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1. Introduction

In a recent paper [ 11 ]published by the first author, it was suggested

that many problems of image restoration are probably geometric in charac-

ter and admit the following initial linear formulation: The original f is a
; vector known a prior to belong to a linear subspace Ob of a parent Hilbert
space H, but all that is available to the observer is its image Paf’ the

projection of f onto a known linear subspace 0a (also in H),

1) Find necessary and sufficient conditions under which f is uniquely
determined by Paf and 2) find necessary and sufficient conditions for the
. stable linear reconstruction of f from Paf in the face of noise. (In the later
' case, the reconstruction problem is said to be completely (or well) posed.)

The answers turn out to be remarkably simple.

a) fis uniquely determined by P_f iff €, and the orthogonal comple-
q y b

ment of éa have only the zero vector in common.

b) The reconstruction problem is completely posed iff the angle
between Ob and the orthogonal complement of Oa is greater than zero.

(All angles lie in the first quadrant.)

c) In the absence of noise, there exists in both cases a) and b) an
effective recursive algorithm for the recovery of f employing only the
operations of projection onto Ob and projection onto the orthogonal comple-

ment of Oa' These operations define the necessary instrumentation.

This point of view has proved to be very fruitful and can be made to en-

compass many important applications [12].

However, it appears that a linear formulation is only achievable by
discarding information concerning the original f, and as a result the

associated restoration problem is often ill-posed [11, Theorem 2]. The

DT
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entire process of smoothing can be conceptualized as a technique for re-
introducing the missing information and therefore plays an essential role

in combatting the effects of noise.

As is shown in detail in Part II, a linear image restoration problem

transforms, under smoothing, into a nonlinear one of the following kind:

P —

The original f is known a priori to belong to the intersection Co of m




well-defined closed conves sets Cl, (‘-2, e, Cm; i.e.,

m
fﬁcoz_ﬁ

lci (1.1)
1=

Given only the projection operators Pi onto the individual ci'a, izl-*m,
restore f, preferably by an iterative scheme. Thus, the Pi's define the
necessary instrumentation in an arbitrary Hilbert space setting. We are

now in a position to summarize the contents of Part [.

Section 2 provides some basic tutorial material on convex sets and
projection operators onto closed convex sets. Section 3 is devoted to an
in-depth leisurely study of nonexpansive maps and their fixed points, with
special emphasis on iterative methods. Because of the importance of
these methods, we have supplied full proofs in order to make the report
self-contained. Section 4 applies the theorems in Section 3 to the problem
of finding points belonging to the intersection of a finite number of closed
convex sets. [t is shown that the latter is a particular case of the problem
of finding a fixed point of an asymptotically regular nonexpansive operator
by iteration. In general. the convergence of this iteration is only weak and
the question of strong convergence is examined in some detail. In this re-
gard, Theorem 4.2 is a major result which serves as the starting point for
Part II.

Specifically, Section 5 in Part Il pursues the consequences of identify-
ing the process of smnothing with that of "opening" up closed convex sets by
enlarging them to possess interiors. Section 6 develops algorithms for the
realization of several important projection operators onto closed convex
sets, and Section 7 describes some numerical results. Lastly, Section 8

concludes with some observations and suggestions for future research.




2, Some Properties of Convex Sets in Hilbert Space

Definition 2. 1: A subset C of ¥ is said to be convex if together with

any x, and xy it also contains ux, +(l-[u)x2 for all u, o< u<l,

Theorem 2.1: J.et C denote any closed convex subset of ¥ and let f

be any element of ¥. Then, there exists a unique xoe C such that

inf [[£-x]| = le-x || . (2.1)
xeC

(Clearly, %0 is the element in C closest to f in norm,)

Proof, Let us first demonstrate uniqueness. Suppose that

inf [{f-x}| = 6 = flf-x [l = -y, i (2.2)
xeC

where xoec and yoeC. Then, by replacing x and y in the identity

2 2
2 .2 IxlT+ vl
1220+ 152 = ——— (2.3)

by f—xo and f—yo, respectively, we obtain
Xaty., 2 x -y 2
0 2 2
le-—=21 =% 1220 <® . (2.4)
2 2
*0™Yo
But, because C is convex, — €C so that
x +y, 2
Ir--222 >s° (2.5)

2 z
whence, “ x5-Yo || =0 and X9= Yor

From the definition of infimum, there exists a sequence {xn} of

elements contained in € such that

lim [[f-x || =5 . (2.6)

By replacing x and y in (2, 3) by f-xn and f—xm respectively, we get

x_ +
n

2 2 2 xm 2
“xn- m“ =2("f"xn“ +“f"xm“ )'4"f——-2-——" . (2.7)




X +x
Thus, since nz I eq. for n,m=1-%, (2,5) and (2, 7) yield

0< lim fx -x_ ||2_<_452,.4az= 0 (2.8)
n,m-w
which implies that
lim ||x -x | =0 . (2.9)
ot I
The sequence {xn] is therefore Cauchy and converges to a limit xoec be-
cause C is closed, From (2, 6),
fe-x,ll =6 , (2.10)

Q. E'D.

Theorem 2,1 is fundamental and leads immediately to the notion of 4
a projection operator: For any x€H the projection ch of x onto C is the
element in C closest to x, As we have seen, if C is closed and convex, 1
ch exists and is uniquely determined by x and C from the minimzlity

criterion

“x-ch“ = meig“x-y“ . (2.11)
y

This rule, which assigns to every x€l its nearest neighbor in C, defines
the (in general) nonlinear projection operator pc:u-» C without ambiguity.
Later we shall develop several alternative important characterizations of
Pc.

Of course any CLM is automatically convex and closed and the

corollary that follows is the classical orthogonal projection theorem.,

Corollary 1: Let G denote any CLM in ¥, Then, every x€¥ possesses |
a unique decomposition of the form x=xl+x2 where X = Paxleﬁ and
xzexﬁ, the orthogonal comple::r:entl of G, +

Proof, Suppose that x= X tx, =X+ %, where x) and X3 belong to G

and x, and x, belong to 1G. Then, X) =Xy =X =X, is a member of both G

1For any linear manifold G, y€1G iff (x,y) = 0 for all x€G. It is easily
shown that 1G is always a CLM and that if G is a CLM, then 1(1G)=G,
Evidently, GN(1G) = {¢ ) and Gcy 1G),




and 10. Thus, from the previous footnote, X =Xgs Xy TX, and the¢ decom-

position, if it exists, must be unique.

Choose x) = Pax and set x2=x-PGx. Then, x=x,+x, and it only re-

mains to show that X, is orthogonal to G, That is, (xz,y) = 0 for all yeG.
From the definition of PG and the convexity of G, for any g, 0< u<1,
uy+(l-u)PchG for every yeG so that

2
Ix-Pgxl® < l1x-ny-(1-m)P x| > (2.12)
Or, upon expansion of the right-hand side of (2.12),
2 2 2
Ix-Pgxll®< x-Pgx*+ u?ly-Pgxl © - 2uRe(x-Pyx, y-Pgx) .(2.13)

Hence,

"2
2Re(x-PGx,y-PGx)_<_ V] "y-PGx" (2.14)

and by letting n=0 we find that

Re(x-Pax, y-PGx) <0 (2.15)

for all yeG. Now, since @ is also a linear manifold it contains Ay for every
real \ and (2. 14) yields, for A\ real,

XRe(x-PGx,y) < (x-PGx, PG.X) . (2.16)

This inequality can only be true if

Re(x-PGx, y)=0 (2.17)

for all yeG, If now y in (2.17) is replaced by iy, we get

Im(x-PGX, y)=0 (2.18)
so that finally
(x-Pgx,y) =0, ye€ ‘ (2.19)
QQ E. Dl
S
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Corollary 2: Let C be a closed convex set. Then, for any xeN,

R.e(x-ch,y-ch) <0 (2.20)

for every yeC. Conversely, if some z€C has the property
Re(x-z,y-z) <0 (2,21)

for all yeC, then z = Pax.

Proof. A review of the proof of corollary 1 reveals that (2. 15) is

valid for any closed convex set C, Conversely, (2.21) implies that
2 2 2
-y | 2= |-z 42y || = |} x- || >- 2Re(x-z, y-z)+ | z-y | 22 |x-z | (2.22)

for all yeC., Thus, by Theorem 1, z= ch, Q.E.D,
Corollary 3: Any closed bounded convex set C is weakly compact.

Proof, What we have to show is that from every sequence {xn}c (]
it is possible to extract a subsequence (xn:} that converges weakly2 to
some limit f, and that all such weak limits kzlong to C. By hypothesis, C
is bounded as is therefore every sequence (xn} contained in C. Hence,
since Hilbert space ¥ is weakly compact, there exists a subsequence
[xnl} of {xn] such that X = f, fe 4. Now according to (2.20),

Re(f—Pcf, x -Pcf) <0 (2.23)
for alln’. Thus, x f- f implies that

2
0>Relf-Pyf, f-Paf) = [[£-Pf["> 0 (2.249)

or, ||f-Pat]l =0. Consequently, £=P,feC, Q.E.D.

The proof of corollary 3 reveals that a closed convex set C, bounded
or unbounded, contains all its weak limits and is therefore weakly closed.
Now, since a strong limit is automatically weak, it is clear that weak
closure of any set implies its strong closure but the converse is in general

false, From this point of view, convex sets appear to be quite exceptional,

z'I‘his means that lim(g,xn:)= (g, f) for every ge¥.

§
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In a real Hilbert space, the inequality (2, 20) for closed convex sets
C reads

(x-ch,y-ch)S 0, allyeC . (2.25)

In this guise it can be interpreted to mean that the vector x-ch is support-
ing to C at the point chec. As Fig. 2.1 suggests, x-ch is "normal" to
the "tangent plane" to C erected at the point ch. This plane has C and x
on opposite sides and therefore separates one from the other, Note also

that the angle { between the vectors x-ch and y-ch is never less than 90°,

Tangent plane

Fig. 2.1, Cis a closed convex sect,

Theorem 2.2: Let C be any closed convex set, Then, for every

nair of elements x and y in H,
2
|Pax-Payll” < Re(x-y, Pax-Pay) . (2.26)

Proof, Since ch and Pcy both belong to C it follows from (2,20)

that
Re(x-ch, Pcy-ch) <0 (2.27)
and

Re(y-Poy, Pax-Pey) S0 . (2.28)

Thus, (2.26) is obtained immediately by addition, Q. E. D.




Corollary 1: Projection operators onto closed convex sets C are

nonexpansive and therefore continuous,

Proof. Schwartz's inequality applied to (2. 26) yields, for every x
and y in ¥,

I Pex-Pavll < I|x-yl . (2.29)

Therefore, under the operator PC’ the distance between two images never
exceeds the distance between the two originals which is precisely the defi-
nition of nonexpansivity, A fortiori, le-y“ "small" implies ﬂch-Pcy"

"small" so that Pc is continuous, Q. E.D.

It is possible to strengthen (2.29) in various directions by imposing

one or more constraints on the "curvature® of C. Admittedly, this strengthen-

ing appears more natural in a finite-dimensional setting and leads to several
technical refinements not fully exploited in this report. Nevertheless, we
present the results for possible future applications and because their proofs

depend on Theorems 2,1 and 2.2 in an essential way,

Definition 2.2: A convex set C is said to be strictly convex if x €,
y€C and xf£y imply that (x+y}/2, the midpcint of the "chord" connecting x

and y, is an interior point of C,

Definition 2,3: A convex set C is said to be uniformly convex if there
exists a function 6(T) positive for 7>0, and zero only for T=0, such that

x,y€eC and
Iz - X0 < stfix-y (2. 30)

imply z€C,

Definition 2.4: A uniformly convex set C for which it is possible to
choose

s(T)=ut2 (2.31)

U a positive constant, is said to be strongly convex. (Evidently, strong
convexity implies uniform convexity which implies_strict convexity.)
Theorem 2.3 [1]: If Cis strictly convex, yeC, x(C, y;‘ch, we have
Re(x-ch,y-ch) <0 . (2.32)
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Proof. By definition, if yeC and ch;ly, therc exists an €>0 (which

depends in general on the choice of x and y), such that

ch+y
W=zt — eC {2.33)

for all z that satisfy ||z]| < €. Henee, if x#C we can choose
e(x-ch)

Z = — (2.34)
| %-Pux|l

and then replace y in (2.20) by w to obtain

Re(x-Pyx,y-Pax) < -2€||x-ch" <0 , (2.35)

Q.E.D.
Corollary 3: If C is uniformly convex, y€eC and x¢C, then

Re(x-Pyx, y-Pax) < -26("y-ch") . "x-chH . (2.36)
If C is strongly convex,

IPax-yll < ellx-yll (2.37)

where

p=(1+2px-Puxl)t (2.38)

Proof. Observe first that if y= ch, (2.35) is correct with €=0, Con-
sequently, in view of the properties of 6(T), (2.36) follows immediately by
substituting 6(Ily-ch") for € in (2.35). To derive (2.37) we rewrite (2, 35)

in the form

I® gx-y | * < Re(x-y, Pox-y) - 2¢]|x-Pox| (2.39)

and then use Schwartz's inequality to obtain

2
1P gx-y 2P gx-yll - [x-yl +2¢|x-Poxl < 0 . (2. 40)

Or, with € replaced by p.llpcx-y “2,




" re—— : I ; w 1

IPax-y lUIPax-y [ +2u [ Pox-y | - [x-Poxll-Ix-y ) < 0 (2. 41)

so that always,
-yl

l+2u||x-ch||

I Pex-yll < . (2.42)

Q.E.D,

The closed half-circle C shown in Fig. 2,2a is convex but not strictly
convex because the midpoint z is not an interior point., On the other hand,

' the full closcd circle in Fig, 2.2b is the prototype of a strongly convex set,

X y
{ (a) Closed halt-circle. (b) Closed full-circle.
7 " Figs, 2.2a and 2,2b,

10
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3. Nonexpansive Maps and Their Fixed Points-Basic Theorems

Definition 3.1: A mapping T: C- ¥ is said to be a contraction if there
exists a positive constant 6, 0< 0 <1, such that

fTx-Ty|l <ol x-yl (3.1)

for all x,yeC.

Any contraction has at most one fixed point, For if Txl =x) and

sz =Xy, then

Iy 5 = HTx,-Tx, | < 0llx, -, | 6.2

which implies lel-xzﬂ =0 and hence x,=x

|

Theorem 3. 1: (The contraction principle), If C-is a nonempty closed

subset of ¥, any contraction mapping T of C into itself possesses a unique

fixed point x . Moreover, starting from any element x, of C, T x >x

0 0

as n o,

Proof, Since we already know that there is at most one fixed point,
we need only show that a fixed point cxists and is obtainable by iteration,

Let xq be any member of C and set

xn=Txn_1 y N=]1=0 (3.3)

Then,

xyq-x 0 < 8llx %, e 8= x| (3.4)
so that for any m >n
(ESEe S B ESE Y B ST LR S ESEE N |
< 1408+ .. +em’“'l)||xl-x0||
< @a-a g xl . (3.5)

Since 0< 8< 1, it follows that {xn} is a Cauchy sequence. Therefore,

as C is closed, it converges to an element x €C. But clearly,

11
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.<_ e“ xw-xn“ + “ xw-xn+l “ (30 6)

' and the right side tends to zero as n »®©, Thus, “Txm-xw“ =0, i.e,,

Tx,, =X, It should also be noted that (3. 5) yields the estimate

“xoo'xnllf. en(l-.e)-l“xl-xo“ ’ (3.7)

Q.E.D.

Corollary: Let T‘!

closed set C into itself, Then, T possesses a vnique fixed point Xy obtain-

» 4 an integer >1, be a contraction of a nonempty

able as the limit of any sequence [Tnx0 ¥, x,€C .
Proof. According to Theorem 3.1, there exists a unique x_€C such

2
that T X = Xooe Hence,

Tx = T(T!x ) = TH(Tx ) (3.8)

and Txmec is also a fixed point of Tl. By uniqueness, Tx =x_ and x_ is
! therefore a fixed point of T, Consider the sequence (Tnxo] as n->o and

write n=qf+r where q is an integer and 0< r<2., Then, as n+®, g and

I Il = 1T T =T x| < f T 0

Consequently, Tnxo—>x0o as n-©, Q E,D,

Contraction is a very strong requirement to impose on a mapping.

A weaker notion is that of "shrinking".

Definition 3.2: A mapping T: C= ¥ ic said to be shrinking if

ITx-Tyf < Ix-yll + x#y , (3.9)
for all x,yeC,

Theorem 3,2: A shrinking map T of a compact3 set C into itself always

possesses a fixed point.

3A subset C of ¥ is said to be compact if every sequence of elements in C
has a subsequence which converges to a limit element in €,

12




Proof. The numerical function “Tx-x “ is obviously continuous on

C. Hence, since Cis compact there exists an clement %, €C such that

inf || Tx-x|| = | Tx_-x_|| . (3.10)
xeC

But we must have Txoo= X0 because otherwise

friTx ) -T2 || < Tx-x_1 , (3.11)

a contradiction, Q. E. D,

In many applications even shrinking is difficult to achieve and our

final weakening of the contraction idea is embodied in the concept of a non
expansive operator (mapping).

Definition 3.3: A mapping T: C~ ¥ is said to be nonexpansive if

 Tx-Ty| < |x-y] (3.12)

for all x,yeC.

Theorem 3.3: Let T: C-C be a nonexpansive map whose domain C is

a nonempty closed bounded convex set., Then, T has at least one fixed point,

Proof, Let Yo be any preselected member of C and let the set
Co= {x: x=y-y,, Y€C}. This translate C is evidently also a closed bounded
convex set which moreover contains the zero vector ¢, Clearly, every
x€C, possesses a unique decomposition x=y-y, yeC. LetF: Co"’(!o be de-
fined by

Fx = Ty -yo - (3.13)
This map F is nonexpansive because X =Y1"Yg and %X =Y,Yg imply that

IFx -Fx, || = | Ty ~Ty, [ <lly -y, = Nty -y ) - ty-v Ml = llx, =, [F
(3.14)

For any fixed k, 0< k<1, the map G=kF is a contraction of Co into
itself, Indeed, for any xeco, kFx = k(Fx) + (1-k)¢eco and for all xl,xzeco,

13




G, -Gx, | =k“Fxl-FxZ“ <klx-x . (3.15)

Hence, invoking Theorem 3.1, there exists for every constant k, 0< k<1,

a unique xkeco such that

X, = kka . (3.16)

If it can now be shown that X, g as k-1 from below, then by the continuity
of F and geco, it is seen from (3.16) that g=Fg. Or, since g=£-y0, feC,
we obtain f=Tf so that { is a fixed point of T, We shall actually prove that

lim X =8 (3.17)
k=1;0<k<1

where g is the (unique) fixed point ot F in Co of minimum norm,

Assume that 0< k<t<l1, x) = kka, x, =£Fxl and let h= xl "Xy Then,

since “ Fxl—ka" < "xl -xk" , we obtain

(g'l(xk+h)-k"x , 1“(xk+h)-k'lxk) < |n)? (3.18)

2

or,

1

P g 12+ 72 n) P < 20 T -t ") Re(x,, b) . (3.19)

(e
Thus,
Re(xk,h)z 0 (3.20)
which, together with the identity

2 2 2 2
“xlll =||xk+h" =||xk|| +||h|| +2Re(xk,h) , (3.21)

leads to the inequality

2 2 2
(EPT Y E R AN (3. 22)

To sum up, for any choice of sequence 0<k < k < ¢+ such that k =1, the
sequence {“ xk || } is monotone nondecreasmg and bounded (because C

bounded). It 1herefore converges and, in particular, from (3, 22),

14
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2 2 2
Mg 172 e 15 M 17 0 (3.23)

as £, k2o, By the completeness of ¥, x _ﬁgeco because Co is closed,

(Of course, the limit g is independent of the particular selection of sequence
ki-v 1.)

Lastly, let e be any fixed point of F in Co. Then, e=1:.Fe and we
k;

can apply (3.22) with x

x, =g so that
K

=e, 1=1, x) =x and k=ki for any i= 120, Asi-o,

J

2 2 2 2
ell™> el + le-gl®> fle® . (3.24)

Therefore, ||g || =inf "e ||, as e ranges over the fixed points of F in Co, Q.E.D.

Theorem 3.3 is due to Browder { 2 ] but the proof we have presented is,
in all its essentials, that given by B, Halpern [3 ]. Unlike Theorem 3.2
(which it does not subsume), the compactness assumption on C is dispensed
with completely and replaced instead by the much weaker constraints of
convexity and boundedness, Nevertheless, in many signal-processing ap-

plications even this assumption of boundedness may be questionable because

accurate a priori numerical bounds are not always available. However, if

the existence of a fixed point is known in advance from say, physical con-
siderations, the boundedness requirement on C can be dropped. Our im-

mediate objective therefore is to reach Theorem 3.4 (Opial) and to accom-

plish this we need three important preparatory lemmas, the last two of i

: which we also owe to Opial [ 4 ].

Lemma 3.1: The set of fixed points J of a nonexpansive mapping T
with closed convex domain C and range ¥ is a closed convex set,
Proof, Let x,= Txi, i= 1, and suppose that xi—)x. Since {xi jcce

which is closed, x€C and Tx is well-defined. Thus, invoking nonexpansivity,

| Tx-x|| = || Tx-Tx, + xi-x" < Z“x-xi X (3.25)

so that Tx=x and J is closed. To establish convexity we need a very useful

inequality.

For any pair (x,y) €C we have the casily verified identity
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Ix-y I 2- | Tx-Ty | = 4Re(Px-Py, (1-P)x-(1-P)y) (3.26)

where 1 is the identity operator and

1+T
P = T [ ] (3. 27)
But T is nonexpansive hence,
Re(Px-Py, (1-P)x-(1-P)y) > 0 (3.28)

for every x,y€C. Since P and T have precisely the same fixed points it
suffices to show that the set of fixed points of P is convex,

Let y be any fixed point of P, Then (3,28) reduces to

Re(Px-y, x-Px) > 0 (3.29)

for all xeC. Conversely, if some yeC satisfies (3,29) for every x€C it
satisfies it for x=y which implies that "y-Py " <0 or y=Py. In short, the
set of fixed points of T is the set of all yeC that satisfy (3.29) for all xeC,
But this set is obviously convex, Q, E, D,

Corollary: The map T with closed convex domain C is nonexpansive
iff P=(1+T)/2 satisfies (3.28) for all x,yeC.

Definition 3.4: A map T: C- ¥ is said to be demiclosed if from
{xn]cc DX X x €C , Tx -y, (3.30)

_ 4
follows Txo =Yoe

Definition 3.5: A map T: C=C is said to be asymptotically regular
if for every x€C, T - T lx-’tb.

Lermma 3.2: In a Hilbert space ¥ let the sequence {x_ } converge
weakly to x,. Then, for any xfxo,

4111 words, T is demiclosed if for any sequence (xn }c € which con-

verges weakly to xg€C, the strong convergence of the sequence {Tx.n] to
Yo implies that Txg=yge

16
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liminf {|x_~x]| > liminf]lx - . 3.31
m ini -] im in BN (3.31)

Proof, Since a weakly convergent sequence is bounded, both limits

‘ in (3.31) are finite, Thus, to prove this incquality it suffices to note that
in the estimate

2 12 2 2
“xn-x“ =||xn-x0+xo-x" ="xn— O" +||x0-x“ +2Re(xn-x0,xo-x)
(3.32)

the last term tends to zero as n~o, Q. E,D,

. Lemma 3.3: Let T be any nonexpansive map with closed convex

domain CCH, Then, 1-T is demiclosed,
Proof, Let {xn]CC converge weakly to X0 and let {xn-Txn] con-

verge strongly to Yor Then, since T is nonexpansive,

lim inf - ~liminf}| Tx -T =liminf||Tx_-x +x -T =
m intx -xg| lim in Tx, -Tx | = im | Tx - x, =T |

= liminfllx -y -Tx || > iminfllx -x 3.33)
mint -y T, | 2 im e, -5, | (

! by lemma 3.2. Hence, again by lemma 3.2, X45=Yot Tx0 or (l-T)xo=y0
; so that 1-T is demiclosed, Q.E. D,

Theorem 3.4: Let T: C~»C be an asymptotically regular nonexpansive

map with closed convex domain CCH whose set of fixed points FCC is non-

empty. Then, for any x€C, the sequence {Tnx] is weakly convergent to
Pty y 4 g

an element of J.

Proof. For every yeJ, the sequence {dn b= {JT™x-y|| } is non-

increasing because

dopy =1 T ey = 7T - Tyl < [ T%-y | =a_ . (3.34)

Thus, the nonnegative limit

d(y) = lim || T x-y| (3.35)
n-» oo
exists as a finite number for every yed.
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According to lemma 3.1, Jis a closed convex subset of € and it
follows that for any fixed §>0, the set

= {yeT:d(y) <5} (3.36)

is a closed bounded convex subset of § which is nonempty for § large enough,
Indeed, convexity and closure are obvious from (3.35), and boundedness is

implied by the inequalities

Iyl = ly-T"c+ T < [ T -y || + [ 7]} (3.37)

and

I = [T %=y +yol < T -y I + llygll (3.38)
where y, is any preselected member of J. Explicitly, for any ye::l'8
Iyl <e+dtyg + Iyl - (3.39)

Since bounded closed convex sets are weakly compact (Theorem 2.1, {
Corollary 3), the intersection of all such nonempty 3’6'5 is a nonempty i
closed bounded convex set J5 . Clearly, 60 is the smallest value of § for
which 36 is nonempty. The set 360 can contain only one elernent say Yo
for if we suppose that it also contains y, ;!yo, the identity

I - 2 5 g
X-o——1Il = (I x"Yo" +|IT x'ylll )'“ " (3. 40)

Yoty '
yields d(—QT!-)<60 which contradicts the meaning of 6.

The sequence [’I‘nx] converges weakly to Yor In fact, since this
sequence is bounded, it suffices to prove tha;t all possible weak limits of

its various subsequences equal Yo > Let T"x » ylilyo. Then, from the

5;ssume that such is the case but T"x Yo . Then, for some {€¥ it is
true that the sequence [(T“x £)} fails to converge to (yo,f) Hence, there

exists a subsequence {T x} of {T x} such that hm(T x f) exists and is
unequal to (yo.f) But by hypothesis, the sequence {T x] itself contams
a subsequem.e {T x} converging weakly to y,; i.e., (yo,f) lzm(T x.f) =
lim(T" x, f) ;l(yo, f), a contradiction,

18




asymptotic regularity.of T,

U4
- (1-T)T"x =4 (3.41)

and invoking the demiclosed character of 1-T (lemma 3, 3), (l-T)yl =¢; i.e.,
Yy is a fixed point'of T, By lemma 3.2,
¢ ¢
8o=tm | T x-y || > lim | T"x-y || = a(y)) (3. 42)
which is incompatible with the meaning of 6y5- Thus, for every xeC, the
sequence {T x} is weakly convergent to a fxxed pointof T, Q. E. D,

Corollary: The sequence {Tnx] converges strongly to Yo iff at least
one of its subsequences converges strongly.

Proof. We know that T"x - Yor 2 fixed point of T, for every choice
of x€C, Clearly, since the weak and strong limits of a sequence must
coincide, the only possible strong limit of any subsequence of {T"x} is

Yor Now, from the equality
n 2 n_y2 n 2
N -y oll "= I T %[ " - 2Re(T x, y ) + [y, (3.43)
we find that
X 2
tim | T} % = a®(y ) + lly, (3.44)
4
as n-~w, In particular, for any subsequence {T"x} of {T"x},
: ' q2 2 '
Hm[| T x| ©= Pty )+ v ¢ . (3.45) ‘
'
But as we have already remarked, if any subsequence {T x} converges

strongly, it converges strongly to y, and therefore lim || T x“z- “yoll
that necessarily, d (yo) 0 and

T x Yy (3. 46)

Q‘ E. D.

This "all or nothing® aspect of strong convergence exhibited by the

iterated sequence {Tnx] appears to be the rule at the present level of
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generality., Unfortunately, the lack of strong convergence is a real obstacle
from a numerical standpoint, and a more in-depth analysis is undertaken

in the next section,

| Definition 3.6: A mapping T: C-C is said to be a reasonable wanderer
; if for every xeC

o0
T 1T %-T" x| P w (3. 47)
n=0

It should be evident that a reasonable wanderer is automatically asymptotically
regular (Definition 3, 5),

An example of a nonexpansive operator that is not asymptotically
regular is easily constructed. On the real line choose C=[-1,1] and
define T by Tx=-x, Clearly, T is nonexpansive, maps C into ¢ and its

only fixed point is x=0, However, T x - TM'l

x=2(-1)"x A 0 as n > un-
less x=0, Nevertheless, Browder and Petryshyn have shown that the

convex linear combination

T,=al+(1-0)T (3.48)

of T and the identity operator 1 is a reasonable wanderer for all @ in the
; interval 0< a< 1 and any nonexpansive T,

; Theorem 3.5[5): Let T: C-C be a nonexpansive map with closed

convex domain C whose set of fixed points is nonempty. Then, for any

fixed a, 0<a <1, T,:C-C is a reasonable wanderer and the sequence

a
i {Tnx} converges weakly to a fixed point of T for every x€C,

Proof, Clearly, T‘x maps C into C so that the iterates x = T:x
are well-defined for all xeC, In addition, for 0.;‘ 1 the fixed points of T

and Ta coincide and it only remains to prove that Ta is a reasonable

wanderer since it is obviously nonexpansive, Let y€C be a fixed point
of T, Then, y=Ty=Tuy and

len+l-yllz= ||o.xn+(l-cc)Txn-Y“z= "G(xn-y)+(l-a)('1‘xn-y)||2 (3.49)
= “2“ X =y [I Z+ Zo.(l-a)Re(xn-y, Txn-y) + (1-a.)z|| Txn-y“z .
(3. 50)
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Similarly,
2 2 2 i 2
W -Tx_|©= llx -y-(Tx -y) || “= [[x -y || © - 2Re(x -y, Tx_-y) + | Tx_-v]

(3.51)
which after multiplication by @({1-&) and addition to (3.51) yields

2 2 2 2 2
“xn+l-y" +a(1-0.)"xn-Txn" ““Hxn'vll +(l'a)|lTxn"Y" __<_"xn-y|l

(3.52)
Hence,
a(1-a)[lx -Tx_I%<fx -y 1% fx v 12 (3.53)
n n? <=l"n n+1l *
so that
N N 1 2
a(i-a) ), [|x -Tx I° =10 % ITox-Tg" xI?< llx-YIl """NH‘Y" <ll=-yl .
n=0 n=0
(3.54)
Consequently, since & #0,
Y Thx- T )< w (3. 55)
Q.E.D.®

SFor a = 1/2, Ty = (14T)/2 in which case Theorem 3.5 is easily
deduced from the mequahty (3.28).
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4, Iterative Techniques for Image Restoration in a Hilbert Space Setting ‘
According to the discussion initiated in the introduction, there exists \

a class of image restoration problems in which the unknown £ can be as-
certained to lie in an intersection
m
c,=NnC, (4.1)

0 j=1

of well-defined closed convex sets Ci, i=1l-m, Evidently, Co is also a ]
closed noncmpty convex set containing { and we shall denote the respective
projection operators projecting onto Co and (3i by PO and Pi’ i=1l-m,
Clearly, fis a fixed point of PO and all the Pi's. More generally, fis a

fixed point of P, and of every

0
T, =1+ \,(P,-1) , (4.2)

for any choice of relaxation constants )‘l’ )\2, oo, )‘m' Hence, under
the same conditions, f is a fixed point of P0 and the composition operator

T=T T__,+-T) . (4.3) ;

Conversely, can we say that any fixed point f of T lies in C() and does the
sequence {Tnx} converge (weakly or strongly) to a point of CO as n tends

to infinity, irrespective of the initialization x€¥?

Theorem 4,1: Let CO be nonempty. Then, for every x€H and every
choice of constants A, A,, ..., A__ in the interval 0< X < 2, the sequence
1' 2 m

‘ {T"x} converges weakly to a point of Co.

i Proof, For li_>_ 0, every

T, =1+ A (P, -1) = (1-3,)1 + \\ P, (4. 4)

is nonexpansive, The assertion is obviously correct for 0< 7\.15_1, but if

1< )‘i we have l-)\i<0 and it is necessary to reason differently, With the
aid of (2, 27) and (2.30), it is found that
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2_ 1.y
I - Ty 2= -2 ) x-y) + A (Px - By |2
2
= (1-3)%x-y | 2+ 21, (1-X )Relx-y, Px-P,y) + \Z || P.x-P,y || %
2 2, ,,2 2
S QA =y [T+ (A #20 (1-2 ) | Px-Py |
2 2
= (1-2 ) [l x-y] +xi(2-xi)||Pix-Piyllz
< O(2-2 )+ (A2 ey [ 2= -y |12 (4.6)

and nonexpansivity is established, We now show that T is a reasonable

wanderer,
For m=1, T=Tl’ CO=CI and
lx-Tx 2= 22 x-p x| 2 . (4.7)
Moreover, for any y€ Co, Ty= P1y=y and
(4.8)

I Tx-y = oyt ) (P x-5) || 2

lx-yll 2+ 2% | Re(x-y, P x-x) + A2 [|x-P x||?

]

2 I 2 .
le-y" -KI(Z-XI)IIX-PIXH +2X1Re(x-Plx,y—Plx)
(4. 8a)

2
< Ix-y%-2 22 D flx-P x| ? (4.9)

because the las’ term in (4. 8a) is nonpositive, Thus, by combining (4.7) and

{4.9) it is found that

A
2 1 2 2
Ix-Tx[| "< 75~ l(llx-vll - ITx-y ™) (4.10)

for 0< Xl< 2,
For arbitrary m>1, a straightforward induction on m yields the

inequality
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1
LM~ 2 2
bx-TxlZ< b 2™ ey 12 - DTy ) (4.11) |
]
where
b_= sup {—T} (4.12) ;
m l<1<m :

{Clearly, (4.10) subsumes the case m=1,) In fact, let T= TmK where

K=T T ,.--T, (4.13)

and observe that for m> 2,

“x-Tx“ z = “x-Kx+Kx.- Tx" 2

(xR + | kx-Tx]))?

In

2
2(f|x-Kx || 2+ | Kx-Tx[| )

IA

A

2( ||x-Kx||2+ zm'zuxx-Tmellz) . (4.15)

Thus, by the induction hypothesis, 7

2 -2 -2 2 2 -2 2
fx-Tx[[*<b_ -2 x-y |2 - 2™ 2 | Koy | 2 4 2™ 2 K-y | 2 2™ 2 Ty || B)

=b_. zm‘l(]lx-yllz-“'rx-y[]z) , (4. 16)

the desired inequality.

It now follows immediately from (4. 16) that
o0
E I Tnx-Tn+le 25 b _ 2m-! [} x-y I z< © (4.17)
n=0

and T is therefore a reasonable wanderer and, a fortiori, asymptotically

regular, By Theorem 3,4, the sequence {Tnx] converges weakly to a fixed

point of T,

7

A
Pm2 ZTh— 2nd by > sup {rr}

m 11<ml
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However, the fixed points of T coincide preciscly with the points of
co. the intersection of the Ci's. Indeed, it is obvious that xeco implies

x=Tx since xeci. i=1-m, Conversely, if x=Tx and ALY
-yl = I T=-Ty | <N T %-T vl = T x-y} <Ix-y| (4.18)

hence, "x-y “ = “Tlx-y" . In view of (4,10) this is only possible if x=T x

|

so that x= TmT e sz and a repetition of the argument finally leads to

xeci, i=1-m; ??e.l, xeco and the proof is complete, Q.E. D,

We are now in a position to address the question of strong convergence.
Let T: C-C denote a nonexpansive asymptotically regular operator with closed
convex domain CCH whose set § of fixed points is nonempty. From the
corollary to Theorem 3,4, the sequence {Tnx] converges strongly to a
member of J iff at least one of its subsequences converges strongly.
Clearly, such is assured if all iterates T x lie ultimately in some compact

or finite-dimensional subset of H,

The latter possibility exists even if C, the domain of T, is itself not
compact as is seen in the case of the composition operator T of Eq. (4. 3)
with all ki's equal to one. Here, C=}, Ti= Pi’ i=1-m,

T:Pmpm-l--o Pl (40 19)
and all iterates Tnx, n>1, lie in Cm. It suffices therefore that Cm be com-
pact or finite-dimensional, 9 (Assumptions of this kind appear to be quite

natural for those digital restoration problems falling within the scope of
Theorem 4.1,)

It is interesting and important to note that if all Ci's in Theorem 4.1
are CLM's, the sequence of iterates [Tnx} not only converges strongly
but actually converges to the projection of x onto Co. This result is an
extension of I. Halperin's neat generalization of Von Neumann's celebrated

alternating projection theorem [67] from m=2 to arbitrary [7].

—

8That a composition of appropriately relaxed projection operators is
automatically a reasonable wanderer is of course directly attributable to
the special pruperties of projections onto closed convex sets.

9By this w¢ mean that Cm is contained in a finite-dimensional linear
manifold C ¥,
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Corollary 1: Under the constraints of Theorem 4.1, if every Ci is
a CLM, ™ converges strongly to PO, the orthogonal projection operator on-
to the CLM CO'

Proof. 1o Let us first remark that now all Pi's and P0 are bounded

linear self-adjoint operators, Consequently,

% *
ri=1+xi(Pi-1)=1+xi(Pi-1) = Ti (4. 20)

is self-adjoint and linear, i=1-m, and Tn is also linear for all n> 0. More-

over, since T is nonexpansive and T¢ = ¢,
BTl = | Tx-Tell < |x-¢ll = || (4.21)
for all xe¥ so that || T|| and therefore IITn" <1, n>0.

As has already been shown in Theorem 4.1, for every x€ ¥,

n n

T - T = T?(1-T)x> ¢ (4. 22)

hence, Tny—'cp for all y in R(1-T), the range of 1-T. Now (107 the closure
TR{1-TVY of the range nf the bounded operator 1-T is the orthogonal comple-

ment of the null space of

N
(1-T) =1~(T T _ _|...T) =1-T|T,...T_ , (4. 23)

from which it is deduced that x belong to this null space iff

x=T T,...T_x . (4.24)

Thus, in view of Theorem 4.1, this null space is identical with Co so that
by the projection theorem, ¥= Coi‘[R(l-T)].

Let ye [{R(1-T)]. Then, there exists a sequence {yi }J€R(1-T) such
that YV Clearly,

B =0ty ¢ o -y < T e -y (4.25)

n>1, which immediately gives

loSim:e ¢€Ci, i=l->m, ¢€Co which is therefore never empty.
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lim sup [ Ty || < |ly-v; (4.26)
n ~»0

because Tnyi = ¢ for every fixedi>1, But |ly-yi || 20 so that Tny ¢ as now
for every ye[R(1-T)]. Finally, again from the orthogonal projection theorem,
every x€¥ admits a unique decomposition x=z+y where zeco and ye[R(1-T)].
Consequently, Tz =2z for all n>1 and

: T'%x=T 24T y=2+T"y »z=Pgx (4.27) |
as n»o©, Therefore, by definition, ™ converges strongly to the orthogonal i

projection operator P, onto CO, Q.E.D.

0
; Corollary 2: If each Ci is a linear variety, 11 i=1-m, and if the in-
tersection Co of these varieties is nonempty, the sequence [Tnx] converges

strongly to P x for every x€H.

0
Proof, To avoid unnecessary notational complications we assume
that m=3, Thus, Ci=gi+ Siwhere g; is a fixed element of ¥ and Si is a

given CLM, i=1-3, Itis easily shown that for each i and any x€H,
Pix = Six + P‘igi (4.28)

' where Si is the orthogonal projection operator onto Si and Riis that onto its

orthogonal complement, .I.Si. Clearly then,

Tix= x+)\i(Six+ Rigi-x) = (I-X'i)x+ kiSix + )‘iRigi (4.29)

|

' = Lix + )\iRigi (4.30)

: where ;
E Li = (l""i)H)‘iSi , i=1-3 (4.31)

!

{

Thus, by simple algebra and linearity,

+A, L. LR

? Tx=T3T2Tlx= X3R +)\2L2Rzgz 1L, lgl+L3Llex

383

| =h+ Lx (4.32)

where

IlA linear variety C is composed of all vectors x of the form x=g+y
where gelM is fixed and y ranges throughout soone CLM 8, For short,
C=g+8, (A linear varicty is obviously closcd and convex.)
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+A,L +\ L LR (4.33)

h= AR 2Ro8; + A L LR g

383

i and

= L=L,L,L, . (4.34)

' It now follows by iteration of (4, 32) that

: n-1

r T"x= Y L'h+ L% , n>1. (4.35)
f r=0

In particular, for x=f, f a fixed point of T, Tnf= f,

j n-1
' f = 2 L™h + L%t (4. 36)
r=0
and
T'x-f=L%x-f) , n>1 . (4.37)

According to corollary 1, Ln(x-f) %Ps(x-f) hence,

C -
“
>

T x >+ Pg(x-f) = w . (4.38)

! v
where Ps is the orthogonal projection operator projecting onto the CLM . .

3 - .

: $=Nn8, . (4.39)
N 1

i=1

Obviously, w=1im T"x is independent of the choice of feco.
n=>»o00
It is clear from feco that weco, and invoking the orthogonal pro-

jection theorem,

X-W = x-f-Ps(x-f) = Qs(x-f) (4.39a)

where Qs(x-f) is the projection of x-f onto 18, Hence

Ix-wl = lagx-0fl <lx-¢} . (4. 39b)
12

But f is an arbitrary member of cO so that necessarily, T"x sw= Pox, Q.E.D.

lzAnother proof of corollary 2 (without relaxation) is given by 1. Amemiya
and T, Ando (8],
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In Theorem 4.1 the update rule is given by X 41 0

arbitrary element of #. More generally, we can also work with the singlc-

= Txn with x_=x an

step cyclic scheme

xl = Tlx

xz = szl

xm = mem"l = Tme‘l 'ooTlx = Tx (4.40)
Xmtl - 11%m

x =T x =T T _ ., ...T.Tx=T%x

2m m_ 2m-1 m m-1 1

x -
2m+l = Tlx2m

Or, put more succinctly,

x (4.41)

ntl - Ta (n)xn

where x5 = x and13

¢(n)=1l+nmodm , n>0

(4. 42)

It is easily shown that the sequences {T"x} and [xn} converge weakly to
the same limit x*eco. Write n=fm+r, 0<r<m-1. Then, forn>1
x =T T.  ...T,T!x (4. 43)
n rr-l 1 ¢
and £ 2 as n-o, Let T‘tx - x* and let the subsequence {xn: } of {xn}

!
converge weakly to x,

Then, n‘=mt’+ r/, 0< r'_<_ m-1, and 2’ o as n'so, Moreove'r,

making use of (4, 11) with T replaced by T T ¢+ -+ T, and x by T x we
13

n mod m is the remainder obtained upon division of n by m and is ouc
of the integers 0, 1, ..., m-1,
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obtain, for every yeco,

7 4
It ex o %<n -2 T ey |2 sy 12) (4. 44)

’ 4
<b 27T xey 2Tt ey L (a.45)

’ ’
Hence, “T‘ x-xn1|| +0asn’>w, But Tl X=X ¢ = x*-x'and since14

4
el < tipine | T e s = 0 (4. 46)
n o0

x*:x', as was to be shown, (To the best of our knowledge, the first proof
of weak convergence of the iteration (4. 41) to a point of Co is due to

Bregman [9). However, as we have scen, the underlying theory is the

same as that of the full composition operator T = Tme-l

= Txn.)

"'Tl and its

associated fixed-point recursion, X 41 :

The first lemma of this section is preparatory to a deeper study of

the strong convergence of the sequence {Tnx}.

Lemma 4.1: Let T be any nonexpansive map whose set of fixed
points includes a given closed convex set ¥, and let Pﬂ' denote the pro-

jection operater onto §. Then, for any x€ domain T,
Re(x-Tx, x-PB.x) >0 (4. 47)

and

Ix-Tx| < 2]|x-Pgx]] . (4.48)

14Let y, - f. Then, for every yel, (f,y) =lim(y,,y) as n=>. In particular,

[(f,y)] = lim |(yn,y) |. But from Schwartz's inequality, |(yn,y)| <lvl-1l yn.“

0 that .
so tha [ | <yl - imintlly || .
. nN=o0

Thus, for y=f,

el < vminelly |
n- oo
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Proof. Clearly, for every x,y in domain T,
2 2
ITx-Ty[|"-lx-y[" <0 . (4.49)
In particular, ify= Pa,x,
ITx-Pgax]® < flx-Pyx]|® (4.50)

because Pa,xeﬂ' and TP3x= Pn,X, by hypothesis. Thus,

lx-Tx-(x-Pyx) |2 < x-Pyx|? (4.51)
and an easy simplification yields
fx-Tx | 2 <2Re(x-Tx,x-Pgx) , (4.52)

x€ domain T, From (4.52) and Schwartz's inequality we now obtain (4. 47) and
(4. 48) immediately, Q.E.D,

Inequality (4., 47) simply states that Tx lies on the side of the support
plane through x, parallel to that through sz, containing ¥ (Fig. 4.1).

Support plane through
x paraliel to the one
through Py x.

Support plane to J at Pgx.

oy

Fig. 4.1

Lemma 4.2: The iterated sequence {I‘nx} of Theorem 3.4 converges

strongly iff
I T x-Pg T x|+ 0 (4.53)

as n-o, 15

TgClearly, “Tnx-PsTnx =d('I‘nx, J), the distance of T"x from J.
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Proof. As shown in Theorem 3. 4, the sequence {Tnx} converges

weakly to some point x*€J, Evidently, if the convergence is actually strong,

AT %, B) = [ T %x-PpT x| < | T x-x*[| - 0 (4.54)
n X k.

as n-ow, Conversely, suppose that d(T x,J) -0, Then, since T is non-

expansive for all integers k>0 and includes J in its sets of fixed points,

(4. 48) yields, for all x€C,

Ix-T"]| < 2lx-Pgx]| , k>0 . (4.55)

, In particular, if x is replaced by T"x we obtain

n+k

ITx-T" || < 2] T x-PyTx|| =0 (4.56)

as n»©, Thus, the sequence [Tnx} is Cauchy and T x »x¥, Q.E,D,

According to lemma 4.2, convergence in Theorem 4.1 of the sequence

{T"x}to a point of (‘0 is strong iff

d(Tx, ) = | T x-P,Tx|| »0 (4.57)
g as n>o, (The set of fixed points of T = Tme-l .. .T1 coincides with Co.)
We can show without the imposition of any additional constraints that for
i r=1-m,

dT"x, € ) = | T x-P_T x| »0 (4.58)

| as n-w, (The distance of T"x from every (!r goes to zero as n goes-to
infinity,)

6

To see this, note that as a special case of (4.11), 1

- 2
IT°%-P P,y - B T2 < 2" T ey |2 P 2, Ly - B Ty |

(4.59)

. 2 2
< 2" T %y 2= T Px-y | ) 20 (4. 60)

-

for all yeco and every r=1-m because,

- ———— . — i —

'®ldentify T with P_P__ ...P, and setm=rand A =1, i= 1+,
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+1
I %yl < IP P, --- P, T x-y]| (4.61)
and
: lim [T x-y | (4. 62)
n->

exists (Theorem 3.4). Thus, since PP, | ...P T'xeC _,

n n
AT"%, C) <| T"x-PP__ ... P T x| »0 (4. 63)

1
as n-o and (4. 58) is established. Our problem therefore is to find some

other restriction, preferably very weak, which together with (4,58) implies
(4.57). The next theorem complements Theorem 4.1 and supplies two suf-
ficient conditions for strong convergence, the second of which appeared for
the first time in the excellent paper by Gubin, Polyak and Raik (1 1 already

referred to in Theorem 2. 3.

Theorem 4. 2:17 Either of the two conditions 1) or 2) stated below
suffices to guarantee the strong convergence of the sequence {Tnx} of
Theorem 4.1 to its weak limit x%,

? 1) At least one of the ci's is uniformly convex and does not contain

x¥ in its interior,
2) For some @&, 1<a < m, the set intersection
m o
-; c,nen c) (4. 64)
ife
is nouempty (and therefore contains a point of C 0).

In case 2) the strong convergence of [Tnx] to x* is at a geometric

rate,

Proof. 1) To be specific, let us suppose that cl is uniformly convex

F and contains x* on its norm boundary. As we have already shown in (4, 58),

AT, € ) = [[T"x-P, Tx|| =0 (4. 65)

rT

! The interior of any set G is denoted byG°,
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as n 2o, Clearly, 18 every yﬁ:PlTnx sdes in Cl and Y, x*, Now, if the
convergence of the sequence {yn] to x* is not strong, there exists an €>0
and a subscquence {yn:} such that

ly s -x=]| > ¢ (4. 66)

for all n’.

Thus, since x%¢ (SOC(!l and the latter is uniformly convex (Def. 2.3),
the point

Yo/ + %
—3—+h (4. 67)

z 1=
n

is a member of (!l for all n’ and all h such that
Inll < s(e) >0 . (4. 68)

But for any such fixed choice of h, z 1> x*+h which belongs to Cl because
the latter is weakly closed. Consequently, x*% is the center of a sphere of
radius §(€)> 0 contained in Cl, and this contradicts the assumption that x*
is not an interior point of Cl. Therefore the convergence of {y }and
hence of {T"x} to x* must be strong. (Note that || T x-x*| <1 Tnx-yn“ +
"yn-x* | 0 as noe.)

2) Let z belong to the intersection (4, 64), Then, zeco and for some
6>0 it is true that heci, ifa, for all h such that

[h-z||<s . (4. 69)

Lety= PaTnx. Then, for any €>0, no matter how small,

_ € 5
WEers ttem Y (4.70)

is a member of Co for all sufficiently large n,

In fact, since zecq and yeca and Ca is convex, weca. Now observe
that

18For any z€N,

HT"x, 2) -ty 2) | = (T™x-y , 2) | <[ T"%-y || - lIz]] > 0

as n-~»o, Hence, im (y_,z)=1lim (Tnx,z)=(x*,z) so that ynax*.
n=-»oo n=- oo
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ly-Pyll =dty, €) <lly-P, 7| < J T x-y || + I T x-P,T"x||  (4.71)

= d(T", € ) + (T, C)) <

Nl m

e -—
t5 =€ (4.72)
19
for n large enough, Thus, for all suchn,

h=2z4+ % (y-P.y) (4.73)

belongs to Ci, i# a, because ||h-z]| < 8. From the identity

_ € 5 5 e 5
wegslrtey-Pyt gE Py gy bt g o By . (479

and the convexity of Cl we also conclude that weci, if a;i,e,, we Ci, i=}l-m,

hence weco.

Consequently,
AT, € < | Tx-wi| < [T %-y| + [ly-w]| (4.75)
€

= (T x, Ca) + m"y-z | (4.76)

€ , eR _ 2R, € _ c€
<?+6—'(1+6— '—2"'2 (4.77)

where
2B

C=(1+T) (4.78)

and R is an upper bound on |y-z|. 20 Since € is arbitrary, d(T"x, Co) con-
verges to zero as n-© and {T"x} is therefore strongly convergent to x¥,

It remains to establish that convergence is at a geometric rate,

Observe first that € /2 in (4. 77) is by construction, and for sufficiently

large n, an upper bound on the m distances d(Tnx, Ci), i=l-m:

AT x, €)= | T™*-PT x| < 5 , i=1-m . (4.79)
19Remember that according to (4.58), for i=1-m, lim d(Tnx, Ci) =0,
n -0
zolly-z | = |PgT -2z < | T"x-2| for all z€C,. But the latter is a monotone

nonincreasing function of n and is therefore bounded by some finite number R.




Hence, for all large cnough n,

d(Tnx, C.)<c.sup HTnx-P. Tnx" . {4.80)
0"~ j= 10 i

Choose the positive numbers €

and €, so that elez/c2<l and
0<e <A <2-¢

1
2 i=1-m, Then, from (4.10) and (4.7) with T replaced by

Ti’ x by T™x and ¥y by POTnx we obtain, for every i=1-m,

2
2,.n 2 .2,.n c 2,..n n n 2
a(T %, ¢ )< cd™(T x,C.)< —~—(d(T x,C,) - | T. T x-P, T x]|| )
0 i’'— Xilz xis 0 i (4]
(4.81)
2
< e"l ez(dz(Tnx,Co)- ™ Lx-p T | %) (4.82)
c2 2, N 2, .ntl
< elez(d (T'x, Cg) -d™(T" 'x,C)) . (4. 83)
Therefore,
€€, 1/2
d(T““x,co)< (1- 122) AT x, C ) (4.84)
< )
and by iteration,
N €€, n/2
d(T X, Co) 5(1 - -—CT') . d(x, co) (4.85)
elez n/Z
<R(1 - —=5%) (4. 86)
[of

The proof can now be brecught tc a quick conclusion. From (4.56), with
S= co and PU =PO, (4.86) yields, for every integer k>1,

€ € n/Z
IT-T"*%] <2r1 - L2 . (4.87)
C

But for fixed n, Tn+kx—*x* as k- so that a passage to the limit in (4.87)

gives
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€ €, nf2
Ir"-xs || < 2r(1 - 252 . (4. 88)

[}

. n o n
i.e., T x converges strongly to its limit x¥ at least as fast as 2Ra where

€ e 1/2

a4

,1.-.([-_?__.1 2) <1 , (4.89)

Q.E.D. %!

The idea behind the proof of 1), Theorem 4.2, is simple but the
criterion itself is very effective, [t differs fundamentally from 2), and
taken in the context of Theorem 4.1, appears to be new, Apart from the
important uniform convexity requirement, 1) succeeds because the weak
limit x* is on the boundary of at least one Ci, whereas the success of 2)

depends entirely on the fact that at least one point of C,, not necessarily

)
x*¥, is interior to the set intersection of some m-1 Ci's(f In general, with-
out the introductivn of smoothing constraints, 2) is of limited applicability
because tfor the class of image-restoration problems we have in mind, the
unknown f is usually a boundary point and convex sets with interiors are

hard to come by.

For example, suppose that H:LZ, the Hilbert space of all functions
f(t) of the real variable t square-integrable over -0o<t< o, Let F(®) de-

note its LZ-Fourier transform and let us denote the correspondence by

f(t)—=F(w). Then, if f(t)~=F(w), iz 1,2,%8
s’ a) [s ]

(£,.6,) = [ £ (0T, (0t = 5= | F (W)F,(w)dw . (4. 90)
- 00 - 00

For any prescribed b>0 let Cb denote the subset of ¥ composed of all fts
bandlimited to b; i.e., f€C, iff F(w)=0, |w|>b., Itis obvious that cb is
a CLM devoid of any interior points, Indeed, given any €>0 and any fe(‘,b
there exists a g¢C, such that

ZlExcept for some minor improvements, especially in the part dealing
with geometric convergence, our proof of 2), Theorem 4.2, is in all respects
the same as the original one given by Gubin et al, [ 1 ].

For a scalar x, x denotes its .omplex conjugate, and as usual Re x and
Im x are abbreviations for the "real" and "imaginary" parts of x, respectively.
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.
le-gll® = [lew-ger|%at < & . (4.91)

-0
(Thus, as measured in terms of energy context, any size neighborhood of a

bandlimited sigial contains signals that are not bandlimited.)

As another illustration, for any prescribed a >0, let Ca denote the set
of all f's whose orthogonal projection Paf onto the closed interval -a<t<a
is a given function g(t), (Of course, g(t)=0, ]t] >a,) Itis easily seen that
C, is a linear variety whose interior is also empty. Thus Ca and Cb are
two practical examples of boundary sets that occur repeatedly in many areas

of signal processing.

Let C1 denote the closed unit sphere in ¥ and let g be any fixed element
of norm equal to one, Clearly, g lies on the boundary of Cl, a closed uni-
formly convex set, 23 Let CZ denote a closed half-space whose boundary
is tangent to C!l at g. Obviously, gis the only point common to the inter-
section clncz. To find g we can generate the iterates T"x where T = P_P

271
and x is arbitrary, (Figure 4,2 should clarify the mechanics.)

Tx v T3x

\'T2x x=g
AN\ \\\&\\\

ZSBy making use of the identity

2 -y
102+ 15522 -

it is easily shown that the closed sphere of radius R is strongly convex
(Def. 2.4) with 6(T)=p T2 and pu=1/8R.

2 2
"+ Uyl
2
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Since x* =g lies on the boundary of Cl, criterion ]) guarantees that

Tnx-)g; however, 2) fails because czncl° is empty. Nevertheless, geo-
metric convergence is precluded by the tangency of the two boundarics at

the point of contact x%,

In Fig. 4.3, 2) always succeeds and establishes that T x +x* at a
geometric rate, On the other hand, 1) predicts strong convergence only
if cl is uniformly convex., Neither 1) nor 2) encompasses corollary 2,

Theorem 4.1, in which all Ci's are linear varieties,

'éfi”/ P/{ T///// //% //

/7
7
X( /
/,

b 71

OO

7o K

RN K
e

N
\R

Fig. 4.3
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