /KN (z)

If we consider once more the propagation of a single pump mode E& =A‘E~
¢l(x,zq, we find that the longitudinal coefficients of this mode

satisfy Egq. (4a) with the solution from Eq. (4c):

L6, (3)

§ = <
| i Al = A ko " e , (13)
i

This relation is valid away from turning points, provided that
~4
* << @) w
-gc d L//dl n (2) /’C
It will prove advantageous to discuss the coupling of the above

guided mode to a continuum of radiation modes by using discrete

notation. This is physically equivalent to surrounding the tapered step

guide with an ideal conductor at x= % R assumed to be large., We will
recover the continuous notation as the latter distance becomes infinite.

The TE field expansion Ep,. (x,z)= s, B‘(z) “Pt(x,z) in the wave

equation, together with the wave-number definitions
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i e e .

——— e ———— .

2 22 2
e [x1 ¢t (14a)
A= oy K-y x> L (14b)
leads to the following transverse eigenfunction structure for the
symmetric radiation modesl4:
Mg (3) o= 0 X (Xt <L (15a)
VoY =
L 4
|
2 [y @) [ e (py l""’L,,‘*‘} Xt 3 L (15b)

L

The radiation modes are assumed to exist for z zzo - A2, and the
continuity of the related magnetic-field components at the transverse

boundaries gives

; B
(o U m, ) opton : |
"m(%}={m(a)\e = %t e Coa 0 LRI~ ¢ O s 0o L2
+ § 2 * — 4 '. (16)
L. s 3
By considering the slowly varying amplitudes bq(z), where Bq =
bq exp( + iﬁ‘z ), and neglecting the second derivative of bq(z), we
can obtain
[
b, (232, = b, = ~ —— | dh, oA
¥ a 4 208 J 2 ";i*,{ G‘,L+ Alr F%; 2 da (17)
2,42
The total forward-scattered radiation loss can be evaluated from Eq. '

(17) in the limit of the continuum by




Total radiation . Z ibi’_‘_:__.

mode loss T R g (At../*t-) (18)

In this limit, the radiation mode wave numbers of Egq. (14) become

|

* 2 * I
By — Blp) = n k- pt (19a)

2 s . 3 2 _ B 4
0 = olp) = (et kT et s ke (19b)

where Eg. (19b) defines Kg. Since we must sum over all
forward-propagating radiation modes, we restrict the range of integration

on p to 0 ¢ /:Q "ZKo to avoid imaginary /.‘11' . With these, Eq. (18)

becomes, as bq——» b(‘a),

Total radiation n, Ko
mode loss — _ _f  e——= =
R —> oo 2 ™
Jo (Hlo /‘k[ )
Also, it can be shown form the definition [Eq. (2a)] that
_ a2 My (2) N,
G = O ) el

K, (@) - ory &z t

Furthermore, F’l(z) of Egq. (2b) provides higher-order corrections
AL
Az
first-order calculation., Further approximating-ﬁl(z) by /3}(2) from Eq.

in to G“(z) and hence may be neglected in the following

(4b), we obtain our main result after some algebra

Total fractional forward-scattered 2’
radiation loss 2 {[ﬁ,ll'bda"— glp)2 !1
nK, * 2,-a0
AL\L
= [de 9K (E\ , n P K el € o
o Az [/31 /51] _— —- (s ;L)v; .
- +ﬂl'/) (‘(xt’ 0‘)(/"”}’[ '"l“‘;""q " 4 (21)
o [any* }
2, 0%
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For convenience, we summarize the locations of the definitions of the
symbols of the fractional loss, Eq. (21): K}.'.Px.' ¥, are defined by
Bqs. (11); B(p), o (p), p are related by Bgs. (19); K.=(nj-n})K,’
is defined in Eq. (19b); L(z), Az, 4L/A% are defined in Eq. (9).
Also B, (z) is found after obtaining K, (z) from the eigenvalue equation
with L =L(z) from Eq. (9). It is only slightly different froijL! which
is obtained by using L=L-.

The fractional forward-scattering radiation-loss result of Egq. (21)
has been limited only by the first-order approximation, including only
G$L(z). However, the relatively mild approximations involved are still
insufficient for analytical evaluation. We may obtain the main effects
by approximating the integrand of Eq. (21) to zero order in the
longitudinal dependence for the amplitude and to first order in the
phase. This would be reasonably accurate for weak tapers. The essence
of the eikonal approach is that it correctly takes into account overall
phase changes of the wave while propagating through a disturbance. This
is the main distinction of the eikonal approach as compared with
perturbation theory.

Furthermore, we expect the strongest coupling to the radiation modes
to come from higher-order guided modes since the latter are less confined
to the core and have stronger cladding fields. For such guided modes,
the value of K ,(z) L(z) can be seen to lie near fw from a graphical
evaluation of the eigenvalue equation. With this, the zero-order value
for K,(z) is ﬁkz)&w:sxw(L-f‘and the values are similar for the other

variables related to Kl.(z) from Eqs. (11). The lower-order guided




modes, which are more tightly confined, have Kl(z) near (21+1)/2

[™ /L)) = (21+1)/2 (™ /L.), and hence the matrix element G’l(z) of

Eg. (20 ) becomes small. For higher-order guided modes, to zero order

in the z variation,

K, = A/ _

(22a)
i I/x
_ x 2 [4w\t - 22 :
/‘02, - ["\- L ‘<—L-_\] = ﬂl\ = ["- Ko 'kl- ] (22b)
0
L3 / kS
Ylo = (hql- h“) Kgl-’ /1—1-‘ = ((—Kt.l—— I:(_TI'\' | (ZZC)
iy Lo !
L \ J
Recall that Kx_ is the value of Ki(z) from the eigenvalue equation
evaluated for L(z) = L-. Also, in the denominator of the integrand in

Eq. (21), the following rather complicated factor will be approximated as

ty I e
[p et (p) LR} + 0 1p) dun () L(~zﬂJ = [rl— (o p*) c.fcrL} = Lolv kc‘c.._zo[" =ie-k J{

where we have neglected the oscillation that is due to cos2 0 L(z) over

the transition region.

We now use the guide width variation to define the variable

< (?)- AL !“2."A2‘
L. A%
U .
Ly = Lo = L_ - AL (g_5 +a2) = L. f“"(?l) :
Al

when the above approximations are combined, Eg. (21) becomes

-47-




Total fractional

4K (ALl
forward-scattered ¢ l, s { —331~.’I9H1%p
 §
radiation loss = A (p)+ : ~L— (l(‘-tr(pﬂz "l(f')‘? AT (23)
{az) j
2 2
—~“ol .
where I(ﬂ:;fl'w“ ‘“'( ’ | CoL ¥ -igate ¢ f Aro (1~ %o (2") dz]
“.) i é;we R Rt
L Lo
ic‘AE
1C€L- . !/ «, LS "
+ e enp |-ioL ('] ~cpe'+ t/ Bio (l~— .Ld(a"\) qz
2 -o2 Bat )

The resulting quadratic z dependence in the exponentials in Eq(23)

permits the z integration to be expressed in terms of Fresnel integrals

X
= o Tt ey = [ Twidw

With these, the result of the z integration in Eq. (23) is

2 3

o

+ 2 esu ¥ (Ac.‘Acv + A4S, ASV) + A g ¥ (Acv Asu~A<uA5y)

(25)
Here Ac, = € (w)~ C¢(u) ' Ac, = ¢y}~ C(v)
AS, = S(w) - S(u) ASV=S(VI\~S(V.§)
(25a)
and we have defined the following dimensionless parameters as
- . -
“0 = ’ /-Jll A! ’k’o _AL
° PR (25b)
Lo B




w = (24l ( (Be,~mip)) a2 + () AL )
2 LS - + 1 “,
| Crosr) Koy 2L ]

- .rzl_;]’h (Bro- Alp1) 02 *+ 0[]l
" —— e i :

(8 82) Kb ac

ﬂloz C. ‘g[z [ S _l‘
w [ ) "
v = [z_u.]" (Beg=B1p)) B2 - o) AL AR E¥ ! (R rip1) 87 - ofplat
2 * j —— e e - D ‘ ' =,"‘ ° — ! -
. [} ) .
L (B, B3) 4,5 8¢ | R (Be,8%) %, &~
a2 l =
(25cC)
27—
and Y= 2op)t <ﬁ‘° Al g
L Ay, I (25d)

By using Egs. (25) in Eq.(23), we obtain

Total forward-scattered
"'l ko

| | el
Ar

radiation loss =

—_— ——

o ot ) (80 ame) (k- o) (- )
(26)

where {-ﬁvﬁ denotes the f dependence within the Fresnel integrals as
indicated by the part of Eq. (25 ) within the braces. Because of the
nature of the approximation in Eq. (22a) ,Eq. (26) as written is limited
to higher-order pump modes. However, if the dependence on Klo,r"o,»‘lo
is changed to Kx-‘n-\ﬁu'i“ Egs. (25) and (26), the latter are also
suitable for describing the radiation loss of the lower-order modes.

The graph in Fig. 1 illustrates the fractional radiation loss for

four cases of taper step size using Eq. (26) for A =l uw free-space guided

mode wavelength. The four cases,asL = 7.5,5,2.5, and 1 um, correspond to
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tapering angles of approximately 8.5: 6: 3: and 1°, respectively, for an
initial guide half-width of L- =25 and a tapering region length az =50

am. The refractive-index values chosen were n1=1.05 and n2=l.00.

These parameter values permit only i1 of the 15 modes that propagate in

the initial wider guide to propagate through all four tapers. .

These four cases show a rapid increase in total radiative loss as the

mode number approaches the cuttoff value, particurlarly for the smaller
taper angles. This tendency is in agreement with similar results
observed in Ref.5. Note that the near-linear behavior of the total
radiation loss on a logarithmic scale for the smaller angles indicates a
roughly exponential dependence on mode number A, RAD-§“Mﬂf Analogous
results are seen in Fig. 2 in which the same parameters are used for
plots of radiation versus step size for the modes indicated. Again
RAD'vé““ﬂf These trends could serve as useful rules in making
comparative estimates of the radiative loss in such structures. Of
course the accuracy of this approach decreases as both aL and the mode
number 2 increase since they both contribute to an increase in the
left-hand side of Eq. (3). Similar plots obtained using perturbation

theory indicated higher total radiation loss for the higher modes as

compared with the plots of Fig. 1. Modes beyond those shown are totally

reflected and must be treated by a different analysis because of the

breakdown of the WKB approximation inherent in the theory through Egs.(4).
3. DISTCUSSION

The suitability of the eikonal or LNM prodecure to tapering problems
has suggested the main calculation of this section, a derivation of the
total radiation loss of a guided mode that is due to a symmetrical

linear taper. We have limited our results to a weak-mode-coupling




theory in which an undepleted pump mode transfers energy to radiation
modes and the coupling equations are not solved in a self-consistent
manner.

An evaluation of Eg. (21) with zero-order amplitude and first-order
phase approximations leads to Eq. (26), which involves Fresnel
integrals. This shows the total radiation loss to be essentially
proportional to the gradient (AL /4% ). Analytical evaluation of the
final result of the integrations of Eq. (21) is difficult, but it would
serve as an appropriate starting point for further numerical studies.
In contrast, the approximate expression to Eq. (21), Eg. (26), requires
only a relatively simple one-dimensional evaluation. The plots obtained
numerically from Eq. (26) illustrate the application of the theory and
provide guantitative results for the total fractional radiative coupling
of guided modes in the undepleted pump approximation. As expected, Figs.
1 and 2 show a strong increase in radiative loss for increasing AL and
for modes approaching cutoff. The approximate exponential dependences
noted in the figures have not been discussed before. Furthermore, the
total radiation loss for tapers has not been previously calculated by
using the eikonal or LNM method, and this quantity particularly
facilitates comparison with experiment.
j The simplicity and general applicability of the eikonal or LNM method
{ under the provisc of small gradients havc been indicated in the
! development of the theory. The approach is particularly well suited to
j investigating tapered structures but is also readily adaptable to any

gradual longitudinal disturbance.
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FIGUK.. CAPTIONS

FIG. 1 Total fractional radiation loss vs. mode number from
eq. (2¢) for radiation A = 1 4 in a slab waveguide of initial

254 and tapering region 4z = 504 ,tapering angle

halfwidth L_

=f§ , N, =1.05 n, = 1,00: (a)8L = 7.5 (b)AL = 54
(c)Aae = 2.5 4 (d)AL =14 . An approximate exponential dependence

on mode number is noted for AL = 1 4 .

FIG. 2 Total Eractional radiation loss vs taper step size
from eq. (2.6 for the same parameters as in Fig. 1. (a) mode 9

(b) mode 4 (c) mode 4 (d) mode ©O.
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