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1. Introduction

In a recent paper 1 I ]published by the first author, it was suggested

that many problems of image restoration are probably geometric in charac-

ter and admit the following initial linear formulation: The original f is a

vector known a prior to belong to a linear subspace Pb of a parent Hilbert

space X, but all that is available to the observer is its image P f, the
a

projection of f onto a known linear subspace 9 (also in XI).

1) Find necessary and sufficient conditions under which f is uniquely

determined by P f and 2) find necessary and sufficient conditions for the
a

stable linear reconstruction of f from Paf in the face of noise. (In the later

case, the reconstruction problem is said to be completely (or well) posed.)

The answers turn out to be remarkably simple.

a) f is uniquely determined by P af iff Vb and the orthogonal comple-

ment of 9a have only the zero vector in common.

b) The reconstruction problem is completely posed iff the angle

between 9b and the orthogonal complement of 9 is greater than zero.b a

(All angles lie in the first quadrant.)

c) In the absence of noise, there exists in both cases a) and b) an

effective recursive algorithm for the recovery of f employing only the

operations of projection onto 0b and projection onto the orthogonal comple-

ment of a . These operations define the necessary instrumentation.

This point of view has proved to be very fruitful and can be made to en-

compass many important applications £121.

However, it appears that a linear formulation is only achievable by

discarding information concerning the original f, and as a result the

associated restoration problem is often ill-posed [11, Theorem 2]. The

entire process of smoothing can be conceptualized as a technique for re-

introducing the missing information and therefore plays an essential role

in combatting the effects of noise.

As is shown in detail in Part II, a linear image restoration problem

transforms, under smoothing, into a nonlinear one of the following kind:

The original f is known a priori to belong to the intersection C of m

i0

I1
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well-defincd closed convex sets CI, ( "'' C ; i.e.,

mfCCO= t' (1.1)

Given only the projection operators P. onto the individual . 'a, i=1-im,"1 1

restore f, preferably by an iterative scheme. Thus, the P.'s define the

necessary instrumentation in an arbitrary Hilbert space setting. We are

now in a position to summarize the contents of Part I.

Section 2 provides some basic tutorial material on convex sets and

projection operators onto closed convex sets. Section 3 is devoted to an

in-depth leisurely study of nonexpansive maps and their fixed points, with

special emphasis on iterative methods. Because of the importance of

these methods, we have supplied full proofs in order to make the report

self-contained. Section 4 applies the theorems in Section 3 to the problem

of finding points belonging to the intersection of a finite number of closed

convex sets. It is shown that the latter is a particulaF case of the problem

of finding a fixed point of an asymptotically regular nonexpansive operator

by iteration. In general. Uie convergence of this iteration is only weak and

the question of strong convergence is examined in some detail. In this re-

gard, Theorem 4.2 is a ma.ior result which serves as the starting poinL for

Part It.

Specifically. Section 5 in Part It pursues the consequences of identify-
ing the process of smoothing with that of "opening" up closed convex sets by

enlarging them to possess interiors. Section 6 develops algorithms for the

realization of several important projection operators onto closed convex

sets, and Section 7 describes some numerical results. Lastly, Section 8

concludes with some observations and suggestions for future research.

.1 _.



2. Some Properties of Convex Sets in Hilbert Space

Definition 2. 1: A subset C of ) is said to be convex if together with

any x I and x 2 it also contains px, 1 +(I-)x, for all p, 0< p<1.

Theorem 2. 1: Let C denote any closed convex subset of X and let f
be any element of N. Then, there exists a unique x 0 e C such that

inf IIf-xlI = If-x0 I • (2. 1)

xcC

(Clearly, x0 is the element in C closest to f in norm.)

Proof. Let us first demonstrate uniqueness. Suppose that

inf I11 -x : IfxolI = 11 f-y .11 Z)
xeC

where x 0 eC and y 0 eC. Then, by replacing x and y in the identity

z 2xll + Ily 2(.II - II +I1 I - II. II

by f-x 0 and f-y 0 , respectively, we obtain

Xo+Y0 Z zo z00 i l 2 - I Y II <11 2 (Z.4)

Xo)+Y 0)

But, because C is convex, -- y- CC so that

0o+Y 0 2 z2
IlX+ 2 2 (2.5)

whence, IIxo-yoI = O and x= yo.

From the definition of infimum, there exists a sequence Ix n I of

elements contained in C such that

lim IIf-xnl I = 6 . (2.6)

By replacing x and y in (2. 3) by f-x n and f-x respectively, we get

22 2 x 2
Ixn-x mi = Z(Ilf-Xnll Z + IIf-xmll )-411f nm 1 (2.7)

3
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X +lx i

Thus, since -mC, for n,m= 1-400, (Z.5) and (2.7) yield

0< lixr n xm112 <46 246 o (z.8)
n,rmn-400 I -

which implies that

lim i x -x U 0 . (2.9)
n, m.-o nm

The sequence [x r is therefore Cauchy and converges to a limit x 0 cC be-

cause C is closed. From (2. 6),

Of-x 011 = 6 (2.10)

Q. E.D.

Theorem 2. 1 is fundamental and leads immediately to the notion of

a projection operator: For any xeg the projection P x of x onto C is the

element in e closest to x. As we have seen, if C is closed and convex,

P x exists and is uniquely determined by x and C from the minimality

criterion

lx-Pc xll = minlix-yll . (2.11)
Yee

This rule, which assigns to every xeU its nearest neighbor in C, defines

the (in general) nonlinear projection operator PC:X-+ C without ambiguity.

Later we shall develop several alternative important characterizations of

Pa 

oOf course any CLM is automatically convex and closed and the
corollary that follows is the classical orthogonal projection theorem.

Corollary 1: Let G denote any CLM in X[. Then, every xCe possesses
a unique decomposition of the form x=x +x z where x I = P axI CG and

X2 eGA, the orthogonal complement of a.

Proof. Suppose that x=xl+x2 =x 3 +x 4 where x I and x 3 belong to C
and x. and x 4 belong to AC. Then, x1 -x 3 =x 4 x 2 is a member of both C

1 For any linear manifold G, ye±4 iff (x,y)= 0 for all xeG. It is easily
shown that ±G is always a CLM and that if A is a CLM, then i(i.G)= G.
Evidently, Cfan(a) = t4Kiand ac4( GA).



and -A. Thus, fromn the previous footnote, x 1 = X3 , X2 = x 4 and the decom-

position, if it exists, must be unique.

Choose x = Pax and set x. = X-Pax. Then, x=xI+x2 and it only re-

mains to show that x2 is orthogonal to G. That is, (x,, y) 0 for all yCG.

From the definition of P and the convexity of G, for any p, 0< p< ,

Py+(l-p)PaxCG for every yeS so that

11 xPaxl z<_ [xPyCl_P)Paxl (z. 1)

Or, upon expansion of the right-hand side of (2. 12),

IIxPlxI < ixx 2+ P2Iy-P xII 2* 2_iRe(x-Pax, y-Pax) . (Z. 13)

Hence,

2 Re(x-PCx, y-Pax)< p ly-Paxil z  (2. 14)

and by letting p - 0 we find that

Re(x-PGx, y-PGx)< 0 (2. 15)

for all yCG. Now, since C is also a linear manifold it contains ky for every

real X and (Z. 14) yields, for X real,

%Re(x-P x, y) < (x-P x , P X) (2. 16)

This inequality can only be true if

Re(x-P x, y) =0 (. 17)

for all yer. If now y in (2. 17) is replaced by iy, we get

Im(x-Px, y) 0 (2. 18)

so that finally

(x-P x,y) 0 , yCG , (2. 19)

Q.E.D.
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Corollary 2: Let C be a closed convex set. Then, for any xeX,

Re(x-P x, y-Pcx) < 0 (2. Z0)

for every yeC. Conversely, if some zeC has the property

Re(x-z,y-z) <0 (2.21)

for all ycO, then z = P x.

Proof. A review of the proof of corollary I reveals that (Z. 15) is

valid for any closed convex set C. Conversely, (Z. 21) implies that

IIx-yl1 2=lx-z+z -yl l2=1x-z 11- ZRe(x-z, y-z)+11-z-yl (lx-z  (.Z

for all yeC. Thus, by Theorem 1, z = P x, Q.E.D.

Corollary 3: Any closed bounded convex set C is weakly compact.

Proof. What we have to show is that from every sequence [xn )C C

it is possible to extract a subsequence (xn ] that converges weakly Z to

some limit f, and that all such weak limits belong to C. By hypothesis, C

is bounded as is therefore every sequence (Xn) contained in C. Hence,

since Hilbert space U is weakly compact, there exists a subsequence

Ixn] of [XnI such that Xni - f, f, e). Now according to (2. 20),

.e(f-PCf , xnI -PCf) :S0 (2.23)

for all n'. Thus, xni . f implies that

0>Re(f-Pcf, f-PCf)= If-PcfD 2 I> o (2.24)

or, IIf '-Pcf 0. Consequently, f=PCf eC, Q.E.D.

The proof of corollary 3 reveals that a closed convex set C, bounded

or unbounded, contains all its weak limits and is therefore weakly closed.

Now, since a strong limit is automatically weak, it is clear that weak

closure of any set implies its strong closure but the converse is in general

false. From this point of view, convex sets appear to be quite exceptional.

zThis means that lim(g, xnI) (g, f) for every gCe.

6



In a real Hilbert space, the inequality (2. 20) for closed convex sets

C reads

(x-Pcx, y-Pcx) < 0 , all yC . (2.25)

In this guise it can be interpreted to mean that the vector x-P x is support-

ing to C at the point P xCC. As Fig. 2. 1 suggests, x-P x is "normal" to
C C

the "tangent plane" to C erected at the point PCx. This plane has C and x

on opposite sides and therefore separates one from the other. Note also

that the angle 4 between the vectors x-Pc x and y-PCx is never less than 900.

Tangent plane

Fig. 2. 1. C is a closed convex set.

Theorem 2. 2: Let C be any closed convex set. Then, for every

nair of elements x and y in U,

liP x-Py l1z < Re(x-y, P.x-P.y) (2. 26)

Proof. Since PCx and P.y both belong to C it follows from (2. 20)

that

Re(x-PCx , PCy-PCx) < 0 (2. 27)

and

Re(y-P y , P Cx -P py) < 0 . (2. 28)

Thus, (2. 26) is obtained immediately by addition, Q. E. D.

7



Corollary 1: Projection operators onto closed convex sets C are

nonexpansive and therefore continuous.

Proof. Schwartz's inequality applied to (2. 26) yields, for every x

and y in 1,

IPCx -Pcyll :S Ix-y (2.29)

Therefore, under the operator PC the distance between two images never

exceeds the distance between the two originals which is precisely the defi-

nition of nonexpansivity. A fortiori, Nix-y "small" implies NPcx-Py[l
"small" so that PC is continuous, Q.E.D.

It is possible to strengthen (2. 29) in various directions by imposing

one or more constraints on the "curvature" of C. Admittedly, this strengthen-

ing appears more natural in a finite-dimensional setting and leads to several

technical refinemerts not fully exploited in this report. Nevertheless, we

present the results for possible future applications and because their proofs

depend on Theorems 2. 1 and 2. 2 in an essential way.

Definition Z. 2: A convex set C is said to be strictly convex if x C C,

yCC and xfy imply that (x+y)/Z, the midpoint of the "chord" connecting x

and y, is an interior point of C.

Definition 2.3: A convex set C is said to be uniformly convex if there

exists a function 6(T) positive for T>0, and zero only for Ir=0, such that

x, y CC and

iz - 11 < 6(11x-yj1) (2.30)

imply Z CC.

Definition 2. 4: A uniformly convex set C for which it is possible to

choose

2~~~6(Tr) : T ,( .

u a positive constant, is said to be strongly convex. (Evidently, strong

convexity implies uniform convexity which implies. strict convexity.)

Theorem 2.3 1 1]: If C is strictly convex, yeC, xVC, y/P x, we have

Re(x-PCx Y - P C X ) < 0 . (2.32)

8
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Proof. By definition, if yeC and P ~C /y, therc exists an £>O (which
depends in general on the choice of x and y), such that

PCx+yw = z + -.-- C(2.33)

for all z that satisfy fz~ < e. Hence, if x 'C we can choose

Iz~ cf (2.34)

and then replace y in (2. 20) by w to obtain

Re(x-P Cx, Y-P X)< -ZelxP C XH < 0 ,(2. 35)

Q.E. D.

Corollary 3: If C is uniformly convex, yCC and x C, then

Re(x-P Cx, Y-P Cx)< -26(1y- yPx I). fl x-PC Cxli (2.36)

If C is strongly convex,

l1 PC X-y 11 P plx-yjj (2.37)

where

P =(1+2pllP 1 Cxllf 1  (2.38)

Proof. Observe first that if y= P Cx, (2. 3 5) is correct with C 0. Con-
sequently, in view of the properties Of 6(T), (2. 36) follows immediately by

*substituting 6(1- ~)for e in (2.35). To derive (2.37) we rewrite (2.35)
i i n the form

11 P CX-y1 2 < Re(x-y, P Cx-y) - Zelx-P xII1 (2.39)

and then use Schwartz's inequality to obtain

X-l ?-li I-l -lx-yII + ZClxP xlI< 0 .(2.40)

Or, with e replaced by pIip CX-yI 1,

9



IPC XYII(11IPC XYtI +ZpPC x-YII IRX-PcexIW-11X-Y 11) <0 (.1

so that always,

QE. D.

The closed half -circle C shown in Fig. 2. Za is convex but not strictly

convex because the midpoint z is not an interior point. On the other hand,

the full closcd circle in F ig. 2. Zb is the prototype of a strongly convex set.

X y

(a) Closed half-circle. (b) Closed full-circle.

Figs. 2. 2a and 2. Zb.

10
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3. Nonexpansive Maps and Their Fixed Points-Basic Theorems

Definition 3.1: A mapping T: C-, 9 is said to be a contraction if there

exists a positive constant 0, 0< 0 < 1, such that

IjTx-Ty 0 <11 x-y (3.1)

for all x, y eC.

Any contraction has at most one fixed point. For if Tx I xI and

Tx 2 = x., then

IIxI-x II = IlTxl-TxI 11x 1 e1x, -x? 11 (3.2)

which implies I1x1-x 11 -0 and hence xx
Theorem 3.1: (The contraction principle). If C-is a nonempty closed

subset of U, any contraction mapping T of C into itself possesses a unique

fixed point x0o. Moreover, starting from any element x 0 of C, Tnx 0 -) X0

as n -) 0o.

Proof. Since we already know that there is at most one fixed point,

we need only show that a fixed point cxists and is obtainable by iteration.

Let x0 be any member of C and set

x= Tx n=1-*oo (3.3)Xn n-I

Then,
Uxn 'nU_01nX .U """5 ll -01 (3.4)

so that for any m >n

N r "X-n I_ Ix -x 1 II + IIxm-.- M -? II + + II +l'xn

__ + eX+- + n 1)11 x1-x

< eP(-e) 'IIx-xoII (3.5)

Since 0< 0< 1, it follows that x n ] is a Cauchy sequence. Therefore,

as C is closed, it converges to an element x CC. But clearly,

11



It Tx -xll < U TY-0-x,+ lU + It%+ -x® II

< elx0-x tl + t1xa-x+l fl (3.6)

and the right side tends to zero as n -oo. Thus, IITx 0 -xlO( = 0, i.e.,

Tx.o = xo. It should also be noted that (3.5) yields the estimate

1 W Mx nl - 6n(1-, ' ix -o (3.7)

Q.E.D.

I
Corollary: Let T , I an integer > 1, be a contraction of a nonempty

closed set C into itself. Then, T possesses a vnique fixed point xc0 obtain-

able as the limit of any sequence (Tnx 0 1, x 0 C.

Proof. According to Theorem 3.1, there exists a unique x00CC such

that TIX00 =xcc. Hence,

Tx.o = T(TIx0e) =TI(Tx 00) (3.8)

and Tx0cCC is also a fixed point of T . By uniqueness, Tx0 0-xoo0 and xc0 is

therefore a fixed point of T. Consider the sequence (Tnx 0 ] as n-oo and

write n=ql+r where q is an integer and 0< r<1 . Then, as n-oo, q-+oo and

Inx r qf r _]q

i x-x,011 = IT x < jjT -X,0x .40

Consequently, Tn x0-4x0 as n-*oo, Q. E. D.

Contraction is a very strong requirement to impose on a mapping.
A weaker notion is that of "shrinking".

Definition 3. 2: A mapping T: C-o X is said to be shrinking if

jjTx-Tyjj< jtx-yjj , xfy , (3.9)

for all x, y CC.

Theorem 3. 2: A shrinking map T of a compact 3 set C into itself always

possesses a fixed point.

3A subset C of U is said to be compact if every sequence of elements in C
has a subsequence which converges to a limit element in C.

12



Proof. The numerical function IiTx-xHj is obviously continuous on

t. Hence, since C is compact there exists an element xoCC such that

inf tITx-xII = j( Tx -x jI . (3. 10)

But we must have Tx, xoo because otherwise

IIT(Tx )-TA.11 < ITxo-xoI , (3.11)

a contradiction, Q.E.D.

In many applications even shrinking is difficult to achieve and our

final weakening of the contraction idea is embodied in the concept of a non-

expansive operator (mapping).

Definition 3.3: A mapping T: C-4 14 is said to be nonexpansive if

jjTx-Tyjj: < Ix-yjj (3.12Z)

for all x, y CC.

Theorem 3.3: Let T: C'C be a nonexpansive map whose domain C is

a nonempty closed bounded convex set. Then, T has at least one fixed point.

Proof. Let y 0 be any preselected member of C and let the set

CO = [x: x=y-y 0 , ye C ]. This translate CO is evidently also a closed bounded

convex set which moreover contains the zero vector . Clearly, every

xCC0 possesses a unique decomposition x=y-y 0 , yCC. Let F: C0-+C0 be de-

fined by

Fx= Ty-y 0 " (3.13)

This map F is nonexpansive because x, =yI-y 0 and x.=y7-y 0 imply that

11 Fx I Fx Z lI l Tyl-"Tyz ll < llY IYz ll = [[(Y I'y0| - (Y z'Y 0) I = U x I -x z l

(3. 14)

For any fixed k, O k<l, the map G= kF is a contraction of C0 into

itself. Indeed, for any xCCo, kFx k(Fx)+(I-k)eCC0 and for all xIx CCO,

13



UGXi-GxI kII Fxi-Fxi <k 1 -xzli . (3.15)

Hence, invoking Theorem 3. 1, there exists for every constant k, 0< k<1,

a unique XkCC 0 such that

Xk = kFx k (3.16)

If it can now be shown that xk-*g as k-* I from below, then by the continuity

of F and geC0 , it is seen from (3. 16) that g = Fg. Or, since g = f-y 0 , feC,

we obtain f= Tf so that f is a fixed point of T. We shall actually prove that

lim Xk= g (3.17)
k-+ 1;O<k< I

where g is the (unique) fixed point of F in C of minimum norm.

Assume that 0<k<1<1, xk=kFxka x= Fx I and let h=x -xk. Then,

since 1 x,- FxjI < 11x,-xk1l, we obtain

(I (Xk+h) - kI x, I (xk+h) -k xk) h lhll (3. 18)

or,
(1 -1_k-1)z i2kl + 1Z~) lhl 17 < 21 (k- -- Re(x k h) . (3. 19)

Thus,

Re(xk , h)> 0 (3. 20)

which, together with the identity

11xf12 = Ilk+hHZ = 12+ 11x117h-l+ 2Re(Xk, h) , (3.21)

leads to the inequality

IIx1Il>IIxkII + Ix, -xkl . (3. 22)

To sum up, for any choice of sequence O<kI< k2 < ... such that k. 1, the

sequence IIxk j 3 is monotone nondecreasing and bounded (because CO is
bounded). It therefore converges and, in particular, from (3. 22),

14



IIX XkII S <1XI II I xkII 0 (3.23)

as 1, k-+oo. By the completeness of M, Xki'ogeC 0 because CO is closed.

(Of course, the limit g is independent of the particular selection of sequence

k. -+ 1.)
1

Lastly, let e be any fixed point of F in Co. Then, e=I. Fe and we

can apply (3.22) withxle, e1=1, Xk=Xk, and k=k. for any i= 1,o0. As i- co,

Xk.4g so that

lell- > IJgII2 + Ile-gJZ> liglJJ . (3.24)

Therefore, JgJl =infIIeI1, ase ranges over the fixed points of F in C0 Q.E.D.

Theorem 3.3 is due to Browder [ 2 3 but the proof we have presented is,

in all its essentials, that given by B. Halpern [3 3. Unlike Theorem 3. 2

(which it does not subsume), the compactness assumption on C is dispensed

with completely and replaced instead by the much weaker constraints of

convexity and boundedness. Nevertheless, in many signal-processing ap-

plications even this assumption of boundedness may be questionable because

accurate a priori numerical bounds are not always available. However, if

the existence of a fixed point is known in advance from say, physical con-

siderations, the boundedness requirement on C can be dropped. Our im-

mediate objective therefore is to reach Theorem 3.4 (Opial) and to accom-

plish this we need three important preparatory lemmas, the last two of

which we also owe to Opial [ 4.

Lemma 3. 1: The set of fixed points U" of a nonexpansive mapping T

with closed convex domain C and range X is a closed convex set.

Proof. Let x. Tx., i= 1 00, and suppose that x. -x. Since (x. ICC

which is closed, xeC and Tx is well-defined. Thus, invoking nonexpansivity,

11Tx-xl = IITx-Tx + x.-x < I1x-x i 1" 0 (3.25)

so that Tx=x and V is closed. To establish convexity we need a very useful

inequality.

For any pair (x,y) cC we have the easily verified identity
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flx-y 12- l Tx-Ty lIz= 4 Re(Px-Py, (I -P)x-(l-P)y) (3.26)

where I is the identity operator and

I+TP=- (3.27)

But T is nonexpansive hence,

Re(Px-Py, (l-P)x-(l-P)y) > 0 (3.28)

for every x,yCC. Since P and T have precisely the same fixed points it

suffices to show that the set of fixed points of P is convex.

Let y be any fixed point of P. Then (3.28) reduces to

Re(Px-y,x-Px) > 0 (3.29)

for all xCC. Conversely, if some yCC satisfies (3.29) for every xeC it

satisfies it for x=y which implies that Ily-Pyji < 0 or y= Py. In short, the

set of fixed points of T is the set of all yCC that satisfy (3. 29) for all xCeC.

But this set is obviously convex, Q. E. D.

Corollarv: The map T with closed convex domain C is nonexpansive

iffP= (I+T)/Z satisfies (3. 28) for all x, yCC.

Definition 3.4: A map T:- C - X is said to be demiclosed if from

fxn cC , x ..x ,x CC , Txn- yo (3.30)

4follows Tx 0 = Y0"

Definition 3.5: A map T: C-*C is said to be asymptotically regular
if for every xeC, T nx-T n+ Ix -*.

Lemma 3. 2: In a Hilbert space X let the sequence (x n converge

weakly to x0. Then, for any x/x 0 ,

4 1n words, T is demiclosed if for any sequence [xn C C which con-
verges weakly to x0 CC, the strong convergence of the sequence (Tx.) to

Y0 implies that Tx 0 =Y 0 .
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liminf1 [xn-xI> liminfl1x-X 0  . (3.31)
n -+ 0o n- oo

Proof. Since a weakly convergent sequence is bounded, both limits

in (3.31) are finite. Thus, to prove this inequality it suffices to note that

in the estimate

I~~x-x~ I =IXo+_X iI z=ii Xn_,VO i +II XII ? ~enX ' x°-

(3. 3Z)

the last term tends to zero as n4co, Q. E. D.

Lemma 3.3: Let T be any nonexpansive map with closed convex

domain CCU. Then, 1-T i.s demiclosed.

Proof. Let [x n CC converge weakly to x 0 and let txn -Tx n con-

verge strongly to y0 . Then, since T is nonexpansive,

lim inf 11 x-x _- lim infl TXn -Tx 0 = lim inf 11 Txn -x + Xn -Tx 0 j =
n4 oo n-* o n4 oo

= inf xn-Y0-Tx 0 i_ inf 11 xn -X0 (3.33)
n4- o n -)-oo

by lemma 3. Z. Hence, again by lemma 3. 2, x 0 = yo+ Tx 0 or (I-T)x 0 =y 0

so that 1-T is demiclosed, Q. E. D.

Theorem 3.4: Let T: C-*C be an asymptotically regular nonexpansive

map with closed convex domain CCU whose set of fixed points UCC is non-

empty. Then, for any xCC, the sequence T nxj is weakly convergent to

an element of U.

Proof. For every yCU, the sequence (d n . = 11 Tnx-yj1) is non-

increasing because

dn+ -ITn+IX-Yl1 = 1nT(Tnx) - Ty I x-y =dn (3.34)

Thus, the nonnegative limit

nnod(y) = lini 11 T x-y 11 (3. 35)

exists as a finite number for every yCV.

17



According to lemma 3. 1, U is a closed convex subset of C and it

follows that for any fixed 6 > 0, the set

7 6 = tyCV:d(y)<6) (3.36)

is a closed bounded convex subset of 7 which is nonempty for 6 large enough.

Indeed, convexity and closure are obvious from (3.35), and boundedness is

implied by the inequalities

Il y I = I y -T T x + Tnx il_ IT nx_=1 JIT lT x I(3.37 )

and

IlTnxII = IITnx-Y 0+y0I Tnx'Y0II + 1iy 011 o (3.38)

where y 0 is any preselected member of V. Explicitly,. for any ye 6

Hy -6+d(y0) + 11 yo( (3.39)

Since bounded closed convex sets are weakly compact (Theorem 2. 1,
Corollary 3), the intersection of all such nonempty V6 Is is a nonempty

closed bounded convex set 760. Clearly, 6 0 is the smallest value of 6 for

which U 6 is nonempty. The set 76 can contain only one element say y 0 ,

for if we suppose that it also contains y I/y 0 , the identity

1 TnxT x - (3.40)

yields d(--t-)< 60 which contradicts the meaning of 60 .

The sequence ITnx) converges weakly to y 0 . In fact, since this

sequence is bounded, it suffices to prove that all possible weak limits of5 Tn* " hn o h
its various subsequences equal y0. Let TnX -y y.. Then, from the

5 Assume that such is the case but Tnx A y 0 . Then, for some f€CA it is
true that the sequence ((T 'xf)) fails to converge to (yo, f). Hence, there

•n/ nd
exists a subsequence IT x) of (Tnx) such that lm(T x.f) exists and is

unequal to (y0 , f). But by hypothesis, the sequence (TnxI itself containsiTxfis fcnain

a subsequence £Tn x convcrging weakly to yo; i. e., (y 0 , f) =lim(T x, f)n $

lim(T x, f) /(yo, f), a contradiction.
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asymptotic regularity, of T,

Tnx -Tn+Ix= (1T)Tnx n - (3.41)

and invoking the demiclosed character of 1-T (lemma 3.3), (1-T)y1 =+; i.e.,

YI is a fixed point-of T. By lemma 3. 2,
n n

Ji l [TnX-Yofll> Jim fl Tnx-y II : d(y 1 ) (3.42)

which is incompatible with the meaning of 6
0 ' Thus, for every xeC, the

sequence [T nx is weakly convergent to a fixed point of T, 0. E. D.

Corollary: The sequence [Tnx3 converges strongly to y 0 iff at leaE t

one of its subsequences converges strongly.

Proof. We know that Tnx - y0, a fixed point ofT, for every choice

of xeC. Clearly, since the weak and strong limits of a sequence must

coincide, the only possible strong limit of any subsequence of [TnX3 is

Y0 . Now, from the equality

fTnx-yol1z= 11TnxHz -2Re(TnxY 0 )+ 11yo11 (3.43)

we find that

lim IITnxII =2d (y0) + 11 y 11 ? (3.44)

as n 4 oo. In particular, for any subsequence LTnx ) of [TnX ,

lim 1 T n xII z= d2(y0 )+ 11Y 0112  (3.45)

But as we have already remarked, if any subsequence [Tnx3 converges
strongly, it converges strongly to y 0 and therefore lim IlTnxII2= IIy0 U so
that necessarily, d (y0) = 0 and

Tnx -+ YO (3.46)

0. E. D.

This "all or nothing" aspect of strong convergence exhibited by the

iterated sequence (Tnx3 appears to be the rule at the present level of
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generality. Unfortunately, the lack of strong convergence is a real obstacle
from a numerical standpoint, and a more in-depth analysis is undertaken

in the next section.

Definition 3.6: A mapping T: C-*C is said to be a reasonable wanderer

if for every xeC

iiTnxTnxIx Zxl< 00 (3.47)
n=0

It should be evident that a reasonable wanderer is automatically asymptotically

regular (Definition 3.5).

An example of a nonexpansive operator that is not asymptotically

regular is easily constructed. On the real line choose C 1-I, 13 and

define T by Tx= -x. Clearly, T is nonexpansive, maps C into C and its
only fixed point is x= 0. However, Tn x-T n+Ix= 2(-l) x oas n -+oo un-

less x= 0. Nevertheless, Browder and Petryshyn have shown that the
convex linear combination

Ta= O I + (I -)T (3.48)

of T and the identity operator 1 is a reasonable wanderer for all a in the

interval O< (X< I and any nonexpansive T.

Theorem 3.5[ 53 : Let T: C-+C be a nonexpansive map with closed

convex domain C whose set of fixed points is nonempty. Then, for any

fixed a%, 0< a< 1, T : C-IC is a reasonable wanderer and the sequence

(Tnx] converges weakly to a fixed point of T for every xCC.

nProof. Clearly, TCL maps C into C so that the iterates xn= T Lx
are well-defined for all xCC. In addition, for Q / I the fixed points of T

and TOt coincide and it only remains to prove that T is a reasonable

wanderer since it is obviously nonexpansive. Let yeC be a fixed point

of T. Then, y=Ty=Tcy and

11 xn+ 1 -II = II Lx n +(1 a)Tx I-y111h + (I -a)(Tn-y)12 (3.49)

=?j x IXn' -yH + ZCL(lI-a)Re(x n-Y, Txn -y ) + (I -OL) 2 J Tx n' -y 12

(3. 50)
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Similarly,

Ix-Tx II= IIxl-y-(Tx-y)II 2= IIxnY II -. ZRe(xn-y, Tx -y) + IITx-y II2

(3.51)

which after multiplication by C(1-a) Und addition to (3. 51) yields

Ix.+lyII n -yll +(+l-)l n -TxyIJ n : I -yll + €-a)II -YII < 2 Ilxn-yo ,Z

(3. 52)

Hence,

a (I -I%) Ix n-Tx n 11Z< Ix Un -yl- x -II+l-YII 2 3.53)

so that
N N

1 I Tn z  a 2 II -n n+ll . I +1 -yi <IlxylJ 2

n=O n=0

(3.54)

Consequently, since C 0,

00 n 
+Z IT x-Tn+ xlI 2 < 0 (3.55)

n=O
Q.E.D.

bFor d =1/2, Tt = (I+T)/2 in which case Theorem 3.5 is easily

deduced from the inequality (3. 28).
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4. Iteralive Techniques for Image Restoration in a Hilbert Space Setting

According to the discussion initiated in the introduction, there exists

a class of image restoration problems in which the unknown f can be as-

certained to lie in an intersection

m

C - c. (4. 1)i=l 1

of well-defined closed convex sets Ci , i = 1 -*m. Evidently, C O is also a

closed nonempty convex set containing f and we shall denote the respective

projection operators projecting onto C and Ci by P0 and P i, i = 1-Im.

Clearly, f is a fixed point of P 0 and all the P'l's. More generally, f is a

fixed point of P0 and of every

T.=1+ i(Pi-1) (4.2)
1 1

for any choice of relaxation constants X X , ... , X m . Hence, under

the same conditions, f is a fixed point of P0 and the composition operator

T= T T ... T 1  (4.3)m m-1

Conversely, can we say that any fixed point f of T lies in C0 and does the

sequence (Tnx3 converge (weakly or strongly) to a point of C as n tends
0

to infinity, irrespective of the initialization xCA?

Theorem 4. 1: Let C0 be nonempty. Then, for every xC) and every

choice of constants X1 X?' ..'', X in the interval 0< X < 2, the sequence

[Tnx, converges weakly to a point of C0*

Proof. For X. > 0, every

T. = 1+ X.i(Pi-l)= (1-%)l + XiP i  (4.4)

is nonexpansive. The assertion is obviously correct for 0< .i<1, but if

1< X . we have l-X. <0 and it is necessary to reason differently. With the1 1

aid of (Z. 27) and (2. 30), it is found that
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IIT ix - T iy (1= I'-.Xd)(xy) + xi (P x X- P Y) 112

-(l-X)
2 IIx-yII2+X ZX(l-% )Re(x-y, P.x-Pjy) +xIlP.x-P.yIl2

- )(2) 1 XY ) =IIx-yII' (4.6)X1 jPx-~yl

and nonexpansivity is established. We now show that T is a reasonable

wanderer.

For m1l, T=T 1 , C 0=C, and

Moreover, for any ye Cot Ty=P Iy=y and

lTx-y1 lY-y+ X I(P 1 x-Xfl1 z (4.8)

=jjx-yjj 2 +.x Re(x-.y,P XX)+X1lx.p x112 -

jIX-y112-xl (Z-x 1) iiX-P Ix1 2+ ZX I Re(x-Px I .y-P' X)

(4.8a)

because the lap' term in (4.8a) is nonpositive. Thus, by combining (4.7) and

(4. 9) it is found that

11x-Tx~l 11 -< (Ilx-yll 2 - IITx-yI ) (4. 10)
1-

for 0 < X< 2.

Ygo arbitrary mn > 1, a straightforward induction on mn yields tile

inequality
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Ix-Txil2< b_.. 2 nl(i-yxl1Z- IITx-yll2) (4.11)

whe re

b sup 4 (4.12)
1<i<m 1

(Clearly, (4. 10) subsumes the case m = 1.) In fact, let T TMK where

K =T iT_ •T 1  (4.13)

and observe that for n > 2,

I1x-TxH= llx-Kx+Kx-Txll

< (flx-Kxll + IIKx-Txll)2

< 2(1lx KII 7+ IIKx-Txl1 2)

< z(Ilx-Kxll+ 2r-2IIKx-T K 1- . (4.15)

7
Thus, by the induction hypothesis,

IIx-TxI 11 <b ' U Kx-y + Z (2-11 _yl2 Z Zfn-Z iiy.,i u )11

=b. 2l(jx-yyIZ-IITx-y2 )Z (4.16)

the desired inequality.

It now follows immediately from (4.16) that

0o

Z I1Tnx.Tn+ Ix 112 < b n Zm- llxHH2< o (4.17)

n=0

and T is therefore a reasonable wanderer and, a fortiori, asymptotically

regular. By Theorem 3.4, the sequence [Tnx) converges weakly to a fixed

point of T.

7
b b> 2 andb >bm- n n- sup .

m I
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However, the fixed points of T coincide precisely with the points of

CO, the intersection of the C .'s. Indeed, it is obvious that xe 0 i m p l i e s
x= Tx since xeC i , i = Il-4m. Conversely, if x =Tx and yeC0 ,

1iX-y 1I = 11Tx-Ty : <I T Ix-T 1 y 11 = 11T Ix-Y1 : [X-y1 (4.18)

hence, ilx-Yij = IITIx-Y11. In view of (4.10) this is only possible if x=T X

so that x= T mT ... T x and a repetition of the argument, finally leads to
8

Xc i , i =I-)m; i.e., xeC and the proof is complete, Q.E.D.

We are now in a position to address the question of strong convergence.

Let T: C -*C denote a nonexpansive asymptotically regular operator with closed

convex domain CC whose set #J of fixed points is nonempty. From the

corollary to Theorem 3.4, the sequencd (Tnx3 converges strongly to a

member of U iff at least one of its subsequences converges strongly.

Clearly, such is assured if all iterates T nx lie ultimately in some compact

or finite-dimensional subset of I.

The latter possibility exists even if C, the domain of T, is itself not

compact as is seen in the case of the composition operator T of Eq. (4. 3)

with all .s equal to one. Here, C=X, T.=P., i= -+m,

T=Pm m- 1 ... P 1  (4.19)

and all iterates T x, n> 1, lie in C . It suffices therefore that C be corn-9 mpact or finite-dimensional. (Assumptions of this kind appear to be quite

natural for those digital restoration problems falling within the scope of
Theorem 4.1.)

It is interesting and important to note that if all C. Is in Theorem 4. 1

are CLM's, the sequence of iterates (T nx not only converges strongly

but actually converges to the projection of x onto C This result is an

extension of I. Halperin's neat generalization of Von Neumann's celebrated

alternating projection theorem £63 from m = 2 to arbitrary C7 .

8 That a composition of appropriately relaxed projection operators is
automatically a reasonable wanderer is of course directly attributable to
the special pruperties of projections onto closed convex sets.

9By this w,' mean that Cm is contained in a finite-dimensional linear
manifold C .
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Corollary 1: Under the constraints of Theorem 4. 1, if every C i is

a CLM, T n converges strongly to P 0 the orthogonal projection operator on-

to the CLM C0 .10

Proof. Let us first remark that now all P 's and P 0 are bounded
linear self-adjoint operators. Consequently,

* p* X(

'r. = I+ X.(P. -i ) = 1+ X.(P.-1) T (4.Z0)

is self-adjoint and linear, i = I - m, and Tn is also linear for all n> 0. More-

over, since T is nonexpansive and T4= ,

IITxII ilTx-T11 < lIx-411 lIxU (4.21)

for all xeli so that lITII and therefore ITnl < 1, n> 0.

As has already been shown in Theorem 4. 1, for every xC) ,

Tnx - Tn+ Ix = T n(l-T)x-* (4.22)

hence, Tny- for all y in R(I-T), the range of I-T. Now [10.the closure

r.I _-T) 1 tf the range -f the bounded operator I-T is the orthogonal comple-

ment of the null space of

(I-T)*= l-(TmTr_ 1 ... T = -TIT 2 ... T ' (4. 23)

from which it is deduced that x belong to this null space iff

x=TT .. T x . (4.24)

Thus, in view of Theorem 4.1, this null space is identical with C so that
0

by the projection theorem, A= C0 +CR(l-T)3.

Let ye ER(I-T) . Then, there exists a sequence (yi CR(I-T) such

that yi-+y. Clearly,

1IrnylI _ TnyT+Tyrny _ nly l < IT nyi u + IIy-v1 Ii (4. 25)

n> 1, which immediately gives

10Since 0cC., i= l-¢m, *0C 0 which is therefore never empty.
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lim sup 11 T'y yi _IIYi U(4.2Z6)

because T Yi -, for every fixed i>. But I~y-Yill-+0 so that Ty-, as n-+-o

for every yC[R(1-T)]. Finally, again from the orthogonal projection theorem,

every xeX admits a unique decomposition x=z+y where zeC0 and yC[R(I-T)).

Consequently, Tnz = z for all n> 1 and

Tnx=Tnz+Tny= z+Tny-z= P 0 x (4.Z7)

nas n-o. Therefore, by definition, T converges strongly to the orthogonal

projection operator P onto C0, Q. E. D.
0 0

11Corollary 2: If each C. is a linear variety, i= 1-m, andif the in-
1

tersection C of these varieties is nonempty, the sequence (Tnx3 converges
0strongly to P0x for every xCX.

Proof. To avoid unnecessary notational complications we assume
thatm=3. Thus, Cg i 

+ .where gi is afixedelementof N and S. is a

given CLM, i= 1-)3. It is easily shown that for each i and any xCe,

P.xX = S. x + Rigi (4. 28)

where Si is the orthogonal projection operator onto S. and R. is that onto ijt.

orthogonal complement, LS.. Clearly then,1

Tix=x+ki(Six+Rig,-x) = (-i)x+ X Sx XiRigi (4.9)

Lx + X.R g. (4.30)

where

Li= (I-)-iI+X.S. , i= 1-3 (4.31)

Thus, by simple algebra and linearity,

Tx=T 3 TT x= X3R3 g3 +X 2 L Rzg 2 +X L3 L R gl + L LLX
3 2 3 3 2 2 1 32 1 3 2 1

= h+ Lx (4.32)

where

A linear variety C is composed of all vectors x of the form x=g+y

where geX is fixed and y ranges throughout some CLM S. For short,
C = g+S. (A linear variety is obviously closed and convex.)
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h X X3 R3 g3 +X X2 L 2 R zgz +X XL 3 L 2 R 1 1  (4.33)

and

L=L L L1  (4.34)

It now follows by iteration of (4. 32) that

n-i

T nX L rh+Lnx , n>l. (4.35)

r= 0

In particular, for x f, f a fixed point of T, T n f =f

n-i

f L r Lh + LOf (4.36)

r=0

and

T nx -f = LO(x-f) n n>1 (4.37)

According to corollary 1, Ln(x-f) 4~P S(x-f) hence,

Tnx -f + Ps(xf) SW (4.38)

where P 8 is the orthogonal projection operator projecting onto the CLM

3 -

g = nl g. (4. 39)

Obviously, w = lrn T x is independent of the choice of fCC 0 '
n -*o

It is clear from f C 0 that weC0 , and invoking the orthogonal pro-

je t o h o e ,x-w = x-f-P 8 (x-f) = Q (x-f) (4. 39a)

where Q.(x-f) is the projection of x-f onto .35. Hence

lix-wil = flQ 8(x-f)fl 5S11x-fII * (4. 39b)

But f is an arbitrary member of C 0 so that necessarily, Tn x -w= P 0x. 0. E.D. 1

I zAnother proof of corollary 2 (without relaxation) is given by 1. Auiemiya
and T. Ando C183. 
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In Theorem 4. 1 the update rule is given by xn+ I = Txn with x 0 = x an

arbitrary element of H. More generally, we can also work with the singlc-

step cyclic scheme

x I  T I x

x 2  T T2x 1I

x = T x = T T ... T x Tx (4.40)

=T T .Tx T

Xm+ I  I TI m

xm2m T mx-2ml T m TM_ 1  TITx T 2x

XZm+l Tlx2 m

Or, put more succinctly,

X+l =T )x (4.41)

where x 0 =x and13

u(n) =l+nmodm , n> 0 (4.42)

It is easily shown that the sequences CTnx3 and (x ] converge weakly to

the same limitx*CC 0 . Write n=Im+r, 0< r<m-1. Then, for n> 1

x n = TTr .•TITIx (4.43)

and l -o as n -,oo. Let T x -ax* and let the subsequence Ixn , I of (xn)

converge weakly to x.

Then, n=mlI+r', 0< r< m-l, and I*-4 oo as n-oo. Moreover,

making use of (4. 11) with T replaced by T r iTr 0-1 .. T I and x by T x we

13n mod m is the remainder obtained upon division of n by m and is one

of the integers 0,1, ... m-1.
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obtain, for every ycC 0 ,

JI Xx 1 M. (lT x-yli2-II,,nYl112)  (4.44)

lt -_,l<b m 1 1 lT' x-yIIllx1nT1 + XYl2) (4.44)

Hence, liT x-x, ill 0 as n-oo. ButT xx, -, x*-x'and since 1 4

x-x III = 0 , (4.46)
n 0- 00 n

x= x, as was to be shown. (To the best of our knowledge, the first proof

of weak convergence of the iteration (4. 41) to a point of C 0 is due to

Bregman [9). However, as we have seen, the underlying theory is the

same as that of the full composition operator T = T Tm_1 ... T and its

associated fixed-point recursion, Xn+l = Tx n")

The first lemma of this section is preparatory to a deeper study of

the strong convergence of the sequence [Tnx1.

Lemma 4. 1: Let T be any nonexpansive -map whose set of fixed

points includes a given closed convex set U, and let P denote the pro-

jection operator onto U. Then, for any xe domain T,

Re(x-Tx, x-Px) > 0 (4.47)

and

lIx-Txll < z1lx-P xll (4.48)

1 4 Let yn- f. Then, for every yell, (f,y) =lim(yn, y) as n-1oo. In particular,

(f,y) =lim (yn, y)1. But from Schwartz's inequality, l(yn, y) <_1ylli IiYn'1l
so that I(f, y)l < lylI lim infllyI l

Thus, for y =f,

Ilf 11 :lim inf y II
n -1o oo
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Proof. Clearly, for every x, y in domain T,

jjTx-Tyf 2 -Ijx-yfl2 <O . (4.49)

In particular, if y = P ,x,
UTx-P Vx II z < II x-Px 11 ( 4.50o)

because PV x¢' and TP x=PVx, by hypothesis. Thus,

ix-Tx-(xPUx) V 12< IIx_P.x112  (4.51)

and an easy simplification yields

I1x-TxR 2 <2 Re(x-Tx, x-P x) , (4.52)

xC domain T. From (4.5Z) and Schwartz's inequality we now obtain (4.47) and

(4. 48) immediately, Q. E. D.

Inequality (4.47) simply states that Tx lies on the side of the support

plane through x, parallel to that through P x, containing V" (Fig. 4. 1).

Support plane through
x parallel to the one
through P. X.

Support plane to 3 at Pvx.

Fig. 4.1

Lemma 4.2: The iterated sequence t nx) of Theorem 3.4 converges

strongly iff

lT'x-P nTnxI -40 (4.53)

15
as n - 0 0.

15n n xV)n
Clearly, ITnx-PVTnxH =d(Tnx, U), the distance of Tnx from V.
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Proof. As shown in Theorem 3.4, the sequence (Tnx converges

weakly to some point x*E3U. Evidently, if the convergence is actually strong,

d(T n x, ;") = IT nx-P T n x 1l < II nx-x* 11 _ 0 (4.54)

nx; k
as n-w. Conversely, suppose that d(Tnx, i) -*0. Then, since T is non-

expansive for all integers k>O and includes ;r in its sets of fixed points,

(4.48) yields, for all x C,

!lx-Tkxll <_211x-P;xll , k> 0 (4.55)

In particular, if x is replaced by Tnx we obtain

II TnxTn+x i z II Tnx -P VTnxII 0 (4.S6)

as n-*0. Thus, the sequence (Tnx) is Cauchy and Tnx-_x*, Q.E.D.

According to lemma 4.2, convergence in Theorem 4. 1 of the sequence

(Tnx ) to a point of CO is strong iff

d(Tnx,C 0 ) =ITnx-P 0 TnXI -+0 (4.57)

as n- oo. (The set of fixed points of T=T T ... T coincideswithC
m in-1 1

We can show without the imposition of any additional constraints that for

r= 1-*m,

d(Tnx,C =r IT xPrT +0 (4.58)

as n-100. (The distance of Tnx from every Cr goes to zero as n goes.to

infinity.)

To see this, note that as a special case of (4. 11), 16

Tnx-PrPr-. "' ?P T1xl 2 nxy2" p I PiTnxy 112 )

(4.59)

<2r-l(11Tnx-yl2 - 1 Tn+ lx-YI 2 -0 (4.60)

for all y C0 and every r= I-*m because,

16Identify T with PrPr. .**PI and set m r and Xi= 1, i= I-+r.
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ITn+ lxyII P rpr- '" P I Tnx 'yl (4.61)

and

JIM IITx-yll (4.62)
n -+oo

exists (Theorem 3.4). Thus, since P -P ... . P TnxCCr z-1 I ro

d(T n x, Cr ) <U Tnx'PrPr_. I"." P I nT xf "40 (4.63)

as n-+o0 and (4. 58) is established. Our problem therefore is to find some

other restriction, preferably very weak, which together with (4. 58) implies

(4. 57). The next theorem complements Theorem 4. 1 and supplies two suf-

ficient conditions for strong convergence, the second of which appeared for

the first time in the excellent paper by Gubin, Polyak and Raik C 1 1 already

referred to in Theorem 2.3.
217

Theorem 4. 2: Either of the two conditions 1) or 2) stated below

suffices to guarantee the strong convergence of the sequence (Tnx ) of

Theorem 4. 1 to its weak limit x*.

1) At least one of the Ci's is uniformly convex and does not contain

x* in its interior.

2) For some C, l< <m, the set intersection

m oC n(i n ai) ( 4 .64)

iM

is nonempty (and therefore contains a point of C0 ).

In case 2) the strong convergence of (TnX) to x* is at a geometric

rate.

Proof. 1) To be specific, let us suppose that C1 is uniformly convex

and contains x* on its norm boundary. As we have already shown in (4. 58),

d(Tnx, C1 ) = Tnx-P ITnx11 -+0 (4.65)

17The interior of any set G is denoted byG ° .
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as n 400. Clearly, 1 8 every yn=P T nxies in C andyn -x. Now, if the

convergence of the sequence lyn) to x* is not strong, there exists an C>0

and a subsequence Cyn, such that

lYn, IxII > e (4.66)

for all n +.

Thus, since x* C0 CCI and the latter is uniformly convex (Def. 2. 3),

the point
y nI + x*

zn- + h (4.67)

is a member of C for all n' and all h such that

lihil <_ 6(> >0 (4.68)

But for any such fixed choice of h, Zn/ 1 x*+h which belongs to C because

the latter is weakly closed. Consequently, x* is the center of a sphere of

radius 6(e)> 0 contained in C I. and this contradicts the assumption that x*

is not an interior point of C I . Therefore the convergence of (yn) and

hence of (T nx, to x* must be strong. (Note that ItTnx -x* I II Tnx'Yrill +

II ynX* I0 as n- 4co.)

2) Let z belong to the intersection (4. 64). Then, z¢C 0 and for some

6>0 it is true that heCi, iJ4 , for all h such that

Ulh-z-ll6 ( (4.69)
n

Let y= PaT x. Then, for any C>0, no matter how small,
e 6

W+=-. +-y. * (4.70)

is a member of C 0 for all sufficiently large n.

In fact, since zeC and yeC and C is convex, weC.. Now observe

that

18For any zCe,

n n(TnX, z) -(y.,Z)lI = I (TnX-y., ")I :S 11 Tn -Y.I 11 " z 11 0
as n-oo. Hence, Jim (Yn, Z)=im (T nx, z)=(x*,z) so that Yn -'x
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IIY-PiYII d(YCi) <llY-PTnx 1lmlITnx-y 1 + IITnx-P Tnx (4.71)

d(Tnx, C) + d(Tnx, C) < +E = ( (4.72)

19
for n large enough. Thus, for all such n,

h z +. (y-Ply) (4.73)

belongs to Ci, i/ C, because Ilh-zII <6. From the identity

w = (Z + -E( l) .Py = h + •Ply (4.74)
i+ C+ 6 e+6 ~Y , (.4

and the convexity of C I we also conclude that wECi, i/ a; i.e., weCi., i= -m,

hence weC O.

Consequently,

d(Tn x , C)< IITn IITnx-YIl + Iy-wfl (4.75)

d(TnX, C) + .-- Ily- z (4.76)

_ cR ZR £ c
2 (4.77)

where

C = (I + iR) (4.78)

200
ndRis an upper bound on Iy-z lj. ° Since £ is arbitrary, d(TnX, Co) con-

verges to zero as n-*o and (T nx is therefore strongly convergent to x*.

It remains to establish that convergence is at a geometric rate.

Observe first that e/Z in (4. 77) is by construction, and for sufficiently

large n, an upper bound on the mn distances d(Tnx, C.), i = 1 -- m:

d(Tx,C)= T-P , Tnx (4.79)

1 9Remember Lhat according to (4. 58), for i 1 -*m, lim d(TnX, C.) =0.
n -=o1

20 lly-zjl = IIaTnx-zI <11lT x-zl1 for all zcC 0 . But the latter is a monotone
nonincreasing function of n and is therefore bounded by some finite number R.
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Hence, for all large enough n,

d(Tn, C)< c. sup IITnx-p TnX • (4.80)

Choose the positive numbers eI and C2 so that eI e Z/c 2 < 1 and

0<I<Xi < 2-C , i= l-+m. Then, from (4. 10) and (4.7) with T replaced by

Ti., x by Tnx andy by P 0 Tnx we obtain, for every i = 1 -+m,

Z n 2 Z n Z 2n n ni
d (T x, 0 )< c. d (T x, C.) < -iX(')(d (T x, 0 ) T ITT x-P 0 T 4

ii
(4.81)

c Z n IInT nal (4.82)

"----(d Tx, d) dZ(Tn+lx, C0 )) (4.83)
012

Therefore,
n+11 21/2 x

d(Tn+Ix, 0)< (I ) d(T nx, C0 ) (4.84)

and by iteration,

x 1 2 n/2
d(T x, 0) <(1 ---- ) •d(x, CO0 ) (4.85)

Se n/?
< R(1 - -(4.86)

C

The proof can now be brought tc a quick conclusion. From (4. 56), with

= and P =P0, (4.86) yields, for every integer k>l,0 U 0

an n~k I£1 2 n/z
IT nx-T n+kx < ZR( I - e ) (4.87)

c

But for fixed n, Tx-+x* as k4oo so that a passage to the limit in (4. 87)

gives
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C n

i.e., Tnx converges strongly to its linit x* at least as fast as 2Ran where

a ( - < , (4.89)

Q.E.D.

The idea behind the proof of 1), Theorem 4. 2, is simple but the

criterion itself is %ery effective. It differs fundamentally from 2), and

taken in the context of Theorem 4. 1, appears to be new. Apart from the

important uniform convexity requirement, 1) succeeds because the weak

limit x* is on the boundary of at least one C., whereas the success of 2)1

depends entirely on the fact that at least one point of C O , not necessarily

x*, is interior to the set intersection of some m- I Ci 's. In general, with-

out the introduction of smoothing constraints, 2) is of limited applicability

because for the class of image-restoration problems we have in mind, the

unknown f is usually a boundary point and conx ex sets with interiors are

hard to come by.

For example, suppose that ]N=L 2 , the Hilbert space of all functions

f(t) of the real variable t square-integrable over -o<t< oo. Let F(w) de-

note its L 2-Fourier transform and let us denote the correspondence by

f(t)- -F(11). Then, if f.(t) -.- F(W), i = 1,2,22

1 1

(f, f2 ) - fl(t)f 2 (t)dt = J Fl(W)F2 (W)dW . 14.90)

-00 .00

For any prescribed bf>0 let C0 denote the subset of i composed of all f's

bbandlimited to b; i. e. , fC C b i f f F( 2) =0, 1 W I > b. It is obvious that C b is

a CLM devoid of any interior points. Indeed, given any e>0 and ny fCb

there exists a g'c b such that

Z1Except for some minor improvements, especially in the part dealing

with geometric convergence, our proof of 2), Theorem 4. 2, is in all respects
the same as the original one given by Gubin et al. ( 1 .

2 2 For a scalar x, denotes its .omplex conjugate, and as usual Rex and
Im x are abbreviations for the "real" and "imaginary" parts of x, respectively.
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Iq

I f-g f I f(t) -g(t) 1 2 dt < C2 (4.91)

-00

(Thus, as measured in terms of energy context, any size neighborhood of a

bandlimited sig ial contains signals that are not bandlimited.)

As another illustration, for any prescribed a>0, let Ca denote the set

of all f's whose orthogonal projection Pa f onto the closed interval -a<t< a

is a given function g(t). (Of course, g(t)=0, 1tI >a.) It is easily seen that

C is a linear variety whose interior is also empty. Thus C and C are
a a b

two practical examples of boundary sets that occur repeatedly in many areas

of signal processing.

Let C denote the closed unit sphere in X and let g be any fixed element

of norm equal to one. Clearly, g lies on the boundary of C l , a closed uni-
23

formly convex set. Let C 2 denote a closed half-space whose boundary

is tangent to C 1 at g. Obviously, g is the only point common to the inter-

section C IlnCZ. To find g we can generate the iterates Tn x where T = 2 PI

and x is arbitrary. (Figure 4. 2 should clarify the mechanics.)

X{

TX \IT3

Fig. 4. 2

23By making use of the identity

2 2 x2 +y2II~ ll __+ I- liIxill +I yI

it is easily shown that the closed sphere of radius R is strongly convex
(Def. 2.4) with 6()= p T2 and p.= I/8R.
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Since x4 =g lies on the boundary of CI, criterion 1) guarantees that

Tnx4g; however, 2) fails because C nC 0 is empty. Nevertheless, geo-2 1
metric convergence is precluded by the tangency of the two boundarics at

the point of contact x*.

In Fig. 4.3, 2) always succeeds and establishes that T nx-4x at a

geometric rate. On the other hand, 1) predicts strong convergence only

if C is uniformly convex. Neither 1) nor Z) encompasses corollary 2,

Theorem 4. 1, in which all Ci's are linear varieties.

/1S IX

Tx \\ T32 11 L;

II A

Fig. 4.3
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