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LINEAR AND NONLINEAR PULSE PROPAGATION IN OPTICAL WAVEGUIDES

1. INTRODUCTION

The possibility of transmitting undistorted pulses with high peak

powers guided by fibers could prove useful and find application in

various fields. Intense, ultrashort light pulses guided by fibers could

be used to achieve ultrahigh data rates in communications, to perform

surgery in medicine, for cutting and welding in industrial processes,

etc. The nonlinearity which governs the propagation characteristics

arises from the real part of the guide refractive index, although

dissipative nonlinear processes could in principle affect the pulse as

well.

The theoretical problem of transmission of nonlinear pulses in

optical waveguides is both interesting and challenging, since it involves

the simultaneous interplay of transverse confinement, dispersion and

nonlinearity. Solutions in many areas of physics have already been

obtained (SCOTT, A.C. et al., 1973, for example) and considerable

knowledge has been gained for the one-dimensional pulse propagation case,

while two- or three-dimensional nonlinear propagation is still in its

infancy stage (GERSTEN,J.I., et al., 1975; KAW, P.K., et al., 1975;

WILCOX, J.Z., et al., 1975; ZAKHROV,, V.E., et al., 1979).

A critical limitation in the realization of the full-bandwidth

capability of optical transmission systems is pulse broadening resulting

from dispersion effects (GLOGE, C., 1971; KECK, D., 1976, for example).

Although dispersion can be minimized by an appropriate choice of guide

materials, geometry and operating frequency, it is apparent that

dispersion effects will be detrimental for sufficiently narrow



pulsewidths. To overcome this problem the nonlinear dependence of the

refractive index on pulse intensity may be used. Here the dispersion

effects result in the broadening of the pulses, while nonlinearity tends

to sharpen it. It is the appropriate interplay of these opposite effects

which can lead to a stable soliton solution for the optical pulse. But

nonlinearity can also introduce a host of other effects (CHIAO, R.Y., et

al., 1964; HASEGAWA, A., et al., 1973; TZOAR, N., et al., 1976; SHIMIZU,

F., 1967) such as self-focusing and self-phase modulation. However, each

of these effects is dominant only in certain regimes characterized by the

dispersion, peak intensity and nonlinear parameters.

Self-focusing, which occurs for finite-sized beams, requires a very

high critical intensity. This phenomenon is an instability which causes

a finite-sized beam to collapse to a point, due to an effective focusing

lens induced by its own intensity. The condition for self-focus is

independent of the dispersion parameter and represents a competition

between nonlinearity and diffraction effects. Indeed, for Gaussian beams

the condition for self-focusing to occur is given by

Here k= 2 I, whereA is the free space wavelength: eO( 6 ,I) is the

linear (nonlinear) dielectric function; and and EO are, respectively,

the radius and on-axis field intensity of the beam. This condition is

not affected by the guide's parameters. The guide, by balancing

diffraction, provides stable trapping of the beam at a finite size even

for fields below the critical field (the critical field is defined by Eq.

(1) when the equal sign is taken). For glasses one finds the critical

power for self focusing to be of the order of 107- 108 W/cm 2 much

greater than the power needed for soliton propagation.

-2-
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The soliton problem in optical waveguides appears to have been

considered first by HASEGAWA and TAPPERT (HT) (1973) but these authors

did not take detailed account of the transverse inhomogeneity in their

analysis. Subsequently, JAIN and TZOAR (JT) (1978) introduced an

approach that accounted for the transverse inhomogeneity of the waveguide

in an average fashion, and were thereby able to demonstrate that in fact

typical fiberguides could indeed support "bright" solitons. This

contrasts with the results of HT who found that anomalous material

dispersion or very large core-clad differences (4 n'0.5) are required

for "bright" solitons to exist. The approach of JT has been generalized

by BENDOW, GIANINO, TZOAR and JAIN (BGTJ) (1980) to include variational

analysis and to treat longitudinal inhomogeneities, and by CROSIGNANI,

PAPAS AND DI PORTO (1980) to consider the role of intensity fluctuations

on nonlinear soliton propagation in optical waveguides.

2. THEORY OF PULSE PROPAGATION

Consider an optical waveguide having a dispersive and nonlinear

refractive index of the form

W AW(2)

where W is the frequency, E is the electric field and n2 the nonlinear

coefficient, taken to be independent of frequency. Moreover, nI is

represented by its local approximation, i.e.

rrit (3)

In what follows we consider propagation of pulses which are narrowly

centered about a given frequency (O. and assume that n1 (W) is a slowly

varying function of W.) in the vicinity of). The electric field is

taken to be A

All AMit)(4)
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Where e is a unit vector in the transverse direction, r= (r,z), and z is

the direction of propagation. We then obtain for A the wave equation:

--7#~- -+LL a' f f(A~k. 2Lk.kofn)- 5

k. 422.a A

i DZZ (C)

In Eq. (5) k(&j) =nl((#j)W/c and the primes indicate derivatives with
respect to W at (.) " The appearance of the time and frequency

derivative only to second order is a consequence of using the slowly

varying envelope approximation in deriving Eq.(5).

For the waveguide problem f is always inhomogeneous in the transverse

direction, i.e., f(I) = f(f). Under these conditions it is extremely

difficult to obtain time-dependent solutions to Eq. (5), either

analytically or numerically. We therefore seek an approximate solution

to Eq. (5), based on the observation that the material dispersion in

optical waveguides is generally very small. Our previous discussion

regarding the balance between dispersion and nonlinearity suggests that

the nonlinear effects will also be small in the guide case. We thus

expect a negligible effect from the nonlinearity on the mode structure of

the guide. Physically, the spatial trapping of the beam and its

localization within the guide is dominated by the transverse

inhomogeneity. If nonlinearity were absent, the pulse in the guide would

experience broadening due to dispersion. The correspondingly small

effect induced by the nonlinearity is capable of balancing this

longitudinal dispersion. Moreover, it seems reasonable on general

grounds to assume that transverse inhomogeneity has only a weak effect on

the longitudinal propagation of a pulse along a narrow guide. Rather,

I -4-



the main effect of the transverse inhomogeneity is to determine the mode

structure of the linear guide, with the longitudinal propagation

characteristics of the modes subsequently being modified by the

nonlinearity. This approach, which was first introduced by JT, leads to

an approximate solution

where the longitudinal characteristics of the pulse are found by taking

the transverse average of Eq. (5). Taking any of the linear mode

solutions for A(r,t), multiplying Eq. (5) by4(?), using Eq. (6) for

A(r,t) and integrating over the cross section of the guide, results in

the following wave equation for e(z,t):

~~v-V ~ ~ k .fz)oo f (-k k (7)-1

In eq. (7) we define the fuction f(z) as

and

d, f . f:,,o f.' (9)t)
cf1  k/iL f (10)

The electric field can now be written as

The effect of the waveguide is now included solely by means of the

parameters dI, d2 and f(z).

-5-
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We now consider the longitudinally homogeneous guide. Here f(z) =f

and Eq. (7) supports a particular solitary solution for 9 (z,t) S

9 (t-z/v), where

vZ$/oko f (12)

and

(13)

with the conditions:

T '2. 0 {.d,4d2 o/2 (14a)

4- df)/ - d2 (k oo2e)J1dz o
ku; 3s) A 2- - ( k o< #- b )t X= d, 69o2- (14b)

The significant difference of our result (give in Eqs. (14) from the

homogeneous medium case, is the factor d1 above, which is a direct

consequence of the transverse inhomogeneity, i.e., the waveguiding

mechanism. for example, we consider the condition for the "bright"

soliton solution, given in Eq. (13) when the nonlinear factor d2 is

larger than zero. The requirement Y> 0 implies that

For the present case, in which d will be negative, Eq. (15) may be

satisfied even when k°" >0. This contrasts with previous predictions

and with the one dimensional soliton solutions which predict that
"bright" solitons will exist only if ko "< 0.

We point out that Eq. (7) admits a "dark" soliton solution, first

realized by HT. Here a solution of the forme=%fl- sech2[/(t-z/v) ]

exists for(e1 . 1. For the particular case of dark solitons, where

e, is take to be unity, one obtains

(16)

-6-



and the corresponding conditions given in ref. 10.

For plane waves ko" = 0 indicates the zero dispersion condition which

determines the frequency at which a pulse of "zero" amplitude will

propagate without distortion. In our case the zero-dispersion condition

becomes + + V *(17)

for either type of soliton. Since d 0 require kO" > 0 for the

zero -dispersion condition to be realized. To illustrate these results

we consider the truncated quadratic profile

a/L < r (18)

We approximate (f) by the transverse wave solution for the linear

problem when P-v t, in order to avoid numerical computations. This

approximation is very good for the lowest modes. Following our

procedures described above, we obtain for the bright soliton,

0 _ 21V)1

[k kV+k i (19)

The zero-dispersion condition becomeS (k 0 1/k,) (kL )
2

For 1 pm light in fused silica we then have koL -2 x 10

If f2 /L 2 = 2%, for example, fo, 4.5p.m, while if
0

YO 2 /L 2 = 1%, fo - 3.2,pm. These estimates become increasingly

inaccurate as fo/L decreases. JT have obtained similar results in a

-7-



previous paper, where regimes of bright and dark solitons as a function

of L and 0 are indicated graphically as well. JT also present
0

calculations for step-index fibers, utilizing the transverse function of

the linear problem (i. e. the Bessel function). We may use their

graphical results to estimate the soliton pulse power density for typical

cases. We find, e.g., for the lowest-order mode in a silica fiber with

core radius 5Pm and carrier wavelength I Pm, that the power density

P 1Vl05 W/cm 2 for a pulsewidth of S-i1 ns. For longitudinally

inhomogeneous waveguides the nonlinear pulse propagation becomes further

complicated when the guide refractive index varies as a function of z.

Logitudinal inhomogeneity is, in fact, quite common and stems from

compositional and diametral variations, as well as microbending. Such

variations can be modelled, at least approximately, by retaining a

longitudinal dependence in the effective guide refractive index, f=f(z),

in Eq. (7). Unfortunately, there are no known methods of solving Eq.

(7) in this instance. On the other hand, methods for treating slowly

varying variations have been developed, within the adiabatic

approximation, for one-dimensional nonlinear propagation in the absence

of frequency dispersion (CHEN, H.H., et al., 1976 and 1978). We are thus

led to consider an approximation in which dispersion and longitudinal

inhomogeneity are assumed decoupled; specifically, we assume

(20)

i.e., the dispersive terms are replaced by their values in the

homogeneous limit. Thus, we retain interactions between transverse

inhomogeneity, dispersion and nonlinearity, on the one hand, and between

-8-



longitudinal inhomogeneity and nonlinearity on the other.

The solution of Eq. (7) in this instance is straighforward but

tedious. The reader intersted in details is directed to BENDOW et al.

(1979 and 1980); we will here just state the results. As in the

longitudinally homogeneous case, E is given formally by Eq. (11), but

now takes the form

e (21)

Where =Yko k 'F/q, and qe,0De and ve are time dependent

effective wave vector, frequency and soliton group velocity, of the

longitudinaly inhomogeneous waveguide, respectively. These are given by

(GIANINO, P.D., et al., 1980)

The principal result of the above development is that, remarkably,

the soliton retains its shape in the presence of weak longitudinal

inhomogeneity, although its velocity change with time. The

time-dependent velocity in this case contrasts markedly with that of the

longitudinally homogeneous case where v=q/k0 k0 'f is a constant. For

example, when the inhomogeneity is nearly linear, i.e., whenAn = 2Uz,

then

Ve d,( VO(22)

so that the soliton acquires a constant acceleration proportional to .

When the inhomogeneity varies quadratically, n= v2z2, then

Zo 2 t /23

-9-



i.e., the velocity varies sinusiodally as a function of t. Not

surorisingly, the soliton executes oscillatory motion as a function of

time, characteristic of a particle trapped in a harmonic well. Formal

solutions may be written down for a variety of other cases as well, such

asn-sin2 P4 z, in which case ve involves elliptic integrals

(GIANINO, P.D., et al., 1980). In this instanced, one again finds that

the soliton executes a complicated oscillatory motion as a function of

time.
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SELF-PHASE MODULATION IN OPTICAL WAVEGUIDES

Self-phase modulation was first observed by Shimizu I when a

modulated spectrum appeared after self-focusing had taken place in a

liquid-filled cell and was explained as phase modulation due to the

intensity-dependent refractive index. It has since been observed 2 in

the absence of self-focusing or self-trapping and at low powers by using

liquid-filled glass fibers. Recently, some measurements of frequency

broadening of mode-locked laser pulses due to self-phase modulation in

single-mode silicacore fibers have been reported. 3 The theory used in

ref. 3 is the one developed first by Shimizu for short samples, and

shows symmetic broadening of the spectia due to self-phase modulation.

We present calculations for the frequency broadening due to

self-phase modulation which show an asymmetry in the output spectrum for

symmetric initial pulse. Comparison with results of Ref. 3 is difficult

to make at present, firstly due to large asymmetry of the incoming pulse

and secondly due to dispersion effects which will be discussed later in

this paper. We thus limit ourselves to the development of the theory and

determine the realistic conditions undr which comparison between theory

and observation is easy to make.

We limit ourselves to a one-dimensional wave propagation of an

optical pulse propagating in a glass characterised by a nonlinear

refractive index n. The electric field E ( z,t) is given by the wave

equation4 5 -

I 1"_ 5,1'l

CL --- C C1
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where nZ represednts the nonlinear part of the refractive index

withI(0 n(6),), where Wo is the frequency of the electric field and DjL is

the linear displacement.

We write the electric field in terms of a slowly varying envelope

where q is the propagation constant and find 5 that A(z,t) obeys the

equation t i &

~~+ jjq+ (V+-0kk2~.k)i1Azi

where A

In Eq. (3) we retain only the first and second time derivatives of

A. Here we make the usual assumption that our dielectric is weakly

dispersive. This is an extremely good approximation for SiO 2 glasses

for our operating frequency which is much smaller than the electronic

resonance frequency and much larger than the ionic resonance frequency of

SiO 2

To first order we take q=k0 as for the plane-wave situation, and

identify k0' to be the reciprocal of the group velocity v, Thus we

are left with the following equation:

-13-



.(51

In treating self-phase modulation one usually replaces the right-hand

side of Eq. (5) by -2(n /n)k, IAIA as the dominant contribution,

assuming that WT>> 1. Here T represents the width of the pulse.

However, as we shall see shortly, this assumption is correct only for

short enough samples. For long samples, as for the case of self-phase

modulation in optical waveguides, we have to consider the corrections

arising from the time derivatives of J AI A . We will treat this effect

perturbatively and thus will retain only the first-order term, i.e., the
1.-

first derivative of IA1 A . Equation (5) is therefore approximated by

[j'+Zk +'"k 0 A 2,t22 OR(~(.k ad (6)

We now make a coordinate transformation to a moving coordinate system

defined by

-C~ V.

Equation (6) transforms to yield

4ff

To further simplify Eq. (7) we realized that without the dispersion

(k0 ) and the nonlinearity (n2) the solution for A is given by an

arbitrary function oft, say, F1z - v t) /iJ, where z is the legth

of the pulse. It then becomes obvious that while 4/2and k0  / are

of the order of 1-i , the term k0 is proportional to 1 . We can now

-14-
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use the slowly changing envelope approximation which required z to be

much larger than X. so that - 2 k0 a/p. ) A is neglected

relative to(k 0 A)-i.e., the effects of back-scattered radiation are

neglected. This implies that the changes in A per wavelength are

extremely small. This condition is compatible with our suqgested

experimental situation, where changes in A are only observed after the

pulse propagates hundreds of meters in the guide. We next define the

constants
It 2,-

0( U (8)

and obtain our final equation

The detailed solution for A is given in the paper by Tzoar et all (Phys

Rev A 23 1266, 1981). We present here only the approximate result for

the frequency spectrum of the electric field having a Gaussian envelope.

('A 0 'W' fFdtr (10)

where
2- Z'lr _3 -, l

F=expi C1 -- e

L2.

In the above expansion, terms proportional to C4 arise from dispersion

effects and are seen to give rise to a symmetric modulation of the

-15-



phase. The term proportional to , however, is proportional to- and

thus results in asymmetric phase modulation.

To analyze the expression in Eq. (18) we note that in our problem we

have two fundamental lengths, the nonlinear length X= ( Ao ) and the

dispersive length 5,=T/e1 , and also the dimensionaless parameter O T.

We rewrite Eq. (11) in terms of these parameters as

F=expi (lu-o 0) LI T (12)

Here L1 =(')oT /l16 and L2 =(f,!0)fz. The effect of the linear

dispersion can be omitted in many cases since it is easy to makej ,>>

The correction terms depend on L and L2 . The L1 term is the

correction arising from the finite duration of the pulse and is the only

term that contributes in our theory to asymmetric spectrum. To observe

the asymmetric effects, we want the L1 term to be the dominant

correction. We thus need L2 to be larger than L

We note that the ratio f=L1 /L2 should be, ideally, smaller than

unity for our purposes. Here

I 0 sfaA 0

is independent of T and becomes small either at high beam intensity or

for vanishingly small dispersion, i.e., k 0-0.

The dispersion effects can be reduced by operating at a frequency

where the dispersion is negligible 6 as has been recently demonstrated.
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Thus. in Eq. (17), the integrand reduces to

F~~~~~~~ vT~.[wvJ) o YTA-T (13)

In order to make an estimate of the asymmetric effect, we calculate the

value of the coefficient 8''tA2/T2 , using values that can be

attained in the laboratory. Taking I =1 km, T-T=5ps, n2 =1.4 1013

esu, and A =500 S V/cm, 7 we calculate 8 'TA 2 /T 2 e- 0.25.
0 wc

Thus the effect of the asymmetric term compared to 1 is about 25% for the

parameters chosen above and should be experimentally measurable.

We would like to point out that when information transmision depends on

the phase of the carrier, self-phase modulation must be considered as a

noise source that may bleach the signal. In this work we have developed

a theory which is better suited for long ('l km) optical waveguides. We

have shown that self-phase modulation will result in asymmetric power,

and similaly, in asymmetric intensity spectra.
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CONTiNUOUS-WAVE PROPAGATION IN NONLINEAR OPTICAL WAVEGUIDES

I. INTRODUCTION

Transmission of intense light beams through waveguides is of interest in a

wide variety of potential applications, such as integkated optics (four-wave

mixing, optical bistable devices), medical procedures (surgery,

cauterization), industrial processing (cutting, welding), and power

transmission (for electrical hazard zones, say). The nonlinearity of the

refractive index of optical waveguides affects both the spatial and the

temporal characteristics of intense beams propagating along the guide. Here

we investigate certain spatial characteristics of cw beams in waveguides

possessing a real nonlinear dielectric constant. In other work various

temporal effects in nonlinear waveguides, including soliton propagation1

2
and self-phase modulation, have been analyzed. Various phenomena

associated with the imaginary part of the nonlinear dielectric constant have

been discussed previously.
3

The inhomogenous, nonlinear wave equation describing beam propagation in

waveguides is not, in general, amenable to analytic solutions, nor is it

especially well suited to numerical methods of solution. For these reasons,

we have chosen to introduce several simplifying approximations commonly

employed in the literature that make the wave equation analytically

tractable. Specifically, we restrict consideration to Gaussian beams and

employ the widely used parabolic or paraxial approximation.4 This is

essentially a ray treatment, which is most accurate in the vicinity of the

beam axis. Such an approach has heen employed extensively in previous work

to investigate nonlinear focusing in homogenous media, as well as linear

propagtion in inhomoqeneous media.4
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In the present investigation we extend the paraxial approximation to

encompass simultaneously inhomogeneity as well as nonlinearity, but

restrict ourselves to the effects of nonlinearity on the focal

characteristics and on the mode mixing of Gaussian beams that are

incident on-axis. Use of these approximations and simplifications allows

us to examine some of the principal physical effects associated with

nonlinear beam propagation and helps to reduce mathematical complexity to

a minimum.

2. FOCAL CHARACTERISTICS OF GAUSSIAN BEAMS

Here we derive an expression for the electric field of a cw Gaussian beam

in a nonlinear waveguide by utilizing the paraxial approximation. The

results obtained here also incorporate guide attenuation and longitudinal

dielectric constant variations. Since it is not possible to solve the

governing equations analytically in the general case, we subsequently

choose to specialize in the case of lossless, longitudinally uniform

guides. In this instance, one is able to obtain simple analytic

solutions that clearly reveal the effects of waveguiding and

nonlinearity on cw beam propagation. We developed our theory for an

azimuthally symmetric waveguide with the z axis along the length of the

guide andf the radial coordinate in the transverse direction. We choose

a model dielectric constant of the form

2. 2-.(1

In Eq. (1), waveguiding is introduced through the quadratic term in?2

This widely used approximation assumes that the beams under consideration

are tightly bound within the core of the guide. The nonlinearity is
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Ii

introduced through a term in 6 proportional to the square of the

electric field E, i.e., to the field intensity.The imaginary term iEX

accounts for guide attenuation (from absorption and scattering, say).

Finally, we have allowed for longitudinal variations in the dielectric

constant by incorporating a z dependence into 0 andC0

CR" Thus, despite the simplicity of this model for the dielectric

constant, one can account, at least approximately, for any combination of

inhomogeneity (both transverse and longitudinal), nonlinearity, and

attenuation.

If we assume a time-harmonic dependence of the electric field, E

e , then the time-independent scalar wave equation, neglecting gradient

terms, takes the form 4 (ko = W/c)

~ (2)

We look for azimuthally symmetric solutions of the form

Where k2(z) C-0 (z)W2/c
2 . By substituting Eq. (3) into Eq. (2)

.4 IL ., -

and neglecting the terms proportional to )A /P ) (d 6 4 0/sxZ)
0 4Aj !EL ,O4 ,,O one obtains

dz

)~2 C

Equation (4) constitutes the starting point for the paraxial

approximation, in which variations in A as a function of z are assumed to

be negligible compared with a wavelength. It reduces to the same

starting equation employed by various other authors 4 -7 when ,

and/or are set equal to zero.
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In order to proceed with the solution of the wave equation, one

further expresses A in terms of a real amplitude A and phase S as

and substitutes Eq. (5) into Eq. (4) One then obtains two simultaneous

equations for A0  and S: (Z)

z k+ - A - 61) 1E I
kv z ~z VA I<f (6a~c)

---- -S A + + Ao (6b)
-5 z D. f2 f 0

These equations become soluble if we employ for the nonlinear term the

quadratic approximation introduced by Ref. 8; namely, we take

1A (7)

Where the subscript 0 indicates evaluation at =0. One then finds, in

analogy with Refs. 4-7, that Eq. (6) admits the Gaussian beam solution

(k, 1 Ik.6

2 A . Z) eez -f f(a

S C2 fo {(Z)/d.Z f + (2 (8b)

Where f and satisfy

-I t 2 AILe (9a)

i -l .~a) Coz _ I

and
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4

If the incident beam is a plane wave 4, then the boundary conditions

accomplanying Eqs. (9a) and (9b) are

(0) (11)

The complete solution for E is then

5(z c~(') (~(25 ~[~Lf(7)d~ (12)

Where f and are determined from Eqs. (9) and (11). This set of

equations encompasses a complete formal solution, within the paraxial

approximation, for the electric field of cw Gaussian beams in a nonlinear

wavequide described by the model dielectric constant of Eq. (1).

Certain general characteristics of the propagation are evident

directly from inspection of Eqs (9)-(12). For example, the spatial

profile of the beam is observed to be a Gaussian profile whose focal

parameter varies with distance along the guide z. The z dependence of

the focal parameter is influenced by the transverse and longitudinal

variations of the dielectric constant of the guide, the nonlinearity, and

the loss. Equation (12) indicates that, aecause of the loss term in 6,
the field amplitude decreases exponentially with propagation distance in

a familiar Beers law manner. Finally, note that the phase of the wave

acquires a somewhat complicated z dependence.

The specific characteristics of the propagation are obtained once the

differential equations for f and have been solved. Usually, the
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primary quantity of interest is the beam intensity, in which case phase

factors are irrelevant and only the solution for f(z) is required.

Clearly, the solution of the nonlinear inhomogeneous differential

equation for f [Eq. (9a)] cannot, in general, be obtained by analytic

means but requires the use of tedious numerical techniques instead. For

this reason, we choose not to treat the general case here; readers

interested in the application of numerical techniques to equations of the

form of Eq. (9a) are directed to Ref. 7. Rather, in the remainder of

this report, we specialize in the simplified limit of a lossless,

longitudinally uniform waveguide. In this limit, is is possible to

obtain explicit analytic solutions for f(z) that clearly reveal the

effects of waveguiding and nonlinearity on cw beam propagation.

Although in the following we especialize to lossless, longitudinally

uniform guides, it should be pointed out that Eqs. (9)-(12) provide a

convenient starting point for treating more general cases. The solution

of the wave equation (2) in the simultaneous presence of nonlinearity,

transverse and longitudinal inhomogeneity, and loss is prohibitively

difficult. If the paraxial approximation is employed, the problem is

reduced, essentially, to the solution of a single second-order ordinary

differential equation [Eq. (9a)].

Solutions for Longitudinally Uniform, Lossless Waveguides:

For a longitudinally uniform lossless guide, we set6(z) =66,6R (z)= 6

and =0. Then the focal parameter f(z) satisfies a simplified equation

of the form

60 L e (13)

-24-



Here R e represents an effective radius determined by the relaive sizes

of diffraction and nonlinearity.

Consider first the case in which R 2 7 0 (Rd < R The
e NL)

solution for f yields:

Z //1(14)9 3~e /6o)zC~e ee ) R 7-

Thus, for sufficiently small nonlinearity, the beam remains "trapped" in
the waveguide and continues to oscillate with spatial periodlT(&./')iL

despite the nonlinearity of the medium. At this level of approximation,

then, the guide effect totally dominates the diffraction effect, whereas

nonlinearity influences only the amplitude of the oscillation but not its

period.

Several observations are useful: First, it is easily shown that

for the above cases (Re) 0), f never vanishes, i.e., the beam never

collapses. Second, we note from Eq. (21) that, if C=l, then f=l

independently of z. From Eqs. (13) and (21) this occurs when

em_ _tkZ6' . (15)

Here w1 is, in fact, just the spot size of the lowest-order eigenmode

of an approximate quasilinear wave equation[one obtained by

approximating, the nonlinear term by using Eq. (7) at z=01. Thus,

within this approximation, if the spot P4ze of the incident beam matches

that of tfhe lowest-order mode of the guide at z=0, then one predicts

(not surprisingly) that the beam will propagate unchanged as a function

of z.

Now consider the case in which R2 <0 (equivalently, C<0). In
e

this instance we obtain a singular, self-focusing-type solution for f,

similar to the corresponding homogeneous nonlinear medium case
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irrespective of the waveguide effect. In particular, in this case we

find that r. -

Here we define a self-focusing length (ZF;"in dimensionless

units) determined by the condition f () = 0, whence

- s C j 5 cHl 41 7 F ("

One obtains a periodic solution for f 2 , which may be extended to the

region S v .< 3 "5F as

fZ-.+ 4J(-c- -C_ 1) c CoS2S) 1f (18)

At-T = F and S= 3TF we obtain f2 =0, and the derivative of f is

discontinuous. The solution for f2 may be summarized as follows: f2

is given by Eq. (16) for 0 'T , and-- ' <1 < '
C, 40 4 41~O .S2 (S F5 4

;

for j=l 1,3,5... This solution indicates that f2 = 1 for even multiples

of F and that f 20 (beam collapse) for odd nultiples ofT. In this

case, nonlinearity dominates both waveguiding and diffraction, resulting

in self-focusing.

Just as in the homogeneous medium case, the focusing of the beam to a

point (f-#0) is, in the waveguide case, a consequence of the insta-

bility induced by nonlinearity. The critical power for self-focusing

[see Eq. (27) below], as determined from the condition Rd=RNL and the

oscillatory nature of the solution both remain unaltered by the

waveguide. The main effect of the guide is to modify the functional form

of f and alter the focal length zF . But, overall, effects that are

due to nonlinearity dominate over those that are due to waveguiding.
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In order to estimate the power level P at which the influence of

nonlinearity becomes significant, we first reexpress E0 in esu as

5-7As in the nonguided case, we can consider the critical power P for

which nonlinearity exactly balances diffraction. This occurs when C=O,

i.e., the f 3 term in Eq. (13) vanishes identically, whence the beam

propagation is determinel exclusively by waveguiding (depending only

on E /6). Setting C= 0 yields (in esu) for
0

2.- 2 (21)

which is independent of the initial beam radius. By using Eqs. (27) and

(28), it is possible to reexpress the condition for waveguiding as

P<P c whereas the condition for self-focusing becomes P>Pc

Clearly, the influence of nonlinearity on the focal parameter is greatest

for P> P with only small changes occurring for P (<'P,c c

The actual value of the critical power Pc varies considerably from

case to case, depending on the propagation medium and the operating

wavelength. For X l pm, for example, Pc 's.- *' I 0 11 esu

[10 kW] for materials with a large third-order nonlinear susceptibility

(various semiconductors and liquids, such as CS2 ); on the other hand,

P c P 10 1 3 esu [1 MW] for weakly nonlin-.r materials (such as

silicate glasses).
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3. NONLINEARITY-INDUCED MODE MIXING

Consider the case of a cw Gaussian beam propagating in a lossless,

longitudinally uniform waveguided. We found that, for beam powers below

the critical power, the oscillation period of the focal parameter remains

unchanged, but its amplitude becomes a function of the incident beam

power. In applications in which the spatial mode structure of beams is

significant, such as phase conjugation of images in fiber guides11 by

four-wave mixing, it is useful to determine the mode mixing (i.e.,

variation in the modal content of the beam as a function of z) that

accompanies the dependence of f on beam power. A description in terms of

mode mixing makes the most sense below the critical power, where stable

waveguided propagation occurs (although one may formally calculate the

mode mixing accompanying self-focusing as well).

We choose for consistency to define mode mixing in terms of an

approximate initial set of modes obtained within the spirit of the

paraxial formulation.Specifically, if we utilize Eq. (7) and (8) to

evaluate the nonlinear term, then we obtain what will be referred to as a

quasi-nonlinear wave equation for the transverse eigenfunction un(f)

and corresponding propagation constants k at the fixed point z=0:

S If6IJ t'
(22)

10
where we have used f(O) =1. The eigensolutions of this equation are

[writing 4. for &,(0) and 6$for 6Pj0)
Iti ~~W er 1 -r/z, L,,('w'

4 ~ { ~ ) ~ . . I T f ~ 2 .A 
( 2 3 )
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where L is the Laguerre polynomial and n takes on integral values,

41 W (24)

For tne limit of a linear guide on simply sets6=0, in which case Eqs.

(3) and (31) reduce to the well-known expressions for azimuthally

symmetric transverse modes of a linear longitudinally homogeneous

guide. 10

In analogy to Ref. (4), we expand the expression for E/E 0 in Eq.

(12) in terms of the u 's as
n -

E~ f(z (f (25)

where u n() is given by Eq. (23) Employing the orthonormality of the

t's yields after much algebra the desirable result.

By defining a dimensionless mixing coefficient as:

- z1 7/ 77f2 (26)

one obtains for the quasilinear expansion set St

C6- + ,(27)

Where:

(28)

Several general observations regarding mode mixing in nonlinear

waveguides follow directly from an inspection of Eq. (37). For example,

we see that mode mixing is generally present. Mode mixing is absent only

in the special case in which C -1 (equivalently, 9r 1 -), in which

instance f(z) = constant. Physically, this represents the case in which
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the incident beam spot size exactly matches that of the lowest-order

eigenmode of the guide at z=O

For fixed V, and C(, the mode mixing is observed to increase with

increasing mode number n. The dependence onO ' and e is somewhat more

complicated. Clearly, for large values of (>> el), mode mixing

increases as the nonlinearity W increases (i.e., as P -'PP. ). However,

another determining factor, as discussed above, is the proximity of a+d
to unity. When =I, mode mixing vanishes, but, as the parameters

depart from this condition, the mode mixing increase.

As is the case for P , the parameters6land Orcan take on a wider
c 2

range of values depending on the operating wavelegth, the propagation

medium, and the geometrical parameters of the beam and waveguide. To

obtain some indication of typical values, let us again consider A 0=lym

and utilize the range of values indicated previously for P

(104_106 W). Then

where P is the number of watts.

Typical ranges of values for the waveguide and beam parameters

are 10f' -_- -10 - 5 and kf0 32/C 10 o 5-i -i5, respectively.

The corresponding range for Ois then 10-2_10+2, although the

lower portion of this range is more typical of standard fiber guides.

4. SUMMARY AND DISCUSSION

In this section we have examined various aspects of propagation of cw beam

in nonlinear optical waveguides and contrasted the results with those for

-30-
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linear waveguides and homogeneous nonlinear media. Analytic expressions

for the dependence of the focal parameter f of a Gaussian beam as a

function of distance z are obtained within the paraxial approximation.

We have demonstrated the existence of two distinct regimes. For powers

below the critical power for self-focusing in a homogeneous medium, the

waveguide effect dominates; the beam becomes trapped and merely varies

sinusoidally with z. Above the critical power, nonlinearity dominates

the propagation; the beam becomes unstable, and oscillatory self-focusing

behavior is predicted, in strict analogy to a homogeneous medium. The

detailed solutions reveal that in the waveguide-dominated case, the

functional form for f and the self-focusing distance z F are modified

because of the waveguide. One must carry the approximations to higher

order in order to obtain changes in oscillation period or critical power

because of interactions between waveguiding and nonlinearity.

We have defined mode mixing in terms of the quasilinear modes (which

have been corrected for nonlinearity in an approximate fashion). We

find that mode mixing is always present in nonlinear guides (except for

the trivial case in which the beam focal parameter is a constant).

These results contrast strongly with those for the linear guide, in which

mode mixing occurs only in longitudinally inhomogeneous guides. We

obtain analytic expressions for the mixing coefficient g(n,z) for

longitudinally homogeneous guides. The results indicate, in general,

increased mixing with increasiag mode number and with increasing beam

power.
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Certain aspects of the present work may be useful in connection with

other nonlinear problems. For example, consider the calculation of

nonlinear pulse propagation in waveguides. All treatments of the

time-dependent case to date have essentially decoupled the longitudinal

and transverse motions by averaging over the transverse coordinates of

the guide.The present work suggests that, for appropriate choices of the

guide parameters (e.g. for sufficiently low beam power), the transverse

motion is indeed strongly waveguide dominated, with only negligible

modifications because of nonlinearity. Moreover, the mixing of modes of

sufficiently low order may be small, in which case the concept of

individual solitons associated with the separate modes of a multimode

guide may be valid to some level of approximation. In any case, the

present formulation may help assess under what circumstarces it is

reasonable to decouple transverse and longitudinal effects in nonlinear

pulse propagation.

Another promblem for which the present results may be useful is that

of multiple-wave mixing in waveguides. Most treatments to date assume

that the pump beams are propagated in the lowest-order transverse mode of

the guide. If these beams do, in fact, undergo mode mixing, then the

spatial characteristics of the signal beams may become altered as well.

The present work provides useful input regarding the extent of mode

mixing as a function of the relevant system parameters.

We comment briefly on the possibility of experimentally observing the

phenomena discussed in this paper. In this connection, one must dis-

tinguish between the waveguiding (P<Pc) and self-focusing (PP

regimes. The relatively small changes induced by nonlinearity for P<Pc

are significant primarily with respect to mode mixing. They will
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therefore be evident only in processes that are highly sensitive to mode

structure, such as modulation of spatial signals by multiple-wave mixing,

proximity coupling, or guided-wave microbending loss sensing. On the

other hand, the self-focusing that is predicted for P>Pc will be a

large effect, provided that it is not overshadowed by other competing

nonlinear processes. Certain related nonlinear phenomena can easily be

excluded or distinguished by their special characteristics. For

example,soliton propagation requires pulsed as opposed to cw operation

and, in any case, is a relatively low-power phenomenon that serves to

balance the usually smalll dispersion encountered in typical waveguides.

On the other hand, various parametric processes, such as stimulated Raman

and Brillouin emission and multiple-wave mixing, can, in fact, compete or

coexist with self-focusing, depending on the operating frequency,

propagation medium, and other system parameters. In most instances,

such processes can be distinguished for self-focusing because they

possess different dependences on propagation distance. The growth of

parametric processes is usually assumed to vary as exp(gPz/A), where g is

a gain coefficient and A is the cross-sectional area of the light beam.

Neglecting all other factors, let us define a minimum distance z
p

for parametric processes be setting gPz /A-1. For self-focusing, on
p

the other hand, when P>> Pc' and one can show that

ZFAA (Pc /P). Thus we find that
ZF7F

Consider, for example, fused silica at llm and P/Pc 4, say. For

stimulated Raman scattering, a prominent nonlinear effect in waveguides,
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one obtains zF /Zpl0 p This value represents an upper-bound

estimated for ZF/Zp because the value of zp actually depends on the

initial density of spontaneous photons; moreover, note that ZF/Zp

will decrease as one moves to longer wavelengths (see Ref. 13). Thus the

condition ZF< z will be satisfied in a variety of circumstances,
p

implying that self-focusing should be observable before parametric

effects. Even when ZF#Zp , parametric processes may be

distinguished from self-focusing because their observation requires

overcoming linear losses (iLe., g P/A4, where o( is the waveguide loss);

self-focusing, on the other hand, is an instability, which to a first

approximation is insensitive to loss. Various other parametric processes

may be suppresssed or distinguished from self-focusing in other ways.

Stimulated Brillouin scattering, for example, can be suppressed by

controlling the dopant profile of the waveguide and in extreme cases

could be eliminated entirely by using a source with a frequency bandwidth

larger than typical acoustic phonon frequencies. Multiple-wave

parametric processes will be large only for special "phase-matched"

frequencies; moreover, tight tolerance on variations in diameter and/or

in numerical aperture along the fiber must be satisfied. These

considerations serve to distinguish self-focusing from other nonlinear

effects operative in waveguides.
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RADIATION LOSS IN TAPERED WAVEGUIDES

1. INTRODUCTION

The role of junctions between large-core multimode optical waveguides

and small-core single-mode guides in integrated optical devices has led

to interest in tapering between fiber waveguides. This interest has

included experimental1 '2 and theoretical-numerical 3 7 studies of

tapered structures. An important theoretical basis for several of these

studies 4 -5 has been provided by the step-approximation method developed

by Marcuse 8'9 for tapers in step waveguides. This approach is derived

from usual perturbation methods by regarding arbitrary waveguide

deformations as a succession of infinitely many infinitesimal steps. It

has provided improvements in calculating tapering losses beyond the

initial development of the perturbation theory of small-wall

distortions.
1 0

We use an alternative approach, the eikonal approximation

11,13
method, for the calculation of the total radiation loss of a

guided mode that is due to a symmetrically narrowing linear taper. This

approach has been developed in the engineering literature for optical

dielectric waveguides as the concept of local normal modes (LNM's) or

tapered modes, 16 1 8 '21 paralleling earlier work on metallic

waveguides. However, the word eikonal has also been used by physicists

to describe a similar approximation scheme involving a

Wentzel-Kramers-Brillouin (WKB) approximation for the initial state in a

scattering matrix element.
13 ,19

We present the eikonal or LNM approach by beginning with first

principles for TE wave propagation in optical slab waveguides,
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indicating both the small parameter of the method and its region of

applicability. The radiation-loss calculation is based on a

weak-coupling approximation in which a propagating undepleted symmetric

pump mode couples with radiation modes in the tapering region. This

represents no inherent limitation on the eikonal (LNM) method but does

facilitate comparison with perturbation theory and with the

step-approximation method.

The total radiation-loss result is reduced to similar results for the

step-approximation method by keeping only the more important of two

matrix elements on which the coupling theory is based. Radiation-loss

calculations for tapers have been made previously by using other

techniques,15,20 but the eikonal (LNM) method has not been directly

employed for this purpose.

2. RADIATION LOSS OF A SYMMETRICAL LINEAR TAPER

From the time-independent wave equation for TE modes and refractive

index n(r,z), with longitudinal and transverse variables z and r,

respectively, the electric field is expanded in terms of longitudinally

dependent coefficients Am (z) and transverse functions 0(r,z). The

latter are parametrically dependent on z and are defined to satisfy

eigenvalue equations of the form

Wheredm(z) is the corresponding eigenvalue that is also assumed to be

parametrically dependent on z and K = w/c. Use of the expansion
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in the wave equation and mode orthogonality result in an infinite set of

coupled equations

+ +(2

We have employed the shorthand notation

Cr (a2ad

Equations (2) provided the basis for analysis of physical processes such

as reflection amd mode coupling. The only limitations on the above

theory are that guide changes must be gradual enough so that the

adiabatic assumption of the parametric z dependence applies. This is

equivalent to the condition

< ,t. d (3)

where A is the wavelength of the radiation in the medium.

In order to apply the above general theory to our tapering problem,

we first consider the propagation of an initially strong mode EL = Alot

which is undepleted on interaction with the other modes. Equation (2)

then becomes

dAA
+ AWZ4

d g (4a)



which, for ...

(4b)

, 12

and has the solution1 2

(4c)

where terms of the order (d2 k1 /dz 2 ) and (dk1/dz)2 have been

neglected. Equation (4c) is valid away from turning points.

A reflection coefficient can be defined for pump mode E, =Aj1 f by

using the field expansion E =E1 + Et =(At:+ A4  )c in Eq. (2) giving

derivatives for AAr (z) in Eq. (4c) on A., R(z) has been retained in the- - A d& '_
A AR~ (z can be searte ou yIouinnAA(

(5)

where C) (a') d'

By substituting Eq. (6) into Eq. (5) and neglecting the senond derivative
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of (z) in a slowly varying amplitude approximation, integration of

the result for a disturbance located between 0 and z gives the reflection

coefficient

2.

0____ 4t £ (21 ~ da'

.. " -t W1 ,T' (7)

A similar analysis for coupling between two modes with dissimilar

transverse structure, a pump model and a mode n with forward- and

backward-movi-ig slowly varying components,

+ + -, 0 , (a ) - , - z , W e

results in forward and backward and coupling, given by}t - + R.,d (8)
(0)

The mode conversion or forward scattering of a propagating, guided

mode to radiation modes that is due to a linear taper is an extension of

the above. The geometry of this problem is a longitudinally symmetric

linear narrowing of a step-index slab guide with infinite cladding. The

longitudinal direction is divided into three regions for which the guide

half-width L(z) assumes the values (L _>L+):
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(9)

Within the guide, for Ixi $ L(z), the index of refraction is n

whereas outside, for lxi > L(z),it is n2, where n, > n 2 is

assumed. Note that A L = L_ -L

For TE modes, the wave equation is simply ( x /& )+ (

+ n2k2E = 0, where n = nl, n2, in the appropriate transverse

regions. From the field expansion E(x,z) = A A(a) 4(xa

the eigenvalue equation for 4 (x,z) becomes

O' kT. 4 0'(2 =Z (1-k!)V
x

where /3.(z) is equivalent to the longitudinal wave number. When we

define

% k ' k-0 j xl > L (llb)

the symmetric normalized (orthogonal) eigenfunctions take the form

4I >2 (12b)
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where the normalization factor is N (z) = [ L(z) + . (z) .
m

Since the linear tapering presents a symmetric disturbance to the

propagating guided modes, it provides coupling from symmetric modes to

other symmetric guided modes and between antisymmetric and other

antisymmetric guided modes. We simplify the analysis by treating only

the former coupling. Note also that the z dependence of Km(z) , Yw(z)

in Eqs.(12) is due to the matching of the x components of the magnetic

field, resulting in the (symmetric mode) eigenvalue equation
1 4

If we consider once more the propagation of a single pump mode E, =ALF._

(x,z ], we find that the longitudinal coefficients of this mode

satisfy Eq. (4a) with the solution from Eq. (4c):

((13)

This relation is valid away from turning points, provided that

<<

It will prove advantageous to discuss the coupling of the above

guided mode to a continuum of radiation modes by using discrete

notation. This is physically equivalent to surrounding the tapered step

guide with an ideal conductor at x- t R assumed to be large. We will

recover the continuous notation as the latter distance becomes infinite.

The TE field expansion ERAD (xz)- J (z) ̂ 1 (xz) in the wave

equation, together with the wave-number definitions
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- '0 I--KI L (14a)

L (

leads to the following transverse eigenfunction structure for the

symmetric radiation modes
1 4:

L
The radiation modes are assumed to exist for z > -zo  AZ , and the

continuity of the related magnetic-field components at the transverse

boundaries gives

sL ,(a (16)

By considering the slowly varying amplitudes b (Z), where B
q q

b exp( + ie ), and neglecting the second derivative of bq(z), weqq
can obtain

~ ?~4.2L ~ d~1&~- (17)
i2O

The total forward-scattered radiation loss can be evaluated from Eq.

(17) in the limit of the continuum by
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Total radiation - I
mode loss - ( I, ) (18)

In this limit, the radiation mode wave numbers of Eq. (14) become

-= l- (19a)

.. O/0) (19b)

K2

where Eq. (19b) defines K Since we must sum over all

forward-propagating radiation modes, we restrict the range of integration

on p to 0 n K to avoid imaginary . With these, Eq. (18)
2 0

becomes, as bq -- b(p),
Total radiationI

mode loss -t (19)- Jo(,1e °a / ' -

Also, it can be shown form the definition [Eq. (2a)] that

... .... .. .. k,( ) c o - L (z (20)kj€ (, -," ,.

Furthermore, F,_(z) of Eq. (2b) provides higher-order corrections

in A L to G,,(z) and hence may be neglected in the following

first-order calculation. Further approximating-kt(z) by 41 (z) from Eq.

(4b), we obtain our main result after some algebra

Total fractional forward-scattered

radiation loss P ,

= " 1- -o- (21)
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For convenience, we summarize the locations of the definitions of the

symbols of the fractional loss, Eq. (21): Kt , ) , 4L are defined by

Eqs. (11); ,(p), r(o),o are related by Eqs. (19); Kc=(n"-n 2 )K2

is defined in Eq. (19b) ; L(z), 4z, AL/A are defined in Eq. (9).

Also )t (z) is found after obtaining K_ (z) from the eigenvalue equation

with L =L(z) from Eq. (9). It is only slightly different fromA,8, which

is obtained by using L=L-.

The fractional forward-scattering radiation-loss result of Eq. (21)

has been limited only by the first-order approximation, including only

G p (z). However, the relatively mild approximations involved are still

insufficient for analytical evaluation. We may obtain the main effects

by approximating the integrand of Eq. (21) to zero order in the

longitudinal dependence for the amplitude and to first order in the

phase. This would be reasonably accurate for weak tapers. The essence

of the eikonal approach is that it correctly takes into account overall

phase changes of the wave while propagating through a disturbance. This

is the main distinction of the eikonal approach as compared with

perturbation theory.

Furthermore, we expect the strongest coupling to the radiation modes

to come from higher-order guided modes since the latter are less confined

to the core and have stronger cladding fields. For such guided modes,

the value of K (z) L(z) can be seen to lie neariirfrom a graphical

evaluation of the eigenvalue equation. With this, the zero-order value

for K.(z) is LIz)XAw-ir-(L- and the values are similar for the other

variables related to K, (z) from Eqs. (11). The lower-order guided
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modes, which are more tightly confined, have Kt,(z) near (21+1)/2

[1 /L(a)) = (21+1)/2 ( /L_), and hence the matrix element GfL(z) of

Eq. (20) becomes small. For higher-order guided modes, to zero order

* in the z variation,

: o A'(22a)

(22b)

Vt- Y1 K-,-i (2 2c )

Recall that Kt_ is the value of K1 (z) from the eigenvalue equation

evaluated for L(z) = L-. Also, in the denominator of the integrand in

Eq. (21), the following rather complicated factor will be approximated as

L L1 CV. L io 7Z-.  10- ,  - 2d
L ZJ

co2

where we have neglected the oscillation that is due to cos2 L- .(z) over

the transition region.

We now use the guide width variation to define the variable
5 L V

t A

* Lo ,.ll, L_. - ,AL (Vz" i-' ( > : (')

when the above approximations are combined, Eq. (21) becomes
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Total fractional

forward-scattered

radiation loss ( -- (23)

where -iaL L

The resulting quadratic z dependence in the exponentials in Eq(23)

permits the z integration to be expressed in terms of Fresnel integrals

7: - ca-% (24)

With these, the result of the z integration in Eq. (23) is

P (A S~ A~t S

(25)

Here ~~- A1  C- C. (v.. v

(25a)

and we have defined the following dimensionless parameters as

L (25b)
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/I + 06A/A,) k1

A Z.. J

_r( r

(2 5c)

and o-(p)L. K(4,o-.a(P'

(2 5d)

By using Eqs. (25) in Eq. (23), we obtain

Total forward-scattered

radiation loss=

k ' L

(26)

where denotes the /0 dependence within the Fresnel integrals as

indicated by the part of Eq.(25 ) within the braces. Because of the

nature of the approximation in Eq. (22a) ,Eq. (26) as written is limited

to higher-order pump modes. However, if the dependence on K

is changed to K_ Y- dL'in Eqs. (25) and (26), the latter are also

suitable for describing the radiation loss of the lower-order modes.

The graph in Fig. 1 illustrates the fractional radiation loss for

four cases of taper step size using Eq. (26) for A,=im free-space guided

mode wavelength. The four cases,&a - 7.5,5,2.5, and 1 urn, correspond to
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0 0 0

tapecing angles of approximately 8.5, 6, 3, and 1 , respectively, for an

initial guide half-width of L- =25 and a tapering region length Az =50

"um. The refractive-index values chosen were ni=1.05 and n2 =1.00.

These parameter values permit only il of the 15 modes that propagate in

the initial wider guide to propagate through all four tapers.

These four cases show a rapid increase in total radiative loss as the

mode number approaches the cuttoff value, particurlarly for the smaller

taper angles. This tendency is in agreement with similar results

observed in Ref.5. Note that the near-linear behavior of the total

radiation loss on a logarithmic scale for the smaller angles indicates a

roughly exponential dependence on mode number 1, RAD-t . Analogous

results are seen in Fig. 2 in which the same parameters are used for

plots of radiation versus step size for the modes indicated. Again

RAD -e- These trends could serve as useful rules in making

comparative estimates of the radiative loss in such structures. Of

course the accuracy of this approach decreases as both AL and the mode

number A increase since they both contribute to an increase in the

left-hand side of Eq. (3). Similar plots obtained using perturbation

theory indicated higher total radiation loss for the higher modes as

compared with the plots of Fig. 1. Modes beyond those shown are totally

reflected and must be treated by a different analysis because of the

breakdown of the WKB approximation inherent in the theory through Bqs.(4).

3. DISCUSSION

The suitability of the eikonal or LNM prodecure to tapering problems

has suggested the main calculation of this section, a derivation of the

total radiation loss of a guided mode that is due to a symmetrical

linear taper. We have limited our results to a weak-mode-coupling
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theory in which an undepleted pump mode transfers energy to radiation

modes and the coupling equation are not solved in a self-consistent

manner.

An evaluation of Eq. (21) with zero-order amplitude and first-order

phase approximations leads to Eq. (26), which involves Fresnel

integrals. This shows the total radiation loss to be essentially

proportional to the gradient (AL /A ). Analytical evaluation of the

final result of the integrations of Eq. (21) is difficult, but it would

serve as an appropriate starting point for further numerical studies.

In contrast, the approximate expression to Eq. (21), Eq. (26), requires

only a relatively simple one-dimensional evaluation. The plots obtained

numerically from Eq. (26) illustrate the application of the theory and

provide quantitative results for the total fractional radiative coupling

of guided modes in the undepleted pump approximation. As expected, Figs.

1 and 2 show a strong increase in radiative loss for increasing AL and

for modes approaching cutoff. The approximate exponential dependences

noted in the figures have not been discussed before. Furthermore, the

total radiation loss for tapers has not been previously calculated by

using the eikonal or LNM method, and this quantity particularly

facilitates comparison with experiment.

The simplicity and general applicability of the eikonal or LNM method
under the proviso of small gradients havz been indicated in the

development of the theory. The approach is particularly well suited to

investigating tapered structures but is also readily adaptable to any

gradual longitudinal disturbance.
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FIGUbi : CAPTIONS

FIG. I Total fractional radiation loss vs. mode number from

eq. (.zd) for radiation A.- IA in a slab waveguide of initial

halfwidth L = 25.. and tapering region A z = 504 ,tapering angle

9 = , n = 1.05, n. 1.00: (a) 6L = 75.A (b) AL = 5AAa.

(c)L = 2 .5 M (d) AL = I. . An approximate exponential dependence

on mode number is noted for AL = 1.M

FIG. 2 Total fractional radiation loss vs taper step size

from eq. (2() for the same parameters as in Fig. 1. (a) mode

(b) mode 4 (c) mode I (d) mode 0.
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